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Summary

Cavitation can occur in the form of sheet cavitation, which is in many cases induced by
free-stream nuclei. To track the free-stream nuclei a Lagrangian approach is coupled with
bubble dynamics.

By means of an elementary model, with a symmetric profile at zero incidence, the so called
screening effect is observed. Screening makes large gas nuclei pass over the low pressure
region, by which cavitation inception is prevented. The screening effect depends on the free
stream velocity and on the size of the body, but can not be described by the flow Reynolds
number. The equivalent Stokes number can be related to the scale effects on screening.

To evaluate the scale effects on cavitation in more detail the elementary model is replaced
by a more involved model. This model uses conformal mapping to construct an, in general,
non-symmetric profile at incidence. A bubble dynamics equation will be used for the stabil-
ity of the nucleus, and the equation of motion is reevaluated.
The Kelvin impulse is introduced into the equation of motion. Furthermore, contamination
of surfactants in the liquid yields the need for the history force in the equation of motion.
When the nucleus is in contact with the surface of the body, an impact model, based on the
local flow velocity and the nucleus growth, describes the trajectory of the nucleus.
The Kármán-Trefftz conformal transformation is used to approximate the potential flow
field around a propeller blade section. The propeller blade section is non-symmetric and at
incidence. Screening effects do not influence the available nuclei spectrum under these non-
symmetric conditions. The available nuclei spectrum for cavitation is mainly determined by
the stability of the nucleus. The cavitation event rate is derived from the bandwidth in which
nuclei should start to cause cavitation. The cavitation event rate shows that to interpreted
experimental results focusing on the available nuclei spectrum is insufficient.

Finally, first order interpolation in a viscous flow field is examined. The viscous flow field
is around a NACA0015 profile with a flow Reynolds number of Re f = 3.6 · 105 and a chord
length of c = 60 mm. Using viscous flow the Saffman lift force could be important, but turns
out not to be important for the nucleus trajectory. The impact model is the mayor reason
behind this insignificant importance. The used profile is symmetric, but has an angle of at-
tack. This means that the conditions are non-symmetric, non-symmetric screening behavior
is thus observed. When comparing a flow field without a roughness element to a flow field
with a roughness element, more growth of gas nuclei is observed. However, the observed
effect of the roughness element in experiments is not solely described by this increase in
growth. The equation of motion is suitable with solid nuclei. Analysis with solid nucleus,
more dense than the liquid, shows that solid nuclei deviate in the opposite direction as gas
nuclei from the streamline.
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1 Introduction

Cavitation is the formation of cavities in the liquid. A cavity in the liquid is a liquid free
zone, the cavity can be filled with gas. Cavities arise in low pressure regions. The cavities
can implode when the pressure increases. The implosions cause damage to propellers and
rudders, lowers the efficiency of propellers, and produces noise. For the maritime and pump
industry, the costs of cavitation are significant. The produced noise impacts sea life, the us-
ability of pumps and the comfort on cruise ships.
Cavitation can occur in the form of sheet cavitation, which is in many cases induced by free-
stream nuclei, see [1]. High-speed observations showed that both gaseous and solid nuclei
which induced sheet cavitation could deviate significantly from calculated streamlines.

Understanding the underlying processes of sheet cavitation inception is crucial for cavita-
tion models. These models should capture scale effects as experimental comparison is not
possible in many cases. A model describing the nucleus trajectory and the dynamics of the
nucleus could give insight on sheet cavitation inception, and the scale effects involved.

A Lagrangian approach yielding an equation of motion coupled with bubble dynamics can
be used to obtain insight in the sheet cavitation inception process. The scale effects assumed
to play a role will be examined. The so called screening effect pushes large bubbles over
the leading edge low pressure region, preventing cavitation. The screening effect might be
subject to scale effects which will be reviewed in particular. The application of this model to
different flow fields will also be discussed.

The report is subdivided into three main parts.

• The first part introduces the elementary concepts of nuclei stability and screening. The
resulting model is used to estimate the cavitation inception related scale effects on a
symmetric headform in a potential flow field.

• In the second part, the nuclei stability and nuclei screening is revisited. Bubble dynam-
ics is combined with a more complete equation of motion. The potential flow field is
described by a Kármán-Trefftz transformation. The model is applied on a propeller
blade section, yielding a non-symmetric foil at an angle of attack.

• The final part describes the applicability and needed adjustments of the model to
viscous flows. The effect of a roughness element on a profile is studied, and the com-
patibility of the model with solid nuclei is examined.





E L E M E N TA RY N U C L E I S TA B I L I T Y A N D
S C R E E N I N G

In the first part, the concept of nuclei stability and screening
is introduced by means of an elementary model involving
relations to describe growth and motion of nuclei.





2 Cavitation inception on a symmetric semi-infinite profile

In [2], a model is presented to estimate the influence of the trajectories of gas nuclei on
cavitation inception. The bubble dynamics have been approximated by a quasi-steady bub-
ble growth equation and the trajectory is calculated using a simple force balance method.
Replicating the results presented in [2] is therefore a good exercise to get acquainted with
a Lagrangian method. The layout of [2] will be adopted which leads to three main parts,
namely: Static stability of spherical gas bubbles, Bubble trajectory and Application to a two-
dimensional half body in an infinite fluid.

2.1 Static stability of spherical gas bubbles

The static stability of spherical gas bubbles, in the content of cavitation inception referred to
as nuclei or gas nuclei, is described by Eq. 2.1.

p− pv

p0 − pv
=
(

R0
R

)3 [
1 +

8
σvWe

(
1− R2

R2
0

)]
(2.1)

p is the local liquid pressure, pv is the vapor pressure of the liquid, p0 is the pressure at the
initial location, R0 is the initial radius of the nucleus, R is the current radius of the nucleus,
σv is the cavitation number, given in Eq. 2.2, and We is the Weber number, given in Eq. 2.3.
The derivation of Eq. 2.1 can be found in Appendix A.

σv =
p0 − pv
1
2 ρ f U2

0
(2.2)

We =
2ρ f U2

0 R0

γ
(2.3)

ρ f is the density of the liquid, U0 is the free stream velocity and γ is the surface tension.
Eq. 2.1 is the pressure balance on the bubble wall in semi-dimensionless form, and can be
solved for the radius, R. The solution of Eq. 2.1 is used to predict the nucleus growth, and
is given in Appendix A.
The Blake critical radius, Rcrit, can be found by means of Eq. 2.1, see Eq. 2.4. The derivation
of the critical radius can be found in Appendix A.

Rcrit = R0

√
3
(

Weσv

8
+ 1
)

(2.4)

Once the critical radius is reached the nucleus will grow exponentially, which is used as the
definition of cavitation inception in [2].
Along with the critical radius, a critical pressure can be derived, this pressure is called the
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Blake threshold pressure. The critical pressure leads to Eq. 2.5, which is derived in Appendix
A.

C∗p + σv = −
2σv

(
8

σvWe

)3/2

3
√

3
(

1 + 8
σvWe

)1/2
(2.5)

C∗p is the critical pressure coefficient. The definition of the pressure coefficient is given in Eq.
2.6.

Cp =
p− p0
1
2 ρ f U2

0
(2.6)

The bubble growth depends on the Weber number, the cavitation number and the pressure
coefficient. A lower cavitation number means that the nucleus will grow more easily. A lower
pressure coefficient and a higher Weber number also mean more growth.

2.2 Bubble trajectory

The equation of motion is constructed using a force balance on the bubble. The forces which
will be included in the equation of motion are the added mass force, the drag force and the
pressure force. The force balance is given in Eq. 2.7.

1
2

4
3

πR3ρ f
dwp

dt︸ ︷︷ ︸
Added mass force

=
1
2

ρ f (w −wp)|w −wp|CDπR2︸ ︷︷ ︸
Drag force

− 3
2

4
3

πR3∇p︸ ︷︷ ︸
Pressure force

(2.7)

wp is the velocity of the nucleus with components: wp =
[
up vp

]T
. w =

[
u v

]T
is the flow

velocity. ρ f is the density of the fluid. CD is the drag coefficient defined in Eq. 2.8. ∇p is the
pressure gradient.

CDRep

24
= 1 + 0.197Re0.63

p + 2.6 · 10−4Re1.38
p (2.8)

Rep is the nucleus Reynolds number, defined as Rep ≡
2R|w−wp|

ν f
, ν f is the kinematic viscosity

of the fluid.
The added mass force is due to the surrounding liquid which needs to be accelerated along
with the bubble. The drag force is due to the relative velocity of the bubble to the flow. The
pressure force is due to the pressure gradient in the flow in combination with the density
difference between the bubble and the liquid.
The force balance leading to the equation of motion is discussed in more detail in Chapter 6.
The elemental components of the total force balance have been used for this force balance.

The dimensionless form of the equation of motion can be found in Eq. 2.9.

dŵp

dt̂
=

18
R̂2Re f

RepCD

24
(ŵ− ŵp)− 3

2
∇Cp (2.9)
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Dimensionless variants of their dimensionfull counterparts are denoted by a hat. The inflow
velocity, U0, and the half ultimate body width, h, are used to non-dimensionalize. The di-
mensionless locations are denoted by the coordinate (x, y) for writing convenience. Re f is
the flow Reynolds number defined as: Re f ≡ U0h

ν f
, and Cp is the pressure coefficient.

2.3 Application to a two-dimensional half body in an infinite fluid

The flow field which will be used is a potential flow field. The benefit of a potential flow
field is that with the superposition of very basic elements an analytically defined flow field
can be found. The elements used in this case are uniform flow and a source at the origin. The
source strength is chosen such that the stagnation point is in (x, y) = (− 1

π , 0). The resulting
body shape is given in Eq. 2.10.

x = −y cot πy (2.10)

The flow velocities are given in Eq. 2.11.

û =1 +
1
π

x
x2 + y2

v̂ =
1
π

y
x2 + y2

(2.11)

Finally the pressure gradient is given in Eq. 2.12.

−
∂Cp

∂x
= − 2

π

x2 − y2 + x
π

(x2 + y2)2

−
∂Cp

∂y
= − 2

π

y
(
2x + 1

π

)
(x2 + y2)2

(2.12)

The full derivation of the flow field can be found in Appendix B. Using the velocity and the
pressure gradient Eq. 2.9 can be completed.
The flow field is visualized in Figure 2.1, the maximum pressure coefficient is Cp,max = 1 and
the minimum pressure coefficient is Cp,min = −0.58.
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Figure 2.1: Flow visualization via the pressure coefficient and the streamlines.

2.4 Solving the system of ODE’s

The resulting equations of motion are second-order coupled non-linear ODE’s, which can be
solved via numerical integration. Most of these numerical integration schemes are designed
to solve systems of first-order ODE’s efficiently, therefore the set of second-order ODE’s will
be reduced to a system of first-order ODE’s. The resulting order reduction can be seen in Eq.
2.13. For the derivation see Appendix C.

dz
dt̂

=


18

R̂2Re f

RepCD
24

[(
1 + 1

π
xp

x2
p+y2

p

)
− ẋp

]
− 3

π

[
x2

p−y2
p+

xp
π

(x2
p+y2

p)2

]
ẋp

18
R̂2Re f

RepCD
24

[(
1
π

yp

x2
p+y2

p

)
− ẏp

]
− 3

π

[
yp(2xp+ 1

π )
(x2

p+y2
p)2

]
ẏp

 , z =


ẋp

xp

ẏp

yp

 (2.13)

The numerical integration scheme which will be used is the Runge-Kutta scheme. This
scheme will be incorporated via the ode functions in MATLAB, since these have adjusted
time stepping, which speeds up the process significantly. At every time step the velocity and
position will be updated, just like the bubble radius and nucleus Reynolds-number.

Although no initial conditions on the velocities are mentioned by [2], zero initial condi-
tions seemed to be used. Changing the initial horizontal location (second Figure in [2]) is
only influential if these initial conditions are used, see Eq. 2.14.

z0 =


up,0 = 0
xp,0 = xp,0

vp,0 = 0
yp,0 = yp,0

 (2.14)
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2.5 Results

In this part, the results will be discussed and compared with the results of [2].

2.5.1 Variation of the initial vertical position

The effect of the vertical initial location on the nucleus path is examined first. The trajectory
of a bubbles with yp,0 = [0.01 0.02 0.05 0.1 0.2] is shown in Figure 2.2.
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bubble path
body
streamline
points from paper
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Figure 2.2: Trajectories with different initial height yp,0 = [0.01 0.02 0.05 0.1 0.2], U0 =
15.24 ms−1, h = 15.24 mm and R0 = 305 µm. The reference points are from [2].

The resulting trajectories compare quite good with the data from [2], however the trajectories
are overall slightly higher.

2.5.2 Variation of initial radius

The trajectories of a range of initial radii are being compared to the trajectories with the
same initial radii as in [2], see Figure 2.3.
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Figure 2.3: Nuclei trajectories with R̂0 = [0.24 0.12 0.08 0.04 0.02], U0 = 15.24 ms−1, h =
15.24 mm. The reference points are from [2].

It can be seen that the calculated trajectories deviates significantly from the reference points
in [2] in some cases (R̂0 = [0.12 0.08 0.04]). The trajectories with R̂0 = [0.24 0.02] (furthest
away from the body and closest to the body) are reasonably comparable. In Figure 2.3 the
screening effect can be seen, large bubbles do not grow exponentially due to the higher en-
countered pressures.

The dimensional radii used in [2] range from R0 = [300− 3658] µm. Compared to the range
found in [1] (R0 = [5− 500] µm) the nuclei are rather large. However, it shows the screening
effect clearly.

2.5.3 Varying the cavitation number

In [2] the cavitation number is changed from σv = 0.4 to σv = 0.2 and σv = 0.58. Changing the
cavitation number influences the growth of the nucleus. Assymptotic growth of a bubble,
which occurs past the critical radius, is called cavitation inception. The sixth Figure in [2]
shows the growth of a nucleus with different cavitation numbers. The growth of a nucleus
with different cavitation numbers can be seen in Figure 4(a).

The bubble growth of σv = 0.58 is slightly smaller than the nucleus growth calculated in [2]
with the same cavitation number ( Rmax

R0
≈ 2.6), see Figure 4(b). This is due to the slightly

higher trajectory which leads to encountering higher pressures. The corresponding trajecto-
ries can be seen in Figure 2.5.
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Figure 2.4: Comparison of the found variation of the size of a bubble with [2].

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Longitudinal position/half ultimate body with - x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
e

rt
ic

a
l 
p

o
s
it
io

n
/h

a
lf
 u

lt
im

a
te

 b
o

d
y
 w

id
th

 -
 y

Trajectories with different initial height

flow direction →

Location Cp
min

→

σ
v =0.2 

→
flow direction →

Location Cp
min

→

σ
v =0.4 

→flow direction →

Location Cp
min

→

σ
v =0.58 

→

bubble path

body

streamline

points from paper

cavitation inception point

Trajectories with di�erent cavitation number

Figure 2.5: Nucleus trajectories with different cavitation numbers, yp,0 = 0.01, U0 =
15.24 ms−1, h = 15.24 mm and R0 = 305 µm. The reference points are from [2]
with σv = 0.4.

The cavitation number can be controlled in experiments by changing the ambient pressure.
Changing the surrounding pressure however, influences the nuclei distribution. A lower
ambient pressure leads to larger bubbles and can, due to gravity, lead to a layered nuclei
spectrum in a horizontal test section. Near the headform, nuclei could be smaller than the
initially measured spectrum.

2.6 Influence of the discretization

The results found in the previous section are not the same as in [2]. A suggestion on the cause
of this discrepancy might be the temporal step involved in solving the coupled differential
equation. The time step is namely variable in this report. Another possible cause could be
the discretization scheme. The time step and solving procedure used in [2] are unknown.
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The Runge-Kutta method is named, but past the point where the trajectories are calculated.
To visualize the influence of the discretization scheme and the time step a forward Euler
discritization is used, see Figure 2.6.
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Figure 2.6: Nucleus path with a different discretization and a fixed time step, yp,0 = 0.01,
U0 = 15.24 ms−1, h = 15.24 mm and R0 = 305 µm. The reference points are from
[2].

The variations of the discretization and the time step rejects the hypothesis of a discrepancy
due to the discretization or time step. The trajectories will not get closer to the trajectory
found in [2]. The cause of the different results will thus remain unknown.



3 Scale effects in the cavitation inception model

Scale effects are examined within the limitations of the current model. The influence of
characteristic variables, h, U0 and R̂0 will be discussed.

3.1 Main dimensionless numbers

The trajectory and the nucleus growth are calculated simultaneously, therefore the scale ef-
fects can be subdivided into two categories, namely the scale effects on the trajectory and the
scale effects on the nucleus growth. To distinguish between these scale effects, the equivalent
Stokes number and the Weber number can be used. The equivalent Stokes number is given
in Eq. 3.1.

Stkeq =
R̂2Re f

18
(3.1)

The equivalent Stokes number measures the characteristic time scale of the particle relative to
the characteristic time scale of the flow, the derivation can be found in Appendix D. Since the
equivalent Stokes number has the radius of the nucleus in the definition, the nucleus growth
is affecting this number. Therefore, the equivalent Stokes number at the initial condition will
be used and is given in Eq. 3.1.

Stkeq0 =
R̂2

0Re f

18
(3.2)

The equivalent initial Stokes number will be used for the scale effects on the trajectory.
The Weber number is used for the scale effects on the growth of the nucleus. The most ade-
quate definition of the Weber number for this model has been given in [3] as:

”The dimensionless Weber number represents the ratio of disruptive hydrodynamic forces to the sta-
bilizing surface tension force. Hence, the Weber number indicates whether the kinetic or the surface
tension energy is dominant.”

According to [3], a higher Weber number means that the bubble is less stabilized by the
surface tension. A less stable bubble will deform easier, deformation can occur in the form
of changing shape and in the form of changing size. The changing shape can not be included
in the model. The Weber number will thus only be used to estimate radial changes, which is
a limit in the model. The Weber number in terms of the dimensionless initial radius is given
in Eq. 3.3.

We =
2ρ f U2

0 R̂0h
γ

(3.3)
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The equation of motion, given by Eq. 2.9, can be rewritten, using Eq. to Eq. 3.4.

dŵp

dt̂
=

R2
0

R2
1

Stkeq0

CDRep

24︸ ︷︷ ︸
determines normal distance

(ŵ− ŵp)− 3
2
∇̂Cp (3.4)

Where R2
0

R2 is a function of the Weber number and CDRep
24 is a function of both the equivalent

Stokes number at the initial condition and the Weber number. For Stokes flow the term
CDRep

24 will reduce to 1.
The trajectory of the nucleus follows from Eq. 3.4, and can only be altered if the term in
front of the relative velocity is altered. Which in turn can only be altered if either the Weber
number changes or the equivalent initial Stokes number. Shortly, if the term in front of the
relative dimensionless velocity decreases, larger relative velocities are allowed leading to
larger deviations from the streamline.
Deviations from the streamline or similarly normal distances from the body are of interest as
the nucleus encounters higher pressures if it is further away from the body. Screening occurs
when the bubble is pushed over the region where the pressure is low enough for the bubble
to induce cavitation inception.

3.2 Small nuclei in the Stokes limit

For small nuclei in the Stokes limit, the normal distance from the streamline is proportional
to the equivalent Stokes number. This can be seen in Eq. 3.4 as in the Stokes limit the drag

factor, CDRep
24 , is 1. The derivation of this analytical relation, based on [4] can be found in

Appendix E.
Small nuclei have an initial dimensionless radius that fulfills R̂0 < 0.002 for h = 15.24 mm
and U = 15.24 ms−1, see Appendix D. Eq. 3.4 has been checked using the normal with an
angle of α = 45◦ (see Figure 3.3). The streamline is approximately parallel to the body using
this normal and the largest pressure gradients have been encountered. In Figure 3.1, the
found normal distances as a function of the initial dimensionless nucleus radius along with
a fitted curve have been given. The fitted second order polynomial shows that indeed second
order behavior is found.
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Figure 3.1: Normal dimensionless distance from the body for h = 15.24 mm and U =
15.24 ms−1.

In Figure 3.2 the first order behavior regarding the flow Reynolds number has been checked.
The initial dimensionless nucleus radius is R̂0 = 0.002. As the flow Reynolds number in-
creases, the distance from the body tends to get first order 0.3 · 106 < Re f < 106. For very
low Reynolds numbers however, the nucleus would follow the streamline closer, the range
of flow Reynolds number of 0 < Re f < 0.3 · 106 will hardly be affected by screening, and
will thus not scale likewise.
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Figure 3.2: Normal dimensionless distance from the body for R̂0 = 0.002.

3.3 Dimensionless distance from body

For large initial bubble radii the scaling laws will be re-examined. The influence of the drag

factor , CDRep
24 , will be significant, as it deviates from 1.
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Both the equivalent initial Stokes number and the Weber number are altered by the half
ultimate body width, the free stream velocity and the initial dimensionless radius. First the
scale effects regarding the dimensionless distance from the body are examined. Four lines
normal to the body have been taken as a reference. The normal lines are determined by their
angle with respect to the −x-axis. An angle of 0◦ means the normal is taken at the stagnation
point. An angle of 90◦ is approached when x → ∞, see Figure 3.3.
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Figure 3.3: Outward normals used for the normal distances.
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In Figures 3.4-3.5 it can be seen that changing the half ultimate body width and changing
the free stream velocity yield the same result in the absence of nucleus growth. The only
influential factor is the initial equivalent Stokes number, in which via the flow Reynolds
number (see Eq. 3.1) the half ultimate body width and free stream velocity are causing equal
scale effects.
In the same Figures it can be seen that the growth of the nucleus reduces the normal distance
from the body. This is caused by the nucleus shrinking towards the body, making it follow
the streamline more closely when the repulsive pressure gradients are encountered.
The way the nucleus growth influences the normal distance from the body seems to be in-
dependent of the variable parameter. This yields that the magnitude of the Weber number
does not influence the nucleus growth in a significant way within the investigated range.
The Weber number does not react likewise to both parameters (linear increase when h is
increased and quadratic increase when U0 is increased), the normal distance however does.
The Weber number variation is irrelevant as the Weber number is large in both cases. A large
Weber number would mean significant change of shape, this effect can not be captured in
the model. In this range of large Weber numbers the deformation will mostly be shape wise.

Changing the initial dimensionless nucleus radius has been done in [2], see Figure 2.3. The
same steps in the initial dimensionless radius have been taken for both with and without
nucleus growth, see Figure 3.6. As discussed, the current model overestimates the results of
[2]. The nucleus growth reduces the distance to the body, this is due to the shrinking of the
nucleus towards the stagnation point.
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Figure 3.6: Comparison between [2] and the outcome of the model with and without nucleus
growth.

For the three main parameters, the half ultimate body width, the free stream velocity and
the initial dimensionless radius, holds that increasing them individually leads to a larger
distance from the body. Screening occurs on the larger (dimensionless) nuclei, see Figure
3.6, and is then influenced by the flow Reynolds number, see Figures 3.4-3.5. Screening is
thus an effect which could prevent larger nuclei from cavitating.

3.4 Characterization of cavitation inception

Cavitation inception occurs in many forms. For this model, distinction between off-body
cavitation inception and on-body cavitation inception is made. Off-body cavitation inception
occurs when the nucleus becomes unstable before the center of the bubble hits the body. On-
body cavitation inception occurs when the middle point of the nucleus hits the body before
the minimum pressure point and will get unstable when it travels along the body towards
the minimum pressure point.
The cavitation inception type (on- or off-body) is influenced by the cavitation number and is
different for different initial nuclei radii while the body size and the free stream velocity are
kept constant. This can be seen in Figure 3.7, the figure is similar to figure 7 in [2].
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Figure 3.7: Different kinds of cavitation inception as a function of the vapor cavitation num-
ber, with yp,0 = 0.01, U0 = 15.24 ms−1 and h = 15.24 mm.

Figure 3.7 will be explained by means of moving upward in the figure, for example at
σv = 0.4.
The lower limit depends on the minimum pressure the nucleus could encounter. This means
that the lower limit depends on the initial conditions. As a conservative estimate of this
lower limit Eq. 2.5 could be solved for the Weber number and thus the nucleus radius with
C∗p = Cpmin . This conservative lower limit is used in [2]. In other words, the nucleus is so
small that the surface tension keeps it stable even at the minimum pressure point. This is
the green region below the lowest limit.

The lower boundary between off-body cavitation inception and on-body cavitation incep-
tion declines for increasing cavitation number until on-body cavitation is the lower limit. In
case of on-body cavitation inception, the lower limit is not conservative as it is assumed that
the center of the bubble starts moving along the surface of the object towards the minimum
pressure point. When the cavitation number increases, bubbles which would cavitate for
lower cavitation numbers near the body remain stable and hit the body, after which they
eventually cavitate, leading to on-body cavitation. In practice, off- or on-body cavitation
events will not be clearly distinguishable since a cavitating nucleus near the surface would
hit the surface shortly after becoming unstable. Furthermore, the distinction between both
events is currently made based on the center of the bubble, meaning that the bubble inter-
face may already have hit the body.

The upper boundary between on-body cavitation inception and off-body cavitation incep-
tion inclines for increasing cavitation number. Larger nuclei will remain stable in lower
pressures and thus will have more chance of hitting the body before the minimum pressure
point. Again, in reality the distinction between both regions will be less clear.

The boundary between off-body cavitation inception and stable is declining since a nucleus
along the same trajectory will remain stable when the cavitation number is higher.

The resolution of Figure 3.7 makes that the upper triple point in this figure is not visible. The
upper on-body cavitation inception line, the upper off-body cavitation inception line and the
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stable line should intersect in one point. In this point a nucleus with a given initial height
will be screened just that much that the nucleus will hit the body exactly in the minimum
pressure point. Such a nucleus can be categorized as off-body cavitation inception and as
on-body cavitation inception, the slightest deviation in initial size could make the nucleus
stable, just as the slightest pressure disturbance.

3.5 Parameter study

The transition between different cavitation inception regions discussed previously depend
on the initial dimensionless height, the free stream velocity and the half ultimate body width.
To investigate the way in which Figure 3.7 is altered when any of these parameters is altered,
slices of Figure 3.7 will be made at two cavitation numbers, namely σv = 0.4 and σv = 0.55.

3.5.1 Initial dimensionless height

As the initial dimensionless height, y0, increases, less low pressures will be encountered by
the nucleus. Therefore, the range of nuclei available for cavitation inception will shrink. In
Figure 3.8 the effect of a higher initial position can be seen. A lower cavitation number leads
to a larger range of initial conditions in which the nuclei will cavitate. The range for on-body
cavitation inception however, shrinks for a lower cavitation number. This is in accordance
with Figure 3.7, at a lower cavitation number nuclei near the body will cavitate instead
of/before hitting the body.
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Figure 3.8: Influence of the initial dimensionless height on different types of cavitation
inception.

3.5.2 Free stream velocity

Increasing the free stream velocity increases the Weber number, nuclei are thus less sta-
ble, and especially smaller nuclei will get available for cavitation inception. Furthermore, a
higher velocity increases the equivalent Stokes number, leading to more screening in most
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cases, see Figure 3.5. Which leads to larger nuclei no longer being available for cavitation
inception. In Figure 3.9 the combined effects can be seen. A smaller cavitation number leads
to a wider range of available nuclei for cavitation inception. The vertical part of the lines is
caused by the transition from on- to off-body cavitation inception in the lower limit. This
can be seen in Figure 3.7 around σv ≈ 0.54.
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Figure 3.9: Influence of the free stream velocity on different types of cavitation inception.

3.5.3 Half ultimate body width

A larger half ultimate body width leads to a larger Weber number meaning less stable
nuclei with a constant dimensionless initial radius. However, the radii are shown in their
dimensionfull form. This means that the lower conservative limit will not be affected by
the half ultimate body width. This effect can be seen in Figure 3.10. Again, when σv = 0.4
the total range for off-body cavitation inception is larger than for σv = 0.55. The range for
on-body cavitation inception for σv = 0.4 is smaller than this range for σv = 0.55. Both
observations are in accordance with Figure 3.7.
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3.5.4 Flow Reynolds number

In Figure 3.9 and Figure 3.10 the effect of the flow Reynolds number on the nucleus size
available for cavitation inception is inconclusive. The free stream velocity and the half ul-
timate body width are namely both linear to the Reynolds number, but do not show the
same result. So, the resulting effect on the dimensionfull nucleus size of changing the flow
Reynolds number depends on how the flow Reynolds number is changed.
The effect of the flow Reynolds number on the dimensionless nucleus size is shown in Figure
3.11. The upper limit for off-body cavitation inception and the limits for on-body cavitation
inception are comparable for the free stream velocity and the half ultimate body width. The
lower off-body cavitation inception limit however, differs significantly. The lower limit is
fully determined by the stability via the Weber number, in which the free stream velocity
(quadratic) and the half ultimate body width (linear) are not equivalently taken into account.
The three limits determined largely by screening effects are thus insensitive to the way in
which the flow Reynolds number is changed as far as the dimensionless nucleus size is
concerned, whereas the limit determined by the nucleus stability shows different results for
different ways of altering the flow Reynolds number.
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3.6 Comparison with literature

Scale effects on cavitation and cavitation inception have been the subjects of many studies
([4],[5],[6],[7]). The mentioned studies focus on the cavitation event rate. The cavitation event
rate is the count of measured cavitation occurrences [s−1]. The occurrence of cavitation in
experiments is highly dependent on the nuclei spectra available in the oncoming flow, some-
thing which has been left out of the consideration thus far. Measuring the cavitation event
rate can be done in a variety of ways, via sound, images or as done by [5] and [6] via elec-
trodes in the headforms surface.

The cavitation event rate is dependent on the pressure distribution and thus on the shape of
the object, as discussed in [7] (figure 4). The object used by [4],[5],[6] is a Schiebe headform,
which is a frequently used headform in cavitation studies. The Schiebe headform is blunt
compared to the body used thus far.

The number of cavitation occurrences measured should be directly relatable to the number
of cavitation inception occurrences. Lowering the cavitation number leads to more cavita-
tion events [5] (Figure 4). This would be expected when looking at Figure 3.7. The cavitation
occurrence is measured at the surface. The occurrence of cavitation inception on the sur-
face and the occurrence of cavitation on the surface are not directly relatable as cavitation
inception in the flow can cause cavitation on the surface.





C O N F O R M A L T R A N S F O R M AT I O N S , B U B B L E
D Y N A M I C S A N D T H E E Q U AT I O N O F M O T I O N

In the second part the nuclei stability will be implemented
using a bubble dynamics equation and the screening effect
is evaluated in more detail. Non-symmetric conditions are
constructed using conformal mapping.





4 Flow field

The flow field is crucial to the motion of the nucleus. Thus far the flow field has been
potential flow around a semi-infinite half body. To be able to alter the flow field and be
computationally efficient conformal mapping is convenient. The Kármán-Trefftz transform
is a conformal transformation which can yield airfoil like shapes with finite trailing edge an-
gles. The Kármán-Trefftz transform (given in Appendix D from the Fluid Dynamics Lecture
Notes by H.W.M. Hoeijmakers) is defined in Eq. 4.1.

z = 2a
1 + f (ζ)
1− f (ζ)

Where f (ζ) =
(

ζ − a
ζ + a

)n

(4.1)

In the z-plane the transformed flow field is the solution. In the ζ-plane, the potential flow
solution around a cylinder in 2D is used. Both planes are complex. a is the location at which
the cylinder crosses the ξ-axis in the ζ-plane, and thus given by a =

√
R2

cyl − η2
0 − |ξ0|. Rcyl is

the radius of the cylinder, and ζ0 = ξ0 + iη0 is the middle point of the cylinder. The location
of the middle point of the cylinder is usually in the top left quarter plane and determines the
thickness (ξ0) and the camber (η0) of the foil. Finally, n determines the trailing edge angle
(αte) as: n = 2− αte

π . If n = 2 the Joukowski transform is retrieved.

To transform the velocity the derivative of the transform is required, see Eq. 4.2.

W =
W̃
dz
dζ

Where
dz
dζ

=
8na2 f (ζ)

(ζ2 − a2)(1− f (ζ))2 (4.2)

The velocity in the transformed z-plane is W = u− iv and the velocity in the computational
ζ-plane is W̃ = uξ − ivη . The minus signs are the consequence of preserving the complex
potential.

The flow in the computational frame is described by the potential in polar coordinates given
in Eq. 4.3.

φ = U0

(
r +

R2
cyl

r

)
cos (θ − α)− Γ

2π
θ (4.3)

In Eq. 4.3 α is the angle of attack of the flow. Γ is the circulation which is conserved within the
transformation, meaning that the cylinder produces as much lift as the foil. The circulation
is set such that the stagnation point of the cylinder gets transformed to the trailing edge
of the foil, and thus fulfilling the Kutta condition. The circulation therefore depends on the
angle of attack and the camber, see Eq. 4.4.

Γ = −4πRcylU0 sin
(

sin−1 (
−η0

Rcyl
− α)

)
(4.4)

The resulting flow field can be seen in Figure 4.1
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Figure 4.1: The flow field as a result of the Kármán-trefftz transform with Rcyl = 0.1 m, ξ0 =
0.01 m, η0 = 0.01 m, αte = 10◦ and α = 2.5◦.

The pressure coefficient in the z-plane can be calculated using Eq. 4.5.

Cp = 1− u2 + v2

U2
0

(4.5)

The pressure gradient is determined numerically via Eq. 4.6. The scheme is second order
accurate except when the body is within range of ∆x = ∆y = h the scheme works in one
direction, and is therefore first order. h should be small compared to the length scale of the
flow.

dCp

dx
≈

Cp,x+∆x − Cp,x−∆x

2∆x
,

dCp

dy
≈

Cp,x+∆y − Cp,x−∆y

2∆y
(4.6)

As the flow field is still potential flow viscous effects can not be taken into account.



5 Bubble dynamics

5.1 Rayleigh-Plesset equation

The well known Rayleigh-Plesset equation (Eq. 5.1) can be used to describe the bubble dy-
namics.

ρ f

[
R

d2R
dt2 +

3
2

(
dR
dt

)2
]

= pv − p + pg(t)− 2
γ

R
−

4µ f

R
dR
dt

(5.1)

The derivation of Eq. 5.1 is based on the mass conservation equation and the Navier-Stokes
equations. In the derivation a spherical nucleus is assumed. The derivation can be seen in
Appendix F.

5.2 The general Keller-Herring equation

The Rayleigh-Plesset equation does only include viscous damping. To derive the Rayleigh-
Plesset equation an undisturbed flow field near the nucleus is assumed, meaning that par-
ticularly during the collapse of a nucleus the radiation of a sound wave is omitted. In the
general Keller-Herring equation the energy loss due to the emitted sound wave is taken into
account. The general Keller-Herring equation is derived in Appendix F. The outcome can be
seen in Eq. 5.2.

(
1− (λ + 1)

dR
dt
c

)
ρ f R

d2R
dt2 +

3
2

(
dR
dt

)2

ρ f

(
1− (λ +

1
3

)
dR
dt
c

)
=(

1 + (1− λ)
dR
dt
c

) [
pv − p + pg(t)

]
+

R
c

dpg(t)
dt
− 4µ f

dR
dt
R
− 2γ

R

(5.2)

The speed of sound in water is taken into account in Eq. 5.2 as c = 1481 ms−1.
If the factor λ = 0 the Keller-Miksis equation is found, and if λ = 1 the equation used by
Herring and Trilling is found, λ will be 0 unless mentioned otherwise.
Both the derivation of the Rayleigh-Plesset equation and the derivation of the general Keller-
Herring equation is supported by [8] and [9]. The equation of state for a perfect gas will be
used for the gas pressure (pg(t)) in the nucleus.





6 Equation of motion

The equation of motion will be discussed in this chapter term wise. The equation of motion
is based on the force balance on the nucleus, the terms are thus different forces. Forces due
to unsteadiness or due to viscous effects in the flow are not discussed as potential flow is
assumed.

6.1 Mass of the nucleus

The mass of the nucleus is particularly influential when the nucleus is a solid particle with
a higher density than the surrounding fluid. The mass of a nucleus is defined in Eq. 6.1.

mp = ρp
4
3

πR3
0 (6.1)

The mass of a gas nucleus will thus not change when the volume changes as no mass trans-
fer is assumed. In the case of a gas nucleus the mass term will be negligible, but is still taken
into account as the equation of motion will be suitable for both solid particles and gas nuclei.

The force as a consequence of the mass of the nucleus and is given in Eq. 6.2.

Fm = mp
dwp

dt
(6.2)

6.2 Kelvin impulse

From impulses forces can be derived. The Kelvin impulse is mentioned specifically as an
impulse as it is related to the collapse of gas nuclei. The definition of the Kelvin Impulse
([10],[11]), I, can be seen in Eq. 6.3.

I = ρ f

x

S

φndS (6.3)

Where φ is the velocity potential, n is the inward unit normal of the nucleus and S is the
surface of the nucleus. For a moving spherical nucleus in an infinite fluid the resulting
Kelvin impulse can be found in Eq. 6.4.

I = Camρ f
4
3

πR3(w−wp) (6.4)

In which Cam is the added mass coefficient. The added mass coefficient depends, among
others, on the distance from the wall ([12],[13],[14],[15],[16]). The assumption of an infinite
fluid will thus be critical when the nucleus gets near the object in the flow. The dependency
of the added mass of a spherical nucleus approaching the wall, [12], can be seen in Figure
6.1.
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Figure 6.1: Emperical relation for the added mass as a function of the normal distance from
the wall, Dn.

It can be seen that the coefficient of added mass starts to deviate significantly from Cam = 1
2 ,

which is the limiting value for a nucleus in an infinite fluid, when the nucleus is approxi-
mately two times the radius of the nucleus away from the body. If the nucleus is in contact
with the body the coefficient of added mass goes to the limiting value of Cam(Dn = R) = 0.803
([12]).
The coefficient of added mass will be taken to be Cam = 1

2 , it needs to be taken into account
that the Kelvin impulse given in Eq. 6.4 will not hold near the wall. The Kelvin impulse
near the wall is the subject of many studies as it is associated with the jet towards the wall
from a collapsing nucleus [11]. The forces following from the Kelvin impulse can be found
by differentiating the Kelvin impulse with respect to time whilst assuming a constant Cam,
see Eq. 6.5.

dI
dt

= Camρ f
4
3

πR3 d(w−wp)
dt

+ Camρ f 4πR2 dR
dt

(w−wp) (6.5)

The influence of the Kelvin impulse on the motion of nuclei can be illustrated by the conser-
vation of only the Kelvin impulse, see Eq. 6.6.

I1 = I2 → R3
1Ur,1 = R3

2Ur,2 → Ur,2 =
(

R1

R2

)3

Ur,1 (6.6)

In this case, Ur is the relative one-dimensional velocity, and the subscripts 1 and 2 corre-
spond to time t1 and time t2 respectively. If the nucleus shrinks, the magnitude of the rela-
tive velocity increases. If the nucleus grows, the magnitude of the relative velocity decreases.

The first term on the right-hand side of Eq. 6.5 can be splitted into two forces, see Eq. 6.7.

Camρ f
4
3

πR3 d(w−wp)
dt

= Camρ f
4
3

πR3 dw
dt
− Camρ f

4
3

πR3 dwp

dt
(6.7)
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The first term on the right-hand side will be discussed along with the pressure force. The
force due to the Kelvin impulse is given in Eq. 6.8.

FI = −Camρ f
4
3

πR3 dwp

dt
+ Camρ f 4πR2 dR

dt
(w−wp) (6.8)

Using the Kelvin impulse in the equation of motion implies that the Kelvin impulse is being
conserved within the equation of motion. The latter is questionable during violent collapses,
as the Kelvin impulse is related to flow features related to collapsing nuclei ([10],[11]). Both
during collapse ([11]) and the growth ([17]) of a rising nucleus the acceleration and deceler-
ation of the nucleus were observed respectively. Which is an effect of the conservation of the
Kelvin impulse within the equation of motion. The fine line between conservation within the
equation of motion and conservation within the flow field will yield a condition at which
the equation of motion needs to be altered. However this effect will not be incorporated as
it is assumed to be marginal. The time in which the Kelvin impulse will not be conserved
within the equation of motion is characterized by the Raleigh collapse time, which is much
smaller than the particle response time.

6.3 Drag force

The drag force is given in Eq. 6.9.

FD =
1
2

ρ f CDπR2(w−wp)|w−wp| (6.9)

The drag force dependents on the drag coefficient, CD. The drag coefficient depends on the
shape of the nucleus, the interaction between the interior of the nucleus and the surrounding
fluid and on the Reynolds number of the nucleus.

6.3.1 Shape

A solid nucleus will be assumed to be spherical which will in general not be the case. Fur-
thermore, the possible roughness is not taken into account.

The shape of a gas nucleus depends on the surface tension, the pressure gradient in the
flow and the relative acceleration of the nucleus.
The surface tension tries to prevent the nucleus from deforming into a shape other than
spherical. A relatively high surface tension force will result in (close to) spherical nuclei.
The pressure gradient depends among others on the shape of the object in the flow. The
direction and the magnitude of the pressure gradient partially determines the shape of the
nucleus. Under a constant pressure gradient and at the terminal velocity, the shape of gas nu-
clei can be predicted. Many studies have focused on nuclei rising under gravity at terminal
velocity ([18],[19],[20]). Gravity is then the constant pressure gradient. The Eötvös number,
given in Eq. 6.10, is a measure for the deformation of rising gas nuclei.

Eo =
4g(ρ f − ρp)R2

γ
(6.10)
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Based on the Eötvös number corrections on the drag relations for gas nuclei have been
proposed ([19],[20]). For more general pressure gradients, the counterpart of the Eötvös
number, the modified Eötvös number (Eo′), can be written as in Eq. 6.11 if the density of the
nucleus is neglected.

Eo′ =
4|∇p|R2

γ
(6.11)

The larger the modified Eötvös number the more deformation on the basis of the pres-
sure gradient can be expected. The modified Eötvös number can be related to the nucleus
Reynolds number and the Weber number as can be seen in Eq. 6.12.

Eo′ = WeRe2
p

|∇p|ν2
f

2R0U2
0 ρ f |w−wp|2

= WeRe2
p

|∇Cp|ν2
f

2R0|w−wp|2
(6.12)

The pressure gradient is mostly responsible for the change in the square of the relative veloc-
ity. Therefore, it is assumed that the modified Eötvös number is proportional to the square
of the nucleus Reynolds number, Eo′ ∝ Re2

p.

The (relative) acceleration of a gas nucleus can make a nucleus deform. As a nucleus ac-
celerates it will generally stretch, if a nucleus decelerates it will contract. The effect of ac-
celeration can be seen in [21]. Nuclei will accelerate or decelerate in particular when the
pressure gradient is large, therefore it is assumed that the modified Eötvös number is also
a quantitative measure for the deformation caused by acceleration. Note that the following
only holds when the external pressure is held constant.

Concluding, the shape of a gas nucleus can not be predicted as too many factors influence
the deformation of a nucleus. The modified Eötvös number however can give a qualitative
prediction of the error made due to the deformation of the nucleus (large modified Eötvös
number means large deformations).
As far as the drag relation concerned the nucleus is assumed to be spherical along its com-
plete trajectory, there will be no correction on the sphericity. This is in accordance with the
assumptions made to derive the gas nucleus dynamics equation.

6.3.2 Interface interactions

Interface interactions between a solid nucleus and the flow are taken into account in the
drag relation (see Eq. 6.15).

Gas nuclei can be categorized as clean or contaminated nuclei.
An example of a clean gas nucleus is an air bubble in ultra pure water. Clean nuclei have
a mobile interface, as the liquid is free to slip along the interface as the gas will not resist
this slip. The mobility of the interface is crucial in the drag relation as a mobile interface
prevents the no-slip boundary condition to be enforced. If the liquid can flow undisturbed
along an interface there will be no build up of a boundary layer, which decreases the drag
significantly. The remaining drag is due to the pressure difference and is approximately 2

3 of
the drag of a solid sphere. Drag relations for both non-deforming gas nuclei and deforming
gas nuclei can be found in Eq. 6.13 and Eq. 6.14 respectively.
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A contaminated nucleus will have a less mobile or immobile interface. Surfactants are partic-
ularly viable to cause interface immobility, even in very low concentrations. The surfactants
will build up in the interface and will be transported initially along the interface to the rear
of the nucleus. At the location where the concentration of the surfactant is high, the surface
tension is lower. The liquid at the boundary is pulled towards the higher surface tension
regions. This flow is counteracted by the movement of the nucleus, and will eventually if the
water is sufficiently contaminated reach an equilibrium at which the boundary of the nucleus
is immobile. The described effect is a consequence of the Marangoni effect ([18],[20],[22]), see
Figure 6.2. The immobility of the interface leads to the build up of a boundary layer just as
it would with a solid sphere. The drag force for a contaminated spherical gas nucleus will
thus be close to that of a solid sphere.

The presence of surfactants at the interface of a nucleus will influence the (local) surface
tension of the nucleus, this effect is however not taken into account.

←
Nucleus direction

Concentration high
Surface tension low

Concentration low
Surface tension high

Figure 6.2: Visual interpretation of the Marangoni effect for a moving nucleus.

It will be assumed that the nuclei will be contaminated as the tests will not be conducted
in ultra pure liquids, furthermore in real applications like the propeller of a ship the nuclei
will surely be contaminated.
If nuclei grow fast the surface concentration of surfactants can be temporarily lower. This
effect will also not be taken into account.

6.3.3 Nucleus Reynolds number

The dependency of the drag force on the Reynolds number of the object is well known. The
drag coefficient for an uncontaminated non deforming gas nucleus is given in Eq. 6.13.

CD =
16

Rep

1 +
2

1 + 16
Rep

+ 3.315√
Rep

 (6.13)
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The drag coefficient for an uncontaminated deforming nucleus (due to gravity) can be found
in Eq. 6.14 ([19]).

CD =

√√√√√
 16

Rep

1 +
2

1 + 16
Rep

+ 3.315√
Rep


2

+
{

3Eo
Eo + 9.5

}2

(6.14)

If the Eötvös number is taken as Eo = 5 · 10−6Re2
p a good comparison with [23] is found.

The drag coefficient for a solid sphere is given in Eq. 6.15 (by Langmuir and Blodgett).

CD =
24

Rep

(
1 + 0.197Re0.63

p + 2.6 · 10−4Re1.38
p

)
(6.15)

Improved versions of Eq. 6.15 are widely available, however the same drag relation will be
used as in the previous chapter.

The different drag relations are shown in Figure 6.3.
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Spherical solid particle
Clean non deforming bubble

Figure 6.3: red line Eq. 6.13, blue line Eq. 6.14 with Eo = 5 · 10−6Re2
p, green line Eq. 6.15.

Background taken from [23] chapter 5.

As stated before the nuclei are assumed to remain spherical, as the shape of the nuclei is
hard to predict and will in general not reach a quasi-steady state. In Eq. 6.14 the nuclei
will deform towards spherical caps at their terminal velocities, and is therefore surely not
suitable. A spherical nucleus drag relation (Eq. 6.13) neglects the build up of a boundary
layer and is therefore not relevant. The more contaminated the liquid the more the nuclei
will start to behave like solid particles drag wise. And thus, the spherical solid particle drag
relation is used for the calculations. As the modified Eötvös number is large (and thus the
nucleus Reynolds number) the drag relation will no longer properly describe the drag force.

A last note on the drag relation is that preferably the drag factor ( CDRep
24 ) should not be

singular when it is differentiated with respect to the nucleus Reynolds number and then
Rep = 0 is filled in, as this could lead to singularities in more involved history force terms.
For this report this has not led to problems, however this needs to be kept in mind for
possible future research.



Equation of motion 37

6.4 Pressure force

The pressure force is the force due to the pressure gradient. The pressure gradient is a body
force working on the volume of the nucleus. The pressure force is given in Eq. 6.16.

Fp = −4
3

πR3∇p (6.16)

The pressure gradient in potential flow and whilst neglecting the gravitational acceleration
is given as ∇p = −ρ f

Dw
Dt . There is some discussion [24] on using the material derivative for

the pressure gradient and if it should be used in Eq. 6.5. The usual convention is to take the
first term on the right-hand side in Eq. 6.7 and add it to the pressure force, meaning that
the material derivative will be used. Physically this makes sense as the pressure force works
on the nucleus and its added mass. The resulting pressure force corresponds to most force
balance based equations of motion, and is given in Eq. 6.17. Note that the pressure gradient
force is thus partly due to the Kelvin impulse.

Fp = − (1 + Cam)
4
3

πR3∇p (6.17)

6.5 Gravity

The force due to gravity is given in Eq. 6.18.

Fg =
4
3

πR3
0g(ρp − ρ f ) (6.18)

The mass of the nucleus is constant, thus the gravitational force is constant. g is a vector

which operates in the vertical direction with components g =
[

0
−9.81

]
if a standard Cartesian

coordinate system is used.

6.6 History force

The history force is a consequence of the lagging build up of both the boundary layer and
the wake of the nucleus. The history force can therefore be best understood as the non quasi-
steady drag force, thus as the unsteady part of the drag force.
The history force is assumed to be negligible in many gas nucleus motion related studies
([13],[14],[17],[25],[26]), however as the nuclei involved will be contaminated with surfac-
tants, and thus builds up a boundary layer and wake neglecting the history force is not an
option. If a boundary layer builds up, the history force might be neglected when the relative
acceleration will be sufficiently small, this will in this pressure gradient driven equation of
motion not be the case.

The history force for the Stokes limit is given by the Basset force, see Eq. 6.19.

FBas = −6πR(t)µ f

∫ t

−∞
KBas(t, τ)

dw̄
dτ

dτ Where: KBas(t, τ) =
1√
4π

1√
TH(t, τ)

(6.19)
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The relative velocity, w̄ is defined in Eq. 6.20.

w̄(t) ≡ wp(t)−w(xp(t), t) (6.20)

The temporal derivative of the relative velocity is given in Eq. 6.21, the gradient in either x
or xp might be interchanged as the coordinate system is the same.

dw̄
dt

=
dwp

dt
−
(

wp · ∇w +
∂w
∂t

)
(6.21)

For steady flow fields the ∂w
∂t will cancel. Note that wp · ∇w + ∂w

∂t is not the total derivative.

The Basset history force is only valid for low nuclei Reynolds numbers. For Stokes flow
the kernel of the history force decays with the square root of the history time. The history
time for the Basset kernel is defined as TH = t−τ

τd
, where τd = 4R2

ν f
. τd is the diffusive timescale

of the nucleus. The general form of the history force can be recognized by the Basset history
force, see Eq. 6.22.

FH = −6πR(t)µ f

∫ t

−∞
K(t, τ)

dw̄
dτ

dτ (6.22)

The factor prior to the integral can be recognized as Stokes drag per unit velocity, thus the
integral can be interpreted as a correction of the velocity used in the drag relation. In [28] it
is shown that the history force can be modeled as a fraction of the drag force (under specific
conditions), strengthening the idea of a velocity correction.

For a wider range of nucleus Reynolds numbers, history forces that model the physics
more accurate are available ([27],[28]). The forces differ in their respective kernel, K(t, τ).
In general, a history force kernel can be described as in Eq. 6.23.

K(t, τ) =
a(t, τ){

b(t, τ) [TH(t, τ)]
1
4 + c(t, τ)TH(t, τ)

}2 (6.23)

In Eq. 6.23 a(t, τ), b(t, τ), c(t, τ) are kernel dependent factors. The history time is TH(t, τ), it
can be seen that for small history times (assuming b(t, τ)and c(t, τ) are of the same order)
the history kernel decays with the square root of the history time. For larger history times
the history kernel decays quadratically with the history time. In other words, the near past
has a more significant influence than the far past. The factors b(t, τ) and c(t, τ) should be
tuned such that the history kernel describes the decay of the relevance of the prior relative
acceleration correctly.
For the Basset kernel the kernel dependent factors are: a(t, τ) = 1√

4π
, b(t, τ) = 1 and c(t, τ) = 0.

There is thus no distinction between far past and near past in the Basset history force, this
can either lead to an overestimation (most cases) or an underestimation (special cases with
high relative Reynolds numbers [29], due to a(t, τ), b(t, τ) and c(t, τ)) of the actual history
force.

Other history forces have been proposed, a fairly complete summary of the proposed his-
tory kernels can be found in [27] along with an updated history kernel. In [28] the kernel
found in [27] is updated once more and can be found in Eqs. 6.24-6.28. This kernel will be
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mentioned as it would be the most complete kernel to implement, it has however not been
implemented.

K(t, τ) =
4
π

fH(t, τ)[
[g(t, τ)TH(t, τ)]

1
4 + Rep(t)TH(t, τ)

]2 (6.24)

The history factor fH is defined as in Eq. 6.25, fD(t) = CDRep
24 is the drag factor.

fH(t, τ) =
3
4

π[ fD(t) + Rep(t) f ′D(t)] f ′D(τ) (6.25)

The factor g(t, τ) is determined such that it retains the basset kernel in the Stokes’ limit and
that it matches the experimental data.

g(t, τ) = 36π( f ′D(τ))2

1 +

[
h(τ)[Rep(τ)]2

Rep(t)TH(t, τ)

∫ t

τ

dRep fD

ds
ds

]2
 (6.26)

Where h(τ) is defined as:

h(τ) =
[
1− e−(0.03Re(τ))2

]{
Rep(τ)

(
11.5 f ′D(τ)

fD(τ)

)6

+
( f ′D(τ))6

4

}
(6.27)

The history time TH(t, τ) is given in Eq. 6.28 and yields the Basset history time for τ → t.

TH(t, τ) =
1
τd

∫ t

τ

Rep(s)
Rep(t)

ds (6.28)

Finally the drag factor, fD, and the derivative of the dragfactor with respect to the Reynolds
number, f ′D, are needed.
From Eq. 6.24 the structure presented in Eq. 6.23 can clearly be seen, a(t, τ) = 4

π fH(t, τ),

b(t, τ) = [g(t, τ)]
1
4 and c(t, τ) = Rep(t).

The complete history kernel shows that the drag factor and its dependency on the nucleus
Reynolds number is important. A history force which is based on the drag factor can incor-
porate the effects which can be incorporated in the drag force. Thus if the shape of a nucleus
depends on the Reynolds number and can therefore be captured in the drag relation, the
history force can incorporate this dependency. The shape incorporation in the drag relation
can not be done in this case as discussed previously.
The history time, TH(t, τ), is based on the prior nucleus Reynolds numbers and can only
increase as the Reynolds number is always positive.

The experiments on which the kernel is based are experiments of settling spheres in a liquid.
The decay of the history force is therefore based on a uni-directional approach. When the
nucleus would change direction the build up of the boundary layer differs from the case of
uni-directional accelerating nucleus. And the decay of the history force might be different
from what is expected.

As the implementation of the kernel presented in Eqs. 6.24-6.28 is labour intensive and
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can not assure more accurate results, as the underlying assumptions of spherical gas nuclei
and the drag relation of a solid sphere are by far not as accurate as the description of the
history kernel, the kernel presented in Eqs. 6.24-6.28 will not be implemented.
To estimate the contribution of the history force the kernel presented by Mei et al. in [27] will
be used. This kernel differentiates between long and short history times and can therefore
be used to roughly estimate the impact of the actual history force. The kernel can be found
in Eq. 6.29.

K(t, τ) =
KBas(t, τ)1 +

[
1

42π

(
Rep(t)

KBas(t,τ)

)3
1
fH

] 1
c1


c1

Where: fH =
(
0.75 + c2Rep(t)

)3 (6.29)

The Basset kernel, KBas(t, τ), is given in Eq. 6.19. The factors c1 and c2 are found by Mei et al
on a semi-analytical basis as: c1 = 2 and c2 = 0.2. When c1 = 2 is taken the structure given in
Eq. 6.23 can be recognized. To fit the experiments better the coefficients c1 and c2 have been
found to be c1 = 2.5 and c2 = 0.105 by Loth and Dorgan. The latter will be used to estimate
the history force. The implementation will be relatively simple and due to the decay the
kernel will not over predict the history force systematically.

6.7 Total equation of motion

The equation of motion can be found by summing all forces, see Eq. 6.30.

Fm = ∑ Fon nucleus = FI + FD + Fp + Fg + FH (6.30)

The forces taken into account are described and lead to Eq. 6.31.

ρp
4
3

πR3
0

dwp

dt
=− Camρ f

4
3

πR3 dwp

dt
+ Camρ f 4πR2 dR

dt
(w−wp)

+
1
2

ρ f CDπR2(w−wp)|w−wp|− (1 + Cam)
4
3

πR3∇p

+
4
3

πR3
0g(ρp − ρ f )− 6πRµ f

∫ t

−∞
K(t, τ)

dw̄
dτ

dτ

(6.31)

Rewriting Eq. 6.31 gives Eq. 6.32, in which an equation of motion can be recognized.

dwp

dt
=

1
ρp

4
3 πR3

0 + Camρ f
4
3 πR3

{
Camρ f 4πR2 dR

dt
(w−wp)

+
1
2

ρ f CDπR2(w−wp)|w−wp|− (1 + Cam)
4
3

πR3∇p

+
4
3

πR3
0g(ρp − ρ f )− 6πRµ f

∫ t

−∞
K(t, τ)

dw̄
dτ

dτ
} (6.32)

The upper boundary of the history integral requires dwp
dt , in Chapter 8 it will be discussed

how this is circumvented



7 Impact Model

7.1 Gas nucleus

An impact model for a gas nucleus will be included in the equation of motion. In the litera-
ture impact models regarding gas nuclei rising under gravity against a flat plate have been
developed ([12],[30]). These models are based on the film drainage of the film between the
plate and the nucleus. The film drainage force is a repulsive force since the pressure in the
film increases. The result of this force is the bounce of the nucleus. The results found in [12]
can be seen in Figure 7.1.

Figure 7.1: Result of the impact model by [12].

In Figure 7.1, the position of the nucleus as a function of time can be seen on the right axis.
The nucleus hardly bounces, as the distance from the middle of the nucleus to the plate
changes far less than the radius of the nucleus. Furthermore the small bounce damps out
fast.

The film drainage on which the repulsive force of the impact model is based will not be
included as the film between an object and a nucleus in a non-quiescent flow field will con-
sist of the boundary layer of the object. The effects of viscous and turbulent flow features
are left out of consideration. Near boundary layers the lift force would possibly be a more
relevant repulsive force than the film drainage force.

Using a normal force in the impact model is an option, however as the nucleus hits the
body the definition of the normal force is undefined. This could be circumvented using a
force during the time step prior to the moment of impact. In practice, this would mean that
once the impact is registered the equation of motion during the prior time step will be ad-
justed so that in that time step the nucleus will stop moving in the normal direction to the
body. Implementing an impact model based on a normal force benefits from the fact that
the normal equation of motion can hold along the body surface. The implementation of this
impact model is however impractical and will need control over the time step prior to the
impact. Furthermore, the impact model will usually be relevant past the point of cavitation
inception, so past the most interesting point for this research. And finally, gas nuclei will



42 Impact Model

deform under the force during impact which can not be taken into account.
Implementing an impact model based on the normal force will be labor intensive and can
not guarantee better results.

The impact model of choice is based on the observation that the nucleus hardly bounces
(see Figure 7.1). It is assumed that once the nucleus hits the body the nucleus follows the
streamline of its middle point. This is as long as the nucleus does not change size. When the
nucleus has hit the body and grows the velocity of the nucleus will be that of the streamline
of the center together with the normal velocity following from the growth of the nucleus.
When the nucleus shrinks the nucleus will get back in the flow and therefore the normal
equation of motion holds again.
Clearly, this impact model violates the equation of motion when the nucleus grows along
the surface. The equation of motion will in practice however be ”checked” regularly since
the nucleus will normally move towards the high-pressure region near the stagnation point
of the trailing edge. The presented impact model is easy to implement as the velocity of the
streamline is known and the growth of the nucleus is calculated anyway using a gas nucleus
dynamics equation.

7.2 Solid

For a solid particle the same impact model as that for a gas nucleus is implemented. Since a
solid particle will not change size the solid particle will follow the streamline once it has hit
the body.

If the impact of a solid particle would have been implemented more precisely using the
coefficient of restitution the result would not have been better for sure as the effects of the
shape and the boundary layer are omitted anyway.



8 Solving procedure

Eq. 5.2 and Eq. 6.32 form the set of non linear coupled second order differential equations
which needs to be solved. Within this set of equations the impact model will be imple-
mented.

8.1 History force

To solve the equations of motion, dealing with the history force is important. The integral
given in Eq. 6.22 is repeated in Eq. 8.1.

− FH

6πR(t)µ f
=
∫ t

−∞
K(t, τ)

dw̄
dτ

dτ (8.1)

The lower boundary of the integral shows the need for the total history of the nucleus. To
circumvent needing the total history, the integral can be splitted as in Eq. 8.2.

∫ t

−∞
K(t, τ)

dw̄
dτ

dτ =
∫ t0

−∞
K(t, τ)

dw̄
dτ

dτ +
∫ t

t0

K(t, τ)
dw̄
dτ

dτ (8.2)

Where t0 is the initial time. Assuming that prior to t0 no relative acceleration has taken place
yields no contribution of the first term on the right hand side of Eq. 8.2. This imposes a
restrain on the initial conditions. The initial velocity must be equal to the flow velocity at
the initial location, wp(t0) = w(xp(t0), t0).

The upper boundary of the integral leads to a history time of TH = 0, as can be seen by
the general form of the history kernel, Eq. 6.23. This leads to singularities. Furthermore,
filling in the upper boundary of the integral requires the current relative acceleration. To
circumvent both problems the remaining integral will be split once more, see Eq. 8.3.

∫ t

t0

K(t, τ)
dw̄
dτ

dτ =
∫ t−∆tn

t0

K(t, τ)
dw̄
dτ

dτ +
∫ t

t−∆tn

K(t, τ)
dw̄
dτ

dτ (8.3)

∆tn is the nth time step. The second part on the right hand side of Eq. 8.3 will be approxi-
mated. First, the relative acceleration over the last time step will be assumed to be constant
(so the time step may not be too large) and equal to the relative acceleration at the previ-
ous time step. Secondly, the Kernel, K(t, τ), will be approximated by the Basset kernel (Eq.
6.19), for the short history times evaluated (due to the small time step) this approximation
is accurate. This results in Eq. 8.4.

∫ t

t0

K(t, τ)
dw̄
dτ

dτ ≈
∫ t−∆tn

t0

K(t, τ)
dw̄
dτ

dτ +
dw̄
dt
|t−∆tn

∫ t

t−∆tn

KBas(t, τ)dτ (8.4)

The Basset kernel can be integrated analytically leading to Eq. 8.5.

∫ t

t0

K(t, τ)
dw̄
dτ

dτ ≈
∫ t−∆tn

t0

K(t, τ)
dw̄
dτ

dτ +
dw̄
dτ
|t−∆tn

√
τd∆tn

π
(8.5)
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The history kernel described by Eqs. 6.24-6.28 approaches the Basset history kernel in the
limit of short history times, making the derived approximation exact in the limit for a time
step going to zero. For the used history kernel, (Eq. 6.29) this is however not the case.

The remaining integral will be approximated numerically using the trapezoidal rule, which
is second order for multiple time steps. The integral needs to be calculated every time step
since the kernel depends on time.

8.2 Order reduction

The total set of equations can be written in short as Eq. 8.6.

d
dt

up

vp
dR
dt

 =

 f1( dR
dt , R, wp, xp, t)

f2( dR
dt , R, wp, xp, t)

f3( dR
dt , R, xp, t)

 (8.6)

The functions f1, f2 and f3 are determined by Eq. 6.32 ( f1 and f2) in combination with the
approximate history force of Eq. 8.5 and Eq. 5.2 ( f3). To solve the second order non-linear
differential equations, order reduction will be used, see Eq. 8.7. For the full set of equations,
see Appendix G.

d
dt



xp

up

yp

vp

R
dR
dt


=



up(t)
f1( dR

dt , R, wp, xp, t)
vp(t)

f2( dR
dt , R, wp, xp, t)

dR
dt

f3( dR
dt , R, xp, t)


(8.7)

In short, Eq. 8.7 can be written as Eq. 8.8, it can be seen that Eq. 8.8 is a first order non linear
differential equation.

dQ
dt

= f (Q, t) Where Q =
[
xp up yp vp R dR

dt

]T
(8.8)

8.3 Impact model

An impact model needs to detect contact. When the normal distance from the body to the
middle of the nucleus is smaller than or equal to the radius of the nucleus, the nucleus and
the body are in contact. The condition is given in Eq. 8.9. The normal distance, Dn, is used
as the profile is smooth.

Dn ≤ R(t) (8.9)
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The impact model as described in Chapter 7 couples the movement of the nucleus to the
properties of the streamline at the middle of the nucleus and to the growth of the nucleus.
The velocity of the nucleus is described by Eq. 8.10.

wp = w(xp)︸ ︷︷ ︸
Streamline

+ n̂(xp, R)
dR
dt︸ ︷︷ ︸

Growth

(8.10)

In Eq. 8.10 n̂(xp, R) is the outward unit normal of the body at the location the nucleus hits
the body. The location where the nucleus hits the body is determined by the location of the
center of the nucleus and its radius. Assuming that the change in the normal of the body is
small within one time step leads to a nucleus acceleration given in Eq. 8.11.

dwp

dt
≈ wp · ∇w(xp) + n̂(xp, R)

d2R
dt2 (8.11)

Apart from the trailing edge, the normal will change smoothly. Nuclei will not remain in
contact with the body over the trailing edge.
The set of equations being solved when the impact model is used is given in Appendix G,
and can be summarized by Eq. 8.12. The approximate acceleration of the nucleus (Eq. 8.11) is
not necessary to calculate the trajectory but will be used to estimate the history force while
the nucleus was in contact with the body.
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dt
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dR
dt

f5( dR
dt , R, xp, t)


(8.12)

In Eq. 8.12 f1 and f3 are determined by Eq. 8.10, f2 and f4 are determined by Eq. 8.11, and
finally f5 is still determined by Eq. 5.2. The presented order is not the order used to solve
the set of equations, as the nucleus growth needs to be calculated first.

8.4 Integration method

The first order non linear set of ordinary differential equations will be solved using the
standard fourth order accurate Runge-Kutta method. This method is presented in Eq. 8.13,
using the conventions of Eq. 8.8.

Qn+1 =Qn +
∆tn

6
(k1 + 2k2 + 2k3 + k4) Where

k1 = f (tn, Qn)

k2 = f (tn +
∆tn

2
, Qn + ∆tn

k1

2
)

k3 = f (tn +
∆tn

2
, Qn + ∆tn

k2

2
)

k4 = f (tn + ∆tn, Qn + ∆tnk3)

(8.13)
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The time step used for the integration scheme will be variable as to model the nucleus col-
lapse very small time steps are required, which would cost a lot of computational time if the
time step is kept constant especially considering the history integral.

The wanted time step can be found if a maximum absolute and/or relative change allowed
in the variables is specified. The maximum absolute and relative changes are defined in Eq.
8.14 as ∆abs and ∆rel respectively.

∆abs = max |Qn+1 −Qn|

∆rel = max
|Qn+1 −Qn|
|Qn|

(8.14)

The time step following from this requirement can be approximated as in Eq. 8.15.

∣∣∣∣dQn

dt

∣∣∣∣ ≈ |Qn+1 −Qn|
∆tn+1

(8.15)

The order of approximation of the time step does not influence the order of the integration
scheme. The time steps found can be seen in Eq. 8.16.

∆tabs =
∆abs

max
∣∣∣ dQn

dt

∣∣∣
∆trel =

∆rel |Qn,max|
max

∣∣∣ dQn
dt

∣∣∣
(8.16)

The time steps found do not guarantee a maximum error, however if it is assumed that the
error over one time step is significantly smaller than the change in the solution than the
found time step will result in acceptable errors. Under stable conditions, the assumption on
the error will hold, especially taking into account the fourth order time integration scheme.
Ideally, the time step would be determined using two solutions with different accuracy to
estimate the error. The benefit of the proposed method is that the change of the solution can
be influenced directly, such that the solution does not change too much with respect to the
body size.
The time step used for the integration will be the minimum of the two time steps found in
Eq. 8.16, as long as it is in a range defined by a maximum and a minimum time step, ∆tmax

and ∆tmin respectively. The end result can be seen in Eq. 8.17.

∆t = min {max [min (∆tabs, ∆trel), ∆tmin], ∆tmax} (8.17)



9 Results

9.1 Profile shape

The resulting trajectories depend on the shape of the profile. The profile shape will therefore
first be established. The profile shape used will be that of a section of a propeller blade. The
blade can be seen in Figure 9.1, and is the same blade as used in [31]. The half cylinder
shows the plane where the cross section of the blade will be taken. The cross section is taken
at 60% of the total radius of the propeller blade.

Figure 9.1: The propeller blade and the location of the cross section.

The cross sectional shape can be seen in Figure 9.3.

The flow surrounding a 3D propeller is a rotating flow. This means that from the point
of view from the flow the shape of the propeller differs from the actual shape, more specific
the camber of the profile and the angle of attack differ. To compensate for this fact, a 3D
ProCall calculation of the propeller has been made, to retrieve a pressure distribution at the
cross section. The cross section can then be fitted to the pressure distribution, by changing
the camber of the profile and the angle of attack of the flow. The pressure distribution of the
ProCall calculation and the fitted pressure distribution can be seen in Figure 9.2. The fitted
pressure distribution has been checked using XFoil (programm made by MIT), which can
also be seen in Figure 9.2. The overlap of the resulting pressure coefficient is most important
at the front of the profile, as both the high and the low pressure regions are located there.
Both the maximum and the minimum pressure coefficient differ slightly. This is a conse-
quence of the amount of panels used in the ProCall calculations. The fit has thus been made
on the resulting shape of the pressure coefficient line and not on the maximum or minimum
pressure coefficient. Inviscid XFoil calculations and viscid XFoil calculations hardly differ as
the Reynolds number used in the ProCall calculations was high (Re f ≈ 8 · 107) and taken as
input for the viscid XFoil simulation.
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(a) Pressure coefficient.

0 0.02 0.04 0.06 0.08 0.1

Horizontal location over chordlength [-]

-1

-0.5

0

0.5

1

1.5

2

P
re

ss
ur

e 
co

ef
fic

ie
nt

 [-
]

Pressure coefficient along the profile

Procall result
Karman-Treffz transform
Invisid XFoil result
Viscid XFoil result

(b) Zoomed in Pressure coefficient.

Figure 9.2: Fitted pressure coefficient.

The shape of the profile along with the shape experienced by the flow are shown in Figure
9.3.
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Figure 9.3: The cross section of the blade and the approximate experienced shape of the
cross section.

The approximate profile as experienced by the flow will from now on be used for the calcu-
lations and is given by Rcyl = 29.14 mm, ξ0

Rcyl
= −0.017, η0

Rcyl
= 0.002, αte = 5.5◦ and α = 2.5◦.

9.2 Velocity

The flow velocity around the profile depends on the rotation rate of the propeller, nprop and
the local radius of the propeller, rprop, and on the linear velocity of the propeller, Vlin.
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The approximate undisturbed velocity, U0, which can be used for the calculations is given
in Eq. 9.1.

U0 =
√

V2
lin +

(
2πrpropnprop

)2 = 2npropRprop

√
J2 +

(
rprop

Rpropπ

)2

(9.1)

The advance ratio, J, is defined in Eq. 9.2 and Rprop is the total radius of the propeller.

J =
Vlin

2npropRprop
(9.2)

The found equivalent of the free stream velocity, U0, will be used to describe the flow around
the profile.
The advance ratio remains at J = 0.4, the propeller radius is Rprop = 170 mm and rprop

Rprop
= 0.6

the rotational rate will change.

In accordance with [31], the cavitation number and pressure coefficient will be based on
the rotational rate of the propeller, and not on the free stream velocity. Both definitions are
given in Eq. 9.3.

σv,n =
p0 − pv

2ρ f n2
propRprop

Cp,n =
p− p0

2ρ f n2
propR2

prop
(9.3)

The trajectory and radius will be calculated as discussed in Chapter 8, with a flow field
given in section 9.1. The result of Eq. 8.12 can be seen in Figure 9.4 as the trajectory with the
Loth and Dorgan history kernel.

9.3 Influence of the history force

The influence of the history force on the trajectory can be seen in Figure 9.4. The history
force yields trajectories closer to the body. When the history force is overestimated by means
of the Basset force the trajectory is closest to the body. The resulting effect of the history
force is expected as it counteracts relative accelerations, which occur near the leading edge
of the profile. The history force, can for specific cases, be approximated by a fraction of the
drag force, the history force will therefore counteract screening.
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Figure 9.4: Trajectories with different history kernels and the streamline with the same initial
condition. R0 = 100 µm, σv,n = 2.5 and nprop = 7 s−1.

When the trajectory is altered the growth of the nucleus is influenced. The influence of the
history force on the nucleus growth can be seen in Figure 9.5. The history force can make
the difference between cavitation (R > Rcrit) and no cavitation (R < Rcrit).
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Figure 9.5: Nucleus radius for trajectories with different history kernels. R0 = 100 µm, σv,n =
2.5 and nprop = 7 s−1.

The influence of the history force on the force balance can best be shown by a comparison
between the drag force and the history force, see Figure 9.6. The drag force and history force
are taken from the trajectory with the history force of Loth and Dorgan (Figure 9.4). The
history force is of the same order as the drag force (and approximately in the same direction
even though this can not be seen in the figure). The influence of the history force can be
approximated by increasing the drag force, the approximation however is very rough as
both the direction and the magnitude are not scalable by one constant along the trajectory.
Furthermore, it might look like the drag force should very roughly be increased by a factor
of two to find the same trajectory, this might however in the absence of any history force
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not be true. Finding the scaling constant should be done in an iterative process where the
results should still be compared to the result found by using the history force.
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Figure 9.6: The absolute value of the history force by Loth and Dorgan and the drag force.
R0 = 100 µm, σv,n = 2.5 and nprop = 7 s−1.

9.4 Impact model

The impact model as described in 8.12 keeps the nucleus from getting into the profile, see
Figure 9.7. Once the body is hit by the nucleus, the nucleus follows the streamline of the
middle point of the nucleus.
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Figure 9.7: The impact model keeping the nucleus from getting into the body. R0 = 100 µm,
σv,n = 2.5 and nprop = 7 s−1.
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9.5 Time step

The integration method depends on the variable time step. The variable time step is shown
in Figure 9.8 for the trajectory with the history force of Loth and Dorgan shown in Figure
9.4. The integration method is started using small time steps, the time step will thus initially
increase. As the nucleus gets closer to the body more change in the variables is expected, and
therefore the time step will decrease. If the calculated time step gets below the minimum
time step, the minimum time step will be used.
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Figure 9.8: The time step along the trajectory, R0 = 100 µm, σv,n = 2.5 and nprop = 7 s−1.

9.6 The modified Eötvös number and the nucleus Reynolds number

The modified Eötvös number is a quantitative measure for the deformation of a gas nucleus
and proportional to the nucleus Reynolds number squared (Eq. 6.12). In Figure 9.9 the mod-
ified Eötvös number for the trajectory with the history force of Loth and Dorgan (Figure
9.4) can be seen. In the same Figure the proportionality to the nucleus Reynolds number has
been checked using Eo′ ≈ 200Re2

p.
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Figure 9.9: The modified Eötvös number and the line 200Re2
p along the trajectory. R0 =

100 µm, σv,n = 2.5 and nprop = 7 s−1.

The modified Eötvös number reacts prior to the nucleus Reynolds number the reason being
that the relative acceleration reacts primarily to pressure gradients and not the relative veloc-
ity. The nucleus Reynolds number might be used to qualitatively estimate the deformation
of a gas nucleus. The delay should then be taken into account. Estimating if the modified
Eötvös number is large should be based on experiments.

9.7 Non-symmetric screening

Screening has been introduced in the first part as the effect that prevents larger gas nuclei
to cavitate. The concept of screening will be evaluated for non-symmetric profiles.

The screening effect on a non-symmetric profile seen from the point of view from the flow
significantly differs from the screening of symmetric profiles.

For non-symmetric profiles, the screening of a gas nucleus can be either too little, too much
or enough. In Figure 9.10 the concept is illustrated.
Too much screening on non-symmetric profiles occurs in a similar fashion to screening on
symmetric profiles, too much screening lets the nucleus move over the region where the
pressure is below the vapor pressure. Or more precise, over the region where the pressure
is low enough for the nucleus to cavitate. Too much screening can occur even when the
nucleus starts below the dividing streamline. The high pressure region pushes the nucleus
upwards of the dividing streamline. Too much screening is illustrated by the upper nucleus
path in Figure 9.10.
Too little screening on non-symmetric profiles occurs when the nucleus starts below the di-
viding streamline and will not get pushed upwards of the dividing streamline. The nucleus
will then get below the profile and thus not encounter low enough pressures. See the lowest
nucleus path in Figure 9.10.
Finally, enough screening is introduced as the amount of screening leading to cavitation. See
the middle nucleus path in Figure 9.10.
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Figure 9.10: Illustration of the concept of too much too little and enough screening. σv,n = 2.2
and nprop = 10 s−1.

Figure 9.11 shows the cavitation type for nuclei with different initial radii and different initial
heights. The region in which cavitation occurs roughly has a drop like shape. Nuclei larger
than cavitating nuclei with the same initial height are nuclei which have been screened too
much.
Nuclei smaller than cavitating nuclei with the same initial height and starting below the
dividing streamline are screened too little. Nuclei smaller than cavitating nuclei with the
same initial height and starting above the dividing streamline remain stable.
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Figure 9.11: The cavitation behavior for a propeller blade section with σv,n = 2.2 and nprop =
10 s−1.

Larger nuclei need to start further below the dividing streamline to induce cavitation, which
is the most important difference between symmetric screening and non-symmetric screen-
ing. If, in the case of a symmetric profile under zero incidence, a nucleus starts above the
dividing streamline and is screened too much the same behavior is mirrored below the di-
viding streamline.
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To estimate the bandwidth of initial heights in which nuclei might start, the streamline
just hitting the area where the pressure is below the vapor pressure is important. When
the high pressure and the low pressure area are sufficiently close the screening effect will
push away all nuclei till (just) above the low pressure region. This is the right vertical line in
Figure 9.11.
The dividing streamline does not give an estimate of the bandwidth in itself. However, hav-
ing the streamline hitting the low pressure region, the dividing streamline gives perspective.
If there was no screening (nprop → 0) all cavitation occurrences would occur between both
lines. This is the left vertical line in Figure 9.11.
To estimate a lower limit on the available nuclei sizes the stability criteria as given in Eq. 2.5
is used with C∗p = Cp,min the Cp,min will not be taken from the calculations but from the exper-
iments done in [31] as Cp,n,min = −5. The minimum pressure coefficient in the calculations is
lower than the minimum pressure coefficient found in experiments. The lower limit can be
seen in Figure 9.11 as the lowest horizontal line.
The approximate upper limit on the available nuclei sizes can be determined by neglecting
the bubble dynamics. If the nucleus remains spherical and the growth of the nucleus only
reacts to the pressure in the middle point of the nucleus, then the critical radius of the nu-
cleus (Eq. 2.4) should be smaller than the maximum distance from the iso-line where the
pressure is the vapor pressure and the profile. The approximate upper limit is determined
by the assumptions of the current model. The influence of bubble dynamics on the approx-
imate upper limit can either decrease or increase the limit. As the nucleus has a reaction
time, the nucleus can either not react in time to the low pressure, or not react in time to high
pressures. The approximate upper limit is given in Figure 9.11 as the highest horizontal line.

9.7.1 Lowering the rotational rate

A lower rotational rate leads to less screening, therefore the cavitation region will get more
centered around the dividing streamline. The lower limit will increase slightly as nuclei
become more stable. The upper limit will increase since, to keep the cavitation number
constant, the surrounding pressure has to be increased. The result can be seen in Figure.
9.12.
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Figure 9.12: The cavitation behavior for a propellor blade section with σv,n = 2.2 and nprop =
7 s−1.

In Figure 9.13, the largest and smallest radii available for cavitation are plotted for different
rotational rates. The dashed lines are the observed limits, see Figures 9.11 and 9.12, the solid
lines are the theoretical maximums and minimums in the absence of dynamical effects. The
theoretical limits behave similar to the found limits, the found limits are well within the
range of the theoretical limits. The fact that the theoretical upper limits and the found upper
limits behave likewise is interesting as it is assumed that the upper limit would (partially) be
determined by the screening effect. It seems that the screening effect is not directly affecting
the available nuclei spectrum in non-symmetric conditions.
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Figure 9.13: A typical nuclei distribution ([32]) and a comparison between the theoretical
and the observed boundaries.
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9.7.2 Increasing the cavitation number

An increased cavitation number leads to a smaller area where p < pv. Therefore, the stream-
line hitting the area p < pv will start closer to the dividing streamline. The critical radius
fitting in the low pressure area is smaller, leading to a lower approximate upper limit. Finally,
larger nuclei remain stable in the minimum pressure point, leading to a higher minimum
radius line. The result can be seen in Figure 9.14.
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Figure 9.14: The cavitation behavior for a propellor blade section with σv,n = 4 and nprop =
10 s−1.

9.8 Cavitation event rate

The cavitation event rate, Ė, depends on the number of nuclei reaching the profile and
the percentage of those who cavitate. The number of nuclei in the flow is determined by
the concentration, C, see Figure 9.15. The total number of nuclei per cubic centimeter is
∑ C = 2 cm−3. The concentration profile is approximated based on [32].
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Figure 9.15: A continues concentration profile and a non continues concentration profile
with non uniform step size. Approximated using [32].

The cavitation event rate in a 2D situation is 0, therefore the cavitation event rate will be
evaluated per meter which will be denoted as: Ė′, see Eq. 9.4.

Ė′|R0= C|R0∆y0|R0U0 (9.4)

The cavitation event rate per meter for a set of initial radii depends on the volume flow per
meter through the bandwidth of initial heights for these initial radii and the concentration.
The bandwidth of initial heights for an initial radius can be extracted from Figures 9.11-9.12.
The bandwidth of initial heights has been given for Figure 9.11 in Figure 9.16.
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Figure 9.16: Bandwidth of initial heights per initial radius extracted from Figure 9.11.

Clearly, Figure 9.16 depends highly on the resolution of Figure 9.11. Finally, the cavitation
event rate per meter can be found, see Figure 9.17
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Figure 9.17: Cavitation event rate per meter for different initial radii derived from Figure
9.11.

The continuous cavitation event rate is determined using the continuous concentration. The
sum of the cavitation event rates per meter per box of initial radii gives the total cavitation
event rate per meter. Which is for this case ∑ Ė′ ≈ 18700 m−1s−1.

The cavitation event rate per meter derived from Figure 9.14 can be found in Figure 9.18

with a total cavitation event rate per meter of ∑ Ė′ ≈ 2100 m−1s−1. The cavitation event rate
decreases with increasing cavitation number as expected. The variation of the nuclei size for
different cavitation numbers is not taken into account.
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Figure 9.18: Cavitation event rate per meter for different initial radii derived from Figure
9.14.

The cavitation event rate per meter derived from Figure 9.12 yields a total cavitation event
rate per meter of ∑ Ė′ ≈ 12700 m−1s−1, the decrease in cavitation event rate is mostly due to
the decrease in volume flow per meter.
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Even though the cavitation event rate has been determined for a Schiebe headform in [4],
the order of magnitude can be estimated on the found cavitation event rates. The Schiebe
headform has a diameter of 5.08 cm, which yields cavitation event rates in the order of
Ė ∼ 100− 1000 s−1. This is in the same order of magnitude as found in [4].

The difference between the cavitation event rate and the available nuclei spectrum has been
illustrated. Most striking is the difference between the cavitation event rates for the different
rotational rates, as the cavitation event rate for the lower rotational rate is lower even though
the available nuclei spectrum is wider.



V I S C O U S F L O W

In the last part, an introduction to viscous effects on mainly
the equation of motion is given. Furthermore, a method of
dealing with an externally provided flow field is proposed.





10 Interpolating in a provided flow field

The objective of interpolating is to find a property at a location in which the actual value of
this property is not known. Previously, the properties of the flow field were known analyti-
cally by means of a potential flow model. In this chapter, the usage of an externally provided
flow field defined in certain grid points is examined.

The requirement on an externally provided flow field in 2D is that the locations of the
grid points are known, (xg, yg), and that in these grid point locations the flow properties
velocity, w(xg), and pressure, p(xg), are known.

The grid will be subdivided in triangles using the delaunayTriangulation function of MAT-
LAB. Using pointLocation, which is a function of MATLAB as well, the triangle in which
the property is wanted is obtained. The three grid points defined by the triangle will be
used to interpolate the flow property. Apart from the flow property, the gradient of the flow
property is retrieved. If the flow property of interest is q0(x0) and the triangle points are
numbered from 1 to 3, then the Taylor series for these points can be written, see Eq. 10.1,
where ∆xg,i = xg,i − x0 and ∆yg,i = yg,i − y0.

q1 ≈ q0 +
∂q
∂x

∣∣∣
0
∆xg,1 +

∂q
∂y

∣∣∣
0
∆yg,1

q2 ≈ q0 +
∂q
∂x

∣∣∣
0
∆xg,2 +

∂q
∂y

∣∣∣
0
∆yg,2

q3 ≈ q0 +
∂q
∂x

∣∣∣
0
∆xg,3 +

∂q
∂y

∣∣∣
0
∆yg,3

(10.1)

At the location of interest, the set of equations can be solved in terms of q1, q2 and q3.
The result is the interpolated property and the approximated derivatives at the location of
interest.
If second order derivatives are needed three more points need to be added. Higher order
interpolation might be troublesome as no conditions on the continuity of the flow field are
specified.
To extend the current interpolation to a 3D situation, the 3D grid needs to be subdivided
into pyramids.





11 Viscous effects in the equation of motion

In this chapter, the equation of motion derived in Chapter 6 is reviewed for steady viscous
flows. The Saffman lift force, the Magnus lift force and the Faxén correction force are a con-
sequences of viscous flow. In [29] expressions for these forces can be found.

The Saffman lift force is a consequence of the vorticity of the flow. If the velocity of the
flow is higher above the nucleus than below the nucleus and the nucleus moves with a rela-
tive velocity to the flow, then a pressure difference over the nucleus will exist. This pressure
difference leads to a lift force. The Saffman lift force in 2D is given in Eq. 11.1.

FL,S =9.66
2
3

R2ρ f CL,S

√
ν f

|ω f |
(
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)
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(11.1)

ω f is the vorticity of the 2D flow field and given by: ω f = ∂v
∂x −

∂u
∂y . The Saffman lift force

will be implemented in the equation of motion. The implementation is straight forward, the
Saffman lift force will be added to the force balance of Eq. 6.30.

The Magnus lift force is a consequence of the rotation of the nucleus. The Magnus lift force
will not be taken into account as to track the rotation of a nucleus a new set of equations
based on torque should be introduced. Moreover, the current model is based on a single
nucleus, in reality the interaction between nuclei will greatly influence the rotation of the
nucleus.

The Faxén correction force is a force which is a consequence of taking the equation of mo-
tion in the center of mass of the nucleus. If a flow field has varying vorticity the velocity
of the flow at the center of mass of the nucleus might not be a good representation of the
flow velocity experienced by the nucleus. The Faxén correction force is the force due to the
second order effects in the flow, and is therefore related to the Laplacian of the flow field.
Corrections on higher order effects in the flow could be included as well, see [29] Chapter
3. The flow field should for these corrections be resolved with at least the spatial accuracy
of the order of the correction. The Faxén correction force will not be included as the second
order derivatives will not be determined (Eq. 10.1).

The idea of the Faxén correction force is applicable to the pressure. The pressure is namely
taken in the middle point of the nucleus. This pressure might not be fully representable for
the experienced pressure.





12 Viscous flow results

12.1 The provided flow field

In [33] the influence of a roughness element on cavitation inception is studied. A roughness
element decreases the minimum pressure on the profile significantly for sufficiently large
flow Reynolds numbers (Re f > 105), see [33].
The influence of a roughness element on the cavitation behavior will be studied with the
current model, yielding two flow fields. A flow field without the roughness element and a
flow field with the roughness element. The NACA0015 profile can be seen in Figure 12.1.
The flow Reynolds number is Re f = 3.6 · 105, the chord length is c = 60 mm, the angle of
attack is α = 6◦ and the inflow velocity is U0 = 6 ms−1. In Figure 12.2, the roughness element
can be seen, the roughness element has a height of ε = 60 µm. The flow field is calculated
in 3D using a RANS (Reynolds Avaraged Navier Stokes) solver, the flow is thus steady. The
provided flow fields are 2D cuts of the 3D result.
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Figure 12.1: Profile and streamlines for the profided flow field. Re f = 3.6 · 105.
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Figure 12.2: Visualization of the roughness element. Re f = 3.6 · 105.

The roughness element is placed close to the minimum pressure point if no roughness el-
ement were present. This area is of interest as in this region the pressure can be below
the vapor pressure. In this region the boundary layer can be seen to not extend more than
the height of the roughness element (Figure 12.2). The flow fields are chosen such that the
roughness element would be higher than the boundary layer at the location of the roughness
element. Nuclei with diameters smaller than the height of the roughness element might be
captured in the boundary layer.

12.2 Influence of the Saffman lift force

The influence of the Saffman lift force can not be seen in terms of different trajectories. The
Saffman lift force will namely start to influence the force balance close to or in the boundary
layer. If nuclei collapse, the Kelvin impulse related forces take over the force balance and the
lift force is negligible. For illustration purposes, a nucleus which will be screened too much
is used so that collapses are prevented. The resulting trajectory can be seen in Figure 12.3.
The resulting forces in the vertical direction are given in Figure 12.4. The vertical direction is
chosen as the normal of the profile is nearly vertical where the nucleus hits the profile. The
Saffman lift force influences the force balance shortly before impact. The amount of time
the force acts on the nucleus is too short to alter the trajectory significantly. To study the
influence of the Saffman lift force correctly, a force balance based impact model should be
implemented.
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Figure 12.3: Trajectory of a nucleus with initial radius of R0 = 43 µm. Re f = 3.6 · 105 and
σv = 2.15.
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Figure 12.4: Forces on a nucleus with initial radius of R0 = 43 µm. Re f = 3.6 · 105 and σv =
2.15.

12.3 Non-symmetric screening

Having a symmetric profile under an angle of attack will still yield non-symmetric screen-
ing, as from the point of view of the flow the profile is non-symmetric. In Figure 12.5, the
cavitation behavior for the profile without the roughness element can be seen. The minimum
stable radius has not been shown as it is R0,min = 1.6 µm yielding too large computational
times. The most outstanding result is the caviting nucleus larger than the approximated
maximum radius. In this case, the dynamical effects of the nucleus yield an underestimation
of the maximum radius. The reaction time of the nucleus makes the nucleus react delayed
to the increased pressure. Additionally, nuclei reaching half their critical radius have been
included as in [33] it has been made plausible that nuclei do not necessarily need to reach
their critical radius to induce sheet cavitation inception.
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Figure 12.5: Cavitation on the profile without the roughness element. Re f = 3.6 · 105 and
σv = 2.

In Figure 12.6, the cavitation behavior for the flow field with the roughness element can
be seen. The roughness element increases the area where the pressure is below the vapor
pressure. The nucleus starting at y0 ≈ −3.5 · 10−3 m with an initial radius of R0 = 20 µm does
cavitate where this would not have happened without the roughness element. At the same
initial height the nucleus with an initial radius of R0 = 10 µm reaches half the critical radius
where this would not have happened without the roughness element. The roughness ele-
ment yields more growth but the extra growth does not represent the extra growth observed
in experiments, see [33].
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Figure 12.6: Cavitation on the profile with the roughness element. Re f = 3.6 · 105 and σv = 2.

In [33], two gas nuclei with initial radii of R0 = 18.5 µm and R0 = 43 µm have been tracked.
Both nuclei produce a streak of cavitation, the larger nucleus produces a longer streak. The
experiments have been carried out with an incoming flow of approximately U0 = 8 ms−1. The
flow fields will be scaled such that the same free stream velocity is used. Scaling the flow
clearly undermines the Reynolds dependent flow features such as boundary layer build up.
In Figure 12.7, the different growth behavior can be found. In general, the roughness element
induces more growth. Remarkable is that the roughness element seems to influence the flow



Viscous flow results 71

such that a nucleus with an initial radius of R0 = 43 µm ends above the profile where without
the roughness element this would not have happened. Furthermore, the larger nucleus will
never reach the critical radius.
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Figure 12.7: Visualization of the difference between having and not having a roughness ele-
ment. Re f ≈ 5.1 · 105 and σv = 2.15.

12.4 Solid particle

The equation of motion has been set up such that it would be suitable for both gas and solid
nuclei. Solid nuclei might influence cavitation inception, see [1]. The behavior of solid nuclei
is opposite to that of gas nuclei as the density of solid nuclei is usually larger than that of
the surrounding liquid. Gravity has a more significant influence on solid nuclei. In Figure
12.8, the trajectories of gas nuclei with a density of ρp = 1 kgm−3 and the trajectories of solid
nuclei with a density of ρp = 7850 kgm−3 are compared. The larger the initial nuclei size, the
more the corresponding trajectories deviate.
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Figure 12.8: Comparison between gas and solid nuclei, with densities of ρp =
1 and 7850 kgm−3. Re f = 3.6 · 105 and σv = 2.15.
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For solid nuclei, it can be checked if the nucleus would hit the profile in the area where the
pressure is below the vapor pressure. In Figures 12.9-12.10, it is shown wheter the nuclei hit
the profile in the low pressure area. There is no maximum nucleus radius for solid nuclei
which are able to hit the profile as starting higher is always an option.
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Figure 12.9: Solid nuclei with a density of ρp = 7850 kgm−3 hitting the profile without rough-
ness element. Re f = 3.6 · 105.
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Figure 12.10: Solid nuclei with a density of ρp = 7850 kgm−3 hitting the profile with rough-
ness element. Re f = 3.6 · 105.

In the case of a roughness element, there is one more hit detected. This is most likely more
a geometric consequence than a flow field related consequence.
In both Figures 12.9-12.10, the trend can be seen that larger nuclei need to start at a higher
location to hit the profile. This behavior is opposite to that of gas nuclei, the same effect is
shown in Figure 12.8.



13 Conclusions

The conclusions are given in the same order as the report is written.

The elementary model gave insight in scale effects. Large nuclei do not deviate from their
streamlines according to the scaling laws derived for small nuclei in the Stokes limit. Small
nuclei do deviate from their streamlines according to these scaling laws. The equivalent
Stokes number makes large and small nuclei distinguishable, the classification of the size
of nuclei depends on the free stream velocity and on the size of the object in the flow. If a
nucleus deviates too much from the streamline, the nucleus will not encounter low enough
pressures to cavitate. This effect is called screening, screening is most evident on symmetric
profiles at zero incidence and provides an upper limit on the available nucleus size for cavi-
tation.
The growth of nuclei influences the trajectory of the nucleus. In the limit for large Weber
numbers changing the Weber number does not influence the trajectory significantly. The
equivalent Stokes number should be used over the flow Reynolds number to estimate scale
effects.

Benefiting from an actual bubble dynamics equation, a more complete equation of motion
and a wider variety of available profile shapes, the model described in the second part pro-
vided more insight on, in particular, non-symmetric screening.
The more involved equation of motion showed that the history force is relevant in liquids
contaminated with surfactants.
The mayor downfall of the presented model is that nuclei need to remain spherical. By
means of the modified Eötvös number, the deformation of nuclei can quantitatively be es-
timated. The modified Eötvös number correlates strongly, only delayed, with the square of
the particle Reynolds number.
The most striking result is that the screening effect does not seem to play a role in flows with
non-symmetric profiles or with symmetric profiles at incidence. Under these non-symmetric
conditions nuclei can start below the dividing streamline and end up above the profile. Sta-
bility of nuclei along with the dynamical effects, captured in the bubble dynamics equation,
determines the maximum nucleus radius available for cavitation.
The cavitation event rate provides more useful information on the expected cavitation be-
havior than focusing on the available nuclei spectrum.

Viscous simulations showed that the Saffman lift force can only be implemented correctly if
the impact model is force balance based.
Comparing the growth of nuclei in a flow field without a roughness element and a flow field
with a roughness element showed that the roughness element induced more growth. The
amount of extra growth is not significant enough to assume the growth of gas nuclei to be
the sole cause of the cavitation behind a roughness element.
Finally the trajectories of solid nuclei and gas nuclei have been compared. Having a higher
density than the liquid, the solid nuclei react opposite to the pressure gradient force.





14 Recommendations

The recommendations will be mentioned point wise.

• Under non-symmetric conditions it was shown that screening plays no role. Non-
symmetric conditions are required to generate lift, yielding that for practical appli-
cations non-symmetric conditions are the standard. If experiments are conducted it is
therefore advised to take non-symmetric conditions.

• In order to keep the cavitation number constant while changing the free stream ve-
locity, the surrounding pressure needs to be changed. Therefore, the influence of the
surrounding pressure on the nuclei spectrum needs to be included.

• Using conformal transformation the influence of the nose radius should be examined.
More variations in for example the camber can be studied as well.

• A history kernel dependent on the drag factor should be implemented if the influence
of the shape of the nucleus on the drag factor is known.

• If the trajectory of a nucleus is of interest past the low pressure zone, the influence of
the Saffman lift force should be reevaluated using a force balance based impact model.

• Interpolation in the provided flow field using Taylor series leads to problems for higher
order derivatives. To compensate for this fact Hermite interpolation could be used, for
this interpolation type the continuity of the flow field can be specified.

• The cavitation event rate should be focused on more than on the available nuclei spec-
trum, since the cavitation event rate is more relatable to what is observed in experi-
ments.

• An integration method based on the difference between two results calculated with
different order schemes should be implemented to determine the variable time step on
a more solid base.

• More experimental validation of the model is required.
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Appendices





A Static stability of spherical gas bubbles

The assumptions made to support the derivation of a quasi-steady nucleus growth equation
are as follows:

• The nucleus is assumed to be spherical regardless of the flow features.

• It is assumed that pressure changes slowly so that mechanical equilibrium is still satis-
fied.

• The gas inside the nucleus is isothermal.

• The gas inside the nucleus is isobaric.

Figure A.1 shows a schematic overview of the situation.

R

pv + pg

p

Figure A.1: Sketch of a gas nucleus with radius R in a liquid

To get static stability, the sum of the forces acting on any point in the nucleus needs to be
zero. This will in general not yet be the case since the surface tension is not included. The
surface tension will account for the difference in pressure over the boundary of the nucleus.
Imagine to cut the nucleus in half, so the cut should go along the middle of the sphere. Then
the force that is exerted by the pressure difference felt by the boundary of the cut is equal to
the pressure difference times the projected area (a circle with radius R). This projected area
is the effective area on which the pressure works in a force balance in any direction, since
the cut of a sphere is directional independent. The surface tension works on the edge of the
cut of the sphere, and thus has a work line described by the circumference of a circle. In
equation form we get the force balance shown in Eq. A.1.

F∆p = Fγ (A.1)
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In which F∆p stands for the force exerted by the pressure difference which is given by F∆p =
∆pπR2. Fγ stands for the force exerted by the surface tension which is given by Fγ = γ2πR.
The result can be found in Eq. A.2.

∆pπR2 = γ2πR → ∆p =
2γ

R
(A.2)

The pressure difference is positive if the pressure inside the nucleus is larger then the pres-
sure outside the nucleus. Using this, Eq. A.3 is derived.

pg + pv − p =
2γ

R
→ p = pg + pv −

2γ

R
(A.3)

Eq. A.3 is the equation for static stability of a nucleus, which is known as the Blake threshold,
and holds at any point in a flow field. At an initial location, Eq. A.4 will be found.

p0 = pg0 + pv −
2γ

R0
(A.4)

p0 is the reference pressure at a point where the nucleus has radius R0. The vapor pressure
is not dependent on the location in the flow field since the composition of the liquid does
not change, so pv0 = pv. Furthermore, the partial gas pressure at any point can be related
to the initial gas pressure by using the ideal gas law, since the temperature does not change

one finds: pg0V0 = pgV. This in turn gives pg = pg0
R3

0
R3 . Substitution in Eq. A.3 gives Eq. A.5.

p = pg0

[
R0
R

]3

+ pv −
2γ

R
(A.5)

By rewriting Eq. A.5 and dividing by p0 − pv Eq. A.6 can be found.

p− pv

p0 − pv
=

1
p0 − pv

(
pg0

[
R0
R

]3

− 2γ

R

)
(A.6)

To get rid of the partial gas pressure Eq. A.4 is used once more leading to Eq. A.7.

p− pv

p0 − pv
=

1
p0 − pv

([
p0 − pv +

2γ

R0

] (
R0
R

)3

− 2γ

R

)
(A.7)

If Eq. A.7 is rewritten conveniently, one gets Eq. A.8.

p− pv

p0 − pv
=
(

R0
R

)3 [
1 +

2γ

(p0 − pv)R0

(
1− R2

R2
0

)]
(A.8)

Using the definition of the cavitation number and the Weber number leads to Eq. A.9.

p− pv

p0 − pv
=
(

R0
R

)3 [
1 +

8
σvWe

(
1− R2

R2
0

)]
(A.9)
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Eq. A.9 in dimensionless form can be found by introducing the radius ratio, r, as r = R0
R .

And using the pressure coefficient, Cp. This yields Eq. A.10.

Cp + σv

σv
= r3

[
1 +

8
σvWe

(
1− r−2)] (A.10)

Rewriting Eq. A.10 gives Eq. A.11.

r3 −
8

We
σv + 8

We
r−

Cp + σv

σv + 8
We

= 0 (A.11)

Eq. A.11 is the same equation as Eq. A.9 but written in a solvable form when r is sought.
Eq. A.11 is written shortly as: r3 − Pr − Q = 0. A third degree polynomial can be solved,
the solution depends on the discriminant. The discriminant of a third degree function of the
form ax3 + bx2 + cx + d is given by ∆ = 18abcd− 4b3d + b2c2 − 4ac3 − 27a2d2. In the case of Eq.
A.11 the discriminant becomes: ∆ = 4P3 − 27Q2. By using the discriminant three cases can
be distinguished, namely:

1. if ∆ > 0, then the equation has 3 distinct real roots

2. if ∆ = 0, then the equation has a multiple root and all of its roots are real

3. if ∆ < 0, then the equation has one real root and two complex roots

First, the case in which the local pressure p is greater then the vapor pressure pv is consid-
ered. This means that Cp + σv > 0. If this is the case then Q will be positive just as P which
is always positive. If then the case in which Q2 > 4

27 P3 is considered the discriminant will
be negative(∆ < 0, case 3). When a third degree polynominal in the form of Eq. A.11 has
one real root, this root can be found by Cardano’s method. This gives Eq. A.12. Only real
solutions are interesting since this problem is physical.

r =
3

√
1
2

Q +
1
2

√
Q2 − 4

27
P3 +

3

√
1
2

Q− 1
2

√
Q2 − 4

27
P3 (A.12)

Note that 1
2 Q has been forgotten in [2].

If now the case Cp + σv > 0 and Q2 < 4
27 P3 is considered the determinant becomes positive(∆ >

0, case 1), meaning 3 real solutions. The solution which will be relevant however needs to be
positive since the radius of the nucleus will always be positive. The solutions for this case
can be found by Viète’s method the only positive solution is found in the case where k = 0.
This gives Eq. A.13.

r = 2

√
P
3

cos θ Where θ =
1
3

cos−1

 Q√
4

27 P3

 (A.13)

Note that the division is missing in [2].

Lastly the case where Cp + σv < 0 and Q2 < 4
27 P3 is considered. This means that the sur-

rounding pressure is lower than the vapor pressure. In that case the determinant is again
positive and the solution to the problem has therefore three real roots. In this case two pos-
itive solution can be found when, namely when k = 0 or k = 1 is taken. Only in the case
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where k = 1 r is smaller than 1, meaning that the nucleus has grown which it should do since
the surrounding pressure is lower than the vapor pressure. Similar to the previous case one
can find Eq. A.14.

r = 2

√
P
3

cos
π − θ′

3
Where θ′ = cos−1

 Q√
4

27 P3

 (A.14)

Note that the division is again missing in [2].

With Eqs A.12-A.13-A.14 the third equation in [2] is reproduced.

One special case has not been investigated yet, namely the case where Q2 = 4P3

27 . This case is
only of interest when Cp + σv < 0 so that the surrounding pressure is lower then the vapor
pressure because only then this critical point will lead to massive growth of the gas nucleus.
This phenoma is catagorized as cavitation inception in [2]. The critical pressure coefficient
can be found by: Q2 = 4P3

27 but to get a better understanding of the meaning of this critical
point a plot of the outcome of Eq. A.9 is given in Figure A.2.

0 2 4 6 8 10 12 14
R
R

0

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

p
−
p
v

p
0
−
p
v

Visualization of the outcome of the first equation in the paper

Slow growth
Fast growth
Critical point

Figure A.2: The function given in Eq. A.9 plotted for different values of σvWe. The values
used for σvWe are 1,8,10,20,100 and 1000, the higher this value the higher the
critical point.

As can be seen in Figure A.2, there is a minimum pressure after which the particle begins to
grow very fast. This point is called the critical point. It can be seen that all functions head
towards the p−pv

p0−pv
= 0-line.

To find the minimums observed in Figure A.2 and to create decent understanding of the
phenoma Eq. A.5 is used. Cavitation inception occurs at the minimal surrounding pressure
reached, this point can be found by setting the derivative to zero, see Eq. A.15.

∂p
∂R

= −3
pg0R3

0

R4 +
2γ

R2 (A.15)
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After setting the derivative to zero and some convenient rewriting Eq. A.16 is found.

Rcrit = R0

√√√√3pg0
2γ
R0

(A.16)

In Eq. A.16 Rcrit is the critical radius. Using this critical radius the critical pressure can be
found by using Eq. A.5 again. This leads to Eq. A.17.

pcrit = pg0

 2γ
R0

3pg0

3/2

+ pv −
2γ

Rcrit
(A.17)

Rewriting Eq. A.17 gives Eq. A.18.

pcrit =
2γ

3R0

R0
Rcrit

+ pv −
2γ

Rcrit
= pv −

4γ

3Rcrit
(A.18)

So the critical pressure is known. Writing Eq. A.18 in dimensionless form requires the di-
mensionless critical radius. This can be found by using Eq. A.4 and using the cavitation and
Weber number. This gives Eq. A.19.

Rcrit = R0

√
3
(

Weσv

8
+ 1
)

(A.19)

Filling in the critical radius found in Eq. A.19 into Eq. A.18 gives Eq. A.20.

pcrit − pv = − 4γ

3
√

3R0

√
Weσv

8 + 1
(A.20)

Introducing the critical pressure coefficient as: C∗p = pcrit−p0
1
2 ρU2 gives Eq. A.21.

C∗p + σv = −
16

We

3
√

3
√

Weσv
8 + 1

(A.21)

Rewriting Eq. A.21 gives Eq. A.22.

C∗p + σv = −
2σv

(
8

σvWe

)3/2

3
√

3
(

1 + 8
σvWe

)1/2
(A.22)

Eq. A.22 could have also been found by stating 4Q2 = 27p3, and is the same equation as the
fourth equation in [2].





B Application to a two-dimensional half body in an infinite fluid

The flow potential is given in Eq. B.1.

Φ =
1

2π
ln (x2 + y2) + x (B.1)

This flow potential consist of a uniform flow field (+x-part) and a source in the point (0, 0).
The source will account for the body in the flow. The integration constant is set to zero since
in practice only the derivatives matter. The body shape found by this potential is given in
Eq. B.2.

x = −y cot πy (B.2)

Eq. B.2 can be derived via the stream function. The analysis of the stream function just as
the analysis of the potential have been left out of this derivation.
The flow potential can be differentiated to x and to y leading to the velocity components,
see Eq. B.3.

∂Φ
∂x

= u = 1 +
1
π

x
x2 + y2

∂Φ
∂y

= v =
1
π

y
x2 + y2

(B.3)

The dimensionless pressure gradients can be found by using the time independent Bernoulli’s
formula and neglecting gravity: p0 − p = 1

2 ρ f (u2 + v2). This formula in dimensionless form
gives: Cp = 1− (û2 + v̂2), leading to Eq. B.4.

−
∂Cp

∂x
= − 2

π

x2 − y2 + x
π

(x2 + y2)2

−
∂Cp

∂y
= − 2

π

y
(
2x + 1

π

)
(x2 + y2)2

(B.4)

Filling in Eq. B.3 and Eq. B.4 into the dimensionless equation of motion gives Eqs. B.5-B.6.
The nucleus velocity is related to the nucleus position as ŵp ≡

dxp

dt̂ ≡ ẋp, xp =
[
xp yp

]T

dẋp

dt̂
=

18
R̂2Re f

RepCD

24

[(
1 +

1
π

xp

x2
p + y2

p

)
− ẋp

]
− 3

π

[
x2

p − y2
p + xp

π

(x2
p + y2

p)2

]
(B.5)

dẏp

dt̂
=

18
R̂2Re f

RepCD

24

[(
1
π

yp

x2
p + y2

p

)
− ẏp

]
− 3

π

[
yp
(
2xp + 1

π

)
(x2

p + y2
p)2

]
(B.6)
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Finally, the nucleus Reynolds number can be found by using the flow velocity found in Eq.
B.3. This gives Eq. B.7.

Rep = R̂Re f


[(

1 +
1
π

xp

x2
p + y2

p

)
− ẋp

]2

+

[(
1
π

yp

x2
p + y2

p

)
− ẏp

]2


1/2

(B.7)



C Order reduction

For efficient computation, first-order differential equations are preferred, and therefore the
second-order nonlinear ODE’s given by Eqs. B.5-B.6-B.7 will be written as a system of first-
order ODE’s. This is done by introducing the vector z. The definition of the vector is given
in Eq. C.1.

z =


ẋp

xp

ẏp

yp

 (C.1)

This means that ż is given by Eq. C.2.

ż =


18

R̂2Re f

RepCD
24

[(
1 + 1

π
xp

x2
p+y2

p

)
− ẋp

]
− 3

π

[
x2

p−y2
p+

xp
π

(x2
p+y2

p)2

]
ẋp

18
R̂2Re f

RepCD
24

[(
1
π

yp

x2
p+y2

p

)
− ẏp

]
− 3

π

[
yp(2xp+ 1

π )
(x2

p+y2
p)2

]
ẏp

 (C.2)

Now it can be seen that the following holds: ż = f (z). So, the first derivative of a vector z
is a function of that same vector, leading to an, in general, non-linear system of first-order
ODE’s.





D Equivalent Stokes number

The equivalent Stokes number can be found by considering the equation of motion (Eq. 2.7)
in the Stokesian regime in one dimension, and in a quiescent flow (not necessary but used
so that the velocity is the relative velocity). This leads to Eq. D.1.

1
2

4
3

πR3ρ f
dvp

dt
= 6πµ f Rvp (D.1)

Rewriting Eq. D.1 leads to Eq. D.2.

dvp

dt
=

18µ f

2ρ f R2 vp (D.2)

Neglecting the time dependency of the nucleus radius leads to a solution given in Eq. D.3.

vp = Ae
18µ f

2ρ f R2
0

t
(D.3)

Where A is an undefined constant. The relaxation time, t0, can be recognized in Eq. D.3 as

t0 = 2ρ f R2
0

18µ f
. This relaxation time is the characteristic time of a nucleus to adapt to the flow.

The characteristic time of the flow is given as h
U0

. If the time scale of the flow is significantly
larger than the time scale of the nucleus, the nucleus follows the flow. The initial equivalent
Stokes number can be found in Eq. D.4.

Stkeq0 =
2R2

0U0

18ν f h
=

R̂2
0Re f

18
(D.4)

Example

A classic condition on the Stokes number is that the Stokes number should be smaller than
0.1. With U0 = 15.24 ms−1 and h = 15.24 mm leading to Re f = 7.14 · 105 gives that the limiting
initial dimensionless nucleus radius is R̂0 < 0.002. The limiting initial dimensionfull nucleus
radius is R0 < 30 µm.





E Deriving normal distance from streamline

Starting from the equation of motion given in Eq. E.1 using Stokes flow Eq. E.2 is found.

1
2

4
3

πR3ρ f
dwp

dt︸ ︷︷ ︸
Added mass force

=
1
2

ρ f (w −wp)|w −wp|CDπR2︸ ︷︷ ︸
Drag force

− 3
2

4
3

πR3∇p︸ ︷︷ ︸
Pressure force

(E.1)

1
2

4
3

πR3ρ f
dwp

dt
=

1
2

ρ f ν f (w−wp)πR− 3
2

4
3

πR3∇p (E.2)

To determine the normal distance from a streamline to a trajectory requires the local normal
velocity. The local normal velocity of the flow with respect to the initial streamline is (close
to) zero and remains (close to) zero. Therefore, the acceleration in the normal direction
should also be (close to) zero. This gives Eq. E.3.

0 = −1
2

ρ f ν f (Un,p)πR− 3
2

4
3

πR3 ∂p
∂n

(E.3)

Where Un,p is the normal velocity of the nucleus. Rewriting gives Eq. E.4.

Un,p = α
2
9

R2

µ f

∂p
∂n

With α = −3
2

(E.4)

The normal distance from the streamline can now be found by integrating the normal veloc-
ity in time, see Eq. E.5.

ε =
∫ B

A
α

2
9

R2

µ f

∂p
∂n

dt (E.5)

Where A is a point in time well before the largest pressure gradients in the normal direction
and B well after that point. Non-dimensionalizing Eq. E.5 leads to Eq. E.6.

ε =
2α

9
R2U0

ν f

∫ b

a

1
ρ f U2

0

∂p
∂ n

rh

U0

|q| d
(

s
rh

)
(E.6)

In Eq. E.6 the integral is now along the trajectory with coordinate s by t = s
|q| . q is the flow

velocity along s. The integral is dimensionless with boundaries a and b which now represents
the location along the streamline well before and after the largest pressure gradients. rh
represents the initial condition, yp,0. Already, it can be seen that ε is proportional to R2

and U0. In [4] the same result is found apart from the factor α. For this Appendix, the
proportionality was important, that is found in accordance with [4]. The factor α = − 3

2 is
negative, this could simply be neglected since ε is a normal distance which depends on
the choice of the normal direction. The factor 3

2 is implemented for accelerating flow fields.
Assuming Stokes flow it can be argued if the nucleus is actually in an accelerating flow
field.
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Finally, Eq. E.7 can be found by non-dimensionalizing Eq. E.6 further and collapsing the
integral to the initial condition depended term ∑ (r/rh).

ε

rh
=

2αRe f R̂2

18 rh
h

∑ (r/rh) → ε

rh
=

2αStkeq
rh
h

∑ (r/rh) (E.7)

In Eq. E.7, the proportionally of the distance from the streamline to the equivalent Stokes
number can be seen.



F Derivation of bubble dynamics equations

F.1 Derivation of the Rayleigh-Plesset equation

In this derivation [8] has been used to provide the directions.
The Rayleigh-Plesset equation can be derived from the Navier-Stokes equations (Eq. F.1)
together with the mass conservation equation (Eq. F.2).

ρ f

(
∂w
∂t

+ w · ∇w
)

= −∇p + µ f∇2w + ζ f∇∇ ·w (F.1)

∂ρ f

∂t
+∇ ·

(
ρ f w

)
= 0 (F.2)

ζ f is the bulk viscosity of the fluid. This viscosity comes into play when the fluid is being
contracted or expanded.
It is assumed that the fluid is isothermal, and for that reason the energy equation is not used.

Using the identity w∇w = 1
2∇w2 and writing the velocity via the potential, w = ∇φ, gives

Eqs. F.3-F.4.

ρ f

(
∂∇φ

∂t
+

1
2
∇(∇φ∇φ)

)
= −∇p + µ f∇2∇φ + ζ f∇∇ · ∇φ (F.3)

∂ρ f

∂t
+∇ ·

(
ρ f∇φ

)
= 0 (F.4)

Assuming a spherical gas nucleus all the time will mean that the velocity field near the
nuclues will be fully spherical (if the nucleus is followed along its track). This means that
the local streamlines will never interfere and therefore the viscosity does not play a role, this
leads to Eq. F.5.

ρ f

(
∂∇φ

∂t
+

1
2
∇(∇φ∇φ)

)
= −∇p (F.5)

Since the spatial differential operator just as the temporal operator is a linear operator, the
order of operations may be switched. This leads to Eq. F.6.

ρ f∇
(

∂φ

∂t
+

1
2
∇φ · ∇φ

)
= −∇p (F.6)

Eq. F.6 as a weak formulation one finds Eq. F.7.

ρ f

(
∂φ

∂t
+

1
2
(∇φ)2

)
= −p (F.7)
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If the assumption of only radial velocity components is re-used finally one finds Eq. F.8.

ρ f

(
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
)

= −p (F.8)

For the mass conservation equation (Eq. F.4) more or less the same steps can be taken leading
to Eq. F.9.

∂ρ f

∂t
+∇ρ f · ∇φ + ρ f∇2φ = 0 (F.9)

If again the sphericity of the nucleus is used one finds Eq. F.10.

∂ρ f

∂t
+

∂ρ f

∂r
∂φ

∂r
+ ρ f∇2φ = 0 (F.10)

The objective now is to find one equation for the potential, φ, this can be accomplished by
taking the temporal derivative of the pressure. First it should be noted that the dp = dp

dρ f
dρ f =

c2dρ f . Using both Eqs F.8-F.10 Eq. F.11 can be found.

−∂p
∂t

= −c2 ∂ρ f

∂t
= c2

[
∂ρ f

∂r
∂φ

∂r
+ ρ f∇2φ

]
and:

−∂p
∂t

=
∂

∂t

(
ρ f

[
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
]) (F.11)

Clearly, both terms of Eq. F.11 can be equated. Equating both parts, using the product rule
of differentiation and rearranging gives Eq. F.12.

∇2φ =
1

c2ρ f

∂ρ f

∂t

[
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
]

+
1
c2

∂2φ

∂t2 +
1
2

∂
(

∂φ
∂r

)2

∂t

− 1
ρ f

∂φ

∂r
∂ρ f

∂r
(F.12)

If dH = dp
ρ f

, ∂ρ f
∂t = ρ f

c2
∂H
∂t , ∂

∂t = 1
u

∂
∂r , ∂r

∂t = u = ∂φ
∂r and lastly 1

2
∂y2

∂x = ∂ 1
2 y2

∂y
∂y
∂x = y ∂y

∂x are used one
finds Eq. F.13.

∇2φ =
1

uc4
∂H
∂r

[
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
]

+
1
c2

[
∂2φ

∂t2 + u
∂u
∂t

]
− u

c2
∂H
∂r

(F.13)

Now reuse the momentum equation, to find Eq. F.14.

∇2φ = − 1
uc4

∂H
∂r

p
ρ f

+
1
c2

[
∂2φ

∂t2 + u
∂u
∂t

]
− u

c2
∂H
∂r

(F.14)

Rearranging gives Eq. F.15.

∇2φ =
u
c2

(
∂u
∂t
− ∂H

∂r

[
1 +

p
ρ f c2u2

])
+

1
c2

∂2φ

∂t2 (F.15)
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Knowing that the pressure is of the same order as the density times the free stream velocity
squared. Assuming that the free stream velocity is much smaller than the speed of sound,
yields the term in between square brackets to be reduced to 1, this finally gives Eq. F.16.

∇2φ =
u
c2

(
∂u
∂t
− ∂H

∂r

)
+

1
c2

∂2φ

∂t2 (F.16)

Eq. F.16 needs to be solved as a function off the wall velocity of the nucleus ( dR
dt ). From Eq.

F.16 it can be seen that with a velocity field with significant lower velocities the first term
cancels ( u

c2 ≈ 0). The linear term involving ∂2φ
∂t2 can be neglected near the nucleus, under the

assumption that c2 � ∂2φ
∂t2 . This leads to the conclusion that near the nucleus the Laplace

equation holds for the potential (∇2φ=0). At the nucleus wall the radial velocity is known,
namely the velocity of the nucleus wall itself. This leads to a solution shown in Eq. F.17.

φ = − ṘR2

r
+ A(t) (F.17)

Where Ṙ = dR
dt and A(t) is a free constant possibly depending on time. The constant A(t)

will represent the sound field initiated by the nuclei growth and collapse. Since the nucleus
is much smaller than the sound wave length (note that this is a crucial assumption, but
realistic since the wavelenght of sound of 1 kHz in water is about 1.5 m ), the sound field will
be independent of r at large distances from the nucleus. This means that the first term will
be omitted far from the nucleus so that Eq. F.18 remains.

φ = A(t) (F.18)

It is also known that far away from the nucleus the potential is equal to the potential at
infinity giving A(t) = φ∞(t). So the full potential is given by Eq. F.19.

φ = − ṘR2

r
+ φ∞(t) (F.19)

It can be seen that the velocity u = ∂φ
∂r = ṘR2

r2 , and that at r = R the boundary condition
indeed holds. Having the velocity, the force balance on the surface of the nucleus can be
made. This is done in terms of the pressure, see Eq. F.20. The shear viscosity has however
now been included via the shear term ∂u

∂r (r = R).

pg(t) + pv − p[R(t)] + 2µ f
∂u
∂r

(r = R) = 2
γ

R
(F.20)

Differentiating the velocity field to r leads to Eq. F.21.

pg(t) + pv − p[R(t)]− 4µ f
Ṙ
R

= 2
γ

R
(F.21)
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The pressure in the nucleus of the gas, pg, is assumed to be spatially uniform, meaning that
body forces are not allowed. If Eq. F.8 is used again, and the pressure term of Eq. F.21 is
used one finds Eq. F.22.

ρ f

(
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
)

= −pg(t)− pv + 4µ f
Ṙ
R

+ 2
γ

R
(F.22)

Knowing that ∂φ
∂r = u and filling it in at r = R gives ∂φ

∂r = Ṙ. ∂φ
∂t is derived in Eq. F.23.

∂φ

∂t
=

∂

∂t

(
− ṘR2

r

)
+

∂

∂t
(φ∞(t)) = −R̈R − 2Ṙ2 +

∂

∂t
(φ∞(t)) (F.23)

Using Eq. F.23 in Eq. F.22 gives Eq. F.24.

ρ f

[
R

d2R
dt2 +

3
2

(
dR
dt

)2
]

= pg(t) + pv − 4µ f
Ṙ
R
− 2

γ

R
+ ρ f

∂φ∞

∂t
(F.24)

The term ρ f
∂φ∞
∂t is the source term in the equation. This can be included in the following

way: ρ f
∂φ∞
∂t = −P0 − P(t).

ρ f

[
R

d2R
dt2 +

3
2

(
dR
dt

)2
]

= pg(t) + pv − P0 − P(t)− 4µ f
Ṙ
R
− 2

γ

R
(F.25)

The source term depends in this case on the nucleus path, therefore the pressure which the
nucleus feels, taken as p can be taken as this source. Including this term gives Eq. F.26 is
found.

ρ f

[
R

d2R
dt2 +

3
2

(
dR
dt

)2
]

= pv − p + pg(t)− 2
γ

R
−

4µ f

R
dR
dt

(F.26)

To improve the found equation the gas pressure derivative can be included. Furthermore the
influence of the radiated sound wave can be included to implement the effect of damping.
Lastly it is important to have a realistic equation of state. This will all be examined later.

F.2 Derivation of the general Keller-Herring equation

In this derivation both [9] and [8] have been used extensively.
The derivation of this equation is comparable to the derivation of the Rayleigh-Plesset equa-
tion, with the only difference being that the radiated sound wave is taken in consideration.
Waves in general can be solved by a function which is constant in time when the observer
of the solution is moving with the wave speed. This holds in both directions, and therefore
a general wave solution can be seen in Eq. F.27.

QWave = F(t− r
c

) + G(t +
r
c

) (F.27)

Since the wave is created by a changing volume in time the units of the solution are [m3s−1].
It is obvious that if one travels at the speed of sound, c, the argument of the function F is
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constant, and therefore the value of F. Since the wave is defined in polar coordinates, the
opposing wave the is undefined, so G = 0. This leads to QWave = F(t − r

c ). If the wave is
implemented in the potential of Eq. F.17 one finds Eq. F.28.

φ = − ṘR2

r
+ A(t) = φ∞(t)− 1

r
F(t− r

c
) (F.28)

So it can be seen that the potential far away from the nuclues is still φ∞(t), but now with the
wave potential of the wave added.
The wave function F(t− r

c ) can be approximated as F(t− r
c ) = F(t)− r

c
dF(t)

dt via a first-order
Taylor expansion around the point t. Using this relation one finds Eq. F.29.

φ = φ∞(t)− 1
r

F(t− r
c

) ≈ φ∞(t)− 1
r

F(t) +
1
c

dF(t)
dt

(F.29)

By comparing Eq. F.28 and Eq. F.29 one finds that F(t) = ṘR2 and A(t) = φ∞(t) + 1
c

dF(t)
dt .

Following the derivation of the Rayleigh-Plesset equation, the found potential should now
be included in the reduced momentum equation (Eq. F.8). This involves calculating ∂φ

∂t and
∂φ
∂r at r = R. These calculations will be done term wise starting with ∂φ

∂r , see Eq. F.30.

∂φ

∂r
(r = R) =

ṘR2

r2 |r=R= Ṙ (F.30)

Calculating ∂φ
∂t will be more involved, but will be started in Eq. F.31.

∂φ

∂t
|r=R =

dφ∞(t)
dt

− 1
r

d(ṘR2)
dt

+
1
c

d2(ṘR2)
dt2

=
dφ∞(t)

dt
− 1

R

(
R̈R2 + 2RṘ2

)
+

1
c

d2(ṘR2)
dt2

=
dφ∞(t)

dt
−
(

R̈R2 + 2Ṙ2
)

+
1
c

d2(ṘR2)
dt2

(F.31)

The latter part of Eq. F.31 ( d2(ṘR2)
dt2 ) will be treated separately, which can be seen in Eq. F.32.

d2(ṘR2)
dt2 =

d
dt

(
R̈R2 + 2Ṙ2R

)
(F.32)

The first part ( d
dt

(
R̈R2)) of Eq. F.32 will lead to a third derivative of the radius of the nu-

cleus with respect to time. This is an unwanted derivative, since it requires an extra initial
condition on the acceleration of the boundary of the nucleus. By that it turns out that this
will not work numerically according to [9]. To prevent this problem the third derivative can
be expressed in terms of the normal Rayleigh-Plesset equation (Eq. F.26). It can be seen that
the term R̈R can be extracted from the Rayleigh-Plesset equation. This is a simplification
of course, since the objective is to look for a more advanced equation for the gas nucleus
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dynamics, but it is the best option available. So after some tedious derivation Eq. F.33 is
found.

d
dt
(

R̈R2) =
d
dt

{
R
[

1
ρ f

(
pv − p + pg(t)− 2

γ

R
−

4µ f

R
Ṙ
)
− 3

2
Ṙ2
]}

= −3
2

Ṙ3 − 3RṘR̈ +
Ṙ
ρ f

(
pv − p + pg(t)

)
+

1
ρ f

ṗgR
(F.33)

Adding the result of Eq. F.33 with d
dt

(
2Ṙ2R

)
= 2Ṙ3 + 4RṘR̈ gives Eq. F.34.

d2(ṘR2)
dt2 =

1
2

Ṙ3 + RṘR̈ +
Ṙ
ρ f

(
pv − p + pg(t)

)
+

1
ρ f

ṗgR (F.34)

Filling in Eq. F.34 into Eq. F.31 and knowing that the source term is the negative pressure of
the flow over the density of the liquid so, ∂φ∞

∂t = − p
ρ f

gives Eq. F.35.

∂φ

∂t
|r=R=

− p
ρ f
−
(

R̈R + 2Ṙ2
)

+
Ṙ
c

[
1
2

Ṙ2 + R̈R +
1
ρ f

(
pv − p + pg(t)

)
+

1
ρ f

ṗgR
] (F.35)

Using Eq. F.22 and Eq. F.30 and Eq. F.35 one finds Eq. F.36.

− p− ρ f

(
R̈R +

3
2

Ṙ2
)

+ ρ f
Ṙ
c

[
1
2

Ṙ2 + R̈R +
1
ρ f

(
pv − p + pg(t)

)
+

1
ρ f

ṗgR
]

=

− pg(t)− pv + 4µ f
Ṙ′

R
+ 2

γ

R

(F.36)

Rewriting Eq. F.36 gives Eq. F.37.

(
1− Ṙ

c

)
ρ f RR̈ +

3
2

Ṙ2
ρ f

(
1− Ṙ

3c

)
=(

1 +
Ṙ
c

) [
pv − p + pg(t)

]
+

R
c

ṗg(t)− 4µ f
Ṙ
R
− 2

γ

R

(F.37)

As can be seen in Eq. F.37 the found equation will reduce to the Rayliegh-Plesset equation if
c� Ṙ plus an extra term with the temporal derivative of the gas pressure. Eq. F.37 is called
the Keller equation in [9] and [8].
Eq. F.37 can be derived in a more general way, namely by adding the Rayleigh-Plesset equa-
tion the equation resulting in a third order temporal derivative. This leads to the general
Keller-Herring equation, which is given in Eq. F.38.

(
1− (λ + 1)

dR
dt
c

)
ρ f R

d2R
dt2 +

3
2

dR
dt

2

ρ f

(
1− (λ +

1
3

)
dR
dt
c

)
=(

1 + (1− λ)
dR
dt
c

) [
pv − p + pg(t)

]
+

R
c

dpg(t)
dt
− 4µ

dR
dt
R
− 2γ

R

(F.38)



Derivation of bubble dynamics equations 101

If the factor λ in Eq. F.38 is set to 0 the Keller Miksis equation is found, and if λ is set to 1

the equation used by Herring and Trilling is found.
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