

Towards a software architecture model for the
automation of the PIRATE robot

 G.I.S. (Idzard) Hoekstra

 MSc Report

Committee:
Dr.ir. J.F. Broenink

Dr.ir. J. B.C. Engelen
N. Botteghi, MSc

Ir. J. Scholten

February 2018

004RAM2018
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Towards a software architecture model for the automation of the PIRATE robot

G.I.S. Hoekstra University of Twente

iii

Summary
The Pipe Inspection Robot for AuTonomous Exploration (PIRATE) is an inspection robot for pipe sys-
tems designed at the University of Twente. Its aim is to determine and locate leaks and other damages
in a pipe system to avoid costly digging operations by providing better localization of these defects.
Previous efforts in this project have mainly focused on the mechanical aspect, but work has also been
put in the electronics, communication and vision areas. Despite this the current iteration of the design
still relies quite significantly on a skillful operator to move the robot through a network of pipes. The
ultimate goal of this project is to enable a more autonomous operation of the PIRATE robot, allowing
the operator to focus on the task of detecting faults and checking the output of the sensors without
having to worry about the complex mechanics of the robot moving through the pipe system.

This thesis aims at providing a structurally sound software architecture for implementing such a higher
level of autonomy. Since the project is still in development one of the goals of this software structure
is to allow subsequent researchers to focus on the path finding algorithm without worrying about the
communication and other lower level aspects of the PIRATE’s movement.

In this work a design is proposed, as well as an approach to verify its correctness. To verify the
correctness the inclusion of static analysis tooling, test driven development-based design and doc-
umentation tooling is assessed. The final design is based upon the RobMoSys framework, so an
evaluation of this framework is also given.

The resulting design has been tested and has been observed to work in combination with the existing
PIRATE robot, minor hardware testing has been performed as well as testing with the software in
place. The data from the PIRATE has been processed and the communication with the PIRATE was
possible using the software stack presented in this work.

Future work should look into a more robust communication protocol for the PIRATE itself as the
communication bus used in this version has some issues that prevent any errors in communication to
be fixed. The goal of this project was to find a suitable architecture such that multiple path finding
algorithms could be tried, however during this work this has not yet been attempted.

Robotics and Mechatronics G.I.S. Hoekstra

iv Towards a software architecture model for the automation of the PIRATE robot

Preface
A big thank you to all you wonderful people who made it possible for me to spend so much time on
this thesis, it is always difficult to make a list of names, it is so easy to forget one during the long time
it takes from start to finish, that having said, in no particular order I would like to thank the following
people:

My parents, Sjouke and Jacqueline, for the support and being there whenever I needed them, yet
never pushing themselves to the front. My little brother and sister, Sytze Sjerp and Manja, thank you
for putting me back on this world every time I rambled too long about silly technical details, as in the
end these do not even matter.

My friends at EE, Arjan, Douwe, Bas for the coffee and the cookies and the many hours spent on the
couch near Scintilla or elsewhere discussing bad pickup-lines and much more!

My friends at SHOT and EBB, after a stressful Tuesday or Thursday I have enjoyed many a fine hour
of music and friendship during rehearsals and concerts, what a wonderful time indeed.

The people at RAM, especially Nicolò Botteghi, Johan Engelen, Jan Broenink and Hans Scholten for
the support and the feedback during the work and the interesting discussions.

Finally I would like to thank Ester, for always being there for me and the many hours we spent together
and I hope to spend plenty more with you.

G.I.S. Hoekstra
Enschede, Wednesday 14th February, 2018

Elk minske mei libje neffens eigen aard en talinten:
kleurryk as de reinbôge, symboliek fan tsjustere en ljochte mominten
yn leafde foar elkoar

Mintsje de Witte-Wijnia

G.I.S. Hoekstra University of Twente

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem statement . 1

1.3 Goals . 2

1.4 Approach . 2

1.5 Report organisation . 3

2 Background 4

2.1 Robot Operating System (ROS) . 4

2.2 PIRATE . 4

2.3 RobMoSys . 7

2.4 UML . 9

2.5 Static code checking . 11

3 Analysis 12

3.1 Current software structure analysis . 12

3.2 RobMoSys and other changes . 12

3.3 Requirements . 14

3.4 Conclusion . 16

4 Design 17

4.1 General system overview . 17

4.2 Global overview design . 18

4.3 Lower levels design . 20

4.4 Higher levels design . 24

4.5 Testable approach . 25

5 Realization 26

5.1 General overview of the implementation . 26

5.2 Lower levels overview . 27

5.3 Higher levels overview . 27

5.4 Communication between the high and low levels . 27

6 Results 28

6.1 Software . 28

6.2 The RobMoSys framework . 30

6.3 Influence of testing on the end result . 30

Robotics and Mechatronics G.I.S. Hoekstra

vi Towards a software architecture model for the automation of the PIRATE robot

7 Conclusion 32

7.1 Conclusion . 32

7.2 Recommendations . 32

A Arch Linux details 34

B File structure 35

C Acronyms 36

G.I.S. Hoekstra University of Twente

1

1 Introduction
1.1 Context
The total length of the gas distribution network in the Netherlands spans more than 100.000 km in
urban areas and each segment of the network has to be inspected every 5 years by Dutch law [1].
Replacement of damaged or faulty pipes is expensive and therefore accurate data on the state of the
pipes is necessary [2]. The current system employed to check for the state of the pipes has limited
accuracy.

To improve this accuracy the pipes would need to be inspected from the inside and this led to initiation
of the PIRATE project, where a robot needed to be designed that would be able to fulfil this task.
Advantages of such a robot would be that not only the accuracy for finding gas leaks would be much
higher but also the increased visibility of weaknesses would allow for preventive measures to be taken
as to prevent any serious leakage.

Over the years the hardware and software for the manual control has been developed at the University
of Twente [2], the developed system is shown in Figure 1.1. The first steps to the automation of the
control have also been made ([3]), however there are still quite significant gains to be made. This
research will focus on a software architecture that can be used for the automation.

Figure 1.1: The setup that has been used for this research.

One recent development here has been the setup of a general software framework for a robot control
system called RobMoSys [4]. One of the goals of this framework is to provide robotics applications
withmanaged and assured system properties and establish a structure that canmanage the interfacing
between the components of a robotic appliance.

1.2 Problem statement
Although a lot of work has already been put in the autonomous behaviour of the PIRATE the current
software architecture is hard to extend. The goal of this project is to further develop the autonomous
behaviour of the PIRATE robot.

Robotics and Mechatronics G.I.S. Hoekstra

2 Towards a software architecture model for the automation of the PIRATE robot

Themajor steps that need to be taken is the development of a robust yet flexible software architecture
(stack) that can handle the large number of different communication channels that exist between the
various parts of the robots, as well as be able to support further development of the hardware of the
PIRATE without needing major overhauls of the design.

This work will not focus on the aspect of the hardware design of the PIRATE robot. This work will
instead focus on the software architecture and how it should be structured to allow for changes not
only to the robot (hardware updates) but also be easy to change parts of the software (e.g. improved
path finding algorithm) without the need to redesign other parts of the system.

1.3 Goals
The goals for this thesis are as follows:

1. The design of a new software architecture based on the RobMoSys layers for a better separation
of concerns and thus simplifying extension and adaption to new insights.

2. Allow for different ways of controlling the software architecture.

3. Incorporate the manual control system that has been built previously so that this can still be
used.

4. Incorporate testing and static analysis for improved software quality.

5. The documentation should be extensive and thus help future development of the software and
hardware of the PIRATE.

1.4 Approach
In the work of Morales [3] the control of the PIRATE happens through an Arduino MEGA ADK board [5]
that functions as a bridge between the laptop and the PIRATE robot. This setup allows communication
in both directions with the robot, thus enabling the execution of the Partial Autonomous Behaviour
(PAB) sequences using the ROS framework. This setup will also be used in this thesis, as it has proven
itself to be functional then, it is shown in Figure 1.2. However much more attention will be given to
the software architecture and the reasoning behind the architecture.

Figure 1.2: The functioning of the several components in the setup. The controller board is connected to the
laptop and is used in conjunction to send messages via the PIRATEbay to the PIRATE robot.

Furthermore, the concept of testing software for correctness has become an ever-increasing part
of the requirements on software quality. For this reason part of this research effort has been put
into integrating both static checking and using a Test Driven Development (TDD) approach. The
former means that certain compiler tools have been used to find possible sources of errors that are
not detected by the compiler, even with the appropriate flags (for more extensive introduction see
Section 2.5), the latter means that a lot of the aspects of the code are tested using dedicated tests

G.I.S. Hoekstra University of Twente

CHAPTER 1. INTRODUCTION 3

that are well documented and regularly updated to correctly reflect the functioning of the code, see
also Section 4.5.

The software design will be done using feedback from the compiler, static code checking and the
execution of the tests. Together with the documentation these tools should also convince people
working on this project in the future about the correctness of the software that has been built so far.

1.5 Report organisation
The rest of this report is structured as follows: Chapter 2 discusses the background of the PIRATE
robot, provides some more details on ROS and also introduces RobMoSys (RobMoSys) and gives a
small introduction on Unified Modeling Language (UML). Chapter 3 will delve more deeply into these
issues and how these need to be used and/or adapted for this work.

Chapter 4 discusses the software architecture designed to tackle the problems mentioned in Chap-
ter 2&3. Chapter 5 discusses the implementation of the design and Chapter 6 presents the results of
the tests. Finally Chapter 7 will wrap up this report with a discussion of the results and some pointers
for future improvements.

Robotics and Mechatronics G.I.S. Hoekstra

4 Towards a software architecture model for the automation of the PIRATE robot

2 Background
In this chapter the background for this thesis is discussed. Section 2.1 discusses the ROS framework
and the important components used for this thesis. After this the background for the PIRATE is
discussed in Section 2.2. A brief discussion on the project RobMoSys follows in Section 2.3. The final
section discusses the basics of UML, again only the most important sections for this thesis.

2.1 ROS
ROS is an open-source framework for writing software for robotic systems. It consists of a number
of libraries, a collection of tools and a set of conventions to simplify the task of writing software
for complex mechatronic systems [6]. It sports a large range of sensors, actuators, algorithms and
facilities to easily add these yourself. ROS supports multiple programming languages, of which C++
and Python are the most important.

Themain abstraction of ROS is formed by the fact that the software is organized in so-called nodes [7].
A ROS node is an independent program (executable) that can communicate with other nodes in a
network in order to gather information and/or to spread information to other nodes. This network
and the communication therein is provided by a ROS master node, this node needs to be running at
all times in order for ROS systems to operate.

ROS nodes communicate via messages and services [8], both are associated with a data type and are
organized in topics [9]. The former describes a so-called publish/subscribe pattern. This means that
ROS nodes that want to share information can publish to a topic (using the correct message format),
whereas nodes that want to retrieve information can subscribe to such a node and thus retrieve the
information as needed. In other words, an asynchronous communication model can be implemented
using this feature of ROS. One important feature of this system is that the publish node does not
know and therefore should not care which node reads the information, therefore the communication
is not only asynchronous but also anonymous.

If however synchronous communication is necessary between two nodes the concept of the service
can be used. In this case the server node offers a service that can be used by other nodes. The nodes
that make use of such a service are referred to as clients, whereas the providing node is referred to
as server.

There might also be cases in which a request from a client might change for long running calculations
or there might be some other reason to preempt the service provided by the server. For these use-
cases ROS provides the action server model [10].

In all cases the ROS master node makes sure that the nodes in the system with the same topics can
find each other so that they can exchange the necessary information. It can be thought of as working
as DNS server, it thus only provides lookup information [11].

Finally, a very useful feature of the ROS library is the concept of bags [12], these allow the programmer
to store all kinds of useful data, e.g. sensor data or log messages. This can be very useful while
determining the functioning of an algorithm or the communication of several nodes.

2.2 PIRATE
2.2.1 Basic design

The original PIRATE design proposed in E. Dertien’s PhD thesis [2] consists of several modules that
each function individually and can be combined into a single functional unit. This modular design
strategy allows more flexibility and the possibility for in-field repairs because of the interchangeability
of the parts.

G.I.S. Hoekstra University of Twente

CHAPTER 2. BACKGROUND 5

The current implementation consists of seven modules, they can be subdivided into four different
types. There are the front and rear modules, these provide amongst others, the camera and commu-
nication with the outside world. The third type is the rotational module, which allows the two halves
of the robot to rotate relative to each other. See also Figure 2.1. The final type is the bend module,
these are conceptually the simplest, but they function in pairs to keep the robot clamped within the
pipe.

A more detailed explanation of each module now follows in the next four sections. After that the (rel-
evant) electronic details are discussed and the final two parts of this sections talk about the software
that has been developed thus far for the PIRATE robot.

2.2.1.1 Bend module

A bend module on its own is a rather simple unit, as it only contains a motor for the wheels and a
motor to twist its orientation such that torque can be applied. However the crucial information is
here that a bend module never operates alone, they mostly function in pairs and often even all other
modules to ensure that the robot is always securely clamped in the pipe.

2.2.1.2 Rear module

The rear module holds the connector so that the robot can communicate to the outside world. For
this a standard Ethernet plug (RJ45) is used, the connector provides both the communication and
power buses to the PIRATE robot. In addition to this it also contains a fixed-position camera, as well
as LED’s for illumination of the pipe so that the camera can take images. Although the module is not
actively controlled, the angle relative to the module in front can be measured using the same type of
sensor as the bend modules.

2.2.1.3 Front module

The front module contains the front facing camera that can be panned and tilted to get a better
overview of the pipe. This means the front module is slightly more complex than the previous two
modules as it also has to control the LEDs used for lighting and the tilt of the front module itself. The
camera is protected with a spherical dome of plastic.

2.2.1.4 Rotational module

The rotational module consists of two parts that can rotate relative to each other. This allows the
two halves of the robot to orient themselves such that bends and T-joints can be traversed. During a
normal rotation procedure either the front or the back is clamped in order for the robot to be able to
navigate. The rotational module also contains an Inertial Measurement Unit (IMU) sensor. This sensor
is used to obtain information about the PIRATE robot’s speed and acceleration. This information can
be further processed.

Figure 2.1: The PIRATE robot as designed by E. Dertien [2].

Robotics and Mechatronics G.I.S. Hoekstra

6 Towards a software architecture model for the automation of the PIRATE robot

2.2.1.5 Electronics

The electronics of the PIRATE robot are formed by a modularized system of small electronic boards
consisting of a microcontroller (ATmega328p[13]), an H-bridge, a regulator, a RS485 transceiver and
a compass, see Figure 2.2. These boards are referred to as PICO boards, and each PICO board can
control up to two motors and two sensors. This means the more complex modules, e.g. the rotate
model contain two of these PICO boards. The wires are connected with DF57 connectors that are
attached to the backside of the PCB to decrease its footprint. Because the RS485 communication
protocol is used the boards can be daisy chained, thus reducing the number of wires greatly [2].

(a) PICO board front (b) PICO board back

Figure 2.2: The PICO boards that are used in all the elements of the robot. There is room for connecting two
motors, two sensor as well as the power and communication bus. Figures from [3]

The communication to the external world happens with the help of an Arduino Mega[5] board that
communicates with the PIRATE robot using a master-slave setup. The board is encased in a box and
referred to as the PIRATEbay, see Figure 2.3. In previous iterations of the PIRATE’s design it also
functioned to translate the input from the user interface but in the work of Morales [3] it was used
as a transparent module to communicate with the PIRATE.

Figure 2.3: The PIRATE bay

2.2.1.6 Control

The current implementation of the robot contains nine PICO boards and the boards are numbered
from 20 in the front module to 28 in the rear module. Each PICO board is connected to a specific set
of motors and sensors, this distribution is listed in Table 2.1.

Every motor can be controlled by either directly setting the Pulse Width Modulation (PWM) value or
by setting a value for the torque that needs to be applied by the bend modules.

G.I.S. Hoekstra University of Twente

CHAPTER 2. BACKGROUND 7

Slave Location Motor 0 Motor 1 Sensor 0 Sensor 1

20 Front Tilt camera Pan camera Tilt camera Pan camera
21 Front Tilt front LEDs Angle N/A
22 Bend I Bend Drive Angle Spring
23 Bend II Bend Drive Angle Spring
24 Rotational N/A Drive IMU N/A
25 Rotational Rotate Drive Angle N/A
26 Bend III Bend Drive Angle Spring
27 Bend IV Bend Drive Angle Spring
28 Rear N/A LEDs Angle N/A

Table 2.1: The abstract software structure defined by the RobMoSys group.

2.2.2 Current software design

The software structure designed in [3] is depicted globally in Figure 2.4. It is based on so-called PAB.
In this work a number of situations were analysed and based on these a software procedure was
designed so that these could be tackled.

The Pirate Manager shown in Figure 2.4 forms the main part of the software and distributes the
appropriate signals to the other classes.

The separate parts interoperate using the libraries and functions of the ROS framework, this frame-
work is explained in more detail in Section 2.1. Using ROS the different parts of the software com-
municate with each other to create the automated behaviour for the PIRATE robot.

2.2.3 Motion primitives

The concept of motion primitives is introduced by [2], here they are defined as the smallest meaningful
action that can be performed by the PIRATE robot. By arranging these primitives in a sequence the
robot should be able to make any basic manoeuvre. The primitives defined are: clamp, drive, bend
and rotate.

These four primitives are all parametrized with a single variable. The clamping primitive can be defined
as the desired clamping force τ, which is a function of the torque applied by the bending motors
and the pipe diameter. Drive is parametrized by the velocity, here a negative velocity is defined as
driving backwards. Rotate is defined as the angle between the two halves of the robots. Bend is also
expressed as an angle but between two modules.

The concept is expanded in [3] to be a complete set of actions to traverse a particular obstacle that
is encountered in the track. These are referred to as Partial Autonomous Behaviour (PAB), as they do
not yet allow the robot to function completely independent.

2.3 RobMoSys
The RobMoSys project is an undertaking that aims to form a better model for the design of robotic
systems. The project’s vision is building a professional quality ecosystem for the design of robotic
platforms using a community driven approach. One of the ways in which the project contributes this
is by applying model-driven methods and developing/promoting tools for this workflow.

One of the results of the RobMoSys project is the design of a common abstract architecture for robotic
systems. This abstract architecture is displayed in Table 2.2 [14]. It comprises all the layers from the
hardware to the top-level mission. This separation of levels forms the basis of the separation of
concerns. This means that each of the eight levels is responsible for a strict part of the control of the
robot and should not reach within the other layers to obtain information except by using well-defined
interfaces.

Robotics and Mechatronics G.I.S. Hoekstra

8 Towards a software architecture model for the automation of the PIRATE robot

Pirate Software Framework

Pirate Control

Pirate Robot Interface Pirate User Interface

Limit

Pirate Manager

Setpoint

Mapper

Pirate Server

Control

Motion Primitives

Clamp Straight

≪interface≫
IMU sensor

≪interface≫
Joint sensor

≪interface≫
Pirate State

≪interface≫
UI driver input

≪interface≫
UI driver output

Figure 2.4: The software architecture for the PIRATE robot as designed in [3].

G.I.S. Hoekstra University of Twente

CHAPTER 2. BACKGROUND 9

Co
mp
uta
tio
n

Co
mm

un
ica
tio
n

Co
ord

ina
tio
n

Co
nfi
gu
rat
ion

Co
mp
os
itio
n

Mission

Task Plot do
es

do
es

str
uct
ure
s

Skill
pa
ram

ete
rs

Service
str
uct
ure
s

Function do
es

str
uct
ure
s

Execution Container
res
ou
rce
s

res
ou
rce
s

sch
ed
ule
r

str
uct
ure
s

Middleware/OS
rea
lize

s

rea
lize

s

rec
eiv
es

Hardware do
es

do
es

rec
eiv
es

rec
eiv
es

Table 2.2: The abstract software structure defined by the RobMoSys group.

An example of this is the border between the Service and the Skill layers. The Service layer should
only function as a layer to structure the communication between the higher level calculations of the
skill level and the lower Function level, that merely serves as a computational level. This means that
in order for a Task to be executed a clearly identified set of skills needs to be invoked that are then
structured at the service level to form a coherent set of calculations/functions at the Function level.

Furthermore the execution container can be used as a resource pool such that the Function level
can operate solely on abstract calculations and does not need to worry about allocating the correct
resources in the correct way.

2.4 UML
In this section some basic definitions and the most common features of UML will be discussed. This
is no attempt at a fully comprehensive description, however it should provide the reader with a basic
grasp of the terminology of UML diagrams if these are not familiar.

The Unified Modeling Language (UML) is a set of definitions of diagrams designed to display and com-
municate the functioning of complex software systems in an effective way[15] It is used universally
because of the wide scope of different diagrams that are part of the language. Many different levels of
abstraction and types of diagrams are defined allowing both detailed discussions about specifics but
also broad discussions about the general working principles of the program without needing to delve
into the actual implementation. This gives people the ability to have discussions by quickly sketching
a relevant diagram with all people involved agreeing on the syntax and the semantics of the figure
involved.

In this thesis only a small subset of UML is used, in the following section these are briefly explained.

• Class diagram

Robotics and Mechatronics G.I.S. Hoekstra

10 Towards a software architecture model for the automation of the PIRATE robot

• Package diagram

2.4.1 Class Diagram

In object-oriented programming the term class refers to a user defined type or data structure that
not only contains that data but also has functions as its members, these functions are sometimes also
referred to as methods when using the more general UML parlance. They form an abstraction layer
to group together related data and functionality and can therefore be seen as the type of objects.

In class diagrams a class is represented by a rectangle with three subsections: the name of the class,
the attributes (data) and the member functions [15]. The so-called visibility for the attributes and the
member functions is also indicated with an access specifier, which can be public (+), protected (#) or
private (-). The type of the members of the class are also indicated. An example of a class diagram
can be seen in Figure 2.5. In this figure there are no members indicated, this is not uncommon for
higher level overviews of a large class structure.

A

BC

DC1 C2

Figure 2.5: This is an example of a UML class diagram. It displays classes that are related via association,
aggregation, composition and generalization.

This figure also shows the different relations among the classes that can be displayed.

• Association: Represents a connection between two classes if they need to be able to communi-
cate with each other, but an association says nothing about the ownership of this relationship.
Class A and B form an association relation.

• Aggregation: Represents a connection where a child can exist irrespective of the parent, this
relation is useful for when at compile time it is not known whether or not certain elements will
be present to be interacted with. Class A and C form an aggregation relation.

• Composition: Represents a more strict form of aggregation, in this case the child cannot exist
without the parent, therefore if the parent is for some reason no longer needed all the children
need to be cleaned up as well. Class B and D form a composition relation.

• Generalization: This is a somewhat other relation that the previous three, where the other three
represent a kind of has-a relation, the generalization can be thought of an is-a relation. E.g. in
Figure 2.5 both C1 and C2 are a sub class of C. In C++ this is known as inheritance.

2.4.2 Package Diagram

A package diagram is a structural diagram used in UML to specify what parts of a program are part
of the same structure, a package diagram can contain classes or other packages, thus allowing even
more ways to abstract the structure of very large programs [15].

G.I.S. Hoekstra University of Twente

CHAPTER 2. BACKGROUND 11

They can also contain other diagrams, such as Use Case diagrams, however this is not used in this
report.

2.5 Static code checking
Static code checking, also known as static code analysis is the checking of a program without actually
executing it. It does this by looking at the source code of a program and building a model for it that
can be tested using certain techniques.

One of the more well-known tools in the C++ world is the clang static analyser, part of the larger
clang suite of C++ tools. It offers quite an extensive number of tests and presents the output in easy
to navigate web-pages, where the errors are clearly labelled and the path towards the error is also
indicated [16]

Another quite well-known tool is CppChecker [17], which is a simpler tool but checks for different
errors than the clang static analyser.

Robotics and Mechatronics G.I.S. Hoekstra

12 Towards a software architecture model for the automation of the PIRATE robot

3 Analysis
In this chapter the current system architecture is discussed. In Section 3.1 the software stack designed
in [3] is analysed, after this Section 3.2 elaborates on the consequences of designing a new framework
using RobMoSys as a blueprint. Finally Section 3.3 lists the requirements based on this discussion.

3.1 Current software structure analysis
The design of the current software is displayed in Figure 3.1. The most important package is the Pirate
Control package which houses most of the functionality related to the control. Within this package
there are three classes used for messages, these are Limit, Control and Setpoint. The Pirate Manager
class uses one instance of each of these classes to send messages to the PIRATEbay.

The Pirate Manager is composed of the Pirate Server and the Mapper class. These are responsible
for the translation of the PAB. The idea behind this structure is that the Pirate Server can pass on
parameters to a PAB class that in turn executes the associated actions.

The current design suffers from the fact that changing the design of the actual robot would require a
complete redesign of a lot of the functions inside the classes. This is due to the fact that all messages
used are based on the current layout of the modules.

In addition to this the PAB functionality is comprised of a number of very large functions, which makes
it difficult to reuse parts of these when the design is changed.

Furthermore the documentation of the different functions within the classes is quite scarce, not all
functions are labelled clearly to indicate their functionality. Because the documentation is lacking it
is often hard to verify the accuracy of certain parts of the software, for this reason it is desirable to
split up certain parts such that they can be repurposed elsewhere. In addition to this the smaller size
of the functions means it is easier to test them individually without needing to take into account a lot
of changes in the system state.

3.2 RobMoSys and other changes
One way to tackle the problem of large functions is to make the different layers in the software even
more explicit than was the case of [3]. One way in which this can be done is using the blueprint of
the RobMoSys architecture.

The layers that have been discussed in Section 2.3 can also be applied to the software architecture
running on the laptop in this design, even though direct interfacing with the hardware is not present
in this hardware. This forces the design to be even more explicit about the various conversions that
are taken place inside the design. It also forces the interfaces between the different layers to be
well-defined. These boundaries also allow for tests to be written at all levels of the architecture. This
means the making explicit of all the layers increases the clarity and responsibility of all the functions
and classes involved.

To allow for the easy extension of the design when new modules are added certain functions may
need to be slightly more complicated than currently is the case. However this cost will be outweighed
by the fact that any changes in the hardware are more easily adapted in the software, thus simplifying
maintenance.

G.I.S. Hoekstra University of Twente

CHAPTER 3. ANALYSIS 13

Pirate Software Framework

Pirate Control

Pirate Robot Interface Pirate User Interface

Limit

Pirate Manager

Setpoint

Mapper

Pirate Server

Control

Motion Primitives

Clamp Straight

≪interface≫
IMU sensor

≪interface≫
Joint sensor

≪interface≫
Pirate State

≪interface≫
UI driver input

≪interface≫
UI driver output

Figure 3.1: The software architecture for the PIRATE robot as designed in [3].

Robotics and Mechatronics G.I.S. Hoekstra

14 Towards a software architecture model for the automation of the PIRATE robot

3.3 Requirements
3.3.1 Software Framework

The requirements that are listed below are an extension of the goals of the project (Section 1.3) and
the discussion in the previous sections of this chapter. They are grouped by sub goal.

1. The framework should offer a flexible message system.
The framework should be able to provide a sophisticated and flexible message system to allow
for a design in which it is easy to change certain parts of the software, e.g. changing the path
finding algorithm itself.

2. The framework does not need to be hard real-time.
Because all the real-time control loops are handled on the pirate itself the need for a hard
real-time system is alleviated.

3. The framework should offer sufficient logging capabilities.
Because the PIRATE is quite a complex system the framework should preferably include some
form of logging that also allows easy retrieval of the logged events.

3.3.2 Software

3.3.2.1 Structure

1. The software structure should run efficiently on a moderately powerful laptop.
Althoughmodern laptops have very sophisticated and powerful processors the software should
not take too long for calculations, because even though the hard real-time calculations are taken
care off, since the robot is moving there is still definitely a deadline for e.g. collision detection.
This means that the structure should not use too much padding (e.g. extra classes), this also
simplifies the conceptual understanding.

2. The software structure should be such that sensors and motors can be added quite simply.
The PIRATE robot is not yet a fully finished product, this means that the number and type of
sensor and motor might change. To allow for this variability the software structure should be
such that the structure can be easily modified using a configuration file for parameters and
straightforward classes for additional sensors/motors.

3. The software structure should make the communication with the PIRATEbay and other peripherals
as straightforward as possible.
Because the PIRATE has quite a lot of parameters that should be controlled from the software
this control structure should be as straightforward as possible.

4. The software structure should be such that there is a clear separation between the layers.
The software structure should be such that only the lower level parts consider the direction
manipulation of the messages send to the PIRATE robot. The higher level classes should fully
focus on the path finding and the manoeuvring of the robot through the pipe.

5. The software structure should avoid sharing too much state between the distinct classes.
To take full advantage of all the processing power available on modern laptops, the structure
should minimize shared (mutable) data, as this requires locks and/or mutexes to safely access
this data, thus slowing the program.

6. The software structure should provide a protective layer.
This protective layer should function to protect the robot from receiving commands from the
higher software layers that could possibly damage the robot.

G.I.S. Hoekstra University of Twente

CHAPTER 3. ANALYSIS 15

7. The software structure should supply the programmer with logical parameters.
The lower layers of the software consider themselves with the raw (unsigned) integers that
are transmitted to the robot, whereas on higher levels it is possible to use more natural repre-
sentations such as doubles to represent angles. This simplifies the design of the path finding
algorithm, as the programmer does not need to translate between the real values and their
integer representations in the PIRATE robot.

8. The software structure should allow for manual control.
To allowmanual takeover of the robot in case of emergency or for other reasons during testing.

9. The software structure could be formed according the rules of RobMosys [4].
The RobMoSys framework offers a reverence framework that can be used to structure the
software.

10. The software structure could include a parser for input commands.
If possible there should be a way to tell the robot what route to take, but this should be easy
enough for it to be done by somebody with no previous programming experience.

3.3.2.2 Documentation

1. The documentation should always be up-to-date.
The documentation of the software should not lag behind the implementation. This calls for
some tool that can extract this information from the code/comments.

2. The documentation should always be structured well.
Although this seems quite straightforward, quite often the documentation of a project is left
as the last thing on the to-do list, with this requirement it also becomes a central point of
attention.

3. The documentation should specify how to run the system and how to configure it.
It should be clear from the documentation how to get the system running and how to configure
the most important parameters. The more in-depth workings of the system architecture can
be left to the report, as well as the design decisions.

4. The documentation could be made with a tool.
In the previous chapter Doyxgen was discussed as a tool for documenting the code, such a tool
would greatly simplify the task of keeping the documentation up-to-date.

3.3.3 Tests

3.3.3.1 Unit testing

1. Unit testing should be performed for every element communicating with a ROS node (or equiva-
lent).
Because of the complexity of the whole system is simply too extensive to test with one test
every class/object that communicates with a ROS node should be tested individually. In this
way the working of every individual part can be tested. This means that during the design of
the nodes this has to be explicitly taken into account.

2. Unit testing could be performed for every (relevant) combination of ROS nodes.
Individual units only prove that they communicate correctly with the ROS node, to be able to
prove that they also communicate correctly with each other, unit tests should also be per-
formed for relevant combinations of ROS nodes, e.g. the Graphical User Interface (GUI) and
the nodes that communicate the information to the GUI class.

Robotics and Mechatronics G.I.S. Hoekstra

16 Towards a software architecture model for the automation of the PIRATE robot

3.3.3.2 Static checking

1. Static checking should be used to detect bugs that might be missed at run-time.
Despite C++’s strong type system not all bugs are caught, for these types of bugs a static
checker can be used to reveal possible sources for errors. E.g. memory leaks, resource leaks,
bounds checking and more.

2. Static checking tools should be evaluated for their performance.
Here performance is defined as the number of false positives and more importantly also the
number of false negatives. If a lot of false positives are supplied the programmer will tire of
all the noise in the warnings and maybe neglect proper warnings. On the other hand false
negatives are annoying because bugs are not caught. In this work only Open Source[18]tools
will be evaluated.

3. The influence of static checkers on the code should also be evaluated.
Using another tool in the development chain might influence the way code is written, part of
the requirements is thus to establish how a (number of) static code checkers influence the code
and the quality of the code.

3.4 Conclusion
By introducing a more layered architecture the testability of the many components becomes a more
feasible task. By making sure from the initial design that extensibility and maintainability are an im-
portant part of the software architecture the software architecture should be able to be re-used for
multiple different steering mechanisms. However since these mechanisms fall outside the scope of
this report they will not be extended upon here. The interface that is offered by this software however
will be discussed in the next chapter on design.

G.I.S. Hoekstra University of Twente

17

4 Design
This chapter discusses the design of the software architecture and the multi layered approach that
has been discussed in Section 2.3. The general outline of the design of the software architecture is
discussed in Section 4.1, where the most important classes are displayed according to their function
within the RobMoSys architecture. After this Section 4.3 and Section 4.4 go into more depth con-
cerning the design of the various layers and their function in the overall software architecture. Finally,
Section 4.5 presents the integration of the tests mentioned in Section 1.4 and Section 2.5.

4.1 General system overview
The architectural design should reflect the complexities listed in Section 3.1 and Section 3.2. This
means that the flexibility for changing both the path algorithm and/or the hardware layout of the
PIRATE robot should be easy to accommodate. By using the RobMoSys architecture blueprint this
can be facilitated relatively easy.

4.1.1 Problems that need to be solved

One of themajor problems in the design is the fact that the implementation of the PIRATEwill probably
not be the final implementation, this means that room for expansion needs to be built in on multiple
levels because with the addition of either sensors, motors or even whole modules the software should
not need a complete redesign.

The second complicating factor is the fact that the communication with the higher software layers
should be such that different path-finding algorithms can be implemented. Examples of these are
either a geometric path planning approach or a motion-primitive based approach. These algorithms
should all be able to structure the movements of the PIRATE such that the algorithm is not unneces-
sarily complicated by the interface provided by the software structure.

4.1.2 Abstraction levels

A common way of building reusable software structures is by providing multiple layers of abstraction
such that complex commands can be executed by chaining multiple simpler commands [19]. Because
the human mind has a hard time modelling complex systems the aim is to provide a structure that
allows the programmer to forget some details and let the abstraction layers that have been built
previously deal with the details [19]. However by designing a system that has too many layers the
programmer could be overloaded with too many layers that have to be taken into account at once.
This is due to the fact that using layers that are too thin the classes and functions within these layers
tend to reach to much into and thus depend on the classes and functions directly above and/or below
them.

The layers as defined by RobMoSys[14] are given in Table 2.2, of these layers the top most layer is not
considered in this design as this would comprise the research of path planning algorithms etc. The
division of the actual functionality is displayed in Table 4.1. This division assumes a primitives-based
approach, similar to [3], however different approaches could be used here for the controlling of the
PIRATE, as remarked in Section 1.2 and Section 1.3.

The division of functionality is such that the higher layers (from the Service level above) only have
to deal with idealized models and can thus focus on the timing and the order of execution of the
motions of the robot. This leaves the lower levels to worry about the safety of the parameters and
the translation from the idealized model to the parameters that are accepted by the PIRATEbay.

Robotics and Mechatronics G.I.S. Hoekstra

18 Towards a software architecture model for the automation of the PIRATE robot

Level Function

Mission Not used, but could be used for global mission planning
(e.g. inspect a certain section)

Task Plot Keep track of map and location within in map.
Skill Translate global movements as dictated by the skill level

to primitives.
Service Structure of the messages send to the PIRATE.
Function Translate messages from service layer to the dedicated

PICO (PICO).
Execution Container Contains the functionality for the PICO’s and the sensors

and the motors.
Middleware/OS Forms the communication layer with the PIRATEbay and

other (potential) interfaces.
Hardware Within this work this is considered to be the PIRATE

robot itself, but no direct work has been done on the
PIRATE itself.

Table 4.1: The functioning of the different levels within the software structure used in this research.

4.2 Global overview design
The overall design of the software structure is displayed in Figure 4.1. It consists of a number of
different classes but this makes the division between tasks also more apparent. In the next sections
there will be a more in-depth discussion about all these classes, however the general idea is that the
lower levels mainly take care of security and safety issues and the higher levels take care of the more
general path planning issues.

Starting from the bottom up the first layer currently only deals with the communication with the
PIRATEbay, however for future updates to the PIRATE this level may also have to deal with commu-
nication to other devices when or if these are attached. The second layer, the Execution Container
classes are all used to structure the incoming data into a logical structure, this is done by using iden-
tifiers and a polymorphic approach. This approach assures a constant interface and makes it easy to
add another sensor, motor or element as the only thing involved is the addition of an element to a
vector.

The Function layer forms the interface to the higher layers, here the data that is structured on the
Execution Container layer is used and is complimented with algorithms to access that information
based on the service requests from the higher layers. The Service layer consists of three ROSmessage
classes and one ROS service class. These function as an interface between the rather abstract path
planning duties of the higher layers and the more concrete and implementation dependant software
of the layers below it.

The two highest layers used in this thesis are the Skill level, where the actual primitive-based behaviour
is implemented (or other algorithms, see Section 3.1). The idea is then that these primitives are
controlled from the even more abstract Task level by an algorithm that has a (partial) map of the
pipe system in which the PIRATE is located but is only concerned with where the robot should go to.
This goal is determined by the FindTarget class that uses information such as mission parameters and
priorities to find the next location.

G.I.S. Hoekstra University of Twente

CHAPTER 4. DESIGN 19

Task

Skill

Service

Function

Execution Container

Operating System

** *

**

GlobalMove FindTarget

PrimitiveMoveGUI

msg:FeatureData srv:Move msg:State msg:InputData

MovementVisual Recognition Sensor Analysis

ElementCamera Ultrasonic Sensor

Sensor Motor

PirateCommunication

Figure 4.1: A global overview of the classes important to the global structure of the design. The light-blue
coloured classes have not yet been implemented. The structure is based on RobMoSys [4] 2.3. The thick black
line shows the divisions between what are considered the higher level classes and the lower level classes, with
the lower level classes shown below the line.

Robotics and Mechatronics G.I.S. Hoekstra

20 Towards a software architecture model for the automation of the PIRATE robot

4.3 Lower levels design
4.3.1 Operating System

Currently the only class at the Operating System level is the PirateCommunication class. This class
is rather simple since all it does is structure the communication between a ROS node that is running
on the PIRATEbay and the ROS nodes that are running on the connected laptop. This communication
is quite straightforward because of the facilities offered by ROS. The UML diagram is shown in Fig-
ure 4.2. Although the current implementation is rather simple future implementation could require
more translation of message packets due to the limitation of the bandwidth of the serial link between
the laptop and the PIRATEbay [3]

Operating System

PirateCommunication

− m_nh : ros::NodeHandle

− m_pub_setpoint : ros::Publisher
− m_pub_control : ros::Publisher
− m_pub_limit : ros::Publisher
− m_sub_frompirate : ros::Subscriber

− m_pub_sensor : ros::Publisher
− m_sub_movement : ros::Subscribe

− BUFSIZE : int

+ PirateCommunication()

+ moveCallback(const msg:Move::ConstPtr&):void
+ stateCallback(const msg:State::ConstPtr&):void

− publishNewSenorData(msg:State::ConstPtr&):bool

Figure 4.2: The straightforward implementation of the communication between the Arduino-based PIRATEbay
and the ROS nodes on the laptop.

4.3.1.1 Communication between Arduino and ROS

The communication with the Arduino-based PIRATEbay is possible through the use of a python-based
ROS tool that is part of the serial communication package. By launching such a node the commu-
nication between the laptop and the PIRATEbay is enabled through this facility. For this project the
associated launch files have been written with the following:� �

<node name=” Ser ia lCom ” pkg=” r o s s e r i a l _ p y t h o n ” type =” s e r i a l _ node . py ”
output =” sc reen ” >

<param name=” por t ” v a l u e =” / dev / ttyACM0 ” / >
<param name=”baud ” v a l u e =”57600”/ >

< / node>� �
This assumes the Arduino is connected as ttyACM0 and presents the output of the Arduino also to
the screen, however this output only shows that establishing connection was successful. Using this
node in conjunction with the PirateCommunication class running on a ROS node the communication
with the PIRATEbay is established.

G.I.S. Hoekstra University of Twente

CHAPTER 4. DESIGN 21

4.3.2 Execution Container

The Execution Container is quite large since it involves the structuring of the data that is sent from
the PIRATE. Therefore the overview is split into three different figures. The first figure shows the
inheritance relationship of the Element classes. These form a digital representation of the elements
of the PIRATE robot elements. This allows for an intuitive representation of the state of the different
elements and the many motors and sensors located on such a robot. See Figure 4.3 for the overview.

Execution Container

Element

− m_pico_boards : vector<PicoElm>

using MotorVec = vector<unique_ptr<Motor> >
using SensorVec = vector<unique_ptr<Sensor> >
using PicoElm = tuple<uint8_t, MotorVec, SensorVec>
using PicoIter = vector<PicoElm>::iterator

+ Element(t_pico_nrs:vector<uint8_t> const&)
+ ~virtual Element()

+ const printInfo():void
+ processSensorInfo(msg:Sensors::ConstPtr&):tuple<bool,uint8_t>
+ virtual updateStateMessage(msg:State&, pico_id:uint8_t):bool

 addMotor(t_pico_id:uint8_t,t_mtr_ptr:unique_ptr<Motor>):bool
 addSensor(t_pico_id:uint8_t,t_mtr_ptr:unique_ptr<Sensor>):bool
 getPico(index:size_t):PicoIter

Front

+ Front(t_pico_nrs:vector<uint8_t>)
+ ~virtual Front()

+ updateStateMessage(msg:State&, index:size_t):bool

Bend

− m_array_index : size_t

+ Bend(t_pico_nrs:vector<uint8_t>,bend_nr:size_t)
+ ~virtual Bend()

+ updateStateMessage(msg:State&, index:size_t):bool

Rotate

+ Rotate(t_pico_nrs:vector<uint8_t>)
+ ~virtual Rotate()

+ updateStateMessage(msg:State&, index:size_t):bool

Rear

+ Rear(t_pico_nrs:vector<uint8_t>)
+ ~virtual Rear()

+ updateStateMessage(msg:State&, index:size_t):bool

Figure 4.3: The four different type of elements that make up the PIRATE robot. They are all quite similar, the
constructors are used to construct from which sensors that particular element consists and can thus be used to
change the layout if the hardware is updated. The only exception is the Bend class that uses an extra parameter
for its constructor so that the elements inside the class know which element they are part of.

The Standard Library [20] has been used as much as possible since the implementations offered are
often superior to hand crafted variants and are regularly maintained and checked by professionals
from the field [20]. This usage however may lead to rather long variable names as is the case with
the representation for the PICO boards. These boards are modelled as a tuple of its number, a vector
of unique_ptr’s to the sensors and a vector of unique_ptr’s to the motors.

The reason for the usage of vectors is that these allow simple and immediate access to the elements
contained within the vector without a lot of overhead such as in a list or similar associative containers.
The usage of unique_ptr’s is backed up by two observations: the fact that there are multiple types of
sensors and motors and these might change depending on the hardware revision, thus necessitating
the usage of polymorphism. The second reason is that by avoiding raw pointers it becomes clear that
these motors and sensors are owned by the elements from the vector, thus avoiding a large source
of leaks.

The advantage of the polymorphic approach is also its disadvantage as all sensors and motors are
enforced to use the same interface, meaning function names and signatures need to be more general
than in a non-polymorphic approach.

The different sensors are shown in Figure 4.4. These all communicate through the same interface,
thus allowing the easy extension of an extra sensor type or even the addition of a different version. The
copy and move constructors have been deleted, as well as the copy and move assignment operators,

Robotics and Mechatronics G.I.S. Hoekstra

22 Towards a software architecture model for the automation of the PIRATE robot

this has been done to prevent accidental slicing while moving these classes around. The reasoning
behind this is that they are only used as abstract base classes and have no direct usage in the codebase.

Execution Container

Sensor

+ Sensor()
+ Sensor(const Sensor& = delete)
+ Sensor(const Sensor&& = delete)
+ operator=(const Sensor&):= delete
+ operator=(const Sensor&&):= delete
+ ~virtual Sensor()

+ virtual newInfo(msg:const Sensors::ConstPtr&):bool = 0
+ virtual updateMessage(msg:State&, array_index:size_t):bool = 0

AngleSensor

− m_angles : vector<Angle>
− m_load : vector<Double>
− m_current : Angle
− m_index : size_t
− m_is_rotate : bool

+ AngleSensor(bool is_rotation = false)
+ ~virtual AngleSensor()

+ override newInfo(msg:const Sensors::ConstPtr&):bool
+ override updateMessage(msg:State&, array_index:size_t):bool

CameraSensor ImuSensor

SpringSensor

Figure 4.4: The inheritance structure that enables the polymorphic approach for the interfacing with the Sensor
classes. The magnet symbol indicates that it is a constexpr variable, this lets the compiler know that it is
constant, increasing the possibilities for optimizations.

A similar diagram is shown in Figure 4.5, but in this case for the motors. The same argument for the
polymorphic approach also holds for this implementation.

4.3.3 Function

The Function layer is responsible for the translation of the messages from the higher layer to some-
thing that is usable for the robot. As it has quite a high number of nodes with which it should commu-
nicate this class is quite extensive and features multiple publisher: one to communicate an updated
state to the higher layers and one to communicate commands to the Operating System layer. The
complete UML of this class can be seen in Figure 4.6.

4.3.4 Service

This layer completely consists of classes that are built using the ROS framework. By using the ROS
framework the communication between the high-abstraction layers and the lower-abstraction layers
is completely defined using a communication mechanism that is already in use, clearly documented
and most importantly the design of the ROS nodes forces the user to be very explicit what information
is being send between nodes.

G.I.S. Hoekstra University of Twente

CHAPTER 4. DESIGN 23

This last point is important since the higher layers should not have to deal with anything that is too
low level and vice versa for the lower levels, by making this very explicit using the message and service
system of ROS this fact can be checked.

Because in this thesis only two of these message classes have been implemented as the other two
fell outside the scope of this work only these are shown in Figure 4.7. The State message is updated
every time a message is received and lets the higher layer now that something has changed for the

Execution Container

Motor

+ Motor()
+ Motor(const Motor& = delete)
+ Motor(const Motor&& = delete)
+ operator=(const Motor&):= delete
+ operator=(const Motor&&):= delete
+ ~virtual Motor()

+ virtual setPWM(pwm:int):void = 0
+ virtual const printPWM():void = 0

DriveMotor LedMotor TorqueMotor PositionMotor NoMotor

Figure 4.5: The inheritance structure that enables the polymorphic approach for the interfacing with the Motor
classes.

Function

Movement

− BUFSIZE : int
− m_nh : ros::NodeHandle
− m_state_pub : ros::Publisher
− m_movement_service : ros::ServiceServer
− m_state_msg : State
− m_move_pub : ros::Publisher
− m_sensor_sub : ros::Subscriber
− m_pirate_modules : vector<unique_ptr<Element»

+ Movement()
+ move(req:Request&, res:Response&):bool
+ publishState():bool
+ publishMoves():bool
+ sensorCallback(msg:Sensors::ConstPtr&):void
− setMotor(pico_id:short, value:double):void

Figure 4.6: The Movement class that currently forms the implementation of the Function layer and is respon-
sible for structuring the incoming messages from the higher layers.

Robotics and Mechatronics G.I.S. Hoekstra

24 Towards a software architecture model for the automation of the PIRATE robot

pirate. The other two classes in that figure are two parts of the service system, also offered by ROS.
These classes work in conjunction were the Request is sent from the Skill layer to the Function layer
to request a movement, the Function layer then will (try to) execute this movement and respond with
the success of the movement. Together with the updated state the Skill layer should then evaluate
what the next move could be.

Service

msg:State

+ bend_angles : array<6,double>
+ camera_angles : array<2,double>
+ rotation_angle : double
+ imu_data : array<6,double>

srv:Move:Request

+ module : short
+ position : double

srv:Move:Response

+ result_c : int

Figure 4.7: The three different classes currently used in the Service layer, the Move service (srv) has been split
into two classes since internally they represent two different messages.

4.4 Higher levels design
4.4.1 Skill

The first level above the lower levels is the skill level, at this level the translation of the actual primitives
happens, at this level there should be no real consideration any more for any of the protocols that are
used to communicate to the PIRATE or the safety boundaries of the motors of the robot.

Skill

PAB

− BUFSIZE : int
− m_nh : ros::NodeHandle
− m_primitive_service : ros::ServiceServer
− m_movement_client : ros::ServiceClient

+ PAB()
+ execute(req:Request&, res:Response&):bool

Figure 4.8: The implementation of the primitive class, its name is based on the work of Morales [3].

This level is of course still dependant on the design of the hardware, however it should not be too
difficult to use a different algorithm on this level. The abstraction that is a result of the ROS-based
communication also helps in this regard.

For this thesis a class has been added that functions as an initiator of these primitives, its design is
given in Figure 4.8. For this thesis it is the only class that is implemented on the Skill level. It forms a

G.I.S. Hoekstra University of Twente

CHAPTER 4. DESIGN 25

service that can be called just like the service provided by the Movement class. However in this case
it translates the requested primitive in a sequence that operates in conjunction with the lower layers
to operate the PIRATE robot.

4.4.2 Task

Although no implementations have been made for this level, it is still part of the design. This is the
highest level considered for this thesis and functions as a general umbrella for really high level tasks.
These include but are not limited to tracking of the robot in a map in memory and relaying information
to the user. Such a map is of course also not trivial to keep track of but since the complexities of the
intricate moving of the parts of the robot have been taken care of this should be doable.

Since these are quite complicated tasks by themselves they would preferably not have to deal with
the direct environment of the robot itself. However the map could still be updated if an unexpected
obstacle is encountered or a certain mistake is found in the pipe system.

4.5 Testable approach
The TDD approach consists of a few key ideas, that is to test early and have (as much as possible) all
tests pass all the time, this guarantees that any version of the software that is kept in the repositories
should be correct, assuming that the tests accurately reflect the situations in which the software will
be deployed.

The tests can be performed both with and without the ROS nodes. A simple way is to test individual
functions for the relation between in- and output. However often C++ functions depend heavily on
the current state of the program, therefore making these tests quite hard to perform in isolation.
Therefore it is also important to be able to model a situation where a certain known state is set up,
a function is executed and the state after the function is checked for the accuracy of the function.
These facilities are all offered by the testing framework used in this thesis, thus allowing both type
of tests to be done. This testing framework is fully automatic due to this framework and can thus be
simply executed with a simple command.

The integration of the static checking was quite a bit more difficult, because the way the static check-
ing tool of the clang compiler is organized and the way the ROS build system works. This meant
the integration was not as straightforward as expected and that the scan-build tool could not be
integrated directly within the catkin_make build system.

In the end the way to execute static checking for the code of this research is to use a shell script that
has been included in a separate folder at the top level of the folder structure, called ‘scanbuild’, inside
this folder is a script called ‘compile.sh’ that will execute the ‘scan-build’ command for all the separate
ROS packages.

Robotics and Mechatronics G.I.S. Hoekstra

26 Towards a software architecture model for the automation of the PIRATE robot

5 Realization
This chapter discusses the details of the actual implementation of the design presented in Chapter 4.
In Section 5.1 a number of changes and additions are mentioned that have been added to the imple-
mentation that do not directly influence the design but are relevant for the actual implementation. In
Section 5.2 some of the more important details of the implementation of the OS, EC, Fu and Se layers
are considered, after this Section 5.3 discusses the functionality of the higher levels and Section 5.4
the communication between the two major parts of the software.

5.1 General overview of the implementation
The software structure that has been discussed in Chapter 4 has been followed in the implementation,
however some small additions were made. One of the more important additions is that of using
namespaces for both classes and messages between ROS nodes. The names for these correspond
to abbreviations of the level at which they operate in the RobMoSys table.

This addition was also made to avoid clashes between names of the different levels of the software
and to increase the ease of comprehension of outputs of the plotting mechanism of the rqt_graph
program.

Another change that has been added compared to the design presented previously is the division into
packages based upon the ROS nodes. This means that source files are not grouped per RobMoSys
level but per functionality, e.g. movement or visual analysis.

To be able to use as many features of C++ as possible all features of the most recent Clang compiler
were used during this work, including the C++ 17 features implemented for clang++ [21].

5.1.1 Communication between the Arduino MEGA and ROS

The communication between the ROS nodes running on the laptop and the one on the Arduino is
enabled by the use of a Python based node provided by the ROS designers [22]. By starting this
node communication with the Arduino-based PIRATEbay becomes quite straightforward as all the
serialization for the communication is taken care of by this node.

Similar to the ROS nodes mentioned in Section 5.1 these nodes can also be incorporated in the launch
files, making it very easy to also launch the communication with Arduino.

5.1.2 Dependency on ROS

Although the design as presented in Chapter 4 has been designed with the idea of using ROS for the
full implementation it might for some reason further down the design procedure become infeasible
to continue using the ROS framework. However the code that has been written for this report does
quite fundamentally lean on the usage of the ROS paradigms and practices.

If such a redesign is deemed to be necessary in future revisions of the PIRATE software the general
structure as proposed in this work could be kept as it has proven to be quite a logical abstraction
for the aspects of the robot. However the structuring with the messages and services only make
sense when the replacement for ROS, be it a different library or an in-house developed structure also
provides such a facility. However this would still require large parts of the code to be rewritten if the
interface to this library is different.

If a completely different library with other means of abstraction is chosen a different architecture
might bemore logical, however the usage of the central layersmight still be interesting for its flexibility
it offers in quickly adding new modules.

G.I.S. Hoekstra University of Twente

CHAPTER 5. REALIZATION 27

5.2 Lower levels overview
The lower levels have been implemented as designed. An overview of the ROS nodes is shown in
Figure 5.1. The different messages are grouped per namespace, and these namespaces are repre-
sentative of the RobMoSys level. The Execution Container level is not displayed, since this layer is
entirely contained within the Movement node for this implementation.

Figure 5.1: The ROS nodes currently implemented. The namespace are a reflection of the RobMoSys level on
which they communicate. The PAB class is displayed separately since this graph only displays messages, and
the relation between the PAB class and the rest is currently only a service. This figure both shows the running
nodes (the ovals), the different message blocks (the small rectangles) and the namespaces of these messages
(the encompassing rectangles).

5.3 Higher levels overview
The current implementation of the Skill layer is very simple and simply allows for some simple primi-
tives to be executed. These can be tested with the following command: rosservice call /sk_pri , here
is a number that selects a certain primitive.

The Task layer has not yet been implemented.

5.4 Communication between the high and low levels
The communication between the two different levels happens through the Service layer, for this
communication the ROS message system is used, as well as the ROS service options.

The FU::Movement class offers a move service that can be used to send commands. In parallel it also
updates the state presented by the messages generated by this node.

Robotics and Mechatronics G.I.S. Hoekstra

28 Towards a software architecture model for the automation of the PIRATE robot

6 Results
In this chapter the results are presented, they have been divided into the following categories: the
software structure as described in Chapter 4, the design is evaluated according to the requirements
listed in Chapter 3 in Section 6.1. After the evaluation of the requirements, Section 6.2 will reflect on
the impact of the usage of the RobMoSys framework. Finally Section 6.3 will reflect on the impact of
TDD and the influence of static checking on the end result.

6.1 Software
The design as presented in Chapter 4 and Chapter 5 has been realized as presented, the design pre-
sented here was the final iteration of the design. The communication between the PIRATEbay and
the laptop running the software works as expected. Hereafter the requirements of Section 3.3 are
discussed per section.

6.1.1 Software Framework

The message system is based on the ROS framework and offers expansion if extra modules are added.
However for the communication of the lower levels with the PIRATEbay the addition of extra sensors
or motors does entail a change of the message format, the reason for this is this message was kept
as compact as possible to avoid straining the communication channel too much.

The fact that the ROS system, and the Linux Operating System as well, does not offer hard real-time
guarantees means that messages are not guaranteed to arrive within a certain deadline, however in
practice this has not been observed to cause any problems.

There are multiple levels of logging that can be toggled on or off, based on what is of interest to the
user. This facility is implemented by using so-called ROS_DEBUG_NAMED constructions for logging
actions. This allows messages that are labelled with a certain name to be presented to the user, as
well as the storage and later retrieval.

6.1.2 Structure

The current implementation runs smoothly on a laptop with an Intel I5-4210U processor, 8 gigabytes
of RAM and running Linux with the 4.14.11 kernel. There have been no problems so far with slow-
ing down of the program due to insufficient resources since there are no heavy graphic workloads
included.

Due to the usage of polymorphism and the vector class from the standard library it is very simple to add
a sensor or a motor to the software structure, although the message format will need a small change
as well to be able to contain this new information, see also Section 4.3.2. To add either a sensor or
a motor, the only thing that needs to be changed in the current implementation is the constructor
of the element in which this sensor is used and the messages that contain the information for this
sensor. This would be the state message communicated to the higher levels but also the lower level
communicationwith the PIRATEbay. Adding a new element is slightly more complex since this changes
the relations between the bend modules and also (probably) adds a lot of new sensors that need to
communicate using the ROS messages. This would thus require the restructuring of the Movement
class constructor to accommodate this new element but also again changes in the ROS messages.

The communication is made as straightforward as possible by implementing the communication in
a separate class that is dedicated solely to this task. This has as an added benefit that if for some
reason the communication protocol needs to changes this would only involve the changing of this
single class.

G.I.S. Hoekstra University of Twente

CHAPTER 6. RESULTS 29

The separation between the layers has been clearly indicated in Chapter 4, with the responsibility of
each layer indicated. This separation also helps with the fact that the classes should not share too
much state, due to the fact that the responsibility of classes has been clearly divided among the layers
this is minimized as much as possible. However the data that is generated by the sensor and motor
classes in the Execution Container layer needs to be used by the classes inside the Function layer, this
means that the functionality of the classes inside the Function layer is dependant on the data from the
sensor and motor classes. However this interface has been made such that get and set functions are
avoided as much as possible, this to avoid dependence of the Function layer classes on the internals
of the classes inside the Execution Container layer.

A protective layer is formed by using the Execution Container layer with classes that represent real-
world units. This means that logical checks can be implemented using physics-based equations. This
also ties in with the fact that the software should supply logical parameters. Combining these two
requirements allows for the safety to be built into this layer, even though the robot also has some
built-in safety for the motors [2].

In the current implementation the control unit is still connected to the PIRATEbay directly and over-
rides any commands sent by the control structure on the laptop. This situation is not ideal as this
would preferably have been implemented with a switch on the interface. This is still however a pos-
sibility since not all switches have been assigned on the control interface.

A parser for input commands has not been built as this would have been part of the Task level and
this level has not been implemented in this thesis.

6.1.3 Documentation

Although the requirements stated that the documentation should always be up-to-date this proved to
be quite difficult in practice, due to the fact that a software structure had to be built from the ground
up. This meant that some of the interfaces between classes and RobMoSys levels were changing from
iteration to iteration. This meant that it sometimes was to difficult to keep the documentation fully
complete with respect to the latest changes. However the final product does include full Doxygen
documentation and can be output as either an html web page or as a LATEX file.

A similar argument also holds for the requirement that the documentation should be well structured,
the final result of this is that the documentation is structured by namespace. These namespaces have
been used to refer to RobMoSys levels, this means the documentation also reflects the structure of
the architecture.

The documentation provides several ways to run (parts of) the program as well as how to run the tests
associated with each package. All the documentation is generated with Doyxgen, this tool makes it
very easy to produce extensive documentation and is a great benefit for an efficient workflow since
the description of the code and the code can be found in the same place and turns the comments
in the code into actual documentation. Furthermore the tool can also generate UML graphs, but
unfortunately these are somewhat too expansive for inclusion in this report as they include a lot of
details that are not immediately relevant.

6.1.4 Testing

All the packages contain a set of tests that test individual ROS nodes and functions of classes. How-
ever tests that include multiple nodes have not been written, despite the requirement that this could
have been done. Testing has been limited to a package level.

The usage of static checking has been implemented, although this did take some considerable effort.
The usage of the clang based static checker scan-build has revealed a small number of bugs that were
not found by the compiler alone, even with the appropriate flags enabled. However the number of
bugs found was not so high as initially expected, both due to the fact that it was added later but also
the compartmentalization of the software. The current implementation of the clang static checker is

Robotics and Mechatronics G.I.S. Hoekstra

30 Towards a software architecture model for the automation of the PIRATE robot

only able to find errors within translation units, this means that together with the layers employed by
the software structure means that the number of bugs was not that large. An example of a bug that
was found in this way was some unreachable code due to passing a boolean value as always false, or a
different bug that was encountered a couple of times was that of values being stored but never read.
The static analysis tool did not find any memory leaks, which can be attributed to good programming
practices and using the appropriate smart pointers where necessary.

6.2 The RobMoSys framework
The design of this architecture was based on the RobMoSys framework. Although this design has
been conceived based on the framework the requirements of this project mean that the RobMoSys
framework was slightly too expansive for this project’s size. Despite this the resulting architecture
features quite a lot of independence between the several parts.

6.3 Influence of testing on the end result
Part of the goal of this thesis was to see what the extensive influence of using static analysis and TDD
would mean for a project the size of a Master’s thesis.

The usage of these testing methods has been further augmented by the use of compiler flags in
combination with direct feedback from within the editor, which in this case was VIM [23]. By using
the features of the compiler a lot of bugs could already be detected at compile time, without the
usage of a static analysis tool or a manual test. Examples of bugs that were found in this way include:

• Narrowing conversions: e.g. the communication to the PIRATEbay happens with 16 bit integers,
however the internal data size of int is 32 bit. The compiler is allowed to use narrowing but
this might cause implicit errors. Using static_cast resolved these errors.

• Type errors for vector iterators: Iterators are very useful tools for traversing vectors (or other
container types) and they offer a nice interface for the functions from the standard library. This
means that together with the compiler these catch quite a number of errors (off by one, null
pointer dereference) at compile time, instead of having the program blow up at run time.

The compiler flags that were used are supported both by gcc and clang:

• -std=c++1z: Enable the C++17 features.

• -Wnon-virtual-dtor: Enable a warning for forgetting to make destructors virtual for classes
with virtual functions.

• -Wshadow: Warn for variables shadowing variables in an outer scope.

• -Wcast-align: Warn about pointers which increase alignment.

• -Weffc++: Warn about violations of the effective C++ guidelines

• -Wall: Enable warnings for common mistakes.

• -Wextra: Enable warnings for more common mistakes.

• -Wold-style-cast: Enable warnings for C-style casts.

• -Wconversion: Warn for implicit conversions that might change a value.

However these compiler flags only protect against errors that can be checked using the C++ type
system, to find errors in the program logic manual testing needed to be done. This is where the test
suites that are part of TDD come into play. By using these tests the interface and the operation of

G.I.S. Hoekstra University of Twente

CHAPTER 6. RESULTS 31

the modules could be tested. In this way the operation could be verified. One bug that was found
this way was that the vector initialization of the Element subclasses went wrong. This threw of the
resulting output and this was caught by the tests. Because the tests that were written during this
work only operate on the visible interface that is provided by each ROS node and class, the tests do
not cover anything that can not be changed without using the interface. This means some tests are
a bit harder to set up or to test explicitly. However it does give an idea of the real operation in the
code since only the visible parts are used within the code. This is also partly due to the fact that the
ROS system was used since this offers a nice interface to test against, using the message and service
system provided.

Finally the static analysis part also consumed quite a lot of time to get running and is still of limited
use since the static analysis tool is only able to find bugs if they occur in the same translation unit.
Since a lot of the algorithm require the interfacing between multiple classes in multiple namespaces
(ROS levels) this meant that the usage of the clang tool was not that large. However a script has
been included in the work that checks all the code and it is thus quite trivial to keep it up to date with
the rest of the system. This script currently only works when called from within the directory it is
contained in as it contains relative paths.

Robotics and Mechatronics G.I.S. Hoekstra

32 Towards a software architecture model for the automation of the PIRATE robot

7 Conclusion
7.1 Conclusion
The aim of this assignment was to build a better, more organized software for the PIRATE that offered
flexibility both for the higher level path algorithm aswell as the ability to change the software structure
to accommodate changes in hardware. In comparison with previous iteration of the software struc-
ture [3] this architecture indeed offers more flexibility for the extension of the software to include
more modules, sensors and/or motors; it also offers the possibility to use different path planning
algorithms, and not just a primitive-based approach. However this increase in flexibility has meant
that some parts of the structure have become more abstract relative to the previous implementation.

This improvement has been accomplished by implementing a layered structure on the basis of Rob-
MoSys that has separated the different responsibilities of the architecture per layer. Using this ar-
chitecture proved to be useful for getting the separation however it also made some code more
complicated since the data and functionality are split up into multiple layers. These layers add to the
cognitive load of the design. However for such a complex design such as a software structure that
needs to control a robot this division is necessary to avoid overly complex functions and classes.

Another part of the research was to not only build a software structure but also provide the means
to assure the quality of this software structure. These include the usage of tests to ensure that the
functionality is correct, static analysis to find bugs that are hard to find or might occur only rarely in
run-time situations and finally the provision of documentation for the whole project. A TDD approach
provided a framework to set up the tests, proving that it was hard to integrate this into a situation in
which a lot of the interface between parts is still quite flexible. However the tests helped in finding a
number of bugs. The static analysis part of the project was less used as this was added relatively late to
the project, the current implementation however allows the static analysis to be used with a simple
call to a script. The documentation is provided using the Doxygen tool. All these things together
should provide any future users a good start for further developing the software to accommodate
changes in hardware or new designs in path algorithms.

7.2 Recommendations
Although progress has been made towards a higher quality software structure the current implemen-
tation of the primitives still is quite minimal. The following points are where improvement is still
possible:

• The implementation of the primitives is currently quite minimalistic, for a more complete design
it would be at least necessary to implement basic turns and T-joints.

• The test framework has a delay during setting up the ROS nodes, this delay is currently some-
what arbitrary, as it needs to be long enough to set up all the necessary ROS parts. To increase
testing speed it would be desirable to reduce this set-up time to a minimum.

• To further increase the usefulness of the tests it could be desirable to include a number of
standardised tests with the hardware attached and also evaluated. The current testing solution
only tests the software in simulated situations and a real hardware test would be desirable for
the next level of testing.

• A test that has not been added yet but could be quite useful is to test for message buffer
overflows within the ROS nodes. These nodes have limited capacity before they overflow, the
effect of this has not been tested yet.

• For future development of the hardware it is advisable to implement a more robust communica-
tion scheme. The current implementation sometimes misses messages and this causes erratic

G.I.S. Hoekstra University of Twente

CHAPTER 7. CONCLUSION 33

motion that is hard to reproduce and guard against. The difficulty of protecting against this
type of malfunction is the fact that the whole communication mechanism is actually disrupted
when these type of faults occur.

• For future development of the software it is recommended to re-evaluate the structure of the
Skill layer since the current layer only allows for very simple primitives to be implemented. If
more complex primitives need to be implemented a more complex design might be necessary
to easily build all the primitives necessary for movement through pipe systems.

• The RobMoSys framework has proved to be of great help during the development up until this
stage, however if for future developments it turns out that the structure is too rigid the advise
would be too condense some layers to avoid too many layers of classes, e.g. the Operating
System level is currently only used for sending data over the serial bus, this functionality could
also be combined with the structuring of the data that occurs in the Execution Container layer
if it turns out the communication does not need further extension.

• Since the structure of tests and static analysis has been set up the continued use of these is
advised to ensure that the code quality remains up to at least the same level.

• The accuracy of the sensors has not been assessed during this work, however the work of
Morales [3] has indicated that this might not be as high as necessary. Further research into this
area is necessary to ensure the maximum usefulness of the whole software setup.

Robotics and Mechatronics G.I.S. Hoekstra

34 Towards a software architecture model for the automation of the PIRATE robot

A Arch Linux details
During this thesis I have worked with Arch Linux [24] instead of the default distribution for ROS,
Ubuntu [25]. This meant that there were a few things that were different to what the default experi-
ence might be.

The easiest way to install the ROS environment is to use a package manager to download all the
required packages from the Arch Linux User Repository (AUR)[26]. I have used yaourt [27] with great
success, make sure you pass the –noconfirm flag to avoid having to manually enable all packages.

The code has been compiled with ros-kinetic. There are however a number of catches to compile the
ROS code on Arch Linux. First of all Arch uses python2 vs Ubuntu’s python to call the python compiler.
This means the following alias is necessary when using catkin_make:� �

a l i a s c a t k i n _make=” c a t k i n _make
−DPYTHON_EXECUTABLE=/ usr / b in / python2
−DPYTHON_INCLUDE \ _DIR=/ usr / i n c l ude / python2 .7
−DPYTHON\ _LIBRARY=/ usr / l i b / l ibpython2 . 7 . so ”� �

To further speed-up ease of compilation I have added to small extra commands that can be used to
quickly set up the build environment:� �

rosenv () {
source / opt / ros / k i n e t i c / setup . zsh
a l i a s catkin_make=” catkin_make i

−DPYTHON_EXECUTABLE=/ usr / b in / python2
−DPYTHON_INCLUDE_DIR=/ usr / i n c l ude / python2 .7
−DPYTHON_LIBRARY=/ usr / l i b / l ibpython2 . 7 . so ”

}� �
And for the running of the software the following can be used in the main folder of the project:� �

rosdev () {
i f [[−d ” deve l ”]] ; then

source deve l / setup . zsh
. deve l / setup . zsh

f i
}� �

During the time I have been working with Arch Linux and the ROS system I encountered a problem
every time the Boost libraries were updated, since this updated is passed on immediately to the Arch
repositories but not to the Ubuntu/ROS repositories the dependencies of ROS are no longer correct.
This caused some small but annoying problems every time these libraries were updated. The Arch
wiki (wiki.archlinux.org) contains some good tips for getting the ROS system to work on Arch Linux.

Finally, while it is doable to get the ROS system to work on Arch Linux I would advise against people
who have not yet installed either Ubuntu or Arch to just install Ubuntu since it will already be a new
environment to learn if your not familiar with Linux.

G.I.S. Hoekstra University of Twente

35

B File structure
The file structure of this project is shown below. Not all subdirectories of build, devel and docs are
shown as these are tool-generated and contain a lot of subdirectories.

├── build
├── devel
├── docs
├── scanbuild
└── src

├── arduino
│ └── pirate_bay
│ └── ros_lib
├── fakepirate
│ ├── include
│ │ └── fakepirate
│ ├── msg
│ └── src
├── pirate_mov
│ ├── include
│ │ └── pirate_mov
│ ├── launch
│ ├── msg
│ ├── src
│ ├── srv
│ └── test
├── pirate_os
│ ├── include
│ │ └── pirate_os
│ ├── launch
│ ├── msg
│ ├── src
│ └── test
├── pirate_pab
│ ├── include
│ │ └── pirate_pab
│ ├── launch
│ ├── msg
│ ├── src
│ ├── srv
│ └── test
├── pirate_test_2
│ ├── launch
│ ├── msg
│ └── src
└── pirate_vis

├── include
│ └── pirate_vis
├── msg
└── src

Robotics and Mechatronics G.I.S. Hoekstra

36 Towards a software architecture model for the automation of the PIRATE robot

C Acronyms
AUR Arch Linux User Repository . 34

GUI Graphical User Interface . 15

IMU Inertial Measurement Unit . 5

PAB Partial Autonomous Behaviour . 2

PICO PICO . 18

PIRATE Pipe Inspection Robot for AuTonomous Exploration . iii

PWM Pulse Width Modulation . 6

ROS Robot Operating System . v

RobMoSys RobMoSys . 3

TDD Test Driven Development . 2

UML Unified Modeling Language . 3

G.I.S. Hoekstra University of Twente

37

Bibliography
[1] Nederlandse Overheid. Besluit externe veiligheid buisleidingen. http://wetten.overheid.nl/

BWBR0028265/2014-11-01. Accessed: 2017-11-17.
[2] E. C. Dertien. Design of an inspection robot for small diameter gas distribution mains. PhD thesis,

University of Twente, 2014.
[3] G.A. Garza Morales. Increasing the autonomy of the pipe inspection robot pirate. Master’s thesis,

University of Twente, 2016.
[4] Dennis Stampfer et al. Robmosys. www.robmosys.eu. Accessed: 2017-06-28.
[5] Arduino. Arduino mega product page. www.arduino.cc/en/Main/ArduinoBoardMega. Ac-

cessed: 2017-06-30.
[6] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system (description). www.

ros.org. Accessed: 2017-05-24.
[7] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system node description.

www.wiki.ros.org/ROS/Tutorials/UnderstandingNodes. Accessed: 2017-06-28.
[8] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system services descrip-

tion. www.wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams. Accessed: 2017-
06-28.

[9] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system topics description.
www.wiki.ros.org/ROS/Tutorials/UnderstandingTopics. Accessed: 2017-06-28.

[10] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system action server de-
scription. www.wiki.ros.org/actionlib. Accessed: 2017-06-28.

[11] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system concepts. www.
wiki.ros.org/Concepts. Accessed: 2017-06-28.

[12] Armin Hornung et al. Aaron Blasdel, Adam Leeper. Robot operating system bags description.
www.wiki.ros.org/Bags. Accessed: 2017-06-28.

[13] Atmega. Atmega 328p product page. www.microchip.com/wwwproducts/en/ATmega328p. Ac-
cessed: 2017-06-30 (ATMEL was bought by Microchip in 2016).

[14] Dennis Stampfer et al. Robmosys architecture. http://robmosys.eu/wiki/general_
principles:separation_of_levels_and_separation_of_concerns. Accessed: 2017-06-
30.

[15] Ivar Jacobson Grady Booch, James Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley Professional, second edition, 2005.

[16] Chris Lattner et al. scan-build. https://clang-analyzer.llvm.org/scan-build.html. Ac-
cessed: 2018-01-08.

[17] Cppcheck website. www.cppcheck.sourceforge.net. Accessed: 2017-07-04.
[18] M. J. Prietula S. S. Levine. Open collaboration for innovation: Principles and performances.

Organization Science, Forthcoming, 2013.
[19] Julie Sussman Harold Abelson, Gerald Jay Sussman. Structure and Interpretation of Computer

Programs. MIT Press, second edition, 1996.
[20] Povilas Kanapickas. C++ standard library reference. en.cppreference.com/w/cpp. Accessed:

2017-11-10.
[21] Chris Lattner et al. Progress report c++ features. https://clang.llvm.org/cxx_status.

html. Accessed: 2018-02-10.
[22] Paul Bouchier. Ros serial communication with arduino. wiki.ros.org/rosserial_arduino.

Accessed: 2018-01-18.

Robotics and Mechatronics G.I.S. Hoekstra

http://wetten.overheid.nl/BWBR0028265/2014-11-01
http://wetten.overheid.nl/BWBR0028265/2014-11-01
www.robmosys.eu
www.arduino.cc/en/Main/ArduinoBoardMega
www.ros.org
www.ros.org
www.wiki.ros.org/ROS/Tutorials/UnderstandingNodes
www.wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
www.wiki.ros.org/ROS/Tutorials/UnderstandingTopics
www.wiki.ros.org/actionlib
www.wiki.ros.org/Concepts
www.wiki.ros.org/Concepts
www.wiki.ros.org/Bags
www.microchip.com/wwwproducts/en/ATmega328p
http://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_concerns
https://clang-analyzer.llvm.org/scan-build.html
www.cppcheck.sourceforge.net
en.cppreference.com/w/cpp
https://clang.llvm.org/cxx_status.html
https://clang.llvm.org/cxx_status.html
wiki.ros.org/rosserial_arduino

38 Towards a software architecture model for the automation of the PIRATE robot

[23] Bram Moolenaar. Vim website. www.vim.org. Accessed: 2018-01-10.
[24] Aaron Griffin. Arch linux website. https://www.archlinux.org. Accessed: 2018-01-18.
[25] Canonical. Ubuntu website. https://www.ubuntu.com. Accessed: 2018-01-18.
[26] Arch Linux Users. Arch linux user repository. https://www.aur.archlinux.org. Accessed:

2018-01-18.
[27] Julien Mischkowitz. Yaourt package page. https://www.aur.archlinux.org/packages/

yaourt. Accessed: 2018-01-18.

G.I.S. Hoekstra University of Twente

www.vim.org
https://www.archlinux.org
https://www.ubuntu.com
https://www.aur.archlinux.org
https://www.aur.archlinux.org/packages/yaourt
https://www.aur.archlinux.org/packages/yaourt

	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Goals
	1.4 Approach
	1.5 Report organisation

	2 Background
	2.1 ROS
	2.2 PIRATE
	2.3 RobMoSys
	2.4 UML
	2.5 Static code checking

	3 Analysis
	3.1 Current software structure analysis
	3.2 RobMoSys and other changes
	3.3 Requirements
	3.4 Conclusion

	4 Design
	4.1 General system overview
	4.2 Global overview design
	4.3 Lower levels design
	4.4 Higher levels design
	4.5 Testable approach

	5 Realization
	5.1 General overview of the implementation
	5.2 Lower levels overview
	5.3 Higher levels overview
	5.4 Communication between the high and low levels

	6 Results
	6.1 Software
	6.2 The RobMoSys framework
	6.3 Influence of testing on the end result

	7 Conclusion
	7.1 Conclusion
	7.2 Recommendations

	A Arch Linux details
	B File structure
	C Acronyms

