
Storing Personal Information
Management data
Akonadi - unifying PIM data for KDE

Robert Zwerus (arzie@dds.nl)



Graduation committee:

dr. ir. Djoerd Hiemstra University of Twente
Pavel V. Serdyukov, M.Sc. University of Twente
prof. dr. Peter M.G. Apers University of Twente
Till Adam KDE
Volker Krause KDE

Copyright c© 2007 Robert Zwerus. Permission is granted to copy,
distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free
Documentation License”.



Abstract

Storing Personal Information Management (PIM) data is not trivial, because of
the variety in content types. Existing PIM storage systems have shortcomings
in performance, data concistency and/or concurrency. In this thesis, we propose
several optimisations and test them in Akonadi, KDE’s new central PIM data
access manager. The optimisations include using the D-Bus protocol for trans-
mitting short commands and notifications and an IMAP-compatible protocol
for data access and modification. The PIM data is kept in its native format, but
compressed and split up into separate, frequently-used parts for increased per-
formance. Both the synthetic and use case based evaluation results show that
the proposed modifications perform well and help maintain data consistency
in Akonadi.

i





Preface

Welcome to the thesis belonging to the final project that concludes my studies
of Computer Science at the University of Twente!

The final project is overseen by the Database group, with Djoerd Hiemstra
and Pavel Serdyukov as mentors. As a big part of the project involves KDE,
they provide mentors as well, Volker Krause and Till Adam.

When I was looking for an assignment for the project, I had open source
software in mind. I’d been running Linux with the KDE desktop for years and
wanted to contribute something useful. After asking around and investigating
some options, I came in contact with Volker, who helped me get up the speed
on the Akonadi project. Attending a KDE PIM meeting in Osnabrck got me to
meet the people working on KDE’s PIM software.

Defining the precise working area within Akonadi took some time, but ev-
erything became more clear on the way. In the research phase, Akonadi’s state
was analysed, along with material on PIM storage, communication methods
and evaluation data. A few months later an Akonadi meeting took place in
Berlin, which was also good to get everybody on the same page again. Imple-
mentation started after that and took a while. Evaluation methods were defined
and the implemented ideas were tested on performance and robustness. The
thesis gained its present form along the way and was updated and restructured
when necessary.

This project serves more than one goal: to find out smart methods for
handling personal information and to help the KDE project.

Acknowledgements Firstly, I would like to thank my supervisors for their
help with the project. Djoerd and Pavel, thanks for keeping things in per-
spective and helping me specify and refine the scope of my project. Volker
and Till, thanks for helping with the KDE/Akonadi related parts of the project.
Also, thanks to the rest of the KDE PIM developers, whom I’ve met in several
developer meetings.

As for the non-technical side of things, I would like to thank my girlfriend
Klarieke for motivating and supporting me.

Enschede, Robert Zwerus
November 2007

iii





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Requirements of Akonadi 5
2.1 General requirements . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Specific requirements . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Data consistency . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related research in PIM 9
3.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Protocols and formats . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Compression . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Storage backend . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Data consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 In databases . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Concurrency control . . . . . . . . . . . . . . . . . . . . . 16

4 Design 23
4.1 Akonadi in general . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Global design . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Database layout . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Implemented modifications . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Data consistency . . . . . . . . . . . . . . . . . . . . . . . 31

v



vi CONTENTS

5 Evaluation 35
5.1 Evaluation plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Robustness tests . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.3 Performance tests . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 Test systems . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusions 47

7 Recommendations for future work 49

Bibliography 51

A GNU Free Documentation License 55

Summary 63



Chapter1
Introduction

1.1 Background

Computers are used for Personal Information Management (abbreviated ’PIM’
in the rest of this document) more and more. The spectrum of PIM data is
growing, not only emails, events, contacts and notes, but also blog entries and
instant messaging history come into play nowadays. More types are expected
in the future.

Storing all these different types of data efficiently is not trivial. Although
largely consisting of textual information of varying size, these items contain
binary parts as well (e.g., email attachments, contact photos).

In this thesis, the above-mentioned storage problem is investigated. Re-
search is performed on how to store PIM data, how to provide concurrent
access, how to allow fast searching, how to communicate between the storage
and client applications and how to evaluate a PIM storage system. To test the
findings of the research, the PIM storage of the KDE project is taken as a “guinea
pig”. Optimisations for it are designed, implemented and evaluated.

KDE (KDE07) is a powerful Free Software (FSF07) graphical desktop en-
vironment. It is available for Linux and Unix workstations, and is to become
available for Microsoft Windows as an alternative to the default Explorer envi-
ronment.

KDE contains a set of applications for Personal Information Management,
namely KMail, KOrganizer, KAddressbook and many more. They can be used
separately or from within Kontact, an application that groups the suite of PIM
applications together.

In KDE 3, each application has its own method of storing and retrieving
data, which has several negative aspects. Some applications store their data
in a single file, which results in low performance, especially with concurrent
access. Sometimes the same data is held in memory multiple times, taking up
too much space and lowering the capacity of the whole system. Additionally,
access to groupware servers or otherwise remote data is not always possible.

More technically, KDE 3 uses the KResources framework, where each kind
of data storage is an implementation of a KResource class. It has an online

1



2 CHAPTER 1. INTRODUCTION 1.2

model, expecting that the storage is always available, even if it is a remote
one. Adding an offline mode (for example for laptop users, wanting to use
IMAP to connect to their mailbox) is not a case of extending the existing class,
but rewriting it with an offline model in mind. This introduces the risk of
making and solving the same programming mistakes again. The implemented
KResources are not nicely separated from their related GUI items, which makes
using them from console software or from within libraries harder.

Figure 1.1: Akonadi’s global architecture

Akonadi 1 is the proposed solution to these shortcomings, a unified data
access manager for PIM data in the user’s desktop. All PIM data is accessible
from a central place, thus enabling the possibility of synchronous access, locking
and reduced memory consumption. Additionally, optimizing Akonadi means
improving a host of applications at once instead of one at a time.

Akonadi is a standalone server, separated from the client applications. This
means that it is available for all kinds of software, including non-KDE applica-
tions, that are welcome to use it.

The idea of a centralised access point for KDE PIM emerged in 2006. Since
then, implementation is taking place, but a lot of thinking, designing and further
implementing needs to be done. As for the PIM applications, work has started
porting them to KDE 4. However, the developers are waiting for Akonadi to
become usable, before converting the storage access methods to it.

1http://pim.kde.org/akonadi

http://pim.kde.org/akonadi


1.5 1.2. RESEARCH QUESTIONS 3

1.2 Research questions

• How to transfer PIM data between the storage component and the appli-
cations/libraries using it with high performance?

• How to store PIM data, consisting of tabular, textual and binary parts,
efficiently and consistently?

• What are the performance and robustness of Akonadi?

1.3 Goals

• Decide upon a communication protocol and data format for transferring
PIM data from and to the storage and applications/libraries.

• Investigate and specify a way of storing PIM data efficiently.

• Research and implement the possibilities to keep the stored PIM data
consistent.

• Create and execute evaluation methods for testing the performance and
robustness of PIM storage systems.

• Apply the found answers to Akonadi.

1.4 Approach

Initially, requirements are stated and research is done in the fields relevant
to Akonadi (e.g., PIM data storage, concurrency control, data protocols and
formats). Based on the results of this research, solutions are designed and
implemented.

Akonadi’s performance and robustness is evaluated, according to an eval-
uation plan and with a collection of test data.

1.5 Report structure

This document contains a standard software engineering structure. The next
chapter lists and elaborates on the requirements for Akonadi’s storage and
its communication with other parts of the system. Following up on those, the
Research chapter investigates the available solutions to the stated requirements.
The Design chapter describes the anatomy of Akonadi and explains how the
chosen solutions are implemented.

To investigate whether the implementation meets the requirements, the
Evaluation chapter discusses the approach and the results of the performed
tests.

In the end, conclusions are drawn with regard to the implemented solutions.
Also, recommendations are made to inspire further developments in Akonadi.





Chapter2
Requirements of Akonadi

This chapter poses the general requirements for the KDE project and the specific
requirements for the added functionality of Akonadi.

2.1 General requirements

1. KDE uses the C++ programming language and the Qt-library created by
Trolltech (Tro07).

2. Akonadi is licensed under the GNU (Library) General Public License.

3. Akonadi should not depend heavily on KDE libraries, because it needs
to become a desktop-wide standard.

The work in this thesis builds on the existing basis of Akonadi. Technical
documentation about the design and current state of the software can be found
in KDE’s API documentation (KK07).

2.2 Specific requirements

2.2.1 Communication

KDE components need the ability to communicate with each other. It should
be able to send and receive commands and notification messages to specific
components or to a set of listeners. Transmitting these types of messages
should also be possible between Akonadi’s components.

For Akonadi’s main purpose (handling PIM data), a library, called libakonadi,
provides an API to client applications. For communication between the Akonadi
storage and libakonadi, a message-access protocol is necessary. It should allow
retrieving a list of PIM items, fetching several PIM items at once, as well as
adding/updating/deleting PIM items in the storage. Performance is of impor-
tance, as well as reliability. Also, a platform independent protocol would be
nice to ease other implementations of libakonadi.

5



6 CHAPTER 2. REQUIREMENTS OF AKONADI 2.2

2.2.2 Data storage

Akonadi’s purpose is to be a central access point to all the PIM data of a
KDE desktop user. This does nowadays consist of email, notes, addressbook
and calendar items, but in the future many new types of data will probably
emerge. Because of this, it is important to store the items in a uniform, non-
specific manner. The storage should not know anything about the semantics
of the stored items, the client applications are responsible for this. In this way,
Akonadi is future-proof, effortlessly storing any new type of information the
client application developers can think of.

Akonadi is using an offline mode by default, treating online mode as a more
or less special case. Both modes are implemented in a single component. A
partially online mode should also be supported, where parts of the PIM items
are cached by Akonadi and others only reside in the external resource (such as
a groupware server). An example of this: the headers of all email messages are
cached, along with the complete messages in a few important folders, but the
complete messages of the other folders are fetched from the groupware server
on demand.

Essentially, Akonadi is meant as a cache, not as the designated storage
of the data. For groupware and other remote kinds of stores, this is trivial,
because the main storage location of the data is the remote server, not the
user’s system. Local kinds of stores do not specifically need caching, however,
it has several advantages. The cache is designed to be fast, where some PIM data
formats (e.g., an iCalendar file, where for every data modification the complete
iCalendar file has to be rewritten) are not. A uniform way of accessing the
items makes development and maintenance easier.

The PIM items are structured, e.g., emails sometimes have attachments
belonging to them. It should be possible to retrieve a description of the structure
of a PIM item, as well as parts of the PIM items (for example, only the text of
an email message, transferring the attachments only if the user wants to open
them).

Client applications can generate additional data for an item, because they
have knowledge about the content of items. Email software knows the meaning
of email headers and can create an envelope of them. Akonadi should be able to
store this extra information. With this ability, listing an email folder’s contents
only requires retrieving all the envelopes and processing them. Otherwise, all
the email’s headers would need to be fetched and interpreted, which costs more
time for the data transfer and more for the processing.

Searching data

Nowadays desktop search plays an important role in modern desktops. Espe-
cially PIM data needs to be searchable, therefore Akonadi must allow desktop
search engines to index its stored data.

The method of searching the stored data depends on the chosen backend.
If direct filesystem storage is used, the indexers of desktop search applications
automatically add newly stored data to their index. All other backends require
creating a plugin or feeder to provide the indexers with a readable version of
the backend’s contents.



2.2 2.2. SPECIFIC REQUIREMENTS 7

2.2.3 Data consistency

Because there is one instance of the Akonadi storage server per user, concurrent
access has to be possible. Multiple applications can access the same data,
creating the possibility of conflicting write attempts. Naturally, this has to be
prevented, always leaving the storage in a consistent state and, where possible,
notifying the user of the conflict without loss of data.

If data conflicts occur and they cannot be automatically solved (for example,
when two different columns of the same row are modified), present the user
with an option to choose between the two.





Chapter3
Related research in PIM

In order to accomplish the set goals and to fulfill the requirements, research is
done on the available options. This chapter’s structure is equal to that of the
specific requirements, stated in the previous chapter.

3.1 Communication

3.1.1 Protocols and formats

Transmitting commands and notifications between components and client ap-
plications can be done using an IPC (Inter-Process Communication) protocol.

Several IPC methods exist, such as DCOP (DCO07), which is used in KDE
3. However, D-Bus (PCL06) (see figure 3.1) is the accepted standard for IPC in
Qt4, GNOME and KDE 4. It is a message bus system, which allows processes
to communicate with one another in a simple way.

An IMAP-like (Chr03) protocol between libakonadi and the Akonadi server
is implemented already. It is widely used for email access, and thus well-tested
and optimised for speed, even when handling large numbers of messages.
It supports streaming, which allows more efficient processing of commands.
Incoming commands can be queued and reordered, results can be sent back
asynchronously. Using IMAP also makes sure other software can access the
Akonadi cache, which makes importing and exporting a lot more easy.

The actual PIM items can be transferred in several ways. The simplest
option is to use the item’s native format (e.g., RFC822 for email, VCard for
addressbook entries, iCalendar for events). Existing KDE libraries can be used
for parsing the native formats.

Another possibility is to use an XML or MIME based format, but that re-
quires converting the item data whenever the native format is needed again
(for example, when communicating with a groupware server). It also removes
a level of backwards compatibility with other IMAP clients.

The fastest method would be to store the objects holding the items in binary
form, as it only requires serialising and deserialising the object, no interpretation
is needed. However, this method introduces a lot of problems, such as platform
dependence (because the object’s binary form differs between platforms) and

9



10 CHAPTER 3. RELATED RESEARCH IN PIM 3.1

Figure 3.1: D-Bus diagram, showing broadcast en specific messages (PCL06)

compatibility between different versions of Akonadi (for most modifications to
the object’s code, the database contents needs to be rebuilt).

3.1.2 Compression

As a lot of the PIM item’s formats are textual, it is interesting to have a look
at data compression in the storage and the IMAP connection. The reduced
storage size is not that important, as storage is cheap, but the performance
might increase, especially with the powerful computer processors in use today.

Lots of different compression algorithms exist, many of which are propri-
etary, but free alternatives exist. Perhaps the best known free library for data
compression is zlib (zli07), it is used in hundreds of applications (such as the
Linux kernel, the Apache webserver, libpng, OpenSSH and OpenSSL).

A comparison of the capabilities and efficiency of some free archivers (table
3.1) shows their differences. gzip uses about the same algorithm as zlib, it
boasts a good tradeoff between computational intensity and compression ratio.
It does not have the best compression ratio, but the speed makes up for it.

One possible drawback of compression might be that the data cannot be
searched while in the storage backend. However, Akonadi is not responsible
for indexing the data, it is forwarded to designated search software (such as



3.2 3.2. DATA STORAGE 11

Name Text % Text (s) Executables % Executables (s) Images % Images (s)
7-zip 19 18.8 27 59.6 50 36.4
bzip2 20 4.7 37 32.8 51 20.0
rar 23 30.0 36 275.4 58 52.7
advzip 24 21.1 37 70.6 57 41.6
gzip 25 4.2 39 23.1 60 5.4
zip 25 4.3 39 23.3 60 5.7
lha 27 3.7 40 13.2 61 9.3

Table 3.1: Comparison of file archivers (fil07)

Strigi) instead., so there is no drawback there.
Searching in the storage backend also is not context-aware (e.g., searching

for the word ’subject’ returns all email messages, because it is a standard header
name), whereas search software can process all data formats intelligently.

3.2 Data storage

Because PIM data consists of a lot of different kinds, it gets scattered all over the
user’s desktop, being handled by separate applications and stored in different
locations. Unifying PIM data (KJ06) using existing applications is hard, because
of the fact that a lot of the references are ambiguous (e.g., one name can refer
to two different people).

Presenting the PIM data in a unified way (Dum07) is the applications’
responsibility, not Akonadi’s. Supporting it where possible, however, would
be nice.

Storing everything in a central location, as Akonadi does, is one step in the
right direction. Extracting and storing relations between the items is another
step, which can be done by Nepomuk (Con07). Making the contents of the
items available for fast searching can be done by desktop search engines, such
as Strigi (vdO07).

3.2.1 Storage backend

Because Akonadi uses Qt, using a natively supported database is convenient.
However, Qt allows writing a driver for currently unsupported databases, so
investigating the options is no waste of time.

If possible, using an embedded database is preferred. An embedded
database is linked directly to the Akonadi server, relieving the server from
starting the database and it usually has a higher performance, because of the
direct connection between the database and the Akonadi server.

Direct filesystem storage

A straightforward method of storing PIM data is to save it directly on the
filesystem. The mbox format (mbo07) stores a complete folder as a single file,
whereas the Maildir format (Ber95; Pre06) stores every item separately.



12 CHAPTER 3. RELATED RESEARCH IN PIM 3.2

Direct storage removes a layer of abstraction, and thus overhead, possibly
improving performance a little. Also, in the case of filesystem corruption, there
is a possibility only part of the data is lost.

On the other hand, the actual performance depends on the underlying
filesystem, which is not freely selectable by developers, but by the users. This
is undesirable, because it makes the user responsible for choosing the right
filesystem, which is not trivial. Also, it is easy for the user to access the files,
thus endangering data consistency. Normally, the PIM storage application
should be the only entity handling the data.

Storage granularity is another issue, which the mbox format runs into.
When a complete folder is stored in a single file, locking is necessary to avoid
data corruption when multiple processes access the folder simultaneously. The
performance is rather low, because reading and writing an item perform oper-
ations on the entire folder. Storing single items by themselves, as the Maildir
format does, helps in this matter. Performance is much better, and the locks
only lock the item, not the folder it belongs to.

Relational database

Relational database management systems (RDBMSes) are in use for decades,
indicating they are mature and well-supported. SQL, the standard language
for accessing the stored data, is widely known by developers.

RDBMSes store data in tables, that in turn consist of columns of a certain
data type. This makes them ideal for storing tabular data, i.e., data items that
are built up of a set of distinguishable parts. However, when the data is a
single binary object, RDBMSes cannot offer more convenience than a filesystem
does, they only add overhead. This disadvantage also holds for hierarchically
structured data items and data items that are a single block of text, although
RDBMSes are increasingly able to handle such kinds of data.

Using object/relational mappers for mapping objects to database records In
the source code of Akonadi, objects are used to represent the PIM items. When
communicating with a relational database, a mapping has to be performed
between the objects and the database records containing the data. To ease
this process, object/relational mappers (Amb06) are used. They automate the
mapping of objects to records and vice versa, relieving the programmer from
manually storing them in the database.

Unfortunately, most mature object/relational mappers (such as Hibernate 1)
are for the Java or .NET programming languages. For C++, only a few exist:

• Database Template Library 2; not under active development

• Progress DataXtend CE 3; professional, but not free

• Object Builder 4; immature, not under active development

1www.hibernate.org
2http://dtemplatelib.sourceforge.net
3www.progress.com/dataxtend/dataxtend_ce/index.ssp
4www.ceamus.com/objbuilder

www.hibernate.org
http://dtemplatelib.sourceforge.net
www.progress.com/dataxtend/dataxtend_ce/index.ssp
www.ceamus.com/objbuilder


3.2 3.2. DATA STORAGE 13

Unfortunately, all of the mentioned packages are unfit for usage in Akonadi’s
source code. Partly because some are non-free, creating a licensing conflict. The
others are not actively being worked on and not mature enough.

Handling multipart data PIM items might consist of multiple parts, probably
in a tree-like structure (e.g., emails in MIME-format). It is thus possible to split
them up and store the parts separately. Dissecting costs a bit of performance
when new items are stored, but gives a higher performance each time only a
part of the item is retrieved.

When only the parts of an item are stored, retrieval of the complete item
means it has to be reconstructed in its original form. An option to counteract
this is to store the complete item as well. This has the disadvantage of taking up
about twice the storage space, but removes the need of reconstructing the item
completely. Both the individual parts and the complete item can be retrieved
at a high speed.

Storing large objects Large PIM items or parts of PIM items (e.g. photos
or email attachments) occur regularly and are expected to grow in the future.
Computer systems are growing in performance as well, but a gain in efficiency
could be made when these large items are stored in a special way.

Most databases support storing binary objects in so-called BLOBs (binary
large objects), but this can mean making a sacrifice in performance.

A possibility is to store them in separate files, directly on the filesystem.
Filesystems are built for this kind of data, and an abstraction layer (i.e., the
database) is removed. The disadvantage is that effort has to be made to keep
the data consistent, as it would be spread over multiple stores (the database
and the filesystem).

Storing custom parts A simple approach is adding an extra column to the
table with PIM items, containing all the extra information in one cell (encap-
sulated in a container format, like XML). This has the advantage of being a
generic solution for all types of PIM data. The disadvantage is that it is slow
and defeats the purpose of the database, because the container format will have
to be dissected and interpreted.

Another option is to create an extra table for every kind of PIM item (e.g.,
emails, contacts, events), that contains the additional columns for that data type.
The advantages and disadvantages are the inverse of the previous solution.

Some kind of solution in the middle is to create an extra table with all the
extra information in the form of two columns: a key and a value. The rows of
the table can then be linked to the PIM item. In this way the purpose of the
database is retained, as is the genericity of the concept.

Free relational databases A number of free databases is available:

• MySQL 5; mature, high performance, well-known, but with a relatively
high footprint for an embedded system

• MySQL/Embedded 6; same as MySQL, but no concurrency with transac-
5www.mysql.com
6www.mysql.com/products/embedded

www.mysql.com
www.mysql.com/products/embedded


14 CHAPTER 3. RELATED RESEARCH IN PIM 3.2

tional InnoDB engine (see section 4.2.3)

• SQLite 7; small, but not threadsafe, low concurrency support, no foreign
keys

• PostgreSQL 8; no embedded version

• Firebird 9; embedded version only available for WindowsTM, not widely
known, but worth investigating

Object database

Object databases (Obj07) are databases that allow storing objects directly, thus
removing the need for a mapping between the objects and the database’s native
storage format. Their usage resembles using object/relational mappers to talk
to a relational database, but completely transparent to the developer.

This kind of database is relatively new, not many mature ones exist yet, let
alone open source versions.

Native XML database

XML databases (XML07; Sta01; Har05) use XML documents as their data holder,
they store and present their contents as XML.

The advantage of this kind of database is that it is designed for hierarchically
structured data, and it removes the need of data conversion for XML applica-
tions. For Akonadi, this is only a partial advantage, as the applications use the
item’s native format, which is not always XML.

Disadvantages include the inefficient treatment of binary and tabular data.
It also is a relatively new technology, so the existing DBMSs are not as mature
as older systems.

Free native XML databases Several XML databases are available:

• MonetDB/XQuery (CWI04)

• Xindice (Apa07); no C++ API

• eXist - Open Source Native XML Database (Mei07)

Storage method of widely used software

Email Email messages form a large part of the PIM data, therefore looking at
the storage method of several well-known email applications can be worthwile.

Research on the different kinds of storage (mbox, Maildir and database
storage) of email is performed by Elprin and Parno (EP03), concluding that
database storage (using a MySQL database) is the best performer (with a notable
exception to data removal).

7www.sqlite.org
8www.postgresql.org
9www.firebirdsql.org

www.sqlite.org
www.postgresql.org
www.firebirdsql.org


3.3 3.3. DATA CONSISTENCY 15

A lot of well-known, email software (Postfix SMTP server, Courier IMAP
server, KDE’s KMail, GNOME’s Evolution) uses the Maildir format. The mbox
format is used in widely used software (Mozilla Thunderbird) as well. Almost
no software uses a database-backed system. This contrasts with the previously
mentioned research, the reason for this might be conservative motives.

Organiser For dedicated organiser software, not many storage options are
in use. The iCalendar (DS98) and vCalendar formats are mostly used. These
formats store events in a file, which can be located on the user’s drive, but also
on a remote server. Organiser data is typically small in size, a possible reason
for the low amount of formats in use.

A few examples of this kind of software are Mozilla Calendar, Apple iCal,
Novell Evolution and KDE’s own KOrganizer.

Some of these also provide connectivity to groupware solutions, see below
for their storage methods.

Addressbook Contacts stored in an addressbook are a lot like events in an
organiser, but their format is generally vCard

For large addressbooks, e.g., those used in companies and universities,
LDAP servers are used. LDAP (Lightweight Directory Access Protocol (LDA07))
is a directory access protocol. These store the directory entries in the LDIF for-
mat, which is comparable to vCard, but has a different syntax.

Groupware Groupware systems combine services, as described in the previ-
ous paragraphs. For storage, they sometimes rely on existing (email) servers,
adding (invisible) folders for the other types of PIM data (such as calendar and
addressbook items). Examples of these systems include Kolab 10 and Open-
Xchange 11.

Other collaborative software uses a database backend, for example Open-
Groupware.org 12 and eGroupWare 13.

The reason for the wider adoption of database backends amongst groupware
systems might be that they have not been around for as long as the separate
applications. Another reason could be that groupware software often runs on
servers, where databases are a lot more common than on desktops.

3.3 Data consistency

One of the important requirements of PIM data is its consistency, this means
that the data’s integrity remains ensured when modifications take place. When
data depends on the existence of other data (e.g., an email message belongs to a
certain folder), this poses a constraint on the possible modifications to it (when
the folder is deleted, the message is deleted as well).

10www.kolab.org
11www.open-xchange.com
12www.opengroupware.org
13www.egroupware.org

www.kolab.org
www.open-xchange.com
www.opengroupware.org
www.egroupware.org


16 CHAPTER 3. RELATED RESEARCH IN PIM 3.3

3.3.1 In databases

In databases, ACID properties (ACI07) guarantee the reliability of processed
transactions. It consists of these properties:

• Atomicity: a transaction is either performed completely or not at all

• Consistency: a transaction may not break the integrity constraints of the
database

• Isolation: a transaction’s result is only visible after its completion, not
before

• Durability: a transaction’s result will persist after it is successfully com-
mitted

To solve the above-mentioned email/folder problem, cascaded updates and
deletes can be used. These help to maintain referential integrity when updates
or deletes are executed on data in one table, by automatically performing actions
on the referenced records in the other table.

3.3.2 Concurrency control

In a multithreading environment, it is possible to retrieve the same data object
twice. When both threads perform modifications to the object and try to write
it back to the storage, concurrency control (BG81) becomes a necessity.

To allow for concurrent access, an effort has to be made to always keep the
storage in a consistent state. Data updates should therefore be performed one
at a time, informing the applications and/or users of the (un-)committed action.

In Akonadi, this cannot be solved by simply using database transactions,
because of the loose coupling between the client and the server via a state-
less protocol. Thus, a concurrency control method has to be implemented in
Akonadi.

Several types of concurrency control use a mechanism called locking, for
read or write actions on data objects. A read or write lock on an object is the
right to exclusively read or write that object, respectively. If a lock on an object
is issued, other transactions have no or limited access to the object.

Other types are non-locking, they have validity checks instead. These check
whether a transaction can commit, based on the state of the affected data objects.

Two-phase locking

This type of locking is the accepted standard kind of locking. Transactions
work in two phases, the first one is acquiring the locks, the second one the
release of the locks. After a lock is released, no new locks can be acquired in
the transaction.

When a read lock is issued to a transaction, other transactions can get read
locks as well, but no write lock. A read lock can be upgraded to a write lock,
when no other read locks have been issued.

In figure 3.2, two situations are displayed. The first one shows two trans-
actions (T1 and T2). T1 acquires a read lock (RL) on object A, then reads (R) A



3.3 3.3. DATA CONSISTENCY 17

Figure 3.2: Two-phase locking

and upgrades the read lock to a write lock (WL). After that it writes (W) A and
releases the lock (-WL). T2 then starts, acquires a read lock on A, reads it and
releases the lock (-RL).

A more complex situation is shown as well. T1 and T2 both acquire read
locks on A, but T2 wants to upgrade its lock to a write lock. This cannot be
done before T1 releases its read lock, which is done after some time. Then T2
can upgrade its read lock to a write lock on A and write A.

Two-phase locking has a risk of deadlock, where one transactions waits for
the release of a lock, held by another transaction, which in turn is waiting for a
release of a lock, held by the first transaction.

Pessimistic

Pessimistic locking is a trivial locking mechanism, as it plainly locks every trans-
action’s data until it is completed. This simplicity makes it easy to implement
and ensures data consistency.

Figure 3.3: Pessimistic locking

Figure 3.3 shows two transactions that want a lock on the same data object
(A). T2 has to wait for T1’s lock to be released before it can perform any action
on A.

The drawback is that it really slows down a multithreaded system like
Akonadi. If more operations are executed simultaneously or operations take



18 CHAPTER 3. RELATED RESEARCH IN PIM 3.3

much time, the chance that they operate on the same data increases. This makes
it unscalable for increasingly large datasets.

Another disadvantage is that pessimistic locking takes up resources in the
storage, because a list of open data objects is necessary. It can also cause
excessive locking (where read-only data is locked, while it will not be modified),
as well as deadlocks (where multiple transactions wait for each other to finish).

Optimistic

Optimistic locking (Opt07; MWZ04; HD91) is a form of concurrency control,
which does not really lock data. It assigns an increasing version number to every
object in the database and passes this number along with each transaction. If
a transactions tries to commit and the version number of its objects matches
that of the objects in the database, the commit is successful. If the version
numbers differ, it means that another transaction has processed the objects and
the transaction is rolled back.

Instead of rolling back the full transaction, conflict resolving is possible.
If two transactions update different parts of an object, both changes can take
place, as they do not conflict. When the same part of an object is updated, the
user can be notified and asked for a manual correction of the conflict. A last
resort is to roll back the conflicting transaction and present the user with an
error message.

Figure 3.4: Optimistic concurrency control

Two example situations are shown in figure 3.4. In the first, both transactions
read A, but only transaction T1 modifies it. After modification, it gets a write
lock on A, reads it (to be able to check the version number) and collision
detection is performed. The version number is the same as the one at the start
of the transaction, so no conflict has occurred and the write is succesful.



3.3 3.3. DATA CONSISTENCY 19

In the second situation, both transactions modify their copy of A and want
to write it back to the storage. T1 is successful, because A’s version in the storage
is the same as it was when reading it. T2 however detects a collision, as T1 just
updated A’s version number. In this case, the transaction is simply aborted.

Implementation of optimistic locking is easy and its performance is high,
if a low number of conflicts is expected. The storage only needs a bit of extra
information (i.e., the version number of the object), thus it has a low overhead
in storage and memory consumption. A slight slowdown in data updates is
induced, because the version number has to be updated in addition to the
modified data.

Also, applications are not notified of conflicts until they try to save their data.
This can be solved by using Akonadi’s change notification system, which emits
notification signals to all applications when their monitored data is updated.
If such a notification applies to the data object at hand, a conflict has occurred
and conflict resolving can start.

Since the Akonadi service is run per user, conflicts are not expected to occur
regularly. The chance of multiple applications accessing the same data is rather
low.

Timestamp-based

Timestamp-based concurrency control does not use locking for providing con-
current access. It gives transactions a timestamp to know in which order they
should be executed (Tim07). However, if a newer transaction (that affects the
same object as the older one) is presented first, it is aborted.

Also, every object in the database is given a read timestamp and a write
timestamp. If a transaction is started and tries to read or write an object, that
changed in between, it gets aborted as well.

If a transaction wants to read an object, but the object’s write timestamp is
later than the transaction’s timestamp, the object has changed and the transac-
tion is aborted. If the object’s write timestamp is earlier than the transaction’s
timestamp, it is safe to read the object. The object’s read timestamp is then set
to the transaction’s timestamp.

If a transaction wants to write to an object, and the transaction’s timestamp
is earlier than the object’s read timestamp, another transaction has read the
object. Writing to the object would invalidate the other transaction’s copy,
so the transaction is aborted. If the write transaction has a timestamp earlier
than the write timestamp of the object, it means that the object has changed
since the transaction started, and the write is skipped. In any other case, the
write succeeds and the object’s write timestamp is set to that of the writing
transaction.

Again, two situations are presented, in figure 3.5. Updates to the read and
write timestamps of objects are marked. In the first case, T1 reads A a bit after
T2 began. T2 then tries to write A, but gets aborted, because A’s read timestamp
is newer than T2’s timestamp.

The second situation ends in two successful transactions, as T2 starts after
A’s timestamps have been updated by T1.

The timestamp resolution should be high enough, to avoid duplicate times-
tamps. The server’s clock should be reliable, its values should be strictly



20 CHAPTER 3. RELATED RESEARCH IN PIM 3.3

Figure 3.5: Timestamp-based concurrency control

increasing.
Although this technique is non-locking, a very short lock is necessary on

the object, to write its read or write timestamp.

Multiversion

This type of concurrency control also uses timestamps (or version numbers) to
achieve serializability. Transactions never have to wait for a database object,
because several versions of an object are maintained (Mul07).

Data objects have read and write timestamps, transactions receive a times-
tamp when they start. A transactions can read the version of an object that has a
write timestamp which is not newer than the transaction itself. If a transaction
tries to write an object, it only succeeds when other transactions that write the
object started later. If a transaction wants to write an object and the object’s
read timestamp is newer than the transaction’s timestamp, the transaction is
aborted and restarted. Otherwise, the transaction creates a new version of the
object with the same timestamps as the transaction itself.

Another demonstration, shown in figure 3.6. As can be seen, writes create
new versions of objects. Also, transactions read the version of objects, that are



3.3 3.3. DATA CONSISTENCY 21

Figure 3.6: Multiversion concurrency control

not more recent than the transactions themselves. In the first situation, T1 reads
the version of A, before it was modified by T2, which had a value of 10 (and not
20).

The second situation shows this more verbosely, T2 sees A in its modified
version, where T1 sees the older version during the complete transaction.

When using multiversion concurrency control, reads will never block writes
and vice versa, this makes it a fast solution. It also provides snapshot isolation
at low performance cost, as every transaction views a snapshot of the storage.

The drawback is the extra storage needed for the multiple versions of an
object and the timestamp calculations to be performed during the validity
checks.





Chapter4
Design

At first, this chapter portrays and explains Akonadi’s global design, to help
pinpoint the locations of implemented modifications. Consecutively, more
detailed descriptions of the modifications follow.

4.1 Akonadi in general

4.1.1 Global design

Figure 4.1: Global design (KZ07)

Figure 4.1 shows Akonadi’s global architecture. The central part shows the
server, which consists of several subprocesses. The Control process performs
lifetime management of the other processes, it starts, restarts and stops them
when necessary.

23



24 CHAPTER 4. DESIGN 4.1

The storage is responsible for storing and retrieving the PIM items and
other information. The D-Bus and IMAP interfaces are the access points for the
clients.

A set of Agents perform work on the data in the storage, via libakonadi.
Resources are a subset of them, they represent data sources (e.g., vCard files,
POP3 servers, groupware servers). Resources keep the data source and the
Akonadi storage synchronised, by updating both sides regularly. Autonomous
agents operate on the data in the Storage by themselves, examples of these are
feeders for Nepomuk (Tru07) and Strigi (vdO07). Other, not yet implemented,
feeders that come to mind are those for Beagle (Bea07) or Google Desktop
Search.

The left side of the figure displays how applications or application com-
ponents access the Akonadi server. They use the type specific libraries, like
kabc and kcal, that know how to handle addressbook and calendar items re-
spectively. These libraries in turn use libakonadi for contacting the server.
libakonadi uses the IMAP and D-Bus interfaces of the server to execute the
needed commands.

In figure 4.2, a more detailed view of Akonadi’s components is presented.
The arrangement of the parts is the same as in the global architecture. The
central part of “server” is AkonadiServer. It receives incoming requests from
libakonadi via the IMAP interface and handles them appropriately by instan-
tiating the Handler corresponding to the incoming command. This handler
further processes the request. It also receives D-Bus notifications via the DBus
interface and responds to the request, e.g., by adding or removing a resource.

The DataStore in “storage” communicates directly with the database back-
end, MySQL in this case. If no database exists at startup, it is created by the
DbInitializer according to the database layout (see figure 4.3). CacheCleaner
does cache cleanup (adhering to the cache policy defined for every resource,
which is not completely implemented yet) on regular intervals. Notifications
are sent around via the D-Bus interface, e.g., to indicate modifications to PIM
items:

NotificationManager::notify ( Item (6, 2Q8cO5u3ZC) in collection 2 modified )

The “server/control” component contains multiple managers, that are re-
sponsible for instantiating and destroying Agents and Profiles. Profiles are
groups of Resources, to enable applications to use different sets of Resources,
tailored to their needs.

“libakonadi” is responsible for all communication between the higher level
client libraries and the Akonadi server. It provides a set of Jobs, which the
client applications or libraries can use. These jobs use the IMAP interface of the
server to facilitate the modification and viewing of collections and items. The
client libraries can use the Monitor to keep tabs on specific items or collections,
it notifies them when their status changes.

4.1.2 Database layout

The database layout as used by Akonadi is shown in figure 4.3. PimItems and
Locations play the central roles in the diagram. Each PimItem belongs to a
Location (also known as a Collection), which is part of a tree structure. Every



4.1 4.1. AKONADI IN GENERAL 25

server

storage

DataStore

NotificationCollector

DbInitializer

send changes

<<interface>>
MySQL Database

RecourceManager

build db

handler

Handler

...

Append

Delete

<<thread>>
AkonadiConnection

<<thread>>
CacheCleaner

<<TcpServer>>
AkonadiServer

1

1

11
1

1

NotificationManager

CachePolicyManager

1
1

11

keep DS up to date

use

server/control

AgentManager

ProfileManager

<<interface>>
IMAP

<<realize>>

<<interface>>
DBus

<<realize>>

<<realize>>

<<realize>>

<<interface>>
DBus<<realize>>

<<realize>>

resources

libakonadi

VCardResource ICalResource

ResourceBase

Monitor

create

clear old values

Job

ItemDeleteJob

ItemAppendJob

kabc kmime kioslave

some widgets to manipulate addressees
using Jobs and Monitor MessageModel AkonadiSlave

AgentBase

agents

NepomukFeeder StrigiFeeder MailThreaderAgent

ItemFetchJob

ItemStoreJob

...

AgentInfo

ControlManager

ProcessControl

Figure 4.2: Detailed design (Sch07)



26 CHAPTER 4. DESIGN 4.2

Figure 4.3: Database layout

Location has a Resource connected to it, which provides the items from an
external location.

PimItems have a MimeType, specifying their contents, and a set of Flags
(which indicate new, answered, draft, unseen or deleted items, for example)
associated with them. Also, one or more Parts are attached to each PimItem.
These contain the actual data of the item, possibly split into multiple parts (see
below).

4.2 Implemented modifications

4.2.1 Communication

Protocols and formats

The data format, in which the PIM items are transferred, is the native format of
the PIM item (for examples of these, see figure 4.4), because it is tailored to the
needs of the specific data type. Interpretation is done in libakonadi, not in the
resources.



4.2 4.2. IMPLEMENTED MODIFICATIONS 27

This decision impacts the IMAP interface in the figures in the first part of
this chapter. The items are transferred without pre- or postprocessing.

Date: Wed, 6 Jun 2001 02:38:00 -0700 (PDT)
From: brant.reves@enron.com
To: frank.sayre@enron.com, susan.bailey@enron.com
Subject: Glencore Commodities Ltd.

Hello,

Here is a spreadsheet from the confirmations group of all
financial trades between ENA and this entity that have ever
been entered into.

Let me know what you think.
brant

Figure 4.4: Example email message in native format

Compression

Adding data compression to the IMAP interface forms no obstacle, as the Qt
library already offers zlib data compression. Compression and decompression
are done in the client library (libakonadi), the former before adding and up-
dating PIM item parts to the storage, the latter after the item parts are fetched
from the storage.

This means that the uncompressed item parts only exist in libakonadi and
the higher level libraries and applications, while the IMAP interface and the
server all handle their compressed equivalents.

Figure 4.5: Data compression

A schematic view of the influence of data compression is shown in figure 4.5.
The sending and retrieving of items requires a bit of processing in libakonadi, to
compress and decompress the data. The IMAP interface and the storage have
less data to handle, so they should be faster than with uncompressed data.

Evaluation is done on the efficiency of compressing the data in the protocol
and the storage. If it lowers performance significantly instead of increasing it,
while not saving much storage space, compression should not be used.



28 CHAPTER 4. DESIGN 4.2

4.2.2 Data storage

Storage backend

For the data storage, a relational database is initially chosen, because it’s well
supported and easily usable.

Development of Akonadi started with the SQLite 1 storage backend. After
some time however, problems emerged with threading. SQLite is not designed
for concurrency, as it locks the full database for every read and write action.
It also does not support foreign keys, needed for data which depends upon
multiple tables. For these reasons, another backend is used now. SQLite
support can be added again, if it gains the needed features.

MySQL is the chosen DBMS, because it is well known by most developers
and can be freely distributed with the rest of KDE. It is mature and under active
development.

Of course, the indexing features of MySQL are used where appropriate. All
“id” columns get an index (mostly automatically, because they are the primary
key of a table), as well as the columns that are frequently used for searching
(such as the names of PimItems and Parts).

Multipart items

The difference between singlepart and multipart items is visually shown in
figures 4.6 and 4.7. With singlepart processing, appending an item is straight-
forward and fast. Multipart processing requires libakonadi to split the item in
several parts. They are sent over the IMAP interface and stored in the storage
backend separately. Retrieving an item part turns things around. The sin-
glepart system has to retrieve the full item and extract the item part afterwards,
where the multipart system only retrieves the requested part and forwards it
to the application. As appending an item is done only once and retrieving its
parts many times, it is to be expected that a multipart system will give a higher
performance.

All item handling classes and methods are modified to work with separate
parts, instead of a single data entry.

The part data is not stored in the PimItems table anymore, but in a Parts
table instead. Each entry of the PimItems table has zero or more entries in the
Parts table.

As it would be nice to keep the storage access protocol compatible with
IMAP, the normal APPEND command (used for inserting new items) is not
modified for multipart support. A special command for appending multipart
items is introduced, X-AKAPPEND (’X’ to indicate an extension, ’AK’ to refer
to Akonadi).

The FETCH command (for retrieving items or information about items, such
as their mimetypes or modification times) already supports a list of attributes
to retrieve. The command is modified, so that it supports a list of item part
names to be retrieved.

The STORE command (for updating existing items) is like the FETCH com-
mand, it also supports a list of attributes to update. An extra attribute is added,

1www.sqlite.org

www.sqlite.org


4.2 4.2. IMPLEMENTED MODIFICATIONS 29

Figure 4.6: Singlepart items

to support the removal of item parts. Support for updating item parts is also
added.

Most of the changes are made in the jobs in libakonadi and their respective
handlers in the server. The database layout changes as well, because of the
added Parts table.

Some example commands and the server’s responses are shown and ex-
plained below. The part data is compressed and is shown as ’�compressed
data�’. If it were not compressed, the PIM item would be sent in its native
format. The numbers in front of most commands and responses are so-called
tags, which identify a specific command sequence. This is necessary because
IMAP does not per se process commands in received order, so the responses
can intertwine each other.

The first command is a simple APPEND command. It is the IMAP compat-
ible append, able to store singlepart items. This will create a single part with
the default part name (named ’RFC822’ internally).

4 APPEND 2 (\MimeType[text/directory] \RemoteId[02jF0C3J60]) {382}
+ Ready for literal data (expecting 382 bytes)
<<compressed data>>
4 [UIDNEXT 3]
4 OK Append completed

When a multipart item is added, the new command X-AKAPPEND is used.



30 CHAPTER 4. DESIGN 4.2

Figure 4.7: Multipart items

In this case, an email message is appended, consisting of 3 parts: ENVE-
LOPE (a single line containing summary information), HEAD (containing the
email headers) and RFC822 (the original message, including headers and body).
These are specified and their size is given, so the server knows what to do with
the incoming raw data.

17 X-AKAPPEND 3 (\MimeType[message/rfc822]
\RemoteId[/home/user/.maildir/cur/18972.localhost:2,ST])
("ENVELOPE":176,"HEAD":350,"RFC822":351) {877}

+ Ready for literal data (expecting 877 bytes)
<<compressed data>>
17 [UIDNEXT 112]
17 OK Append completed

A STORE command with disabled revision checking (NOREV, see the sec-
tion about concurrency control for more information), which speeds up the
operation. It stores the ’RFC822’ part of the item with id ’1’.

6 UID STORE 1 NOREV RFC822.SILENT {149}
+ Ready for literal data (expecting 149 bytes)
<<compressed data>>
6 OK STORE completed

Another STORE command, with revision checking enabled (REV 8). It
removes the item part called ’ENVELOPE’.

8 UID STORE 3 REV 8 -PARTS(ENVELOPE)
8 OK STORE completed



4.2 4.2. IMPLEMENTED MODIFICATIONS 31

An example of a FETCH command, where the attribute list can be seen. It
requests several attributes from the item with id ’9’, namely UID (the internal
id of the item), REMOTEID (the remote id of the item), FLAGS (the item’s flags)
and the part named ’RFC822’. In the response the values of these attributes
are given, along with extra information, i.e., REV (the revision of the item),
MIMETYPE (the mimetype of the item).

10 UID FETCH 9 (UID REMOTEID FLAGS RFC822)

* 10 FETCH (UID 9 REV 2 REMOTEID "2kx8Naj1Vk" MIMETYPE "text/directory"
FLAGS (\Recent) RFC822 {224}

<<compressed data>>)
10 OK UID FETCH completed

Storing large objects

All PIM item parts are stored as BLOBs in the database, no exception is made
for larger parts. Implementing this is straightforward, optimisations can be
made in the future if performance is insufficient. See the Recommendations
chapter for more information.

The parts are stored in compressed form, so storage requirements are some-
what lower than with uncompressed data.

Storing custom data

The extra data for every PIM item type is stored as item parts (see figure 4.7, the
extra parts are represented by ’. . . ’). This solution is generic, because new extra
fields can be added effortlessly. They can be stored in the existing database
layout as it is.

Parts are identified by their name, some fixed part names are defined (body,
header and envelope), as these are used extensively by PIM applications. Pro-
grams that use extra fields can create additional parts for their PIM items, which
are stored in the database automatically along with the standard parts upon
saving.

4.2.3 Data consistency

Database

The MySQL database uses the MyISAM engine 2 by default. It is fast and widely
used, but misses some more advanced database features, such as transactions.

Therefore, the database is updated to use the InnoDB engine 3 instead. It is
included in the standard MySQL distribution, there is no need for additional
configuration. This engine supports ACID-compliant transaction processing
and multiversion concurrency control. It also focuses on performance by using
techniques to minimise disk I/O through efficient memory and processor use.

InnoDB’s support for transaction isolation and foreign keys ensure data con-
sistency with multiple simultaneous transactions and across multiple related
tables respectively.

2http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html
3http://dev.mysql.com/doc/refman/5.1/en/innodb.html

http://dev.mysql.com/doc/refman/5.1/en/myisam-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/innodb.html


32 CHAPTER 4. DESIGN 4.2

Being a transactional engine, InnoDB is more reliable, because in case of
hardware crashes, transactions can be replayed. Updates are either performed
completely or not at al, where they might be performed partially in a non-
transactional engine, thus leaving the storage in an inconsistent state.

Concurrency control

 : client application  : libakonadi  : communication interface  : Akonadi server  : storage backend

compare revisions

: OK STORE completed

: store item 5

change RFC822

from HELLO

to BYE

equal

: fetch item 5

: retrieve item 5

: item 5

: FETCH (UID 5 REV 6 RFC822 { 5 } HELLO)

: item 5

: store item 5

: STORE 5 REV 6 RFC822 { 3 } BYE
: fetch item 5's revision

: FETCH 5 (RFC822)

: item 5 stored

Figure 4.8: Successful update

Optimistic concurrency control is implemented, because of the low expected
number of conflicting updates and the high number of reads. Its high perfor-
mance and possibility for conflict resolving are important features for this
decision.

The database is modified to supply every item with a revision number,
which defaults to 0 for newly added items. Whenever an item is retrieved by a
client application or component, its revision number is sent along with the rest
of the data.

After retrieval, the client application may modify the item and request
libakonadi to store the modifications. The item is sent to the server, which
looks if the revision number is still the same in the storage backend. If so, the
modifications are stored and the revision number is increased (figure 4.8).

If the revision numbers differ, the item was modified by another applica-
tion, resulting in a conflict (figure 4.9). An error message is sent back to the
application, which has several options to handle the situation. It can present
the user with an error and just throw away the modifications. Another option
is to fetch the item from the server and compare it with its own version. The
modifications might not conflict, in which case the item can be stored, but if
they do conflict, the user can be asked which version of the item to store.

Revision checking is enabled by default, but can be disabled (figure 4.10).



4.2 4.2. IMPLEMENTED MODIFICATIONS 33

 : communication interface : client application  : libakonadi

compare revisions

 : Akonadi server  : storage backend

: FETCH (UID 5 REV 6 RFC822 { 5 } HELLO)

: item 5

: store item 5

: STORE 5 REV 6 RFC822 { 3 } BYE
: fetch item 5's revision

: NO Item was modified elsewhere, aborting STORE.

: error storing item 5

change RFC822

from HELLO

to BYE

not equal

: fetch item 5

: FETCH 5 (RFC822)
: retrieve item 5

: item 5

Figure 4.9: Update failure due to conflict

This might be desirable when items are first imported into Akonadi, or when
the user explicitly requests that an item is deleted. The skipped check increases
performance and avoids unnecessary error notifications in these cases.

: OK STORE completed

 : storage backend : libakonadi  : communication interface  : Akonadi server : client application

: FETCH 5 (RFC822)

to BYE

: item 5 stored

: item 5

: retrieve item 5

: store item 5

: fetch item 5

change RFC822

: fetch item 5's revision

from HELLO

: item 5

: STORE 5 NOREV RFC822 { 3 } BYE

: FETCH (UID 5 REV 6 RFC822 { 5 } HELLO)

: store item 5

Figure 4.10: Forced update

Implementing revision checking has effect on the different Jobs in libakonadi
and Handlers in the server. These have an added REV attribute, specifying the
revision number of an item. When NOREV is used, revision checking is skipped
by the server.





Chapter5
Evaluation

To verify whether the suggested and implemented optimisations help to reach
the stated goals, evaluations are performed. An evaluation plan is created,
which is executed, after which its results are presented.

5.1 Evaluation plan

The evaluation will focus on performance and robustness, as this covers the
implemented communication, storage and concurrency optimisations.

5.1.1 Dataset

The availability of a public set of PIM data would be useful, because it would
make the tests repeatable for confirmation of their results and for evaluating
future PIM storage systems.

Several public email corpora exist, some of which are listed below:

• PU123A corpora (APM03)

• SpamAssassin corpus (Mas05)

• SpamBase corpus (AN07)

• Ling-Spam (SAP+03)

These all suffer from the fact that they are relatively small (several thousand
messages each). Also, they were all designed for spam classification purposes,
so they contain a lot of spam messages. The purpose of Akonadi is to store
normal (so-called ham) emails, which is thus what we want to use as evaluation
data.

Another well-known dataset is the one from Enron (Coh05), which contains
more than half a million messages from over 150 users, mostly senior manage-
ment of Enron. It became public during the legal investigation of the Enron
corporation (KY04). It is chosen, because it lacks the downsides of the other
corpora. Unfortunately, it does not contain any attachments, therefore a script
augments it with (fake) attachments.

35



36 CHAPTER 5. EVALUATION 5.1

5.1.2 Robustness tests

Unit tests The Akonadi software already had a set of unit tests, which makes
it easy to continuously verify the correct working of its components.

This set of tests is extended with ones that check handling multipart items
and optimistic locking. These automated tests help to ensure that the imple-
mented modifications keep working as expected. If regressions or incorrect
behaviour is introduced (unintentionally), it is detected and can be fixed im-
mediately.

Multipart items

1. append a multipart item (should invoke the X-AKAPPEND command,
instead of the APPEND command)

2. fetch several parts from a multipart item

3. fetch all parts of a multipart item

4. update an item, add extra parts

5. update an item, remove a part

6. delete a multipart item (should automatically delete all item parts, be-
cause of referential integrity)

Optimistic locking

1. • open an email in two programs

• delete it in the first program

• change its status to ’important’ in the other program

• required effect: the other program gives an error message, informing
the user about the deleted email

The application may present the user the option to recreate the email
(effectively undeleting it).

2. • open an event in an application

• let the event’s resource modify the event

• edit the event in the application and save it

• required effect: the application gives an error message, informing
the user about the outdated data

The application could compare its version of the event with the modified
one on the server, but that is no requirement for Akonadi itself.

3. • delete an item

• required effect: item, along with all item parts, is deleted from the
storage

This test checks the referential integrity of the InnoDB engine. Deletes
should be cascaded to the referenced tables, in this case a delete in the
PimItems table should delete all referring entries in the Parts table.



5.2 5.1. EVALUATION PLAN 37

5.1.3 Performance tests

For the sizes and amounts in the use cases, realistic numbers are used, extracted
from the Enron dataset (KY04). According to Klimt and Yang, the number of
folders of a user’s mailbox is at most a log of the number of messages in the
mailbox. Therefore the numbers below adhere to that analysis.

Compression To test whether the applied data compression is useful, an
average-sized and the largest accounts (according to their required storage
space) from the email dataset are imported into Akonadi. The import consists
of reading the accounts from disk, storing them in the Akonadi storage, which
signals the Strigi feeder to retrieve and index their contents. This means that
the test benchmarks a roundtrip of the data to and from the Akonadi storage.

The required time and storage space are measured for multiple scenarios:
the account with and without added attachments and Akonadi with and with-
out compression.

Multipart The performance differences between singlepart and multipart
item storage are tested, with the same accounts that the compression test uses.
The singlepart test stores all messages of the account directly in the Akonadi
storage, whereas the multipart test splits them into parts and stores them after-
wards.

After the import, the retrieval performance is measured by retrieving all the
message headers from the storage. The singlepart test needs to retrieve the full
message and separate the header, the multipart test only needs to retrieve the
already stored header part of the message.

The required time and storage space are measured in this test as well; again
for the accounts with and without added attachments, and with and without
using Akonadi’s multipart support.

Use cases These tests evaluate the complete system, not the implemented
modifications specifically. However, when a test is especially relevant to certain
areas of optimisation, they are named.

The tests are run with each individual account in the complete Enron email
dataset, both without and with added attachments.

1. import the complete mailbox (multipart, compression)

2. fetch all headers from each folder (multipart)

3. mark 20% of messages as read (protocol)

4. fetch headers of unread messages from each folder (multipart)

5. remove all read messages from each folder (protocol, database)

6. remove every folder sequentially (database)



38 CHAPTER 5. EVALUATION 5.2

5.2 Evaluation results

5.2.1 Test systems

The system on which the benchmarks are performed has the following config-
uration.

Hardware configuration

• AMD Athlon X2 3800+ processor

• 2x 512 MB PC3200 DDR memory

• Hitachi T7K500 320 GB S-ATA hard drive

Software configuration

• Gentoo Linux

• Linux 2.6.23 kernel with SMP-support

• GCC 4.2.2

• glibc 2.7

• MySQL 5.0.44 Embedded

• Xorg 7.3

• Qt 3.3.8 (working environment) and 4.3.2 (development)

• KDE 3.5.8 (working environment)

5.2.2 Robustness

All the executed use cases result in the required effect. Unfortunately, none of
the KDE applications use the Akonadi server yet, so only synthetic tests can be
done.

Also, the additionally desired effects (giving the user the option to resolve
the conflicting transactions) are not implemented yet. Part of this can be done in
Akonadi (simple automatic conflict resolution), whereas the client applications
should implement the ability to let the user resolve the conflict.

Executing the use cases with concurrency control disabled (i.e., using the
NOREV parameter instead of REV) results in the expected conflicted updates.

5.2.3 Performance

Compression

For the average sized account, the one named hernandez-j is chosen, it has 3265
messages and takes up 18 MB and 34 MB of disk space, respectively without
and with the added attachments. The largest account of the dataset is the one
named dasovich-j, having 28234 messages, taking up 203 MB and 343 MB of disk
space, respectively without and with the added attachments.



5.2 5.2. EVALUATION RESULTS 39

Table 5.1 shows the results. The reduction in storage space depends on the
type of data, the version of the account without attachments consists mainly
of textual data and is reduced by about 50%, a lot more than the version with
attachments, which is only reduced by around 40% (still a significant reduction).

The time to import and index the data is reduced considerably as well. This
indicates that the data compression and decompression have less impact than
the data transfer.

The compression results also indicates good future prospects, as the savings
increase with larger accounts.

uncompressed compressed reduction
hernandez-j
without attachments
time 34 s 31 s 9%
space 36 MB 19 MB 47%
with attachments
time 35 s 32 s 9%
space 56 MB 36 MB 36%
dasovich-j
without attachments
time 995 s 865 s 13%
space 212 MB 96 MB 55%
with attachments
time 1147 s 904 s 21%
space 380 MB 224 MB 41%

Table 5.1: Compression results

Multipart

Executing the multipart tests with accounts hernandez-j and dasovich-j renders
the results as shown in table 5.2. The initial import of the mailbox takes roughly
15% more time (because of the extraction and storage of multiple parts). The
required storage space also increases, by about 35%. This sounds like a big
disadvantage, but as the account sizes increase, the negative effect is lower.
Also, the initial import occurs only once.

When only a small part of the data is needed, performance is about 30%
better than that of the singlepart version. With larger accounts, the gain rises as
well, up to 42% with the largest account in the dataset. These kind of transac-
tions occur frequently, and their performance is therefore more significant than
that of low-frequency actions.

Use cases

The results of the use case tests are provided in the form of a series of figures.
For each test, two figures are shown: one showing the relation between the
number of messages in a mailbox and the time to execute the test, the other



40 CHAPTER 5. EVALUATION 5.2

singlepart multipart reduction
hernandez-j
without attachments
import time 14.7 s 22.3 s -52%
fetch headers time 3.5 s 2.6 s 26%
space 14 MB 19 MB -36%
with attachments
import time 22 s 25.9 s -18%
fetch headers time 4.1 s 3 s 27%
space 29 MB 36 MB -24%
dasovich-j
without attachments
import time 851 s 919 s -8%
fetch headers time 33.6 s 27.9 s 17%
space 96 MB 148 MB -54%
with attachments
import time 899 s 1015 s -13%
fetch headers time 50 s 29 s 42%
space 224 MB 276 MB -23%

Table 5.2: Singlepart and multipart results

showing the relation between the total mailbox size on disk and the time to
execute the test.

The graphs show that the size of the individual messages has almost no
impact on the required time, regardless of the use case. The messages without
attachments are several kilobytes each, the attachments vary between 5 and
500 kilobyte, thus serioesly increasing the message size. However, the plot
of the dataset without attachments and the one with attachments are almost
equal (clearly visible in the figures showing the number of messages against
the execution time, while the other kind of figures shows similar looking, but
horizontally stretched plots).

This can indicate that the transfer time of the actual content data of the mes-
sages is negligible in comparison to the overhead of processing the commands,
creating and handling the message objects and everything else that is needed
for executing the use case.

It should be noted that the largest mailboxes are several hundreds of
megabytes. This influences the results, because of the hardware configura-
tion of the test computer. The internal memory of the computer is completely
filled with these mailboxes, at which point the operating system falls back to
swapping, which decreases performance significantly.

Import the complete mailbox This use case (figure 5.1) shows better than
lineair scaling for mailboxes under 150 MB. Larger accounts seem to hit the
memory capacity of the computer, as previously mentioned.



5.2 5.2. EVALUATION RESULTS 41

 0

 100

 200

 300

 400

 500

 600

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.1: Import complete mailbox

Fetch all headers from each folder Up until 200000 messages, or 200 MB, the
scaling is almost linear in this test (figure 5.2), which is good.

Mark 20% of messages as read Like in the previous test, the results of this
one (figure 5.3) are linear, for all mailbox sizes.



42 CHAPTER 5. EVALUATION 5.2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.2: List headers of all messages of every folder

Fetch headers of unread messages from each folder This test’s results (figure
5.4) also suffers from the capacity problem. With more average-sized accounts,
it scales a bit better than linear, which is good.



5.2 5.2. EVALUATION RESULTS 43

 0

 5

 10

 15

 20

 25

 30

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.3: Mark 20% of messages read

Remove all read messages from each folder For small mailboxes, consisting
of several thousands of messages, the results (figure 5.5) are much better than
linear. However, with larger mailboxes it gets a bit worse. Unfortunately, there
are not many large mailboxes in the dataset, so those results are not very usable.

The plots of this test show similarities to those of the “import the complete
mailbox” use case.



44 CHAPTER 5. EVALUATION 5.2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.4: List headers of unread messages of every folder

Remove every folder sequentially Again, the results (figure 5.6) are a bit
better than linear



5.2 5.2. EVALUATION RESULTS 45

 0

 50

 100

 150

 200

 250

 300

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.5: Remove read messages from every folder



46 CHAPTER 5. EVALUATION 5.2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  5000  10000  15000  20000  25000  30000

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (number of messages)

with attachments
without attachments

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250  300  350  400

R
eq

ui
re

d 
tim

e 
(s

)

Mailbox size (MB)

with attachments
without attachments

Figure 5.6: Remove every folder sequentially



Chapter6
Conclusions

How to transfer PIM data between the storage component and the applica-
tions/libraries using it with high performance? The D-Bus protocol does a
good job of transferring commands and notifications between Akonadi’s com-
ponents. Its performance is not directly evaluated, as only small messages are
transmitted over it. The advantages are clear: it is compatible with a lot of
desktop software, not only KDE, it works desktop-wide and is easy to use.

Akonadi’s IMAP-like data access protocol is successful. It offers great per-
formance, which can be concluded from the linearity of the evaluation results.

Keeping the PIM items in their native format prevents encapsulation and
conversion. It does not lower performance, the test results show that the data
size of the PIM items has a negligible impact on the required time to execute
tasks.

Compressing the data before transferring and storing it helps to increase the
performance by around 15%, depending on the type of data. In addition, it saves
storage space by about 40%, which helps using the memory capacity to its full
extent (see next paragraph). The processing requirements for the compression
and decompression play an insignificant role, especially with today’s high
performance computers.

How to store PIM data, consisting of tabular, textual and binary parts, ef-
ficiently and consistently? Using a relational database as a storage backend
works fine. Performance is good, up until the memory capacity of the computer,
from where it decreases significantly.

The use of MySQL’s InnoDB engine in conjunction with transactions and
cascaded updates and deletes keeps the storage in a consistent state. Support
for multiple, simultaneous connections to the storage backend is thus possible.

Storing large objects as BLOBs performs satisfactory, the aforementioned
data compression helps in reducing their size.

Storing the data in multiple parts proves useful. The initial import of
items into Akonadi’s storage takes a lot more time, varying around 25%, while
also using about 30% more storage space. After this one time operation, the

47



48 CHAPTER 6. CONCLUSIONS 6.0

multipart support pays off, which is clearly visible in the (frequently happening)
fetching of message headers, which consumes around 30% less time.

Storing custom generated data as extra item parts is not fully evaluated,
as no client applications (that generate these parts) are using Akonadi yet.
The support for it is in place, however, and works fine. The performance is
comparable to that of the evaluated multipart support.

The added optimistic concurrency control makes sure that conflicting up-
dates to PIM items are detected and allows for automated or manual recovery
in case of a conflict.

What are the performance and robustness of Akonadi? Akonadi’s scales well
with increasing data volumes, making it ready for future PIM usage scenarios.
The absolute performance needs to be improved, as well as the processing of
large datasets.

The results of the robustness tests are satisfactory, but extended and con-
tinued testing is recommended, as the past shows endless possibilities of data
loss and computer failure, not to mention software bugs.

The evaluation methods are useful to test the progress of Akonadi, as well
as other PIM storage systems. They evaluate the results of the implemented
modifications and stay valuable during further development, because the real-
world scenarios they simulate.



Chapter7
Recommendations for future
work

Support for other storage backends Firebird might be a good alternative to
MySQL, but performance comparisons should be done prior to implementing
support for it, to prevent disappointments.

When object databases become available as free software, they might be
worth investigating as an alternative to the currently used relational database.
This also goes for XML databases, although to a somewhat lesser extent, because
they require lots of work to the inner structure of the current implementation
of Akonadi.

Object/relational mappers These simplify the database access code signifi-
cantly, but no mature and free packages exist for C++ at the time of writing.
The reduced code size and complexity decreases the chance of programming
errors and improves readability. When they do become available, using them
is advised.

Storing large objects Storing large binary objects directly in the filesystem is
only a temporary solution. It is also a workaround, because databases should
be able to optimally store large objects by themselves.

The problem is not urgent yet, as most multimedia content is stored on the
filesystem these days. When emails grow to several hundreds of megabytes
and multimedia data is seen as PIM data, Akonadi has to cope with really large
objects.

The Scalable BLOB Streaming Infrastructure for MySQL (mbH07) is an ef-
fort to create a universal method for storing large objects. The MyBS engine
and MySQL’s own new Falcon engine (MyS07) are examples of engines with
focus on efficient BLOB storage, that can be used in companion with the new
infrastructure. In the mean time, MySQL’s FILE privilege 1 might be an option
to get higher performance. As the Akonadi server runs on a per user basis and

1http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html

49

http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html


50 CHAPTER 7. RECOMMENDATIONS FOR FUTURE WORK 7.0

only allows local connections, it poses no security vulnerability (the MySQL
server has only read and write access to the files that the user has access to).

Storing large datasets A related issue is when more data is stored than what
fits in the computer’s memory, which is a realistic scenario with today’s large
amounts of PIM data. This is devastating for Akonadi’s performance. Smart
caching is a way of tackling the problem. The cache cleaner agent already
exists, but it is not yet completely implemented.

Compression While data compression proves to be increasing performance,
while saving storage space, this is mainly due to the textual nature of the
data. When already compressed data parts (such as e-mail attachments and
compressed images) are stored, these advantages vanish, but the increased
computation time remains.

A solution is to make the compression dependent on the mimetype of the
data. Types such as application/x-tgz, application/x-zip and image/png are already
compressed, where text/plain is not. It is even possible to use different compres-
sion algorithms, depending on the data to be compressed.

Multipart support Newly developed resources and applications should make
good use of Akonadi’s support for multipart items. Measurements should be
done on the frequency of actions, to determine what kind of data is stored and
retrieved mostly. This data can then be stored as a separate item part, thus
lowering the time needed for storage, retrieval and further processing.

Data consistency The PIM applications supporting Akonadi as their backend
should add functionality to prevent data loss. This includes presenting the
user with options to resolve conflicts and automatic conflict resolving where
Akonadi is not able to do so.

System failures stay a risk, even with lots of protection measures. Integrat-
ing a way to backup Akonadi’s data should therefore be done before releasing
a stable version.

Performance evaluation It is recommended to execute performance tests on
Akonadi and its competitors, to be able to compare the numbers and learn
smart approaches from each other.



Bibliography

[ACI07] Acid properties in databases. http://en.wikipedia.org/
wiki/ACID, 2007.

[Amb06] Scott W. Ambler. Mapping objects to relational databases: O/r
mapping in detail. http://www.agiledata.org/essays/
mappingObjects.html, 2006.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repository.
2007.

[Apa07] Xindice. http://xml.apache.org/xindice/, 2007.

[APM03] I. Androutsopoulos, G. Paliouras, and E. Michelakis. Pu123a
corpora. http://www.iit.demokritos.gr/skel/i-config/
downloads/PU123ACorpora_readme.txt, 2003.

[Bea07] Beagle desktop search. http://beagle-project.org, 2007.

[Ber95] Daniel J. Bernstein. Using maildir format. http://cr.yp.to/
proto/maildir.html, 1995.

[BG81] Philip A. Bernstein and Nathan Goodman. Concurrency control in
distributed database systems. ACM Comput. Surv., 13(2):185–221,
1981.

[Chr03] M. Chrispin. Rfc 3501 - internet message access protocol - version
4rev1. http://www.faqs.org/rfcs/rfc3501.html, 2003.

[Coh05] William W. Cohen. Enron email dataset. http://www.cs.cmu.
edu/˜enron/, 2005.

[Con07] Nepomuk Consortium. Nepomuk - the social semantic desktop.
http://nepomuk.semanticdesktop.org/, 2007.

[CWI04] CWI. Monetdb/xquery. http://monetdb.cwi.nl/projects/
monetdb/Home/index.html, 2004.

[DCO07] Desktop communication protocol. http://en.wikipedia.org/
wiki/DCOP, 2007.

51

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://xml.apache.org/xindice/
http://www.iit.demokritos.gr/skel/i-config/downloads/PU123ACorpora_readme.txt
http://www.iit.demokritos.gr/skel/i-config/downloads/PU123ACorpora_readme.txt
http://beagle-project.org
http://cr.yp.to/proto/maildir.html
http://cr.yp.to/proto/maildir.html
http://www.faqs.org/rfcs/rfc3501.html
http://www.cs.cmu.edu/~enron/
http://www.cs.cmu.edu/~enron/
http://nepomuk.semanticdesktop.org/
http://monetdb.cwi.nl/projects/monetdb/Home/index.html
http://monetdb.cwi.nl/projects/monetdb/Home/index.html
http://en.wikipedia.org/wiki/DCOP
http://en.wikipedia.org/wiki/DCOP


52 BIBLIOGRAPHY

[DS98] F. Dawson and D. Stenerson. Rfc 2445 - internet calendaring and
scheduling core object specification (icalendar). http://www.
ietf.org/rfc/rfc2445.txt, 1998.

[Dum07] Susan Dumais. The person in personal; 16th international
world wide web conference (www2007). http://research.
microsoft.com/˜sdumais/WWW2007-Dumais-Share.pdf,
2007.

[EP03] Nick Elprin and Bryan Parno. An analysis of database-
driven mail servers. Proceedings of the 17th Large Installa-
tion Systems Administration Conference, pages 15–22, 2003.
https://www.usenix.org/events/lisa03/tech/full_
papers/elprin/elprin_html/.

[fil07] Comparison of file archivers. http://en.wikipedia.org/
wiki/Comparison_of_file_archivers, 2007.

[FSF07] The free software definition. http://www.gnu.org/
philosophy/free-sw.html, 2007.

[Har05] Elliotte Rusty Harold. Managing xml data: Native xml
databases. http://www-128.ibm.com/developerworks/
xml/library/x-mxd4.html?ca=dnt-623, 2005.

[HD91] U. Halici and A. Dogac. An optimistic locking technique for con-
currency control in distributed databases. Software Engineering, IEEE
Transactions on, 17(7):712–724, 1991.

[KDE07] Kde homepage. http://www.kde.org/, 2007.

[KJ06] David R. Karger and William Jones. Data unification in personal
information management. Commun. ACM, 49(1):77–82, 2006.

[KK07] Tobias König and Volker Krause. Akonadi documentation.
http://www.englishbreakfastnetwork.org/apidocs/
apidox-kde-4.0/kdepim-apidocs/akonadi/html/index.
html, 2007.

[KY04] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for
email classification research. In Machine Learning: ECML 2004; 15th
European Conference on Machine Learning, Pisa, Italy, September 20-24,
2004. Proceedings, pages 217–226, Language Technologies Institute,
Carnegie Mellon University, Pittsburgh, PA 15213-8213, USA, 2004.
Springer Berlin / Heidelberg.

[KZ07] Tobias König and Robert Zwerus. Akonadi design. http://www.
englishbreakfastnetwork.org/apidocs/apidox-kde-4.
0/kdepim-apidocs/akonadi/html/akonadi_design.html,
2007.

[LDA07] Lightweight directory access protocol. http://en.wikipedia.
org/wiki/Lightweight_Directory_Access_Protocol,
2007.

http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2445.txt
http://research.microsoft.com/~sdumais/WWW2007-Dumais-Share.pdf
http://research.microsoft.com/~sdumais/WWW2007-Dumais-Share.pdf
https://www.usenix.org/events/lisa03/tech/full_papers/elprin/elprin_html/
https://www.usenix.org/events/lisa03/tech/full_papers/elprin/elprin_html/
http://en.wikipedia.org/wiki/Comparison_of_file_archivers
http://en.wikipedia.org/wiki/Comparison_of_file_archivers
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www-128.ibm.com/developerworks/xml/library/x-mxd4.html?ca=dnt-623
http://www-128.ibm.com/developerworks/xml/library/x-mxd4.html?ca=dnt-623
http://www.kde.org/
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/index.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/index.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/index.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_design.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_design.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_design.html
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol


BIBLIOGRAPHY 53

[Mas05] J. Mason. Spamassassin corpus. http://spamassassin.
apache.org/publiccorpus/, 2005.

[mbH07] SNAP Innovation Softwareentwicklungsgesellschaft mbH. Scal-
able blob streaming infrastructure for mysql. http://www.
blobstreaming.org/, 2007.

[mbo07] mbox storage format. http://en.wikipedia.org/wiki/Mbox,
2007.

[Mei07] Wolfgang Meier. exist - open source native xml database. http:
//exist.sourceforge.net/, 2007.

[Mul07] Multiversion concurrency control. http://en.wikipedia.org/
wiki/Multiversion_concurrency_control, 2007.

[MWZ04] Qirong Mao, Jinfeng Wang, and Yongzhao Zhan. The optimistic
locking concurrency controlling algorithm based on relative posi-
tion and its application in real-time collaborative editing system.
Computer Supported Cooperative Work in Design, 2004. Proceedings. The
8th International Conference on, 1:99–105, 2004.

[MyS07] MySQL. Falcon storage engine guide. http://dev.mysql.com/
doc/falcon/en/index.html, 2007.

[Obj07] Object database. http://en.wikipedia.org/wiki/Object_
database, 2007.

[Opt07] Optimistic concurrency control. http://en.wikipedia.org/
wiki/Optimistic_concurrency_control, 2007.

[PCL06] H. Pennington, A. Carlsson, and A. Larsson. D-bus
specification. http://dbus.freedesktop.org/doc/
dbus-specification.html, 2006.

[Pre06] Double Precision. Courier extended maildir. http://www.
courier-mta.org/maildir.html, 2006.

[SAP+03] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D.
Spyropoulos, and P. Stamatopoulos. A memory-based approach to
anti-spam filtering for mailing lists. Information Retrieval, 6(1):49–73,
2003.

[Sch07] Christian Schaarschmidt. Akonadi diagram in detail.
http://www.englishbreakfastnetwork.org/apidocs/
apidox-kde-4.0/kdepim-apidocs/akonadi/html/
akonadi_overview_uml.html, 2007.

[Sta01] Kimbro Staken. Introduction to native xml databases. http://
www.xml.com/pub/a/2001/10/31/nativexmldb.html, 2001.

[Tim07] Timestamp-based concurrency control. http://en.wikipedia.
org/wiki/Timestamp-based_concurrency_control, 2007.

[Tro07] Trolltech homepage. http://trolltech.com/, 2007.

http://spamassassin.apache.org/publiccorpus/
http://spamassassin.apache.org/publiccorpus/
http://www.blobstreaming.org/
http://www.blobstreaming.org/
http://en.wikipedia.org/wiki/Mbox
http://exist.sourceforge.net/
http://exist.sourceforge.net/
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://dev.mysql.com/doc/falcon/en/index.html
http://dev.mysql.com/doc/falcon/en/index.html
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Object_database
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://en.wikipedia.org/wiki/Optimistic_concurrency_control
http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html
http://www.courier-mta.org/maildir.html
http://www.courier-mta.org/maildir.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_overview_uml.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_overview_uml.html
http://www.englishbreakfastnetwork.org/apidocs/apidox-kde-4.0/kdepim-apidocs/akonadi/html/akonadi_overview_uml.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
http://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
http://trolltech.com/


54 BIBLIOGRAPHY

[Tru07] Sebastian Trueg. Nepomuk-kde. http://nepomuk-kde.
semanticdesktop.org/xwiki/bin/view/Main/, 2007.

[vdO07] Jos van den Oever. Strigi desktop search. http://strigi.
sourceforge.net/index.php/Main_Page, 2007.

[XML07] Xml database. http://en.wikipedia.org/wiki/XML_
database, 2007.

[zli07] zlib data compression. http://en.wikipedia.org/wiki/
Zlib, 2007.

http://nepomuk-kde.semanticdesktop.org/xwiki/bin/view/Main/
http://nepomuk-kde.semanticdesktop.org/xwiki/bin/view/Main/
http://strigi.sourceforge.net/index.php/Main_Page
http://strigi.sourceforge.net/index.php/Main_Page
http://en.wikipedia.org/wiki/XML_database
http://en.wikipedia.org/wiki/XML_database
http://en.wikipedia.org/wiki/Zlib
http://en.wikipedia.org/wiki/Zlib


AppendixA
GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that

contains a notice placed by the copyright holder saying it can be distributed

55



56 APPENDIX A

under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title



APPENDIX A 57

page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commer-

cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have

printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you



58 APPENDIX A

must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the

conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.



APPENDIX A 59

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this

License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all



60 APPENDIX A

of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents

released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copyright



APPENDIX A 61

holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English ver-
sion of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section 1)
will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.





Summary

One of the main purposes of personal computers today is to store and manage
our personal information. We use organiser software instead of paper organ-
isers, we don’t clutter our colleagues’ desks with written notes, but send them
emails, we keep a blog for a diary, we could even think of digital photo and
video albums. As the size of all this data increases, it becomes more important
to think about the way we store it. We expect instant response from our com-
puter, which makes performance a main aspect to focus on. Also, we’d hate
losing information, so stability, robustness and protection from all kinds of data
loss should also be taken into account.

In this thesis, several options for achieving the above-mentioned goals are
looked into. Also, some of the options are implemented in an existing project,
namely Akonadi, part of KDE. KDE is a desktop environment for Linux, several
flavors of Unix and (in the future) Windows. It contains a complete set of appli-
cations to manage our personal information, like an email client, an organiser,
a blogging application and so forth. In KDE 4, the next major version of the
desktop environment, Akonadi is to be responsible for storing and accessing
all the data these applications handle.

Naturally, an evaluation of the implemented options is performed and
shows that they have the desired effects. Akonadi’s performance is tested,
as well as its protection against data loss.

63


	Introduction
	Background
	Research questions
	Goals
	Approach
	Report structure

	Requirements of Akonadi
	General requirements
	Specific requirements
	Communication
	Data storage
	Data consistency


	Related research in PIM
	Communication
	Protocols and formats
	Compression

	Data storage
	Storage backend

	Data consistency
	In databases
	Concurrency control


	Design
	Akonadi in general
	Global design
	Database layout

	Implemented modifications
	Communication
	Data storage
	Data consistency


	Evaluation
	Evaluation plan
	Dataset
	Robustness tests
	Performance tests

	Evaluation results
	Test systems
	Robustness
	Performance


	Conclusions
	Recommendations for future work
	Bibliography
	GNU Free Documentation License
	Summary

