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Abstract

Introduction Aortic Stenosis (AS) is a very common and deadly valvular disease,
predominantly present in the elderly. Outflow obstruction of AS leads to hypertrophy
of cardiac muscle cells, eventually leading to fibrosis. This non-ischemic scarring is
visualized with (LGE)-images of cardiac magnetic resonance (CMR). Fibrosis can
induce heart failure and sudden cardiac death. Since AS has relatively high mortality,
timely and accurate risk-stratification of the patients that benefit from early valve
surgery is important. Radiomics is a novel method for extraction of quantitative
features from medical images, relating image features to phenotyping, diagnosis and
treatment through predictive modelling. This study implements radiomics on an AS
patient cohort for predicting risk of surgery. A second study utilizes radiomics for
computer-aided diagnosis of myocardial fibrosis.

Methods Dataset-1 included 146 AS-patients for predictive modelling of aortic valve
replacement (AVR). This cohort and additional controls were used for identification
of fibrosis on CMR. A segmentation of the myocardium was performed for extraction
of radiomic features. Cylindrical reconstruction of myocardium aided in extraction of
case-specific features and texture feature analysis. Univariate analysis was performed
on individual features. Multivariate analysis with temporal validation included a
generalized linear model (GLM), random forest (RF) and support vector machine
(SVM), with minimum redundancy, maximum relevance (mRMR) feature selection.
A second feature set, comprised of clinical features, was used to determine the
performance of these features in prediction of AVR and computer-aided diagnosis of
LGE. Performance measures were concordance index (CI), respectively Area Under
the Curve (AUC). A second dataset was implemented for external validation.

Results 5639 features were extracted from LGE-CMR images. Univariate analysis
for AVR revealed 49 prognostic features (FDR q-value<0.05, CI>0.6). Multivari-
ate clinical GLM, including peak aortic jet velocity, high-sensitivity troponin-I and
electrocardiographic strain pattern showed higher CI (0.86) than models built with
radiomic features (average CI: 0.55). Classification of fibrosis showed opposite
performance; average AUC of models with radiomic features was 0.92, clinical mo-
delling showed 0.78. External validation showed similar performance to temporal
validation for prediction of AVR (average CI: 0.60), but lower for classification of
LGE (AUC: 0.70).
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Discussion This study was the first study to implement external validation for pre-
dictive modelling and computer-aided diagnosis in CMR. Although training data
and external validation cohort were significantly different in patient characteristics,
promising results were shown for classification of LGE. A larger dataset can aid in
further analysis to determine the optimal timing of AVR and clinical pathway for
patients with AS.
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1General Introduction

1.1 Medical Background

1.1.1 Aortic Stenosis
Aortic Stenosis (AS) is a medical condition of the aortic valve. This is the valve
that regulates the passage of blood between the Left Ventricle (LV) and the aorta
during a heartbeat (figure 1.1). Normal aortic valves have three cusps; each <1
mm thick. Four different layers make up for the histologic structure of a cusp; the
endothelium (facing the aorta inlet and continuous with the lining of the aorta),
fibrosa, spongiosa and ventricularis (facing the ventricle). The outer layers consist of
endothelial cells, covering the inner connective layers. The cusps are attached to the
aortic root by the annulus; a collagenous network, which facilitates the transmission
of forces enacted by the blood flows.[40]

Fig. 1.1: Overview of the human heart. The aortic
valve is located between the LV and the
aorta and controls the flow of blood from
the ventricle into the aorta.

In a subset of patients, the aor-
tic valve becomes calcified; the
cusps of the valve stiffen, caused
by a process of thickening, calci-
fication and fibrotization. Histori-
cally, this process has been dedi-
cated to ageing of the valves and
the constant force applied to the
cusps. However, previous publis-
hed research show that endothe-
lial damage of the cusps causes a
cascade of inflammatory proces-
ses.[94, 40] However, the exact
underlying processes remain un-
clear and are under continuous
investigation.

The prevalence of clinically significant calcific AS is 1-3 % of all individuals >70.
However, approximately 25% of all individuals >65 have a precursor of AS in
the form of sclerotic aortic valve cusps.[157] If left untreated after the onset of
symptoms, the 1-year survival is as low as 50%.[105] Previous research has shown
that patients with severe asymptomatic AS can benefit from early surgery before the
onset of symptoms, reducing their risk of cardiac mortality.[72]
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There are two other diseases that can cause AS; the bicuspid aortic valve and
rheumatic fever. The bicuspid valve is a heritable congenital malformation, where
two cusps of the valve are fused into one. Early in life, a bicuspid aortic valve can be
regarded as a benign lesion. However, when the patient becomes older, his morbidity
and mortality increases. Due to the pathologic anatomy of the valve, the blood flow
from the LV is different from a tricuspid valve. This leads to an increased risk of
other cardiovascular pathologies, e.g. infective endocarditis and aortic dilatation
and dissection.[54]

Rheumatic fever is a systemic inflammatory diseases, affecting the cardiovascular
system and the pericardium as part of the mucosal membranes, but also the brain,
skin and joints. The clinical manifestation of the disease in the cardiovascular system
is mainly in the form of an infection of the heart. The aortic and mitral valve are
the locations primarily affected. The infection of the aortic valve leads to AS and
consequential therapy in this patient group.[31]

Bicuspid aortic valves are present in 0.6%-2% of the general population.[54] Rheu-
matic fever in developed countries is estimated at 0.01%. However, in developing
countries, this number could triple.[147]

Diagnosis of Aortic Stenosis

Echocardiography is the most common imaging method used for diagnosis of AS.
It enables assessment of the aortic valve, severity of stenosis and motion of the
myocardial wall. Furthermore, measurements of the thickening of the left ventricular
wall and the outflow are done. Doppler signals enable the measurement of the peak
jet velocity over the valve, an important measure for severity of AS.[150, 13]

Echocardiography is a low-cost, noninvasive and fast method for the diagnosis of
AS. However, it has some drawbacks. The image quality is operater-dependent and
also varies with different patient characterics, e.g. BMI. There is a growing interest
in the use of other imaging modalities for classification of AS. Cardiac Magnetic
Resonance (CMR) gives an accurate assessment of the LV volume, has the ability
to monitor flow and enables a more detailed characterization of the myocardium
with late-gadolinium enhancement imaging and T1-mapping. However, there are
disadvantages of Magnetic Resonance Imaging (MRI); it is less comfortable for the
patient due to breath-holding sequences, not all patients are eligible for MRI-scanning
and it is more expensive and time-consuming than echocardiography. Computed
Tomography (CT)-imaging enables an accurate quantification of calcification of the
aortic valve and gives the opportunity to screen for coronary disease, accompanying
AS. The main drawback of CT is the use of ionizing radiation.[134]

2 Chapter 1 General Introduction



Consequences of Aortic Stenosis

Fig. 1.2: Graphical representation of left ventricular
remodelling occuring in patients with AS.
Image derived from Rassi et al., 2014 [122]

Aortic valve stenosis usually does
not account for symptoms in pa-
tients; the effects of the AS do. AS
has a long latent asymptomatic
period of multiple years, in which
the calcification steadily worsens.
The onset of symptoms is an indi-
cation for failure of the left ven-
tricular (LV) compensatory me-
chanisms, that have been in ef-
fect during development of the
AS and worsening function of the
aortic valve. During the thicke-
ning of the aortic valve, the mobi-
lity of the cusps decreases and the
valve inlet loses its ability to open
and close properly. This creates a
backflow of blood from the aorta
into the LV, leading to a pressure overload that causes increased wall stress. The
first compensatory mechanism is dilation of the ventricle, followed by graduate wall
thickening through myocyte hypertrophy, which reduces the wall stress to standard
ranges.[48] The thickened myocardial wall requires an increased amount of oxygen.
However, coronary flow reserve is reduced in LV hypertrophy through numerous
causes; microvascular dysfunction, low coronary perfusion pressure, increased extra-
vascular compressive forces and reduced diastolic perfusion time. All these factors
decrease the blood flow and thus the flow of oxygen into the cardiac muscle, lea-
ding to ischemia of the myocardial cells followed by interstitial fibrosis.[157, 90]
When these mechanisms start to fail, patients will start to experience symptoms. A
schematic overview of the mechanism is shown in figure 1.2.[122]

Despite the clear mechanism causing failure of the LV in AS, research has indicated
that the degree of left ventricular hypertrophy is only weakly correlated to the
severity of valve obstruction. There are other factors that are assumed to have a
higher influence on the degree of hypertrophy; age, male sex and obesity.[48, 74]
Furthermore, Chin[29] has developed a clinical risk score, comprising five clinical
variables, that predict adverse outcomes in AS. Table 1.1 shows the different clinical
and imaging variables that predict outcome in patients with AS.

1.1 Medical Background 3



Variable Description Effect Study
Age Age of the patient

Association with midwall
fibrosis
Predicts adverse outcomes
in aysmptomatic AS-patients.

Chin,
2016 [29]

Gender Gender of the patient
Vmax Peak aortic jet velocity
High-
sensitivity
Troponin-I
concentra-
tion

Blood concentration of
cardiac troponin (ng/L)

Electrocardio-

graphic
strain pat-
tern

ST-depression and T-wave
inversion in lateral leads

Soluble
urokinase
plasminogen
activator
receptor
(suPAR)

Inflammatory marker as-
sociated with subclinical
cardiovascular damage
and cardiovascular
events.

Association with ische-
mic cardiovascular events
and cardiovascular and
all-cause mortality.

Hodges,
2016
[68]

Increase in
aortic-jet
velocity

Change of aortic jet velo-
city reflects the presence
of moderate or severe val-
vular calcification.

Low 2-year survival rate. Rosenhek,
2000
[126]

Midwall
fibrosis

Enhancement on LGE-
images in the middle
section of the myocar-
dium

Predictor of mortality in
patients with moderate
and severe AS

Dweck,
2011
[42]

Low-flow,
low-
gradient

Preserved ejection
fraction (>50%) with
a low-flow (<35
ml/m2) and low gra-
dient (<40mmHg) over
the aortic valve.

Associated with an increa-
sed risk of cardiovascular
mortality and hospital ad-
mission.

Gonzalez
Gomez,
2017
[59]

Tab. 1.1: Variables that affect the prognosis of AS-patients.
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Aortic Stenosis Therapy

No medicinal therapies exist for AS. Treatment of AS is done with balloon dilatation,
Surgical Aortic Valve Replacement (SAVR) or Transcatheter Aortic Valve Implantation
(TAVI). The latter two are the preferred choices of treatment.

Balloon valvuloplasty is the widening of the aortic valve inlet by increasing the size
of a balloon. This method is used to relieve patients that are not eligible for surgery
or to bridge the time towards surgery. The benefit is only temporarily, because the
pathologic condition of the aortic valve does not change. Therefore, survival rate
remains unchanged.[21]

In SAVR and TAVI an aortic valve is implanted. In the surgical procedure this is
done by removal of the old valve and implantation of a mechanical or bioprosthetic
valve. In TAVI the inborn aortic valve remains in place, but a replacement valve is
positioned transcutaneously at the inlet of the aortic valve and dilated to move aside
the stenosed aortic valve.[71]

TAVI is a less invasive intervention than SAVR. It is therefore recommended for
patients at intermediate- or high-risk for surgery.[150, 92] Both interventions have
different patterns of complications. SAVR has a higher risk of atrial fibrillation, major
bleeding, transfusion requirements and acute kidney injury. TAVI complications were
primarily the need for pacemaker implantation, higher rates of oartic regurgitation
and vascular complications.[135, 27, 92, 123].

With respect to death or disabling stroke, both TAVI and SAVR have a similar
risk; ranging from 13% [123] to 20% [92] at a 2-year follow-up in patients at an
intermediate-risk for surgery. Patients at high-risk for surgery have an increased
risk of death from a cardiac cause, approximately 13% at 1-year follow-up.[135]
Currently, TAVI is more widely implemented for intermediate- and high-risk patients.
It has shown that mortality is similar and sometimes lower than in /glssavr.[145,
79]

1.2 Imaging in Aortic Stenosis

In the previous section, a short overview was given of the use of imaging modalities
for diagnosing AS. This section gives a more elaborate overview of the different
imaging modalities and the publications that studied the use of the different imaging
methods in AS research. The last part of this section elaborates on CMR imaging
and specifically how late enhancement images are acquired; the sequence used for
imaging analysis in the consecutive studies of this thesis.
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1.2.1 Imaging modalities in Aortic Stenosis:
Echocardiography, CT and PET

As previously mentioned, echocardiography is the primary imaging modality for
the diagnosis of AS. Beside imaging opportunities, it also gives the opportunity to
evaluate flow and gradient across the aortic valve. Flow refers to the ejection of
blood from the heart. The pressure gradient gives the difference in pressure between
the LV and the aorta, caused by obstruction of the outlet through the calcified aortic
valve. [139] This information can be used to determine the severity of the AS and
the timing of therapeutic intervention. Analysis of flow and pressure gradient have
been a topic of interest lately.

A healthy aortic valve has a low pressure gradient and a low jet velocity (flow) with
a normal Aortic Valve Area (AVA) (2.5-4.5 cm2). After the onset of calcification of
the aortic valve, the aortic valve area decreases, leading to an increase in pressure
gradient and aortic jet velocity. However, there is a subgroup of severe AS-patients
that has a preserved Left Ventricular Ejection Fraction (LVEF), a low flow and
pressure gradient. Only the reduced aortic valve area (<1cm2) indicates severe AS.
This indicates no need for valve surgery. However, it is this group that might benefit
from early valve replacement due to an increased mortality risk. Research has shown
that in these patients the analysis of flow and gradient is important. Bavishi et al.
[14] reviewed the available literature in a meta-analysis to determine the influence
of gradient and flow in patients with severe AS. This analysis concluded that patients
with a low flow and a low gradient AS have a higher mortality than patients with a
normal flow and a low gradient. This was confirmed by Gonzalez-Gomez.[59] It is
challenging to make a distinction between severe and non-severe AS in low-flow low-
gradient AS with a preserved LVEF and to determine the right clinical pathway.[13]
Aortic Valve Replacement (AVR) shows improved all-cause mortality in the low-flow
low-gradient patient group, but no clear improvement after AVR was shown in the
normal-flow low-gradient patient group.[14] This is an important example of how
details from echocardiography can be used in patient management of AS.

CT uses the degree of attenuation of electromagnetic radiation to image different
structures of the human body. It has a high spatial resolution and has therefore
gained increasing interest in the assessment of the severity of AS, e.g. for the measu-
rement of aortic valve area in comparison to the reference standard of measurement
with echocardiography.[30] CT also enables the examination of Coronary Artery
Disease (CAD). It has been demonstrated that CAD increases the procedural risk of
AVR.[111] At last, CT is increasingly used as a work-up tool prior to AVR.[18]

PET-imaging of the heart in patients with aortic valve stenosis can be used in
combination with CT to provide insight in the inflammation status of the aortic
valve. The combination with CT gives an accurate overview of the specific anatomic
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location of biochemical processes.[43] Research showed that the activity in the
aortic valve increases with the severity of the AS confirming the hypothesis that
inflammation processes are present in AS.[45]

1.2.2 The use of Cardiac Magnetic Resonance in Aortic
Stenosis

The use of magnetic resonance imaging in the evaluation of AS has gained incre-
asing interest. The application of CMR is four-fold; it enables the assessment of
valve morphology (1), valve function (2), left ventricular function (3) and aortic
disease (4).[127] CMR research in patients with AS is used for the reproducible
measurements of cardiac volumes, function and myocardial mass.[137]

Cardiac Magnetic Resonance

CMR imaging contains all the magnetic resonance imaging of the heart. In this
research we have focussed on the enhancement (LGE) images from the CMR-imaging
sequences, obtained in patients with AS. Enhancement images are made with the help
of the intravenous agent Gadolinium. This agent shortens T1-time and distributes
differently within viable and non-viable myocardial tissue. Sequences to display late
enhancement are a Fast-spin echo (FSE) technique, or a gradient-echo, also called a
turbo-fast low-angle shot technique (FLASH). The latter group of sequences is used
for the images in this research.

Fig. 1.3: Example of a Gradient-Echo sequence with
signal intensities in the different directions.
The definition of the Te and Tr is shown in
this image. FID is free induction decay; the
signal after excitation.

Gadolinium shortens both T1-
and T2-time of the tissue. It is
administered as an intravenous
bolus. After distribution and accu-
mulation in the myocardial tissue,
the heart can be imagined with
a T1-sequence. Especially at low
dose gadolinium, the shortening
in T1-time is dominant over the
T2-shortening. This gives an hy-
perintense area on the acquired
image.[20]

Gradient-Echo Sequences are one
of the large families in the sequen-
ces used for MRI. Gradient-echo
is currently the most used form in
CMR imaging, being less prone to
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motion-artefacts than spin-echo. Figure 1.3 displays schematically how a gradient-
echo sequence works. It starts with a slice-selective RF-pulse. This pulse produces
a 10°to 90°rotation angle to align protons. Secondly, a phase-encoding gradient is
applied simultaneously with a dephasing frequency-encoding gradient. This causes
an accelerated dephasing gradient in the imaged object. The last step is a frequency-
encoding gradient for the acquisition of the signal, which causes an echo in the
signal. This gradient refocuses the accelerated dephasing, enabling signal acquisition
at Te; the echotime (figure 1.3). Tr represent the repetition time at which this
sequence is repeated.[20] The last time variable in gradient-echo is the inversion
time (Ti), describing the time before the inversion-recovery prepulse. This pulse
ensures the hypointensity of the normal myocardium and increases the contrast
between normal and pathologic myocardium. The duration of the inversion time
is determined by the radiologic technician, based upon images of the myocardium
with different Ti-times.[42]

1.3 Data Analysis

1.3.1 Radiomics

Radiomics has developed over recent years as a "high-througput extraction of large
amounts of image features from radiographic images" (cited from [88]). This
development has been derived from the hypothesis that medical images contain
complementary and interchangeable information with respect to other sources of
patient information; histologic evaluation of biopsies, analysis of blood samples,
but also demographic and genetic characteristics.[88] Statistics of large radiomics
datasets facilitate clinical decision-making.[57]

The Radiomics approach consists of four consecutive steps; imaging (1), segmen-
tation of the region of interest (2), feature extraction (3) and analysis (4).[88, 86]
Feature extraction includes the extraction of multiple groups of features from the
region of interest. Four groups of features were identified in the Radiomics approach;
first order intensity statistics (1), shape and size based features (2), texture features
(3) and multi-scale wavelet features(4).[113, 1] These features have been derived
from other fields, e.g. computer vision.[63] An explanation on the feature groups
and the corresponding mathematical functions are found in the supplements.

Currently, the number of publications that have used radiomic features and machine
learning analysis is exploding, predominantly in the field of oncology. Some examples
of Radiomics research include; prediction of the risk of distant metastasis in lung
cancer [35], discrimination between benign and malignent lesions in the pleura
[115] and therapy response prediction in breast cancer [22]. By many clinicians and
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data scientists, the use of machine learning in image analysis is regarded as a very
promising, growing field.[142]

1.3.2 Statistical Analysis
In this section, we give an overview of feature selection and the used machine
learning models. This is the fourth step in the Radiomics workflow. The machine
learning pipeline of this research is displayed in the supplements (figure 6.5). For an
overview of all the functions used in the R programming language [120], see table
6.1.

Machine learning

The term ’Machine Learning’ has been introduced by Arthur Samuel in 1959, when he
demonstrated a program, that could play checkers. He described machine learning
as the programming of a digital computer to behave in a way which, if done by human
beings or animals, would be described as involving the process of learning.[129] To
date, there are many different definitions of machine learning. The application in
medicine is focussing on the medical diagnosis [77] and the automatic analysis of
medical imaging [96], e.g. automatic segmentation of regions of interest, detection
of pathology and registration of different imaging modalities.

Machine learning comes in many different forms. In the currently available algo-
rithms, a main distinction can be made between the supervised and the unsupervised
learning models. Supervised models are trained with labelled data or samples that
have an outcome value. The goal of this type of machine learning is to predict the
label or value of a new sample, when given to the model. Unsupervised learning
contains raw data points, without a particular label that must be predicted. This
type of machine learning seeks to cluster that data points to find general patterns in
the data.[25]

Another important aspect in machine learning is the choice of a type of model. Every
model has a certain level of complexity. The goal of a good and well-trained machine
learning model is its ability to be generalizable and perform well on unseen data.
Over- and underfitting are two key aspects that are leading to non-generalizability.

A machine learning model is trained to recognize specific patterns in the data that
can be related to the outcome of the sample. Yet, data also contains random noise.
This noise is not directly related ot the outcome of the data, but the machine learning
model cannot discriminate between noise and data. If a model is trained too well on
the data, the model has also learned the characteristics of the noise of each sample,
reducing the generalizability of the model to other datasamples. This is called
overfitting.[85] This especially occurs in more complex models that are exposed to
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a limited amount of data or are too exhaustively trained on a dataset. Overfitting
leads to great results in the trainingset, but a poor performance in during validation
or testing. Overfitting can sometimes be hard to spot due to a limited availability of
data for a testset.

The opposite of overfitting is underfitting. This occurs when a machine learning
model is not specific enough and is unable to find patterns in the training data. This
will result in a poor performance in both the training and validation. Therefore, it is
easier to identify underfitting than overfitting models.

To train a machine learning model, a large dataset is required. In this project, data
is obtained from LGE-images from CMR. Two different studies have been performed
in this thesis. First, it was assessed if a model trained with radiomic features is able
to predict the necessity for AVR during the patient’s follow-up period. Secondly, a
computer-aided diagnosis model is trained to determine whether it is possible to
discrimate patients with and without fibrosis in the LGE-images from each other,
based upon radiomic feature values.

As described in the paragraphs above, model selection can be a difficult process,
involving trial-and-error. It can be hard to select a model for a specific problem.
This research therefore implements three different models; a mathematically simple
Generalized Linear Model (GLM), the widely-used Random Forest (RF) and the
Support Vector Machine (SVM) with a linear kernel. Implementation of different
types of machine learning models enables comparison between the performance of
these models.

Generalized Linear Models are a larger class of models that include, among others,
logistic and linear regression models. The generalized linear model as implemented
in this research utilizes a linear function to calculate a score per sample, based upon
the included feature values and a start value. Therefore, an intersection of the linear
function with the y-axis is calculated, followed by coefficients for every included
feature. With these values a linear function is fitted to the data.[83] Based upon the
sample values for specific features, every sample obtains a certain score. This score
can be related to the classification into a specific group. Generalized linear models
are advantageous, because they have a clear mathematical structure in comparison
to the somewhat black-box of other machine learning models.[149]

Random Forests are models that consists of a large sample of decision trees. A
decision tree is a tree structure. At every node a decision is made for a certain classi-
fication, based on the evaluation of a feature value. Therefore, a threshold for the
feature value is defined at each node, determining the pathway through the decision
tree. These trees aim to partition the data into smaller and more homogeneous
groups of samples. The goal in decision trees is to minimize misclassification at each
node. The terminal node of a decision tree produces a vector of class probabilities for
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a test sample. These probabilities are based upon the training data. As mentioned,
an RF is a collection of decision trees. After training, each tree in the forests predicts
a class for a presented sample. The proportion of votes for each class is the predicted
probability for that sample.[81] The used RF in this research is the rf-model from
the caret-package.[80] The tuning parameter that is optimized during the tuning
process of the model is the number of features that are randomly tried at every node
(mtry).

The RF model has several advantages, that are applicable to the presented data. First
of all, RFs are very suitable for classification problems, due to the voting system of
multiple trees. Secondly, an RF is not markedly activated by outliers in the predictor
data. This reduces the burden of normalization and data preprocessing. Furthermore,
the used RF function has a built-in feature selection tool, that applies weight to
every feature during training process. Extreme feature reduction is therefore less
required.

Support Vector Machines are a group of models that try to find multidimensional
planes in multidimensional data. This type of models views every data point as a
point in a d-dimensional feature space, where d represents the number of included
features in the model. The goal of an SVM is to find a hyperplane that separates two
classes in the data. SVMs can be modelled with linear classification boundaries, but
also other kernel functions for non-linear separation can be applied.[84] The main
tuning parameter in this model is the ’cost’. This is the penalty on the performance
of the model when a sample is wrongly classified. If the cost parameter is high, the
model will be trained to avoid wrong classifications. This might result in overfitting.
If the cost is set to a smaller number, the model will be less strict. Underfitting is
going to occur if the cost is too small.[85] The current study implements a linear
SVM from the e1071-package.[99] In this model the only tuning parameter is cost.

One of the problems in working with SVMs is when you have as many features as
data samples. In this case, a hyperplane will definitely be found, but it will result
in a large overfit on the data. Dimensionality reduction is thus of great importance
in SVMs.[24] Therefore, feature selection is implemented before training the linear
SVM to include relevant features.

The advantage of SVMs is that these models are intuitively simple and the mathe-
matical fundamentals are easy to understand. However, the linear separability can
be problematic for higher-dimensional data. Furthermore, SVMs are fundamentally
binary with a hyperplane splitting the data into two sets. It can therefore be hard to
analyse samples that are at the edge of two classes.

SVMs are prone to outliers and differing orders of feature value size. It is therefore
important to scale the data and to correct the outliers before using feature values
as input in the model. Outlier correction is done with the Local Outlier Factor

1.3 Data Analysis 11



(LOF).[23] An elaborate explanation of the modification of data for input in the
SVM is found in the supplements.

Feature Selection

Many different feature selection algorithms are currently available. A way to group
the available models is by how a selector is implemented in the model. There
are filters, wrappers or embedded methods. Wrapper methods evaluate multiple
subsets of features using procedures that add or remove features to find the optimal
combination that maximizes the model performance. Therefore, every subset of
features is evaluated in the model. In embedded methods, the training of the
model and the feature selection cannot be separated. The feature selection is an
incorporated part of the machine learning model.[61] This research employs two
methods from the filter-category.

Filters Filter methods are methods that rank features according to their scoring
criterion. Within the filter based feature selection methods, two subgroups can be
distinguished; univariate and multivariate filters. In univariate methods, the scoring
criterion is only based upon the feature’s association in the outcome of the model.
These filters only look at the relevancy of the feature. Multivariate methods also
take into account the redundancy between features. Redundancy is a measure that
describes the correlation between features. Multivariate methods determine the
scoring criterion according to a weighted sum of feature relevance and redundancy.
[112]

The implemented filter in this study is minimum redudancy - maximum relevance
(mRMR). mRMR combines two important characteristics of features in a feature
selection algorithm; maximum relevancy and minimal redundancy. Reducing redun-
dancy extends to the removal of highly correlated features. Maximum relevancy
relates to the features that have the largest dependency on the target class.[116]

Filter methods are preferred due to their efficiency. Furthermore, these methods are
less prone to overfitting than wrappers and embedded methods.[61]

1.4 Thesis Overview

1.4.1 Motivation

AS is a widely occuring condition in the ageing population in first-world countries;
25% of the population >65 years has a precursor of aortic stenosis and clinically
significant aortic stenosis occurs in 1-3% the individuals >70 years of age.[157]
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AS leads to left ventricular hypertrophy. If left untreated, the left ventricular hyper-
trophy leads to ischemia of the myocardial cells followed by interstitial fibrosis.[157,
90] This increases the risk of heart failure, all-cause and cardiac mortality.[42, 122]
Without intervention, the 2-year mortality and complications can be as high as
90%.[132] An appropriate risk-analysis of patients that require aortic valve replace-
ment in the near future is therefore required.

Currently, LVEF >50% has been used as the main criterion for AVR in patients
with severe asymptomatic AS. The decision tree for the clinical pathway of AS
is shown in figure 1.4. However, previous research has shown that LVEF is not
an appropriate measure for risk-stratification [114, 126] and that there are other
stronger predictors for adverse events in patients with AS; left ventricular fibrosis,
identified by enhancement on LGE-images, is a strong predictors of all-cause and
cardiovascular disease-related mortality.[12, 42] However, the current guidelines for
AS do not include any form of medical imaging in risk-stratification of patients.

Radiomics has shown to enable texture analysis in cardiac images [11]. Further-
more, its prognostic and predictive capabilities are currently widely reviewed[8] in
oncology with promising outcomes in the prediction of therapy response [34, 69]
and mortality [108].

The presented research has been set-up to broaden the scope of radiomics outside
oncology. The studies in this thesis try to find a relation between feature values
of Radiomic features and the risk of AVR or adverse events in patients with AS.
Radiomic features can be added to the guidelines in place of the LVEF<50%-criterion
to improve risk-stratification of AS-patients. Within this study, the clinical risk score,
as described by Chin, 2016 [29], is also taken into account in the analysis to
determine the performance of this score. Secondly, the relation between features and
feature values and the qualitative analysis of fibrosis of the radiologists is studied to
improve computer-aided diagnosis of fibrosis in patients with AS. This increases the
inter- and intra-patient comparability of the status of the myocardium.

1.4.2 Objectives

This research focusses on the extraction of radiomic features from a patient cohort
with AS. These feature values are used to determine if there is a difference in patients
with and without AVR during follow-up. The ultimate goal is to enable risk-analysis
of patients with AS to improve timing of AVR. This includes the identification of
features that are able build a risk signature; a set of features which values can
be used to determine the risk score of a patient, in this case for AVR or cardiac
events. These features can then be integrated in the flowchart of figure 1.4 for
appropriate identification of patients that benefit from early AVR. To enhance the
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Fig. 1.4: Current management of Aortic Stenosis. BSA = body surface are, LVEDD = left
ventricular end-diastolic diameter, Med Rx = medical therapy. Image derived from
the ESC/EACTS Guidelines on management of valvular heart disease, 2012 [150]

extraction of features, a new method has been developed to rearrange the myocardial
segmentation which follows the delineation of myocardial cells.

1.4.3 Research Questions
Main Research Question: What is the added value of the use of radiomic features in
analysis of LGE-CMR images of patients with AS?

Sub-questions:

• Do radiomic features have the ability to predict the risk of AVR in the follow-up
time? ∼ Chapter 2

• Do radiomic features have an added value on top of the current predictors and
diagnostic tools of patient outcome in AS? ∼ Chapter 2

• Can Radiomic features discriminate subjects with fibrosis from subjects without
fibrosis? ∼ Chapter 3
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• What is the performance of a prognostic model with Radiomic features for AVR
on an independent validation cohort? ∼ Chapter 4

• What is the performance of a computer-aided diagnosis model with Radiomic
features for the identification of fibrosis on an independent validation cohort?
∼ Chapter 4

1.4.4 Outline Thesis
The purpose of this chapter (chapter 1) was to present the basic background of
the different subjects and methods used in this thesis; the pathologic aortic valve,
cardiac magnetic resonance, radiomics and the methods used for machine learning
and statistical analysis.

The next two chapters (chapter 2 and 3) are written as scientific articles. These
chapters focus on the performance of different models for classification. Chapter 2
shows the performance of predictive models in the classification of patients eligible
for AVR in the follow-up period. Both radiomics and clinical features are used as
the predictors. Chapter 3 focussed on computer-aided diagnosis. This chapter uses
Radiomic features for the automatic classification of LGE-images in fibrosis and
non-fibrosis.

Chapter 4 integrates the outcome of the univariate models of chapter 2 and 3.
Furthermore, this chapter performs an external validation of the multivariate models
in the previous chapters.

Chapter 5 includes an overall conclusion and discussion of the used methods and
choices made in this research. It evaluates the effects of different choices on the out-
come. Furthermore, a future personal perspective is included on the implementation
of machine learning models in modern health care.
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2Radiomics features perform
moderately in prediction of the
risk of valve surgery in patients
with Aortic Stenosis

2.1 Abstract

Introduction Timing of surgery is an important factor to avoid irreversible myo-
cardial damage in patients with AS. Therefore, there is a need for new imaging
biomarkers to improve risk stratification and predict outcome. Recently, it has been
postulated that AS could be considered a disease of the myocardium, with LGE
on CMR-imaging being a predictor of mortality. Radiomics is a novel method for
extraction of quantitative features from medical images, relating image features to
phenotyping, diagnosis and treatment through predictive modelling. We hypothesi-
zed that characterizing fibrosis patterns using a radiomics approach could lead to
valuable prognostic information in patients with AS. This could be used as a clinical
tool for risk stratification.

Methods 146 patients (age: 68.5, 29% female) with different degrees of AS were
included in this analysis; 81 (55%) of patients underwent AVR during the follow-up
period. The segmented myocardium was used for calculation of radiomic features. A
cylindrical reconstruction was used to calculate texture features and case-specific
features. Univariate analysis was done with Concordance Index (CI) as the perfor-
mance measure. Multivariate analysis included mRMR feature selection and tested
3 models; a cox regression, RF and SVM with a temporal validation and a random
permutation (n=1000). A model with clinical features was included to determine
performance on prediction of glsavr.

Results 5639 features were extracted from the images. 49 features were found to
be prognostic (False Detection Rate (FDR) q-value <0.05, CI>0.6) in univariate
analysis. Performance of the models in the temporal validation was close and varying
from CI: 0.53 (SVM) until 0.58 (cox regression). The clinical cox regression-model
had the best performance (CI: 0.86). The combination of the clinical and radiomic
model showed no improvement with relation to the clinical model performance (CI:
0.60).
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Discussion To the best of our knowledge, this is the first study to demonstrate the
application of radiomics in CMR for prediction of patient outcome. The radiomic
features underperformed in comparison to a model with clinical features. However,
previous studies showed a correlation between presence of enhancement in CMR
and the risk of adverse events, and therefore AVR. It is therefore assumed that the
dataset used in this study was too small to reveal this correlation.
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2.2 Introduction
AS is the most common valve disease[97] and is a condition that occurs widely in the
elderly population. Prevalence of AS in the elderly (>75 years) is approximately 1
in 9, and is expected to increase in the coming decades as the population ages. [109,
106] AS leads to progressive narrowing of the aortic valve inlet, which increases
the afterload on the left ventricle. To normalize the wall stress, the left ventricle is
remodeled, causing its wall to thicken.[44, 122] When left untreated, the excessive
remodeling results in worsening performance of the left ventricle, and a considerable
risk of adverse outcome.[52]

During the onset of AS, many patients remain asymptomatic.[114] Even in patients
with severe AS, approximately 25% have no symptoms of heart failure.[109] This
leads to high levels of mortality in this patient group. Current clinical guidelines
prescribe a decreased LVEF as an indication for (AVR) or TAVI in asymptomatic
patients.[150] However, previous research shows that this requirement is insufficient
to determine which asymptomic patients are at risk for cardiac failure.[114, 126,
29] Patients with AS who have a preserved ejection fraction (LVEF>50%) do benefit
in some cases from AVR/TAVI.[47] Nevertheless, measurable changes in LVEF occur
only very late in the transition from hypertrophy to heart failure.[29] This points to
an urgent need for the clinical guidelines to be reviewed and revised.

Given the above findings, it is important to make a clear selection of patients with
AS who will benefit from early AVR/TAVI before their cardiac condition gets worse
and results in sudden cardiac death or heart failure. Consequences of left ventricular
remodelling due to increased afterload are detectable with the use of CMR. One
of the methods in a developmental stadium is T1-mapping. This method assesses
the extracellular volume expansion associated with diffuse fibrosis. Following an
increased extracellular volume, LGE images are able to detect replacement fibro-
sis.[29] Enhancement on LGE-images is one of the strongest predictors of all-cause
and cardiovascular disease- related mortality.[12] But current guidelines do not
include the routine use of delayed contrast-enhanced CMR for risk-stratification in
patients with CMR, due to a lack of prospective studies on the prognostic value of
CMR imaging in patients with AS.[17]

Our goal is to realize the first steps in establishing the feasibility and added value of
including CMR to risk-stratify patients with AS. Recently, the radiomics method has
gained ground in the field of pattern recognition in medical images. This method
aims to predict patient outcome by the mathematical quantification of distribution of
voxel intensities, shape and size of the region of interest, and texture analysis.[58]
Radiomics has been very promising in the analysis of tumour tissue on computed
tomography (CT) images.[1, 22] Also in the field of cardiology, feature analysis has
been based on the Radiomics feature groups, using CMR cine-images [11] and 2D
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echocardiography [141]. Yet, these studies have centered primarily on the diagnosis
of cardiac disease, not primarily on patient outcome.

In the current study, we have analyzed a CMR-dataset to identify AS-patients at risk
for cardiac failure or for AVR in the follow-up. The onset of cardiac failure is usually
a precursor for valve replacement. The need for AVR/TAVIis determined by the
nature of relative symptoms or when the LVE<50%, as described in the guidelines
of the European Cardiac Society.[150] As a result, the patient with AS is eligible for
AVR/TAVI, surgery that dramatically improves the survival rate.[110]

The onset of symptoms or a decrease in LVEF, is preceded by, among others, left
ventricular hypertrophy and fibrosis formation, which is visible on CMR.[90, 56] We
test the hypothesis that radiomic features can discriminate between patients eligible
for AVR within the follow-up time of the study, and those who are not. Radiomic
features are derived from the LGE-images. This research is done to improve the
guidelines for the management of valve disease, as shown in figure 1.4. Therefore,
patients can be selected at an early stage for AVR/TAVI to avoid further deterioration
of cardiac function.

2.3 Methods

2.3.1 Study Population

The study population used in this research has been obtained from the Edinburgh
Heart Centre (clinicaltrials.gov, identifier: NCT01755936). The selected patient
cohort used for this research consists of 166 patients with AS, ranging from mild
to severe, based upon the peak aortic jet velocity (Vmax) and the AVA (AHA/ACC
Guidelines[105], ESC Guidelines[150, 13]). Start of the enrolment was January,
2012. Patients were excluded from the trial if they had other significant valvular
heart disease, heart failure or infection, significant comorbidities, cardiomyopathies
or contraindications to CMR imaging.

The obtained CMR imaging data had to include an LGE short-axis imaging sequence.
Furthermore, a check for the availability of other clinical parameters was performed.
After review of the data, 20 subject were excluded from the study population. Figure
2.1 shows the distribution of the included subjects and the final study population.

2.3.2 Clinical Outcome

The primary clinical outcome in this study was AVR. This included either a trans-
catheter or a surgical procedure. Time to AVR was defined as the number of days
between the baseline CMR-scan and the date of surgery. Secondary outcome was
overall survival of patients. This outcome was defined as the days between the
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Fig. 2.1: Overview of the study population in this research

baseline scan and the last day of follow-up, the day of death or the pull-out date.
Patients were followed up until 5 years after the start date of the study. This resulted
in two groups of patients; patients with and without an outcome in the follow-up
time combined with a time-frame of a definite number of days of follow-up.

2.3.3 MR Image Acquisition, Segmentation and
Reconstruction

MRI of the subjects was acquired with a 3T scanner (MAGNETOM Verio, Siemens
AG, Healthcare Sector, Germany). The LGE images are obtained 15 min following
a 0.1 mmol/kg infusion of gadobutrol (Gadovist/Gadavist, Bayer Pharma AG, Ber-
lin, Germany). Two approaches were used for the images; an inversion recovery
fast gradient-echo sequence and a phase-sensitivity inversion recovery sequence.
Both were obtained in two phase-encoding directions to differentiate true LGE
from artefacts. The inversion time was optimized to achieve satisfactory nulling
of the myocardium for the inversion-recovery images. Pixel size varies between
1.36*1.36mm and 1.95*1.95mm, with a slice thickness of 8mm and 2mm gap.[29]

The images were reconstructed along the short-axis. After selection of the correct
slices, these were stacked in the right order with Matlab (Matlab R2016b, The
Mathworks, Inc., Natick, Massachusetts, United States). Finally, the stacked slices
were converted into an .mhd-file in Mevislab (Mevislab Version 2.8, MeVis Medical
Solutions AG, Bremen, Germany) to facilitate segmentation of the myocardial wall of
the left ventricle in this software package by the researcher. The outer borders of the
segmentation were removed to minimize partial volume effects. This segmentation
was checked and discussed with a cardiologist and a professor in cardioradiology.
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Methods for Image Reconstruction

Different image reconstructions were used in this study to create a large variety of
modified copies of the original image. Features were extracted from these images.
Table 2.1 shows the different methods of reconstruction and the corresponding
variations for this method of reconstruction. This section gives an overview of this
table in a textual form.

Segmentation Previous research has described a higher probability of events when
midwall enhancement[42] or subendocardial enhancement[152] is present. The-
refore, the myocardium was split into 2 different images for analysis; a stack of
medical images with a separate endo- and epicardium and a stack where the mid-
mycoardium was extracted from the image (figure 2.2). Feature calculation is
performed separately on every part of the myocardium.

(a) Original segmentation (b) Epi- and Endomyocardium. (c) Midmyocardium

Fig. 2.2: Different segmentations and reconstructions of the myocardium: Original segmen-
tation (a), segmentation of the endo- (red) and epimyocardium (green) (b) and
segmentation of the midmyocardium (yellow) (c).

Voxel selection Enhancement classification is a subjective judgement by the ra-
diologist. It does not have a truly objective measure. This complicates inter- and
intrapatient comparison.[87] Different measures have been proposed to quantify
enhancement. One group focusses on the selection of voxels within a specific range
of gray values.[51] The analysis presented in this thesis implemented this method.
Four different voxel selections were made; ranges from the mean voxel value +
[1
4σ,

1
2σ, 1σ, 2σ] until the maximum voxel value were used to select voxels for an

image reconstruction.[115]

Reconstruction of segmentation For this research the first order statistics and the
shape- and size-based features were calculated from the segmented myocardium.[2]
To integrate the shape of the myocardium into the acquisition of texture features,
a cylindrical reconstruction of the myocardium was executed in Matlab. This re-
construction represents the myocardium with the radius on the horizontal axis and
the circular angle on the vertical axis, resulting in a horizontal band across the
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image. An elaborate explanation of the cylindrical reconstruction is found in the
supplements. An example of this reconstruction is shown in figure 2.3.

(a)

(b)

Fig. 2.3: Original segmentation (a) and the
cylindrical reconstruction (b) of one
slice of the LGE-image sequence.

Filters Different image filters have
been implemented in the PyRadiomics-
package; the python package used for
extraction of feature values from the
images. The available image filters are
applied to the original segmentation and
subsegmentations, but not to the cylin-
drical reconstruction. An elaborate ex-
planation of the different image filters
can be found in the Supplements.

Normalization Images have been nor-
malized according to the histogram
where the mean gray level (µ) is set to
0 with a standard deviation (σ) of 1.
All voxel values are then changed to fit
within a µ-gray level±3σ-range. There-
fore, all voxels with a gray-value outside
this range are changed to the minimum
or maximum value of this range. This
image is handled as the original image and features were calculated from the original
image and the cylindrical reconstruction.

Group Classes
Segmentation Original Epi Mid Endo
Voxel Se-
lection

> µ+ 1
4σ > µ+ 1

2σ > µ+ 1σ > µ+ 2σ

Reconstruction Original Cylindrical
Recon-
struction

Image Filters Square Square
Root

Logarithm Exponential Wavelet

Normalization Original +/- 3 σ

Tab. 2.1: Image variables that are used and adjusted in this study as explained in section
2.3.3. (µ is the mean gray value of scan of one subject, σ is the standard deviation

2.3.4 Radiomics and Case-specific features
Radiomic features have the ability to quantitatively analyze a region of interest
by calculating a large number of features. The feature calculation was performed
in PyRadiomics, an open source python package for the extraction of Radiomics
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features.[60] Segmentations of the myocardium were converted to an nrrd-fileformat
in Matlab, before being imported into the python environment for feature extraction.
An elaborate description of the obtained radiomics features is described in the
supplements.

Case-specific features were designed for the purpose of this study. The six features
in this set are described in table 2.2. These features were calculated in Matlab.
Texture features on the cylindrical reconstruction of the image were also calculated
in Matlab. In the calculation of texture features on the cylindrical reconstruction,
the original location of a voxel was taken into account. Therefore, multiple counts
of the same voxel, and thus overestimation of feature values, is avoided.

Features Description
Mean Thickness +
StD

Mean thickness of the myocardium in all slices + the stan-
dard deviation from this thickness.

Mean Difference to
Midline + StD

Mean difference to the calculated midline of the myocardium
+ the standard deviation.
(e.g. An ellipsoid heart has a larger mean difference to the
midline than a cylindrical left ventricle)

Minimal Thickness The minimal thickness of the myocardium in one subject.
Maximum
Thickness

The maximum thickness of the myocardium in one subject.

Tab. 2.2: A description of the case-specific features of the myocardium added to the Radio-
mics analysis.

2.3.5 Clinical features
The current clinical indicator for AVR is LVEF.[150] Previous research showed that
this criterion is not sufficient for classifying patients that might benefit from early
AVR.[114, 126, 29] To test if LVEF at baseline has predictive value in this classification
problem, LVEF is taken into account in a model with clinical variables.

Consequently, other studies have tried to find better predictors for AVR. Chin et
al. [29] proposed a clinical risk score for myocardial fibrosis. This risk score
predicts adverse outcomes in AS. It includes 5 variables as displayed in table 1.1;
age, gender, peak aortic jet velocity, high-sensitivity troponin-I concentration and
electrocardiographic strain pattern. With these clinical variables, patients at high-risk
for adverse events can be identified. To evaluate the performance of these variables,
they were implemented in this study in a clinical model.

2.3.6 Feature Ranking and Selection
Feature ranking for the selection of the most important features was performed
with mRMR algorithm implemented in the mRMRe package (v2.0.5) [38, 37] in R.
mRMR is a filter selection method, applied before modelling of the learning method.
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This filter uses the output variable to rank the features by maximizing the mutual
information with the outcome variable (= Maximum Relevance). Simultaneously, it
is checking the mutual information with the already ranked features, thus minimizing
the redundancy.[39]

Before feature ranking and selection, feature space was reduced by removing features
with a near zero variance, followed by a removal of features that were highly
correlated using Spearman’s correlation factor (>0.9). Both functions come from
the caret-packag.[70]

2.3.7 Statistical Analysis
The statistical analysis consists of a univariate and a multivariate analysis. Subgroups
of the patient population were made according to the severity of AS. A temporal split
accounted for a training and validation cohort in each subgroup. The combination
of these groups gave the final training (n=109, 75%) and validation (n = 37, 25%)
dataset.

Univariate analysis evaluated the prognostic performance of the predictors with the
CI-measure. This index is equal to the Area Under the Curve (AUC), derived from
the Receiver-Operating Characteristic (ROC).[62] The CI estimates the probability
that the subject with the higher prognostic score will have an event in comparison
with the subject with the lower prognostic score. It is a measure to quantify the
discriminatory power of a distinction in prediction.[98] The CI takes survival times
into account.[64] For the univariate analysis the survcomp package (v1.26.0)[101]
was used. To correct for the multiple comparisons made in the analysis, the p-value
was adjusted to the q-value by the FDR.[15] The univariate analysis was performed
on the complete dataset of training and validation.

The multivariate analysis was performed by the comparison of a cox regression model
from the survcomp package (v1.26.0) [101], an RF-model from the randomForest-
package (v2.41-2) [93] and an SVM from the e1071-package(v1.6-8) [99]. Based
upon the mRMR-ranking, features were added one-by-one to the cox regression mo-
del to identify the optimal number of features for this model. A random permutation
(n=200) was done on the training set to determine the optimal number of included
features.. In this random permutation 80% of the training data was used for training
of the model and 20% for validation of the included number of features. Once the
average CI dropped, the included set of features was retained and implemented in
the final regression model. TheRF and SVM used the 50 highest-ranking features
from the mRMR evaluation as predictors in the models.

To evaluate the validity of the defined test set, a montecarlo analysis (n=1000)
is performed on the complete dataset (n=146). In this random sampling the full
dataset (training and validation) was taken into consideration. Each iteration 75%
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All (n=146) Training (n=109) Test (n=37) P-value
Age [years] 68.5 (28 - 92) 69 (31 - 92) 66 (28 - 86) 0.89
Gender [M/F] 103/43 (71%/29%) 76/33 27/10 0.87
Severity AS
(mild/moderate/severe)

32/40/74 24/29/56 8/11/18 0.93

Follow-up [months] 28.7 (1-62.8) 28.5 (1-62.8) 25.1 (1 - 47.1) 0.24
AVR 81 (55%) 65 16 0.123
V_max [m/s^2] 3.83 (1.9 - 8) 3.84 (1.9 - 8) 3.80 (2.37 - 5.1) 0.48
High Sensitivity Troponin 1 13.65 (0.4 - 126.1) 13.31 (0.4 - 109.3) 14.64 (1 - 126.1) 0.23
ECG Strain 21 (14%) 17 (15%) 4 (11%) 0.65
LVEF 57.83% (38.64 - 84.62) 57.16 % (38.64 - 77.42) 59.8 (41.18 - 84.62) 0.51

Tab. 2.3: This table shows the patient details. P-values have been obtained with a Wilcoxon
rank sum test for continuous variables. A Chi-square test has been performed to
calculate the P-values for categorical variables.

of the samples were used for model training and 25% for model evaluation. All
statistical analyses were performed in R (v3.4.2).[120]

2.4 Results

2.4.1 Patient Selection

Table 2.3 displays the patient details of the full population and the split between
training and validation set. The majority of the patients was male (71%) with a
mean age of 68.5 years. The follow-up time was on average 28.7 months, yet ranged
between 1 and 1884 days. No significant different variables were found comparing
the stratified random split between training and validation set.

2.4.2 Univariate Analysis

5639 Radiomic features were calculated from the medical images. After removal
of features with a near zero variance and highly correlated features, 1193 features
remained. In the univariate analysis, 49 features were somewhat related to the risk
of AVR (CI>0.6 and FDR p-value<0.05). More information on these features is
found in table 6.2 in the supplements. These features were primarily derived from
the wavelet-filtered images and consist of mainly texture features.

Figure 2.4 shows the CI of the 20 Radiomics features with the highest CI. This figure
also includes the clinical variables as found by Chin [29] that are used for the clinical
analysis. LVEF is currently the decisive variable in patients with AS and is therefore
also analysed (figure 1.4. Yet, this clinical feature showed to have no prognostic
value in the univariate analysis (q-value>0.05 and CI=0.49). The clinical features
that have a significant (q-value<0.05) prognostic (CI>0.5) value are peak-aortic jet
velocity (Vmax), EKG-strain and High-sensitivity Troponin-I concentration.
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(a) CI and confidence interval of 20 highest scoring radiomic features.
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(b) CI and confidence interval of clinical features and LVEF.

Fig. 2.4: Forest plots of the CI and the confidence interval of the 20 best performing radiomic
features in univariate analysis (a) and the clinical features (b).
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2.4.3 Multivariate Analysis
mRMR feature selection was performed to make a ranking of features for the
multivariate cox regression analysis. Based upon the mRMR-ranking, the 50 features
with the highest scores were iteratively added to the model to determine the optimal
number of features. This optimum is determined by calculation of the mean CI in a
200-fold Monte Carlo analysis on the training set. A graphical review of this result is
displayed in figure 6.6 in the supplements.

Two features were selected to make the radiomic signature for risk-analysis of AVR.
These features are listed in table 2.4. As can be seen, the features are derived from
filtered images; wavelet and normalized square.

For the evaluation of the clinical signature, Vmax (CI = 0.82), High-sensitivity
Troponin-I (CI = 0.59) and electrocardiographic-strain (CI = 0.64) were selected.
These features have a significant (FDR q-value<0.05) prognostic power for the risk
analysis of AVR in the univariate analysis (figure 2.4).

To determine if the test set extracted from the dataset, according to a temporal
validation principle, is representative for the complete dataset, a 1000-fold Monte
Carlo analysis was performed on all subjects (training and test). This analysis
followed a similar pipeline as described for the test set. The results of this random
permutation and the final evaluation of the test data are shown in figure 2.5.

As a final step in the analysis of model performance, we compared the model with the
clinical features, as identified by Chin [29] with the radiomics model to determine if
these models perform better when combined. For this model, the outcome of the
models on training set was combined in a new multivariate model. This model was
then tested on the test set. This model showed no improvement with respect to the
clinical model, but performed better than the radiomics model (CI: 0.60). However,
the discrimination between the AVR and non-AVR group was not significant in this
classification. This was also the case for the cox regression model with only radiomic
features.

2.5 Discussion
In this study, we tested the hypothesis that radiomic features can discriminate
between patients eligible for AVR/TAVI within the follow-up time and those who are

Feature Imagefilter Power p-value q-value (FDR)
Midvol GLCM Inverse Difference HLH Wavelet 0.55 0.059 0.25
GLSZM Large Area High Gray Level Emphasis Normalized Square 0.60 0.001 0.027

Tab. 2.4: The selected features for the radiomic signature. The power, p- and q-value were
derived from the univariate analysis.
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Fig. 2.5: Boxplots showing the performance of the clinical model and the radiomics model
in a random permutation (n=1000) on the full dataset. The red dot indicates the
performance of the model on the test data, based on training with the training set
(Radiomics - Cox: 0.58, RF: 0.55, SVM: 0.53, Clinical - Cox: 0.86, Radiomics +
Clinical - Cox: 0.60).

not. The results showed that the discriminative power of the radiomic features in
LGE-images is very limited for the identification of patients at risk for valve surgery
during 5-year follow-up in the test set. This indicates that radiomics does not have
the power to predict adverse events in an AS patient cohort.

The machine learning model including the features identified by Chin [29] for a
clinical risk score in patients with AS performs better than inclusion of solitary
radiomic features. This result confirms the clinical risk score proposed by Chin.
However, also radiomic features represent information about the status of the
myocardium of the patient, albeit submediocre. The larger share of features selected
in the univariate analysis belongs to the group of texture features. Texture is related
to the gray values of the image. This confirms studies showing an adverse prognosis
in patients with AS with midwall fibrosis and gadolinium enhancement.[42, 152,
12, 10] However, the CI of the radiomic features is not as high as the CI from the
clinical features, indicating a worse performance in classification of subjects in high-
and low-risk.

Currently, the selection criterion for AVR is based upon the LVEF in asymptomatic
patients, which must be less than 50%. The LVEF at baseline was taken into account
in the univariate analysis, to determine if this variable also has prognostic power.
Yet, our analysis showed that LVEF at baseline has no value in the risk analysis for
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AVR, with a CI of ±0.5. However, this is not a good representation of the current
clinical pathway. In clinical care, patients are monitored during the progression of
their AS. As soon as their LVEF dips under 50%, patients will be evaluated for AVR
and the option to undergo surgery will be discussed with patients in order to reduce
the risk of adverse cardiac events.

Another notable result of this study is that the combined GLM with radiomic features
and the GLM with the clinical variables from Chin [29] results in a worse performance
than the clinical variables only. It is hard to explain where this result comes from. It
is the way that the model interprets the results and puts a larger weight on the score
in the radiomics model.

Furthermore, previous research regarding texture analysis in CMR and other imaging
modalities have focused on the diagnostics and phenotyping of patients. Also these
studies did not always publish promising results. Baessler et al. [11] showed that
it is possible to discriminate between patients with and without scar tissue from
myocardial infarction in cine-images. However, it was not possible to distinguish
large and small infarct areas. Other studies focus only on the analysis of myocardial
scar after infarction and not on the myocardium as a whole. [46] Kolossvary et al.
[76] focusses on cardiac CT and cites drawbacks to the use of radiomics in cardiology,
e.g. the small nature of coronary arteries for radiomic feature extraction. As far
as known, this study was one of the first studies in cardiology to use prognostic
phenotyping as an outcome for radiomic feature analysis.

Several causes can help to explain the non-discriminative power of radiomic features
in the identification of patients vulnerable for AS. First of all, the patient group is
relatively small and heterogeneous for the machine learning purposes presented in
this study. Secondly, the patients have different degrees of AS and from the data we
have obtained it is unclear which patients were symptomatic and asymptomatic. The
current guidelines prescribe that symptomatic patients always have an indication
for TAVI or AVR, when this will reduce their symptoms. Therefore, this group of
patients will always have surgery, although their heart can be in a relatively good
condition compared to other asymptomatic patients. To this point, it still remains
uncertain to what extent asymptomatic patients can benefit from an early surgery.
Furthermore, baseline scans were used in this analysis. It is hypothesized that in
progression of the AS, also fibrosis becomes more evident and is better able to
predict the need for AVR. Thirdly, the use of CMR imaging, and specifically LGE,
can induce uncertainty in the analysis of radiomics features. A certain value for
Tr is determined by the radiographer, based upon the relative blackness of the
myocardium in comparison with the bloodpool and possible fibrotic tissue. This
induces variability among patients. Another variability between patients is their
voxel seize. This ranged from 1.37mm until 1.95mm. Segmentations of patients with
a smaller voxel size include more voxels. The effect on feature values can be that
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some samples have overestimated feature values, when having a small voxel size and
others have underestimated feature values with a larger voxel size. A more in-depth
analysis to the effect of a differing voxel size can be done with the PyRadiomics-
package, that has an option for resampling voxels. The lower spatial resolution
of CMR is also a disadvantage in comparison to regularly used CT for Radiomics
analysis, which has a higher spatial resolution [95]. However, CT currently lacks the
ability to identify fibrosis in the myocardium. Therefore, it is a less suitable method
for the purpose proposed in this study.

This study has shown that radiomic features do not have a significant discriminative
power in the determination of patients eligible for AVR. Yet, as previously menti-
oned, fibrosis and enhancement on CMR is a risk factor for patients with AS.[42,
152, 12, 10] In the light of this knowledge, future research should focus on the
identification of enhancement with the help of radiomic features. This has several
advantages. First of all, it gives the opportunity to characterize the myocardium
using quantitative radiological features, instead of the currently used eye-balling
and qualitative description performed by radiologists. Secondly, it opens doors
towards the comparison of quantitative degree of enhancement in the follow-up of
one patient, but also between patients. The quantification of enhancement with
radiomics is therefore going to be the focus of the next study in this thesis.
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3Radiomics features discriminate
fibrosis from healthy myocardium.

3.1 Abstract
Introduction Fibrosis, specifically in the midwall, is an independent predictor of
mortality in patients with AS. It shows up as hyperenhancement on gadolinium-
enhanced CMR-images. Fibrosis is currently examined and quantified by a radiologist
and does not have a truly objective measure. Radiomics gives the opportunity to
characterize tissue and with this predict patient prognosis. This study will focus
on the computer-aided diagnosis of LGE-enhanement in a heterogeneous group of
patients with AS and control subjects to perform a quantitative assessment of the
myocardium in order to discriminate between patients with and without fibrosis.

Methods 186 subjects (age: 65.9, 70% male) were included in this analysis, 57
(31%) had some form of fibrotic enhancement on CMR. The myocardium was
manually segmented from the images. This segmentation was used for radiomic
feature extraction. Feature selection was done with mRMR feature selection, before
modelling with a GLM, RF and an SVM. A temporal validation was done that included
142 subjects (75%) for training and 47 subjects for testing. Clinical features were
implemented in a separate clinical model.

Results 5639 features were extracted from the images. 344 features showed a fair to
good correlation in univariate analysis (FDR q-value<0.05, 0.6<AUC<1) with the
presence of LGE. The models trained with radiomic features (GLM AUC: 0.91, RF
AUC: 0.94, SVM AUC: 0.90, showed a higher performance than the model trained
with clinical features (AUC: 0.78).

Discussion This study demonstrated that radiomic features have the ability to dis-
criminate between subjects with and without enhancement. Multivariate analysis
of LGE leads to a better classification of LGE than univariate analysis of features.
Although this research has been applied to patients with AS and a control group with
a number of subjects with myocardial infarction, the demonstration of enhancement
analysis with radiomics features might be generalizable to other cardiac pathologies.
Therefore, this study can be contributing to the ongoing investigations to the role of
fibrosis in cardiac disease.
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3.2 Introduction
Fibrosis, specifically in the midwall, is an independent predictor of mortality in pa-
tients with AS.[42, 121, 152] Fibrosis shows up as hyperenhancement in gadolinium-
enhanced CMR images. Hyperenhancement images is an indicator for viability of
myocardium in ischemic heart disease and for infiltration of fibrosis in non-ischemic
heart disease.[75, 104] The enhancement of this patient group is caused by the
pressure overload of the heart, which causes left ventricular hypertrophy.[122] This
reduces the coronary flow reserve and therefore causes a decreased blood flow to the
myocardial cells leading to ischemia.[90] Several mechanisms have been proposed
that account for the increased risk in mortality, among those the magnitude of
hypertrophy. The magnitude of left ventricular hypertrophy is associated with an
increased risk of sudden cardiac death.[138] However, the mechanisms causing this
increased risks remain unclear.[40, 19]

Fibrosis is currently examined and quantified by a radiologist and does not have
a truly objective measure.[87] Therefore, quantitative assessment of non-viable
myocardial tissue on enhancement images is subjective and raises difficulties for
comparison within and between patients. As a result, measures have been proposed
for the quantification of infarct and fibrotic tissue, yet focussing primarily on focal
enhancement.[32, 51, 4] None of them have found their way yet into standard
multi-centre clinical practice.

Radiomics gives the opportunity to characterize human tissue and predict prognosis
in patients. The method extracts quantitative image features from a region of interest
in a disease of interest.[1] Multiple studies applying radiomics have been published
in recent years; among others, these predominantly oncological studies focus on
differentiating malignant and benign lesions [115, 16], the staging of cancer [158,
33], phenotyping tumors [156] prediction of therapy response [34, 69] and mortality
[108].

Textural image analysis is also a field that has gained interest in cardiology in recent
years. Baessler et al. studied the use of cine-images in determining the presence
of infarct tissue with textural feature analysis.[11] Sudarshan et al. reviewed the
use of feature analysis in the diagnosis of myocardial infarction in echocardiography
[141] and another study classified patients with this pathology into high- and
low-risk groups.[78] Furthermore, Shah [131] analyzed the heart failure patients
with a preserved ejection fraction, resulting in a novel classification of this disease.
Oakden-Rayner [108] predicted 5-year mortality on the basis of feature analysis
of chest-CT imaging. Feasibility for cardiac CT radiomics analysis was done by
Hinzpeter et al.[67] A review on the application of radiomics in cardiac CT has been
done by Kolossvary et al. [76] This review comprises the application and drawbacks
of Radiomics in cardiac CT scans. This enumeration of publications shows the
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upcoming field of investigation in the application of radiomics in cardiology for
phenotyping cardiac disease.

The previous chapter of this thesis showed that prognostic evaluation with radiomics
features of patients with AS is not accurate enough to discriminate between patients
that are eligible for AVR in the follow-up time. The results did not meet the
performance of the clinical risk score that has recently been developed by Chin et
al.[29] in this relatively small patient group. However, previous studies have shown
that fibrosis is an independent predictor of mortality in patients with AS.[42, 121,
152] Therefore, the current study will focus on the detection of LGE-enhanement in
a heterogeneous group of patients with AS and control subjects. This classification is
categorized as computer-aided diagnosis. It is hypothesized that radiomics features
are able to perform a quantitative assessment of the myocardium in LGE CMR in
order to discriminate between patients with and without fibrosis.

3.3 Methods

3.3.1 Study Population
The study population of this research has been obtained from the Edinbourgh Heart
Centre (clinicaltrials.gov, identifier: NCT01755936). The enrolment of patients
started in January, 2012 and consisted of 166 patients with different severities of
AS and 48 control subjects. Patients were excluded from the trial if they had other
significant valvular heart disease, heart failure or infection, significant comorbidities,
cardiomyopathies or contraindications to CMR imaging.

The obtained CMR imaging data had to include an enhancement short-axis sequence.
Furthermore, a check for the availability of clinical parameters was performed. These
clinical parameters were taken into account in this research,. After review of the
data, 25 subject were excluded from the study population. Figure 3.1 shows the
distribution of the enrolled study population and the final distribution of subjects in
this study.

Fig. 3.1: Overview of the study population in this study
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3.3.2 Clinical variables and Outcome

The outcome used in this research was the presence of enhancement in the CMR
images. This presence has been determined by two independent and experienced
operaters.[29] Focal fibrosis, as depicted in enhancement imaging, can be divided
into different patterns; infarct and non-infarct. The latter group can again be
subdivided into patchy and focal fibrosis.[148] A second group in classification
of enhancement is diffuse fibrosis. This type of fibrosis hard to discriminate from
normal myocardium with enhancement imaging, because they have similar gray
values on CMR. Therefore, this type of fibrosis was not taken into account in this
analysis.

Previous studies developed a clinical risk score for the prediction of midwall fibrosis.
This clinical risk score was implemented in this study to test the performance in
the prediction of all types of enhancement[29]. The clinical risk score consists
of five variables; age, gender, peak aortic jet velocity, high-sensitivity Troponin-I
concentration and electrocardiograhpic strain pattern. For more information on this
risk score, see table 1.1.

3.3.3 MR Image Acquisition and Segmentation

For the details on the image acquisition of the CMR-images, I refer to the similar
section in chapter 2. The same image acquisition, reconstruction and segmentation
has been used for the data in both chapters.

3.3.4 Radiomics and Case-specific Features

Radiomic features have the ability to quantitatively analyze a region of interest by
calculating a large number of features. Segmentations of the myocardium were
converted to an nrrd-fileformat in Matlab (Matlab R2016b, The Mathworks, Inc.,
Natick, Massachusetts, United States). After this conversion, the segmenations were
imported into the Python environment for feature extraction. Feature extraction
was performed in PyRadiomics, an open source python package for the extraction of
Radiomics features.[60] An elaborate description of the obtained radiomic features
is described in the supplements.

Furthermore, case-specific features were designed for the purpose of this study.
The six features in this set are described in table 2.2. These feature values were
calculated from the segmentations in Matlab. Feature extraction from the cylindri-
cal reconstruction was also performed in Matlab, with software designed by the
researcher.
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3.3.5 Feature Ranking and Selection
Feature ranking for the selection of the most important features was performed with
an mRMR algorithm implemented in R from the mRMRe package [38]. mRMR is
a filter selection method, applied before modelling of the learning method. This
filter utilizes the output variable to rank the features by maximizing the mutual
information with the outcome variable (= Maximum Relevance). Similarly, it is
checking the mutual information with the already ranked features, thus minimizing
the redundancy.[39]

Before feature ranking, selection and data analysis, feature space was reduced by
removal of the features with a near zero variance among its sample values and
removal of features that were highly correlated using Spearman’s correlation factor
(>0.9).

3.3.6 Statistical Analysis
Univariate and multivariate analysis were performed on the training set of patients.
To create a similar training and test set, the data was divided into four categories,
based upon the type of subject; patients with mild, moderate and severe AS and a
group of controls. Per group a temporal split was performed, appointing 75% (142)
of all subjects to training and the remaining 25% (47) to the validation cohort. This
method ensured equally heterogeneous groups in training and validation.

An univariate analysis was performed, with the AUC from the ROC as the output
measure. For the univariate analysis the survcomp package[101] was used for
the analysis of radiomic features. For the analysis of clinical features, the ROC-
function from the pROC-package [125] was used. To correct for the multiple
comparisons made in the analysis, p-value adjustment was made according to
Benjamini’s FDR.[15]

A GLM, an RF and an SVM were trained as multivariate models. For the GLM the
optimal number of features was determined by forward-selection on the training set.
In this selection the features were added one-by-one to the model with a maximum
of 50 features. The optimal number of features was determined with a random
permutation (n=200) with 80% of the training data used for training and 20%
for validation of the included number of features. The mean AUC per number of
selected features was calculated over the number of iterations. If the mean AUC of
the growing model dropped, the corresponding feature set was retained and used
for the final model. The RF and the SVM included the 50 highest-ranking mRMR-
features to create the model. To determine the representativeness of the validation
set and the overall performance of the model, a random sampling (n=1000) was
done with the complete dataset (n=189). In this random sampling, 75% was
appointed as training data and 25% as test data.
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All (n=189) Training (n=142) Test (n=47) p-value
Age [years] 65.9 (19-92) 65.6 (19-92) 66.8 (28-86) 0.84
Gender [M] 130 (70%) 94 (66%) 36 (77%) 0.25
Severity AS
(mild/moderate/severe)

43/32/40/74 33/24/29/56 10/8/11/18 0.97

LGE 57 (31%) 44 (31%) 13 (28%) 0.80
Infarct 15 (8%) 11 (7%) 4 (8%) 1
V_max [m/s^2] 3.28 (1.01-8) 3.28 (1.1-8) 3.31 (1.01-5.1) 0.76
High Sensitivity Troponin-I [ng/L] 11.47 (0.3-126.1) 11.08 (0.3-109.3) 12.64 (1-126.1) 0.98
ECG Strain 21 (11%) 17 (12%) 4 (8%) 0.70
LVEF [%] 54.68 (25.42-84.62) 56.92(25.42-81.43) 59.96 (41.18-84.62) 0.02

Tab. 3.1: Patient details of included subjects in analysis of LGE-patterns with radiomic
features.

All analyses were executed in R.[120]

3.4 Results

3.4.1 Patient Selection

Table 3.1 shows the patient details of the cohort used in this study. The mean
age of the population was 65.9 years and the majority (70%) was male. In the
training and validation cohort, respectively 31% and 28% of the subjects had signs
of enhancement. LVEF is significantly different between the training and validation
cohort.

3.4.2 Univariate Analysis

5639 features were calculated from the segmentations of the LGE/CMR images.
After removal of the features with a near-zero-variance (168 removed features) and
a selection of highly correlated features (4332 features removed according to Spear-
man’s ρ >0.9), 1139 features remained for the final analysis. 344 features showed
a fair to good correlation (0.6<AUC<1 and FDR q-value<0.05) with presence of
enhancement. The 20 highest scoring features are shown in figure 3.2. This list
includes 3 case-specific features, with only 6 (0.1%) case-specific features in the
initial dataset. It is noteworthy that wavelet features with three low-passing filters
derived from normalized images show a high performance in comparison to the
other groups. Table 6.3 in the supplements includes all the features that had an
AUC>0.75 and a q-value<0.05 in univariate analysis.

Figure 3.2 also shows the AUC of the clinical features. The feature with the highest
score is the high-sensitivity troponin-I. This feature has an AUC of 0.79. All features
have a q-value of <0.05, indicating statistical significance for the evaluation of
LGE. The univariate analysis was performed on the complete dataset. This included
training and test set.
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Fig. 3.2: Forest plots of the AUC and the confidence interval of the 20 best performing
radiomic features (a) and all clinical features (b) in univariate analysis.
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3.4.3 Multivariate Analysis

An GLM, an RF and an SVM were used for the classification of myocardial seg-
mentations into LGE and non-LGE groups. The performance measure used for
evaluation was AUC. mRMR feature selection was performed to make a ranking for
the multivariate analysis, based upon feature values from the training set. The 50
highest-ranking features of this list were iteratively added to the GLM in a repeated
random sub-sampling (n=200) set-up with the samples from the training set. The
validation set was left out of this procedure to ensure independent validation. A
graphical review of the optimal number of features is displayed in figure 6.7 in the
supplemental figures. Table 3.2 in the supplements shows the included features and
their p- and q-value from univariate analysis. The RF- and SVM-model implemented
the 50 highest-ranking features in the model on the training set.

Figure 3.3 shows the performance of the different models on the test set, displayed
as the red indication in the graph. Six radiomic features were taken into account for
modelling of the GLM. The radiomics RF-model showed the highest performance
with an AUC of 0.94 on the test data. A 1000-fold stratified random permutation
was performed (75% training- and 25% test-set) on the complete patient cohort.
The result of this analysis is also shown in figure 3.3 as the boxplot. This analysis
was done to evaluate the representativeness of the temporal validation data as part
of the whole dataset.

The GLM with clinical features has a lower performance than the models with
radiomic features. The AUC of this model is 0.78.

The final evaluation was the performance of a combined model based upon the
the GLM with radiomic features and clinical features to determine if these are
complimentary. This model performed slightly (AUC = 0.92) better than the GLM
with solely radiomic features. Yet, this performance is not as good as the RF with
radiomic features.

Feature Imagefilter AUC p-value q-value (FDR)
First Order Range Normalized Wavelet LLL 0.85 1.63E-14 1.86E-11
Mean Thickness Case-specific 0.83 2.88E-13 8.76E-11
Zone entropy glszm Normalized Wavelet LLL 0.83 3.08E-13 8.76E-11
Large Area High Gray Level Emphasis Wavelet HLL Endocard 0.83 7.38E-13 1.68E-10
IDMN glcm Normalized Wavelet LLL 0.82 3.39E-12 6.43E-10
First Order Maximum Normalized Wavelet LLH 0.80 6.75E-11 6.41E-9

Tab. 3.2: The selected features for the radiomic signature. The power, p- and q-value were
derived from the univariate analysis.
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3.5 Discussion
This study has shown that radiomic features and features derived from the thickness
of the myocardium have the ability to discriminate between non-enhanced myocar-
dium and enhanced, thus fibrotic, myocardium. When combining multiple features
in a machine learning model, the performance is better than evaluating single
features in univariate analysis. When comparing the different models and their
performance, a better classification is seen in the more complex RF than in the
GLM. This result confirms the hypothesis that radiomic features have the ability to
give a quantitative assessment of LGE. To our knowledge, this is the first research
that evaluates myocardium with a large set of radiomics and radiomics-derived
features.

This study contributes to the field of quantitative big data analysis of medical images,
specifically focussing on MRI. Although machine learning in medical imaging has
long been available in medicine,[77, 142] it has recently gained popularity due to
faster computational hardware and availability of digitally stored datasets of medical
images.

Texture analysis of cine-CMR has previously been performed and described by
Baessler, 2017 [11]. This study showed good discrimination between non-infarct
and infarct myocardium on cine-MRI. However, the current study selected other
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Fig. 3.3: Boxplots showing the performance of the clinical model and the radiomics model
in a random permutation (n=1000) on the full dataset. The red dot indicates the
performance of the model on the internal validation data.
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features than Baessler as important, which can be explained by the use of a different
imaging sequence for analysis. Furthermore, this study also confirms the use of the
clinical features by Chin.[29] These features are integrated into a clinical risk-score
that predicts the risk of midwall fibrosis. These features are not directly calculated
from the medical images. This can be appointed as the reason that these perform
worse than the radiomic features, which are directly calculated from medical images.
When the clinical and the radiomic GLM are combined, a slightly better performance
can be seen than in both models individually. Yet, the best model performance is
seen in the more sophisticated RF and SVM trained with radiomic features.

This research showed the feasibility of multiple models for the analysis of LGE. A
large feature set was used, giving a wide selection of different types of features.
Features were eliminated during the process. This resulted in a reduced feature set
for final analysis. Feature reduction is an important action with a limited dataset
of samples, as was the case in this study. A poor feature reduction can lead to
overfitting on the training set of data and a poor model performance on the test
data. This study showed a good performance on the test set with the inclusion of 50
features in the RF and SVM. This does not indicate overfitting.

Furthermore, the dataset was heterogeneous with respect to the included subjects;
there were different severities of AS and controls in the cohort. However, this was
not taken into account in the analysis and the only focus was on enhancement or
not. Therefore, the effects of this heterogeneity are assumed to be minimal. Yet, all
scans were obtained from the same scanner with a similar sequence. Thus, this does
not reveal anything about generalizability of features and applicability of the model
to a validation set from a different institute.

Image manipulation also shows some of the strengths and weaknesses of this re-
search. A disadvantage of this research is the use of manual segmentation. Seg-
mentation of enhanced cardiac images is still a difficult process due to the similar
voxel value of enhancement and the blood pool. Manual segmentation of the myo-
cardium was performed by an inexperienced researcher and therefore prone to
incorrect segmentation. However, the interobserver variability for manual segmenta-
tion of the myocardium is relatively small.[124, 117] Advantageously, this research
showed the opportunities for image normalization according to a µ ± 3σ-method
(for more information on this type of normalization, see section 2.3.3). A large
share of the top-20 features in this analysis was derived from these normalized
images. MR-normalization gives way to quantitative inter-patient comparability of
MR-scans.

A large variety of features accounted for the presence of enhancement in univariate
and multivariate analysis. It was expected that features that are directly related to
the voxel intensities in the myocardium scored high in the feature analysis. These are
the first order statistics features and the texture features derived from the Grey-level
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Co-occurence Matrix (GLCM) and Grey-level Run-Length Matrix (GLRLM). However,
less expected was the large share of shape- and size-based features and especially
the presence of 3 case-specific features in the top-20. This confirms the presence of
myocardial fibrosis in a hypertrophic heart.[133, 100] Another feature group that
was present in the top-20 are the features derived from the >1 and >2 σ-images.
This implies that late gadolinium enhancement has feature values higher than 1 and 2
standard deviations than the mean of the whole myocardium. This is in contrast with
the results from Harrigan [65], where >6 sd threshold had the strongest correlation
with LGE. However, the applied method in both studies is different; Harrigan et al.
applied an extra segmentation of healthy myocardium to determine the mean signal
intensity and standard deviation. Therefore, no enhancement is taken into account
for evaluation of the mean, which explains the difference in standard deviation
value. In univariate analysis of clinical features, the highest score was appointed to
cardiac troponin-I, which is expected because the concentration of this substrate in
blood is directly related to myocardial damage.[6]

This study explored the clinical opportunity of analysis of a cardiac disease dataset
to find enhancement patterns that are inducing a higher risk of sudden cardiac
death.[42, 121, 152] The presented research showed that it is possible to capture
enhancement in texture features. It therefore confirms that AS is not only a disease
of the valve, but also of the myocardium.[40] Although this research has been
applied to patients with AS and a control group with a number of subjects with
myocardial infarction, the demonstration of enhancement analysis with radiomics
features might be generalizable to other cardiac pathologies. Therefore, this study
can be contributing to the ongoing investigations towards the role of enhancement
in e.g. ventricular arrhythmic events in coronary artery disease and non-ischaemic
cardiomyopathy [130], mortality in pulmonary hypertension [143] and response to
cardiac resynchronization therapy in patients with heart failure[118]. It gives the
opportunity to monitor disease and changes in the myocardial wall, especially in a
prone patient group with a high risk of sudden cardiac death, as AS patients.

This study demonstrated that radiomic features have the ability to discriminate
between subjects with and without enhancement. Myocardial enhancement has
many diagnostic and prognostic implications in different cardiac pathologies. Future
research should focus on improvement of the models and implementation of other
outcome measures to define high- and low-risk patients in cardiac pathologies.
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4External validation of a predictive
model for AVR and a
computer-aided diagnosis of LGE

4.1 Abstract
Introduction Predictive models and computer-aided diagnosis are becoming increa-
singly popular in the clinical field. Previous research of this thesis used a temporal
validation for testing the performance of a predictive model for AVR and a computer-
aided diagnosis of LGE. The performance of these models is now tested with an
external validation cohort.

Methods Two datasets were included in this study. Dataset-1 included 199 subjects
for computer-aided diagnosis of LGE and 156 subjects for prediction of AVR. Dataset-
2 included 99 severe AS-patients for external validation. The myocardium was
manually segmented from the images for extraction of features. Univariate and
multivariate analysis was performed to evaluate the performance of radiomic features
in the prediction of AVR and the computer-aided diagnosis of LGE. Performance
measures were CI, respectively AUC.

Results 5639 features were extracted from the images. A correlation of 0.97 was
shown in the univariate analysis between the significant (FDR q-value<0.05) features
for AVR and LGE, with a strong linear relation (R2: 0.94, correlation coefficient:
0.97). Multivariate analysis of the prediction of AVR showed similar performance
on external validation as on temporal validation (average CI: 0.6). Performance
on computer-aided diagnosis (average AUC: 0.70) was lower than in temporal
validation.

Discussion To this date, this is the first study that tested the performance of classi-
fication models, trained with CMR-data, in an external validation cohort. Cardiac
MRI contains valuable information on the state of the heart that is currently not
analysed and considered in patient characterization and evaluation. Radiomics is
able to extract this information from LGE-imaging.
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4.2 Introduction
Prediction research and computer-aided diagnosis is becoming increasingly popular
in the current clinical settings. These models are able to predict patient outcome
or can aid a clinician in determining the diagnosis of a patient[153] However, to
give these models clinical value, they must show to work in other samples than the
data that has been used to train the model. Evaluation of the performance on a part
of the original dataset, that has been used for training of the model, increases the
risk of an overly optimistic outcome.[3] This is called internal validation and this
method usually yields optimistic result, because training and test data is very similar.
Therefore, external validation is of importance.

External validation is the use of another dataset for validation of the model. This da-
taset should be acquired in similar patients, but in a different setting of centre.[153]
The goal of an external validation is to confirm the prognostic value of the model
and to avoid optimism based on false positive results that could have been obtained
during internal validation.[155]

The previous chapters have used a temporal validation set-up to test the models
for the prediction of AVR and the computer-aided diagnosis of LGE. In the previous
chapters the dataset was divided into 75% for training and 25% for testing of the
model by using a temporal split. The current chapter implements an extra dataset
from a different centre for the external validation of the previously developed models.
An external validation requires data on all the variables of the model, in this case;
radiomic features.[3]

This chapter tests the performance of the models in an external validation cohort.
Training of the models is done with the complete dataset from the previous chapters.
The classifiers are used for the prediction of the risk of AVR and for the computer-
aided diagnosis of LGE. This chapter reviews the performance with the performance
measures CI/AUC to support a decision for clinical implementation of one or both
models.

4.3 Methods

4.3.1 Study Population
Two datasets were used in the analysis for validation of the models. Dataset-1 is obtai-
ned from the Edinburgh Heart Centre (clinicaltrials.gov, identifier: NCT01755936).
The selected patient cohort consists of 166 patients with AS and 48 control subjects.
The patient cohort is used as training data in the classifier for AVR (n = 156). The
full dataset, patients and controls is, used as training data in the classifier for LGE (n
= 199). Start of the enrolment was January, 2012. Patients were excluded from the
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trial if they had other significant valvular heart disease, heart failure or infection,
significant comorbidities, cardiomyopathies or contraindications to CMR imaging.

Dataset-2 has been obtained from the University College London Hospital NHS
Trust (clinicaltrials.gov, identifier: NCT02174471). The patient cohort was obtained
between January 2012 and January 2015. Patients were selected with severe, symp-
tomatic AS and were selected as they were prepared for AVR. Exclusion criteria were
other severe valvular disease, previous valve surgery, renal impairment, pregnancy
and contraindications for CMR. This dataset existed of 167 patients. Figure 4.1
shows the distribution of the included subjects and the final cohort that remained.
This patient cohort has been used in the model for the prediction of AVR and for the
computer-aided diagnosis of LGE.

Fig. 4.1: Overview of the study population in this research

4.3.2 Clinical Outcome

The models from the previous chapter were validated in this chapter with an in-
dependent dataset. The primary outcome is AVR in the first model. Time to AVR
was defined as the number of days between the baseline CMR-scan and the date of
surgery. The secondary outcome is the overall survival, defined as the number of
days between the baseline CMR-scan and the last day of follow-up, day of death or
the pull-out date.

The outcome of the computer-aided-diagnosis model, designed in chapter 3 was
based on the presence or absence of LGE. The presence of LGE was previously
defined in both datasets by the qualitative assessment of experienced radiologists.
This judgement was used as the outcome in the classification models.

In chapter 2 and 3, also clinical variables have been used for the prediction of AVR
and the computer-aided diagnosis of LGE. In the current chapter only the radiomics
models were used due to limited availability of clinical variables in dataset-2.
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4.3.3 MR Image Acquisition and Segmentation
For details on the image acquisition of the CMR-images of dataset-1, I refer to the
similar section in chapter 2. Image acquisition of dataset-2 was performed at a 1.5
Tesla MRI-scanner (MAGNETOM Avanto, Siemens AG, Healthcare sector, Germany)
with 32 channel cardiac coil arrays. The LGE-images were obtained after a bolus
(0.1 mmol/kg) of gadolinium contrast (Gadoterate meglumine-gadolinium-DOTA,
marketed as Dotarem, Guerbet S.A., Paris, France). Post-contrast LGE-imaging was
obtained 10 minutes after infusion.[148]

Further image modification and segmentation of dataset-2 has been performed in a
similar way as for dataset-1. For a description of this process, I refer to the similar
sections in chapter 2.

4.3.4 Radiomics and Case-specific features
The radiomic features used in this analysis are mathematically described in the
supplements. Feature extraction was performed with PyRadiomics, an open source
python package for the automated extraction of Radiomic features. [60] Further-
more, the case-specific features, as described in table 2.2, were calculated in Matlab
(Matlab R2016b, The Mathworks, Inc., Natick, Massachusetts, United States). Fe-
atures from the cylindrical reconstruction were also calculated with an in-house
software tool coded by the researcher.

4.3.5 Feature Ranking and Selection
Feature ranking and selection was performed only on dataset-1 to leave dataset-2
as an independent validation cohort for the evaluation of both models. Feature
selection was performed with an mRMR algorithm [37]. Before feature ranking and
selection, feature space was reduced by removing features with a near zero variance
and features that were highly correlated (Spearman’s ρ >0.9).

4.3.6 Statistical Analysis
In the model for the prediction of AVR performance was evaluated with the CI, as
explained in chapter 2. The model for classification of LGE uses the AUC from the
ROC as the performance parameter. CIs and AUCs were directly computed from the
continuous radiomic variables for univariate analysis. This analysis used dataset-1
for calculation.

Multivariate analysis includes a GLM or cox regression, RF-model and an SVM.
For the GLM and cox regression a forward selection method was implemented,
where features were added to the model one-by-one based upon the ranking of the
mRMR-algorithm on dataset-1. Intermediate models were validated with random
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subsampling (n=1000) on dataset-1 (75%-training, 25%-validation). When the
mean CI (cox regression AVR-model) or AUC (GLM LGE-model) dropped, the cor-
responding feature set was selected for implementation in the final model. The
RF- and SVM-model used the 50 highest-ranking features from the mRMR-feature
selection for modelling.

All statistical analysis, feature ranking and feature selection was performed in
RStudio, coded in R.[120]

4.4 Results

4.4.1 Study Population

The study population only included AS-patients from dataset-1 and -2 for the va-
lidation of the models for prediction of AVR. In the computer-aided diagnosis of
LGE, controls from dataset-1 were also taken into account in the training set. The
patient characteristics are shown in table 4.1 and 4.2 for AVR, respectively LGE.
All features, except age, are significantly different between dataset-1 and dataset-2.
This is caused by the different inclusion criteria. Average age of the complete dataset
for AVR is 69.2, for LGE 67.44.

Total (n=255) Dataset-1 (n=155) Dataset-2 (n=100) p-value
Age [years] 69.2 (28 - 92) 68.5 (28 -92) 70.3 (34 -87) 0.28
Gender [M/F] 159/96 (62%/38%) 109/46 (70%/30%) 50/50 (50%/50%) 0.0017
Severity AS
[mild/moderate/severe]

33/43/179 33/43/79 0/0/100 <0.01

Follow-up [months] 17.8 (0 27.5 (1 - 62.8) 2.91 (0 - 48.8) <0.01
Primary Endpoint 195 (76.4%) 98 (63.2%) 97 (97%) <0.01

Tab. 4.1: Patient details for the datasets used in the validation of the AVR-models. The Wil-
coxon rank sum test was used for p-value calculation of the continuous variables,
chi-squared test for p-value evaluation of categorical variables.

Total (n=300) Dataset-1 (n=199) Dataset-2 (n=101) p-value
Age [years] 67.44 (19 - 92) 66.4 (19 - 92) 70.2 (34 - 87) 0.04
Gender [M/F] 187/113 (62%/38%) 136/63 (68%/32%) 51/50 (50%/50%) 0.005
Severity AS
[control/mild/moderate/severe]

44/33/43/180 44/33/43/79 0/0/0/101 >0.01

Primary Endpoint
(AVR + Adverse events)

196 (65%) 99 (50%) 97 (96) >0.01

Enhancement 132 (44%) 59 (30%) 73 (72%) >0.01

Tab. 4.2: Patient details for the datasets used in the validation of the LGE-models. The Wil-
coxon rank-sum test was used for p-value calculation of the continuous variables,
chi-squared test for p-value evaluation of categorical variables.

4.4.2 Univariate Analysis

5639 Radiomic features were calculated from the medical images. In a comparison
between the univariate analysis of LGE and AVR, no features were removed. The
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Fig. 4.2: Univariate Performances of Radiomic features for AVR and LGE. Each point refers
to the CI and the AUC, predicting the risk of AVR, respectively indicating that
there is enhancement present in the LGE-image. This figure shows the univariate
performance measures of 5635 features, of which 622 are significant (FDR<0.05)
for both AVR and LGE. The linear regression for the significant couples resulted in
an R2-value of 0.94 (F-test, p-value<2.2 ∗ 10−16).

AUC, respectively the CI, were calculated to determine the relationship between both
values. This analysis only included patients from dataset-1. Controls were excluded
in the univariate analysis of LGE, to ensure the same population in both analyses.

The correlation between the CI and AUC in the univariate analysis of the radiomic
features of AVR, respectively LGE was investigated in more depth. Figure 4.2 shows
the correlation between the CI and AUC of each individual feature. 1039 (18.4%)
features had a significant (FDR<0.05) CI for the prediction of AVR. This number was
1541 (27.3%) for the computer-aided diagnosis of LGE. When these analyses were
combined, 622 performance measures were significant from random (FDR<0.05)
for both AVR and LGE. In this group of features, a strong linear relationship was
observed between the AUC for the presence of LGE and the CI for the prediction of
AVR (R2: 0.94) and a significant correlation (P-value<0.01) of 0.97. The correlation
was 0.51 for all data points in this figure. This correlation was included all the
features, with significant and non-significant AUC and CI.

4.4.3 Multivariate Analysis

For multivariate analysis, features with a near zero variance and features that were
highly correlated were removed from the feature set. In the analysis of the prediction
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Feature Imagefilter Power p-value q-value (FDR)
Mean Thickness Case-specific 0.62 0.15E-4 0.0025
Run Variance glrl Wavelet HLH Epicard 0.63 0.83E-5 0.0022

Tab. 4.3: The selected features for the radiomic signature of the GLM for the prediction of
AVR. The power, p- and q-value were derived from the univariate analysis.

of AVR, 1174 features were retained. For the identification of LGE the feature set
included 1125 features.

Three models were designed that used radiomic features as predictors and prediction
of AVR or computer-aided diagnosis of LGE as outcome measures. After forward
selection, two features were included in the cox regression for prediction of AVR
and five features made up for the GLM for computer-aided diagnosis of LGE. These
features are described in table 4.3 and 4.4. Figure 4.3 shows the performance of the
multivariate models in the prediction of AVR and the computer-aided diagnosis of
LGE on the training and test data. Figure 6.9 shows the forward selection process
for both analyses.

Feature Imagefilter Power p-value q-value (FDR)
First Order Range Normalized Wavelet LLL 0.85 0.82E-31 0.46E-28
Mean Thickness Case-specific 0.84 0.12E-28 0.46E-26
Zone Entropy glszm Normalized Wavelet LLL 0.83 0.65E-25 0.18E-22
Large Area High Gray Level Emphasis glszm Wavelet HLL Endocard 0.83 0.20E-22 0.46E-20
Shape 2σ-volume 0.81 0.87E-21 0.16E-18

Tab. 4.4: The selected features for the radiomic signature of the GLM for the computer-aided
diagnosis of LGE. The power, p- and q-value were derived from the univariate
analysis.

4.5 Discussion
Cardiac MRI contains valuable information on the state of the heart that is currently
not analysed and considered in patient characterization and evaluation. Radiomics is
able to extract this information in different imaging features. LGE-imaging is suitable
for this type of evaluation, because the intensity differences of the myocardium are
related to the vitality of the myocardial cells.[119, 49] In this chapter, the models
of two classification tasks, defined in the previous chapters, were validated with an
external validation patient cohort. The classification tasks included the prediction
of AVR or adverse events during follow-up and the computer-aided diagnosis of
enhancement.

5639 features were extracted from the medical images; 622 features had a significant
CI, respectively AUC for both classification tasks. Validation of the models resulted in
a poor performance in the prediction of AVR (cox regression: 0.48, RF: 0.66, SVM:
0.66). This result is comparable to the internal validation performed in chapter 2.
Computer-aided diagnosis of LGE led to a better, moderate, performance (glsglm:
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Fig. 4.3: Bar plots showing the performance of the models on the training- (dataset-1) and
test set (dataset-2) for the prediction of AVR (a) and the computer-aided diagnosis
of LGE (b).
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0.70, RF: 0.68, SVM: 0.73 ). However, these AUCs are not as high when compared
to the internal validation done in chapter 3.

To date, this is the first study that tests the performance of classification models,
trained with CMR-data, in an external validation cohort. Previous research has
mainly focussed on the extraction of features from cardiac MRI and showing their
performance in a single dataset. Publications are relatively scarce within the combi-
ned field of cardiac MRI, feature analysis and machine learning models. Baessler
[11] uses cine-CMR for the quantification of myocardial infarction in a single dataset
from one institution.

This research also pointed towards the high ranking of the maximum myocardial
thickness and the mean myocardial thickness. This confirms the importance of a
thickened myocardium for the risk of adverse events [138]

As previously mentioned, the use of an external validation for determining perfor-
mance of models on a different dataset is a strength of this study; univariate analysis,
feature selection and model training were done on dataset-1. This left dataset-2 as
an independent validation dataset. MRI is a relatively new field for the application
of radiomics, because of the large interpatient and -scanner differences. With the
presented work, we have shown that also CMR is suitable for radiomics analysis
with several limitations.

One of the limitations of this research is the large difference in characteristics
between dataset-1 and dataset-2. Firstly, all patient characteristics, except age, are
significantly different between dataset-1 and dataset-2. Important to mention is the
significant difference in the severity of AS and the primary endpoint in both groups.
Dataset-1 has all severities included in its cohort. In this cohort also the choice for
therapy and the clinical pathway of the patients is undetermined. Dataset-2 has
only included patients with severe AS, which were already planned for AVR. These
differences in inclusion criteria resulted in significant differences in follow-up time,
number of patients with AVR and severity of AS.

Another difference between dataset-1 and -2 was the imaging time after gadolinium
infusion; 15 minutes, respectively 10 minutes. The wash-out of gadolinium from the
healthy myocardial cells takes time. If this time is too short, there is an incomplete
removal of gadolinium from healthy tissue. This results in a white band-pattern over
the myocardium. This increases the homogeneity of the obtained feature values.
This effect can lead to higher voxel values in dataset-2 with an effect on the feature
values. Yet, this assumption has not been researched in more depth.

For clinical validation of the performance a threshold-performance of the models in
external validation should be defined before evaluation. If this performance is met,
the model could be suitable for clinical implementation. However, it can be difficult
to determine what value is acceptable and clinical evaluation of the prediction of the
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model is still necessary.[3] In this exploratory research, with no purpose of clinical
implementation, no performance threshold was determined before analysis.

The aggregation of the univariate analysis of features on LGE and AVR resulted in
a strong linear relationship between all features that had both a significant (FDR
q-value <0.05) AUC for LGE-classification, as a CI for AVR-classification (R2 = 0.94
and correlation coefficient = 0.97). This high linear correlation can be expected,
because previous studies have shown the importance of LGE in the prediction of
adverse events.[42, 121, 152]

The performance of the AVR-models on the external validation cohort resembles the
performance in the internal validation in chapter 2. The model is underperforming
in comparison to the models that used the clinical feature values from Chin [29].
The CI of the models for the classification of AVR is close to 0.5. This means that the
classification is close to random.

In contrast with the models for AVR, the model for computer-aided diagnosis of LGE
had a worse performance in the external validation than in the internal validation in
chapter 3. An explanation for this is overfitting. Presumably, the model is overfitting
on the characteristics of the images in dataset-1. Therefore, these models are still
performing well in the test set from dataset-1. Yet, when testing on a different
dataset with different characteristics, the performance drops. However, with an
AUC of approximately 0.7, the RF and SVM are still appropriate options for the
classification of LGE.

The external validation of both models showed that the LGE model has the power
to be implemented in the clinical practice. Before implementation, an appropriate
threshold value has to be determined to classify myocardium with and without fibro-
sis. The current outcome score on GLM revealed a very small low range for non-LGE
myocardium and a broad spectrum of model outcome values that can be regarded
as LGE. The clinical added value should also be evaluated. This model aids the
radiologist in the analysis of the myocardium. Yet, there are additional modifications
(segmentation, cylindrical reconstruction) that have to be done before the scan can
be analyzed. The extra burden on radiologists or on assistants of radiology has to
weigh up against the additional information that these segmentations will provide.
Currently, there is also ongoing research for the segmentation of myocardium from
CT and CMR images.[9, 160] As these algorithms develop, the automatic analysis of
medical images is a step closer.

This research was the first research that examined the performance of machine-
learning models, trained with CMR-enhancement data, in an external validation
set. Although the performance was worse in the external validation than in the
internal validation presented in previous chapters, especially in the computer-aided
diagnosis of LGE shows promising results for the future. With the inclusion of more
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and larger datasets, the computer-aided diagnosis of LGE can be improved. These
models can also be applied to other cardiac pathologies. It is expected that during
this process also the correlation between LGE and adverse events, shown in other
studies, [42, 121, 152] becomes more outstanding in machine learning models that
are trained with radiomic features. These models have the opportunity to aid in
clinical patient-centred decision-making.
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5Discussion

A radiomics approach for the analysis of myocardium in LGE-images of the heart is
feasible. A predictive machine-learning model with quantitative radiomic features,
derived from the myocardial enhancement image, can aid in phenotyping patients
with AS. This phenotyping comprises the classification of patients with and without
fibrosis. However, radiomic features showed only limited prognostic value for risk-
evaluation of cardiac events or AVR in the follow-up time. The clinical risk score
proposed by Chin, 2016 [29] performed better in this classification. This research
is as far known the first study published to broaden to scope of radiomics outside
oncology. Yet, research using groups of radiomic features in cardiology have been
published before.[11, 141]

The results of this study confirm previous results in AS-patients. The general linear
model including features of the clinical risk score published by Chin [29] performed
better in the prediction of AVR than inclusion of solitary radiomic features. This
result confirms the features included in the clinical risk score, relating clinical
variables to midwall fibrosis, which on itself is a predictor for adverse events.[42]
However, also the radiomic features contain information about the status of the
myocardium of the patient. This was shown in the second study, where radiomics
features outperformed the clinical risk score for the presence of LGE in cardiac MRI.
Based upon the combined conclusions of both studies, it can be carefully concluded
that left ventricular enhancement does not always describe the need for AVR in
patients with AS. However, this is in contrast with literature published.[48]

The last chapter of this thesis will focus on the overall discussion of this research. It
uses part of the headings of the methods section to discuss the methods used and
the forthcoming results. Furthermore, a future perspective from the researcher’s
point of view on the use of machine learning in health care will be given.

5.1 Patient Selection and Aortic Stenosis
Dataset-1 was obtained from a research group in Edinburgh. Inclusion was not
performed by the researcher herself and therefore, no influence could be practised
on this process. This lead to the exclusion of some patients with scans of poor quality
or missing data of clinical features. Dataset-2 was obtained from London and had
the same disadvantage; inclusion was done before this study started, leading to
exclusion of some patients.
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There is a large heterogeneity in the included subjects in this research. First of all,
there are different degrees of AS and control subjects with other cardiac pathologies
in the cohort of dataset-1. This difference is minimized by making the train and
validation group in chapter 2 and 3 consist of equal proportions of different severities.
This stratified train- and test-set identification was not done in the permutation
analysis, creating possibly significantly different training- and test-sets during this
analysis. This probably decreased the CI or AUC. Influences on the results have been
minimized by performing stratified random permutation analyses 1000 times. A
similar distribution of subjects belong to the different groups is ensured in training
and test.

The current guidelines also prescribe that patients with symptoms should always
be treated.[150] With the results of this research, I can carefully conclude that the
fibrosis of the myocardium is not always the reason to develop symptoms. Therefore,
other causes can be proposed that cause symptoms, e.g. a decreasing LVEF due
to backflow or coronary microvascular dysfunction due to coronary artery disease,
which is a precursor of fibrosis and thus enhancement.[26] Heterogeneity can also
be found in the inclusion of patients with a bicuspid aortic valve. These patients
are also included in the analysis, although they have a higher risk on other cardiac
pathologies.[54]

The analysis on dataset-1 can be improved by the use of follow-up scans of the
included patients which had not had AVR in the follow-up time. These scans can
give a better idea of the possible enhancement patterns that can be identified before
AVR, because they are made when AS progresses. The patient is thus closer to the
primary endpoint of AVR.

In comparison to dataset-1, dataset-2 was more homogeneous. It only included
severe AS patients. All patients were worked up for AVR. This probably has not been
the best choice for an external validation cohort, due to the significant differences
demonstrated in dataset-1 and -2. A possibility was to combine both datasets into
one and use temporal validation for a new split in training- and test set. However,
this reduces the effect of external validation, which is an important aspect of machine
learning models.

5.2 Image Acquisition, Segmentation and
Reconstruction

The use of MRI for radiomics analysis has limitations. First of all, the spatial
resolution of MRI is not as good as CT, increasing the partial volume effect of the
surrounding tissue on the myocardium. This effect has been reduced by removal of
the outer borders of the segmentation. However, also subtle intensity changes in
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the myocardium are influenced by this effect. This is the case in patchy and diffuse
fibrosis, where the affected areas are diffusely distributed in the myocardium.[66] In
this case a voxel is made up of fibrotic and healthy myocardial cells, underestimating
the amount of fibrosis and affecting the feature values.

Furthermore, MRI is depending on the scanner’s manufacturer, field strength and
field inhomogeneities. It is therefore more difficult to compare MRI with each other.
Normalization of the imaging to a specific value, e.g. the grey value of the blood
pool or air in the image, can be a solution. Yet, it gives increasing difficulties in
the LGE images, because this sequence already utilizes the relative blackness of the
myocardium to surrounding tissue and myocardial enhancement to construct images.
The presented studies have used µ ± 3σ (see section 2.3.3) as the normalization
factor. This methods showed promising results in the second study; many of the
top-20 features in univariate analysis were derived from the normalized images.
This is an indication that feature values, and thus images, are comparable between
different subjects. Further research has to determine if this method of normalization
indeed increases the inter- and intra-patient comparability of MR-scans.

Segmentation and reconstruction of the myocardial image included some factors
of variance. First of all, segmentation of the left ventricle has been done by an
inexperienced researcher. However, previous research has described a low inter-
observer variability in the segmentation of the myocardium.[124, 117] Therefore, it
is assumed that the segmentation is not differing much from what an expert would
segment.

Another factor of variance was the use of a cylindrical reconstruction of the segmen-
ted myocardium. It is a laborious proces to create the cylindrical reconstruction.
However, features from the cylindrical reconstruction were not selected in the univa-
riate or multivariate analysis. It was hypothesized beforehand that the histologic
delineation of myocardial cells [5] should be followed in texture feature analysis to

Fig. 5.1: The influence of the chosen diameter for reconstruction (x-axis) on the feature
value (y-axis) in different subjects.
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enable a proper quantification of texture features. The process was time-consuming,
because every segmentation had to be manually checked for the right selection of
the midpoint of the left ventricle. This manual checking is prone to mistakes. Other
methods have been explored in this research for reconstruction of the myocardium.
Yet, none were found suitable, e.g. due to interpolation and creation of extra data.
Feature values were also influenced by the chosen values for variables of the re-
construction, e.g. the diameter of the circle used to make the reconstruction. The
diameter against the change in feature values is shown in figure 5.1. This variability
was reduced with fixed values for the diameter for every subject.

For a better risk analysis in patients with AS, the myocardium should be further
subdivided to identify relevant regions and features determining the risk of AVR. In
this research the full myocardium and splits of the myocardium in epi-, mid- and
endocardium were used. Yet, in current clinicaly analysis the 17-segments model
[28] is used to appoint the exact location of the fibrosis in. Implementation of
the 17-segments model in this research can help to identify locations of fibrosis
with a higher risk. It avoids masking of fibrotic segments by surrounding healthy
tissue. However, manual assignment of the segments is time-consuming and induces
another factor of variability.

At last, it is debatable whether an LGE-sequence is the optimal sequence for identi-
fying enhancement patterns in AS. AS tends to have diffuse fibrosis patterns, which
are hard to identify due to nulling of the myocardium relative to the bloodpool.
Research showed that T1-mapping is able to identify diffuse myocardial fibrosis in
cardiomyopathy.[133, 151, 73] This type of fibrosis is also expected to be present
in AS, due to the left ventricular remodelling that occurs in patients with AS.[154]
Therefore, a promising step is addition of T1-maps to the analysis.

5.3 Feature Extraction
No research has been done regarding the test-retest stability and reproducibility
of LGE-CMR radiomic imaging features. This is an important disadvantage of
this study. Test-retest stability of radiomic features has only been determined in
Fludeoxyglucose-Positron Emission Tomography (FDG-PET)[91] and CT[1] with the
RIDER-dataset.[159] To determine the test-retest stability of features in CMR, a scan
has to be made twice within a short period of time, where the subject is moved from
the scanner and repositioned in the scanner. This gives the ability to determine the
intra-patient stability of features with the correlation coefficient.

During the process of this study multiple software packages have been used for
analysis. A start was made in Matlab for the extraction of features in a self-made set-
up. This set-up was prone to mistakes and not widely available to other researchers,
working in the field of Radiomics. Therefore, a switch was made to the extraction
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of features with the PyRadiomics toolbox, a free toolbox for the extraction of
features.[60] This increased the reliability of the feature values. A comparison was
made between the feature values extracted from Matlab and PyRadiomics and these
were the same in the larger part of cases, indicating that the formulas were correctly
coded.

5.4 Data Analysis

The choices for different machine learning models used in this research are based
upon the characteristics of the models. A generalized linear model and a cox
regression model have been implemented, because these models are mathematically
simple models. An RF has the advantage that it does not require considerate
preproccessing of input data; it is not prone to outliers and varying magnitudes of
size between features. SVMs have the advantage that these are relatively simple
to understand and widely used. However, these choices can be argued. As can
be seen from recent literature published, every scientist makes a decision on the
implemented model based on its experience with this model or on characteristics of
the dataset.[77] Besides personal preference, it is also a matter of trial-and-error;
"which model works best?", "Should the features be normalized?" and "which model
can be smoothly implemented and debugged?". These questions arise when deciding
upon a machine learning model. Likewise, studies invesigate the performance of
different classifiers on generic datasets.[50]

For feature selection, the same statement holds as for the chosen machine learning
models; in the currently presented research, the feature selector was chosen accor-
ding to its performance in previous research.[112, 22] Yet, many more methods are
available, suitable for different types of data or feature ranking methods[128], e.g.
LASSO [158].

Returning to machine learning models used in this research, these models and their
implementation have limitations. First of all, the number of included subjects is
critically low for sophisticated machine learning purposes. There is a high probability
of overfitting, due to the large number of features. Therefore, feature selection is
extremely important. Secondly, some data was missing in patients for the selection
of AVR; LVEF and Vmax on echo or HS-T1. This resulted in the removal of these
subject from the dataset, further decreasing the dataset.
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5.5 Radiomics and Clinical Features and
Outcome

For this research, different models were trained with different groups of features.
The clinical features were implemented to test the clinical risk score that has been
proposed by Chin.[29] In both studies there was one clinical feature that scored high
in the univariate analysis. In the prediction of AVR, the Vmax was the highest-scoring
feature. This can be clinically explained, because this is a direct measure of the
condition of the aortic valve; flow speed increases with severity of AS.[45] In the
computer-aided diagnosis of LGE, the high-sensitivity troponin-I performed best in
the univariate model. Also this feature has a clinical explanation; high-sensitivity
troponin-I is a cardiac marker, released when cardiac damage occurs. It is released
in high amounts during a cardiac infarction, but in relatively small concentrations in
AS or other cardiac pathologies.[136, 41, 148] Lastly, LVEF measured on echocardi-
ography was included in the univariate analysis, but showed to have no power in
the univariate analysis in both studies. In this study, LVEF determined on cardiac
echo was included instead of LVEF on MRI. The first is the current criterion used to
select asymptomatic patients for AVR, although there are limitations on measuring
variables on cardiac echo.[53] From this analysis, it can be concluded that a single
LVEF-value, measured at baseline, is not sufficient to have predictive power. Patients
with AS are usually monitored over multiple years. The change of LVEF over years is
a feature that presumably has more prognostic power.

It was expected that more features in the univariate analysis of the AVR-analysis
would relate to the shape and size of the left ventricle, as concluded from the
research by Steadman [140]. However, this was not the case, indicating that fibrosis
and the development of fibrosis might play a more important role in the development
of symptoms than the size of the myocardium. Due to the numerous shape- and
size-based features in the LGE-research, it can be hypothesized that shape and size
of the myocardium are related to the development of fibrosis, which on its turn is
causing cardiac failure. Yet, regarding the fair performance of the AVR-prediction
models, symptom development cannot be fully dedicated to the development of
fibrosis. However, a positive note on the analysis is that the computer-aided diagnosis
of fibrosis showed good results, with an AUC of 0.9. Fibrosis of the heart has proven
to be a predictor of adverse events in AS [42, 121, 152] and other pathologies
[107, 7, 17]. Therefore, it is hypothesized that the machine learning models using
adverse events or AVR as outcome are going to perform better with a larger included
dataset.

To conclude; the assessment and prognosis of AS is a complicating task. There
are many factors that play a role in the development of AS and many quantitative
measurements can be derived from the heart, that individually or combined have
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their own implication on the patient.[13] It was optimistic to think that the quanti-
tative analysis of the myocardium had all the answers. The radiomics analysis of
the myocardium should not be handled as an independent measurement, but must
be taken into account with all the patient characteristics that are already available
to make an adequate estimation of the risk of adverse events and the need for AVR.
This is were radiomics turns into cardiomics; besides CMR-imaging, other patient
characteristics are available, e.g. Electrocardiography (EKG), multiple measurement
of cardiac echo and other cardiac measurements. Machine learning models trained
with complete datasets of all available data on patients with AS can aid in risk
determination.

5.6 Future Perspectives
Machine learning, deep learning, Artificial Intelligence (AI) and computer-aided
image analysis are subjects that have gained infinite attention in the medical field
in recent years. Avanzo published an overview of all the radiomics papers at the
beginning of 2017 [8], which at the time of publishing was already outdated.
Limiting to the field of cardiac pathologies, papers have been published that include,
among others, machine learning of the right ventricular motion to predict outcome
in pulmonary hypertension [36], machine-learning models to discriminate between
physiological and pathological hypertrophic remodelling [102], machine learning to
identify infarct tissue on cine-images [11] and machine learning for the selection of
patients with significant coronary artery disease[146]. What does this increasing
interest mean for health care? What are the possible advantages and disadvantages?
And how will data-driven science develop in the coming years? This last section is
an incorporation of scientific research and reports and my own view on the future of
data science in medicine.

AI has important implications for our modern health care. Medicine has long been
evidence-based; clinical research always focussed on specific groups of patients.
Classical studies used one (or multiple) independent predictors and only one de-
pendent outcome variable in their statistical analysis. Studies were designed to
determine which independent predictors had the most influence on the outcome
variable. Based upon the results of these studies, guidelines are written and many
patients are treated. However, not every patient is the same; other factors might play
a role, factors that we currently overlook. These factors have not yet been identified
or have not been taken into consideration until now. AI creates the opportunity
to find sophisticated patterns in data. This can aid clinicians in patient-specific
decision-making.

There are large amounts of clinical data available in patient files, both diagnostic
images as patient outcome. This information is currently not used. Machine learning
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has the ability to use the existing data and find new patterns in this data, without
the need for extra clinical research. However, before we can use all the available
data, the data must be modified and processed. This has been elaborately described
by Lawrence as ’Data Readiness Levels’.[89]. The conclusion from this paper; the
current structure used in patient files is inappropriate for application in machine
learning analysis. Before we can use the large amount of data available in patient
files, a generic way of saving information (e.g. annotation of images, filing of patient
consults and patient outcome) must be developed and implemented on a large
scale.

Beside the preprocessing of the data, the models with the best performances must
be identified and trained to process all the data samples. This can be a laborious
coding process, where trial-and-error is a key feature. Being laborious, it is also time-
consuming. Computers are getting faster and better at calculation tasks. However,
with a large amount of data, including missing data and noise, calculations are time-
consuming, even for fast computers. The use of patient files and the information
in these patients files also has disadvantages. This information must be handled
anonymously, so it cannot be tracked back to one individual. Firstly, wide use of
this data also increases the risk of data leaks. Secondly, awareness must be created
among researchers, that they are working with patient information. This information
should be handled with care and respect. Unless possible drawbacks, clinicians have
a growing fidelity in AI; opportunities are being seen and challenges are tackled
with AI.

In conclusion, this research has shown a field of Radiomics and machine learning
in cardioradiology. Yet, the process of training, validating and testing models is
complex. In the end, results must be good enough for clinical use. Then, the critical
leap must be made towards implementation into clinical practice. This is the point
that some clinicians are fearing; "Is AI going to take our jobs?" My answer would be
"No, definitely not". I have been working for a year with clinicians, data scientists
and other medical professionals and I have seen different stakeholders in health
care. My experience with machine learning in radiology is that it is going to create
opportunities for fast diagnosis and automatic analysis of medical images. Secondly,
it has the chance to aid in the the evaluation of prognosis, prediction of patient
outcome and determination of the best-suitable care path. ’Going to’, because before
machine learning will be available in clinical settings, years, probably decades, have
passed. AI is going to enhance the work of clinicians. However, someone has to be
responsible for the final decision and, in my opinion, this cannot be a model or a
computer. This has to be a human, who also takes responsibility. In the end, I would
rather talk to a empathic human being than to a robot or a computer.
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6Supplements

6.1 Methods

6.1.1 CylindricalReconstruction

Fig. 6.1: The reconstruction from a cartesian coor-
dinate system into a cylindrical coordinate
system.

For the analysis of texture featu-
res, the segmented myocardium
is reconstructed in a cylindrical
coordinate system. This is done
in Matlab 2016b (MathWorks,
Natick, Massachusetts, United
States). The cylindrical recon-
struction is performed according
to the following formula, which
is graphically displayed in figure
6.1;


X

Y

Z

 = −→a +
−→
b ∗x+r(−→n cosφ×−→msinφ)

In the reconstruction of the image,
every slice is reconstructed indi-
vidually. The midpoint of the left
ventricle is automatically detected for every slice and manually checked. The steps of
circle identification is displayed in figure 6.2. These centres are used as the starting
position for the reconstruction. The reconstruction process has been automatized in
Matlab 2016b (MathWorks, Natick, United States). In this reconstruction, the steps
taken on the radius (r) are displayed on the vertical axis. The angular steps (φ) are
displayed on the horizontal axis.

6.1.2 Image Filters
The PyRadiomics package comes with different filters that can be applied to the
input scans. These filters use different mathematical operations on the feature
values. This section gives an outline of the available image filters, their mathematical
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Fig. 6.2: Flowchart describing the different steps programmed in identification of the centres
of the myocardium.

operations and their implication on LGE-CMR. To illustrate the different filters, 4
scans of subjects extracted from the dataset are shown. Every subject has a different
LGE-pattern; none, patchy, diffuse and focal/infarct pattern.

Squared Filter This filter computes the square of the image intensities. Afterwards,
it rescales the image intensities on the image intensity range of the original image.

Inew = ( 1√
Imax

∗ Ioriginal)2 (6.1)

Squared Root Filter This filter computes the squared root of the original image
intensity values and rescales it to the original range of the image intensities through
the following function:

Inew =
√
Imax ∗ Ioriginal (6.2)

Fig. 6.3: Graphical overview how 8 different wavelet images can
be constructed from one original scan. Image derived
from Aerts, 2014a [2]

Log Filter This filter
uses the Laplacian of
the gaussian filter. It
yield a derived image
for each σ specified.
LoG-filters decrease
the amount of noise
in an image by the ap-
plication of a filter. It
aids in the detection
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of edges and changes
in contrast.[103]

Wavelet Filter The wa-
velet transforms of
images are calculated
with the application of low- and high-pass functions in different directions of the
image. This is comparable to the decomposition applied in Fourier analysis. Every
3D-scan is decomposed in 8 wavelet images through the application of the functions.
Figure 6.3 describes the different images that can be generated.

Logarithmic Filter As described in the name of this filter, application of this filter
to the image intensities generates the natural logarithmic value +1 of the original
image intensities as the outcome image.

Inew = (log Ioriginal + 1) ∗ Imax
max(log Ioriginal + 1 (6.3)

Exponential Filter The exponential filter computes the exponential of the original
image intensities.

Inew = e
lnImax

Imax
∗Ioriginal (6.4)

6.1.3 Processing of Feature Values for SVM
Normalization of feature values First of all, the data is centered and scaled accor-
ding to the z-score. Centering is done by subtracting the average feature value from
all the feature values. Scaling includes the division of every feature value by the
feature’s standard deviation. This method is done to improve the numerical stability
of calculations. However, it reduces the interpretability of the individual values,
because the original units are removed.[82]

Outlier Factor The other preprocessing step of the data is the detection of outliers
by the LOF. The LOF-principle of outlier detection works with a K-nearest neighbours
(K-NN) algorithm.[23] The LOF is based on K, which is the number of nearest
neighbours used in the definition of the neighbourhood of the object. Objects within
a cluster have an LOF close to 1. To determine an appropriate value for K, the LOF
for every sample point is calculated for a range of K-values (15:50). To determine
the final value of K for a certain feature, all LOFs from every sample over a range of
K are taken into account. The minimum maximum LOF for a certain feature over all
those K’s is the final number of nearest neighbours used for determining the LOF
for every sample of that feature. Thus, for every feature a different K is used to
determine outliers. Figure 6.4 shows a plot of the feature ’Surface Area’ and the
different maximum values for LOF over a range of K.
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Fig. 6.4: The maximum, mean, median and mini-
mum LOF values per K-nearest neighbours
for the feature Surface Area

After determining the number of
K-NN, the upper boundary for
LOF has to be determined. A sam-
ple is an outlier of the dataset
if the LOF is significantly higher
than one. Therefore, the upper
boundary for the LOF is arbitrarily
determined to be 1.8. All samples
with an LOF> 1.8 are determined
outliers and are set to the mini-
mum or maximum non-outlier va-
lue, depending on which side of
the spectrum the samples are. Du-
ring the analysis it was shown that the LOF was sometimes > 1.8. However, the
original value was within the minimum and maximum boundary of the corrected
feature values. Therefore, it is checked if the original value of the feature, assumed to
be an outlier, is higher than the maximum or lower than the minimum feature value.
If this is the case, the sample feature value is set to the maximum or minimum. If
the original feature value lies within the boundaries, the original value is retained.
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6.1.4 Pipeline of Data Analysis
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6.1.5 Used Functions R

Function Reason Package Version
expand.grid Define a grid for grid search for tuning

parameters of machine learning models.
base

scale Centering and scaling the feature values. base
train Building and training of classification mo-

dels.
caret 6.0-77

nearZeroVar Eliminate features with a near zero vari-
ance.

caret

createDataPartition Create a stratified random split for Monte
Carlo analysis.

caret

findCorrelation Determine highly correlated variables for
removal.

caret

trainControl Modification of the resampling method
for model validation of the tuning para-
meters.

caret

lofactor Obtaining local outlier factors based
upon the LOF-algorithm

DMwR 0.4.1

svmLinear2 Linear SVM-model. e1071 1.6-8
ggplot Plot with the ggplot2-package ggplot2 2.2.1
mRMR.classic Perform mRMR feature ranking. mRMRe 2.0.7
roc Determining the roc-curve from a set of

observations and the true outcome
pROC 1.10.0.

coords Determining the values of performance
parameters at the optimal threshold of
an ROC-curve.

pROC

ci.auc Calculation of 95%-confidence interval
around AUC.

pROC

rf Random forest for model input in ’train’-
function.

randomForest4.6-12

prediction Transform the input data to a standardi-
zed format for further evaluation.

ROCR 1.0-7

performance Calculation of predictor evaluations. ROCR
cor Determine Spearman’s correlation matrix

between features.
stats

glm Fitting a generalized linear model stats
lm Fit linear model to data points. stats
p.adjust P-value correction stats
wilcox.test Wilcoxon-tests on vector(s) of continu-

ous data comparison.
stats

chisq.test Chi-squared table test on categorical data
comparison.

stats

cor Find correlation between two sets of da-
tapoints.

stats

concordance.index Calculate the concordance index of a fe-
ature with relation to outcome and end-
point

survcomp1.26

Tab. 6.1: Main used functions for the statistical analysis in R.
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6.2 Results

6.2.1 Chapter 2
Features Feature Class CI-value p-value FDR q-value
wavelet.Norm.LLL glszm SmallAreaEmphasis Texture 0.63 4.70E-06 0.002
exponential EndoVol glrlm RunVariance Texture 0.63 1.94E-06 0.002
wavelet.Norm.LLL glszm ZoneEntropy Texture 0.63 3.10E-06 0.002
wavelet.EpiVol.HLH glrlm RunVariance Texture 0.63 1.87E-05 0.003
wavelet.Norm.HLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.63 2.34E-05 0.003
MaxThickness Other 0.63 3.92E-05 0.005
original EpiVol glrlm LongRunHighGrayLevelEmphasis Texture 0.63 7.78E-05 0.007
wavelet.EpiVol.HLH glszm LargeAreaLowGrayLevelEmphasis Texture 0.63 0.00011 0.008
StDThickness Case-specific 0.62 1.68E-05 0.003
wavelet.Norm.LLH glszm ZoneEntropy Texture 0.62 1.25E-05 0.003
wavelet.EndoVol.HLL firstorder Mean Statistics 0.62 2.09E-05 0.003
original EndoVol glrlm LongRunHighGrayLevelEmphasis Texture 0.62 6.94E-05 0.007
wavelet.EpiVol.HLH glrlm LongRunLowGrayLevelEmphasis Texture 0.62 0.00027 0.010
wavelet.Norm.HHL firstorder Mean Statistics 0.61 8.70E-05 0.007
wavelet.Norm.LHL glcm Imc2 Texture 0.61 5.47E-05 0.006
wavelet.EndoVol.HHL glrlm ShortRunHighGrayLevelEmphasis Texture 0.61 0.00024 0.010
wavelet.MidVol.HHL glszm GrayLevelNonUniformityNormalized Texture 0.61 0.00018 0.009
wavelet.Norm.HLL glszm LargeAreaLowGrayLevelEmphasis Texture 0.61 0.00022 0.009
wavelet.Norm.HLL glcm Idn Texture 0.61 0.00079 0.019
glrl phi Epi SRLGLE Cylindrical 0.61 0.00024 0.010
wavelet.EpiVol.LHH glszm LargeAreaLowGrayLevelEmphasis Texture 0.61 0.00052 0.014
wavelet.Norm.HHL glcm Idmn Texture 0.61 3.43E-05 0.005
original Norm glszm LargeAreaHighGrayLevelEmphasis Texture 0.61 0.00032 0.011
wavelet.EpiVol.HLL glszm LargeAreaLowGrayLevelEmphasis Texture 0.61 0.00062 0.016
wavelet.EndoVol.HLH glrlm LowGrayLevelRunEmphasis Texture 0.61 0.00055 0.015
glrl phi Epi RLN Cylindrical 0.61 8.79E-05 0.007
exponential Norm firstorder Energy Statistics 0.61 0.00010 0.008
wavelet.EndoVol.HLH glrlm RunVariance Texture 0.61 0.00017 0.009
wavelet.Norm.LLH glszm SmallAreaEmphasis Texture 0.61 0.00014 0.009
wavelet.EpiVol.LHL firstorder Mean Statistics 0.61 0.00035 0.011
exponential Norm glszm LargeAreaHighGrayLevelEmphasis Texture 0.61 0.00022 0.009
wavelet.HLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.61 0.00020 0.009
wavelet.EndoVol.HLL firstorder Skewness Statistics 0.61 0.00019 0.009
wavelet.LHL glszm LargeAreaHighGrayLevelEmphasis Texture 0.61 0.00016 0.009
wavelet.EndoVol.HLH glrlm LongRunLowGrayLevelEmphasis Texture 0.61 0.00086 0.018
wavelet.EndoVol.LHL firstorder Mean Statistics 0.61 0.00032 0.011
wavelet.EndoVol.HLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.61 0.00041 0.013
wavelet.EpiVol.HHL glrlm ShortRunHighGrayLevelEmphasis Texture 0.61 0.00074 0.018
wavelet.Norm.HHH glcm Imc2 Texture 0.61 0.00032 0.011
original VolStd 2Sigma glrlm RunLengthNonUniformity Texture 0.60 0.00021 0.009
wavelet.EndoVol.LHH glrlm RunVariance Texture 0.60 0.00044 0.013
wavelet.EndoVol.HLL glszm LargeAreaLowGrayLevelEmphasis Texture 0.60 0.00117 0.024
wavelet.Norm.HLH glcm Idn Texture 0.60 0.00043 0.013
wavelet.Norm.LLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.60 0.00055 0.015
glrl r Epi SRE Cylindrical 0.60 0.00018 0.009
wavelet.EndoVol.HLL glcm Imc1 Texture 0.60 0.00046 0.013
wavelet.EndoVol.LHH firstorder Mean Statistics 0.60 0.00114 0.024
wavelet.Norm.LHL glcm Idn Texture 0.60 0.00022 0.009
wavelet.Norm.LHL glszm LargeAreaLowGrayLevelEmphasis Texture 0.60 0.00118 0.024

Tab. 6.2: This table describes all radiomics features that are somewhat related to the risk
of AVR. P-value analysis has been done with the Wilcoxon-test, correction of the
q-value was done with the correction from Benjamini.[15]
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Fig. 6.6: 200-Fold Monte Carlo analysis on the training set to determine the optimal number
of features that should be included in the multivariate model for the prediction of
AVR.
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6.2.2 Chapter 3
Features Feature Class AUC p-value FDR q-value
wavelet.Norm.LLL firstorder Range Statistics 0.85 1.64E-14 1.86E-11
MaxThickness Case-specific 0.84 6.78E-14 3.86E-11
MeanThickness Case-specific 0.83 2.88E-13 8.76E-11
wavelet.Norm.LLL glszm ZoneEntropy Texture 0.83 3.08E-13 8.76E-11
wavelet.EndoVol.HLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.83 7.38E-13 1.68E-10
wavelet.Norm.LLL glcm Idmn Texture 0.82 3.39E-12 6.43E-10
original VolStd 2Sigma shape Volume Shape 0.82 5.76E-12 9.37E-10
original VolStd 1Sigma shape Volume Shape 0.81 2.62E-11 3.73E-09
original VolStd 2Sigma shape SurfaceArea Shape 0.80 3.55E-11 4.49E-09
wavelet.Norm.HLL firstorder TotalEnergy Statistics 0.80 4.95E-11 5.64E-09
wavelet.Norm.LLH firstorder Maximum Statistics 0.80 6.75E-11 6.41E-09
wavelet.Norm.LLH firstorder TotalEnergy Statistics 0.80 6.75E-11 6.41E-09
exponential firstorder TotalEnergy Statistics 0.80 1.05E-10 9.21E-09
original VolStd 2Sigma glrlm RunLengthNonUniformity Texture 0.79 1.82E-10 1.48E-08
wavelet.Norm.LLL glcm ClusterShade Texture 0.79 2.42E-10 1.84E-08
StDThickness Case-specific 0.79 2.97E-10 2.12E-08
original VolStd 2Sigma glcm DifferenceVariance Texture 0.79 3.79E-10 2.40E-08
logarithm Norm glszm LargeAreaEmphasis Texture 0.79 3.79E-10 2.40E-08
wavelet.HLL glszm LargeAreaHighGrayLevelEmphasis Texture 0.79 4.40E-10 2.64E-08
wavelet.EndoVol.HLL firstorder Skewness Statistics 0.78 6.24E-10 3.55E-08
wavelet.Norm.LHH glszm LargeAreaLowGrayLevelEmphasis Texture 0.78 9.67E-10 5.25E-08
wavelet.LHL glszm LargeAreaHighGrayLevelEmphasis Texture 0.78 1.49E-09 7.73E-08
wavelet.Norm.LLL glcm Correlation Texture 0.78 1.75E-09 8.69E-08
original EndoVol shape SurfaceArea Shape 0.77 2.06E-09 9.78E-08
wavelet.Norm.LLH glszm ZoneEntropy Texture 0.77 2.17E-09 9.90E-08
wavelet.Norm.LLL firstorder Kurtosis Statistics 0.77 2.74E-09 1.20E-07
wavelet.LHH glszm LargeAreaHighGrayLevelEmphasis Texture 0.77 4.40E-09 1.79E-07
wavelet.Norm.LHL glszm LargeAreaLowGrayLevelEmphasis Texture 0.77 4.40E-09 1.79E-07
wavelet.Norm.LHH glcm_Imc2 Texture 0.77 6.12E-09 2.40E-07
original VolStd 2Sigma glcm JointEnergy Texture 0.77 6.45E-09 2.45E-07
original VolStd HalfSigma glrlm RunLengthNonUniformity Texture 0.76 9.10E-09 3.34E-07
wavelet.Norm.LHL glcm Idn Texture 0.76 9.58E-09 3.41E-07
wavelet.HHL glszm LargeAreaHighGrayLevelEmphasis Texture 0.76 1.32E-08 4.51E-07
original VolStd 2Sigma glszm SizeZoneNonUniformity Texture 0.76 1.35E-08 4.51E-07
square Norm glcm SumSquares Texture 0.76 1.59E-08 5.19E-07
wavelet.Norm.HHL glcm Idn Texture 0.76 2.02E-08 6.38E-07
wavelet.HHH glszm LargeAreaHighGrayLevelEmphasis Texture 0.76 2.27E-08 6.98E-07
logarithm Norm glszm LargeAreaHighGrayLevelEmphasis Texture 0.75 3.79E-08 1.12E-06
square Norm glcm ClusterTendency Texture 0.75 3.85E-08 1.12E-06
wavelet.Norm.HLL glszm LargeAreaLowGrayLevelEmphasis Texture 0.75 4.18E-08 1.18E-06
original VolStd 1Sigma glcm DifferenceEntropy Texture 0.75 4.25E-08 1.18E-06
wavelet.EndoVol.HLH glrlm RunVariance Texture 0.75 4.76E-08 1.29E-06

Tab. 6.3: This table describes all radiomics features that are fairly related (AUC>0.75) to
the risk of LGE. P-value analysis has been done with the Wilcoxon-test, correction
of the q-value was done with the correction from Benjamini.[15]
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Fig. 6.7: 200-Fold Monte Carlo analysis on the training set to determine the optimal number
of features that should be included in the GLM for computer-aided diagnosis of
LGE.
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6.2.3 Chapter 4
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Fig. 6.8: 1000-fold random subsampling on the trainingset (dataset-1) to determine the
optimal number of included features for the cox regression for classification of
AVR.
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Fig. 6.9: 1000-fold random subsampling on the trainingset (dataset-1) to determine the
optimal number of included features for the generalized linear model for computer-
aided diagnosis of late gadolinium enhancement.
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6.3 Radiomics Features
The features used in radiomics have been derived from different sources. To secure
stability and a similar use of radiomics, the image biomarker standardisation initia-
tive has been started. The features in the presented analysis have been derived from
this source [161] and from the supplements from Aerts’s article[2]

6.3.1 First Order Statistics

First order statistics are derived from the histogram with the voxel values of the
segmentation. The following variables are defined: X = 3D-image matrix, X = the
mean value of X, N = number of voxels in this matrix and P = first order histogram
with Nl = number of discrete intensity levels.

energy =
N∑
i

X(i)2 (6.5)

entropy =
Nl∑
i=1

P(i) log2 P(i) (6.6)

kurtosis =
1
N

∑N
i=1(X(i)−X4(√

1
N

∑N
i=1(X(i)−X)2

)2 (6.7)

maximum = maximum intensity value of X (6.8)

mean = 1
N

N∑
i

X(i) (6.9)

mean absolute deviation = mean absolute deviation

of all voxel intensities around the mean intensity value.
(6.10)

median = median intensity value of X. (6.11)

minimum = minimum intensity value of X (6.12)

range = range of intensity values of X (6.13)
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root mean square (RMS) =

√∑N
i X(i)2

N
(6.14)

skewness =
1
N

∑N
i=1(X(i)−X)3(√

1
N

∑N
i=1(X(i)−X)2

)3 (6.15)

standard deviation =
(

1
N − 1

N∑
i=1

(X(i)−X)2
) 1

2

(6.16)

uniformity =
Nl∑
i=1

P(i)2 (6.17)

variance = 1
N − 1

N∑
i=1

(X(i)−X)2 (6.18)

6.3.2 Shape- and size-based features

This feature group includes features that are related to the 3D size and shape of the
segmented region. In these definitions V refers to the volume and A is the surface
area of the segmented volume.

compactness 1 = V
√
πA

2
3

(6.19)

compactness 2 = 36πV
2

A3 (6.20)

Maximum 3D diameter = largest pairwise Euclidean distance between

voxels on the surface of the segmentational volume
(6.21)

spherical disproportion = A

4πR2 (6.22)

sphericity = π
1
3 (6V )

2
3

A
(6.23)
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surface area =
N∑
i=1

1
2 |aibi × aici| (6.24)

surface to volume ratio = A

V
(6.25)

volume = counting the number of pixels in the segmentation

and multiplying this value with the voxel size.
(6.26)

6.3.3 Texture Features

This group of features includes descriptors for the patters and position in the gray
levels in the medical images. The features are derived from two texture matrices;

• Gray Level Co-occurence Matrix (GLCM): This is a matrix the size of Ng ×Ng,
with Ng being the number of discrete intensity levels. The element at position
i, j represents the number of times the combination i and j occur in two pixels
next to each other. The matrix is described as P(i, j; δ, α), with δ the distance
between the pixels in direction α.

• Gray Level Run Length Matrix (GLRLM): This matrix type shows the length
of the runs of pixels with similar gray levels in the image. A gray level run
length matrix is described as P(i, j|θ), where the (i, j)th element represents
the number of times (j) a gray level (i) appears consecutively in the direction
θ.

• Gray level Distance Zone Based Features (GLSZM): This matrix counts the
number of zones of linked voxels that share a similar bin or voxel value. These
formulas have been derived from Thibault, 2014. citeThibault2014 Ng is the
number of gray levels and Nz is the maximum size of zone. The element at
position Si,j is the number of zone with gray value i and size j.

For more information and examples on the texture matrices, see Aerts, [2].
Many of the gray level cooccurence texture features have been first described
by Haralick, [63]. The features based on the gray level run length matrix
have been described as first by Galloway, [55]. A complete overview of all the
features that have been defined throughout the years has been given by Tang,
[144].
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Gray-Level Co-Occurence matrix based features Define:

µ = mean of P(i, j)

px(i) =
∑Ng

j=1 are the marginal row probabilities

px(i) =
∑Ng

i=1 are the marginal column probabilities

µx = mean of px

µy = mean of py

σx = standard deviation of px

σy = standard deviation of py

px+y(k) =
∑Ng

i=1
∑Ng

j=1 P(i, j), i+ j = k, k = 2, 3, ..., 2Ng

px−y(k) =
∑Ng

i=1
∑Ng

j=1 P(i, j), |i− j| = k, k = 0, 1, ..., Ng − 1

HX = −
∑Ng

i=1 px(i) log2[px(i)]is the entropy of px

HY = −
∑Ng

i=1 py(i) log2[py(i)]is the entropy of py

H =
∑Ng

i=1
∑Ng

j=1 P(i, j) log2[P(i, j)]is the entropy of P(i, j)

HXY 1 =
∑Ng

i=1
∑Ng

j=1 P(i, j)log(px(i)py(j))

HXY 1 =
∑Ng

i=1
∑Ng

j=1 px(i)py(j)log(px(i)py(j))

autocorrelation =
Ng∑
i=1

Ng∑
j=1

ijP(i, j) (6.27)

cluster prominence =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx(i)− µy(j)]4 P(i, j) (6.28)

cluster shade =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx(i)− µy(j)]3 P(i, j) (6.29)

cluster tendency =
Ng∑
i=1

Ng∑
j=1

[i+ j − µx(i)− µy(j)]2 P(i, j) (6.30)

contrast =
Ng∑
i=1

Ng∑
j=1
|i− j|2P(i, j) (6.31)

correlation =
∑Ng

i=1
∑Ng

j=1 ijP(i, j)− µi(i)µj(j)
σx(i)σy(j)

(6.32)
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difference entropy =
Ng−1∑
i=0

Px−y(i) log2 [Px−y(i)] (6.33)

dissimilarity =
Ng∑
i=1

Ng∑
j=1
|i− j|P(i, j) (6.34)

energy =
Ng∑
i=1

Ng∑
j=1

[P(i, j)[2 (6.35)

entropy (H) = −
Ng∑
i=1

Ng∑
j=1

P(i, j) log2[P(i, j)] (6.36)

homogeneity 1 =
Ng∑
i=1

Ng∑
j=1

P(i, j)
1 + |i− j| (6.37)

homogeneity 2 =
Ng∑
i=1

Ng∑
j=1

P(i, j)
1 + |i− j|2 (6.38)

Informational measure of correlation 1 (IMC1) = HXY −HXY 1
max {HX,HY }

(6.39)

Informational measure of correlation 2 (IMC2) =
√

1− e−1(HXY 2−HXY (6.40)

Inverse Difference Moment Normalized (IDMN) =
Ng∑
i=1

Ng∑
j=1

P(i, j)
1 +

(
|i−j|2
N2

) (6.41)

Inverse Difference Normalized =
Ng∑
i=1

Ng∑
j=1

P(i, j)
1 +

(
|i−j|
N2

) (6.42)

inverse variance =
Ng∑
i=1

Ng∑
j=1

P(i, j)
|i− j|2

, i 6= j (6.43)

maximum probability = max {P(i, j)} (6.44)
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sum average =
2Ng∑
i=2

[iPx+y(i)] (6.45)

sum entropy = −
2Ng∑
i=2

Px+y(i) log2 [Px+y(i)] (6.46)

sum variance =
2Ng∑
i=2

(i− SE)2Px+y(i) (6.47)

variance =
Ng∑
i=1

Ng∑
j=1

(i− µ)2P(i, j) (6.48)

Gray-Level Run-Length matrix based features Define:

Nr = the number of different run lengths

Np = the number of voxels in the image

Short Run Emphasis (SRE) =
∑Ng

i=1
∑Nr
j=1

[
p(i,j)|θ)
j2

]
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.49)

Long Run Emphasis (LRE) =
∑Ng

i=1
∑Nr
j=1 j

2p(i, j|θ)∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.50)

Gray Length Non-Uniformity (GLN) =
∑Ng

i=1

[∑Nr
j=1 p(i, j|θ

]2
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.51)

Run Length Non-Uniformity (RLN) =
∑Ng

j=1

[∑Nr
i=1 p(i, j|θ

]2
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.52)

Run Percentage (RP) =
Ng∑
i=1

Nr∑
j=1

p(i, j|θ)
Np

(6.53)

Low Gray Level Run Emphasis(LGLRE) =
∑Ng

i=1
∑Nr
j=1

[
p(i,j|θ)
i2

]
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.54)

High Gray Level Run Emphasis (HGLRE) =
∑Ng

i=1
∑Nr
j=1 i

2p(i, j|θ)∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.55)
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Short Run Low Gray Level Run Emphasis(SRLGLE) =
∑Ng

i=1
∑Nr
j=1

[
p(i,j|θ)
i2j2

]
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.56)

Short Run High Gray Level Run Emphasis(SRHGLE) =
∑Ng

i=1
∑Nr
j=1

[
p(i,j|θ)i2

j2

]
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.57)

Long Run Low Gray Level Run Emphasis(LRLGLE) =
∑Ng

i=1
∑Nr
j=1

[
p(i,j|θ)j2

i2

]
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.58)

Long Run High Gray Level Run Emphasis(LRHGLE) =
∑Ng

i=1
∑Nr
j=1 p(i, j|θ)i2j2∑Ng

i=1
∑Nr
j=1 p(i, j|θ)

(6.59)

Gray-Level Size Zone Based Features Define: pij = sij

Ns

µi =
∑Ng

i=1
∑Nz
j=1 ipij

µi =
∑Ng

i=1
∑Nz
j=1 jpij

Small Zone Emphasis = 1
Ns

Nz∑
j=1

s.j
j2 (6.60)

Large Zone Emphasis = 1
Ns

Nz∑
j=1

j2s.j (6.61)

Low Gray Level Zone Emphasis = 1
Ns

Ng∑
i=1

si.
i2

(6.62)

High Gray Level Zone Emphasis = 1
Ns

Ng∑
i=1

i2si. (6.63)

Small Zone Low Gray Level Emphasis = 1
Ns

Ng∑
i=1

Nz∑
j=1

sij
i2j2 (6.64)

98 Chapter 6 Supplements



Small Zone High Gray Level Emphasis = 1
Ns

Ng∑
i=1

Nz∑
j=1

i2sij
j2 (6.65)

Large Zone Low Gray Level Emphasis = 1
Ns

Ng∑
i=1

Nz∑
j=1

j2sij
i2

(6.66)

Large Zone High Gray Level Emphasis = 1
Ns

Ng∑
i=1

Nz∑
j=1

i2j2sij (6.67)

Gray Level Non-uniformity = 1
Ns

Ng∑
i=1

s2
i. (6.68)

Gray Level Non-uniformity normalized = 1
N2
s

Ng∑
i=1

s2
i. (6.69)

Zone size non-uniformity = 1
Ns

Nz∑
j=1

s2
.j (6.70)

Zone size non-uniformity normalized = 1
Ns

Nz∑
j=1

s2
.j (6.71)

Zone Percentage = Ns

N + v
(6.72)

Gray level Variance =
Ng∑
i=1

Nz∑
j=1

(i− µi)2pij (6.73)

Zone size Variance =
Ng∑
i=1

Nz∑
j=1

(j − µj)2pij (6.74)

Zone size Entropy = −
Ng∑
i=1

Nz∑
j=1

pij log2 pij (6.75)
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