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Summary

Automatic annotation of actions using accelerometer data would make the analysis
of everyday, spontaneous activities much easier. It could create a context when try-
ing to relate physiology to experience and it could lead to extracting new features.
The goal of this thesis is to examine how different actions can be classified using
inertial measurement unit data and to see how well a model that is trained in a struc-
tured experiment could be used to classify actions in a more naturalistic setting. This
is done in the context of food preparation, because the project ’Quantified consumer’
is used as the framework.

Therefore, the data from ’Quantified consumer’ is used as the data set for this
experiment. We chose an approach where we split the data in windows of 1 second
and classify each window. As the ground truth we used a selection of the data set for
which we could be sure about the performed action. We performed three different
classification tasks, each with a different number of actions. k-nearest neighbor with
k=5 was used as classification method with up to 6 different features. The informa-
tion from neighboring windows were taken into account for each of the windows.

Classification between action and standing still had a high performance, classifi-
cation with more classes gave the highest results on the dry cooking session data.
A model trained on dry cooking data and run on real cooking data performed almost
as well as a model trained on real cooking data, provided that the dry cooking set is
balanced between classes.

This study presented a way to evaluate different action recognition models with-
out requiring manual annotation of videos.

To improve the results, we could look at increasing the number of neighboring
windows that is taken into account or better look at the used features. A different
classification method like deep learning hopefully improves recognition performance
as well as a more user-specific approach.
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Chapter 1

Introduction

Studying everyday, spontaneous activities often requires annotation of the actions
that are performed during the activity. These annotations are usually done manu-
ally, which takes a lot of time and effort. Automatic annotation of actions using ac-
celerometer data would make the analysis of this type of data much easier. Training
annotation models could be facilitated by using data from a structured experiment
and use these models for automatic annotation on the data of interest in a more
naturalistic setting.

This thesis will examine how different actions can be classified using inertial
measurement unit (IMU) data and how well we can generalize a model that is trained
in a structured experiment to a more naturalistic setting.

1.1 Context

In the project ’Quantified consumer’ at TNO, the goal is to estimate the experienced
emotion during real-life cooking and tasting. Positive emotions are critical for the
success of food products in the marketplace, but little is known about the emotional
processes in the interaction of the consumer with the product during food preparation
and cooking. New methods to quantify these experiences are essential in order to
successfully deliver emotional benefits and health to consumers by making nutritious
cooking and eating desirable, enjoyable and easy to understand and do.

Therefore, an experiment is done where participants are asked to cook a dish,
which is cooked with either presumably pleasant products (fresh ingredients and
nice-looking packaging) or less pleasant products. During the experiment, physio-
logical measurements such as electroencephalography (EEG), electrocardiography
(ECG), skin conductance and IMU data (accelerometer and gyroscope) are recorded.
The participants follow prerecorded, auditory instructions given at specified times
that guide them through the cooking process. Before and after the real cooking
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2 CHAPTER 1. INTRODUCTION

session, a so-called ’dry cooking’ session is run where participants simulate the
movements of real cooking.

We aim to automatically annotate the actions of the cooking process in this con-
text, using the IMU data. A few studies about the automatic annotation of sensor
data from subjects preparing food have been done in the past, mainly [1], [2] and [3].
In these studies both video and IMU data were recorded and used to perform auto-
matic annotation.

Because the project ’Quantified consumer’ is used as the framework, the focus
of this paper is on automatic annotation of sensor data from subjects preparing food.
However, automatic annotation would facilitate research in a large range of real-life
conditions.

1.2 Problem statement

Annotation of the actions (whether automatic or manual) helps with the interpre-
tation of physiological measurements in experiments like ’Quantified consumer’: It
is possible to relate physiological reactions (caused by motor activity and emotion)
to action more precisely by looking where an action started and where a reaction
should occur, instead of looking at the start of the commando given through the ex-
perimental setup. In this way, it is creating a context when trying to relate physiology
to experience.

Another benefit from annotation is that it could lead to extracting new, potentially
interesting features, such as movement duration, or the duration of stirring.

Currently, in order to annotate the actions, many experiments need to have a very
structured setup, where subjects are explicitly instructed at a certain time stamp to
perform certain actions, so that the data is labeled. Experiments that do not require
the subjects to execute the experiment in a very structured order, but instead execute
the activity at their own pace, make the setting more naturalistic. However, this kind
of experiment requires manual annotation, which requires one or more experts to
inspect the data and label the data with the actions that the subject is doing, which
is very time-consuming work.

An automatic annotation system, based on an action recognition model that
would detect and identify the separate actions that are performed, would greatly
facilitate the analysis of naturalistic experiments.

Apart from its use in the analysis of experiments, several studies mention ambient
assisted living (AAL) as an important motivation for activity detection and recogni-
tion. The possibility for elderly people to live longer independently in their homes is
facilitated by automated monitoring of these subjects. Wearable sensors like an ac-
celerometer, possible integrated in a watch, and automatic detection and recognition



1.3. RESEARCH QUESTIONS 3

of their actions, could help in monitoring these people.
Many experiments that train action recognition models, (such as [4] and [5]) are

very structured. In these experiments, participants are performing one action at a
time so it is easy to generate a ground truth. However, it is questionable whether
models trained in these artificial settings generalize to real life conditions, where
actions may be performed differently.

Other experiments that try to model action recognition models are less structured
and use a more naturalistic setting (such as [1] and [2]), but require precise manual
annotation, which is usually a lot of work.

An important part of this thesis is to explore how data from a structured experi-
ment could be used to automatically annotate a more naturalistic experiment. This
is not seen in other studies where either data from an experiment with a structured
setup is used or data from an experiment with a manually annotated, naturalistic
setup is used for training and testing of the action recognition model.

This could be very interesting in an experiment with a naturalistic setting where a
calibration session could be done prior to the experiment. Most experiments consist
of their own set of actions and therefore require a unique model in order to recognize
all actions. In the calibration session, the model is trained for all of these actions in
a very structured setting and then used to classify the real sessions that follow.
This could make the process of automatic annotation less complicated to apply in
practice.

1.3 Research questions

In order to facilitate the automatic annotation of actions, this paper will examine
the possibilities to classify the actions, using a supervised model that is trained on
IMU data. More specifically we will look at data of participants who cooked a dish,
provided by TNO from the experiment ’Quantified consumer’. Therefore the main
question of this project is:

How well can we automatically annotate the actions in a cooking process,
based on the IMU data, using a supervised model?

In order to classify all actions, we need to know where in the data the participant
is standing still and where he is performing an action. Therefore, we will first look
into the binary classification of the data into action and no action, which leads to the
following question:

What is the performance of a model trained on IMU data for classification
of cooking data into action and no action?
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For the active parts, we will look which actions are performed. A multi-class classifi-
cation model will be trained in order to classify most of the actions that are performed
by the participants during cooking.

What is the performance of a model trained on IMU data for classification
of cooking data into multiple actions?

In extension, we will look how we can use data from a more structured experiment for
automatic annotation of data from an experiment that has a more naturalistic setting.
There is data from two sessions: a dry cooking session that is strongly structured
and a real cooking session where participants cooked a real dish, which was less
structured. It would be interesting to know how well dry cooking data generalizes to
real cooking. This leads to the following question:

How does the classification performance of a model trained on dry cook-
ing data compare to a model trained on real cooking data for the classifi-
cation of actions in real cooking data?

1.4 Overview of this paper

The remainder of this paper is organized as follows. In chapter 2, we give more
context on this thesis from related works. Then, in chapter 3, the data set, received
from TNO is described. Then follows a description of our methods and the reason-
ing behind it in chapter 4. In chapter 5 we report all the results from our runs, in
chapter 6, we discuss these results and answer the questions from section 1.3. Fi-
nally, in chapter 7 we can answer the main question, based on the discussion and
give recommendation for future work.



Chapter 2

Related work

2.1 Automatic annotation

A considerable amount of research has been done in the past on the automatic
annotation of human activities, such as food preparation. This section describes in
general the type of activities that have been automatically classified, the input that
is required and the output that is expected after automatic annotation. The details
of the process are described in later sections.

2.1.1 Activity types

Cornacchia et al. [6] give an overview of existing studies on activity detection and
classification. In their overview, they group human activities into two types: global
body movement and local interaction. The first type includes activities like walking,
running, jumping and swimming, the second type consists of activities like cleaning,
eating, construction, food preparation and office activities.

This paper focuses on the second type, which means our studied literature will fo-
cus mostly on research towards local interaction recognition, especially food prepa-
ration. However, papers about the first type will be mentioned as well, as these
papers could provide useful insights.

2.1.2 Input

Automatic annotation of human activities can be done on different kinds of sensor
data. The survey of activity recognition studies provided in [6] distinguishes various
types of sensor types: Accelerometer and/or gyroscope (often combined into an
IMU) are mostly used for global body movement activities, while camera systems are
often used for local interaction. Hybrid sensor systems, such as camera combined
with an IMU, are often used for a combination of these activity types. However,
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some studies explored the possibilities of recognition of local interaction using only
IMU data. We will further focus on these possibilities for annotating IMU data.

The extraction of features from the sensor data is required as input to the classi-
fier. They need to be chosen in such a way that the classifier can detect and classify
the different actions. More details about the different features that are commonly
used for activity detection and classification are in subsection 2.2.3.

Other input that is required is the ground truth, both for training a classifier and
for evaluation. The most precise way to correctly label spontaneous activities can
probably be provided by one or more human experts. Video data could be useful
for this. After the model for automatic annotation has been created, hopefully the
manual labeling will not be necessary anymore.

2.1.3 Output

Two things are expected after automatic annotation: actions are detected and the
detected actions are recognized and labeled with the corresponding action.

Detecting where an action begins and where it ends is often called (temporal)
segmentation. To do this automatically, a change in the performed action should be
detected in the IMU data. Based on these detected changes, the data is segmented
into actions. The time between actions should also be labeled as non-action, so that
all data is labeled (either as an action or non-action).

Recognition of actions is the identification of an action from sensor data. It should
be possible to annotate an action with the corresponding action label.

Segmentation and recognition can be done sequentially, but there are methods
that combine these two. Possible approaches to this are described in more detail in
section 2.3.

In the end, the output of the annotation process should be a labeled data set,
where the labels are those of the actions and non-actions, with the exact points in
time where actions start and end.

2.2 Preprocessing and feature extraction

Preprocessing of the sensor data is done to reduce the computational load or im-
prove the classification accuracy. Depending on the segmentation and classification
method used, the following steps are taken.
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2.2.1 Data windowing

In order to process all the data, it is often necessary to split up the data into smaller
chunks or windows. There are multiple methods to do this and very different choices
for window size are made.

Bersch et al. [7] state that many studies base their windowing method and win-
dow size on previous experiments, hardware limitations, or do not state a specific
reason. They give an overview of research projects on classification of activities of
daily living (ADLs) using accelerometer data and describe several different window-
ing techniques used in these projects, of which three in particular: fixed-size non-
overlapping sliding window (FNSW), fixed-size overlapping sliding window (FOSW)
(with various overlap percentages and sliding window) and, finally, bottom-up. Win-
dow sizes that are used vary between 0.25 and 74s, but this depends on the type of
activity: a small window size is often selected in studies with faster-changing activ-
ities like walking and standing and larger window sizes are selected in studies with
activities that are not changing very quickly, like making coffee or eating breakfast.

Their study was done to make a more informed decision on such parameter
selection. Bersch et al. did an experiment with 32 different window sizes on two
datasets, one dataset [4] consisting of subjects performing ADLs, such as walking,
sitting, walking and carrying an item, standing still, lying down, and climbing stairs.
Activities that were used from the other dataset [8] were stand, walk, sit, and lie.
Different methods for windowing the data were tested as well. They looked at the
classification accuracy of predicting the activity class for each of the instances for
different parameters. In the results, FOSW with 90% overlap gave the highest accu-
racy out of all windowing methods for both datasets. The optimal choice of window
size was different per dataset. For the first dataset, a window size of 6.5 to 11s
resulted in the best accuracy, for the other dataset, a window size <1.5s gave the
best results.

Spriggs et al. [2], a study about the classification of subjects baking brownies,
took the mean of every 4 sample window to smooth and down-sample the sensor
data.

Kratz&Wieze [9] tried to segment mobile device gestures by classifying data
points into four different classes: noise, start, middle and end. For online segmen-
tation, they chose a sliding window approach. As the size of the sliding window they
chose 83 data points, the rounded up average of gesture phase segment length.
Because of the large number of potential training sample, they took every 100th
window for the training of the classifiers.

Table 2.1 gives an overview of the different choices of window size and overlap
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Author Window size Overlap (%) Action type
Aoki et al.(2016) [10] 19 samples (0.148s) - Moving cups
Bao&Intille (2004) [4] 256 samples (6.7s) 50 Various ADLs
Bersch et al.(2014) [7] 0.5 - 24s 25-90 Various ADLs
Kratz&Wieze(2016) [9] 83 samples - Gestures
Ordonez et al.(2016) [11] 0.5s 50 Various ADLs
Pham&Olivier(2009) [1] 32-512 samples (0.8-12.8s) 50 Preparing salad
Ravi et al.(2005) [12] 256 samples (5.12s) 50 Various ADLs
Spriggs et al.(2009) [2] 4 samples - Baking brownies
Stein&McKenna(2013) [3] 256 samples (5.12s) - Preparing salad
Wang et al.(2016) [5] 10 samples (0.025/0.10s) 70 Swimming & walking
Zhang et al.(2015) [13] 0.96s 50 Various ADLs

Table 2.1: Comparison of window sizes and overlap used in existing studies.

2.2.2 Labeling activity data

All methods that use supervised learning require the labeling (or annotation) of the
data as a ground truth. Different labels can be given to the data, depending on
what the model should predict. For action segmentation, these labels should only
be the points where the action is changing. Aoki et al. [10] call these points ’seg-
ment points’. For action recognition, the label should be the action that is currently
performed.

Manual labeling is performed in order to create these labeling sets. In one study
[10] where subjects were moving cups on a table (some kind of local interaction),
manual annotation of the action segments is done by using the recorded video.
Several observers decided where segments start and end. This was used as the
ground truth for the performance analysis of the automatic segmentation.

Aoki et al. point out that a decision has to be made on the time window for which
a label is given during the manual segmentation, which they call the segment range.
They note that there is variation between annotators: a previous study reports there
is an inter-personal error between annotators of around ±0.125s. Therefore, the
segment range used by them was 20 windows (±0.156s).

Spriggs et al. [2] note that annotation for cooking activities can be ambiguous,
due to the various ways a task can be performed and described. There are mul-
tiple levels of detail in annotation (from recipe level to a fine-grained level of detail
where every movement is an action); choices have to be made in this respect. There
can be windows that belong to no labeled actions at a chosen level of detail, e.g.
windows in between actions. Finally, variability in the execution of an action can
sometimes lead to ambiguous descriptions of actions. Stein&McKenna [3] created
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a database of people preparing salads where the annotations are exactly defined.
They split up activities in three separate phases. The core phase of an activity con-
sist of actions that are essential like pouring oil, while the pre- and post-phases are
actions like grabbing the bottle. In this way, annotations were made unambiguous
and repeatable.

When a (sliding) window is used, the class that is the ground truth has to be
decided on for each window (especially when the ground truth labels are given more
than once per window). Ordonez et al. [11] chose the class label at the last sample
of the window.

2.2.3 Feature extraction

There are many features that can be extracted from the sensor data. However, not
all of them are as useful for the classification models that we focus on here.

Bersch et al. [7] describe a number of common metrics that are used to retrieve
the different features of the accelerometer sensor data in this research area. Several
of these features are listed here, complemented with some features found in other
relevant studies, together with a description of their use in the research field and
how they are calculated.

Each of these features is modified to apply for IMU data with three axes (x, y and
z). In these equations, where calculations are done for the x-axis, they can be done
in the same way for the other axes. In all equations, n is the window size.

• root mean square (RMS), according to Bersch et al. used in several studies
to distinguish walking patterns and in general as input to classifiers for activity
recognition. The average RMS for a window is calculated using Equation 2.1;

RMSx−Axis =
√∑n

i=1 x2
i

n
(2.1)

• mean signal, according to Bersch et al. used in several studies to recognize
sitting and standing, to discriminate between periods of activity and rest and in
general as input to various classifiers. It is calculated using Equation 2.2;

Meanx−Axis =
∑n

i=1 xi

n
(2.2)

• standard deviation (STD) of a signal, according to Bersch et al. extensively
used in general for activity recognition, as input to various classifiers. It is
calculated using Equation 2.3.

STDx−Axis =
√∑n

i=1(xi −Meanx−Axis)2

n
(2.3)
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• signal magnitude area (SMA), according to Bersch et al. used in several stud-
ies to discriminate between periods of activity and rest in order to identify peri-
ods that the subject is mobilizing and when they are immobile, calculated using
Equation 2.4;

SMA =
∑n

i=1(|xi|+ |yi|+ |zi|)
n

(2.4)

• signal vector magnitude (SMV), the magnitude of the signal vector, accord-
ing to Bersch et al. used in several studies to indicate degree of movement
intensity and an essential metric for fall detection. Zhang et al. [13] use the
magnitude of the acceleration vector as a feature for general activity classi-
fication. Aoki et al. [10] use the magnitude of the angular velocity vector as
the only feature for classification of local interaction. They claim that it avoids
the need of a detailed kinematic model or handling IMU drift, but still gives
accurate pattern recognition of human body motion.

The average magnitude of a signal vector is calculated using Equation 2.5

SMV =
∑n

i=1

√
x2

i + y2
i + z2

i

n
(2.5)

• time-domain energy and entropy, used by Pham&Olivier [1] and Stein&McKenna
[3] for classification of food preparation. Energy is calculated as shown in
Equation 2.6.

TD−Energyx−Axis =
∑n

i=1 x2
i

n
(2.6)

Pham&Olivier describe the calculation of time-domain entropy by defining a
probability mass function as p(xi)= Pr(X = xi), but it is unclear how they com-
pute this probability function and, in extension, how they calculate their entropy
feature. It is also unclear why Pham&Olivier and Stein&McKenna used these
features and what the reasoning behind them is.

• frequency-domain energy and entropy, according to Bersch et al. used in
several studies to discriminate between different activities, such as walking,
standing still, running, sitting and relaxing. Their definition and use is elabo-
rately described by Bao&Intille [4]. They effectively used the power spectral
density (PSD) for their calculation, which describes how power of the signal
is distributed over frequency. Once the discrete fast Fourier transform (FFT)
is calculated, the PSD is calculated as the squared discrete FFT component
magnitudes of the signal. They calculated the FFT components using the MAT-
LAB fft-function [14], which produces as many components as there are sam-
ples in the window. This results in Equation 2.7 for the calculation of PSD for
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a certain frequency component.

PSDx−Axis( f )= |FFT f |2 (2.7)

Frequency-domain energy is then calculated as the sum of the PSD compo-
nents, divided by the window length for normalization. The DC component,
which is the mean acceleration, is excluded in this sum, because that is al-
ready measured by another feature. The calculation is shown in Equation 2.8.
According to a paper from Nham et al. [15], this calculation follows from Par-
seval’s theorem.

FD−Energyx−Axis =
∑n

f=1 PSDx−Axis( f )

n
(2.8)

Frequency-domain entropy is used for discrimination of activities with similar
energy values, but with different number of dominant frequency components.
Bao&Intille [4] describe it as the normalized information entropy of the PSD.
The PSD is first normalized so it can be viewed as a probability density func-
tion, as shown in Equation 2.9.

px−Axis( f )= PSDx−Axis( f )∑n
f=1 PSDx−Axis( f )

(2.9)

It is then calculated as the Shannon entropy of the PSD and divided by the
maximum entropy, logn, for normalization of all values in a [0,1] interval. Effec-
tively, this sets the base of the logarithm that is used for the entropy calculation
to the window length. The calculation of entropy is shown in equation Equa-
tion 2.10;

FD−NormEntropyx−Axis =−
∑n

f=1 px−Axis( f ) log[px−Axis( f )]

logn
(2.10)

• FFTPeak. It is the intensity of the highest peak in the PSD (see Equation 2.7)
and is, according to Bersch et al., used in several studies for activity recog-
nition, because an activity often has a dominant frequency component, which
can be characteristic for that activity;

• correlation. Zhang et al. [13] mention correlation between acceleration axes
as another popular feature. Ravi et al. [12] explain that it is used to differenti-
ate activities that involve translation in just one dimension from activities with
translation in multiple dimensions. It is calculated between each pair of axes,
as shown in Equation 2.11 for x and y:

corr(x, y)= cov(x, y)
STDx−Axis ∗STD y−Axis

(2.11)
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Author Feature(s)
Aoki et al.(2016) [10] SMV(angular velocity)
Bao&Intille (2004) [4] mean, std, F-D energy, correlation
Bersch et al.(2014) [7] RMS, mean, SMA, SMV, F-D energy&entropy, FFTPeak
Kratz&Wieze(2016) [9] subsampling/interpolation
Ordonez et al.(2016) [11] [none] (Deep learning only)
Pham&Olivier(2009) [1] mean, std, T-D energy&entropy
Ravi et al.(2005) [12] mean, std, F-D energy, correlation
Spriggs et al.(2009) [2] mean
Stein&McKenna(2013) [3] mean, std, T-D energy&entropy (following Pham&Olivier)
Zhang et al.(2015) [13] mean, std, F-D energy&entropy, correlation, SMV(acceleration)

Table 2.2: Overview of features extracted from IMU data in existing studies

• subsampled values. Sometimes the data values are directly used as fea-
tures and subsampled to obtain features of homogeneous length, such as in
Kratz&Wieze [9].

Table 2.2 gives an overview of all features used in several studies about activity
classification.

2.2.4 Filtering

Sometimes filtering is applied to the signal to better extract several features. For
example, Aoki et al. [10] apply a low-pass filter (with a cut-off frequency of 10 Hz)
before calculating the angular velocity in order to filter out the noise and non-relevant
components.

2.2.5 Principal component analysis

In some studies the feature space became very large. In order to reduce the size of
the feature space and with that the computation time, principal component analysis
(PCA) can be performed on the data. For example, Spriggs [2] reduced the number
of features from 45 down to 32(or fewer) features for certain methods, using PCA.

2.2.6 Normalization

Normalization or feature scaling of features is often done to create subject-independent
models for classification. The variability in data between persons can be substantial.
Different methods for normalization exist. A simple method is to scale the range of
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features to a certain interval, using Equation 2.12, where xi is the original feature
value and x′i the new feature value:

x′i =
xi − Xmin

Xmax − Xmin
(2.12)

For example, Kratz&Wieze [9] mean-shifted and normalized their sensor data to a
[-1,1] interval.

Another method is standardization, where all data has zero mean and unit vari-
ance. Through this method, each data point is expressed in the number of standard
deviations from the mean. It is calculated using Equation 2.13:

x′i =
xi − Xmean

Xstd
(2.13)

For example, Spriggs et al. [2] normalize all of their data with this method.

2.2.7 Neighboring windows

Information about neighboring windows could improve action detection and recog-
nition. Zhang et al. [13] note that many studies only use features of the current
window as input for the classifier. They claim to have improved the performance of
activity recognition by using the information from neighboring windows. The features
of these windows are used as additional input to the classifier in order to improve the
accuracy, effectively increasing the number of features when the number of neigh-
boring windows to include is increased.

For example, if 5 features are extracted from each window and one window be-
fore and after the current window is incorporated in the input for the current window,
the total number of features that is used for the current window is 15. They suggest
that because there is interdependency between neighboring windows, incorporating
this information as input when classifying improves the activity recognition perfor-
mance.

Aoki et al. [10] also took a similar windowed approach where feature vectors from
the adjacent time steps were concatenated to a full window, in order to incorporate
temporal information. For the initial data, the first data was used in place of previous
data, because there is no previous window and at the end the final data was used to
pad the last window. This study investigated the influence that the choice of window
size (always an odd number, because it was centered around the center window)
has on the classification accuracy. A window size of 19 samples (approximately
0.148s) showed the highest accuracy.

This technique seems to apply mainly for small window sizes, as for an approach
with a larger sliding window and the right choice of features, the information from
adjacent data is taken into account in a different way.
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2.3 Action segmentation and recognition methods

After preprocessing data and feature extraction, different approaches are possible
towards the automatic annotation of actions in the IMU data. These are described in
here as well as the classification methods most of these approaches make use of.

2.3.1 Possible approaches for automatic annotation of actions

Peak detection

This method does not use make use of a classification method, but rather detects
and segments activities through analysis of the signal only. In this approach, the
signal is band pass filtered at optimal frequencies in order to reveal the kinematic
peaks, as is done in for example Nyugen et al. [16] for global body movement activi-
ties. In order to differentiate between standing up and sitting down, they augmented
the information about the peak of the acceleration with the derivative of the acceler-
ation. In this way, the could detect different activities. The transitions (beginning and
end) of these activities were then identified by locating the minimum or maximum to
the left or right of the activity peaks.

Combined segmentation and recognition

All windows are labeled as belonging to a certain type of action (or non-action).
Each window is classified separately by a classification algorithm. By detecting a
type of actions for each window, the data is segmented at the same time, because
windows where the classified action has changed from the classified action in the
previous window are then the segment points, as shown in approach a of Figure 2.1.
This is the method that is used in [2].

Segmentation, then recognition

First perform segmentation by two-class classification. Aoki et al. [10] formulate
segmentation as a classification problem by defining two classes: segment points
(those instances in the data stream where the person is at rest or switching their mo-
tion type) and non-segment points (those instances where the person is executing
a specific action. According to them, this approach allows the classifier to learn the
appropriate threshold differentiating the two types of points automatically, rather than
relying on a priori knowledge or tuning. They only performed segmentation, but sug-
gest doing some kind of automatic recognition on these non-segment points. This
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could lead to a new method for action recognition and could possibly be adapted to
use for a windowed approach. It is visualized as approach b in Figure 2.1.

Figure 2.1: Two different approaches towards segmentation and recognition. Ap-
proach a) is combined segmentation and recognition through classifi-
cation of each window. Approach b) consists of two steps: first seg-
mentation through binary classification (into segment points (SP) and
non-segment points), then recognition through action classification on
the non-segment points.

Start/mid/end segmentation, then recognition

This approach is similar to the previous approach, but slightly different. It is pro-
posed in [9] for gesture segmentation. Here data is first split into four classes: noise
and three classes for the phases of an gesture or action: start, middle and end.
Then classification could be done as a binary classification problem between noise
and start+mid+end. It is suggested as a potential improvement to follow this up
with a gesture/action phase classification if the confidence is too low. If these ges-
tures/actions are segmented, then action classification could be done, similar to the
previous approach. This is probably only suitable for actions that resemble each
other with respect to start+mid+end (e.g. acceleration, constant velocity, decelera-
tion).
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Unsupervised methods

Both supervised and unsupervised techniques are possible to perform segmenta-
tion. Recent developments in unsupervised temporal segmentation [17] look promis-
ing. However, these techniques are applied to global body movement activities
rather than local interaction and are often computed from video instead of IMU data.
This is the case with the experiment by Spriggs et al. [2]. They had some success
with unsupervised segmentation of the video data and also explored unsupervised
segmentation of IMU data, but had no success.

Therefore, unsupervised techniques will not be studied in detail here, as they do
not seem to apply very well to temporal segmentation of IMU data of local interaction,
which is the focus of this paper.

2.3.2 Classification methods

The approaches described in subsection 2.3.1 almost all require classification. In
this section, an overview is given of different classification methods that are used
in relevant studies on activity recognition. For this overview, the following classifiers
were considered:

• k-nearest neighbor (k-NN)

• support vector machine (SVM)

• hidden Markov model (HMM)

• deep neural network (DNN)

• decision tree (DT)

• random (decision) forest (RF)

• Bayesian network (BN)

• naive Bayes (NB)

Many studies use combinations of these or use meta-level classifiers [12], which
obtain their final prediction from the predictions of base-level classifiers.

2.3.3 Classification tools

The software tool Weka [18] implements the algorithms of all of these classifiers,
except DNN. Most studies use Weka as toolkit for training and testing of these clas-
sifiers.
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Author Sensor Classifier method(s) #Classes #Feats
Aoki et al.(2016) [10] IMU k-NN 2 57
Bao&Intille (2004) [4] IMU DT, NB, k-NN 20 7
Bersch et al.(2014) [7] IMU k-NN, NB, SVM,DT, RF 4/6 8
Kratz&Wieze(2016) [9] IMU SVM 4 360
Ordonez et al.(2016) [11] Hybrid DNN 5/18 -
Pham&Olivier(2009) [1] IMU DT, BN, NB 11 80
Ravi et al.(2005) [12] IMU DT, SVM, k-NN 8 12
Spriggs et al.(2009) [2] Hybrid k-NN, HMM 29 557
Stein&McKenna(2013) [3] Hybrid NB, RF 10 56
Wang et al.(2016) [5] IMU SVM 2/3/4 30
Zhang et al.(2015) [13] IMU SVM, k-NN, DNN 19 5

Table 2.3: Comparison of classifier method(s) used in existing studies for super-
vised action segmentation and/or classification. ’IMU’ means here ei-
ther an IMU or only accelerometer, ’Hybrid’ means a multi-modal model
with both camera and IMU. The bold method gave the highest accuracy.
’#Classes’ means the number of classes. ’#Feats’ means the maximum
number of features that is used for classification.

The deep belief network, which is a class of DNN, is used in [13]. They used
MATLAB code from the homepage of Geoffrey Hinton [19].

2.3.4 Comparison

Classification methods used in action segmentation and/or recognition in different
studies are compared in Table 2.3. The most popular methods are SVM and k-NN
and very promising results are given by DNN, as shown in studies such as [13] and
[11], who claims an improvement of 6% on average over non-deep architectures.

2.4 Evaluation

2.4.1 Introduction

All classification methods need evaluation afterwards to see how well the automatic
annotation algorithm performed. Depending on the method, action segmentation
and action recognition are evaluated separately.

The evaluation of classification is done by comparing the predictions with the
ground truth (see subsection 2.2.2). In this section the appropriate evaluation meth-
ods are described in more detail.
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2.4.2 Splitting data set

In order to properly test the classification model, it is necessary to split the data
set in a training, validation and test set. The training set is used to train multiple
models with different hyperparameters that are validated with the validation set. The
best performing model is then tested on the test set to determine the performance.
It is very important that the test set is not used during training and validation and
that the model is not tuned anymore after testing, because then there is a risk of
overfitting the model to the test set, which results in too optimistic results. Spriggs et
al. [2] classify each frame from a withheld person’s sequence based on the grouping
of the frames in the sequences of the remaining subjects. This is repeated in a
cross-validation manner, withholding all people in turn and is called leave-one-out
cross-validation (LOOCV). Aoki et al. [10] use LOOCV as well to evaluate their
automatic segmentation results.

Another method that is used by, for example Bao&Intille [4] and Ravi et al. [12] is
a user-specific approach where part of the data of one subject was used for training
of one model and tested on the rest of the data for one subject. This was then
repeated for all subjects and compared to LOOCV. Bao&Intille claim that, for their
data set, the recognition accuracy was significantly higher for all algorithms under
LOOCV than with the user-specific approach.

2.4.3 Evaluation measure

A frequently used measure to evaluate the performance of a classier is the accuracy.
This is simply the number of correctly classified samples divided by the total number
of samples.

However, the training data set can be highly unbalanced, because the activity can
consist of mainly one action, for example, in Spriggs et al. [2], 25% of the frames
was labeled as ’stirring’, while there were 29 actions defined. Therefore, in the
case of action recognition, the overall classification accuracy is not an appropriate
measure of performance when the action classes are highly unbalanced. Ordonez
et al. [11] show that a trivial classifier that predicted every instance as the majority
class could achieve very high accuracy, so they use the F-measure(F1) instead, a
measure that considers the correct classification of each class equally important.
It is the harmonic mean of the precision and recall for each of the classes, where
precision is defined as TP

TP+FP and recall as TP
TP+FN , where TP, FP are the number

of true and false positives, respectively, and FN corresponds to the number of false
negatives. The F-measure is then calculated as in Equation 2.14.

F1 =
∑

i
2∗wi

precisioni ∗ recall i

precisioni + recall i
(2.14)
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where i is the class index and wi = ni/N is the proportion of samples of class i, with
ni being the number of samples of the i-th class and N being the total number of
samples.

A confusion matrix could be used for evaluation as well. Action recognition may
very well confuse several actions that are very similar, which, for example, can be
seen in the performance of Spriggs et al. [2]. A confusion matrix could make more
clear which actions are confused, in case of low accuracy. Some confusions make
more sense, thus this method makes a more realistic evaluation of action recognition
possible.
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Chapter 3

Data set

The data from the experiment ’Quantified customer’ at TNO was used. This data set
consists of the following data:

• EEG: biosemi

• Heart rate: mio fuse;

• ECG: biosemi;

• video: three camera’s. From the top, side and in front of the participant;

• IMU: 3 Shimmers, on each wrist and one on the hips

The experiment was done with 89 participants, recorded in three sessions: a ’dry
cooking’ session where participants ’cooked’ with pieces of paper, then a session
where subjects cooked a curry and then another ’dry cooking’ session. The real
cooking session took almost twice as long as the dry cooking session.

We used the IMU data primarily and the video data for labeling, if necessary.
The data set also includes event markers for each session, indicating the start of the
audio instructions that the participants received during the experiment.

The raw IMU data dt contains the 3-axis accelerometer and 3-axis gyroscope
data for time t, as shown in Equation 3.1

dt = [ax,ay,az, gx, g y, gz]t (3.1)

To give an indication how the data looks like, the magnitude of the signal vector
over time (see Equation 2.5), for each of the three shimmers, of both the accelerom-
eter and gyroscope data is given in Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4
for the dry cooking and real cooking sessions. The times where the instructions
are given to the participant are marked in the graph by the vertical lines. For the
dry cooking sessions it is clearly visible that most of the action takes place between
these instructions.

21
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Figure 3.1: Accelerometer data: Magnitude of acceleration for the dry cooking data
from participant 35.
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Figure 3.2: Gyroscope data: Magnitude of angular velocity for the dry cooking data
from participant 35.
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Figure 3.3: Accelerometer data: Magnitude of acceleration for the real cooking data
from participant 35.
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Figure 3.4: Gyroscope data: Magnitude of angular velocity for the real cooking data
from participant 35.
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3.1 Data quality

Several subjects had data sets where the markers (which were used to synchronize
the data with other data, such as the video and instruction start times) were missing.
This meant only the data from 80 out of 89 subjects were in our data set.

From these 80 subjects, we assessed the quality of the data from each shimmer
for each subject with a number 1 (bad quality) or 2 (partially bad quality) or 3 (good
quality). Data was assessed as (partially) bad quality when one or more shimmers
were not calibrated or properly connected, this led to almost useless data. However,
75% of the shimmer data was of good quality (rating 3), 18% of partially bad quality
(rating 2) and only 7% of bad quality (rating 1).

The data of a subject was only used when the quality of the right-hand shimmer
(which was the most important shimmer, because all participants were right-handed)
was of good quality and the quality of data from the shimmers on the left hand and
hip at least quaility 2. This meant that the data from 61 out 80 subjects was used.

Rating Shimmer 1 (RH) Shimmer 2 (LH) Shimmer 3 (hip) Total
3 (good) 69 (81%) 55 (65%) 68 (80%) 75%
2 (partially bad) 12 (14%) 26 (31%) 7 (8%) 18%
1 (bad) 4 (5%) 4 (5%) 10 (12%) 7%

Table 3.1: Overview results from the quality assessment. RH and LH mean right
hand and left hand respectively.
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Methodology

4.1 Approach

As described in subsection 2.3.1, there are several approaches we could take in
order to automatically annotate IMU data. We did not take the approach where the
data is segmented first and then action recognition is performed, because, in our
data, it is very difficult to select a ground truth of (non) segment windows for training
a classifier that could recognize segment windows.

Instead, we chose an approach where each window is classified as one of the
actions, which is something that works well with our selection method (see sub-
section 4.3.1), because we can select data where we are sure certain actions are
performed or not, so a ground truth is easier to obtain.

4.2 Data windowing

We chose a window size of 1 second without overlap, because this is small enough
to detect the shorter actions like pressing a button, but big enough to perform a
meaningful frequency analysis. It is a similar window size as used by Zhang et
al. [13], who calculated the same features for their model.

For every window, we calculated the n features over the shimmer data of that
window ( n is different for different tasks: n = 1 for the two class model and n = 16
for the multi-class models, see section 4.9). These features were concatenated
with the n features from the other two shimmers. Finally, these features from all
three shimmers for the current window were concatenated with the features from
the neighboring windows, creating 9n features per window.

27
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4.3 Ground truth

For classification we need a data set that is labeled, both for training the data and
for validating the predictions. Most experiments that have a naturalistic setting use
manual annotation from video, as described in subsection 2.2.2. However, because
this is a time-consuming task and therefore not an option for most envisioned re-
search projects, we examined other options:

1. Estimate the label for each of the windows of the data set, using all time-
related information that is available, such as the start times for the auditory
instructions, the length of the instruction and the average time that participants
need for a certain action. This means that we have labels that should match the
behavior for most participants, most of the time, though there is still uncertainty
about the performance of the labels as ground truth, since participants are
behaving rather freely and can for instance stand still in between stirring;

2. Use only dry cooking data for training. Here we know better what actions
participants are performing and we could use this information for labeling the
data. However, it is uncertain how well we can generalize this model to real
cooking data. For instance, if a subject is adding something in a real cooking
session, he will immediately start stir-frying the ingredient, while in the dry-
cooking session, this can be performed as a separate action, which results in
different motion data;

3. Select periods of time in the data set where we are very sure what action all
participants are performing. It could be even necessary for dry cooking data to
do this selection, as there are parts in the dry cooking data were we are unsure
about. For instance, while participants may differ in the time that they need to
empty a bowl of ingredients, we can be quite sure that they are all working on
that for 5 seconds after the instruction;

4. For evaluation only: make a plot with the time on the x-axis and on the y-axis
the prediction score (that is, the probability according to the model that the
window belongs to a certain class). Mark on the x-axis the start times of the
auditory instructions.

We expect that this plot will enable us to visually check how well the classifi-
cation model performs on the real cooking data. In this case, there is no hard
ground truth to evaluate, but it gives us an impression of the quality of the
model. For instance, when subjects have the instruction to stir now and then,
we cannot be sure about the time windows that they are stirring, but we know
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that there should be an increased probability for ’stirring’ during this period and
we should be able to visually check this in such a graph.

We decided to make a selection of ground truth data in both the dry cooking and
the real cooking data set, as described in option 3. We expect that the selection
for dry cooking data is more accurate than the selection for real cooking data, be-
cause the dry cooking session was more structured, so the performed actions are
more predictable. Also, if it proves successful, this would support using a structured
calibration set on real-life action.

We made a selection for the real cooking data as well, primarily to have a mea-
surable indication of the performance of the trained model. Secondly, we used this
selection for the training of a model that we compared to a model trained on dry
cooking.

Finally we used a plot, as described in option 4, for a good indication of the
performance of the trained model on all of the real cooking data. This is not an
absolute metric, but gives an impression of the performance, especially for the non-
selected parts (which are not evaluated otherwise).

4.3.1 Selection

For most actions that were performed during the cooking process, a selection is
made for both the dry cooking session and the real cooking session. The actions
that have selected data are:

• Standing still;

• Stirring;

• Pouring;

• Pressing button;

• Adding bowl;

• Squeezing bottle.

In Appendix A is described in detail how the selection is made and where the
choices for this selection are based on.

4.4 Classification tasks

Several tasks were defined to answer the research questions. To restrict the scope
of the project, we first combined several of the selected actions into a more general,
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abstract action. This is also done because we wanted to start by evaluating the
performance of our classifier on a simpler task and then compare it with the perfor-
mance on more difficult tasks, with more classes. The combined abstract actions
are as follows:

• Action: all selected actions that are not ’standing still’. At the time of running
these tests, not all selections were made, so only ’stirring and ’pouring’ were
used to train ’action’;

• Adding: this is the selections for ’adding bowl’, ’pouring’ and ’squeezing bottle’
combined.

From these (combined) actions, we defined the following tasks to see how the clas-
sifier would perform:

• Two classes: ’standing still’ and ’action’;

• Three classes: ’standing still’, ’stirring’, ’pressing button’;

• Four classes: ’standing still’, ’stirring’, ’adding’, ’pressing button’;

4.5 Splitting train, validation and test set

As described in subsection 2.4.2, it is important to properly split the data set in a
train and test set and train only on the train set in order to prevent overfitting. We
chose to split only the real cooking data set separately in a train and test set with
80% of the participants as train set and other 20% for testing. The same participants
were used on each run as train participants.

For validation, we used LOOCV on the train set. Each validation round, the data
from another participant was taken as the validation set.

For the runs where the model trained on dry cooking data was run on real cooking
data, the data was not split any more in a train and test set.

4.6 Tests

In order to examine how well a model trained on dry cooking data generalizes to
real cooking data, we defined the following tests to compare the performance of the
classifier and get an idea how well a model trained on dry cooking data performs
on real cooking data. These tests are done with all of the tasks, expect for the task
’action’ versus ’standing still’:
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• Train on all selected dry cooking data, and validate using LOOCV;

• Run the model that is trained on all selected dry cooking data on all selected
real cooking data .

• Run the four classes model trained on all selected dry cooking data on all real
cooking data (also the non-selected parts) to get prediction scores of each of
the four classes for each window;

• Train and validate on 80% of the selected real cooking data and test on the
other 20%.

• Train and test on all selected real cooking data, using LOOCV. The four
classes model is run on all real cooking data (also the non-selected parts)
to get prediction scores of each of the four classes for each window;

4.7 Evaluation

We will use the following metrics for evaluation of the performance of the classifiers:

• Confusion matrix: this includes the overall accuracy and the recall and preci-
sion for each class; This will be reported for all runs on selected data;

• F-score: From the recall and precision of each class we can calculate an F-
score per class. We chose to report the average of the F-score for each class,
which is described by Sokolova&Lapalme [20] as the macro-average. We also
report an average of the F-score over only the action classes for runs with
more than two classes, because this will show how well the classifier can dif-
ferentiate between the different actions. This will be reported for all runs on
selected data;

• A plot with prediction score over time, which can be visually evaluated in a
plot, as described in section 4.3. This will be made for the runs with the four
classes model on all real cooking data, where no ground truth is available, but
still something can be said about the performance.

4.8 Classification method

As the classification method k-NN is chosen, with MATLAB as our toolkit. Primarily
we used k = 1, which performed well, but we started using k = 5 when we wanted to
get some form of prediction score. With k = 5 we could calculate the percentage of
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these 5 neighbors that has a certain class to use as prediction score. This predic-
tion score is used for evaluation: it is plot over time to visually check how well the
classification model performs on the real cooking data, as described in section 4.3.

4.9 Features

As described in subsection 2.2.3, there are many features that can be extracted for
action recognition.

For the task of classifying only ’standing still’ and ’action’, we chose to use the
magnitude of angular velocity (gyroscope data), following Aoki et al. [10]. Even
though they use it for segmentation, our task is similar, as segmentation windows
also include the windows where the participants are standing still and they also use
this with k-NN.

For the other tasks of multi-class action recognition, we will follow Zhang et
al. [13], who have very high performance on an action recognition task with these
features on k-NN. This means we will use:

• mean (for each axis);

• STD (for each axis);

• the magnitude of acceleration (over all axes);

• frequency-domain energy (for each axis);

• frequency-domain entropy (for each axis);

• correlation of acceleration data between pairs of axes

for a total of 16 features per shimmer.

4.10 Balancing train set

As certain classes may be over-represented and others under-represented, there is
unbalance in the training set. Since k is chosen to be 5 and not 1, the performance
of k-NN could be influenced a little bit by the unbalanced classes (because for edge
cases, where samples lie in between multiple classes, the class with more samples
will tend to have the majority among 5 neighbors), therefore we tried balancing the
train set.

We tried both sub-sampling the over-represented classes by deleting instances
and over-sampling the under-represented classes by duplicating instances.
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Results

5.1 Two classes: Standing still and action

The results for the first classifier are shown here, a classifier with only the classes
’Standing still’ and ’Action’. The validation run results for the selected dry cooking set
and the test results of this trained model on the selected real cooking set are shown
in Table 5.1 for all participants. Figure 5.1 gives an indication of the performance by
showing the predictions for participant 35.

Validation performance
Training data Dry
Balanced training set No
Accuracy 96,1%
F-score Standing still 97,1%
F-score Action 94,3%
F-score(avg) 95,7%
Test set performance
Test data Real
Accuracy 95,0%
F-score Standing still 89,1%
F-score Action 96,8%
F-score(avg) 93,0%

Table 5.1: Classification results for the two classes model. F-score(avg) is the aver-
age F-score over all classes.
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Figure 5.1: Two class performance for participant 35 on selected real cooking data
for the model trained on selected dry cooking data. Blue is standing still,
orange is action. White is a non-selected part. 97.5% of the windows
was predicted correctly, with an average F-score of 96.5%.

5.2 Three classes: Standing still, stirring and press-
ing button

The results for the second type of classifier are shown here, with the classes ’Stand-
ing still’, ’Stirring’ and ’Pressing button’. For all participants, the validation and test
results are shown in Table 5.2. An indication of the performance of the classifier on
the selected parts is given for one participants with a higher performance (Figure 5.2
and one with a lower performance( Figure 5.3). Confusion matrices of the runs on
dry cooking and on real cooking data are given in Figure 5.4 and Figure 5.5.

Figure 5.2: Three class performance for participant 35 on selected real cooking
data for the model trained on selected dry cooking data. Blue is standing
still, orange is stirring, yellow is pressing button. White is a non-selected
part. 87.7% of the frames were predicted correctly, with an average F-
score of 75.6%.
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Figure 5.3: Three class performance for participant 71 on selected real cooking
data for the model trained on selected dry cooking data. Blue is standing
still, orange is stirring, yellow is pressing button. White is a non-selected
part. 77.0% of the frames were predicted correctly, with an average F-
score of 64.2%.

Figure 5.4: Confusion matrix of the three class model: summed verification results
for all participants of all selected dry cooking data. Columns represent
the true class, rows the predicted class.
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Validation performance
Training set Dry Dry Real (80%) Real (80%)
Balanced No Yes, subsampled No Yes, subsampled
Accuracy 90,5% 88,8% 87,9% 76,8%
F-score Standing still 94,5% 93,2% 87,7% 85,6%
F-score Stirring 87,3% 87,2% 93,7% 84,9%
F-score Pressing button 75,9% 73,3% 43,5% 37,9%
F-score(avg) 86% 84,6% 75,0% 69,5%
F-score(action) 82% 80,2% 68,6% 61,4%
Test set performance
Test set Real Real Real(20%) Real(20%)
Accuracy 81,3% 83,8% 84,8% 71,5%
F-score Standing still 81,8% 88,3% 82,6% 83,4%
F-score Stirring 88,1% 90,1% 91,6% 80,1%
F-score Pressing button 40,9% 42,9% 42,5% 34,1%
F-score(avg) 70,3% 73,2% 72,2% 65,8%
F-score(action) 64% 66,5% 67,1% 57,1%

Table 5.2: Classification results for the three classes model on the selected
data sets. F-score(avg) is the average F-score over all classes, F-
score(action) over only the action classes. Columns are the run, this
includes the data on which the model is trained, whether it is balanced
and the validation performance of this training set. The bottom half of a
column indicates the performance when this model is applied to unseen,
real cooking test data. Depending on the trained model, all real cooking
data is used, or only a test set of 20%.
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Figure 5.5: Confusion matrix of the three class model: trained on 80% of selected
real cooking data. These are the results of this model on the test set,
which is the other 20%. Columns represent the true class, rows the
predicted class.
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5.3 Four classes: Standing still, stirring, adding and
pressing button

5.3.1 Selected data

The results for the third type of classifier are shown here, with the classes ’Standing
still’, ’Stirring’, ’Adding’ and ’Pressing button’. An indication of the performance of
the classifier on the selected parts of both a participant with a higher and one with a
lower performance is given in Figure 5.6 and Figure 5.7 for the unbalanced training
set and in Figure 5.8 and Figure 5.9 for the balanced training set. For all participants,
the validation and test results are shown in Table 5.3. Confusion matrices of the runs
on dry cooking and on real cooking data are given in Figure 5.10 and Figure 5.11.
These are included here to give an idea of the size of the data sets and to show
the unbalance in the number of samples between classes, but also to show which
classes are confused often.

Figure 5.6: Four class performance for participant 35 on selected real cooking data
for the model trained on selected dry cooking data. Blue is standing still,
orange is stirring, yellow is adding and purple is pressing button. White
is a non-selected part. 64.5% of the windows were predicted correctly,
with an average F-score of 58.4%.
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Figure 5.7: Four class performance for participant 71 on selected real cooking data
for the model trained on selected dry cooking data. Blue is standing still,
orange is stirring, yellow is adding and purple is pressing button. White
is a non-selected part. 52,7% of the frames were predicted correctly,
with an average F-score of 49.0%.

Figure 5.8: Four class performance for participant 35 on selected real cooking data
for the model trained on balanced selected dry cooking data. Blue is
standing still, orange is stirring, yellow is adding and purple is press-
ing button. White is a non-selected part. 77.1% of the windows were
predicted correctly, with an average F-score of 59.8%.
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Figure 5.9: Four class performance for participant 71 on selected real cooking data
for the model trained on balanced selected dry cooking data. Blue is
standing still, orange is stirring, yellow is adding and purple is press-
ing button. White is a non-selected part. 62.3% of the frames were
predicted correctly, with an average F-score of 51.9%.

Figure 5.10: Confusion matrix of the four class model: summed verification results
for all participants of all selected dry cooking data. Columns represent
the true class, rows the predicted class.
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Run # 1 2 3 4 5
Validation performance
Training data Dry Real (80%) Real (80%) Dry Dry
Balanced No No Subsampled Subsampled Over-sampled
Accuracy 79,4% 81,0% 73,1% 77,9% 77,7%
F-score Standing still 91,9% 91,1% 90,3% 93,1% 92,7%
F-score Stirring 53,8% 87,8% 80,8% 55,8% 55,1%
F-score Adding 74,8% 31,9% 43,1% 69,9% 71,2%
F-score Pressing button 61,7% 47,7% 45,7% 64,0% 61,1%
F-score(avg) 70,6% 64,7% 65,0% 70,7% 70,0%
F-score(action) 63,4% 55,8% 56,5% 63,2% 62,5%
Test set performance
Test set Real Real(20%) Real(20%) Real Real
Accuracy 58,0% 77,8% 69,5% 69,8% 67,4%
F-score Standing still 85,0% 86,3% 90,1% 88,4% 88,6%
F-score Stirring 63,6% 85,7% 77,0% 78,1% 75,4%
F-score Adding 31,4% 29,0% 40,5% 31,8% 32,7%
F-score Pressing button 38,3% 44,3% 41,5% 42,9% 41,0%
F-score(avg) 54,6% 61,3% 62,3% 60,3% 59,4%
F-score(action) 44,5% 53,0% 53,0% 50,9% 49,7%

Table 5.3: Classification results for the four classes model on the selected data sets.
F-score(avg) is the average F-score over all classes, F-score(action) over
only the action classes. Columns are the run, this includes the data
on which the model is trained, whether it is balanced and the validation
performance of this training set. The bottom half of a column indicates
the performance when this model is applied to unseen, real cooking test
data. Depending on the trained model, all real cooking data is used, or
only a test set of 20%.
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Figure 5.11: Confusion matrix of the four class model: trained on 80% of selected
real cooking data. These are the results of this model on the test set,
which is the other 20%. Columns represent the true class, rows the
predicted class.
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5.3.2 All data

Several trained models were run on all data. However, we only report the prediction
score of the different classes over time, as there is no (reliable) ground truth. These
are shown in Figure 5.12 and Figure 5.13 for the models trained from run 1 and 4 in
Table 5.3.

Figure 5.12: Performance of model trained on selected dry cooking data: average
prediction score over all participants for all data. The standard devia-
tion of the different classes over the participants is given below.
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Figure 5.13: Performance of model trained on balanced selected dry cooking data:
average prediction score over all participants for all data. The standard
deviation of the different classes over the participants is given below.
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Discussion

6.1 ’Action’ versus ’standing still’

6.1.1 Classification performance

Our first objective was to see how well a classifier could differentiate between win-
dows where the subject is standing still and where he or she is performing an action.
From the results (Table 5.1), we can conclude that this is a simple task for our clas-
sifier when the ground truth is clear, as we achieved an accuracy of 96.1% and an
average F-score of 95.7% for the validation run, while the base line with two classes
is 50%. Note that part of the inaccuracies are probably not real inaccuracies, but
can be explained by some wrong labels in the ground truth of either the training set
or the test set, as it is very likely that several participants were actually standing still
during periods of expected action.

While we chose here for an approach that does not require annotation of the
video data, it is clear that the most thorough test, which also tests and solves this
issue, requires manual annotation.

6.1.2 Generalization dry to real

As can be seen in the comparison made in Figure 6.1, there was only a small dif-
ference of -1.1% in accuracy and -2.7% in F-score between the validation run and
the run on the real cooking data. This means that for training a model for detecting
action, the training data does not have to be very similar to the test data. Most of
the difference in performance is explained by the fact that it is easier to select data
for dry cooking data, because participants are acting more according to instructions
only.
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Figure 6.1: Comparison in performance between different runs. No big differences
are seen when the model is run on real cooking data.

6.2 Multiple classes

6.2.1 Classification performance

Secondly, we wanted to examine the performance of a classifier for multiple classes.
This classifier should be able to differentiate between the different actions that are
performed.

Three classes

From the results of the first of these tests, with three classes (Table 5.2), we can
conclude that the classifier is able to perform well when trained and tested on dry
cooking data, with an accuracy of 90.5% and an F-score of 86%, while the base line
is 33%. Even the average F-score of the action classes is high, with 82%.

Training and testing with real cooking data shows a lower performance. Even
though it has a test set performance of 84.8% accuracy and an average F-score of
72.2%, when we look at the individual F-scores, we see a low score for the class
’pressing button’, much lower than for dry cooking.

There are multiple explanations why ’pressing button’ has a low F-score, which
are more or less likely:

• The ground truth selection in the real cooking data (the test set) for ’pressing
button’ contains windows where participants are not pressing a button. The
setting is more realistic than with dry cooking and participants are doing ac-
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tions more at their own pace, so participants are more likely to perform other
actions, like stirring, which can also be seen at the video. Therefore, this is a
likely explanation for the lower F-score for ’pressing button’;

• The ground truth selection in the real cooking data (the test set) for other
classes than ’pressing button’ contains windows where participants are press-
ing a button. However, participants were not pressing a button when not having
the instruction to do so. This is also the case with ’adding’, but not with ’stirring’
in the pan, which was done more spontaneously by participants. This means
that it is not a likely explanation for the lower F-score for ’pressing button’;

• The real cooking session is more realistic and therefore the actions are more
difficult to recognize, e.g. the participant is pressing a button with one hand,
while stirring with the other. This particular behavior is seen on video and is
therefore another likely explanation why ’pressing button’ has a lower F-score.
In addition, this could explain inaccuracies in the classification of other actions
as well.

’Pressing button’ is also a minority class in the real cooking data set (see Fig-
ure 5.5), which means that it could be more difficult for the classifier to achieve a
high performance.

For our application, automatic annotation of actions in the data, it depends on
the specific question whether it is important to have a high performance on the
minority classes. For some questions it is important need to know when these small
actions are performed, for others, one mainly wants to know about the actions that
are performed most.

We tried to improve the performance of the dry-dry and real-real runs on the
minority classes by balancing the training set. As can be seen in Figure 6.2, this
was not successful, as the average F-score on the actions went down for both dry
cooking and real cooking. This is probably because the data amount is lower, as we
deleted samples in the over-represented classes and because the model could not
capitalize on differences in frequency of occurrence.

Four classes

For four classes, the performance of the model trained and tested on dry cooking
data (see Table 5.3) is also far beyond the base line of 25% with an accuracy of
79.4% and an F-score of 70.6%. However, we see here, similar to the three class
model, a much lower score for the classes ’adding’ and ’pressing button’, this has a
similar explanation as for ’pressing button’ in the three class model.
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Balancing the training set made the performance worse for both sets, similar
to the three class model. Therefore we also tried balancing by over-sampling the
under-represented class, but this performed even worse.

Figure 6.2: Comparison in performance between different runs of three classes
models.

6.2.2 Generalization dry to real

Selected data

The runs where the dry cooking data was used as training set and the real cooking
data as test set performed worse than the runs where only real cooking data was
used (see Figure 6.2 and Figure 6.3), but still far beyond the base line of 25% for
both the three and the four class model.

However, balancing the dry cooking training set improves the performance on the
real cooking set significantly, especially for the action classes. This model is nearly
as good as the model trained on real cooking data. The difference in the average
F-score for the action classes between dry on real and real on real is only +0.6% in
the case of three classes and +2.1% in the case of four classes.

Apparently, resolving the unbalance between classes in the dry cooking data set
makes it more suitable as a training set for classifying a real cooking session and
this classifier is almost as good as a classifier that is trained on real cooking data.
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Figure 6.3: Comparison in performance between different runs of four classes mod-
els.

All real cooking data

When visually looking at the performance of the dry cooking model on the real cook-
ing data in Figure 5.12, it becomes clear that for the selected parts, the model trained
on dry cooking data is right, most of the time on average, however, it is confusing
stirring and adding a lot. Balancing the training set gave much higher prediction
score for stirring overall, but this score dropped when the participants were adding
something, which makes sense, as participants were probably stirring most of the
time and were not as much time busy with adding, which was predicted much more
highly by the unbalanced model.

This is, however, an average over all participants, so it is difficult to say something
about the specific performances per participant. Therefore the standard deviation
is given as well. This shows that for example ’standing still’ is very similar for all
participants. Other parts have a much higher standard deviation.

For example, at the non-selected parts, where we are not sure about the ground
truth, we can see that the prediction score for all classes is about equal (for exam-
ple during the event ’stir now and then’ we see that all four classes have a prob-
ability of about 25%). This, in combination with a high standard deviation for all
classes, means that participants were acting very different during these periods,
which means it is indeed very difficult to use this data without looking at the video
(and therefore it was a good decision to not select this data as one particular class).
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Chapter 7

Conclusion and recommendations

7.1 Conclusion

In conclusion, we can say that, for up to four classes, we can automatically anno-
tate the different actions pretty well, with the highest average F-score on the action
classes of 53.0%. Especially classifying action and standing still has a very high
performance, with an F-score of 95.7%. For classifying between three different ac-
tions, the highest average F-score on the actions we achieved for real cooking data
was 67.1% by the model trained on real cooking data.

However, even when using the data from a separate dry cooking session for
training a four class model, we achieved an F-score on the actions of 50.9% and
for training a three class model, an F-score of 66.5%. This means that training data
from a structured session is almost as good for training a classifier that used in real
cooking session, as training data from a more realistic session.

When taking an approach where data is first trained in a session like our dry
cooking session, a balanced training set gave the highest performance.

Looking at the prediction score graphs (Figure 5.12 and Figure 5.13), we can
conclude that the performance on real cooking data is good on average. While
clearly manual annotation provides the best ground truth for training and evaluating
models, this is often not possible due to research budget constraints. This study
presented a way to evaluate different action recognition models without requiring
manual annotation of videos.

7.2 Improving the performance of the models

There is definitely improvement in both training and evaluation by manually annotat-
ing video and improving ground truth. However, this is something we were looking
to circumvent in this study, which worked moderately well.
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There is likely improvement by taking into account more neighboring windows,
as shown by [10] and [13].

For the future, we think that it should be investigated which features improve
the performance and which not, so that several features could be omitted. This is
especially useful when increasing the number of neighboring windows that is con-
catenated, so that the feature vector does not become too large.

There is likely improvement by using another classifier like deep learning tech-
niques, as used in for example [13], which hopefully improves recognition of the
minority classes. Another option is to give extra weight to minority classes during
training, as we saw some very low performance on these classes.

Finally, we think there is potentially improvement in having a more user-specific
approach by giving extra weight to dry cooking data from the currently analyzed
participant during training.



Bibliography

[1] C. Pham and P. Olivier, “Slice&dice: Recognizing food preparation activities
using embedded accelerometers,” in European Conference on Ambient Intelli-
gence. Springer, 2009, pp. 34–43.

[2] E. H. Spriggs, F. D. L. Torre, and M. Hebert, “Temporal segmentation and ac-
tivity classification from first-person sensing,” in 2009 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops, June
2009, pp. 17–24.

[3] S. Stein and S. J. McKenna, “Combining embedded accelerometers with
computer vision for recognizing food preparation activities,” in Proceedings of
the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’13. New York, NY, USA: ACM, 2013, pp. 729–738.
[Online]. Available: http://doi.acm.org/10.1145/2493432.2493482

[4] L. Bao and S. Intille, “Activity recognition from user-annotated acceleration
data,” Pervasive computing, pp. 1–17, 2004.

[5] J. Wang, Z. Wang, H. Zhao, and S. Qiu, “Human motion phase segmentation
based on three new features,” in 2016 IEEE 20th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), May 2016, pp.
647–652.

[6] M. Cornacchia, K. Ozcan, Y. Zheng, and S. Velipasalar, “A survey on activity
detection and classification using wearable sensors,” IEEE Sensors Journal,
vol. 17, no. 2, pp. 386–403, Jan 2017.

[7] S. D. Bersch, D. Azzi, R. Khusainov, I. E. Achumba, and J. Ries, “Sensor data
acquisition and processing parameters for human activity classification,” Sen-
sors, vol. 14, no. 3, pp. 4239–4270, 2014.

[8] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster,
P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha et al., “Collecting complex activity
datasets in highly rich networked sensor environments,” in Networked Sensing

53

http://doi.acm.org/10.1145/2493432.2493482


54 BIBLIOGRAPHY

Systems (INSS), 2010 Seventh International Conference on. IEEE, 2010, pp.
233–240.

[9] S. Kratz and J. Wiese, “Gestureseg: Developing a gesture segmentation
system using gesture execution phase labeling by crowd workers,” in
Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, ser. EICS ’16. New York, NY, USA: ACM, 2016, pp.
61–72. [Online]. Available: http://doi.acm.org/10.1145/2933242.2933261
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Appendix A

Data selection

In this appendix, a detailed description and explanation is given for the selection of
the data for the different classes. Watching the video from several of the partici-
pants helped us to estimate the start time and minimal length of the actions. In all
selections, exstart is the start window of event x and exend the end window of event
x.

A.1 Class ’standing still’

During event 1 and 19 of dry cooking and event 1 and 21 of real cooking the subjects
were supposed to stand still. Most subjects were standing still during these events,
except for the start of event 19 in dry cooking and 21 in real cooking, because several
subjects were still finishing the previous instruction. Therefore, we took the following
windows from each subject to model ’standing still’:

From dry cooking
[e1start, . . . , e1end]
[e19start+5, . . . , e19end]
From real cooking
[e1start, . . . , e1end]
[e21start+5, . . . , e21end]

A.2 Class ’Stirring’

During event 12 of dry cooking, all subjects were stirring for approximately at least
the first 10 seconds after the instruction ended (which took 3 seconds).

During event 8 of real cooking (’add chicken and stir-fry the chicken’), all subjects
were stirring after the instruction ended (which took 6 seconds) and the chicken was
added (which approximately took 10 seconds), until the end of the event.
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During event 10 of real cooking, the subjects were only stirring. The audio in-
struction took 2 seconds and we assumed that the subjects were stirring during the
whole event. Event 11, 12, 13 and 14 of real cooking were all events where the
subjects were adding something and then continued to stir-fry the dish. These are
selected in the same way as event 8. So we took the following windows to model
’stirring’:

From dry cooking
[e12start+3, . . . , e12start+13]
From real cooking
[e8start+16, . . . , e8end]
[e10start+2, . . . , e10end]
[e11start+14, . . . , e11end]
[e12start+15, . . . , e12end]
[e13start+15, . . . , e13end]
[e14start+15, . . . , e14end]

A.3 Class ’Pouring’

During events 13 and 14 of dry cooking, the subjects were pretending to be pouring.
The audio instruction took 3 seconds. Pouring took at least 7 seconds.

During event 14 of real cooking, the subjects were pouring coconut milk. The
audio instruction took 5 seconds. After pouring, the subjects started to stir, so for
a good selection where no ’stirring’ data is selected, we selected only the first 5
seconds after instruction.

So we took the following windows to model ’pouring’:
From dry cooking
[e13start+3, . . . , e13start+10]
[e14start+3, . . . , e14start+10]
From real cooking
[e14start+5, . . . , e14start+10]

A.4 Class ’Pressing button’

Event 2,3 and 4 from dry cooking was where subjects were pressing a button. It
started immediately after audio instruction of 3 seconds and ended about 3 seconds
after.

Event 2, 3, 4, 7, 9, 15 and 18 from real cooking was where subjects were pressing
a button. It started immediately after the audio instruction. For events 2, 3, 7 and 18
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it ended about 3 seconds (1 button press) after the instruction started, for event 4
about 5 seconds after(8 button presses) and for the events 9 and 15 about 4 seconds
after (2 button presses).

So we took the following to model ’pressing button’:

From dry cooking

[e2start+3, . . . , e2start+6]

[e3start+3, . . . , e3start+6]

[e4start+3, . . . , e4start+6]

From real cooking

[e2start+3, . . . , e2start+6]

[e3start+3, . . . , e3start+6]

[e4start+5, . . . , e4start+10]

[e7start+6, . . . , e7start+9]

[e9start+6, . . . , e9start+10]

[e15start+5, . . . , e15start+9]

[e18start+4, . . . , e18start+7]

A.5 Class ’Adding bowl’

Event 7 and 8 from dry cooking was where subjects were adding a bowl of paper.
The audio instruction took 3 seconds. It started immediately after the audio instruc-
tion and took about 5 seconds.

Events 8, 11, 12 and 16 from real cooking was where subjects were adding
a bowl. The audio instruction took 6, 4, 5 and 3 seconds respectively. It started
immediately after the audio instruction and took about 8 seconds (sometimes more,
but we needed to select moments where we are sure).

So we took the following to model ’adding bowl’:

From dry cooking

[e7start+3, . . . , e7start+8]

[e8start+3, . . . , e9start+8]

From real cooking

[e8start+6, . . . , e8start+14]

[e11start+4, . . . , e11start+12]

[e12start+5, . . . , e12start+13]

[e16start+3, . . . , e16start+11]
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A.6 Class ’Squeezing bottle’

Events 5 and 6 from dry cooking was where subjects were pretending to squeeze a
bottle. The audio instruction took 3 seconds. It started immediately after the audio
instruction and took about 4 seconds.

Events 5 from real cooking is where subjects were squeezing a bottle. The audio
instruction took 4 seconds. Squeezing started immediately after the audio instruc-
tion and took about 4 seconds.

So we took the following to model ’squeezing bottle’:
From dry cooking
[e5start+3, . . . , e5start+7]
[e6start+3, . . . , e6start+7]
From real cooking
[e5start+4, . . . , e5start+8]
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