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Abstract 

The goal of this paper is to describe the 

development of an android application 

designed to make a perfect selfie that can be 

used in face recognition software with a 

passport photo. By using an illumination 

check and Viola-Jones landmark detection 

the idea is to give the user feedback how to 

meet the requirements a passport photo is 

held to. The closer the selfie looks like a 

passport photo, the better success rate face 

recognition software will have. 

 

1. Introduction 
Face recognition is used to identify 

individuals from facial images. Nowadays all 

passports have a NFC-chip in them with 

personal information and a passport photo of 

the user. For important issues such as opening 

a bank account it is needed for the individual 

to identify himself in person at the bank. The 

idea is that an individual can identify himself 

online with the help of an application. This 

application would exist out of four major 

parts.  

 Reading data from passport 

 Live face and facial features 

detection that will be used to give 

the user feedback how to make a 

live selfie that looks like a passport 

photo 

 Anti-spoofing methods 

 Face recognition that compares a 

passport photo to the live selfie 

 

This paper focusses on the second part where 

live face and facial features detection will be 

used in making a passport photo selfie. 

 

2. OpenCV 
The application is designed in an android 

environment and depends heavily on the 

open-source library OpenCV 2.4.8.2. The 

installation of OpenCV is explained in [2] but 

is very hard for beginners. For beginners it is 

recommended to install the standard nvidea 

Tegra package [3] which includes among 

others Android SDK, NDK, Build tools and 

Platform tools. 

 

3. Viola-Jones Detector 
Haar-like feature classifiers are created using 

integral images. Each pixel in the integral 

image represent the change in brightness of 

the corresponding pixel in the image. This is 

done by making each pixel equal to the entire 

sum of all pixels above and to the left of the 

concerned pixel. This is demonstrated in 

Figure 1. 

 
Figure 1. Integral image 

Cascades are trained by running multiple 

classifiers one by one (stage) against a dataset 

of images. These images consist of positive 



Figure 5. Horizontal phone 

images with the desired feature and images 

without the desired feature. A process called 

AdaBoosting will give higher weight to the 

wrong sorted image data and will then run 

another classifier. 

The job of each stage is to determine 

if a given sub window is definitely not a 

feature or maybe a feature. When it is 

definitely not a feature the sub window is 

immediately discarded. When the sub 

window is a maybe feature it is passed on to 

the next stage. The more stages a sub window 

passes the higher the chance it contains a 

feature illustrated in figure 2. 

 
Figure 2. Cascasded classifier 

This process makes sure less time is wasted 

on areas in an image which have little to no 

change to represent a desired feature. This 

framework was introduced by Paul Viola and 

Michael Jones in 2001 [4].  

 

4. Designing the application 
The application is required to have a good 

live performance (framerate) and has to be 

stable. The beginning of the project consists 

of an example code from OpenCV called 

face-detection. This application uses Viola-

Jones detection to detect faces within a video 

frame given by the back camera and draws 

rectangles around them. The face detection 

uses a gray image from the camera output and 

only seemed to work when the phone was 

hold horizontally like in figure 3. 

For a selfie the front camera 

has to be used. In our case 

when displaying the 

incoming camera frames 

onto the screen our face was 

shown upside down. This 

was fixed by flipping the 

frame 180 degrees. 

The starting position 

{0,0} of the screen is for 

the horizontal phone in the 

top left corner. When the phone is hold in 

selfie mod, seen in figure 4, the starting 

position {0,0} is in the top right corner. For 

the face detection to work the image has to be 

rotated ninety degrees. 

 Since the user has to be given 

feedback on the screen an area was made in 

which the user is requested to place his face 

in. This area is standard red outlined which 

means the user did not meet the requirements 

to make a perfect selfie. When these 

requirements are satisfied the color will 

change from red to green. In figure 5 there are 

three examples of where in the first two cases 

the requirements are not satisfied. 

 

 
Figure 4.a and b the requirements are not satisfied, c the 
requirements are satisfied. 

5. Illumination 
Illumination variation is one of the 

challenging problems to be solved for robust 

face recognition systems. The changes 

induced by illumination, such as cast shadows 

or attached shadows, can be larger than the 

innate differences between individuals [4]. 

Not only does illumination variation 

Figure 3. Vertical phone 



influence the performance for face 

recognition it also drops the performance for 

good landmark detection. One requirement of 

a passport photo that will also be a 

requirement of the selfie is that the 

illumination on the face is equalized. 

A fast detection for an equalized 

illumination check is implemented and used 

as following. The input image is divided into 

four sections with an equal height and width. 

The sections are in green displayed in figure 

6a. These sections will be resized for faster 

processing to meet the requirement of a fast 

application. 

 

 
Figure 6.a Sections on which an illumination check will be 
done, b illumination check 

As seen in figure 6a the four sections are 

within a window. Of each section the average 

gray value is calculated. The gray value will 

be higher the whiter the pixel is. This means 

the higher the illumination the higher the 

average gray value. 

While making a selfie the assumption 

can be made that the user will have his face 

placed inside this window and the 

background image is neglectable. When we 

examine the sections the first thing we notice 

is that the upper left section mirrors the upper 

right section and the bottom left section 

mirrors the bottom right section. By adding 

the average gray value of the two left sections 

and comparing them to the added average 

gray value of the right sections an easy 

algorithm and fast algorithm is found for 

unequal illumination with a light source 

aimed from a side angle towards the face.  

When the average gray value of one 

side of the sectors is higher than the other side 

there will be given feedback to the user in the 

form of a message and a white beam that 

appears onto the side of the screen where the 

light intensity is higher as can be seen in 

figure 6b.  

When looking for the average gray 

values in these sections only a light source 

aimed from a side angle can be determined. 

There is no way to compare the average gray 

value of these section to determine when a 

light source is aimed from an upwards or 

downwards angle. In comparison to the 

mirrored right and left section the upper and 

bottom sections are total different. In the 

bottom sections a part of the neck and 

shoulder is displayed and the top sections also 

includes the hair. Even if the neck/shoulder 

and hair can be excluded from the average 

gray value, facial hair will still be a problem. 

In figure 7 an image is shown with an 

upwards angled illumination which obviously 

passes the illumination check. 

 

 
Figure 7. Upwards angled illumination 



Only when the illumination on the left side of 

the face mirrors the right side the Viola-Jones 

face detection will find place.  

 

6. Face detection 
The first step in making a perfect selfie is the 

detection of the face. In OpenCV there are 

two different kind of cascades that can be 

used with Viola-Jones face detection. The 

lbp-cascade uses for its calculation integers 

while the haar-cascade uses floats. This 

makes the lbp-cascade a few times faster than 

the haar-cascade but also around 20% less 

accurate [6]. In OpenCV the Viola-Jones 

detection with the cascade gives back a 

starting position (x, y) and the width and 

height of the area in which the face is 

detected. 

The used lbp-cascade and haar-cascade files 

are both include in OpenCV [7] and their 

name can be found in table 2. 

 
Cascade Name 

LBP Lbpcascade_frontalface.xml 

Haar Haarcascade_frontalface_alt2.xml 
Table 1. Cascade names 

The two cascades have been evaluated in two 

ways and are compared with each other on 

performance (frames per second) and 

stability. The performance is tested by 

looking how long it takes for the application 

to display hundred frames on the screen of the 

phone when a face is detected. The average 

frames per second are presented in table 2. 

The lbp-cascade is around four times faster 

than the haar-cascade. 

 
Type cascade Frames per second 

LBP-cascade 8-12 

Haar-cascade 2-3 
Table 2. Performance haar and lbp cascade 

The stability of the cascade is tested as 

following. The input image on which the 

Viola-Jones detection will be calculated is 

static, this means that the received data (x, y , 

width, height) should always be around the 

same value. For both cascades there will be 

looked at a frontal face image, an image of a 

face that is rotated to the left and is still well 

within the boundaries of the used cascade to 

be detected and an image of a face turned to 

the right that is just near the edge of the 

cascade to detect a face in it. The three faces 

are shown in figure 8.  

In this experiment the x-position, y-position, 

width and height of the detected face area will 

be saved for twenty-five frames. To give an 

impression of how stable the cascade is, the 

values will added and divided by twenty-five 

to receive an average value. Then for each 

value the difference with the average value 

will be calculated, which is called the pixel 

distance from average. Only the x-position 

will be examined in this experiment. 

 
Figure 8. a frontal face image, b rotated to the left, c 
rotated to the right 

6.1. LBP-cascade stability results 

Figure 9 represents the pixel distance from 

the average with the use of a lbp-cascade. 

 

 
Figure 9. X-Pixel distance from average over 25 frames with 
the use of a lbp-cascade 
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As can be seen in the figure above is that the 

pixel distance from the average for a frontal 

face is pretty constant. When the face is 

rotated to the left in an angle that is still well 

within the boundaries of the cascade the pixel 

distance from the average gets more 

inconsistent with some peaks and valleys. 

When the angle of the rotated face gets closer 

towards the boundaries in which a face can be 

detected, in this case the right turned face in 

figure 8c, even higher peaks and valleys will 

arise. 

The lbp-cascade is really fast with a framerate 

between eight to twelve frames per second 

and is pretty stable for a frontal face 

detection. But when it comes to the detection 

of face that is turned the stability will drop 

and can be pretty inconsistent. 

 

6.2. Haar-cascade stability results 

Figure 10 represents the pixel distance from 

the average with the use of a haar-cascade. 

The pixel distance from the average 

for a frontal face is near equal as that of the 

left turned face as can be seen in figure 9. 

Near the boundaries of the cascade when the 

face is turned to the right the pixel distance 

still got a lot of peaks and valleys. The values 

of these peaks declined compared to the ones 

of the lbp-cascade. 

 

 
Figure 10. Pixel distance from average over 25 frames with 
the use of a haar-cascade 

The haar-cascade is slow with a framerate 

between two and three frames per second but 

is more stable when it has to detect a rotated 

face. This can be seen when the largest peak 

and valley values are compared to the peak 

and valley values of the lbp-cascade. 

 

6.3. Combined lbp and haar-cascade 

The lbp-cascade is really fast but the 

stability of the cascade drops when the face 

that has to be detected is rotated. In contrary 

to the lbp-cascade, the haar-cascade is a lot 

slower but the stability for a rotated face is a 

lot better. 

When both cascades are combined the 

expected result should be a cascade that has a 

performance between a lbp and haar-cascade 

and has the stability of a haar-cascade. Since 

the lbp-cascade is a lot faster than the haar-

cascade it is first used to detect the area in 

which the face might be in. The values of this 

area are then given forward to the in series 

connected haar-cascade which can then run a 

more accurate face detection. This way the 

slower haar-cascade has a better pre-defined 

area to reduce the amount of calculations 

needed. This is illustrated in figure 11. 

 

 
Figure 11. Lbp-cascasde in series with a haar-cascade. 

The same way as before the framerate of 

combined cascade is determined. Table 3 now 

as well includes the framerate of the lbp-

cascade in series with a haar-cascade. 

 
Type cascade Frames per second 

LBP-cascade 8-12 

Haar-cascade 2-3 

LBP + haar-cascade 4-6 
Table 3. Performance different cascades 

Figure 12 represents the pixel distance from 

the average with the use of a lbp-cascade in 

series with a haar-cascade.   
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Figure 12. Pixel distance from average over 25 frames with 
the use of a lbp-cascade in series with a haar-cascade 

As expected the results of the combined 

cascade matches the predictions. The 

combined cascade is twice as fast as a normal 

haar-cascade which is the result of a better 

pre-defined search area for the haar-cascade. 

The stability of the combined cascade also 

matches the predictions. The pixel distance 

from average from the combined cascade 

almost equals that of the haar-cascade for the 

frontal face and to the left rotated face. For 

the more to the right rotated face the peaks 

and valleys are still quite random but the 

values of these peaks and valleys also 

matches that of the haar-cascade. In this 

application the combined cascade will be 

used because it has the best tradeoff between 

performance and stability. 

 

7. Landmark detection 
After the face has been detected the next step 

will be to detect facial features like the eyes, 

nose and mouth, this is also called landmark 

detection. OpenCV has included multiple 

haar-cascades that can be used to detect these 

facial features. As seen with the face 

detection the use of haar-cascades in Viola-

jones detection are several times slower than 

when lbp-cascades are used. To improve the 

performance of landmark detection a region 

of interest is defined for each facial feature. A 

region of interest is an area in which the 

landmark detection will look for the facial 

feature, similar as done for the face detection. 

For the detection of both eyes, nose and 

mouth there are needed four regions of 

interest. On every region of interest another 

haar-cascade will be used with a Viola-jones 

landmark detection.  

The area information of the detected 

face we call face and includes the x-position, 

y-position, width and height. face is defined 

to have its starting position in the top right 

corner of the green rectangle in figure 13a.  

All facial features are positioned in 

face. This means the region of interest of the 

facial features are all a subarea of face. This 

makes it possible to define each region of 

interest based on the width and height of face. 

As an example the region of interest of the 

right eye is specified as following. Starting 

from one fifth of the top of face as vertical 

position and one sixteenth of face as 

horizontal position. The width of the 

horizontal area is seven sixteenth of face and 

the height of the vertical area is one third of 

face. Table 4 has all the specification of the 

used regions of interest based on face. 

 
Facial feature X Y Width Height 

Right eye 1/16 1/5 7/16 1/3 

Left eye 1/2 1/5 7/16 1/3 

Nose 1/16 2/5 7/8 9/20 

Mouth 1/4 7/1

0 

1/2 3/10 

Table 4. Specification for their designated region of 
interest, values have to be multipled with face. 

 X is defined as the horizontal starting 

position from the most right value of 

face to the left. 

 Y is defined as the vertical starting 

position from the most upper value 

of face to the bottom. 

 Width is defined as the horizontal 

width. 

 Height is defined as the vertical 

height. 

 

The used haar-cascade files are both include 

in OpenCV [6] and their names can be found 

in table 5. 
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Cascade Name 

Right eye Haarcascade_righteye_2splits.xml 

Left eye Haarcascade_lefteye_2splits.xml 

Nose Haarcascade_mcs_nose.xml 

Mouth Haarcascade_mcs_smile.xml 
Table 5. Used Haar-cascade names 

In figure 13a all the region of interests are 

drawn. The left blue square is for the left eye, 

the right blue square for the right eye, the 

small red square for the nose and the yellow 

square for the mouth. In figure 13b the 

landmark detection of the eyes nose and 

mouth are drawn. 

 

 
Figure 13.a region of interests, b landmark detection of the 
facial features 

The landmark detection of the mouth is not 

used for a pose estimation and therefore will 

not be treated furthermore. The nose is the 

most important facial feature and is the basis 

for a good pose estimation and angle 

calculation in which the head is turned. When 

the face is turned the position of the nose will 

change dramatically while the position of the 

eyes will be around the same. This means to 

keep detecting the nose in a turned face it is 

required for the region of interest to be wide, 

as can be seen in figure 14. 

 
Figure 14. Nose placement inside its region of interest for 
different face rotations 

8. Pose estimation 
For a perfect selfie the only pose that is 

interesting is a frontal face. The nose alone 

can be used for a pretty good frontal pose 

estimation. As reference point for a pose 

estimation we split face in the middle with a 

red line, as can be seen in figure 13 and 14. A 

frontal face image means that the nose for an 

average person with a normal nose should be 

horizontally exactly in the middle of his face. 

The average vertical position of the nose 

should also be around an average value.  

If the horizontal position of the nose 

compared to the middle axes of face is 

different it means the face is turned to the left 

or to the right. If the vertical position of the 

nose compared to the average vertical 

position is different it mean the face is turned 

upwards or downwards. To compensate for 

some inaccuracies in received nose area 

values and to compensate for noses that 

deviate from the average a margin is specified 

in which the nose position has to be in 

between to be a frontal face image.  

The horizontal margin is taken as one 

percent of the width of face. The vertical 

margin is a little more complicated. The 

assumption is made that the vertical position 

of the nose for a frontal face will be around 

the middle of the region of interest of the 

nose. We call the specifications of the region 

of interest of the nose Nroi. The vertical 

margin is take as five percent of Nroi. 

 

ℎ𝑀𝑎𝑟𝑔𝑒 = 1 ∗
𝑓𝑎𝑐𝑒. 𝑤𝑖𝑑𝑡ℎ

100
 

𝑦𝑀𝑎𝑟𝑔𝑒 = 5 ∗
𝑁𝑟𝑜𝑖. ℎ𝑒𝑖𝑔ℎ𝑡

100
 



The x-position of the red line in the middle 

of face we call wd. 

The x-position and the y-position of the 

middle of the detected nose area are called 

nose.x and nose.y.  

 

For  𝑛𝑜𝑠𝑒. 𝑥 < 𝑤𝑑 −  ℎ𝑀𝑎𝑟𝑔𝑒 the face is 

rotated to the right. 

 

For  𝑛𝑜𝑠𝑒. 𝑥 > 𝑤𝑑 + ℎ𝑀𝑎𝑟𝑔𝑒 the face is 

rotated to the left. 

 

For 𝑛𝑜𝑠𝑒. 𝑦 <
𝑁𝑟𝑜𝑖.ℎ𝑒𝑖𝑔ℎ𝑡

2
− 𝑦𝑀𝑎𝑟𝑔𝑒 the 

face is turned upwards. 

 

For  𝑛𝑜𝑠𝑒. 𝑦 >
𝑁𝑟𝑜𝑖.ℎ𝑒𝑖𝑔ℎ𝑡

2
+ 𝑦𝑀𝑎𝑟𝑔𝑒 the 

face is turned downwards. 

 

For the selfie to be in a perfect frontal face 

position the only information needed is in 

which direction the face is rotated. Based on 

this information feedback can be given to 

make a perfect selfie. In the same way it is for 

example possible to give the user feedback to 

keep his head in a rotated angle to the left for 

a certain amount of time. An basic form of 

anti-spoof testing for liveness detection is 

giving the user a challenge response. First we 

need to take a better look at the frontal face 

pose. 

 

8.1. Frontal face pose 

The received information from the pose 

estimation is used to give the user feedback 

how to rotate his head to be in a frontal face 

position. When the user his face for example 

is turned to the right he will receive live 

feedback on his screen with the help of an 

arrow which way he has to move his head to 

get into a perfect frontal face position. The 

four standard movement up, down, right and 

left are shown in figure 15. The application 

can give multiple feedbacks at the same time, 

for example to turn your head upwards and to 

the right. 

 

 
Figure 15. Feedback system towards a frontal face image 

To test the stability of our frontal face pose 

we used the OUR database [7] to compute the 

pose estimation errors. The Our database 

contains 6660 images of 90 subjects. Each 

subject has 74 images, where 37 images were 

taken every 5 degree from right profile 

(defined as +90°) to left profile (defined as -

90°) in the pan rotation. The remaining 37 

images are generated (synthesized) by the 

existing 37 images using commercial image 

processing software in the way of flipping 

them horizontally. For two fast tests only 

used the images between -35° to 35° of 

twenty subjects are used to stay well within 

the boundaries of the face detection to work.  

 An important feature of the frontal 

face pose detection is its margin of error for 

non-frontal face images. The first information 

we are interested in is how many and what 

kind of errors our frontal face pose produces 

for purely 0° rotated frontal face images. The 

second thing we need to test is what the 

connection is between the horizontal rotation 

of the face and the produced errors that say if 

the face is rotated or a perfect frontal face 

pose. 

 

8.2. Results 

In table 6 the results of test one are processed. 

When the frontal face pose of a frontal face 

image was tested the algorithm determined in 

seventy-five percent of the cases that it 

concerned a frontal face image. The 

distribution of the error that shows if the face 

was rotated up, down, left or right shows 

some consistencies. The most important 

explanation for these error can be blamed on 

how we designed our algorithm to detect a 



correct pose. As explained earlier the 

algorithm is purely based on averaged 

positions of in what small area the nose has to 

be in to be in a frontal position. When a nose 

deviates from it, errors are produced.  

 
Correct Pose Up Down Right Left 

75% 5% 10% 5% 5% 
Table 6. Frontal face images pose estimation. 

In table 7 and its plotted figure 16 the results 

of test two are processed. It is seen that for 

input images that are rotated closer towards 

the 0° frontal face image the algorithm detects 

increasingly more correct frontal face pose 

while they should be detected as a wrong 

pose. One reason for this is explained in the 

results of the previous test and is produced by 

noses that deviate from the average. Another 

reason might refer back to how the face 

detection stability is directly influenced by 

the rotation of the face. The other reason is 

that the nose detection doesn’t detect the nose 

tip.  

 
Degrees turned 

head 

Correct 

pose 

Wrong 

pose 

5° 20% 80% 

10° 10% 90% 

15° 5% 95% 

20° 0% 100% 

25° 0% 100% 

30° 0% 100% 

35° 0% 100% 

-35° 0% 100% 

-30° 0% 100% 

-25° 5% 95% 

-20° 10% 90% 

-15° 15% 85% 

-10° 25% 75% 

-5° 40% 60% 
Table 7. Turned face images pose estimation (Correct pose 
is the error frontal face) 

 
Figure 16. Error distribution pose estimation. 

9. Nose tip detection 
As stated previously the nose detection is not 

always as stable. For it to become stable an 

option is to look if the tip of the nose can be 

detected. An option for a possible nose tip 

detection can be found when we take a look 

at the image of a nose and its illumination.  

In the first example we consider a 

frontal face image. When we start at the nose 

tip with a frontal illumination the light 

intensity should have the highest value 

because the nose is the closest to the light 

source and perpendicular to it. When we go 

further away from the nose tip we reach the 

side of the nose. Here the light source reaches 

the spot in an angle which means the light 

intensity will be lower. After that the cheeks 

are reached. The cheeks are also pretty close 

to perpendicular which means the light 

intensity will be closer to the light intensity of 

the nose tip. 

Now the face is turned to the left. On 

the right cheek the light intensity should be 

high then when the side of the nose is reached 

the light intensity should drop. When the nose 

tip is getting closer the intensity should rise 

and when the nose tip is passed the intensity 

should drop again until the cheek is reached 

where the intensity should rise again. When 

the face is turned to the right exactly the same 

thing happens only reversed. In figure 17 the 

process of light intensity on the nose is easily 

seen and an example of the expected light 

intensity is drawn in figure 18. 
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Figure 17. a left rotated nose, b frontal nose, c right rotated 
nose. 

Figure 18. Expected light intensity of the nose. 

In this test there has only be looked at the gray 

value of one line in the detected nose area. 

This is done to keep the performance high. 

The vertical position of the line is defined at 

the location of the nose for a frontal face 

image. The following data in figure 19,20 and 

21 is received when plotting the gray value of 

the nose with a frontal face, rotated to the 

right and rotated to the left face. 

 

 
Figure 19. Gray value frontal face. 

 
Figure 20. Gray value rotated to the right face 

 
Figure 21. Gray value rotated to the left face 

The data in the three figures above got a lot 

of noise in it. The most likely reason for this 

is the camera that has been used and the 

resolution of the camera input. To get rid of 

most of these spikes the data is averaged over 

three points. The following graphs are then 

received. 

 

 
Figure 22. Average gray value frontal face 

 
Figure 23. Average gray value face rotated to the right 
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Figure 24. Averaged gray value face rotated to the left 

To get usefull information out of the three 

graphs above the peaks have to be located. 

The average gray value is calculated by 

taking the sum of all gray values and divide it 

by the total amount pixels on the line. Since 

only the peaks are relevant for the detection 

of the nose tip all gray values below a certain 

value can be put on zero. 

The highest gray value is hgv and average 

gray value is avr.  

If 𝑔𝑟𝑎𝑦 𝑣𝑎𝑙𝑢𝑒 <
ℎ𝑔𝑣+𝑎𝑣𝑟

2
f then gray value 

will be set to zero. 

The following graphs can then be drawn. 

 

 
Figure 25. Edited gray value for frontal face 

 
Figure 26. Edited gray value face rotated to the right 

 
Figure 27. Edited gray value face rotated to the left 

All three graphs pretty much look the same. 

In some conditions it is possible for the edges 

on the graphs to contain their gray value, for 

example when a little piece of a cheek is 

displayed in the detected nose image. This is 

easily resolvable by just looking at the peak 

closest to the middle point of the line. In this 

case around sixty pixels. 

When figure 25 is compared to figure 

17b it is easily noticed that the nose tip got the 

highest light intensity. The left side and the 

right side of the nose tip should have around 

the same intensity and that matches with the 

data from the test. The nose tip is located in 

the middle of the peak. 

However when the face is turned the 

highest light intensity is not on the nose tip as 

can be seen in figure 17a and 17c. The nose 

tip still got a high light intensity but compared 

to a frontal face the nose tip is relocated from 

the middle to the side of the peak. To 

determine the nose tip when the face is turned 

to the right the most left value of the peak is 

taken and when the face is turned to the right 

the most right value of the peak is taken. This 

value is then averaged with the value from the 

detected nose into a position for the nose tip. 

To determine which side the face is turned the 

previous pose estimation is used. In figure 28 

the calculated nose tip is displayed as a red 

dot. 
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Figure 28. Nose tip detection. 

To test the stability of our nose tip detection 

we used the MUCT database [9] to compute 

the nose tip detection error. The MUCT 

database consists of 3755 faces with 76 

manual landmarks. These landmarks are the 

68 points defined by the popular FGnet 

markup of the XM2VTS database [10], plus 

four extra points for each eye as can be seen 

in figure 29.  
 

 
Figure 29. Landmarks placement. 

Because of some issues the images could not 

be loaded directly into our application. For 

this reason the setup consisted of a phone 

aimed towards a screen on which the images 

were shown. Because of our setup it is not 

known how much influence it has on the 

values. In figure 30 the screen of the phone is 

shown when looking at the screen of my 

laptop.  

To compare the data of the landmarks 

provided with the MUCT database with our 

received data it is not possible to look directly 

to the received landmark positions. Our 

solution was to determine the horizontal and 

vertical difference of landmark 28 and 

landmark 67 in the MUCT database. The 

middle of the left eye area received of the left 

eye detection matches landmark 28 and the 

nose tip position matches landmark 67. 

The average horizontal and vertical 

difference between the detected left eye and 

nose tip has been calculated for landmark 28 

and 67 and for our own received landmark 

positions. 

 

 
Figure 30. Setup of how the application receives the images 

9.1. Results stability test nose tip 

For the first 20 images in MUCT the data of 

the landmark positions in MUCT are shown 

in table 8 and our found data of the landmark 

positions are shown in table 9.  

 

 



Left eye Nose tip X/Y difference Difference in % of the 

resolution 

X 1 Y1 X2 Y2 X=X1-X2 Y=Y1-Y2 X/480*100% Y/640*100% 

240 337 295 395 -55 -58 -11.46 -9.063 

211 349 270 411 -59 -62 -12.29 -9.688 

265 345 327 405 -62 -60 -12.92 -9.375 

198 305 251 358 -53 -53 -11.04 -8.281 

241 368 291 430 -50 -62 -10.42 -9.688 

238.1 320.2 290 382 -51.9 -61.8 -10.81 -9.656 

240 332 300 397 -60 -65 -12.5 -10.16 

344 328 408 391 -64 -63 -13.33 -9.844 

195.6 238.8 246 291 -50.4 -52.2 -10.5 -8.156 

237 397 287 461 -50 -64 -10.42 -10 

232 333 290 387 -58 -54 -12.08 -8.438 

236 345 301 402 -65 -57 -13.54 -8.906 

342 341 414 396 -72 -55 -15 -8.594 

189 246 246 290 -57 -44 -11.88 -6.875 

232 410 286 474 -54 -64 -11.25 -10 

206 356 254 401 -48 -45 -10 -7.031 

167 366 222 414 -55 -48 -11.46 -7.5 

211 364 275 410 -64 -46 -13.33 -7.188 

162 333 209 369 -47 -36 -9.792 -5.625 

207 372 251 428 -44 -56 -9.167 -8.75 

Table 8. Landmark positions +calculations for the first 20 images in the MUCT database 

Left eye Nose tip X/Y difference Difference in % of the 

resolution 

X 1 Y1 X2 Y2 X=X1-X2 Y=Y1-Y2 X/720*100% Y/1080*100% 

319 639 417.07 724 -98.07 -85 -13.6208 -7.87 

276 611 373 705 -97 -94 -13.4722 -8.704 

255 633 369.36 715 -114.4 -82 -15.8833 -7.593 

219 669 309 736 -90 -67 -12.5 -6.204 

236 680 326 751 -90 -71 -12.5 -6.574 

231 679 312.67 750 -81.67 -71 -11.3431 -6.574 

356 546 454.04 642 -98.04 -96 -13.6167 -8.889 

302 577 398 675 -96 -98 -13.3333 -9.074 

282 579 371 650 -89 -71 -12.3611 -6.574 



294 720 381 791 -87 -71 -12.0833 -6.574 

284 719 375 788 -91 -69 -12.6389 -6.389 

288 720 381 793 -93 -73 -12.9167 -6.759 

307 421 407 495 -100 -74 -13.8889 -6.852 

302 425 403 505 -101 -80 -14.0278 -7.407 

291 423 384 499 -93 -76 -12.9167 -7.037 

312 582 418 656 -106 -74 -14.7222 -6.852 

318 612 430 688 -112 -76 -15.5556 -7.037 

316 617 424.01 695 -108 -78 -15.0014 -7.222 

251 495 356 594 -105 -99 -14.5833 -9.167 

265 498 365 589 -100 -91 -13.8889 -8.426 
Table 9. Our detected landmark positions + calculations for the first 20 images in the MUCT database 

The average difference of horizontal and 

vertical position of the nose and left eye are 

calculated by taking the sum of all difference 

% value of the landmark detection and 

subtract the sum of our detected difference % 

value. The result is displayed in table 10. 

 
Average difference 

X % 

Average difference 

Y % 

1.88 1.25 
Table 10. Difference percentage x and y 

Although this is a really abstract 

examination of the stability of our nose tip 

detection it seem that with an average of 

below 2% our nose tip detection is pretty 

accurate. 

 

9.2. Angle calculation of the face 

To calculate the horizontal angle of the face 

the nose tip is very useful. The length of the 

nose (seen from the cheek to the nose tip) is 

taken as an constant. The visible nose length 

is determined by how far the nose tip is 

located from the horizontal middle of the 

face. In a frontal face image the nose tip is 

very close to the middle of the face which 

means the angle of the rotated face is near 

zero. When the face is turned from zero to 

thirty five degrees the visible nose length x 

will increase sinusoidal. This is visualized in 

figure 30 where the start of the nose is located 

as the bottom left red dot.  

 

𝑛𝑜𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑥 = 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑛𝑜𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

 
Figure 31. Visualisation of the visible nose and how to 
calculate its angle 

sin(𝑎) =
𝑥

𝑛𝑜𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

This means the angle of the rotated face is 

determined by 𝑎 = arcsin (
𝑥

𝑛𝑜𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ
). 

Using OUR database again the angles of the 

test subjects will be determined using our 



own angle calculation. Again our setup 

consisted of a phone aimed at a screen where 

images are displayed. Because of our setup it 

is not known how much influence it has on 

the values.  For five subject their calculated 

angles are put in table 11. 

 

 Subjects  

Angle 1 2 3 4 5 Average 

35 28 66 34 33 40 40.2 

30 29 60 35 28 35 37.4 

25 23 53 24 21 32 30.6 

20 18 25 22 19 24 21.6 

15 14 17 17 16 20 16.8 

10 10 9 9 10 9 9.4 

5 4 4 8 0 6 4.4 

0 2 1 8 0 2 2.6 

-5 0 0 7 -2 -8 -0.6 

-10 -1 -3 3 -7 -15 -4.6 

-15 -5 -4 0 -10 -11 -6 

-20 -11 -16 -3 -23 -14 -13.4 

-25 -20 -24 -20 -22 -17 -20.6 

-30 -28 -27 -21 0 -32 -21.6 

-35 -33 -30 -22 -8 -40 -26.6 
Table 11. Angle calculation of five subjects 

The average angle of the five subjects are also 

calculated. When we look at each subject 

separately the calculated values of the angle 

can be miles of compared to given angle. This 

is explained by the fact that in every 

calculation average values are used. The 

different width of the subjects noses and the 

nose length influences the angle calculation 

heavily. However when we look at the 

average angle for the five subjects it matches 

the given angle way better. It is still nowhere 

near perfect and therefore the angle 

calculation will not be used to try improve the 

pose estimation 

 

10. Conclusion 
In this paper the development of a perfect 

selfie application is explained. Three 

different cascades for use in Viola-Jones 

detector have been introduced. The 

performance and stability of all three 

cascades have been investigated. It was found 

that the combined cascade gives the best 

tradeoff between performance stability. 

 When looking for a good pose 

estimation it stood out that the nose detector 

only shows an area in which the nose can be 

found. The nose tip could be in any position 

inside this area and therefore the nose 

detector alone is not stable enough. The 

theory was made that with the help of light 

intensity the nose tip could be detected. In 

experiments with the MUCT database it 

showed that detection of the nose tip is pretty 

solid. 

 When looking for a way to improve 

the pose estimation the idea was to use the 

nose tip to calculate the angle of which the 

face is rotated. Unfortunately this could not 

be implemented because the individual 

calculated angles deviated too much. 

 In the end the basics of a perfect selfie 

application is developed for an android 

environment which meets the established 

criteria but can still use some improvements.   
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