
PERFECT SELFIE THAT CAN BE USED IN FACE

RECOGNITION WITH A PASSPORT PHOTO

R.H. Rieksen

r.h.rieksen@student.utwente.nl

Abstract

The goal of this paper is to describe the

development of an android application

designed to make a perfect selfie that can be

used in face recognition software with a

passport photo. By using an illumination

check and Viola-Jones landmark detection

the idea is to give the user feedback how to

meet the requirements a passport photo is

held to. The closer the selfie looks like a

passport photo, the better success rate face

recognition software will have.

1. Introduction
Face recognition is used to identify

individuals from facial images. Nowadays all

passports have a NFC-chip in them with

personal information and a passport photo of

the user. For important issues such as opening

a bank account it is needed for the individual

to identify himself in person at the bank. The

idea is that an individual can identify himself

online with the help of an application. This

application would exist out of four major

parts.

 Reading data from passport

 Live face and facial features

detection that will be used to give

the user feedback how to make a

live selfie that looks like a passport

photo

 Anti-spoofing methods

 Face recognition that compares a

passport photo to the live selfie

This paper focusses on the second part where

live face and facial features detection will be

used in making a passport photo selfie.

2. OpenCV
The application is designed in an android

environment and depends heavily on the

open-source library OpenCV 2.4.8.2. The

installation of OpenCV is explained in [2] but

is very hard for beginners. For beginners it is

recommended to install the standard nvidea

Tegra package [3] which includes among

others Android SDK, NDK, Build tools and

Platform tools.

3. Viola-Jones Detector
Haar-like feature classifiers are created using

integral images. Each pixel in the integral

image represent the change in brightness of

the corresponding pixel in the image. This is

done by making each pixel equal to the entire

sum of all pixels above and to the left of the

concerned pixel. This is demonstrated in

Figure 1.

Figure 1. Integral image

Cascades are trained by running multiple

classifiers one by one (stage) against a dataset

of images. These images consist of positive

Figure 5. Horizontal phone

images with the desired feature and images

without the desired feature. A process called

AdaBoosting will give higher weight to the

wrong sorted image data and will then run

another classifier.

The job of each stage is to determine

if a given sub window is definitely not a

feature or maybe a feature. When it is

definitely not a feature the sub window is

immediately discarded. When the sub

window is a maybe feature it is passed on to

the next stage. The more stages a sub window

passes the higher the chance it contains a

feature illustrated in figure 2.

Figure 2. Cascasded classifier

This process makes sure less time is wasted

on areas in an image which have little to no

change to represent a desired feature. This

framework was introduced by Paul Viola and

Michael Jones in 2001 [4].

4. Designing the application
The application is required to have a good

live performance (framerate) and has to be

stable. The beginning of the project consists

of an example code from OpenCV called

face-detection. This application uses Viola-

Jones detection to detect faces within a video

frame given by the back camera and draws

rectangles around them. The face detection

uses a gray image from the camera output and

only seemed to work when the phone was

hold horizontally like in figure 3.

For a selfie the front camera

has to be used. In our case

when displaying the

incoming camera frames

onto the screen our face was

shown upside down. This

was fixed by flipping the

frame 180 degrees.

The starting position

{0,0} of the screen is for

the horizontal phone in the

top left corner. When the phone is hold in

selfie mod, seen in figure 4, the starting

position {0,0} is in the top right corner. For

the face detection to work the image has to be

rotated ninety degrees.

 Since the user has to be given

feedback on the screen an area was made in

which the user is requested to place his face

in. This area is standard red outlined which

means the user did not meet the requirements

to make a perfect selfie. When these

requirements are satisfied the color will

change from red to green. In figure 5 there are

three examples of where in the first two cases

the requirements are not satisfied.

Figure 4.a and b the requirements are not satisfied, c the
requirements are satisfied.

5. Illumination
Illumination variation is one of the

challenging problems to be solved for robust

face recognition systems. The changes

induced by illumination, such as cast shadows

or attached shadows, can be larger than the

innate differences between individuals [4].

Not only does illumination variation

Figure 3. Vertical phone

influence the performance for face

recognition it also drops the performance for

good landmark detection. One requirement of

a passport photo that will also be a

requirement of the selfie is that the

illumination on the face is equalized.

A fast detection for an equalized

illumination check is implemented and used

as following. The input image is divided into

four sections with an equal height and width.

The sections are in green displayed in figure

6a. These sections will be resized for faster

processing to meet the requirement of a fast

application.

Figure 6.a Sections on which an illumination check will be
done, b illumination check

As seen in figure 6a the four sections are

within a window. Of each section the average

gray value is calculated. The gray value will

be higher the whiter the pixel is. This means

the higher the illumination the higher the

average gray value.

While making a selfie the assumption

can be made that the user will have his face

placed inside this window and the

background image is neglectable. When we

examine the sections the first thing we notice

is that the upper left section mirrors the upper

right section and the bottom left section

mirrors the bottom right section. By adding

the average gray value of the two left sections

and comparing them to the added average

gray value of the right sections an easy

algorithm and fast algorithm is found for

unequal illumination with a light source

aimed from a side angle towards the face.

When the average gray value of one

side of the sectors is higher than the other side

there will be given feedback to the user in the

form of a message and a white beam that

appears onto the side of the screen where the

light intensity is higher as can be seen in

figure 6b.

When looking for the average gray

values in these sections only a light source

aimed from a side angle can be determined.

There is no way to compare the average gray

value of these section to determine when a

light source is aimed from an upwards or

downwards angle. In comparison to the

mirrored right and left section the upper and

bottom sections are total different. In the

bottom sections a part of the neck and

shoulder is displayed and the top sections also

includes the hair. Even if the neck/shoulder

and hair can be excluded from the average

gray value, facial hair will still be a problem.

In figure 7 an image is shown with an

upwards angled illumination which obviously

passes the illumination check.

Figure 7. Upwards angled illumination

Only when the illumination on the left side of

the face mirrors the right side the Viola-Jones

face detection will find place.

6. Face detection
The first step in making a perfect selfie is the

detection of the face. In OpenCV there are

two different kind of cascades that can be

used with Viola-Jones face detection. The

lbp-cascade uses for its calculation integers

while the haar-cascade uses floats. This

makes the lbp-cascade a few times faster than

the haar-cascade but also around 20% less

accurate [6]. In OpenCV the Viola-Jones

detection with the cascade gives back a

starting position (x, y) and the width and

height of the area in which the face is

detected.

The used lbp-cascade and haar-cascade files

are both include in OpenCV [7] and their

name can be found in table 2.

Cascade Name

LBP Lbpcascade_frontalface.xml

Haar Haarcascade_frontalface_alt2.xml
Table 1. Cascade names

The two cascades have been evaluated in two

ways and are compared with each other on

performance (frames per second) and

stability. The performance is tested by

looking how long it takes for the application

to display hundred frames on the screen of the

phone when a face is detected. The average

frames per second are presented in table 2.

The lbp-cascade is around four times faster

than the haar-cascade.

Type cascade Frames per second

LBP-cascade 8-12

Haar-cascade 2-3
Table 2. Performance haar and lbp cascade

The stability of the cascade is tested as

following. The input image on which the

Viola-Jones detection will be calculated is

static, this means that the received data (x, y ,

width, height) should always be around the

same value. For both cascades there will be

looked at a frontal face image, an image of a

face that is rotated to the left and is still well

within the boundaries of the used cascade to

be detected and an image of a face turned to

the right that is just near the edge of the

cascade to detect a face in it. The three faces

are shown in figure 8.

In this experiment the x-position, y-position,

width and height of the detected face area will

be saved for twenty-five frames. To give an

impression of how stable the cascade is, the

values will added and divided by twenty-five

to receive an average value. Then for each

value the difference with the average value

will be calculated, which is called the pixel

distance from average. Only the x-position

will be examined in this experiment.

Figure 8. a frontal face image, b rotated to the left, c
rotated to the right

6.1. LBP-cascade stability results

Figure 9 represents the pixel distance from

the average with the use of a lbp-cascade.

Figure 9. X-Pixel distance from average over 25 frames with
the use of a lbp-cascade

-15
-10

-5
0
5

10
15

1
2

3
4

5

6

7

8

9
10

11
12131415

16
17

18

19

20

21

22
23

24
25

FRONTAL
FACE

RIGHT SIDE
FACE

LEFT SIDE
FACE

As can be seen in the figure above is that the

pixel distance from the average for a frontal

face is pretty constant. When the face is

rotated to the left in an angle that is still well

within the boundaries of the cascade the pixel

distance from the average gets more

inconsistent with some peaks and valleys.

When the angle of the rotated face gets closer

towards the boundaries in which a face can be

detected, in this case the right turned face in

figure 8c, even higher peaks and valleys will

arise.

The lbp-cascade is really fast with a framerate

between eight to twelve frames per second

and is pretty stable for a frontal face

detection. But when it comes to the detection

of face that is turned the stability will drop

and can be pretty inconsistent.

6.2. Haar-cascade stability results

Figure 10 represents the pixel distance from

the average with the use of a haar-cascade.

The pixel distance from the average

for a frontal face is near equal as that of the

left turned face as can be seen in figure 9.

Near the boundaries of the cascade when the

face is turned to the right the pixel distance

still got a lot of peaks and valleys. The values

of these peaks declined compared to the ones

of the lbp-cascade.

Figure 10. Pixel distance from average over 25 frames with
the use of a haar-cascade

The haar-cascade is slow with a framerate

between two and three frames per second but

is more stable when it has to detect a rotated

face. This can be seen when the largest peak

and valley values are compared to the peak

and valley values of the lbp-cascade.

6.3. Combined lbp and haar-cascade

The lbp-cascade is really fast but the

stability of the cascade drops when the face

that has to be detected is rotated. In contrary

to the lbp-cascade, the haar-cascade is a lot

slower but the stability for a rotated face is a

lot better.

When both cascades are combined the

expected result should be a cascade that has a

performance between a lbp and haar-cascade

and has the stability of a haar-cascade. Since

the lbp-cascade is a lot faster than the haar-

cascade it is first used to detect the area in

which the face might be in. The values of this

area are then given forward to the in series

connected haar-cascade which can then run a

more accurate face detection. This way the

slower haar-cascade has a better pre-defined

area to reduce the amount of calculations

needed. This is illustrated in figure 11.

Figure 11. Lbp-cascasde in series with a haar-cascade.

The same way as before the framerate of

combined cascade is determined. Table 3 now

as well includes the framerate of the lbp-

cascade in series with a haar-cascade.

Type cascade Frames per second

LBP-cascade 8-12

Haar-cascade 2-3

LBP + haar-cascade 4-6
Table 3. Performance different cascades

Figure 12 represents the pixel distance from

the average with the use of a lbp-cascade in

series with a haar-cascade.

-15

-10

-5

0

5

10
1

2
3

4

5

6

7

8

9

10
11

12131415
16

17

18

19

20

21

22

23
24

25

FRONTAL
FACE

RIGHT
SIDE FACE

LEFT SIDE
FACE

Figure 12. Pixel distance from average over 25 frames with
the use of a lbp-cascade in series with a haar-cascade

As expected the results of the combined

cascade matches the predictions. The

combined cascade is twice as fast as a normal

haar-cascade which is the result of a better

pre-defined search area for the haar-cascade.

The stability of the combined cascade also

matches the predictions. The pixel distance

from average from the combined cascade

almost equals that of the haar-cascade for the

frontal face and to the left rotated face. For

the more to the right rotated face the peaks

and valleys are still quite random but the

values of these peaks and valleys also

matches that of the haar-cascade. In this

application the combined cascade will be

used because it has the best tradeoff between

performance and stability.

7. Landmark detection
After the face has been detected the next step

will be to detect facial features like the eyes,

nose and mouth, this is also called landmark

detection. OpenCV has included multiple

haar-cascades that can be used to detect these

facial features. As seen with the face

detection the use of haar-cascades in Viola-

jones detection are several times slower than

when lbp-cascades are used. To improve the

performance of landmark detection a region

of interest is defined for each facial feature. A

region of interest is an area in which the

landmark detection will look for the facial

feature, similar as done for the face detection.

For the detection of both eyes, nose and

mouth there are needed four regions of

interest. On every region of interest another

haar-cascade will be used with a Viola-jones

landmark detection.

The area information of the detected

face we call face and includes the x-position,

y-position, width and height. face is defined

to have its starting position in the top right

corner of the green rectangle in figure 13a.

All facial features are positioned in

face. This means the region of interest of the

facial features are all a subarea of face. This

makes it possible to define each region of

interest based on the width and height of face.

As an example the region of interest of the

right eye is specified as following. Starting

from one fifth of the top of face as vertical

position and one sixteenth of face as

horizontal position. The width of the

horizontal area is seven sixteenth of face and

the height of the vertical area is one third of

face. Table 4 has all the specification of the

used regions of interest based on face.

Facial feature X Y Width Height

Right eye 1/16 1/5 7/16 1/3

Left eye 1/2 1/5 7/16 1/3

Nose 1/16 2/5 7/8 9/20

Mouth 1/4 7/1

0

1/2 3/10

Table 4. Specification for their designated region of
interest, values have to be multipled with face.

 X is defined as the horizontal starting

position from the most right value of

face to the left.

 Y is defined as the vertical starting

position from the most upper value

of face to the bottom.

 Width is defined as the horizontal

width.

 Height is defined as the vertical

height.

The used haar-cascade files are both include

in OpenCV [6] and their names can be found

in table 5.

-5

0

5

10
1

2
3

4
5

6

7

8

9

10
11

12131415
16

17

18

19

20

21

22
23

24
25

FRONTAL
FACE

RIGHT SIDE
FACE

LEFT SIDE
FACE

Cascade Name

Right eye Haarcascade_righteye_2splits.xml

Left eye Haarcascade_lefteye_2splits.xml

Nose Haarcascade_mcs_nose.xml

Mouth Haarcascade_mcs_smile.xml
Table 5. Used Haar-cascade names

In figure 13a all the region of interests are

drawn. The left blue square is for the left eye,

the right blue square for the right eye, the

small red square for the nose and the yellow

square for the mouth. In figure 13b the

landmark detection of the eyes nose and

mouth are drawn.

Figure 13.a region of interests, b landmark detection of the
facial features

The landmark detection of the mouth is not

used for a pose estimation and therefore will

not be treated furthermore. The nose is the

most important facial feature and is the basis

for a good pose estimation and angle

calculation in which the head is turned. When

the face is turned the position of the nose will

change dramatically while the position of the

eyes will be around the same. This means to

keep detecting the nose in a turned face it is

required for the region of interest to be wide,

as can be seen in figure 14.

Figure 14. Nose placement inside its region of interest for
different face rotations

8. Pose estimation
For a perfect selfie the only pose that is

interesting is a frontal face. The nose alone

can be used for a pretty good frontal pose

estimation. As reference point for a pose

estimation we split face in the middle with a

red line, as can be seen in figure 13 and 14. A

frontal face image means that the nose for an

average person with a normal nose should be

horizontally exactly in the middle of his face.

The average vertical position of the nose

should also be around an average value.

If the horizontal position of the nose

compared to the middle axes of face is

different it means the face is turned to the left

or to the right. If the vertical position of the

nose compared to the average vertical

position is different it mean the face is turned

upwards or downwards. To compensate for

some inaccuracies in received nose area

values and to compensate for noses that

deviate from the average a margin is specified

in which the nose position has to be in

between to be a frontal face image.

The horizontal margin is taken as one

percent of the width of face. The vertical

margin is a little more complicated. The

assumption is made that the vertical position

of the nose for a frontal face will be around

the middle of the region of interest of the

nose. We call the specifications of the region

of interest of the nose Nroi. The vertical

margin is take as five percent of Nroi.

ℎ𝑀𝑎𝑟𝑔𝑒 = 1 ∗
𝑓𝑎𝑐𝑒. 𝑤𝑖𝑑𝑡ℎ

100

𝑦𝑀𝑎𝑟𝑔𝑒 = 5 ∗
𝑁𝑟𝑜𝑖. ℎ𝑒𝑖𝑔ℎ𝑡

100

The x-position of the red line in the middle

of face we call wd.

The x-position and the y-position of the

middle of the detected nose area are called

nose.x and nose.y.

For 𝑛𝑜𝑠𝑒. 𝑥 < 𝑤𝑑 − ℎ𝑀𝑎𝑟𝑔𝑒 the face is

rotated to the right.

For 𝑛𝑜𝑠𝑒. 𝑥 > 𝑤𝑑 + ℎ𝑀𝑎𝑟𝑔𝑒 the face is

rotated to the left.

For 𝑛𝑜𝑠𝑒. 𝑦 <
𝑁𝑟𝑜𝑖.ℎ𝑒𝑖𝑔ℎ𝑡

2
− 𝑦𝑀𝑎𝑟𝑔𝑒 the

face is turned upwards.

For 𝑛𝑜𝑠𝑒. 𝑦 >
𝑁𝑟𝑜𝑖.ℎ𝑒𝑖𝑔ℎ𝑡

2
+ 𝑦𝑀𝑎𝑟𝑔𝑒 the

face is turned downwards.

For the selfie to be in a perfect frontal face

position the only information needed is in

which direction the face is rotated. Based on

this information feedback can be given to

make a perfect selfie. In the same way it is for

example possible to give the user feedback to

keep his head in a rotated angle to the left for

a certain amount of time. An basic form of

anti-spoof testing for liveness detection is

giving the user a challenge response. First we

need to take a better look at the frontal face

pose.

8.1. Frontal face pose

The received information from the pose

estimation is used to give the user feedback

how to rotate his head to be in a frontal face

position. When the user his face for example

is turned to the right he will receive live

feedback on his screen with the help of an

arrow which way he has to move his head to

get into a perfect frontal face position. The

four standard movement up, down, right and

left are shown in figure 15. The application

can give multiple feedbacks at the same time,

for example to turn your head upwards and to

the right.

Figure 15. Feedback system towards a frontal face image

To test the stability of our frontal face pose

we used the OUR database [7] to compute the

pose estimation errors. The Our database

contains 6660 images of 90 subjects. Each

subject has 74 images, where 37 images were

taken every 5 degree from right profile

(defined as +90°) to left profile (defined as -

90°) in the pan rotation. The remaining 37

images are generated (synthesized) by the

existing 37 images using commercial image

processing software in the way of flipping

them horizontally. For two fast tests only

used the images between -35° to 35° of

twenty subjects are used to stay well within

the boundaries of the face detection to work.

 An important feature of the frontal

face pose detection is its margin of error for

non-frontal face images. The first information

we are interested in is how many and what

kind of errors our frontal face pose produces

for purely 0° rotated frontal face images. The

second thing we need to test is what the

connection is between the horizontal rotation

of the face and the produced errors that say if

the face is rotated or a perfect frontal face

pose.

8.2. Results

In table 6 the results of test one are processed.

When the frontal face pose of a frontal face

image was tested the algorithm determined in

seventy-five percent of the cases that it

concerned a frontal face image. The

distribution of the error that shows if the face

was rotated up, down, left or right shows

some consistencies. The most important

explanation for these error can be blamed on

how we designed our algorithm to detect a

correct pose. As explained earlier the

algorithm is purely based on averaged

positions of in what small area the nose has to

be in to be in a frontal position. When a nose

deviates from it, errors are produced.

Correct Pose Up Down Right Left

75% 5% 10% 5% 5%
Table 6. Frontal face images pose estimation.

In table 7 and its plotted figure 16 the results

of test two are processed. It is seen that for

input images that are rotated closer towards

the 0° frontal face image the algorithm detects

increasingly more correct frontal face pose

while they should be detected as a wrong

pose. One reason for this is explained in the

results of the previous test and is produced by

noses that deviate from the average. Another

reason might refer back to how the face

detection stability is directly influenced by

the rotation of the face. The other reason is

that the nose detection doesn’t detect the nose

tip.

Degrees turned

head

Correct

pose

Wrong

pose

5° 20% 80%

10° 10% 90%

15° 5% 95%

20° 0% 100%

25° 0% 100%

30° 0% 100%

35° 0% 100%

-35° 0% 100%

-30° 0% 100%

-25° 5% 95%

-20° 10% 90%

-15° 15% 85%

-10° 25% 75%

-5° 40% 60%
Table 7. Turned face images pose estimation (Correct pose
is the error frontal face)

Figure 16. Error distribution pose estimation.

9. Nose tip detection
As stated previously the nose detection is not

always as stable. For it to become stable an

option is to look if the tip of the nose can be

detected. An option for a possible nose tip

detection can be found when we take a look

at the image of a nose and its illumination.

In the first example we consider a

frontal face image. When we start at the nose

tip with a frontal illumination the light

intensity should have the highest value

because the nose is the closest to the light

source and perpendicular to it. When we go

further away from the nose tip we reach the

side of the nose. Here the light source reaches

the spot in an angle which means the light

intensity will be lower. After that the cheeks

are reached. The cheeks are also pretty close

to perpendicular which means the light

intensity will be closer to the light intensity of

the nose tip.

Now the face is turned to the left. On

the right cheek the light intensity should be

high then when the side of the nose is reached

the light intensity should drop. When the nose

tip is getting closer the intensity should rise

and when the nose tip is passed the intensity

should drop again until the cheek is reached

where the intensity should rise again. When

the face is turned to the right exactly the same

thing happens only reversed. In figure 17 the

process of light intensity on the nose is easily

seen and an example of the expected light

intensity is drawn in figure 18.

0%

50%

100%

5 10 15 20 25 30 35 -35-30-25-20-15-10 -5

Degrees turned head

Percentage error distribution
pose estimation

Figure 17. a left rotated nose, b frontal nose, c right rotated
nose.

Figure 18. Expected light intensity of the nose.

In this test there has only be looked at the gray

value of one line in the detected nose area.

This is done to keep the performance high.

The vertical position of the line is defined at

the location of the nose for a frontal face

image. The following data in figure 19,20 and

21 is received when plotting the gray value of

the nose with a frontal face, rotated to the

right and rotated to the left face.

Figure 19. Gray value frontal face.

Figure 20. Gray value rotated to the right face

Figure 21. Gray value rotated to the left face

The data in the three figures above got a lot

of noise in it. The most likely reason for this

is the camera that has been used and the

resolution of the camera input. To get rid of

most of these spikes the data is averaged over

three points. The following graphs are then

received.

Figure 22. Average gray value frontal face

Figure 23. Average gray value face rotated to the right

Li
gh

t
in

te
n

si
ty

Cheek Nose tip Cheek

80

130

180

230

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

Gray value nose

70

120

170

220

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Gray value nose right

120

140

160

180

200

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Gray value nose left

80

130

180

230

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

Average value nose

70

120

170

220

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Average value nose right

Figure 24. Averaged gray value face rotated to the left

To get usefull information out of the three

graphs above the peaks have to be located.

The average gray value is calculated by

taking the sum of all gray values and divide it

by the total amount pixels on the line. Since

only the peaks are relevant for the detection

of the nose tip all gray values below a certain

value can be put on zero.

The highest gray value is hgv and average

gray value is avr.

If 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒 <
ℎ𝑔𝑣+𝑎𝑣𝑟

2
f then gray value

will be set to zero.

The following graphs can then be drawn.

Figure 25. Edited gray value for frontal face

Figure 26. Edited gray value face rotated to the right

Figure 27. Edited gray value face rotated to the left

All three graphs pretty much look the same.

In some conditions it is possible for the edges

on the graphs to contain their gray value, for

example when a little piece of a cheek is

displayed in the detected nose image. This is

easily resolvable by just looking at the peak

closest to the middle point of the line. In this

case around sixty pixels.

When figure 25 is compared to figure

17b it is easily noticed that the nose tip got the

highest light intensity. The left side and the

right side of the nose tip should have around

the same intensity and that matches with the

data from the test. The nose tip is located in

the middle of the peak.

However when the face is turned the

highest light intensity is not on the nose tip as

can be seen in figure 17a and 17c. The nose

tip still got a high light intensity but compared

to a frontal face the nose tip is relocated from

the middle to the side of the peak. To

determine the nose tip when the face is turned

to the right the most left value of the peak is

taken and when the face is turned to the right

the most right value of the peak is taken. This

value is then averaged with the value from the

detected nose into a position for the nose tip.

To determine which side the face is turned the

previous pose estimation is used. In figure 28

the calculated nose tip is displayed as a red

dot.

120

140

160

180

200
1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Average value nose left

0

50

100

150

200

250

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

Peak frontal face

0

50

100

150

200

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Peak rotated right face

0

50

100

150

200

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

Peak rotated left face

Figure 28. Nose tip detection.

To test the stability of our nose tip detection

we used the MUCT database [9] to compute

the nose tip detection error. The MUCT

database consists of 3755 faces with 76

manual landmarks. These landmarks are the

68 points defined by the popular FGnet

markup of the XM2VTS database [10], plus

four extra points for each eye as can be seen

in figure 29.

Figure 29. Landmarks placement.

Because of some issues the images could not

be loaded directly into our application. For

this reason the setup consisted of a phone

aimed towards a screen on which the images

were shown. Because of our setup it is not

known how much influence it has on the

values. In figure 30 the screen of the phone is

shown when looking at the screen of my

laptop.

To compare the data of the landmarks

provided with the MUCT database with our

received data it is not possible to look directly

to the received landmark positions. Our

solution was to determine the horizontal and

vertical difference of landmark 28 and

landmark 67 in the MUCT database. The

middle of the left eye area received of the left

eye detection matches landmark 28 and the

nose tip position matches landmark 67.

The average horizontal and vertical

difference between the detected left eye and

nose tip has been calculated for landmark 28

and 67 and for our own received landmark

positions.

Figure 30. Setup of how the application receives the images

9.1. Results stability test nose tip

For the first 20 images in MUCT the data of

the landmark positions in MUCT are shown

in table 8 and our found data of the landmark

positions are shown in table 9.

Left eye Nose tip X/Y difference Difference in % of the

resolution

X 1 Y1 X2 Y2 X=X1-X2 Y=Y1-Y2 X/480*100% Y/640*100%

240 337 295 395 -55 -58 -11.46 -9.063

211 349 270 411 -59 -62 -12.29 -9.688

265 345 327 405 -62 -60 -12.92 -9.375

198 305 251 358 -53 -53 -11.04 -8.281

241 368 291 430 -50 -62 -10.42 -9.688

238.1 320.2 290 382 -51.9 -61.8 -10.81 -9.656

240 332 300 397 -60 -65 -12.5 -10.16

344 328 408 391 -64 -63 -13.33 -9.844

195.6 238.8 246 291 -50.4 -52.2 -10.5 -8.156

237 397 287 461 -50 -64 -10.42 -10

232 333 290 387 -58 -54 -12.08 -8.438

236 345 301 402 -65 -57 -13.54 -8.906

342 341 414 396 -72 -55 -15 -8.594

189 246 246 290 -57 -44 -11.88 -6.875

232 410 286 474 -54 -64 -11.25 -10

206 356 254 401 -48 -45 -10 -7.031

167 366 222 414 -55 -48 -11.46 -7.5

211 364 275 410 -64 -46 -13.33 -7.188

162 333 209 369 -47 -36 -9.792 -5.625

207 372 251 428 -44 -56 -9.167 -8.75

Table 8. Landmark positions +calculations for the first 20 images in the MUCT database

Left eye Nose tip X/Y difference Difference in % of the

resolution

X 1 Y1 X2 Y2 X=X1-X2 Y=Y1-Y2 X/720*100% Y/1080*100%

319 639 417.07 724 -98.07 -85 -13.6208 -7.87

276 611 373 705 -97 -94 -13.4722 -8.704

255 633 369.36 715 -114.4 -82 -15.8833 -7.593

219 669 309 736 -90 -67 -12.5 -6.204

236 680 326 751 -90 -71 -12.5 -6.574

231 679 312.67 750 -81.67 -71 -11.3431 -6.574

356 546 454.04 642 -98.04 -96 -13.6167 -8.889

302 577 398 675 -96 -98 -13.3333 -9.074

282 579 371 650 -89 -71 -12.3611 -6.574

294 720 381 791 -87 -71 -12.0833 -6.574

284 719 375 788 -91 -69 -12.6389 -6.389

288 720 381 793 -93 -73 -12.9167 -6.759

307 421 407 495 -100 -74 -13.8889 -6.852

302 425 403 505 -101 -80 -14.0278 -7.407

291 423 384 499 -93 -76 -12.9167 -7.037

312 582 418 656 -106 -74 -14.7222 -6.852

318 612 430 688 -112 -76 -15.5556 -7.037

316 617 424.01 695 -108 -78 -15.0014 -7.222

251 495 356 594 -105 -99 -14.5833 -9.167

265 498 365 589 -100 -91 -13.8889 -8.426
Table 9. Our detected landmark positions + calculations for the first 20 images in the MUCT database

The average difference of horizontal and

vertical position of the nose and left eye are

calculated by taking the sum of all difference

% value of the landmark detection and

subtract the sum of our detected difference %

value. The result is displayed in table 10.

Average difference

X %

Average difference

Y %

1.88 1.25
Table 10. Difference percentage x and y

Although this is a really abstract

examination of the stability of our nose tip

detection it seem that with an average of

below 2% our nose tip detection is pretty

accurate.

9.2. Angle calculation of the face

To calculate the horizontal angle of the face

the nose tip is very useful. The length of the

nose (seen from the cheek to the nose tip) is

taken as an constant. The visible nose length

is determined by how far the nose tip is

located from the horizontal middle of the

face. In a frontal face image the nose tip is

very close to the middle of the face which

means the angle of the rotated face is near

zero. When the face is turned from zero to

thirty five degrees the visible nose length x

will increase sinusoidal. This is visualized in

figure 30 where the start of the nose is located

as the bottom left red dot.

𝑛𝑜𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑥 = 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑛𝑜𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ

Figure 31. Visualisation of the visible nose and how to
calculate its angle

sin(𝑎) =
𝑥

𝑛𝑜𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

This means the angle of the rotated face is

determined by 𝑎 = arcsin (
𝑥

𝑛𝑜𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ
).

Using OUR database again the angles of the

test subjects will be determined using our

own angle calculation. Again our setup

consisted of a phone aimed at a screen where

images are displayed. Because of our setup it

is not known how much influence it has on

the values. For five subject their calculated

angles are put in table 11.

 Subjects

Angle 1 2 3 4 5 Average

35 28 66 34 33 40 40.2

30 29 60 35 28 35 37.4

25 23 53 24 21 32 30.6

20 18 25 22 19 24 21.6

15 14 17 17 16 20 16.8

10 10 9 9 10 9 9.4

5 4 4 8 0 6 4.4

0 2 1 8 0 2 2.6

-5 0 0 7 -2 -8 -0.6

-10 -1 -3 3 -7 -15 -4.6

-15 -5 -4 0 -10 -11 -6

-20 -11 -16 -3 -23 -14 -13.4

-25 -20 -24 -20 -22 -17 -20.6

-30 -28 -27 -21 0 -32 -21.6

-35 -33 -30 -22 -8 -40 -26.6
Table 11. Angle calculation of five subjects

The average angle of the five subjects are also

calculated. When we look at each subject

separately the calculated values of the angle

can be miles of compared to given angle. This

is explained by the fact that in every

calculation average values are used. The

different width of the subjects noses and the

nose length influences the angle calculation

heavily. However when we look at the

average angle for the five subjects it matches

the given angle way better. It is still nowhere

near perfect and therefore the angle

calculation will not be used to try improve the

pose estimation

10. Conclusion
In this paper the development of a perfect

selfie application is explained. Three

different cascades for use in Viola-Jones

detector have been introduced. The

performance and stability of all three

cascades have been investigated. It was found

that the combined cascade gives the best

tradeoff between performance stability.

 When looking for a good pose

estimation it stood out that the nose detector

only shows an area in which the nose can be

found. The nose tip could be in any position

inside this area and therefore the nose

detector alone is not stable enough. The

theory was made that with the help of light

intensity the nose tip could be detected. In

experiments with the MUCT database it

showed that detection of the nose tip is pretty

solid.

 When looking for a way to improve

the pose estimation the idea was to use the

nose tip to calculate the angle of which the

face is rotated. Unfortunately this could not

be implemented because the individual

calculated angles deviated too much.

 In the end the basics of a perfect selfie

application is developed for an android

environment which meets the established

criteria but can still use some improvements.

11. References

[1] https://www.rijksoverheid.nl/onderwerpe

n/paspoort-en-

identiteitskaart/inhoud/eisen-pasfoto-

paspoort-id-kaart

[2] http://docs.opencv.org/2.4/doc/tutorials/i

ntroduction/android_binary_package/O4

A_SDK.html

[3] https://developer.nvidia.com/codeworks-

android

[4] S.‐I Choi. Face Recognition Under

Illumination Variation Using Shadow

Compensation and Pixel Selection.

International Journal of Advanced

Robotic Systems. Volume 13. 2016.

http://cdn.intechopen.com/pdfs-

wm/40176.pdf

[5] P. Viola and M. Jones, Rapid object

detection using a boosted cascade of

simple features. CVPR, 2001.

https://www.cs.cmu.edu/~efros/courses/

LBMV07/Papers/viola-cvpr-01.pdf

http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html
http://docs.opencv.org/2.4/doc/tutorials/introduction/android_binary_package/O4A_SDK.html
https://developer.nvidia.com/codeworks-android
https://developer.nvidia.com/codeworks-android
http://www.intechopen.com/journals/volume/international_journal_of_advanced_robotic_systems/13/2016/1

[6] http://stackoverflow.com/questions/8791

178/haar-cascades-vs-lbp-cascades-in-

face-detection

[7] https://github.com/opencv/opencv/tree/m

aster/data/haarcascades

[8] http://robotics.csie.ncku.edu.tw/Database

s/FaceDetect_PoseEstimate.htm#Our_Da

tabase_

[9] S. Milborrow and J. Morkel and F.

Nicolls. The MUCT Landmarked Face

Database. Pattern Recognition

Association of South Africa. 2010 .

http://www.milbo.org/muct/

[10] http://personalpages.manchester.ac.u

k/staff/timothy.f.cootes/data/xm2vts/xm2

vts_markup.html

http://stackoverflow.com/questions/8791178/haar-cascades-vs-lbp-cascades-in-face-detection
http://stackoverflow.com/questions/8791178/haar-cascades-vs-lbp-cascades-in-face-detection
http://stackoverflow.com/questions/8791178/haar-cascades-vs-lbp-cascades-in-face-detection
https://github.com/opencv/opencv/tree/master/data/haarcascades
https://github.com/opencv/opencv/tree/master/data/haarcascades
http://www.milbo.org/muct/

