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Abstract

The demand for ground resources at KLM Royal Dutch Airlines is determined by extensive re-
source planning tools that do not take any form of flight delay into account. This thesis proposes
machine learning models that provide a quick estimation of the demand for ground resources
during the flight network scheduling phase. These models show that this demand, as planned
by current extensive calculations, can be estimated with a sufficient error in a significant smaller
amount of time.
Furthermore, methods to include flight delay in ground resource planning are explored. The
described machine learning models can be used in combination with simulation to give an in-
dication of the resource demand on the day of operation, where flight and process delays can
occur. Another approach to determine the expected demand for ground resources on the day of
operation in the form of a time-inhomogeneous continuous time Markov chain model is proposed.
A method of iterative state space exploration and dynamic truncation is described in order to
evaluate such a model.
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Preface

De luchtvaart is een van de voornaamste redenen waarom ik Operations Research ben gaan stud-
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om hier ook mijn afstudeeronderzoek uit te voeren. Bij aanvang van deze opdracht was het even
zoeken naar de juiste richting, maar na een lang proces met goede begeleiding mag ik tevreden
zijn met het resultaat.
Deze Master thesis zou nooit tot stand gekomen zonder een groot aantal mensen die mij zowel
inhoudelijk als persoonlijk begeleid en gesteund hebben. Ten eerste wil ik graag mijn directe
begeleiders bedanken: Nico van Dijk (UTwente) en Matthieu Bolt (KLM), voor hun steun en
advies.
Ook bedank ik de leidinggevenden van de betrokken afdelingen: Michel Mulder (Network Capac-
ity Planning), Feodor Dekker (Ground Services - Tactical Planning), Anne Jan Beeks (Decision
Support - Operations Research) en Bernard Vroom (Decision Support - Operations Research)
die het mij mogelijk hebben gemaakt om aan de nodige data, bedrijfsinformatie en resources te
komen om deze thesis te kunnen voltooien.
Tot slot wil ik graag al mijn collega’s bij Decision Support - Operations Research bedanken
voor de brainstormsessies en adviezen maar vooral ook voor de afleiding, gezelligheid en potjes
tafeltennis.
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Chapter 1

Introduction

KLM Royal Dutch Airlines is a large airline that serves 30 million annual passengers operating
from its home base Amsterdam Airport Schiphol. The Network department of this airline aims
to design a commercially interesting flight schedule that does not violate any operational con-
straints. For example, KLM needs to own take-off and landing rights - so called slots - in order to
be able to operate the planned schedule. Another aspect that reduces flexibility of flight schedule
planning is the airline’s resource capacity constraints. The use of resources like fleet, manpower
and ground equipment has to be taken into consideration while designing the flight schedule. To
make sure that a schedule is operationally feasible, each department that is responsible for some
of the resources will apply an operational check at some point in the planning process.
These operational checks often require extensive calculations. Each department is responsible
for its own performance and it want to be really sure it can handle the flight schedule before
they give it a green light. The results of these operational checks can come as a surprise for
the Network department and occasionally bring them back to the drawing board. This problem
especially arises with the demand for ground resources, that is calculated by the Ground Services
- Tactical Planning (GS-TP) department.

1.1 Goal of This Thesis

The aim of this thesis is to provide KLM’s Network department with more insight in the resource
demand for ground equipment that is determined by the Ground Services - Tactical Planning
(GS-TP) department. This includes an estimation of the demand for the most critical resources -
i.e. what can cause operational infeasibility? - and an advise on how to solve problems regarding
ground equipment resource problems - i.e. how to alter a flight schedule in order to turn an
operationally infeasible schedule into a schedule that is likely to be accepted by GS-TP.
Currently, GS-TP determines their resource demand based on a planned schedule where no flight
delays are taken into account. Therefore, an additional goal of this thesis is to provide a method
to give an indication of the resource demand on the day of operation.
If these goals are achieved, KLM’s Network department will have a method to quickly estimate
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Chapter 1 Introduction

operational feasibility in terms of ground resources. This insight in operational constraints allows
them to be able to make better scheduling decisions regarding the commercial objectives which
improves the usage of the little degrees of freedom in flight network scheduling (figure 1.1).
Furthermore, any insight in the resource demand on the day of operation will allow GS-TP to
validate their planning process. In addition, this information can be used to substantiate the
discussion between Network and GS-TP on operational feasibility.

Figure 1.1: A small feedback cycle allows the Network department to verify operational
feasibility before they send a schedule to GS-TP.

1.2 Research Questions

The goals that are aimed to be achieved in this thesis can be described by the following research
questions.

1. What is the relation between a flight schedule and the resource demand for the most critical
ground resources as calculated by Ground Services - Tactical Planning and is it possible
to quickly verify whether a flight schedule will be accepted after an operational check?

2. Given that a schedule will not be accepted by Ground Services - Tactical Planning, how
can the Network capacity planners be advised to alter the schedule such that it increases
the probability of acceptation?

3. Given a flight schedule, what can be said about the demand for ground resources on the
day of operation?

1.3 Methods

The first resource question aims to find a relation between a flight schedule and the demand for
ground resources. Machine learning models have shown to be able to find relations between input
and output and can be used to quickly predict the outcome of an input instance the model has
not seen before [1]. This thesis uses Gradient Boosting in its powerful implementation XGBoost
[2] to find this relation between a flight schedule and the resource demand. These models can
be used to answer research questions 1 and 2.
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Chapter 1 Introduction

In order to answer research question 3, an existing simulation tool named OPiuM is used to
simulate delays in both flights and ground processes. The output of these simulations is then
used as input for the machine learning models to estimate the demand necessary to operate such
simulated schedules.
Another approach that is proposed in order to answer research question 3 is to model the
movement of aircraft on Schiphol as a continuous time Markov chain. Because the number
of arrivals and departures on Schiphol fluctuates over a day, this Markov chain will contain
time-inhomogeneous transition rates. This requires solution methods as discretization and uni-
formization as summarized by Van Dijk, Van Bummelen and Boucherie [3]. Because of the large
state description of a Schiphol CTMC model, state truncation is necessary in order to evaluate
its characteristics. For regular state truncation of time-homogeneous Markov chains it has been
proven that the error that is caused by the truncation can be bounded [4]. However, truncating
this large time-inhomogeneous model requires a more dynamical approach of truncation that is
based on the work of Andreychenko [5].

1.4 Outline

This thesis report is structured as follows. Chapter 2 contains a description of the KLM and the
Network and GS-TP departments. Then, chapter 3 provides a problem description containing
the research questions and the scope of this thesis. From there this thesis is divided in three
parts.
Part I considers machine learning models in order to answer research questions 1 and 2 and
starts with chapter 4 discussing the used methods. Its results are presented in chapter 4 and the
discussion, conclusions and recommendations are combined in chapter 6.
Part II discusses a simulated approach in combination with the machine learning models - as
described in Part I - in order to answer research question 3. First, simulation tool OPiuM is
described as well as how machine learning can be applied on its output (chapter 7). Then, the
results are presented in chapter 8, followed by chapter 9 that contains the discussion, conclusions
and recommendations based on these results.
Part III contains the description of a time-inhomogeneous continuous time Markov chain model
of the movements of aircraft on Schiphol airport, including a solution approach based on dis-
cretization using iterative state exploration and dynamic truncation. This part starts with an
introduction (chapter 10). An overview of the background of continuous-time Markov chains is
given in chapter 11 followed by chapter 12 describing the Schiphol CTMC model. Algorithms
to solve such a large time-inhomogeneous CTMC are proposed in chapter 13. The results of
this approach are presented in chapter 14. Chapter 15 contains the discussion, conclusions and
recommendations of these results.
After the main content of this thesis the Appendices are included. These are followed by the
Bibliography, a Glossary, a list of Abbreviations and a Management Summary.
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Chapter 1 Introduction

1.5 Reading Guide

This thesis report describes multiple approaches in order to propose solutions to the problems
regarding ground resource demand that KLM’s Network department addresses. It contains
detailed descriptions of the underlying processes as well as technical sections to substantiate the
applied models. The thesis is divided in three parts that can be read independently. It is advised
to read chapter 2 and chapter 3 before diving into one of these three part. Since Part II uses
results from Part I it is strongly recommended to first read at least the first two sections of
chapter 4 to have a sufficient understanding of these results.
Since this report can be read with multiple intentions, three different readers are described. For
these readers the following reading guides can be used:

• Management Reader: For KLM managers, with sufficient understanding of the under-
lying processes, it is recommended to first read the Management Summary in the back of
the report. After that, they can consult the results, discussion, conclusion and recommen-
dation sections of each part this thesis for a more detailed description of the achievements
of this study.

• SOR Reader: For technical readers with a sufficient understanding of Stochastic Oper-
ations Research, Part III will be the most interesting part. In order to understand the
underlying problem it is recommended to first read chapter 2 and chapter 3.

• Aviation Decision Support Reader: For all readers working in the airline industry as
Decision Support Consultant, Business Analyst or Data Scientist, Part I and Part II will
be of interest. Feel free to read Part III as well if Stochastic Operations Research is one
of you points of interest.

For all readers it is recommended to consult the Glossary and list of Abbreviations in the back
of this report whenever an unknown term or abbreviation is used.
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Chapter 2

Description of KLM and Key

Departments

The problems that are aimed to be solved in this thesis mainly arise from the communication
between two departments within KLM:

• Network department

• Ground Services - Tactical Planning (GS-TP) department

Both have their own responsibilities and objectives that they aim to achieve during their col-
laboration. This chapter first describes KLM as an airline in section 2.1. An overview of the
two departments, Network and GS-TP, are given in sections 2.2 and 2.3 respectively. Then the
process of the Operational Planning Cycle (OPC), the most important collaboration between
these two departments, is explained in section 2.4.

2.1 KLM Royal Dutch Airways

KLM Royal Dutch Airlines (KLM), founded in October 1919, is the oldest airline worldwide
that is still operating under its original name. The company merged with Air France (AF) into
the Air France-KLM Group (AF-KL) in 2004. Together with Delta and Alitalia they form a
North-Atlantic joint venture. The airline group also plays an important role in the SkyTeam
Airline Alliance, one of world’s largest airline collaborations. The core of the KLM group, KLM
and KLM Cityhopper (KLC), has a combined fleet of around 200 aircraft, with which it connects
170 destinations in 74 countries worldwide. It employs around 32 thousand people in order to
transport its 30 million passengers and 635.000 tons of cargo annually. As a result, it generated
around 10 billion euros of revenue in 2016. These figures are available on KLM’s website [6].
KLM can be considered as a typical hub and spoke carrier (figure 2.1), which means that it
provides almost all their flights to and from their home base Amsterdam Schiphol Airport (AMS).
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Their operation is mainly focused on providing connections between a variety of airports around
the world with a transfer on Schiphol. Around 75% of KLM customers is a transfer passenger
with a layover at their main hub. In order to achieve this many international connections, the
airline works with a so called bank system.

Figure 2.1: A typical hub and spoke system. KLM provides connections (spokes) to its
main hub station Schiphol (AMS). In this way it can connect multiple European (blue) and
intercontinental (green) destinations.

The “bank” system - also called “wave” system - (figure 2.2) defines multiple moments of peaks
in arrivals and departures at an airport. In the remainder of this report the term “bank” is used
to refer to this system. The idea is that a cluster of flights will arrive before, and depart after
a certain moment of the day. This includes both short haul flights (European or EUR) and
long haul flights (Intercontinental or ICA). This system allows for the connection of multiple
destinations for transfer passengers.
For example, let there be 40 EUR destinations and 15 ICA destinations that all have both an
arrival and departure on the 2nd bank of the day. Now in total there are (40+15)×(40+15−1) =

2970 unique travel paths between all connected airports using AMS as connecting hub. Adding
the 40 + 15 + 40 + 15 = 130 direct flights to and from AMS, there are in total 4160 + 130 = 3100

possible combinations of origin and destination created with only 130 single flights.

Figure 2.2: The Schiphol bank system: a single day has 8 banks, which define in- and
outbound peaks, to optimize network connectivity. The arrows indicate in- and outbound of
short haul (long thin black) and long haul (short bold grey).

This bank system is necessary for commercial success of the hub and spoke structure of KLM’s
Network. It also contributes to the utilization and flexibility of their air resources like aircraft
and cockpit- and cabin crew: because multiple flights arrive and depart at the same time, crew
can be distributed over the flights in many ways. The downside is that the ground activities on
Schiphol experience high demand peaks during these banks.
The great connectivity on Schiphol is one of the main reasons that this airport is expanding
rapidly in terms of aircraft movements [7]. This results in a debate about whether or not the
airport can grow - that has been widely discussed in the media [8–10] - and a scarcity of aircraft
landing rights, so called slots [11]. This can result in fierce political debates [12]. Because of this
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Chapter 2 Description of KLM and Key Departments

situation, KLM’s Network department loses degrees of freedom in order to fulfill their objective:
to design a commercially interesting flight network that will be operationally profitable.

2.2 Network Department

KLM’s network department forms the first implementation of the airline’s strategy (figure 2.3).
It determines where to fly to, when to fly, how often to fly, and what the capacity of each
flight should be - i.e. what aircraft and configuration of seats to use. Because their work
heavily influences KLM’s core business, and therefore has a direct influence on the airline’s
performance, the Network department maintains good contacts with the executive committee
(see organizational chart in appendix A). During Network’s masterclasses they describe their
mission as “to design the most attractive KLM (and partners) network for all stakeholders, based
on the optimal match between commercial wishes and operational capabilities in order to develop
a sustainable and profitable position within the AF-KL Group”.

Figure 2.3: A typical airline value adding chain.

The department can be divided in three subdivisions: Network Planning, Network Schedule and
Capacity Planning and Schedule Distribution. The network planners are driven commercially
and are organized in geographical regions. They analyze the market and estimate whether flying
to a destination in a certain frequency is profitable. Network Scheduling and Capacity Planning
is operationally driven. They have to make sure that a schedule is operationally feasible, i.e. the
flight network can be operated with the currently available resources. Schedule Distribution is
responsible for distributing the schedule to the rest of the company. This last subdivision also
manages code shares, which are collaborations between airlines where they can sell tickets to
each other’s flights in order to expand their network.

2.2.1 Flight Scheduling Tool

The Network department uses a tool to support its network planning and scheduling processes.
Flights are represented in a Gannt chart as blue horizontal bars on horizontal lines. These lines,
called fleet lines, represent the time line of a single aircraft. By this representation of the schedule
it immediately becomes clear how the schedule might be operated by the current fleet.
This tool also shows aircraft reservations that are visualized by red bars. These aircraft reserva-
tions are necessary to have some slack in the flight schedule. The reason for this slack can be an
obligatory periodical maintenance check. Another reason is to have an aircraft as stand-by to be
able to use it when other aircraft are disrupted on the day of operation. These reservations are
indicated with codes. For example, #RS is used to indicate a stand-by reservation, ##A denotes
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Chapter 2 Description of KLM and Key Departments

built-in slack for the so called A-check (a maintenance check that has to be carried out every
400-600 flight hours) and #TO marks reservations for small technical maintenance.

Figure 2.4: Flight schedule Gannt chart

Flights can be distributed over fleet lines ac-
cording to a First In First Out (FIFO) or Last
In First Out (LIFO) algorithm (figure 2.5).
With the FIFO implementation, the current
fleet line with the earliest arrival (First In)
should be the fleet line with the earliest depar-
ture (First Out). With the LIFO implemen-
tation, however, the current fleet line with the
latest arrival (Last In) should be the fleet line
with the earliest departure (First Out). LIFO
is used by network capacity planners because
it shows big gaps where another flight might

fit in, for example between flight KBP-AMS and flight AMS-MAD in figure 2.5. For operations
and resource planning the FIFO implementation is used because it spreads slack over the fleet
lines. A combination is possible where the FIFO algorithm is used for short turns and a switch
to LIFO is made when a turnaround is longer than x minutes. In this case one can use the
advantages of both methods.

Figure 2.5: Example of six flights that are scheduled FIFO and LIFO. Above each flight its
origin and destination are shown in three letter airport codes.

2.2.2 Gate Planning Tool

The Network department uses a gate planning tool to indicate the gate demand of a schedule.
This tool assigns VOPs (vliegtuigopstelplaatsen) to incoming and outgoing flights according to
some planning rules. VOPs are locations on an airport where an aircraft can be placed such as a
gate, a buffer or a parking position. These VOPs are grouped by category that indicates the size
of the biggest aircraft that can use the VOP. This category ranges from Cat. 1 - small private
jets - to Cat. 9 - Airbus A380 jumbo jet.
When there is much time between an arrival and departure of an aircraft, it might be necessary
to be towed to a parking position to create space for other aircraft that have to be handled at a
gate. Therefore, this gate planning tool generates towing tasks when there is not enough space
available to allocate all aircraft. It contains an optimizer to reduce the number of tows and it
can swap flights in order to achieve a better gate allocation.

8



Chapter 2 Description of KLM and Key Departments

2.2.3 BTS Workload Tool

KLM’s Network department is able to visualize the workload of BTS. BTS is the subdivision
of Ground Services that is responsible for loading and unloading baggage and cargo. These
BTS-graphs are based on the workload business rules of GS. Tasks are assigned to arriving and
departing aircraft where the connection of flights are not taken into account. Although this
calculation of workload is not always representative, it can still be used to compare different
schedules and thus estimate the effect of a schedule change on the workload of BTS.

2.3 Ground Services - Tactical Planning Department

Ground Services (GS) is the department that is responsible for the ground handling of aircraft on
KLM’s main hub Schiphol. It consist of several sub-departments like Passenger Services, Apron
Services and Baggage Services (see appendix A for organizational chart). Ground Services -
Tactical Planning (GS-TP) is the sub-department that supports the planning process of GS by
maintaining a rules catalogue of planning parameters, monitoring GS processes and providing
a planning for ground resources like baggage operators, towing trucks and fuel trucks. An
important task of GS-TP is to evaluate a flight schedule and check its operational feasibility in
terms of ground resources.
GS-TP is organized in groups of planners that are responsible for some particular resources or
processes like towing equipment, fuel equipment and baggage handling. Each planner maintains
contact with the operators responsible for these processes, creates planning rules and updates
these rules according to process changes. An inside IT-group supports GS-TP with tooling and
data management.

2.3.1 Planning Rules (PUGs)

Planning rules are used as an abstraction of ground processes such that resources can be assigned
to certain tasks and a planning can be realized. These planning rules can be referred to as the
PUGs, which is an acronym for the dutch word “planningsuitgangspunten”. Because of the
differences in processes and differences in planners, PUGs occur in multiple varieties.

Table 2.1: Example of some planning rules (planningsuitgangspunten or PUGs).

Table 2.1 shows some examples of PUGs for ground resources where most of the variants are
included. The list below describes the characterizations of PUGs.
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Chapter 2 Description of KLM and Key Departments

1. PUGs apply to some specific airlines and aircraft types or to groups of airlines and groups
of aircraft types (first two columns). PUGS 1-4 show that this allows, for example, to
apply different rules on the aircraft of different airlines.

2. PUGs define the task that has to be completed and the resource as well as the number of
resources that are used to fulfill this task. Sometimes the resource that is used depends on
the gate allocation (PUGs 8-10). A dispenser can only be used at gates that are connected
to the Schiphol kerosene pipeline network.

3. Start and End Time are given in minutes relative to an aircraft’s arrival (A) or departure
(D). For example, PUG 8 has to be scheduled between 5 minutes after arrival (A+5) and
10 minutes before departure (D-10). It is possible that a task begins before an arrival or
ends after a departure.

4. Task Time defines the time that is necessary to complete the task. For some tasks this
Task Time is shorter than the difference between start and end time (PUGs 6, 8, 9). This
means that these tasks can be shifted and scheduled somewhere such that it starts after
their start-time and ends before their end-time.

5. Travel Time is contained in PUGs in multiple ways. Some PUGs define fixed travel times
(PUGs 1 and 3). Others have the travel times included in their task times (PUGs 5-7).
Others use a travel time matrix to determine the travel time of a resource from one task
to another (PUGs 8-10).

6. Some PUGs require some Remarks, for example that the PUG only applies to aircraft that
have an origin or destination for which they know that handling the baggage is a critical
process (PUGs 1 and 2). Another example that the PUG only holds if the ground time -
time between arrival and departure - is in a certain interval (PUGs 6-10).

2.3.2 GS-TP Tooling

In order to schedule ground resources given a flight schedule, GS-TP makes use of externally
developed tooling: Gateplanner and PlanControl.

Gateplanner

Gateplanner is a tool that assigns aircraft to VOPs (“vliegtuigopstelplaatsen”), just like the gate
planning tool of Network (section 2.2.2). It does not contain any optimization nor alters the
schedule in order to achieve a good fit. It just takes the schedule as it is and assigns gates
according to some planning rules. When a schedule does not fit it creates so called overflow
gates. These gates do not physically exist but are used such that the tool can terminate its gate
planning process. After a run, GS-TP planners alter the gate allocation such that there are no
aircraft on overflow gates used anymore. Sometimes they conclude that, despite the usage of
overflow gates, they will most likely be able to operate the schedule due to stochastic events in
operations.
It is important to note that this gate planner tool only plans gates for a planned schedule. It
tries to account for flight delays by adding some separation time. GS-TP uses a separation time
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of 20 minutes which means that the allocation of two aircraft on the same gate should be at least
separated by a 20 minute time interval.

Plancontrol

PlanControl is the tool that schedules ground resources, which uses a flight schedule and Gateplan-
ner’s gate allocation as its input. It generates tasks according to the PUGs and assigns them to
resources with the objective to use as little resources as possible. The result is the demand for
resources that are necessary to fulfill all tasks.
Note that this demand for resources is calculated for a fixed planned schedule. This means that
no flight delays are taken into account.

2.3.3 Ground Resources Planning Process

Figure 2.6 shows the process of resource planning from Freeze 1 - i.e. flight schedule - to resource
demand. The gate planning, pug assignment and task planning are done by the tools described
in the previous section. The final result, the demand for all ground resources, is presented in
graphs that contain the highest number of demand for these resources per 15 minutes.

Figure 2.6: Process of determining resource planning for a given flight schedule.

This process is repeated weekly with a horizon of 4 weeks for production planning purposes.
Every 4 weeks a Base Rolling Planning (BRP) is performed that looks 1 to 3 months ahead.
This resource planning process is a typical Capacity Requirements Planning (CRP) [13]. In its
essence it is an administrative job of which the complexity lies in the large number of plannings
rules where no complex models are involved.

2.4 Operational Planning Cycle

The Operational Planning Cycle (OPC) is used to verify the feasibility, performance and effi-
ciency of a flight schedule. Multiple parties that are responsible for some KLM resources, like
GS-TP, check the schedule that is designed by KLM Network department by calculating their
expected demand. After verifying a schedule, these departments are allowed not to accept a
flight schedule when they can proof it is not possible or not realistic to operate the schedule as
it is.
Because of the High Performance Organization program, this process is now repeated every 4

1The term Freeze comes from the fact that the process of flight schedule planning is “frozen” in order to
evaluate its expected performance and resource demand.
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weeks to allow KLM to quickly react on market changes. Although the term “Operational Plan-
ning Cycle” is not used anymore, it is preferred in this report since it perfectly describes the
process.

Figure 2.7: Operational Planning Cycle (OPC) between Network and GS-TP

For GS-TP this operational check means that they use their planning process (figure 2.6) to
determine whether they have enough ground resources to facilitate this flight schedule. Their
analysis is then used as feedback by Network to alter their flight schedule (figure 2.7). Since
most of the large ground equipment - e.g. towing trucks and fuel trucks - has a lead time of 2
years, it is not possible to purchase new equipment before the schedule is due. Exceeding their
capacity will result in a flight schedule that is impossible to operate without some form of delay
caused by a shortage of ground equipment. Therefore Network is forced to change the schedule
if it turns out that according to GS-TP calculations it will not be operationally feasible.
It takes on average around a full night for this process to run on GS-TP computers. More impor-
tant runs, on which executive decision making is based, require human intervention. Therefore
it can take days before the resource demand is determined.
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Problem Description

The problem that the Network department addresses, is that it is often surprised by the outcome
of the OPC-check performed by GS-TP. Sometimes a schedule is rejected because of a shortage
in resources that has not been foreseen by Network’s capacity planners and their current tooling
(Networks gate planning and BTS-workload graphs). Furthermore, when a schedule is rejected,
Network does not really know what schedule changes have to be made such that GS-TP will
likely accept it. They would like to have their own small feedback cycle in order to include ground
resource capacity in their regular network scheduling process (figure 3.1). Since the OPC-check
is now performed every 4 weeks instead of semiannually (section 2.4), and Schiphol starts to
expand rapidly (section 2.1), the needs of such a feedback cycle are increasing.
Ideally, Network would like to agree upon Key Performance Indicators (KPIs) of a flight sched-
ule that directly indicate operational feasibility. This would make it much easier for Network’s
capacity planners to take ground resource capacity constraints into account while scheduling a
flight network.

Figure 3.1: Operational Planning Cycle (OPC) between Network and GS-TP. The Network
department would like to have their own small feedback cycle (green arrow) in order to
evaluate a schedule before it is sent to GS-TP.

Another point of discussion is that GS-TP evaluates the resource demand given a planned sched-
ule. This will never be the exact schedule that is operated by KLM because of stochastic events
like flight delays. Sometimes it is simply impossible to operate a schedule exactly as it is planned.
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For example, it often happens that more than 15 aircraft are scheduled to arrive at the same
time while this violates Schiphol’s runway capacity constraint. GS-TP occasionally applies cor-
rections for these effects but it has not been studied in greater detail yet.
In order to get an indication of the resource demand on the day of operation, the current pro-
cess of Capacity Requirements Planning (CRP) of section 2.3.3 is not sufficient anymore. More
sophisticated models are necessary in order to include flight delays in resource planning.

3.1 Research Questions

The problems described above can be summarized into three main research questions that form
the assignment of this master thesis:

1. What is the relation between a flight schedule and the resource demand for the most critical
ground resources as calculated by Ground Services - Tactical Planning and is it possible
to quickly verify whether a flight schedule will be accepted after an operational check?

2. Given that a schedule will not be accepted by Ground Services - Tactical Planning, how
can the Network capacity planners be advised to alter the schedule such that it increases
the probability of acceptation?

3. Given a flight schedule, what can be said about the demand for ground resources on the
day of operation?

3.2 Scope of Thesis

This thesis aims to answer the research questions above. Before doing so, the scope needs to be
clarified.
The first research question is fixed on quickly computing the resource demand as calculated by
GS-TP and can be seen as a shortcut for the computationally expensive task administration.
This will be done for the most critical resources only, i.e. the resources that are most likely to
cause infeasibility of a schedule.. In general, these are the biggest pieces of equipment since they
are expensive and have a relatively long lead time. These resources are listed in table 3.1.

Type of Resource Name of Equipment
Towing Trucks AM500 AM210 AM110
Fuel Trucks Dispensers KTW
Baggage Loaders Rampsnakes Powerstows

Table 3.1: Critical Resources

Research question 2 focuses on the same resources as the first research question (table 3.1). The
goal here is to provide more information to the Network department than just the demanded
number of resources.
The last research question focuses on applying some stochasticity to the flight schedule. This
is aimed to be achieved by two approaches: 1. A flight specific simulation that uses the the
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administrative shortcut of research question 1 to evaluate simulation outcomes, and 2. By
a continuous time Markov-chain (CTMC) model of movements of aircraft on Schiphol. The
simulation concentrates on KLM flight delays and their influence on the resource demand for the
resources described in table 3.1. The latter approach is fixed on wide body aircraft in general
and only accounts for towing trucks and gates.
These research questions are distributed over this report in the following way:

Part I Research questions 1 and 2.
Part II Research question 3, simulated approach.
Part III Research question 3, CTMC approach.
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Part I
Estimation of Planned Ground Resource Demand

What is the relation between a flight schedule and the resource demand for the
most critical ground resources as calculated by Ground Services - Tactical
Planning and is it possible to quickly verify whether a flight schedule will be

accepted after an operational check?

Given that a schedule will not be accepted by Ground Services - Tactical Planning,
how can the Network capacity planners be advised to alter the schedule such that it

increases the probability of acceptation?





Chapter 4

Methods

This chapter describes the methods that are used to find an estimation of the demand for ground
resources as calculated by GS-TP. It thereby focuses on answering research question 1: whether
a clear relation between a flight schedule and the resource demand for the most critical resource
can be found and whether it is possible to quickly verify if a flight schedule is likely to be accepted
after an operational check. Furthermore, research question 2 - how can Network be advised to
alter the schedule to increase the probability of acceptation? - is discussed.
It is important to note that the goal is to estimate what the resource demand will be as calculated
by GS-TP using their planning process described in section 2.3.3. At this point it is not of
importance whether this planned demand is realistic. GS-TP has the authority to not accept
a schedule motivated by their current planning and Network faces the problem that they lack
insight in this process. Therefore it is assumed that this process, that is carried out by GS-TP,
is a realistic way to estimate the demand for its resources.
Machine learning models are discussed to quickly estimate the demand for the most critical
resources per 5 minute time brackets given a flight schedule. In order to apply these models, a
flight schedule needs to be quantified and business rules have to be implemented to include as
much known information as possible. Figure 4.1 shows that this quantification is achieved by
converting a Freeze, i.e. flight schedule, to a so called ground schedule, after which characteristics
of flights and tasks can be extracted. These characteristics that describe a flight schedule will
be called “schedule characteristics”. A complete list is of these schedule characteristics is given
in Appendix B. Furthermore, this chapter gives an explanation of validation methods and the
data sources that are used.

Figure 4.1: Process to calculate schedule characteristics in order to quantify a flight
schedule (Freeze).

A motivation for the use of machine learning models is given in section 4.1, followed by some
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background information on the planning of critical resources in section 4.2. Then, two sections
follow to describe the way a flight schedule (4.3) and the ground services business rules (4.4)
are quantified. In section 4.5 it is explained how information from other time brackets can be
used to add information about the resource demand in a certain time bracket. Gradient Boosting
machine learning models are described in section 4.6 after which section 4.7 sketches the available
data. Finally, the evaluation and validation methods are described in section 4.8.

4.1 Motivation

The Network department of KLM is looking for a way to have an indication of the resource
demand as calculated by GS-TP. In fact, they want to have a shortcut for the administrative
Capacity Resource Planning. Preferably, Network would like to agree upon schedule KPIs that
can be used to directly imply operational feasibility.
It can be seen as if they are looking for a function f(x) that takes schedule x as an input and
outputs a resource demand predictor ŷ (figure 4.2). This predictor should estimate real value y;
the resource demand as calculated by GS-TP (section 2.3, figure 2.6 in general).

Figure 4.2: Function f(·) takes a schedule as input and returns a predictor that estimates
the resource demand as calculated by GS-TP.

Machine Learning (ML) models are models that try to find the best function f(x) that describes
the relation between some available input and output [1]. When this relation is found, i.e. a
model has been trained, it can be used to “predict” the resource demand of a Freeze that has not
been processed by GS-TP (figure 4.3). The motivation to use this approach is that it is a fast
way to literally estimate the GS-TP administrative process without using the computationally
expensive planning tools.

Figure 4.3: Process of training and using a machine learning model to estimate the
resource demand for ground equipment.
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4.1.1 ML Model Output

A ML model to indicate whether a schedule is operationally feasible can have different outputs.
It can return how sure the model is that a schedule will be accepted by GS-TP. In that case the
model output might be a single number between 0 and 1. This might be a good indicator for
the Network department but it does not give information about at what moments the schedule
is likely to be infeasible. It also does not tell what to do in the case of infeasibility (research
question 2 in section 3.1). Therefore an output of the model that says something about the
demand per resource per time bracket is preferred. A time bracket of 5 minutes is used since
KLM schedules flights per 5 minutes.

4.1.2 The Usage of a Gate Planning

There is a high correlation between a gate planning and the corresponding demand for resources.
Some types of equipment might only be used on particular gates and when a gate planning shows
that all aircraft can be assigned to a gate, no towing equipment is necessary to tow aircraft to
a parking location. Therefore, a gate planning will be a an important feature in a model to
determine the demand for ground resources.
As discussed in chapter 2, both the Network department and GS-TP have their own gate planning
tools. These tools differ in such a way that their outcomes are not comparable. This has led to
a discussion between the two departments and until today they cannot agree upon its output.
Therefore the gate planning tool that is used by Network will not add much information to the
model and it is chosen to not include a gate allocation as a feature for the ML models.

4.2 Background on the Planning of Critical Resources

The critical resources that are focused on in this thesis are planned by ground services using
their planning rules (PUGs) and tooling as reported in section 2.3. This section describes the
process of planning these critical resources in more detail. Here it is important to specify two
types of tasks that can be assigned by PUGs.

Definition 4.1. Fixed Task. A task for which the planned start- and end time is fixed. For
example, some PUG may specify that a task will be planned to start at D − 16, end at D + 5

and will take 21 minutes to fulfill.

Definition 4.2. Shiftable Task. A task for which we know that it has to be planned in a
certain time interval, but the start- and end time are not fixed. For example, some PUG may
specify that a task has to be planned to start after A+ 5, end before D− 5 and take 27 minutes
in total. This means that this task can be shifted in a certain interval depending on the arrival
and departure time of the turn.

The plannings rules that describe fixed or shiftable tasks can be referred to as a fixed or shiftable
PUG respectively. For resource that only contain fixed tasks it is immediately clear what the
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Figure 4.4: Fixed and shiftable task according to the examples in definitions 4.1 and 4.2
.

planned resource demand will be since there is no flexibility allowed at planning level. Resources
that also contain shiftable tasks require additional scheduling in order to determine the planned
start time of these shiftable tasks. During the scheduling of shiftable tasks, GS-TP has the
objective to use as little resources as possible to carry out all planned tasks.

4.2.1 Gates

Although gates are not resources whose demand is aimed to be estimated by this thesis, the gate
allocation has a big influence on the use of other resources. For example, towing an aircraft is
only necessary when there is shortage of gates on that moment. As motivated in section 4.1.2, a
precise gate allocation will not be used as a feature for the models but simple information about
gate planning can easily be included.
The business planning rules for gates are always of the form

if duration of turn ≤ x then:
demand for gate for total ground handling from A− 0 to D − 0

else then:
demand for gate for arrival handling from A− 0 to A+ α
demand for gate for departure handling from D − δ to D − 0

Where x, α and δ depend on aircraft type and airline, x denotes the maximum ground time in
minutes at which an aircraft cannot be towed away from the gate, and α and δ are the time in
minutes necessary for arrival and departure handling respectively.
During resource planning it is common to add separation times to gate demand to include some
slack to manage small delays on the day of operation. GS-TP uses a separation time of 20
minutes in their gate allocation tooling. This means that a gate is considered to be occupied
from 10 minutes before the planned arrival and until 10 minutes after the planned departure.
Applying these rules to all turnarounds, i.e. the period between arrival and departure of an
aircraft, will result in a list of periods for which aircraft require a gate. Counting up these
periods that overlap a certain time interval will give the minimum gate demand for that time
interval.

4.2.2 Baggage Loaders

Baggage loaders are used to transport baggage in and out of aircraft. The baggage loaders in
the scope of this research - powerstows and rampsnakes - are literally conveyor belts on wheels.
In the current planning process these resources can only have fixed tasks assigned to them.
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Therefore they do not require additional scheduling since the start and end time of the planned
tasks are fixed.
The only additional planning rule is that if an arrival and departure handling overlap, they are
combined into one single task. For example, let a 40 minute turn have an arrival handling by a
rampsnake from A− 2 to A− 20 and a departure handling from D − 35 to D − 2. These tasks
overlap and will therefore be merged to one task from A− 2 to D − 2.
Applying these rules to all turnarounds will result in a list of periods for which aircraft will
require a ramsnake or powerstow. Counting these periods that overlap a certain time interval
will give the resource demand according to GS-TP’s resource planning.

4.2.3 Towing Equipment

Towing equipment is used for both push backs and towing. A push back is the operation that
is performed to push an aircraft away from a gate to a position from which the pilot can safely
start taxiing to the runway. A tow is carried out to bring an aircraft from the gate to a parking
position or maintenance hangar or the other way around. GS has multiple types of towing trucks
that vary in size and all have a specific set of aircraft types that can be handled by these trucks.
From small to large the truck types that are considered to be critical are called AM110, AM210
and AM500. There are, however, some smaller truck types that are not considered in this thesis.
Push backs are always planned as fixed tasks. Tows, however, can be shifted tasks as well. An
additional uncertainty is that a towing task, in contradiction to tasks of other resources, only
has to be planned when there are not enough gates available. Therefore the demand for this
resource is highly dependent of the gate allocation. This it tricky since the idea of the machine
learning model approach is to not include a gate planning at all. Travel times are included in
the task times described by the PUGs.
The idea is that, in order to obtain the demand for towing tasks, the machine learning models
will find relations between the number of aircraft at Schiphol, the number of possible towing
tasks that can be assigned to a schedule according to the PUGs, and the number of resources
planned by GS-TP.

Static Tasks
Towing and push back tasks are planned according to the PUGs and specifications of aircraft
turnarounds. Additionally, GS-TP also schedules so called static tasks that are not related to
specific aircraft turns. These tasks compensate for the unforeseen demand for towing equipment
by, for example, additional maintenance. These shiftable tasks are of the form: plan two extra
tasks that take x minutes between 1PM and 3PM daily. Determining the planned start time of
these tasks goes according to GS-TP’s plannings objective: to use as little resources as possible
to carry out all tasks.

Overflow Towing Tasks
As described in section 2.3.2, the planners at GS-TP sometimes allow a gate planning to not
perfectly fit. In this case so called overflow gates are generated. Overflow towing tasks are
planned to tow aircraft to and from these virtual gates.
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AM110 trucks are only used for push backs and therefore are easily planned since these only
include fixed tasks. Summing up these tasks already provides the exact resource demand as
calculated by GS-TP’s planning process. Both AM210 and AM500 perform both push backs
and tows and have additional static tasks.

4.2.4 Fuel Equipment

The fuel equipment that is considered to be critical are small fuel tucks (KTWs - “Kleine TankWa-
gens”) and dispensers. KTWs transport kerosene to an aircraft. Dispensers, however, are used
as a connector between an aircraft and Schiphol’s fuel pipeline network.
The business rules for planning fuel equipment mainly consist of shiftable PUGs. An additional
complexity is that the resource that is used to fulfill the task dependends on the gate on which
the aircraft is positioned. Almost all category 3 to category 9 gates are hydrated, which means
that a dispenser can be used to tank fuel from the pipelines into the aircraft. On other positions,
a KTW or GTW (“Grote TankWagen” - big fuel truck) has to be used. There are just a few
GTWs in use at GS and they are not considered to be critical.
The tasks that are planned for fuel equipment do not contain travel times. These travel times are
added according to a travel time matrix that indicates the time to drive between some regions
on Schiphol.

Static Tasks
Just like towing equipment, additional static tasks are planned in order to compensate for un-
expected demand. For KTWs these static tasks are also a reservation of equipment necessary to
fill the tank at a filling station. For towing equipment, these static tasks could be shifted. For
fuel trucks, however, the static tasks are a fixed reservation for some part of the day.

4.3 Quantifying a Flight Schedule

The goal of quantifying a flight schedule is to present the schedule in such a way that it can be
used as an input for machine learning models. This is done via a conversion of the flight schedule
to its corresponding ground schedule, which is used to determine schedule characteristics per 5
minute time bracket.
A flight schedule contains a lot of information about the planned operations of all airline activities
around Schiphol. This information can be categorized into three categories.

1. Flight information - flight specific information such as departure time, arrival time, origin,
destination, aircraft type and airline (Available for all airlines).

2. Information about aircraft reservations - when to reserve time for maintenance and backup
(KLM only).

3. Schedule information - i.e. how these flights and aircraft reservations are distributed over
the available fleet.

24



Chapter 4 Methods

The first two can be considered as fixed during the evaluation of an OPC-Freeze. For KLM
and partners this information is available, for other airlines the flight information is estimated
using historic flights and slot availability. The schedule information depends on which algorithm
(FIFO-LIFO) is used to distribute the flights and aircraft reservations over the available aircraft.
GS-TP uses the FIFO implementation with a switch to LIFO when turnarounds are longer than
180 minutes.
A first step in quantifying is to obtain a ground schedule from a flight schedule. From this ground
schedule the schedule characteristics regarding the flights can be directly computed.

4.3.1 Ground Schedule

Because this research focuses on what happens in between the flights, the flight schedule is con-
verted into a so called ground schedule. This ground schedule is a tabular representation of
all turns that occur on Schiphol where every record represents a turnaround. Aircraft reserva-
tions, such as maintenance and back-up aircraft, are not included as separate elements but as a
characteristic of a turn. For each turnaround we require the following information:

Aircraft Type Three letter IATA aircraft code, e.g. 73H or 744
Aircraft Category Category (1-9) depending on aircraft size
Flight From Flight number of incoming flight, e.g. KL0862
Flight To Flight number of outgoing flight, e.g. KL0743
Airline Two or three letter IATA airline code of airline, e.g. KL
Arrival Datetime Local date and time of arrival on AMS
Departure Datetime Local date and time of departure from AMS
Duration of Turn Time difference in minutes between arrival and departure
Origin Three letter IATA airport code of origin of incoming flight
Destination Three letter IATA airport code of destination of outgoing flight
Turn type arrival Code of first aircraft reservation after arrival*
Turn type departure Code of last aircraft reservation before departure*

*Aircraft reservation codes that are of interest for resource planning are maintenance checks ##A, ##C, ##T, and
aircraft stand by reservation #RS.

It happens that in the flight schedule an incoming flight cannot be linked to an outgoing flight
and vice versa. It then appears as if an aircraft will be at Schiphol for a very long time. This
happens because the schedules of non partner airlines are estimated based on previously flown
schedules and slot availability. In operations it almost never happens that an aircraft of such
an airline will spend that much time on Schiphol. Therefore dummy flights are added such that
every aircraft that is planned to be at AMS can be described as a turnaround in the ground
schedule. These dummy flights do not require any ground handling and are only used to prevent
that unrealistically long ground times occur.
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4.3.2 Schedule Characteristics for Flight Information

The ground schedule can be used to calculate schedule characteristics per 5 minute time brackets.
These characteristics form a quantitative representation of the flight schedule. The idea is
to describe all events using only three metrics; number of arrivals, number of departures and
maximum number of aircraft on AMS. These metrics can be calculated for different subgroups
of turnarounds that are likely to have some effect on the demand for ground resources. For
example, we would like to know these metrics for all aircraft categories separately since aircraft
category determines the gates on which aircraft can be allocated. Next to KLM, other airlines
such as Air France (AF) and Delta (DL) have gate preferences. Including the three metrics
for all turnarounds of these airlines will add information about the gate allocation. The same
argument holds for Low Cost Carriers, like EasyJet and RyanAir, and Freighters, who only
transport cargo.
In total the following metrics and subgroups are defined to quantify the flight schedule.

Metrics
AC_AMSt Maximum number of aircraft on AMS in time bracket t.
ARRt Number of arrivals in time bracket t.
DEPt Number of departures in time bracket t.

Subgroups
KL KLM aircraft
AF Air France aircraft
DL Delta aircraft
F Freighters (cargo aircraft)
LC Low Cost carriers
1 Category 1 aircraft
2 Category 2 aircraft
...

...
9 Category 9 aircraft

For AC_AMS it is explicitly mentioned that the maximum number of aircraft per time bracket is
taken because this metric is not a count of events, like ARR and DEP, but a count of intervals that
happen to overlap a time bracket. However KLM only schedules flight with 5 minute precision,
other airlines can schedule flight per minute. AC_AMSt is thus the maximum of the number of
aircraft on AMS of all minutes in interval t.
These metrics and subgroups can be combined using an underscore (_) to form schedule charac-
teristics. For example ARR_KLt denotes the number of arrivals of KLM aircraft in time bracket
t. Combinations of subgroups, like ARR_KL_4t, are also possible. See table 4.3 for an example of
some of these schedule characteristics and how they describe the situation on AMS. The most
left column indicates the start time of a bracket. The difference of the situation on AMS between
the selected time periods 09:00 - 09:15 and 20:05 - 20:20 is clearly visible. For example, in the
first period there are relatively more wide body aircraft (cat 6-9) than smaller medium body
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(cat 4-5) and narrow body (cat 1-3) relative to the second period. This is already an indication
for the usage of gates and other resources.

t AC_AMSt AC_AMS_123t AC_AMS_45t AC_AMS_6789t AC_AMS_AF_123t AC_AMS_DLt
09:00 118 21 45 52 2 9
09:05 119 20 46 53 2 10
09:10 121 20 48 53 2 11
...

...
...

20:05 111 35 55 21 2 1
20:10 110 35 54 21 1 1
20:15 105 34 50 21 1 1

t ARRt ARR_Ft ARR_LCt DEPt DEP_Ft DEP_LCt
09:00 13 0 1 5 2 1
09:05 2 0 0 1 0 0
09:10 5 0 2 3 0 1
...

...
...

20:05 2 0 2 1 0 0
20:10 4 0 2 1 0 1
20:15 1 0 0 6 0 0

Table 4.3: Example of schedule characteristics per 5 minute time brackets.

Note on AC_AMS

The flight schedule of KLM, AF and partners is well known. For other carriers, however, it is a
good guess what their schedule will be. Because of this guess it sometimes happens that aircraft
arrive on AMS without ever departing again or the other way around. In the ground schedule
this problem is tackled by adding dummy flights. For the AC_AMS characteristic, these aircraft
are only included from the moment they have a planned task assigned to them (see next section).

4.4 Adding Ground Services Business Rules

GS-TP business rules (PUGs), as described in section 2.3.1, contain a lot of information about
the resource demand. The idea is to use this information by assigning tasks to turns in the
ground schedule. Each PUG specifies both the type of turnarounds on which it applies, and the
task that has to be scheduled for this turnaround - i.e. task duration and necessary equipment.
Therefore, PUGs can be directly assigned to turns that are included in the ground schedule
after which they can be converted to task related schedule characteristics to give additional
information about the resource demand for every time bracket.

4.4.1 Quantifying PUGs

Fixed PUGs (definition 4.1) can simply be used to assign planned tasks to turns, after which
the number of tasks per equipment that lie in a certain time interval can be counted. This is
not possible for PUGs that describe tasks that can be shifted. However, it is possible to give an
indication of the “uncertain” resource demand generated by these shiftable PUGs by breaking
down the task and define a probability distribution that a task will be planned at any point in
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time. Here “uncertain” refers to the fact that one cannot be sure that a task will be schedule
at that moment. These probability distributions differ from the mathematical definition in the
sense that they indicate the probability that some part of the task will be planned at a certain
moment instead of the probability that some event happens. Therefore, the area under the graph
will not be equal to 1 - as with the regular mathematical definition - but it has to be equal to
the total duration of the task.
Figure 4.5 shows a task that takes 25 minutes that has to be planned between D−30 and D+5.
It is clear that, independent of the actual start time of this task, this task will definitely be
scheduled to be executed between D − 20 and D − 5. This is true since it has to start after its
earliest start (D − 30) and cannot be started after D − 20 because otherwise the task will end
after its latest end (D + 5). For the other parts, between the earliest start and the latest start
and between the earliest end and the latest end, a probability of .5 that the task will be planned
at those point in time is used. When there is not a certain interval that will definitely contain at
least a part of the task, i.e. the time difference between the earliest start and latest end is more
than double the duration of the task, the probability can be uniformly distributed over the total
task interval.

Figure 4.5: Example of a probability distribution of a 25 minute shiftable task that has to
be scheduled between D − 30 and D + 5.

One can think of other methods to distribute the task probability over the uncertain intervals. A
reasonable approach is sketched in figure 4.6 where it is assumed that a task is randomly planned
between its earliest start and latest end. This results in a probability distribution with the same
certain part between the latest start and earliest end, but with an increasing and decreasing
slope between the earliest and latest start and the earliest and latest end respectively. This
seems like a fair distribution but in the planning process shiftable tasks are often started at -
or close to - their earliest start or their latest start. This is a direct result of planning with the
objective to use as little resources as possible: when there is a peak in resource demand at one
of these two intervals, the task will be shifted such that it will not higher this peak even more.
Therefore the task probability distribution from figure 4.5 will be used.

Figure 4.6: Example of an alternative probability distribution of a 25 minute shiftable task
that has to be scheduled between D − 30 and D + 5.

4.4.2 Schedule Characteristics Based on PUGs

Per equipment a schedule characteristic can be created for every type of task this equipment can
fulfill. This, of course, differs per equipment and depends on how GS-TP plans these resources
(section 4.2). For every type of task, two types of metrics per time interval can be defined: one
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metric that is the count of all fixed tasks and all shiftable tasks that have a probability of 1
of being planned in that time interval, and another metric that is the sum of all probability
distributions for all tasks of that type of equipment. The latter will be indicated with suffix
_unc.
This section describes per resource group the schedule characteristics that are generated. The
schedule characteristics that are based on shiftable tasks have an additional schedule character-
istic with suffix _unc. This uncertain characteristic is not described for every resource indepen-
dently. A full list of schedule characteristics can be found in Appendix B.

Gates
For gates, two schedule characteristics are generated. They sum up the gate demand per time
interval

AC_GATEt Number of aircraft that require a gate for time interval t.
AC_GATE_SEPt Number of aircraft that require a gate including a separation time of 20

minutes. 10 minutes before and 10 minutes after each gate occupation.

Baggage Loaders
Since baggage loaders only have fixed tasks that are assigned to them, they will only have
schedule characteristics that count the number of these tasks per time interval.

RAMPt Number of rampsnake tasks per time interval.
POWERt Number of powerstow tasks per time interval.

Towing Equipment
As indicated before, towing tasks have the additional complexity that these tasks only have to
be planned when there is a shortage of gates. At this point the focus is on assigning towing tasks
without considering whether they actually have to be planned or not. This will already give an
indication of the maximum number of towing tasks that can be scheduled.
Because maintenance and other aircraft reservations are already included in the flight schedule,
and we know that these events will trigger towing tasks that have to be realized, these tasks are
separated from other towing tasks. For these tasks it is known to which region on Schiphol these
aircraft have to be towed, which gives a pretty clear indication of the towing time. For other
towing tasks, the parking location is not known since a gate planning has not been realized.
Therefore two types of towing PUGs will be assigned to every turn that might have a tow. One
for relative short tows to parking positions that are close to Schiphol’s gates, and one for relative
long tows to Schiphol East and parking positions that are further away.
Static tasks are planned after the demand for other tasks of tow equipment is determined.
Therefore these tasks are not described by schedule characteristics but added afterwards.

PBt Number of push backs in time interval.
TOW_MAINt Number of maintenance tow tasks in time interval.
TOW_NORMt Number of normal length tow tasks in time interval. Note that these

tasks do not necessarily have to be planned.
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TOW_EASTt Number of tow tasks to Schiphol East or far parking locations in time
interval. Note that these tasks do not necessarily have to be planned.

These schedule characteristics can be split for the three towing trucks, in which case they will
have a suffix _AM500, _AM210 or _AM110.

Fuel Equipment
Because the resource that is necessary to fulfill a fuel task dependents on the gate allocation, it is
not possible to generate schedule characteristics per equipment type. Tasks are therefore included
using schedule characteristic FUEL without specifying equipment. For freighters, however, the
PUGs differ for hydrant and non-hydrant positions. This is indicated by the suffixes _Hydrant
and _NonHydrant. Because the planned start and end time of static tasks are fixed for fuel
equipment, they can be included as schedule characteristics directly.

FUELt Number of fuel tasks in time bracket.
FUEL_Hydrantt Number of freighter fuel tasks in time bracket in case that aircraft

is located at a Hydrant position.
FUEL_NonHydrantt Number of freighter fuel tasks in time bracket in case that aircraft

is not located at a Hydrant position.
DISP_STATICt Number of dispensers that are reserved for a static task.
KTW_STATICt Number of KTW’s that are reserved for a static task.

4.5 Adding Information From Other Time Brackets

In the previous section it is described how schedule characteristics can be constructed in order
to provide quantitative information that might indicate the resource demand for some ground
equipment in some time bracket. Besides the information about the schedule and resource
planning rules per time bracket, models may improve from knowing what happens around this
time bracket. It makes sense that the resource demand at a certain moment does not only
depend on what happens on that moment, but also on what happens before and after that
moment. This information is added in two forms: time shifted schedule characteristics and
uncertain shift characteristics.

4.5.1 Time Shifted Schedule Characteristics

The idea of time shifted schedule characteristics is to add information about the value of schedule
characteristics directly around every time bracket. This is done by summing some schedule
characteristics for the next or previous x minutes relative to the start of a time bracket. These
time shifts are added as schedule characteristic and can be recognized by suffixes _Px and _Nx

for previous and next x minutes respectively.
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_Px Suffix to denote the sum of a schedule characteristic of the previous x
minutes

_Nx Suffix to denote the sum of a schedule characteristic of the next xminutes

4.5.2 Uncertain Shift Characteristics

Figure 4.5 shows the probability distribution of a shiftable task. This task contributes to the
total workload of the time intervals it overlaps. However, the probability that it will start at
its earliest start depends on the resource demand in the time intervals between its earliest end-
and latest end times. If the demand is high in these time intervals, the task will more likely be
started at its earliest start in order to decrease the demand in these time intervals.
The uncertain shift characteristics try to add information to account for this effect. The idea is to
add a schedule characteristic for the time intervals at the left end of this probability distribution
that indicate the resource demand at the right end of the distribution and vice versa. These
characteristics can be recognized by the _UNCSHIFT and are applied to all schedule characteristics
with some uncertain part.

_UNCSHIFT Suffix of an uncertain schedule characteristic that sums up the
value of this characteristic on complementary time brackets of the
uncertain parts of task probability distributions that cover the
current time bracket.

4.6 Machine Learning Models

Machine Learning (ML) models are used in order to find relations between a flight schedule and
the demand for ground equipment [1]. These models can be trained on available data such that
they can be applied on new schedules for which this demand is not yet known. The concept is
to find a function that takes the schedule characteristics per 5 minute time bracket as an input
and returns an estimated demand per resource for that time bracket.
This section first describes the necessary models that have to be trained in order to give an indi-
cation of the resource demand for critical resources. After that the Gradient Boosting algorithm
is briefly explained.

4.6.1 Model per Critical Resource

As defined in the scope of this thesis (section 3.2), the resource demand for towing trucks, fuel
trucks and baggage loaders has to be estimated. For each type of equipment a separate model is
built. Since all resources follow different planning rules they require a slightly different approach.
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Baggage Loaders

Both rampsnakes and powerstows do not have shiftable PUGs that assign planned tasks to them.
Therefore the demand for these resources can be simply calculated when the GS-TP planning
rules are implemented. The demand for these resources therefore does not have to be estimated
by a machine learning model.

Towing Trucks

AM110 towing truck is only used for push backs. Since every departing aircraft needs a push
back, and these tasks can not be shifted, the resource demand for truck type AM110 can simply
be calculated just like the the demand for baggage loaders. The type AM210 and AM500 trucks,
however, are also planned to carry out towing tasks. The demand for these resources for the
uncertain towing tasks will be estimated by a ML model. Also the demand for overflow tows, as
introduced in section 4.2.3, will be estimated by a ML model. Finally, the certain demand for
push backs and the result of the ML models regarding the demand for tows and overflow tows
will be combined. After that the demand for static tasks is added according to the static task
planning rules (see section 4.2.3).

Fuel Trucks

Both KTWs and dispensers do not have travel time included in their PUGs. This travel time is
added separately according to a travel time matrix and depends on the gate allocation. For these
resources, two approaches are used to model the total resource demand. The first approach is to
build a ML model that tries to estimate the total demand for these resources. An alternative is
to separate the travel time part of the resource demand from the demand for actually performing
fuel tasks and to build two separate ML models per resource to estimate these separately. This
last model is referred to as the “splitted” approach.

4.6.2 Gradient Boosting

Gradient Boosting is a decision tree based machine learning technique that has been developed
since the late nineties [14–16]. Boosting refers to the fact that multiple weak learning models
are combined to form a strong well performing model. It uses gradient descent to iteratively
build decision trees that try to predict the error of its preceding tree. Figure 4.7 shows how
these trees are built iteratively for a regression problem. In this figure, tree 1 shows a rather
bad estimation of the ground truth. The errors of tree 1 are estimated by tree 2. Tree 3, on its
turn, tries to estimate the errors of tree 2. It might be clear that this technique allows to find
non-linear relations.
Figure 4.8 shows an example of a regression tree that uses schedule characteristics AC_AMS and
TOW_NORM_AM500 to estimate the demand for towing truck AM500. It contains 3 leave nodes
with corresponding weight vector w = [0, 3, 6]. This tree on itself is probably bad in estimating
the demand but the idea of Gradient Boosting is that another tree is added to the model that
tries to account for the errors that this initial tree makes.
The main advantages of Gradient Boosting are that it can be used on heterogeneous data, it
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Figure 4.7: Gradient Boosting, trees are built sequentially. Each tree tries to predict the
error of its predecessor [17].

Figure 4.8: Example of a decision tree using schedule characteristics as an input.

supports different loss functions - as long as the the first and second derivative can be calculated
- and it automatically detects non-linear feature interactions. The biggest disadvantage is that
it cannot extrapolate like for example linear regression can [17].
A powerful implementation of this algorithm, XGBoost, is developed by the University of Wash-
ington [2]. It has proven to have a great performance in the well known Kaggle data science
competitions [18]. XGBoost excels in the usage of computational resources by using efficient
parallelization. It also uses a regularized objective function in order to control overfitting, the
phenomenon that models tend to find relations from noise in the training data.
The XGBoost paper by Chen and Guestrin [2] describes the regularized objective of model φ,
with predictor ŷ of dependent variable y, with n observations, and K sequentially added decision
trees by

L(φ) =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (4.1)

where l is a differentiable convex loss function that measures how well ŷ predicts y and the second
term is a regularization to control the complexity of the k trees that are used in the model. The
complexity of each tree is penalized using

Ω(f) = γT +
1

2
λ‖w‖2 (4.2)

where f is a decision tree, T is the number of leaves of this tree with corresponding weight vector
w. Hyper parameters γ and λ are used to tweak the regularization.
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Given the performance of a current model, a new tree is added greedily to improve (4.1). Adding
a tree at the t-th iteration will change this objective by

L(t) =

n∑
i=1

l(yi, ŷi + ft(xi)) + Ω(ft)

Here, ft is used to denote the tree of iteration t as well as a function ft(x) that outputs the
leave weight of observation x. Chen and Guestrin [2] explain exact and approximate algorithms
to find a new best split and to assign weights to leaves of newly generated trees by only using
hyper parameter settings and the objective’s gradient and hessian functions

gi =
∂

∂ŷ(t−1)

[
l(yi, ŷ

(t−1))
]

hi =
∂2

∂(ŷ(t−1))2

[
l(yi, ŷ

(t−1))
] (4.3)

This means that every objective function - in data science also referred to as “loss” function -
can be used by Gradient Boosting algorithm as long as the gradient and hessian (4.3) can be
calculated. In this thesis the standard Mean Squared Error (MSE) is used as loss function.
This objective aims to minimize the error between ground truth y and estimator ŷ and punishes
harder for large errors. This makes sense since a large error in estimating the resource demand
can result in a wrong feedback signal to the network capacity schedulers.

4.7 Available Data and Data Source

The data that is used to train the models is exported from GS-TP planning administration tool.
This system provides access to the results of the Base Rolling Planning (BRP) that were used in
the Operational Planning Cycle (OPC) from the fifth 4 week period of 2017. Before this period
the results of the BRP where not stored systematically but were provided in separate excel sheets
and figures. This has some inconvenient consequences from which follows that the data of these
BRPs is useless:

1. Only the total resource demand is available. Nowadays every task that is assigned to a
resource is known. This is necessary for validation of the applied PUGs and separating the
uncertain part of the resource demand. For example: tow tasks need to be separated from
push backs in order to be able to build a model to estimate the demand for resources to
carry out these tasks.

2. Flight schedules are stored in separate Freezes. This means that the distribution of flights
over the fleet lines is not fixed an thus may differ from the distribution of flights that is
used by GS-TP to calculate the resource demand.

At the start of this project the Freezes of periods 5 to 10 of 2017 were available. These Freezes
will be referred to as F17P05 - F17P10. In total these Freezes contain 124 weeks, corresponding
to around 250 thousand time brackets of 5 minutes for which the resource demand is calculated.
This should be enough data to train the models.
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4.8 Validation and Evaluation Methods

In order to develop a model and verify whether it provides the desired results, evaluation metrics
and a method of validation have to be defined. Evaluation metrics are used to compare models
and quantify its performance. A validation is used to give an indication of the performance of
the models when they are put into practice.

4.8.1 Evaluation Metrics

The evaluation of the models is done by using two evaluation metrics, the Mean Absolute Per-
centage Error (MAPE) and the Root Mean Squared Error (RMSE) which are defined by

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yiȳ

∣∣∣∣ (4.4)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4.5)

where yi and ŷi are the actual value and forecast value of observation i and n is the number of
observations. The regular definition of the MAPE says that yi has te be used in the denominator
of (4.4). Because this value might be zero or close to zero the average ȳ is used instead.
The RMSE metric is directly related to the MSE loss function that is used to train the models.
It therefore is a direct reflection of the model’s performance. The MAPE is included to provide
another relative performance metric.
Furthermore, since schedules are rejected if the resource demand exceeds its capacity, there
is a special interest in the performance at the peaks of the demand. This performance can
be evaluated by applying the metrics defined by (4.4) and (4.5) to all observations that have a
resource demand that is higher than a certain percentile. In this study both metrics are evaluated
from the 95-th and 99-th percentile resulting in the additional measures MAPE95, MAPE99,
RMSE95 and RMSE99. An additional measure that accounts for peak performance but does
not cancel out the performance on other observations is the Weighted Root Mean Squared Error
defined by

WRMSE =

√√√√ 1

n

n∑
i=1

[
(ŷi − yi)

yi
ȳ

]2

(4.6)

4.8.2 Validation Method

The classical way to validate machine learning models is to split the data in three sets [1]. A
training set is used to train the models by providing them information on the input (schedule
characteristics) and the desired output (resource demand). These models can then be validated
using a validation set. This provides information about how well the models perform on data
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that it has not seen before. This process allows to choose the right model and to adjust model
parameters in order to improve its performance. When a final model is chosen, its expected
performance in real life can be tested using a test set. This part of the data is not used to train
the model nor to make modeling decisions. Figure 4.9 shows the iterative process of training and
validating in order to find the right model, after which the performance of this model is verified
using the test set.

Figure 4.9: Testing and validation of machine learning models.

Because the data are time dependent, it makes sense to split the data in a way obeying this
time dependency. Let’s suppose that F17P10 has not been calculated yet by GS-TP. This Freeze
will function as test Freeze. The other Freezes, F17P05 - F17P09, will be used for testing and
training. There will always be one single test Freeze where a model is tested that has been
trained on Freezes of earlier periods. This is a time-dependent form of cross-validation [1].
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Results

The results of the Gradient Boosting models as described in chapter 4 are presented in this
chapter. The goal of this chapter is only to present the results, a discussion can be found in
chapter 6. The results are presented per resource or per type of task that a resource could be
assigned to. The performance of the models is given in table 5.1 according to the performance
metrics as defined in section 4.8. Furthermore, a visual result is shown that is representative
for the performance of each model on an average day. In these figures the current capacity is
shown by a horizontal red line. Finally, some examples are given where the models show very
poor performance.
As explained in section 4.8, all results are obtained from applying the models on the data of test
Freeze F17P10, i.e. the 10-th four weekly Base Rolling Planning of 2017, while the models are
trained and validated on F17P05 - F17P09.

Tow AM500 Tow AM210 Overflow AM210 KTW KTW Split DISP DISP Split
mape 25.019 59.714 121.739 17.603 17.945 11.102 11.846

mape95 13.320 28.493 58.206 16.652 15.987 5.397 5.146
mape99 16.057 29.007 71.339 19.130 17.472 3.885 3.245

rmse 0.541 0.591 0.264 1.148 1.245 1.663 1.856
rmse95 0.993 1.250 0.870 2.197 1.738 1.613 1.543
rmse99 1.410 1.521 1.622 2.576 1.946 1.302 1.124
wrmse 1.631 1.937 5.334 2.036 2.053 2.361 2.457

Table 5.1: Results of Gradient Boosting models.

5.1 Visualization of Estimated Demand

Towing Equipment

Towing equipment can be assigned to multiple tasks that all require a different approach of
modeling (section 4.2.3). Figures 5.1 and 5.2 show the estimation of the demand for towing
tasks for towing trucks AM500 and AM210 respectively. Figure 5.3 shows the demand for
overflow towing tasks for towing truck AM210. The demand for overflow towing tasks for the
AM500 towing truck is very sparse and therefore it is almost impossible to model this demand
using a machine learning approach.
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Figure 5.1: Result of Gradient Boosting model (AM500_EST_TOW) that estimates the
demand for towing tasks planned to be carried out by an AM500 towing truck as calculated
by GS (DEM_TOW_AM500).

Figure 5.2: Result of Gradient Boosting model (AM210_EST_TOW) that estimates the
demand for towing tasks planned to be carried out by an AM210 towing truck as calculated
by GS (DEM_TOW_AM210).

Figure 5.3: Result of Gradient Boosting model (AM210_EST_OVERFLOW) that estimates the
demand for overflow towing tasks planned to be carried out by an AM210 towing truck as
calculated by GS (DEM_OVERFLOW_AM210).
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These towing tasks form the biggest part of uncertainty in the demand for these resources. The
demand for push backs or static tasks for these resources as determined by GS does not require
any machine learning techniques in order to achieve a good estimation. These tasks can relatively
easily be calculated and the predictive error for these components should therefore be zero if
the PUGs are implemented correctly. Figures 5.4 and 5.5 show the results of the estimation of
the total demand for the AM500 and AM210 equipment. These figures also show the calculated
demand for push backs and static tasks, which are almost certainly included in the total demand
of GS.

Figure 5.4: Total demand for AM500 towing truck equipment according to GS (DEM_AM500)
with the estimation of this total demand (AM500_TOT_EST) and the part of the total
estimation that is almost certainly included in the GS planning (AM500_PB+STATIC).

Figure 5.5: Total demand for AM210 towing truck equipment according to GS (DEM_AM210)
with the estimation of this total demand (AM210_TOT_EST) and the part of the total
estimation that is almost certainly included in the GS planning (AM210_PB+STATIC).

The total demand for towing equipment AM110 is much easier to determine since this equipment
only carries out push back tasks. Figure 5.6 shows the demand for this resource as calculated
by GS and as estimated by the methods as described in this study. It is clear that exactly the
same demand should be found if the business rules that are used coincide.
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Figure 5.6: Result of calculating the demand for tow truck AM110 (AM110_PB) compared to
the demand as calculated by GS (DEM_AM110). These two should be exactly the same when
the PUGs are implemented correctly.

Fuel Equipment

The demand for fuel equipment is estimated by two approaches as described in section 4.6.1.
The result of the models that try to estimate the sum of the demand for both fuel tasks and
their travel time is shown in figures 5.7 and 5.9. The results of the models that estimated these
two components separately and summed the results for the same day are shown in figure 5.8 and
5.10.

Figure 5.7: Total demand for Dispensers according to GS (DEM_DISP) with estimation
(DISP_EST).

Figure 5.8: Total demand for Dispensers according to GS (DEM_DISP) with estimation using
the splitted method (DISP_EST_SPLIT).
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Figure 5.9: Total demand for KTWs according to GS (DEM_KTW) with estimation (KTW_EST).

Figure 5.10: Total demand for Dispensers according to GS (DEM_KTW) with estimation
using the splitted method (KTW_EST_SPLIT).

Baggage Loaders

As described in section 4.2.2, baggage loading equipment (rampsnakes and powerstows) will
always have tasks assigned to them that cannot be shifted. These tasks always have to be
planned, unlike towing tasks that only have to be planned when there are not enough gates
available. Therefore, the demand for these resources can be exactly determined when the correct
business rules are used, just like the demand for tow truck AM110 in figure 5.6.
Figures of the demand for rampsnakes and powerstows are not included since it will only show
that the demand according to GS-TP and as estimated by the implementations of PUGs as
described in this thesis will be exactly the same.

Examples of Poor Performance

The following figures (5.11, 5.12, 5.13, 5.14, 5.15 and 5.16) contain some examples of days where
the obtained models show poor performance.
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Figure 5.11: Total demand for AM500 towing truck equipment according to GS
(DEM_AM500) with an overestimation of this total demand (AM500_TOT_EST) and the part of
the total estimation that is almost certainly included in the GS planning (AM500_PB+STATIC).

Figure 5.12: Total demand for AM500 towing truck equipment according to GS
(DEM_AM500) with an underestimation of this total demand (AM500_TOT_EST) and the part of
the total estimation that is almost certainly included in the GS planning (AM500_PB+STATIC).

Figure 5.13: Total demand for Dispensers according to GS (DEM_DISP) with overestimation
(DISP_EST).
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Figure 5.14: Total demand for Dispensers according to GS (DEM_DISP) with overestimation
using the splitted method (DISP_EST_SPLIT).

Figure 5.15: Total demand for KTWs according to GS (DEM_KTW) with underestimation
(KTW_EST).

Figure 5.16: Total demand for Dispensers according to GS (DEM_KTW) with underestimation
using the splitted method (KTW_EST_SPLIT).
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5.2 Lists of Generated Tasks

The plots that are shown in the previous section can be used to quickly visualize the estimated
demand according to the gradient boosting models. This can be used to find moments for which
the demand for ground resources might exceed its capacity. For example, figure 5.17 is a copy
of figure 5.5 and shows that the machine learning models indicate a capacity violation of the
AM210 equipment.

Figure 5.17: Total demand for AM210 towing truck equipment according to GS
(DEM_AM210) with the estimation of this total demand (AM210_TOT_EST) and the part of the
total estimation that is almost certainly included in the GS planning (AM210_PB+STATIC).

Table 5.2 lists all tasks that are generated for the time interval where the demand for AM210
exceeds its capacity. Note that all tasks are listed that could possibly be performed. For push
backs it is known that they always have to be carried out. For tows, both a task for a tow to
Schiphol East as well as a normal tow task are included. Only one of these has to be carried
out when there are not enough gates available. In figure 5.17 it can be seen that the model
AM210_TOT_EST expects that these tasks have to be carried out. In this case, the model is
correct since DEM_AM210 shows indeed a demand that is higher than AM210_PB+STATIC.
Network can use this table in order to take action to decrease the demand for the AM210 for
this time interval. It is clear that a lot of this demand comes from Delta (DL) flights that need
a push back and Transavia (HV) flights that need to be towed from a parking position to a gate.
The only thing KLM can do in this case is to reschedule flight KL0535 that requires a push
back from 10:19 to 10:41. The question is whether KLM wants to reschedule flights when other
airlines are responsible for a resource capacity violation.

Task StartTime EndTime TaskDur FltFrom FltTo ArrDatetime DepDatetime Org Des AC
PB 09:59 10:21 22 KL0422 KL0723 30/08/2017 07:15 30/08/2017 10:15 DMM HAV 332
TOW_EAST 10:12 11:21 58 HV5564 HV6331 29/08/2017 15:35 30/08/2017 12:05 KTW VLC 73H
PB 10:14 10:36 22 DL0072 DL0161 30/08/2017 08:30 30/08/2017 10:30 ATL MSP 333
TOW_NORM 10:15 11:16 50 HV5564 HV6331 29/08/2017 15:35 30/08/2017 12:05 KTW VLC 73H
PB 10:19 10:41 22 KL0724 KL0535 30/08/2017 08:05 30/08/2017 10:35 HAV KGL 332
PB 10:19 10:41 22 DL0134 DL0135 30/08/2017 08:10 30/08/2017 10:35 DTW DTW 332
PB 10:19 10:41 22 DL0160 DL0125 30/08/2017 08:30 30/08/2017 10:35 MSP BOS 333
PB 10:19 10:41 22 DL0178 DL0073 30/08/2017 08:30 30/08/2017 10:35 PDX ATL 333
TOW_EAST 10:22 11:31 58 HV5216 HV5739 29/08/2017 18:55 30/08/2017 12:15 CTA SOF 73W
TOW_NORM 10:25 11:26 50 HV5216 HV5739 29/08/2017 18:55 30/08/2017 12:15 CTA SOF 73W
PB 10:34 10:56 22 DL0142 DL0049 30/08/2017 08:50 30/08/2017 10:50 SEA JFK 333

Table 5.2: Example of a list of tasks for AM210. Some task specific information is specified
as well as some information about the flights corresponding to these tasks.
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Discussion and Conclusions

This chapter contains the discussion (section 6.1) and conclusions (section 6.2) of the results of
Part I that were presented in chapter 5. Furthermore, recommendations for the usage of these
results for KLM and future studies are given in section 6.3.

6.1 Discussion

The discussion of the results to use machine learning models in order to create a shortcut for
extensive resource planning starts with debating the performance of these models in section 6.1.1.
Then section 6.1.2 contains a discussion of the continuity of implementing these models. Finally,
section 6.1.3 discusses how Network’s capacity planners can use the models to react on possible
resource capacity violations.

6.1.1 Model Performance

In general the gradient boosting method seems to be quite able to estimate the demand as
calculated by ground services for average schedules. Though the models show some examples of
bad performance, they can still be used as an indication for the ground research demand.

Towing Equipment

The estimation for towing equipment follows the trends of the demand for tow tasks as calculated
by GS-TP - see figures 5.1 and 5.2 - and most of the time the absolute error is not more than
1 resource. The demand for overflow tasks seems to be harder to estimate (figure 5.3). This is
probably caused by the sparsity of this demand but, because of this sparsity, it might not be a
big problem that the estimation of this demand is not that good since there is only a demand of
1 or 2 resources for overflow towing every once in a while.
Figures 5.4, 5.5 and 5.6 show that the total demand for towing equipment can be quite well
estimated by gradient boosting models. Figure 5.5 would have correctly alarmed the Network
department that more resources are needed than available according to GS-TP planning process
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after which table 5.2 could be used to explore possible schedule changes in order to decrease this
demand. A helpful aspect of these graphs is that the demand of which Network can be almost
sure that it will be planned by GS-TP plannings process (green line) is shown. From figure 5.12
it becomes clear that sometime the model is that far off that a demand peak is not shown by the
estimation at all. This is a flaw of the model and such differences will question the credibility of
these models.

Fuel Equipment

For estimating the demand for fuel equipment, both the regular and splitted approach show a
higher absolute error than the tow equipment models (table 5.1). Figures 5.7 and 5.8 show that
the splitted approach seems to overestimate the demand, while the model that estimates the
total demand for dispensers directly tends to underestimate at some points. For KTWs (figures
5.9 and 5.10) this effect is much smaller. Though the demand seems to be higher according to
the splitted method, both models underestimate the first two peaks and overestimate the third
peak.
Figures 5.13 and 5.14 show an example of a day where both the splitted and regular model
overestimate the demand for dispensers by a large amount. A negative consequence could be
that Network reschedules flights according to this estimation while initially there was no resource
capacity problem at all. Figures 5.15 and 5.16 show a regular occurring underestimation of the
KTW models. This means that if Network decides to consult the gradient boosting models, they
might conclude that there is no resource capacity problem at all.
The demand for fuel resources seems to be harder to predict than the demand for tow trucks. The
reason for this might be that the demand for fuel trucks is more dependent of a gate planning
and the model does not take a gate planning as input. Also, the demand for fuel resources
considers travel times according to a travel time matrix. Though this is a more realistic method
to plan these resources, it is harder for the machine learning models to estimate its result.

Baggage Loaders

For rampsnakes and powerstows the demand as calculated by GS-TP can be precisely recalculated
since these resources are planned with only fixed tasks. So, if the business rules are implemented
correctly, Network’s capacity planners will know exactly what the planned demand for these
resources will be and can therefore adequately respond to a capacity violation.

6.1.2 Continuity of the Implementation of ML Models

Although the machine learning models seem to perform well enough to be used by the Network
department as an indication for the ground resource demand, it might be far off after changes
in GS-TP’s planning process or infrastructural changes on Schiphol. Therefore, the continuity
of the implementation of the ML models is discussed in this section.
When GS-TP planning rules (PUGs) change, the implementation of these rules that is used
for the machine learning models has to be updated. It is expected that small changes in the
planning process, like a change in task duration or planned start time, will not have that much of
an influence on the performance since this information is included in the models. More structural
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changes in the planning process, like changes in the gate planning tool, will most likely cause
the models to show bad performance. This information is not used as an input for the model
and therefore is ingrained in the decisions that the gradient boosting algorithms make.
For infrastructural changes on Schiphol the same problem occurs. This information is not given
to the gradient boosting algorithm simply because this information is the same for all available
data. If this information does not differ for some data sample points, it cannot be used to
distinguish between the outcome of these data points. If at some point, for example, more gates
become available, the models will be unaware.
There are two solutions to the problems of structural process changes: the models can be trained
on example data that contains structural changes or the models have to be retrained every time a
structural process change occurs. The first one should produce models that are robust for process
changes. However, these process changes do not occur regularly and there will not be enough
data available in order to train reliable models. Therefore the latter solution is favourable.

6.1.3 How can Network’s capacity planners be advised to reschedule?

Most of Part I of this thesis is focused on answering research question 1: whether it is possible
to estimate the resource demand as calculated by GS-TP. Research question 2, that asks how
Network’s capacity planners can be advised to alter the flight schedule if it is likely to be oper-
ationally infeasible, has been less discussed.
In the current process, when the feedback of GS-TP shows a capacity issue, the capacity planners
reschedule the flights they think cause the problem. They are aware of what resources are used
to handle each aircraft type, but the amount of rescheduling of the flights that are flown by
these types is just a good guess. The machine learning models that estimate the total resource
demand for the most critical resources can already show an indication of the effect of these good
guesses. The planners can use the model’s output in an iterative process of altering the flight
schedule and analyzing the effect on the resource demand.
Furthermore, the process of creating the schedule characteristics that form the input for the ma-
chine learning models (figure 4.1) require that GS-TP’s business rules are assigned to turnarounds
in the schedule. The result of this assignment is an extensive list of (possible) tasks that are
planned by GS-TP (see table 5.2 for an example of such a list). These lists can guide the capacity
planners towards a good rescheduling decision. Therefore, it can be said that the methods used
to answer research question 1 already provides a solution for research question 2.

Local Search Solver

Attempts to build a local search solver that reschedules flights to make a schedule operationally
feasible, with the objective of rescheduling the least amount of flights possible, have been made.
This is a tricky approach since the gradient boosting methods probably do not perform well
enough to be used as a method to evaluate each candidate solution. Furthermore, there is a lot
of information regarding Network scheduling that is very hard to include in such a solver. For
example, flights to some specific airport might never be rescheduled because a lot of transfer
possibilities might be lost. After conversations with KLM’s Network schedulers it became clear
that a local search solver will not be able to outperform nor overrule the schedulers decision. It
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might however be possible to use such a model to support the schedule planners in their decision
making.

6.2 Conclusion

Part I of this thesis focuses on answering the following resource questions:

1. What is the relation between a flight schedule and the resource demand for the most critical
ground resources as calculated by Ground Services - Tactical Planning and is it possible
to quickly verify whether a flight schedule will be accepted after an operational check?

2. Given that a schedule will not be accepted by Ground Services - Tactical Planning, how
can the Network capacity planners be advised to alter the schedule such that it increases
the probability of acceptation?

It has been shown that the planning rules (PUGs), that GS-TP uses to schedule their resources,
can be used to give a quick indication of the possible tasks for ground equipment for a new
schedule without the realization of a gate planning.
The implementation of these PUGs and other characteristics of the flight schedule can then be
used to quantify a flight schedule. This quantification, in the form of “schedule characteristics”
can be used as an input for machine learning methods that are proven to be able to find the
relation between a flight schedule and the resource demand as calculated by GS-TP. Therefore
it is possible to quickly give an estimation of whether a schedule is likely to be accepted by
an operational check (research question 1). For some types of tasks it is not even necessary to
rely on machine learning models, the demand as calculated by GS-TP follows directly from the
implementation of the PUGs.
The resource demand estimation can already be used as an advice for Network’s capacity planners
on how to alter a schedule when it is operationally infeasible (research question 2). Furthermore,
the capacity planners have access to more information in the form of the implementation of
PUGs that can generate a list of tasks or possible tasks for every type of equipment (see table
5.2).
Though the machine learning models, as described in Part I of this thesis, do not show a
constant reliable performance for all resource types, they can still be used by planners to give
an indication of the demand. The added value of the machine learning models is that within a
couple of minutes, without creating a gate allocation, an extensive planning process that takes
a full night to fulfill can be estimated. This allows KLM’s Network capacity planners to quickly
evaluate a schedule in terms of operational feasibility and to adequately react on resource capacity
violations.

6.3 Recommendations

It is shown that the resource demand as calculated by Ground Services - Tactical Planning can
be estimated by assigning their business rules to a flight schedule and applying the machine
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learning technique Gradient Boosting. This can be done without the use of a gate allocation
planning tool. It is recommended that KLM’s Network department uses these models in order to
gain insight in the GS-TP planning process and to be able to adequately alter a schedule in the
case of operational feasibility. Although the machine learning models failed to show a consistent
performance for some resources, they still add information at the network scheduling phase.
Some resources do not require a machine learning model since the demand according GS-TP
can easily be calculated with a 100% accuracy if their PUGs are implemented correctly. For
other resources, the same statement holds for a significant part of the total demand. The lists
of ground tasks that can be generated can support Network’s capacity planners in rescheduling
flights. Furthermore, these lists also give insight in the expected number of resources. Therefore
it is recommended to at least implement the GS-TP plannings rules at Networks site. They will
provide a lot of information even without the usage of machine learning models.

Future Studies

In order to improve the machine learning models, future studies can include that of ensemble
methods in order to be able to provide a better estimation of the resource demand as calculated
by GS-TP. An ensemble method takes a weighted vote of predictions of multiple classifiers [19].
In its essence, Gradient Boosting is already an ensemble method, but it can be combined with
other models, that might be better in finding some specific relations, in order to improve its
performance.
Another interesting application of machine learning is the usage of convolutional neural networks.
These models are often used for image recognition and the idea is to move a frame of a couple
of pixels high and a couple of pixels wide over an image [20]. The network learns to recognize
patterns in this frame and gives meaning to the relative ordering of these patterns over the
image. In the same way such a “frame” of a couple of minutes wide can move over the time span
of a day of a flight schedule to find patterns in this frame. These patterns can be combined in
another layer of the network in order to achieve an estimator for ground resource demand.
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Part II
Indication of Ground Resource Demand on the

Day of Operation

Given a flight schedule, what can be said about the demand for ground resources
on the day of operation?

A Simulated Approach





Chapter 7

Methods

This chapter describes the methods that are used in order to model the demand for ground
resources on the day of operation using simulation. Existing flight simulation software OPiuM,
that has been developed by KLM internally, is used to produce multiple possible flight schedules
on the day of operation. These “operational” schedules can be evaluated using the machine
learning (ML) models as described in Part I of this thesis report (figure 7.1). The result will be
an indication of how the demand for ground resources is distributed on the day of operation.

Figure 7.1: OPiuM can be used to simulate multiple “operational” schedules. Applying the
ML models as described in Part I on each “operational” schedule can give a distribution of
the expected resource demand.

Section 7.1 describes the motivation for this simulated approach. The simulation software OPiuM
is explained in section 7.2. Then, section 7.3 dives more in the way OPiuM can be used in
combination with ML models in order to determine resource demand on the day of operation.
Finally, section 7.4 discusses the validation of this method.

7.1 Motivation

The initial question that was asked by GS-TP was whether it was possible to generate an average
“operational” schedule that includes operational uncertainties such as flight delays. This is hard
to achieve since it asks for a deterministic representation of stochastic events. This can be
compared with the average number of eyes of the role of a single die. On average this is 3.5 but
the result will never be observed when a die is rolled.
The simulated approach uses existing simulation - that has already been used and validated
by KLM - to generate multiple of these “operational” schedules. ML models that are built to
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try to achieve the same result as GS-TP’s planning process will then be used to evaluate these
schedules. So instead of generating an average schedule for which GS-TP can determine the
output in the form of resource demand, multiple “operational” schedules are generated that are
evaluated with an estimation of their extensive planning process.
This approach is a combination of existing simulation tooling and the result of Part I : ML models
that can quickly estimate resource demand as calculated by GS-TP. Without the ML models it
would not have been possible to evaluate multiple “operational” schedules in a short amount of
time.

7.2 OPiuM Schedule Simulation

OPiuM is a simulation model that is used to evaluate the performance and robustness of a
proposed flight schedule. It breaks all activities that are carried out by an aircraft in so called
building blocks. The length of each building block is simulated according to a realistic probability
distribution of the duration of the activities corresponding to this building block. If the simulated
duration of an activity causes a schedule disruption - for example, the departure handling finishes
after the succeeding flight is scheduled to depart - this disruption is fixed.

7.2.1 Building Blocks

Building blocks are an interpretation of the sequence of tasks that has to be carried out by a
single aircraft (figure 7.2). These building blocks can now be seen as separate processes of flight
schedule operations.

Figure 7.2: Building blocks are used by OPiuM to separate processes of regarding flight
operation.

Each flight is considered as one single process. All arrival and departure related ground processes
are grouped in arrival and departure handling building blocks. When the duration between
arrival and departure is relatively short, arrival and departure handling processes intertwine. In
those cases, arrival and departure handling is modelled as one single building block.

7.2.2 Process Probability Curves

In order to simulate the duration of each building block, OPiuM uses cumulative probability
curves that are derived from operational data. These so called “OPiuM curves” or “S-curves”
are described in the form of percentiles of the duration of a building block. These curves can be
defined for subgroups of aircraft type, origin, destination and validity periods (table 7.1). Some
examples of the percentiles for these subgroups are shown in table 7.2. For every building block
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in a given flight schedule, the duration of the process corresponding to this building block is
drawn from the probability distribution described by these percentiles.
For each process, the curve that matches the characteristics of the process the most is used. For
example, for a departure handling building block on Schiphol (AMS) of an Airbus 332 that is
about to fly to destination ACC (Kotoka International Airport, Accra, Ghana), the curve with
CurveId 2 from table 7.1 should be used. When a curve that matches on that level of detail
cannot be found a more general curve, like the curve with CurveId 1, is used. Sometimes, a
specific process matches multiple curves. In that case the curve with Time AMS (minutes from
midnight) is used that is closest to the start time of the process.
For arrival and departure handling curves, the Standard Processing Time (SPT) is given. This
indicates the standard duration of these processes. The curves with ids 4 and 5 show that the
duration of similar processes can have slightly different curves for different seasons. CurveIds 4
and 6 show that the direction of a flight might require a different probability distribution.

CurveId ValidFrom ValidTo Block Subtype Origin Destination Station SPT Time AMS
1 26-Mar-17 04-Apr-17 DEP 332 AMS 84
2 26-Mar-17 04-Apr-17 DEP 332 AMS ACC AMS 84
3 26-Mar-17 04-Apr-17 DEP 332 AMS ALA AMS 84
4 30-Oct-16 25-Mar-17 Flight 332 ACC AMS 290
5 26-Mar-17 28-Oct-17 Flight 332 ACC AMS 275
6 29-Oct-17 24-Mar-18 Flight 332 AMS ACC 805

Table 7.1: Examples of subgroups of OPiuM curves that are used to simulate the duration
of building blocks. The percentiles of the duration of the processes for these subgroups are
given in table 7.2.

CurveId P10 P20 P30 P40 P50 P60 P70 P80 P90 P95 P98
1 68 74 77 79 81 84 86 90 96 105 113
2 76 79 81 82 84 85 88 92 100 121 153
3 65 70 74 76 77 78 81 83 87 94 107
4 394 400 405 408 411 414 418 421 428 433 438
5 397 402 405 407 410 413 415 421 425 432 440
6 391 396 401 405 407 410 413 419 425 430 434

Table 7.2: Examples of percentiles of OPiuM curves that are used to simulate the duration
of building blocks. A description of the subgroups on which these curves apply is given in
table 7.1.

Figure 7.3 shows two OPiuM-curves from which the duration of building blocks is drawn. This
is done by randomly selecting a probability p between 0 and 1. The x-value of the intersection
between y = p and the curve is then used as the duration of the process.

7.2.3 Disruption Decision Management

When the duration of flights and ground processes are drawn from an OPiuM-curve, the initial
flight schedule might be disrupted. OPiuM checks the simulated schedule every 15 simulated
minutes for such disruptions. Whenever a disruption occurs, e.g. a departure process has not
been finished before a planned departure, OPiuM can take one of the following actions in order
to solve this disruption:
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Figure 7.3: Example of OPiuM-curves corresponding to (a.) duration of departure process
of an Airbus 332 on Schiphol (AMS) that is about to fly to ACC, and (b.) duration of a
flight operated by an Airbus 332 from AMS to ACC.

• Delay Flight.

• Swap Flights, i.e. two aircraft switch flights they were initially assigned to.

• Break Maintenance, i.e. stop current maintenance in order to make an aircraft available
for operation.

• Cancel Flight.

Each sanction generates some kind of cost. This cost is used by OPiuM to decide what action is
best to take.

7.2.4 Shortcomings of OPiuM

One of the shortcomings of OPiuM is that it currently only can simulate the processes of the
wide and medium body fleet of KLM. The processes corresponding to the narrow body fleet of
KLM Cityhopper and aircraft from other airlines are not included since there has not been an
interest in this performance or because necessary data are not yet available. This means that
only a part of the flight schedule can be simulated. Because KLM makes up a large portion
of the flights on Schiphol airport, and even a larger portion of the turnaround that require the
usage of ground resource from GS, it might be enough to simulate just the processes of KLM
medium and wide body aircraft to give insight in the resource demand on the day of operation.
OPiuM samples processing and flight times for each process independently. Realistically, these
processes might be dependent. For example, because of weather conditions a lot of flights that
originate from the same region might all be delayed by some amount. This independent way of
simulating delays also has the result that resource capacities are not taken into account. If some
ground equipment is delayed it might mean that other aircraft have to wait for this resource and
will therefore be delayed as well.
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7.3 Using OPiuM Simulation to Determine Operational Re-

source Demand

As shown in figure 7.1, OPiuM can be used to simulate a flight schedule such that multiple
possible “operational” schedules arise that can be evaluated by the ML models from Part I. This
can be done using the standard OPiuM curves as described in the previous section (section 7.2).
These curves, however, allow for delays in the ground handling processes. This results in an
analysis of the resource demand on the day of operation while the processes underlying this
demand might be delayed. A conclusion may be that there are enough resources available while
maybe more resources would have been necessary if they would not have been delayed.
Therefore, except from exclusively simulating using the regular OPiuM curves, additional sim-
ulations are run that do not allow ground handling delay. To achieve this result, the Standard
Processing Time (SPT) is used as a maximum for the duration of ground handling processes.
Figure 7.4 a. shows the OPiuM-curve of a departure process without the possibility of having a
processing time higher than the SPT. For flight time (figure 7.4 b.) delays are still allowed and
therefore the regular OPiuM curve can still be used.
When the ML methods are used to estimate the demand of simulated schedules, the models use
information that might not always be available on the day of operation: for the ML models the
delay is known at the moment of resource planning. Realistically this is not the case. A delay
might occur at the moment a resource is already at an aircraft. This effect is hard to analyze
since from an OPiuM output it is not clear what caused the delay.

Figure 7.4: Example of OPiuM-curves corresponding to (a.) duration of departure process
of an Airbus 332 on Schiphol (AMS) that is about to fly to ACC with a maximum departure
process duration of its SPT (= 84), and (b.) duration of a flight operated by an Airbus 332
from AMS to ACC.

7.4 Validation Methods

This section describes the way the simulated approach of retrieving an indication of ground
resource demand on the day of operation can be validated. First the validation of the used
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simulation tool OPiuM is discussed. Then the system that the KLM uses to track the usage of
resources on the day of operation named CHIP is introduced and a retrospective way of GS-TP
planning is described. Finally the method of validating the output of applying ML models on
OPiuM simulations is discussed.

7.4.1 OPiuM Validation

OPiuM is validated for KLM’s punctuality performance. This means that the percentage of
flights that arrive/depart on time, or at least within 15 minutes of its planned arrival/departure,
corresponds to the value of these measures that are observed in operation. This validates that
OPiuM can be used for its purpose: to evaluate the performance and robustness of a proposed
flight schedule. However, this does not directly imply that this simulation tool can be used to
estimate the usage of ground equipment.

7.4.2 CHIP and Ground Equipment Control Room

CHIP is a system that KLM uses to track multiple ground processes. One of its functionalities
is that operators of ground equipment can use a handheld to let this system know that they are
currently starting or ending a certain task. This information is transferred to planners in the
ground resources control room. In this control room decisions are made regarding the usage of
equipment on that moment. CHIP also contains an optimizer to reschedule tasks according to
delays. Because of a lack of faith in this system, this functionality is not used by the planners
in the control room.
Unfortunately, CHIP is still in development and it does not yet track all critical resources that
are included in this thesis. Also the resources and tasks are grouped in a different way than
GS-TP does. For example, CHIP does not distinguish what truck is used for a tow task. It thus
includes all towing trucks, even the ones that are not considered in this thesis.

7.4.3 GS-TP Historic Planning

Ground Services - Tactical Planning has developed planning rules in order to determine the
demand for resources of a schedule that has already been flown. This “Historic Planning” is used
to give an indication of the demand for resources of a realized schedule. These planning rules
take the difference between planned and actual departure and arrival times into account. They
assume that, when a small departure delay occurs, the equipment that was already at the aircraft
is delayed as well. This might not always be the case since the cause of the delay is not known.
For example, a dispenser might be done with its tanking task after which some mechanic finds
out about a technical defect. In that case the flight is delayed but the dispenser can already be
used to fulfill another task. Though the Historic Planning is just a rough indication that is based
on somewhat unrealistic assumptions, it might still be used as a comparison for the simulated
resource demand.
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7.4.4 Validation of the Simulated Approach to Indicate Resource De-
mand on the Day of Operation

In order to draw conclusions from the results of this simulated approach, it has to be validated.
OPiuM is only validated at an aggregate level and the ML models are only validated on planned
schedules (chapter 5). This performance does not tell what the performance will be on simulated
“operational” schedules.
CHIP data can be used to show the usage of ground equipment on the day of operation. Because
this data depends on the human capability and willingness of tracking its own performance, it
is not very reliable for the total resource demand. From a visit at the control room it became
clear that most operators of GS equipment simply forget or deny to register their performance
on their handheld. Despite this knowledge of the quality of the data, it is still the best actual
information. Furthermore, GS-TP historic planning can be used for validation since this resource
demand calculation takes known delays into account.
The Rooted Mean Squared Error is presented as a performance metric to indicate the predictive
value of the the planned resource demand. Furthermore the probability that the actual demand
lies within a certain interval that is generated by the ML models on OPiuM simulation can be
used as an indication for the performance of this simulated approach.

Performance Metric

Though there is no reliable operational data and the “historic” planning of GS-TP might be just
a retrospective indication, they can both be used to be compared with the result of the resource
demand as calculated for simulated schedules. This can point out similar trends and provoke
the discussion about the reliability of this simulated approach and its results.
In order to define performance metrics a distinction has to be made between planned demand
and actual demand:

Planned Demand
GS-TP Planned Resource demand according to GS-TP regular plannings

process.
ML on Planned Resource demand according to Machine Learning models

that try to estimate the regular GS-TP planning process.
Mean of ML on OPiuM Mean of the resource demand according to Machine Learn-

ing models on 30 OPiuM outputs.
Actual Demand
Historic Demand according to GS-TP retrospective resource plan-

ning.
CHIP Demand according to CHIP registration.
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An indication of how well a planned demand (ŷ) can be used as a forecast for the actual demand
(y) can be given by the Rooted Mean Squared Error (7.1).

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (7.1)

Confident Interval of ML on OPiuM Output

It can be tested whether actual demand lies in a confidence interval generated by applying
the ML learning models on multiple OPiuM simulation runs. Assuming that the demand at a
certain 5 minute bracket according ML models that are applied on OPiuM output is normally
distributed, the t-test can be used in order to define its 95%-confidence interval. Let the bounds
of this interval be described by:

x̄ ± t(n−1,α)
s√
n

(7.2)

With n the number of observations, s the standard deviation of the demand and t(n−1,α) the t-
statistic corresponding to a student’s t-distribution with n−1 degrees of freedom and α = 2.5%.
A more empirical interval can be defined by taken the 5-th en 95-th percentiles of the resource
demand as calculated by ML models on OPiuM estimation. With 30 simulations runs, the lower
bound can be set by the 2-nd lowest demand and the upper bound can be given by the 2-nh
highest demand for that interval.
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Results

This chapter presents the results of 30 OPiuM simulation runs on the 9th Base Rolling Planning
of 2017 (F17P09). The goal of this chapter is only to present the results. A discussion can be
found in chapter 9. Simulations are run with full OPiuM curves, as well as with OPiuM curves
that do not allow ground delays. First, visual results are presented in the form of graphs showing
representative sample days. Then, tabular performance metrics - as discussed in section 7.4.4 -
are given.
The graphs on the next pages can contain the following information:

1. GS-TP Planned (blue line) Result of GS-TP resource demand on initial
schedule.

2. GS-TP Historic (green line) Retrospective “Historic” planning of GS-TP.
3. ML on Planned (red line) Result of ML models on the initial planned

schedule.
4. ML on OPiuM (grey lines) Result of ML models on OPiuM simulation

runs. These are shown as multiple grey lines.
5. CHIP (black line) Resource demand according to CHIP.

The graphs can contain a lot of information and therefore may look a bit messy. However, in this
representation, all information is combined into one single graph, which allows comprehensive
analysis.
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Towing Equipment

The results of calculations for the demand for AM110 trucks on OPiuM simulation with and
without simulated ground delay are shown in figures 8.1 and 8.2 respectively. Note that “ML on
Planned” matches the demand as calculated by GS-TP because this resource is only planned by
fixed tasks. Unfortunately, CHIP does not group push back tasks on type of equipment.

Figure 8.1: Result of calculations for PB AM110 tasks on OPiuM simulation using regular
OPiuM-curves.

Figure 8.2: Result of calculations for PB AM110 tasks on OPiuM simulation using
OPiuM-curves without simulated ground delay.
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Figures 8.3 and 8.4 show the calculations of the total demand for push backs for all trucks
combined. This is done to make comparisons with CHIP data possible because CHIP does not
group push back tasks on type of equipment.

Figure 8.3: Result of calculations for the total push back demand for all towing trucks
combined on OPiuM simulation using regular OPiuM-curves.

Figure 8.4: Result of calculations for the total push back demand for all towing trucks
combined on OPiuM simulation using OPiuM-curves without simulated ground delay.

63



Chapter 8 Results

For the total demand for the AM500 towing truck, the results are shown in figures 8.5 and 8.6.
Again, CHIP data could not be included since CHIP data does not allow for filtering on this
equipment type.

Figure 8.5: Result of ML model for the total demand for AM500 towing trucks on OPiuM
simulation using regular OPiuM-curves.

Figure 8.6: Result of ML model for the total demand for AM500 towing trucks on OPiuM
simulation using OPiuM-curves without simulated ground delay.
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Figure 8.7 shows the result of the simulated approach to estimate the demand for towing tasks
for the AM210 truck on the day of operation.

Figure 8.7: Result of ML model for demand for AM210 tow tasks on OPiuM simulation
using regular OPiuM-curves.

Fuel Equipment

Figure 8.8 shows the result of the simulated approach for KTWs. Though this resource is only
used to fuel aircraft that cannot be simulated by OPiuM, it might be still of interest to analyze
the difference between GS-TP planning, retrospective planning and CHIP.

Figure 8.8: Result of ML model for demand for KTW fuel trucks on OPiuM simulation
using regular OPiuM-curves.
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The simulated demand for dispensers is shown in figures 8.9 and 8.10. These are interesting
figures since dispensers are the only resources of which the flights can be simulated by OPiuM,
have a retrospective planning and are available in CHIP on the right level of detail.

Figure 8.9: Result of ML model for demand for dispenser on OPiuM simulation using
regular OPiuM-curves.

Figure 8.10: Result of ML model for demand for dispenser on OPiuM simulation using
OPiuM-curves without simulated ground delay.
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Baggage Loaders

The result of the calculations for the demand for rampsnakes are shown in figures 8.11 and 8.12.
It is not interesting to show the result for powerstows since these resources are used to (un)load
aircraft that cannot be simulated by OPiuM and the usage of these resources is not included in
CHIP.

Figure 8.11: Result of calculation of the demand for rampsnakes on OPiuM simulation
using regular OPiuM-curves.

Figure 8.12: Result of calculation of the demand for rampsnakes on OPiuM simulation
using OPiuM-curves without simulated ground delay.

67



Chapter 8 Results

Tabular Presentation of Performance Metrics

The following tables contain performance metrics as discussed in section 7.4.4. Just like the
visual representation, these tables display the results of 30 OPiuM runs on the 9th Base Rolling
Planning of 2017 (F17P09). The measures are an average of weeks 27 to 34 (3 July to 27 August).
The average over all time points is given, as well as for selected interesting time intervals where
the demand for this resource peaks.
For each time interval and for each resource the Rooted Mean Squared Error (RMSE) for a
planned demand against an actual demand is given. Here we distinguish the following planned
demand:

1. GS-TP Planned Resource demand according to GS-TP regular plannings
process.

2. ML on Planned Resource demand according to Machine Learning models
that try to estimate the regular GS-TP planning process.

3. Mean of ML on OPiuM Mean of the resource demand according to Machine Learn-
ing models on 30 OPiuM outputs.

Depending on the available data, the following actual demand can be used:

1. Historic Demand according to GS-TP retrospective resource plan-
ning.

2. CHIP Demand according to CHIP registration.

Furthermore, the percentage of resources that lies in the statistical confidence interval (between
p5 and p95 ) and the empirical interval (between the 2nd lowest en 2nd highest OPiuM obser-
vation) are presented.

AM110
Full Day Bank2 Bank6

(09:00- 10:00) (20:00 - 22:00)
RMSE Historic Historic Historic

GS-TP Planned 2.510 4.554 5.261
ML on Planned 2.510 4.554 5.261
Mean of ML on OPiuM 1.913 3.075 3.431

% Above P95 32.8 35.8 44.7
% In Between 38.8 20.3 20.9
% Below P5 28.6 43.9 34.3
% Above 2nd Highest 12.7 13.1 18.3
% In Between 77.9 74.7 69.7
% Below 2nd Lowest 9.4 12.2 12.0

Table 8.3: Results of comparison of planning, simulation and actuals for the total demand
for AM110.

68



Chapter 8 Results

AM500
Full Day Bank2 Bank3-4

(09:20- 10:40) (12:00 - 13:30)
RMSE Historic Historic Historic

GS-TP Planned 1.770 3.412 2.301
ML on Planned 1.803 3.130 2.209
Mean of ML on OPiuM 1.656 2.573 1.928

% Above P95 24.4 37.1 35.6
% In Between 17.8 15.5 20.4
% Below P5 57.8 47.4 44.0
% Above 2nd Highest 11.5 17.0 14.4
% In Between 33.6 52.1 65.1
% Below 2nd Lowest 54.9 30.9 20.6

Table 8.4: Results of comparison of planning, simulation and actuals for the total demand
for AM500.

AM210
Full Day Bank1 Bank2-3 Bank3-4 Bank4-5

(04:50 - 07:20) (10:00 - 11:20) (12:30 - 13:30) (14:30 - 15:30)
RMSE Historic Historic Historic Historic Historic

GS-TP Planned 1.492 2.034 2.351 2.084 1.684
ML on Planned 1.342 2.005 2.022 1.728 1.525
Mean of ML on OPiuM 1.356 2.161 1.754 1.715 1.458

% Above P95 29.9 68.7 33.9 20.4 35.0
% In Between 9.4 5.5 12.2 11.3 19.7
% Below P5 60.7 25.8 53.9 68.3 45.3
% Above 2nd Highest 21.5 61.3 18.3 9.5 19.3
% In Between 26.1 18.9 36.3 37.7 46.5
% Below 2nd Lowest 52.4 19.8 45.5 52.7 34.1

Table 8.5: Results of comparison of planning, simulation and actuals for the total demand
for AM210.

KTW
Full Day Bank1-2 Bank3 Bank5

(07:00- 09:30) (10:55 - 12:30) (15:15 - 17:00)
RMSE Historic CHIP Historic CHIP Historic CHIP Historic CHIP

GS-TP Planned 3.277 2.113 4.739 2.534 5.225 2.856 4.791 2.956
ML on Planned 2.727 1.666 3.868 1.843 4.244 1.974 4.298 2.427
Mean of ML on OPiuM 2.771 1.675 3.998 1.870 4.324 1.982 4.342 2.445

Table 8.6: Results of comparison of planning, simulation and actuals for the total demand
for KTW.
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Dispenser
Full Day Bank1.5-2 Bank3-4

(08:00- 10:00) (11:00 - 14:15)
RMSE Historic CHIP Historic CHIP Historic CHIP

GS-TP Planned 6.845 3.256 11.240 3.660 10.522 3.678
ML on Planned 6.842 3.004 11.138 3.091 10.766 3.541
Mean of ML on OPiuM 6.735 2.965 10.608 3.475 10.406 3.098

% Above P95 43.9 47.4 60.7 57.2 49.7 44.6
% In Between 7.6 8.3 5.7 10.0 8.9 11.9
% Below P5 48.5 44.3 33.6 32.8 41.5 43.5
% Above 2nd Highest 30.8 33.0 48.0 37.5 14.4 27.5
% In Between 27.8 32.4 23.6 42.7 65.1 45.5
% Below 2nd Lowest 41.4 34.7 28.4 19.9 20.6 26.9

Table 8.7: Results of comparison of planning, simulation and actuals for the total demand
for Dispenser.
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Chapter 9

Discussion and Conclusions

This chapter contains the discussion (section 9.1) and the conclusions (section 9.2) of the results
of Part II as presented in chapter 8. Furthermore, recommendations for the usage of these
results for KLM and future studies are given in section 9.3.

9.1 Discussion

The results as described in chapter 8 are hard to analyze for a couple of reasons. First, the
reliability of the CHIP data does not allow for good validation. Furthermore, the stochasticity
of operational events and the correlation between delays of aircraft and resources - something
that is not included in OPiuM simulation - might cause outliers that will never be observed after
simulation. Another problem is that the demand for resources according to CHIP can never be
higher than the number of active resources at that moment. This does not allow the analysis of
what would have happened if the number of active resources would have been higher. Despite
the flaws of validation, it it still possible to find some patterns and draw some conclusions.

AM110 Push Backs

As shown in figures 8.1 and 8.2, the simulated demand for push backs with an AM110 does not
differ that much from its planned demand. Though the RMSE as presented in table 8.3 might
appear to be high, this is mostly due to a shift of the peak. In other words: the vertical error in
the graphs - the error that is measured by this RMSE - might be high, it can be seen that the
horizontal error is not that big. The demand on the highest peaks around 09:30 and 21:00 seems
to have a high variance on the day of operation according to the simulations. In general, the
retrospective planning of GS-TP lies in the grey area of simulated demand (80% in the empirical
interval). This indicates that the combination of OPiuM and ML models results in a realistic
resource demand on the day of operation.
The departure delays are visible in the downward slopes after demand peaks. Here the simulated
demand is almost always higher than the planned demand. This makes sense since flights often
delay but almost never depart much earlier. Of course this effect is larger for the simulations that
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allow for ground process delays (figure 8.1) than for simulations where ground process delays
cannot occur (figure 8.2).
The demand in the latest bank (21:00) shows signs of delayed arrivals: most simulated demand
(grey lines) peaks at a later moment than the planned demand (blue line). This is the effect of
the delay that has been built up during the day and that is visible on the last bank since a lot
of aircraft that require a push back from the AM110 are on Schiphol during that bank.
Unfortunately, all that can be discussed is the performance measured using GS-TP’s historical
planning. There is no reliable operational data available on this level of detail to support the
arguments in the discussion of these results. Nevertheless, all effects as discussed above make
sense according to KLM’s strategy and operational performance.

Total Demand for Push Backs

For the total demand for push backs, the same conclusions can be drawn as for the simulated
demand for push backs of AM110, though on this aggregation level CHIP data can be used for
comparison.
In general the CHIP data seems to follow the patterns of both resource planning, retrospective
resource planning and simulated resource demand. Only in the last peak (around 21:00), the
demand according to CHIP is much lower than the planned and simulated demands. Here it
might be the case that flights are canceled and therefore do not require a push back anymore. It
can also be the case that these trucks have been delayed or that they were occupied for towing
tasks and that as a consequence a lot of flights have been delayed. The delay is observed by the
difference of the green/black and blue lines at the downward slope of the last peak. This delay
is more than the simulated delays as shown by the grey lines. These indicates that there were
not enough resources available in order to operate all push backs.

Total Demand for AM500

The total simulated demand is shown in figures 8.5 and 8.6. Here it can be seen that the simulated
demand does not differ that much from the retrospective GS-TP planning. This observations is
substantiated by the performance metrics in table 8.4. One peak has even been correctly pointed
out as a possibility by the simulation runs (around 12:30). On this peak, 65.1% of all historic
planned demand lies in the empirical confidence interval. Of course this does not mean that this
demand has been observed on the day of operation, but it indicates that the simulation runs are
capable of showing similarities to the retrospective planning.

Total Demand for AM210

The total demand for AM210 towing trucks (figure 8.7) shows that planned, retrospectively
planned and simulated demand might differ a lot. This is a direct consequence of the small
number of available AM210 resources and its correlation with gate occupation. Table 8.5 shows
that for Bank2-3 and Bank3-4 the mean of ML models on OPiuM simulations is a better predictor
for historic demand that the initial GS-TP planning.
A recurring observation is that the demand as initially planed by GS-TP for the the peak at 10:30
is almost always higher than the ML estimation, the retrospective planning and the simulated
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demand. This error can also be observed in table 8.5. This might be an indication that the
demand on this peak is planned too high by GS-TP.

Total Demand for KTWs

For KTWs a recurring pattern is observed that both the retrospective demand and the actual
demand according to CHIP are lower than the demand as planned by GS-TP. It is remarkable
that the ML estimation (red line) finds it really hard to estimate the planned demand by GS-TP
(blue line) but it is pretty close to the retrospective planning (green line) and actuals (black
line). Table 8.6 shows that both the ML on Planned and the Mean of ML on OPiuM are better
predictors for the actual demand on the day of operation than the GS-TP on Planned. This
might indicate a flaw in the resource planning by GS-TP. The ML models probably could not
predict the demand as calculated by GS-TP because gate planning is an important feature for
the demand for KTWs. From comparison with actual data it seems like the gate planning of a
planned schedule results in an unrealistic high demand for KTWs.

Total Demand for Dispensers

For the total demand for dispensers (figures 8.9 and 8.10) a same pattern is observable as for
the total demand for KTWs as described in the previous subsection. Though this pattern is
less clear in table 8.7. On the peaks, the GS-TP planning (blue line) shows a lower resource
demand than the retrospective planning (green), actual CHIP data (black), the ML estimation
(red) and the simulated delays (grey). The ML model tends to overestimate the planned demand
for dispensers but it turns out that this result is a bit closer to retrospective planning and actual
CHIP data. This might be an indication that operational delay is underestimated by the GS-TP
planning process for dispensers or that the gate allocation of a planned schedule is too restrictive.

Total Demand for Rampsnakes

Figures 8.11 and 8.12 include the demand for rampsnakes and show that most of the demand
peaks are lower and wider when they are simulated. This is caused by the fact that aircraft
that arrive earlier than scheduled, can already be unloaded by rampsnakes. Also delayed aircraft
might require that a rampsnake remains available depending of the cause of the delay. Only the
peak on the last bank shows that the peak of the simulated demand is higher than originally
planned. This may be caused by flight delay that builds up over the day. In this last bank a
lot of flights arrive delayed, more rampsnakes are demanded in order to handle these aircraft.
Unfortunately, there is no actual data to support these observations.

9.2 Conclusions

Part II of this thesis focused on using a simulated approach to answer the resource question

3. Given a flight schedule, what can be said about the demand for ground resources on the
day of operation?
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It has been shown that in some cases OPiuM simulation output combined with machine learning
models from Part I might be used to give an indication of the demand for ground resources on
the day of operation. The results show that most of the times this combination shows to be
a better estimation of operational demand according to CHIP or GS-TP’s historical planning.
However, because of the incompleteness and questionable quality of the actual data, it is hard
to prove this statement.
Here the machine learning models show their value as a shortcut for the extensive capacity
requirement planning of GS-TP. Without this shortcut, all OPiuM simulation output have to be
evaluated with GS-TP planning.
The discussion from section 9.1 can give GS-TP a better insight in the operational fluctuation
of the resource demand. For example, the demand for resources that are required to handle
medium body aircraft, like AM110 and rampsnakes, is often higher in the last bank because of
delay that has been build up during the day.
For some resource the machine learning models failed to show good performance of estimating
the GS-TP initial resource planning process for a planned schedule. However, it has been shown
that these models were closer to the actual demand on the day of operation. This can indicate
that GS-TP underestimates the influences of operational delays on the gate planning and thus
on the resource demand.

9.3 Recommendations

It is shown that the result of flight delay simulation (OPiuM), in combination with machine
learning models to estimate the resource planning process of GS-TP (Part I of this report),
shows patterns of resource demand that are comparable with the available actual data (CHIP)
and retrospective planning. However, there is not enough data of sufficient quality available in
order to substantiate this statement. Therefore it is recommended to improve the quality of the
data and to make it possible to filter on all resource types and tasks in order to make such an
analysis possible.
Apart from the simulation results, the comparison with actual data and retrospective planning
showed that the initial resource planning of GS-TP at some points consistently differs from what
is observed in operations. This might be caused by a gate planning on a planned schedule that
is too conservative compared to the gate occupation on the day of operation. It is recommended
to study these differences in greater detail in order to achieve a more realistic planned resource
demand.

Future Studies

As indicated above, it is interesting to study the cases where the GS-TP planning consistently
differed from the observed resource demand. Is this indeed caused by the gate allocation of a
planned schedule? It is possible that GS-TP planning shows a worst-case scenario that occurs
when the flight schedule is carried out as it is scheduled. In that case the current planning would
suffice but the high planned demand for such resources should not be an important point of
discussion since this worst-case scenario will almost never be observed.
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Furthermore, the construction OPiuM and machine learning models does not allow for an analysis
of the cause of delays. Do flights delay because the flight time was too long, because there were
not enough resources available or because the processes of these resources were delayed? A more
detailed simulation can answer these questions, show the robustness of a schedule and can clarify
the source of delays.
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Part III
Aircraft Movements on Schiphol as a CTMC

Given a flight schedule, what can be said about the demand for ground resources
on the day of operation?

A Time-Inhomogeneous Continuous Time Markov Chain Approach





Chapter 10

Introduction Part III

In Part III of this thesis it is aimed to build a continuous-time Markov chain (CTMC) model
that can give an indication of the demand for towing equipment on the day of operation and
the robustness of a flight schedule. In contrast to the simulated approach, as described in Part
II, this model will be more conceptual and independent of GS-TP’s detailed plannings process.
The goal is not to give a detailed overview of possible tasks and their delays but to analyze the
general effect of arrival and departure peaks on the resource demand.
This introductory chapter is included to separate Part III from the rest of this thesis because
of its different approach. The motivation for this approach is given in section 10.1. Section 10.2
introduces the methods that are used and section 10.3 sketches the outline of Part III.

10.1 Motivation

In Part II it has been shown that a simulated approach can be used to give an indication of the
resource demand on the day of operation. However, this approach requires multiple simulation
runs in order to provide insight in the distribution of the number of necessary resources and it is
hard to verify that ML models, that are trained on planned flight schedules where no uncertainty
is included, can be applied on disrupted schedules. Though this simulated approach has shown
to give some satisfying results (chapter 8) and provokes some discussions (chapter 9), a model
that include dependencies between processes is desired.
OPiuM simulation does not include resource capacity restrictions and correlation between the
delays of processes. If, for example, some arrival handling processes are delayed, the demand
for towing equipment might increase because gates availability drops. OPiuM does not account
for such dependencies while in a CTMC this can be included since the description of states may
forbid some events to happen.
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10.2 Methods

A continuous-time Markov chain will be described that models arrivals, departures and ground
processes of aircraft on Schiphol. An important assumption that reduces complexity is that
all aircraft are considered to be equal independent of the airline, aircraft type and origin or
destination. Only wide body aircraft are considered (Category 6 - 9).
Schiphol’s bank system (figure 2.2 in section 2.1) results in fluctuating arrival and departure
rates. This time-homogeneity will be tackled by applying a time-discretization of the continuous
process. Methods of iterative state expansion and dynamic state space truncation are introduced
to evaluate the large time-inhomogeneous CTMC.

10.3 Outline

First, a background of continuous-time Markov chains is provided in chapter 11. This overview
includes time-discretization, uniformization, a Markov reward approach, truncation and the
terminology of transition classes. Then, a description of movements of wide body aircraft on
and around Schiphol in the form of a CTMC is given in chapter 12. Finally, chapter 13 presents
an algorithm to solve large state time-inhomogeneous CTMCs.
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Background on Continuous Time

Markov Chains

This chapter describes the theoretical background of Continuous Time Markov Chains (CTMCs).
This is necessary to understand the Schiphol Markov model that will be introduced in chapter 12
and the proposed method to solve time-inhomogeneous CTMCs with a large state space (Chapter
13).
First the basics and core definitions of CTMCs are given in section 11.1. Then the techniques
of time-discretization and uniformization are discussed in sections 11.2 and 11.3 respectively. A
Markov reward approach is described in section 11.4 followed by section 11.6 concerning state
space truncation. Finally, transition classes are explained in section 11.7.

11.1 Basics and Definitions

A continuous-time Markov chain is a memoryless stochastic process with a discrete state space
that is analyzed in continuous time.

Definition 11.1. Continuous-Time Markov Chain (CTMC). A stochastic process {Xt :

t ∈ [0,∞)}, with values in a countable state space S, is called a continuous-time Markov chain
if for any 0 ≤ t1 < t2 < . . . < tn+1 and corresponding set {i1, . . . , in−1 : ik ∈ S, 1 ≤ k ≤ n − 1}
and i, j ∈ S such that P (Xtn = in, Xtn−1

, . . . , X1 = i1) > 0, we have

P (Xtn+1
= j|Xtn = in, Xtn−1

= in−1, . . . , X1 = i1) = P (Xtn+1
= j|Xtn = in) (11.1)

Where (11.1) can be referred to as the Markov property - or memoryless property - which states
that the probability of a transition from a current state only depends on that state and is inde-
pendent of its previous states [21].
A CTMC {Xt} can therefore be described by its countable state space S and transition proba-
bilities

Pt(i, j) := P (Xt = j|X0 = i) ∀i, j ∈ S (11.2)
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Definition 11.2. Time-Homogeneous CTMC. A Markov Chain is time-homogeneous if its
transition probabilities are not dependent of time:

P (Xt+h = j|Xt = i) = P (Xs+h = j|Xs = i) ∀s, t ∈ [0,∞), h > 0 (11.3)

Instead of working with transition probabilities between states for some time length t, it is more
convenient to use transition rates

q(i, j) = lim
h→0

Ph(i, j)

h
j 6= i (11.4)

for all i, j ∈ S, where the total rate out of state i is defined by

q(i) = lim
h→0

1−Ph(i, i)

h
=
∑
j 6=i

q(i, j) (11.5)

and for i ∈ S we have that
q(i, i) = −q(i) (11.6)

These rates form the infinitesimal generator matrix Q. In the time-inhomogeneous case, Qt is
used to indicate the transition rates at time t. The elements of Qt - qt(i, j) for i, j ∈ S - are the
time dependent variants of (11.4) and (11.5).
Continuous-time Markov models are widely studied and have multiple applications such as pop-
ulation models, telecommunications and queueing analysis [22–25]. The limit behaviour of these
models is often analyzed and a typical point of interest is the steady state probability distribution
of its states.

Definition 11.3. Steady State Distribution. The steady state distribution π of a CTMC is
the probability distribution vector that solves the global balance equations.

0 = πQ∑
i∈S

π(i) = 1
(11.7)

It has been shown that under certain circumstances this steady state distribution can be found
in a simple and elegant way by, for example, a simple function described by a model’s transition
rates [26] or a product form of the steady state distributions of its state dimensions [27].
If a model does not meet the requirements for such elegant solutions, steady state analysis can be
done by methods like time-discretization or uniformization. For these techniques it is assumed
that the transition are uniformizable [3]

Definition 11.4. Uniformizable The transition rates of a Markov process are said to be
uniformizable if they can be uniformly bounded by some finite constant B <∞

q(i) =
∑
j 6=i

q(i, j) ≤ B ∀i ∈ S (11.8)
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11.2 Time-Discretization

A uniformizable CTMC, i.e. a Markov chain for which its transition rates satisfy (11.8) for
some B, can be analyzed using time-discretization. The idea of this approach is to partition the
continuous time interval with horizon T into small steps of size 1/B such that one-step state
transitions between these discrete time points can be evaluated by a single one-step transition
matrix. This allows for analysis of state probabilities for the total of T/B time points. Here B
can be taken arbitrarily small as long as it satisfies (11.8). From now on the smallest value of B
for which (11.8) still holds is used and therefore

B = min
i∈S

q(i) = min
i∈S

∑
j 6=i

q(i, j) (11.9)

Note that for this value of B, the expected duration between two transitions is equal to 1/B.
Therefore, evaluating a CTMC at discrete time point with step 1/B seems like a good way to
approximate the process in continuous time.

Figure 11.1: Time discretization with discretization step size B.

Equations 11.4 and 11.5 state that the continuous transition rates are approached when the
discretization step goes to 0. Therefore, a smaller step size will result in a process that is a
better approximation of the original process. Now take the step size for which it is expected that
one transition happens 1/B, and divide this step in β more small steps. This results in step size

0 ≤ h =
1

βB
≤ 1

B
(11.10)

Here, β > 1 can be seen as a discretization factor that is used to decrease the minimum step
size B. Increasing β will result in a smaller discrete step size h and will therefore be a better
approximation of continuous time Markov process with the trade-off that more steps have to be
analyzed. Because it is expected that an event occurs every 1/B time units, there is a relative
high probability that no event occurs for a step of size h.

Figure 11.2: Time discretization with discretization step size h where β = 10 is used.

The CTMC with infinitesimal generator matrix Q, i.e. the matrix that contains the transitions
rates as in (11.4) and (11.5), can then be approached for small time steps by its time-discrete
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approximation with one step transition matrix

Pd = I + hQ (11.11)

where it can happen that after one step of time length h, the state of the system does not
change. The state probability vector πc,t of the original continuous process at time t can now be
iteratively approximated by its discrete variant using

πd,0 = π0

πd,t+h = πd,tPd
(11.12)

This approach can be shown to provide error bounds of order O(h).
As h → 0 this time-discrete process approaches the original CTMC. A lower value of h gives
a better approximation but requires more computational time. An important step in order
to solve the Schiphol CTMC instance is that this approach can be easily extended for time-
inhomogeneous CTMCs by simply replacing the one step transition matrix (11.11) by a time
dependent version

Mt = I + hQt (11.13)

Here Qt denotes the transition rate matrix of transition rates at time t. Mt is then the one step
transion matrix for step size h according to the transition rates at time t.
If Mt changes between two steps of the iterating process (11.12), i.e. for some n, tn = nh and
tn+1 = nh+ h we have that Mtn 6= Mtn+1

, it can be decided to use either one of the two or to
construct some sort of average transition rate. If Mt is not changing continuously it might be
possible to choose h such that transition changes only occur at time points t0 = 0, t1 = h, t2 =

2h, . . . at which the model is evaluated.

11.3 Standard Uniformization

Uniformization was first introduced by Jensen [28] and has been successfully implemented for
performance analysis of time-inhomogeneous CTMCs, e.g. see [4]. It can be seen as a randomized
discretization and is well suited to be applied to time-inhomogeneous systems [29]. Following [3]
we have that, using uniformization rate B from (11.8), the one step probability matrix P can be
defined by

P = I +
1

B
Q (11.14)

with elements

P(i, j) =

q(i, j)/B j 6= i

1−
∑
l 6=i q(i, l)/B j = i

(11.15)

Let πc be the steady state of the CTMC with infinitesimal generator matrix Q and πd the steady
state of the discrete time Markov chain (DTMC) with transition matrix P, derived as in (11.15).
It can be proven that these steady state vectors coincide [3] and thus

πc(i) = πd(i), i ∈ S (11.16)
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Furthermore, the transition matrix of the CTMC Pt(i, j) = P (Xt = j|X0 = i) and one step
transition matrix of the DTMC P are related by

Pt(i, j) =

∞∑
k=0

(tB)
k

k!
e−tBPk(i, j), ∀i, j ∈ S, t > 0 (11.17)

where Pk is the k-th matrix power of P. Note that for k = 0, 1 this process is similar to time
discretization (section 11.2). This equation can be interpreted as follows. The probability of k
transitions in time interval t follows a Poisson distribution with parameter tB, i.e. P (K = k) =
(tB)k

k! e−tB . In the case of k transitions in time interval t, the probability of going from state i to
j follows from the k-th matrix power of one-step transition matrix P. It can therefore be seen
as time discretization with exponentially distributed discretization step (figure 11.3).

Figure 11.3: Time uniformization with randomized discretization step size that follows an
exponential distribution with parameter B.

For numerical evaluation, the sum of (11.17) is often truncated by value K such that

1−
K∑
k=0

(tB)
k

k!
e−tB < ξ (11.18)

In words, if the probability of having more than K steps in time interval t is lower than some
truncation threshold ξ, these steps are not included in an approximation of (11.17).
For time-inhomogeneous uniformization one has to consider the uniformized time dependent
variant of one step transition matrix (11.15) by

Mt(i, j) =

qt(i, j)/B j 6= i

1−
∑
l 6=i qt(i, l)/B j = i

(11.19)

with
qt(i, j) = lim

h→0

P (Xt+h=j|Xt=i)
h , j 6= i, t ≥ 0

qt(i) =
∑
j 6=i qt(i, j) ≤ B, ∀i ∈ S, t ≤ T

(11.20)

Again, following [3] the probability to go from state i in time s to state j in time t with i, j ∈ S
and s ≤ t ≤ Z has proven to be

Ps,t(i, j) =

∞∑
k=0

(t− s)kBk

k!
e(t−s)B

t∫
s

t∫
s

. . .

t∫
s

{t1≤t2≤...≤tk}

Mt1Mt2 . . .Mtk(i, j)dH̄(t1, t2, . . . tk) (11.21)

where dH̄(t1, t2, . . . tk) is the density of a k-dimensional uniform distribution of t1 ≤ t2 ≤ . . . ≤ tk
at [s, t]× [s, t]× . . .× [s, t] ⊂ Rk.
Since (11.21) is numerical impractical it can be an approximated using either
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1. A discrete approximation of the integrals.

2. Monte Carlo sampling of time points t1, . . . tk.

3. Piecewise evaluation of n time-independent intervals (t1, t2), (t2, t3), . . . , (tn−1, tn) for which
the one step transition probabilities (11.19) do not change.

This approach, using uniformization, will not be used in this thesis to achieve any results. The
reason why this section is included is to provide the reader a more complete overview of solution
approaches. Instead, time-discretization will be used that is described in section 11.2. This is a
more direct approach and computationally less expensive though it will be sufficient in order to
evaluate the Schiphol CTMC instance.

11.4 Markov Reward Approach

A common method to keep track of the performance of a CTMC is to define so called reward
vectors [4]. A reward vector r describes the reward for all states in the analysis. It assigns a
reward rate of r(i) to state i. In other words, the dot product 〈r, πt〉 of the reward vector and
the state probability vector at time t results in the expected reward at time t.

E[reward]t = 〈r, πt〉 (11.22)

The expected total reward over time interval [0, T ] for a time-homogeneous CTMC with initial
state i at t = 0 can be described by ∫ T

0

∑
j∈S

Ps(i, j)r(j)ds (11.23)

Where Ps(i, j) is the probability of being in state j at time s while being in state i at time 0 as
defined by (11.2).

11.5 Time-Inhomogeneous Markov Reward Approach

For time-inhomogeneous CTMCs, one has to use the variant of the probability matrix that
accounts for rate changes ∫ T

0

∑
j∈S

P0,s(i, j)r(j)ds (11.24)

Where P0,s is defined as in (11.21). This probability can be approached by uniformization
methods or by discretization in the form of

T/h∑
t=0

h 〈r, πd,t〉 (11.25)

Here πd,t follows from iterative process (11.12).
When there is an interest in a reward for a process that shows big differences between peak
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and off-peak behaviour, it is more interesting to analyze how this reward progresses over time
using (11.22). This progress can be approximation using discrete time state distribution πd,t

that follows from discretization.

11.6 State Space Truncation

Markov models with a large or infinite state space can be numerically hard to analyze. A
particular field that has to deal with such problems is the field of Markov Population Models
(MPM) [25]. A method to approximate such models is to truncate the state space by simply
removing some states from the analysis [4]. What is left is a truncated state space S̄ ⊂ S with
transition rates

q̄(i, j) =


0, i = ζ or j /∈ S̄

q(i, j), j ∈ S̄∑
k/∈S̄ q(i, k), j = ζ

(11.26)

for all i ∈ S̄, where ζ ∈ S̄ might be some absorbing state representing the loss of information of
truncation S̄.
With this static form of truncation, states are eliminated from the analysis in advance. This
elimination causes a bias in both the state probability distribution vector and the reward that
follows from this distribution compared to the non-truncated variant. It has been shown that
this bias can be bounded analytically [4].

11.7 Transition Classes

Transition classes can be used to represent transitions of CTMCs. This is typically done for
models with large or infinite state space such as MPMs [25]. Transition classes are an elegant
way to represent transitions from one state to another since each transition class corresponds
with an event that alters the current state of the system.

Definition 11.5. Transition Class. A transition class η of a CTMC with state space S is a
triple (G, ν, α) with

• Guard G ⊂ S, the set of states on which the transition applies.

• Change vector ν ∈ Z|S|, the effect of the event on the current state.

• Transition rate function α(n, t) that might depend on state n ∈ G and time t.

In other words, transition class η describes that all states n ∈ G will move to state n + ν ∈ S
with rate α(n, t).
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11.8 Algorithmic Description

Algorithm 2 and algorithm 3 in appendix D describe time-homogeneous and time-inhomogeneous
discretization respectively. Both algorithms take a CTMC with state space S and transition class
description η as an input. Algorithm 1 is used to generate a transition matrix from the given
CTMC. The time-inhomogeneous variant uses algorithm 4 to determine when it has to update
the transition rate matrix and corresponding one-step discrete transition matrix..
A pseudo-code of uniformization is not included in this report because this technique is not used
to achieve any results.
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Chapter 12

Schiphol as a Continuous Time

Markov Chain

In this chapter it is described how arrivals, departures and the movement of aircraft at Schiphol
airport can be modeled by a Continuous Time Markov Chain (CTMC). The goal of this approach
is to estimate the expected demand for towing equipment on a day of operation. The motiva-
tion for this approach is given in chapter 10. First, the model is described by a step-by-step
introduction of all events in section 12.1. Section 12.2 contains a description of how transition
rates can be deducted from flight schedule data and OPiuM curves describing the duration of a
towing task.

12.1 Schiphol CTMC Model

In this section it is aimed to build a CTMC that can be used to model aircraft arrivals and
departures at AMS Schiphol Airport in order to estimate the expected demand for towing equip-
ment. The final result, a CTMC with state space S ⊂ Z8

+ and transition rates as described by
(12.2), is hard to grasp without sufficient understanding of the underlying processes. Therefore,
the following subsections build the model step-by-step from scratch and these steps will subse-
quently be introduced. First, the modeling assumptions are summarized in section 12.1.1. Then,
a simple model is initiated that only accounts for aircraft arrivals and departures. This model
will then step-wise be extended with ground handling processes, gate capacity and towing tasks
such that the desired model arises.

12.1.1 Modeling Assumptions

In order to model the movement of aircraft on Schiphol airport as a continuous time Markov
chain, some assumptions have to be made. These assumptions include generalizations of han-
dled aircraft in order to simplify the model as well as the required assumptions of exponential
distributed interarrival and processing times. The following assumptions are made in this model:
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1. Only wide body (WIBO) aircraft (Category 6 - 9) are considered.

2. All aircraft are treated equally, independent of the airline, aircraft type or destination.
This means that no distinction is made in aircraft of airlines that have a contract with GS
and aircraft that do not require any ground handling by GS. Also, every WIBO aircraft
can be placed on every WIBO gate.

3. Assumption 2 has as consequence that every arrived aircraft can be used for each scheduled
departing flight.

4. The arrivals of aircraft follow a Poisson process such that the expected number of arrivals
of this process corresponds with the scheduled number of arrivals.

5. The departures of aircraft follow a Poisson process such that the expected number of
departures of this process corresponds with the scheduled number of departures.

6. The duration of arrival handling, departure handling and aircraft towing are all exponen-
tially distributed.

7. No aircraft are assigned to a gate. Only the total gate occupation is considered.

8. Every tow to or from a parking position is handled equally, i.e. no distinction is made
between different parking locations.

12.1.2 Arrival and Departure Processes

Let’s start with a Schiphol CTMC model in its most simple form: one that only considers arrivals
and departures of aircraft. Assume that the arrivals of aircraft follow a Poisson processes with
time-dependent rates λa(t). The process of departing aircraft can be seen as a Poisson process
of arriving departure requests. This means that there is a process that pushes aircraft into the
system (arrivals) and a process that pulls aircraft out of the system (departures). Examples of
such Push-Pull network can be found in literature [30]. Let the rate of the departure (i.e. pull)
process be λd(t).
With this reasoning, Schiphol can be compared with a shop where products (aircraft) are being
processed and customers (departure requests) arrive in order to purchase a product. The number
of aircraft at AMS can therefore be modeled by a time-inhomogeneous Birth-Death process
(figure 12.1) with state space S ⊆ Z+ = {0, 1, 2, . . .} and time dependent transition rates

qt(n, n
′) =

λa(t) (n′ = n+ 1)

λd(t)1{n≥1} (n′ = n− 1)
(12.1)

Here the time dependent rates are used to model the fluctuations of numbers of arrivals and
departures over the day as a result of the bank system (see figure 2.2).
In the representation of transition classes (definition 11.5), the transition rates can be defined
by two classes η1 and η2 corresponding to the events of an arrival and departure respectively

Whenever a departure request arrives while there is no aircraft available, the request will be
discarded and ignored. However, it might be of interest to include pull requests that occur
without any aircraft available to depart.
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Figure 12.1: Birth-Death process of aircraft arrivals and departures at AMS.

Event i Guard Gi Change Vector νi Transition Rate αi(n, t)

arrival 1 n ∈ S +1 λa(t)

departure 2 n ≥ 1 −1 λd(t)

Table 12.1: Transition classes for airport Arrival-Departure (Birth-Death) process.

12.1.3 Arrival and Departure Processes with Departure Queue

An extra dimension can be added to the model in order to create a queue of departure requests
that will be fulfilled as soon as a new aircraft arrives. At this point it is unrealistically assumed
that an aircraft can depart directly after its arrival. Such a process, sketched in figure 12.2, has
a 2 dimensional state space S = {n ∈ Z2

+ : n1 = 0 ∨ n2 = 0} and transition classes described in
table 12.2. Here the change vector ν is represented as a sum of unit vectors ei that have only 0

elements except for the i-th element that is equal to 1. The guard is given as a set of conditions
that has to hold for state n to be contained in the guard of an event. From this point it is
decided to describe the transitions as transition classes instead of the conventional transition
description like in (12.1). The reason is that it is easier to present these transitions and to link
them with the corresponding activity.

Event i Guard Gi Change νi Rate αi(n, t)

arrival, no dep. queue 1 n2 = 0 e1 λa(t)

arrival, dep. queue 2 n2 ≥ 1 −e2 λa(t)

departure, aircraft available 3 n1 ≥ 1 −e1 λd(t)

departure, no aircraft available 4 n1 = 0 e2 λd(t)

Table 12.2: Transition classes for airport Arrival-Departure (Birth-Death) process with
infinite departure demand queue.

12.1.4 Adding a Ground Handling Process

Of course, aircraft require ground handling when they are at an airport. This ground handling
consist of processes like passenger boarding and deboarding, baggage loading and unloading, and
cleaning the interior of the aircraft. These processes can be grouped into arrival and departure
related processes.
An aircraft will enter its arrival handling phase directly after arrival. When this process is
finished, it will enter a possible waiting phase until it is triggered to enter its departure handling
phase. After finishing the departure handling, the aircraft can leave the airport (figure 12.3).
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Figure 12.2: Birth-Death process of aircraft arrivals and departures at AMS including a
queue for departure requests.

Figure 12.3: Phases of a single aircraft in the Arrival-Departure CTMC model including
ground handling. The dashed waiting phase is optional.

A new problem that arises is that it has to be modeled when the departure process starts. This
can be done by shifting the arrivals of departure requests with x time units. The idea is that
it is known x minutes in advance that a departure request will come in and that the departure
handling process can start.
Let S = {n ∈ Z4

+ : n2 = 0 ∨ n4 = 0} be the state space of the CTMC that models this process.
For state n ∈ S, n1 stands for the number of aircraft in the arrival handling phase, n2 for
the number of aircraft in the waiting phase, n3 denotes the number of aircraft in the departure
handling phase, and n4 is used as the departure requests queue that grows when shifted departure
requests come in while there are no aircraft available for departure handling.
Again we have Poisson arrival and departure processes with rates λa(t) and λd(t). If we assume
that the arrival and departing handling processes follow an exponential distribution with rates
µa and µd respectively, we can start describing the transition classes.
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Event i Guard Gi Change νi Rate αi(n, t)

arrival 1 n ∈ S e1 λa(t)

finishing arrival handling, no queue 2 n1 ≥ 1, n4 = 0 e2 − e1 n1µa(t)

finishing arrival handling, with queue 3 n1 ≥ 1, n4 ≥ 1 e3 − e1 − e4 n1µa

dep handing request, aircraft available 4 n2 ≥ 1 e3 − e2 λd(t+ x)

dep handing request, no aircraft available 5 n2 = 0 e4 λd(t+ x)

dep handing end 6 n3 ≥ 1 −e3 n3µd
Table 12.4: Transition classes for airport Arrival-Departure model including ground
handling.

12.1.5 Including Gate Capacity and Towing Tasks

The model in the previous section does not take gate capacity into account. Realistically, there is
a certain capacity of gates Cg. When the total number of aircraft that is modeled to be at a gate
exceeds this number, an aircraft that is in its waiting phase has to be towed away to a parking
location in order to create gate space for aircraft that have to be handled. An aircraft can only
be towed away if it is not currently in its arrival or departure handling phase. Now there is a
probability that an arriving aircraft has to wait before it can go into its arrival handling phase,
simply because there are no gates available and no aircraft can be towed away. This results in
the possible ground phases of an aircraft as in figure 12.4.

Figure 12.4: Phases of a single aircraft in the Arrival-Departure CTMC model including
ground handling and towing possibilities. The dashed phases are optional.

Assuming that towing time is exponentially distributed with some parameter µtow, modeling
this behaviour requires 4 extra state dimensions such that the total state space becomes S ⊆ Z8

+

with

n1 Number of aircraft that is waiting to go into arrival handling phase.
n2 Number of aircraft in arrival handling.
n3 Number of aircraft waiting for a departure handling.
n4 Number of aircraft that is being towed from a gate to a parking position.
n5 Number of aircraft at a parking position.
n6 Number of aircraft towed from a parking position to a gate.
n7 Number of aircraft in departure handling.
n8 Number of departure requests in queue waiting for an available aircraft to go into

departure handling.

93



Chapter 12 Schiphol as a Continuous Time Markov Chain

Here for every state either n3 or n8 is empty. If, by some event, the number of aircraft at a gate
- i.e. (n2 + n3 + n7) - will exceed gate capacity Cg, an aircraft that is waiting for a departure
handling will be towed away to a parking position. It is, however, harder to determine when an
aircraft has to be towed back to the gate. There are two possible methods to model this decision
making:

1. Start towing aircraft back to the gate when the total sum of aircraft that are currently at
a gate or being towed back to a gate - i.e. (n2 + n3 + n6 + n7) - drops below a certain
capacity Ct.

2. Let the moments of starting a tow back to the gate follow a Poisson process with a pa-
rameter that depends on both a certain capacity Ct and the known arrival and departure
rates λa(t) and λd(t) by some function Φ(t).

Here, Φ(t) can be used to model the “urge” of towing aircraft back to the gate since the incoming
arrivals are likely not to satisfy the coming demand for departures. Option 1 is favoured since
it does not add that much extra complexity to the model.
The following events provoke a state change.

Arrival
1. No capacity problem: Arriving aircraft goes into its arrival handling phase.
2. Capacity problem, aircraft available for tow : Arriving aircraft goes into its arrival

handling phase, a waiting aircraft is being towed to parking location.
3. Capacity problem, no aircraft available for tow : Aircraft goes into the queue, waiting

for an available gate.
Finished Arrival Handling
4. No departure requests in queue, no aircraft waiting for arrival handling : Aircraft will

go into waiting phase.
5. No departure requests in queue, some aircraft are waiting for arrival handling : Air-

craft that finishes arrival handling will be towed away immediately in order to create
space for an aircraft that is currently waiting for arrival handling.

6. Departure requests in queue: Aircraft that finishes arrival handling goes straight into
its departure handling phase and queue decreases by one.

(Shifted) Departure Request
7. Aircraft available: Aircraft goes from waiting phase into departure handling.
8. No aircraft available: Departure request is added to request queue.
Finished Tow to Park
9. Aircraft enters parking position.
Finished Tow to Gate
10. No capacity problem, no demand request queue: Aircraft enters waiting phase.
11. No capacity problem, with demand request queue: Aircraft will enter departure phase

and queue decreases by one.
12. Capacity problem: At this point, the tow back to the gate shouldn’t have started

in the first place. However, an aircraft is towed to the gate while there is no gate
available. The only way to solve this problem is to tow the aircraft back to a parking
location.
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Finished Departure Handling
13. No aircraft waiting for arrival handling and no aircraft at park or the number of air-

craft at gate remains above towing back capacity limit : Aircraft that finishes departure
handling leaves.

14. Aircraft waiting for arrival handling : Aircraft that finishes departure handling leaves,
waiting aircraft goes into arrival handling.

15. Aircraft available for tow and total number of aircraft at gate drops below the tow back
capacity limit : Start towing aircraft back to gate.

These events can be modeled by the transition classes in table 12.6 which correspond to the
conventional representation of these transitions as presented in (12.2). Appendix C contains a
description of these events and corresponding transition classes when the capacity of tow trucks
is include. It shows that this capacity limit increases the complexity of the model.

i Guard Gi Change νi Rate αi(n, t)

1 n2 + n3 + n7 < Cg e2 λa(t)

2 n2 + n3 + n7 = Cg, n3 ≥ 1 e2 − e3 + e4 λa(t)

3 n2 + n7 = Cg, n3 = 0 e1 λa(t)

4 n2 ≥ 1, n1 = 0, n8 = 0 e3 − e2 n2µa

5 n2 ≥ 1, n1 ≥ 1, n8 = 0 e4 − e1 n2µa

6 n2 ≥ 1, n8 ≥ 1 e7 − e2 − e8 n2µa

7 n3 ≥ 1 e7 − e3 λd(t+ x)

8 n3 = 0 e8 λd(t+ x)

9 n4 ≥ 1 e5 − e4 n4µtow

10 n2 + n3 + n7 < Cg, n6 ≥ 1, n8 = 0 e3 − e6 n6µtow

11 n2 + n3 + n7 < Cg, n6 ≥ 1, n8 ≥ 1 e7 − e6 − e8 n6µtow

12 n2 + n3 + n7 = Cg, n6 ≥ 1 e4 − e6 n6µtow

13 n7 ≥ 1, n1 = 0, n5 = 0 ∨ n2 + n3 + n6 + n7 > Ct −e7 n7µd

14 n7 ≥ 1, n1 ≥ 1 e2 − e1 − e7 n7µd

15 n7 ≥ 1, n1 = 0, n5 ≥ 1, n2 + n3 + n6 + n7 ≤ Ct e6 − e5 − e7 n7µd

Table 12.6: Transition classes for airport Arrival-Departure model including ground
handling and towing.
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qt(n,n
′) =



λa(t)1(n2+n3+n7<Cg) (n′ = n+ e2)

λa(t)1(n2+n3+n7=Cg, n3≥1) (n′ = n+ e2 − e3 + e4)

λa(t)1(n2+n7=Cg, n3=1) (n′ = n+ e1)

n2µa1(n2≥1, n1=0, n8=0) (n′ = n+ e3 − e2)

n2µa1(n2≥1, n1≥0, n8=0) (n′ = n+ e4 − e1)

n2µa1(n2≥1, n8≥1) (n′ = n+ e7 − e2)

λd(t)1(n3≥1) (n′ = n+ e7 − e3)

λd(t)1(n3=0) (n′ = n+ e8)

n4µtow1(n4≥1) (n′ = n+ e5 − e4)

n6µtow1(n2+n3+n7<Cg, n6≥1, n8=0) (n′ = n+ e3 − e6)

n6µtow1(n2+n3+n7<Cg, n6≥1, n8≥1) (n′ = n+ e7 − e6 − e8)

n6µtow1(n2+n3+n7=Cg, n6≥1) (n′ = n+ e4 − e6)

n7µd1(n7≥1, n1=0, n5=0∧n2+n3+n6+n7>Ct) (n′ = n− e7)

n7µd1(n7≥1, n1≥1) (n′ = n+ e2 − e1 − e7)

n7µd1(n7≥1, n1=0, n5≥0, n2+n3+n6+n7≤Ct) (n′ = n+ e6 − e5 − e7)

(12.2)

12.1.6 Reward Structure

Reward vectors can be used to analyze the result of an instance of the Schiphol CTMC model
as described in section 12.1. These rewards, that are introduced in section 11.4, can measure
a specific metric over the course of a day that is evaluated by for example time discretization.
In this study there is a specific interest in the number of towing equipment that is necessary in
order to carry out a schedule. In order to evaluate this metric, the following reward vector can
be used.

rnum_tow(n) = n4 + n6 (12.3)

Here the value of the element of the reward vector that corresponds to state n is described.
Taking the dot product of this reward vector and the state probability vector will result in the
expected number of towing trucks that are necessary for towing aircraft to and from gates.

E[num_tow]t =
〈
rnum_tow, πt

〉
(12.4)

Other rewards that might be of interest are the expected number of aircraft in arrival handling,
number of aircraft in departure handling, number of aircraft at a gate waiting for a departure
handling, number of aircraft at a parking location, number of aircraft that have to queue up
because there are no gates available and the number of departure requests in queue that are
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waiting for an aircraft to be available. These rewards are described by the following reward
vectors.

rnum_arr_hand = n2

rnum_dep_hand = n7

rnum_wait_gate = n3

rnum_park = n5

rlen_arr_queue = n1

rlen_dep_request_queue = n8

(12.5)

These rewards can all be evaluated at time t by taking the dot product with the current state
distribution vector as shown in (12.4).

12.2 Retrieving Transition Rates From Data

In order to model the movement of aircraft on Schiphol for a given flight schedule as described
in section 12.1, the transition rates for that instance have to be obtained. These transition rates
can be grouped in arrival streams (aircraft arrival rate and departure request rate) and process
rates (handling process rates and towing rate).

12.2.1 Arrival and Departure Rates

The rates for arriving and departing aircraft can be directly determined from a flight schedule.
Figure 12.5 shows the scheduled arrival and departure pattern of wide body aircraft on an average
day on Schiphol.

Figure 12.5: Example of scheduled arrivals and departures per 5 minute time brackets of
wide body aircraft on one day on Schiphol airport.

The goal of this part of this thesis is not to model aircraft arrival and departure delays. Instead,
there is more interest in the effect of the rate of arriving and departing aircraft on the usage
of gate and tow truck capacity. Therefore, no flight time distributions are generated but the
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scheduled arrivals and departures are translated to arrival and departure rates directly.
Let na(ti) be the number of scheduled arrivals in 5 minute interval i. The arrival rate per minute
for that interval is given by

λa(ti) =
1

5

i+1∑
j=i−2

na(tj)

4
(12.6)

In words: the number of arrivals in an interval are converted to an arrival rate that spans over
the 5 minute interval in which the arrivals take place, the previous 5 minute interval and the
following two 5 minute intervals. The arrival rate corresponding to these arrivals is distributed
uniformly over these four 5 minute intervals (divide number of arrivals by the four intervals). To
achieve the rate per minute per interval, the sum of all the rates that overlap this interval has
to be multiplied by 1

5 .
The influence on the rates of each arrival and departure are spread out over multiple intervals
in order to model the fact that an aircraft mostly arrives somewhere close to its scheduled time.
It is not stated that this accounts for the expected delay of flights since that is not the goal of
this study.
The departure rates can be obtained in a similar way. However, as stated in section 12.1.4, this
rate has to be shifted with the expected duration of the departure handling phase such that it
can be used as the rate at which aircraft have to enter departure handling. For this instance the
expected duration of the departure handling is 85 minutes.

Figure 12.6: Arrival and departure rates corresponding to the arrivals and departure of
figure 12.5 obtained by applying (12.6)

Figure 12.6 shows the arrival and departure rates as a result of applying (12.6) on the arrivals
and departures in figure 12.5. The variance of these rates is pretty high and each transition
rate change will result in updating a large transition matrix. Therefore the average rate per 15
minutes is used in order to smooth curve and decrease the number of transition rate changes.
Figures 12.7 and 12.8 show the effects of such a smoothening.

12.2.2 Rates of Ground Processes

The rates of the arrival handling process, the departure handling process and the towing process
can be deducted from operational data. This deduction is done regularly in order to generate
input for OPiuM (section 7.2). Therefore the rates that will be used for this CTMC are based
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Figure 12.7: Arrival rate and its 15 minute average.

Figure 12.8: Shifted departure rate and its 15 minute average.

on the already known OPiuM curves.
In continuous-time Markov modeling, processing times are assumed to be exponentially dis-
tributed. It is clear that realistically the towing time of a wide body aircraft from a gate to a
parking position does not follow an exponentially distribution. Figure 12.9 (a.) shows the fit
of an exponential distribution with parameter 80. However, an Erlang distribution with shape
parameter 30 and rate 2.45 shows a very good fit (figure 12.9 (b.)). This result can be achieved
by modelling the towing process as a series of 30 consecutive Exponentially distributed towing
phases with rate 2.45. This will make the model more realistic but will also increase the dimen-
sionality of the state space with 29. Such an increment of the state space is disastrous when
the Model is aimed to be analyzed using discretization. Therefore, the less realistic Exponential
approximation is preferred over using the more extensive Erlang distribution in order to preserve
the solvability of the CTMC instance.

Analysis of the duration of arrival and departure handling shows the same results as shown for
the duration of towing an aircraft from a gate to a parking location (figure 12.9). Therefore it is
assumed that the duration of all ground processes are exponentially distributed with an average
as observed in operation, i.e. average of OPiuM curves. This results in the following rates
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Figure 12.9: Approximation of the OPiuM cumulative probability curve of the duration of
a tow task for wide body aircraft. Approximated using (a.) Exponential distribution and (b.)
Erlang distribution.

Arrival Handling Rate µa = 1/50

Departure Handling Rate µd = 1/85

Towing Rate µtow = 1/80
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Chapter 13

An Algorithm to Solve Large

Time-Inhomogeneous CTMCs

The Schiphol CTMC, as described in chapter 12, is a Markov chain with a theoretical infinite state
space and time-inhomogeneous transition rates. Because of these characteristics the behaviour
of this model cannot be easily analyzed by, for example, a product form solution [27]. Therefore
other solution approaches like discretization (section 11.2) or uniformization (section 11.3) can
be used. Because of the high fluctuations in transition rates of this model, the static form of
truncation as described in section 11.6 might cut of states that will be of high importance when
transition rates change. Therefore a more dynamic approach of truncation is introduced.
The idea of discretization using iterative state exploration and dynamic state space truncation
is proposed in section 13.1. A version of discretization using static state space truncation is
sketched in section 13.2. The concepts of iterative state exploration and dynamic state space
truncation are described in more detail in sections 13.3 and 13.4 respectively. Applying a similar
approach on uniformization is briefly described in section 13.5. Finally, section 13.7 contains a
description of the implementation of the proposed algorithm in programming language Python.

13.1 Iterative State Exploration and Dynamic State Space

Truncation

Solving time-inhomogeneous CTMCs with a large or infinite state space, like the one described in
section 12.1.5, can be hard because of memory issues. Despite the traditional static truncation,
where states are eliminated from the analysis in advance, it can be an advantage to consider
a more dynamical approach of truncation, where states are eliminated from the analysis when
they are not of importance anymore.
This section describes methods of dynamical state space truncation while iteratively solving
large CTMCs using time-discretization. The idea is to start with a small state space. As time
progresses, new states can be explored that will be added to the analysis. After a while the total
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found state space is evaluated and states with a small probability to be reached at that moment
will be discarded from the state space, leaving a truncated state space small enough to further
evaluate.
Idea’s for such models have only been found in a 2010 Master Thesis [5]. Apart from that,
there are no examples found of such dynamic truncation methods or its application on large
time-inhomogeneous CTMCs.

13.2 Truncated Time-Discretization

Consider a time-inhomogeneous CTMC with large or infinite state space S and initial distribution
vector π0. Now let the truncated version of this model have initial state space

S̄0 = {i ∈ S : π0(i) > 0} (13.1)

with current distribution vector containing only positive elements of the original initial distribu-
tion vector

π̄d,0 = [π0(i) ∈ π : π0(i) > 0] (13.2)

With this truncated form we have not lost any information since all states with positive proba-
bility at time zero are included in the model.
Now, as described in section 11.2, this model can be analyzed at discrete time steps of size h in
time window [0, T ]. Let the truncated version of the time-dependent one-step transition matrix
be

M̄t(i, j) =

qt(i, j)h j 6= i, i, j ∈ S̄t

1−
∑
l∈S̄t\i qt(i, l)h j = i, i, j ∈ S̄t

(13.3)

where S̄t is the set of states at time t. This truncated transition matrix can be used to describe
a truncated version of discretization iteration scheme (11.12)

π̄d,t+h = π̄d,tM̄t

S̄t+h = S̄t
(13.4)

where π̄d,0 and S̄0 are initialized as in (13.1) and (13.2) respectively. Note that the truncated state
space remains the same during an iteration. This means that the usage of such an truncated state
space will eventually lead to some loss of information since transitions from i ∈ S̄t to j ∈ St \ S̄t
are not included in the analysis. Therefore the truncated state space S̄t can be extended when
transitions to truncated states are about to take place. This state space exploration is described
in section 13.3. After a while the state space can become too large and some states might be
not relevant anymore. Section 13.4 describes how the state space can be dynamically truncated
in order to decrease the number of states and to exclude irrelevant states.
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13.3 Iterative State Space Exploration

When the probability mass has reached the border of the truncated version of time-discretization
it will loose information compared to its non-truncated version because transition might occur
to states that are not considered in the analysis. In order to not lose that information, the
current truncated state space can be extended by a state exploration that looks for states that
are reachable from the current state space. This exploration can be done by searching for states
that could possibly be reached after some transitions.
Let Ωυ(S̄t) be the operation that explores the state space for the next υ iterations.

Ωυ(S̄t) = S̄t ∪ {j ∈ S|∃i ∈ S̄t, k = 1, . . . , υ : Mk
t (i, j) > 0} (13.5)

where the same operation can be applied on the state probability vector such that the element
of the result Ωυ(π̄d,t) that corresponds with state i can be defined as

Ωυ(π̄d,t)(i) =

π̄d,t(i) i ∈ S̄t

0 i ∈ Ωυ(S̄t) \ S̄t
(13.6)

After exploring the state space for υ additional steps, one is sure that the truncated discrete
state probability distribution π̄d,t can be calculated using iterative scheme (13.4) for the next υ
iterations without making any error compared to the non-truncated variant, i.e.

πd,t(i) = π̄d,t(i) i ∈ S̄t
πd,t(i) = 0 i ∈ S \ S̄t

(13.7)

Therefore this iterative state exploration can be used to shrink the size of the problem without
losing any information via transitions to truncated states. This process is visualized for a two
dimensional state space in figure 13.1.

Figure 13.1: The process of state space exploration. The first figure shows the initial state
space S̄0. New states are being explored in the second figure. After υ iterations, the state
space has to be expanded again (right figure).
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Approximate State Space Exploration

Define states that have transitions to states that are not included in the truncated analysis as
“border” states. This set of border states can be described as

S̄Bordert = {i ∈ S̄t :
∑
j∈S

Mt(i, j) > 0} (13.8)

When the state space is being explored for the next υ transitions, one is sure that after υ
iterations the border states will have a non-zero probability of being reached. Though we are
sure that the border of the truncated state space will be reached with non-zero probability,
this probability might not be significant enough to provoke further exploration. Therefore an
approximated expansion can be used that only expands the state space when the states at the
border of this state space have a probability mass higher than some probability threshold ς. Let
S̃t be the set of states that have a probability mass that is significantly higher than zero at time
t.

S̃t = {i ∈ S : π̄d,t(i) > ς} (13.9)

Let the reached border of the explored state space then be described as

S̃Bordert = {i ∈ S̃t :
∑
j∈S\S̄

Mt(i, j) > 0} (13.10)

In words: the reached border of the explored state space at time t is the set of states that at
time t have a probability mass higher than ς and have a positive rate for some transitions to
states that are not included in the current truncated state space.
This definition can be used to only provoke a state exploration whether |S̃Bordert | > 0, i.e. there
are some reached border states. Furthermore, the state space only have to be explored from the
states in this reached border set. This means that the approximated expansion becomes

Ω̃υ(S̄t) = S̄t ∪ {j ∈ S|∃i ∈ S̃Bordert , k = 1, . . . , υ : Mk
t (i, j) > 0} (13.11)

with

Ω̃υ(π̄d,t)(i) =

π̄d,t(i) i ∈ S̄t

0 i ∈ Ω̃υ(S̄t) \ St
(13.12)

Figure 13.2 visualizes this approximated approach of state exploration.
Using this approximation will of course cause an error. Some states will have probability mass
while having successors that are not included in the analysis. Therefore, equations (13.7) do
not hold anymore. An indication of this error can be given by the total probability mass of
border states in S̄Bordert that are not included in the approximate border states S̃Bordert . A
more elegant approach is to keep track of transitions from i to j with i ∈ S̄t and j ∈ S \ S̄t.
These transitions are omitted from the analysis and might take place with non-zero probability
if i ∈ S̄Bordert \ S̃Bordert . This loss of probability flow can be tracked if all such transitions are
modelled as transitions to some absorbing state ζ. This method requires more computations and
if ς is chosen small enough, i.e. ς < 10−10 the error should be negligible. Algorithm 7 in appendix
D describes iterative state exploration and includes the option of approximate expansion.

104



Chapter 13 An Algorithm to Solve Large Time-Inhomogeneous CTMCs

Figure 13.2: The process of approximate state space exploration. The first figure shows the
initial state space of relevant states S̃0. In this case it is exactly initial state space S̄0. New
states are being explored in the second figure. After k iterations, S̃k has reached the border
of the current explored state space (right figure). This means that the border S̃Border

k

contains some states and a new state exploration is provoked.

Tuning State Space Exploration

Parameter υ, that indicates how many steps have to be iterated at every state exploration, can
be tuned in order to decrease the runtime of the algorithm. When the parameter is too high,
too many irrelevant states can be found. If the parameter is too low, the algorithm may perform
poorly since the transition matrix has to be updated many times.
The number of steps to explore at every iteration might depend on some kind of exploration
scheme. This can be compared with a cooling scheme for Simulated Annealing. After a state
space truncation, it is probably best to slowly expand the state space in order for the algorithm
to get some sense of relevant areas in the state space. After a while the algorithm might benefit
from bigger state space explorations. Such a scheme can be defined as the number of expansion
steps υ for the x-th expansion after the last truncation. Table 13.1 shows an example of such a
state exploration scheme.

Number of explorations after last truncation Exploration steps (υ)

1 - 10 1

11 - 20 2

21 - 30 3

31 + 5

Table 13.1: Example of a state exploration scheme.

13.4 Dynamic State Space Truncation

After a couple of state explorations the total explored state space might grow too large for
analysis. It can also be the case that the state space contains states that are not relevant
anymore. A state truncation can be considered when the number of states exceeds some state
space threshold τ . At that point, all states that have a state probability that is lower than some
truncation threshold ε can be omitted from the analysis.
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Let Ψε(S̄t) be the operation that truncates state space S̄t by

Ψε(S̄t) = {i ∈ S̄t : π̄d,t(i) > ε} (13.13)

Let the same operation be used to truncate the state probability vector

Ψε(π̄d,t) = [π̄d,t(i) ∈ π : πd,t(i) > ε] (13.14)

This process is visualized for a two-dimensional state space in figure 13.3.

Figure 13.3: The process of dynamic state space truncation. The left figure shows that
after l iterations the states with relevant probability mass S̃l have reached the border of
truncated state space S̄l. If the number of states has grown over threshold τ a truncation
occurs. The middle figure shows all states that are left after this truncation. The remaining
states form the new state space S̄t+1. From this state space all states are relevant (i.e. in
S̃t+1).

One can keep track of the probability that the system will be in a state that is truncated to give
an indication of the amount of information that is lost at a truncation step.

truncation loss =
∑
i∈S̄t

π̄d,t(i)−
∑

j∈Ψε(S̄t)

Ψε(π̄d,t)(j) (13.15)

This truncation loss can be seen as the probability mass that is lost by the truncation. This
mass is omitted from the analysis and it can be seen as if the CTMC contains an absorbing state
where all this truncated probability mass is gathered. After truncation, the state probability
vector might be normalized.
Algorithm 6 in appendix D describes this process of dynamic state truncation in full detail.

13.5 Uniformization and State Space Exploration and Trun-

cation

The methods of state space exploration and state space truncation as described in this chapter
apply directly on (time-inhomogeneous) discretization. In essence they can easily be translated
to uniformization.
Assume that we have time interval (t1, t2) where transition rates do not change. Let π̄d,t1 be the
state probability vector at t1 with current truncated state space S̄t1 . Now π̄d,t2 can be calculated
by the following steps
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1. Determine the current truncated transition rate matrix M̄t for state space S̄t as in (11.19).

2. For this matrix, with corresponding uniformization rate B, determine value K to truncate
the Poisson probability sum like (11.18).

3. Expand the state space for K iterations using ΩK(S̄t) from equation (13.5).

4. Determine a new current truncated transition rate matrix M̄t for state space ΩK S̄t as in
(11.19)

5. Calculate P(t1,t2) as in (11.17) using transition rate matrix M̄t and Poisson probability
truncation K.

6. π̄d,t2 = π̄d,t1P(t1,t2)

The only problem with this approach is that the Poisson probability sum is truncated at value
K while not all transitions are known. It might be possible that the uniformization rate is higher
after the state space expansion. This problem can be solved by either looping over step 2 to 4
until after some expansion the uniformization rate has not changed, or to increase K to prevent
that too much Poisson probability is truncated.
The truncation of the state space is identical to the dynamic state space truncation for dis-
cretization as described in section 13.4
State space exploration and truncation are not further explored nor applied on a practical case
in this thesis study. However, it might be an interesting case for further studies and implemen-
tations. A more general case of this idea for time-inhomogeneous CTMC with transition rates
that change continuously is described in [5].

13.6 A Potential Analytic Bound on the Error of Dynamic

Truncation

Using the approach of time-discretization in combination with dynamic state space truncation
causes a certain error compared to the original continuous process. In order to get an indication
of this error one has to take the following steps into account:

1. Time-discretization with step size h causes a first error. In fact, both cumulative rewards
and the probability distribution have shown to be bounded by O(h) [31].

2. The error on Markov rewards that is caused by static truncation can be bounded by a
combination of state border probabilities and so called “mean first passage times” [4].

3. The error that is made by truncation - that can be bounded as stated in step 2 - occurs
multiple times since the state space is truncated dynamically.

4. For this problem, truncation is applied on a time-inhomogeneous problem. The results
described in step 2 are for time-homogeneous problems only. Since truncation is carried
out sequentially, the effect of this truncation can be evaluated for intervals for which the
transition rates do not change separately.
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5. The number of steps until truncation depends on how fast the state space grows. It will
probably be much easier to find a bound when the number of steps between truncating the
state space is fixed.

By combining these five steps one may expect it to be provable that the error of reward r caused
by time-discretization and dynamic truncation can be bounded by some function which is linear
in h and ε and some constant that depends on T and B. Where B can be seen as a bound for
reward r, i.e. ||r||∞ < B. This proof will be rather technical and theoretically complicated.
Therefore this proof lies beyond the scope of this thesis.

13.7 Implementation

Programming language Python is used to implement the algorithm of discretization with itera-
tive state exploration and dynamic truncation (algorithm 5 of appendix D) that is described in
section 13.1. A library, named markoff, is built that consists of multiple classes that are used to
describe Rates, Transitions, Rewards and States. These classes are used to form the Continuous
Time Markov Chain class. Given an instance of this class, discretization algorithm (algorithm
5) can be run. Matrix computations are done by using the numpy and scipy libraries.
The library is constructed in such a way that an instance of a continuous-time Markov chain can
easily be described. First a Continuous Time Markov Chain instance needs to be created with
the desired number of dimensions (figure 13.4).

Figure 13.4: Code snippet that shows how to create a CTMC instance.

Rates can then be added to this CTMC instance. These rates require a name, a time hori-
zon and a list of rate changes. The rate changes are described by a two-dimensional tuple
(time of rate change, new rate). In the example in figure 13.5 the Aircraft Arrival Rate is
added that changes at some time points. The Arrival Handling Rate is constant and thus only
has one “rate change” at t = 0.

Figure 13.5: Code snippet that shows how to add rates to a CTMC instance.

The given rates can be used to construct transitions (see figure 13.6). These transitions are
constructed using the transition class definitions (section 11.7) and require a name, a change
vector as numpy array, a guard check function and a rate function.
The guard check function and rate function can be given by so called “anonymous functions”
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Figure 13.6: Code snippet that shows how to add transitions to a CTMC instance.

using the lambda keyword. Input x of these functions will always be a state in the form of a tuple
describing the values for each dimension of this state, e.g. (0, 8, 7, 0, 2, 0, 23, 0). The n-th element
of this state tuple can then be used in the calculation by x[n-1]. When guard_func returns True
for state x, the system will move to state x + change_vector with the rate that follows from
rate_func. This rate function uses the defined Rates using ctmc.rates_list[1].current_rate,
where 1 refers to the second rate that has been added since python starts indexing at 0.
Figure 13.7 shows that rewards can be added in a similar way. The added rewards will be calcu-
lated at every discrete time point that is evaluated. The reward of each state x is described by
anonymous function lambda and the expected reward is calculated by the sum of the product of
this reward and the state probability for all states.

Figure 13.7: Code snippet that shows how to add rewards to a CTMC instance.

In order to evaluate the described CTMC instance, the initial distribution has to be defined.
This can be done by giving a list of state tuples (figure 13.8). In this example the initial sate
distribution is set from the same initial state tuple, which means that at t = 0 the probability
of being in this state will be equal to 1.

Figure 13.8: Code snippet that shows how to add a initial sate space and define the initial
distribution vector of a CTMC instance.

Figure 13.9: Code snippet that shows how to analyze a CTMC instance using
discretization.

After the full description of a CTMC instance it can be given to the Discretization that is used
to run the discretization algorithm. The run_discretization method requires a time horizon,
a discretization factor and thresholds necessary to run algorithm 5. Here the schema for the
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state space search is given as a list that describes the number of exploration steps as described
in table 13.1.
Appendix E contains the full Python Code of this markoff library and can be received upon
request.
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Chapter 14

Results

This chapter contains the results of the Schiphol CTMC model as described in chapter 12 using
time discretization with iterative state exploration and dynamic state space truncation as de-
scribed in chapter 13. The model is run using different threshold settings which are described in
table 14.1.

Run State Threshold (τ) Truncation Threshold (ε) Exploration Scheme (υ)
1 2× 106 10−7 [1]*20 + [2]*20 + [3]*40 + [5]*40 + [10]
2 5× 106 10−7 [1]*10 + [2]*10 + [3]*20 + [5]*30 + [10]
3 8× 106 10−8 [1]*40 + [2]*40 + [3]*40 + [5]*40 + [10]

Table 14.1: Threshold settings for 3 different runs for calculating the rewards of the
Schiphol CTMC model. For all runs a border probability threshold ς = 1011 is used.

The exploration scheme υ denotes the number of transitions that have to be explored at each state
expansion. Here [1]*20 + [2]*10 + [5] means that the first 20 expansions after a truncation need
to explore the state space for 1 transition, the next 10 expansion need to explore for 2 transitions,
and all following expansions - until the next truncation - need to explore for 5 transitions (see the
last paragraphs of section 13.3). These schemes are chosen based on a combination of runtime
performance and the truncation loss that a scheme causes. However, it is not stated that these
schemes are optimal (see appendix G for a short analysis of the effect of an exploration scheme).
The Schiphol CTMC is evaluated for a single day according to the transition rates as described
in section 12.2 using algorithm 5. Discretization factor β = 10 is used to let the step size of the
discretization be 10 times smaller than the expected time between events. The most interesting
reward, the expected number of tow trucks, is shown in figure 14.1. Other rewards are included
in appendix F.

111



Chapter 14 Results

Figure 14.1: The expected demand for tow trucks according to the runs with threshold
setting as in table 14.1.

This reward is an approximation since the model loses information by truncating the state space.
Figure 14.2 shows the cumulative probability loss for the Schiphol CTMC. This graph shows the
probability that, after a certain number of minutes of the day are processed, the system was in
a state that has been truncated at some point. Figure 14.3 shows the number of states during
processing a single day for run 3. The runtime progress for processing a full day is shown in
figure 14.4

Figure 14.2: The cumulative probability loss of the runs with threshold setting as in table
14.1.
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Figure 14.3: The number of states during processing a single day using threshold settings
for run 3 in table 14.1.

Figure 14.4: The runtime of each run described in table 14.1. Performed on a BTO
Notebook with an Intel i7-6700HQ 2.6 GHz processor and 32GB RAM.
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Chapter 15

Discussion and Conclusions

This chapter discusses the results of the Schiphol CTMC model (chapter 12) that is evaluated
by discretization using iterative state space exploration and dynamic truncation (chapter 13).
These results were presented in chapter 14. The discussion is contained in section 15.1 after
which a conclusion is drawn in section 15.2. Furthermore, recommendations for the usage of
these results for KLM and future studies are given in section 15.3.

15.1 Discussion

At first glance it seems to be possible to evaluate large time-inhomogeneous continuous time
Markov chains as the Schiphol CTMC model using the proposed discretization algorithm. How-
ever, due to the size of the problem, using a state space maximum of 8 million states and a
state probability threshold of ε = 10−8 is not enough to lower the truncation loss to a satisfying
amount. With these threshold settings, the program ran 28.4 hours and the probability that the
system was in a state that has been truncated still cumulates up to 44%.
The question is whether this total probability loss of 44% is that bad. There will always be some
probability loss caused by truncation and this loss will only cause problems when the calculated
rewards are influenced such that wrong conclusions are drawn. Figure 14.1 shows that there is
not a significant difference in the expected tow truck demand between a state space threshold of
2, 5, and 8 million. Even though the truncation caused cumulated losses of 99%, 92% and 44%
respectively.
For the run with a maximum of 2 million states, the program took 5.5 hour to complete (figure
14.4). This is a long time for evaluating a CTMC model knowing that there is a probability of
99% that the system was in a state that has been truncated. Though the rewards of the towing
truck demand were close to the run with a maximum of 8 million states, which took 5 times
longer.
KLM is most interested in the peaks of demand. With a state space threshold of 8 million states,
the first 600 minutes of a day can be run in 4.6 hours with a cumulated probability loss of 8.3%.
This might already be useful to indicate the expected peak demand. However, one is not sure
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whether another demand peak might follow.
The result of this model is hard to validate. Assumptions are made that generalize all widebody
aircraft on Schiphol. Since GS does not have contracts with all airlines, it does not provide
towing trucks when some aircraft have to be towed away. Therefore comparison with actual or
planned data cannot be made.

15.2 Conclusions

The time-inhomogeneous continuous time Markov chain model of the movements of wide body
aircraft on Schiphol airport is presented in chapter 12. Because of the time-inhomogeneity and
state dependency of transitions, this CTMC could not be evaluated by elegant analytical ap-
proaches. Therefore, a method of iterative state exploration and dynamic truncation has been
developed to be able to estimate the characteristics of such large state time-inhomogeneous
CTMCs.
It is shown that using the described approach for analyzing the Schiphol CTMC results in a
program that can estimate the expected tow truck demand for a single day in 5.5 hours. This
model assumes exponentially distributed processing and inter-arrival times and does not distin-
guish between airline, aircraft type, special cases of aircraft handling and distance to the parking
position to which an aircraft has to be towed. These assumptions make it very hard to validate
the models since comparisons with actual of planned demand cannot be made.
Appendix C shows that it it possible to include a towing truck capacity. This makes it possible
to analyze what would happen if there current capacity changes. It becomes clear that adding
this feature added extra complexity to the model. Including other resources and the medium
and small body fleet will make the model even more complex and therefore harder to solve.
This approach can probably not be used by KLM since the model’s assumptions make it impos-
sible to validate and a more complex model will increase the runtime even more. Nevertheless,
an algorithm has been described that can be used to analyze large time-inhomogeneous CTMC
instances. This model can by used for other research.

15.3 Recommendations

The model that is developed in Part III of this thesis allows KLM to evaluate the expected
number of towing trucks that have to be used to tow wide body aircraft on the day of operation.
These models are hard to validate and therefore it is not sure whether they perform as expected.
It is therefore not recommended for KLM’s Network department to use these models to support
any decision making.

15.3.1 Future Studies

The solution approach of time discretization using iterative state exploration and dynamic state
space truncation may open some new doors for the evaluation of large state time-inhomogeneous
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continuous-time Markov chains. Future studies therefore include the application of this model
on other CTMC instances.
Furthermore, section 13.6 sketches a way to proof that the error that is made by dynamic
truncation can be analytically bounded by the truncation and discretization parameters. This
proof will be technical and theoretically challenging. It would be interesting to further study the
concepts of this proof.
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Appendix A

KLM Organizational Chart

The next page shows the KLM organizational chart that visualizes the structure and dependen-
cies of departments within KLM.
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Appendix B

Schedule Characteristics

This appendix contains an overview of all schedule characteristics used to quantify a flight
schedule and the GS-TP planning rules (PUGs).
The metrics can be applied on multiple (combinations of) subgroups which are combined by
underscores. For example AC_AMS_KL_456 denotes all KLM aircraft of category 4-6 on Schiphol
in a certain time bracket.

Metrics
AC_AMS Maximum number of aircraft on AMS in time bracket
ARR Number of arrivals in time bracket
DEP Number of departures in time bracket
AC_GATE Number of aircraft that demand a gate.
AC_GATE_SEP Number of aircraft that demand a gate including a separation

time of 20 minutes. 10 minutes before and 10 minutes after each
gate occupation.

RAMP Number of rampsnake tasks per time interval.
POWER Number of powerstow tasks per time interval.
PB Number of push backs in time interval.
TOW_MAIN Number of maintenance tow tasks in time interval.
TOW_NORM Number of normal (length) tow tasks in time interval. Note that

these tasks do not necessarily have to be carried out.
TOW_EAST Number of tow tasks to Schiphol East or far parking locations in

time interval. Note that these tasks do not necessarily have to be
carried out.

FUEL Number of fuel tasks in time bracket.
FUEL_Hydrant Number of freighter fuel tasks in time bracket in case that aircraft

is located at a Hydrant position.
FUEL_NonHydrant Number of freighter fuel tasks in time bracket in case that aircraft

is not located at a Hydrant position.
DISP_STATIC Number of dispensers that are reserved for a static task.
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Appendix B Schedule Characteristics

KTW_STATIC Number of KTW’s that are reserved for a static task.

Subgroups
KL KLM aircraft
AF Air France aircraft
DL Delta aircraft
F Freighters (cargo aircraft)
LC Low Cost carriers
1 Category 1 aircraft
2 Category 2 aircraft
...

...
9 Category 9 aircraft
AM500 Task planned for AM500 towing truck. Subgroup only applies on

PB and TOW schedule characteristics.
AM210 Task planned for AM210 towing truck. Subgroup only applies on

PB and TOW schedule characteristics.
AM110 Task planned for AM110 towing truck. Subgroup only applies on

PB schedule characteristic.

Time Shifts
_Px Suffix to denote the sum of a schedule characteristic of the previ-

ous x minutes
_Nx Suffix to denote the sum of a schedule characteristic of the next

x minutes
_UNCSHIFT Suffix of an uncertain schedule characteristic that sums up the

value of this characteristic on complementary time brackets of the
uncertain parts of task probability distributions that cover the
current time bracket.
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Appendix C

Schiphol CTMC With Tow Truck

Capacity Limit

Chapter 12 describes Schiphol as a continuous-time Markov chain (CTMC) where the capacity
of towing trucks is unconstrained. This appendix shows the changes that have to be made to
the model in order to include towing truck capacity Ctow.
The state description remains unchanged:

n1 Number of aircraft that is waiting to go into arrival handling phase.
n2 Number of aircraft in arrival handling.
n3 Number of aircraft waiting for a departure handling.
n4 Number of aircraft that is being towed from a gate to a parking position.
n5 Number of aircraft at a parking position.
n6 Number of aircraft towed from a parking position to a gate.
n7 Number of aircraft in departure handling.
n8 Number of departure requests in queue waiting for an available aircraft to go into

departure handling.

Including towing truck capacity in the model requires additional transitions. Some transitions
has to be changed in order to account for this new capacity limit. The additional and changed
transitions are underlined.

Arrival
1. No capacity problem: Arriving aircraft goes into its arrival handling phase.
2. Capacity problem, aircraft available for tow : Arriving aircraft goes into its arrival

handling phase, a waiting aircraft is being towed to parking location.
3. Capacity problem, no aircraft available for tow or no towing truck available: Aircraft

goes into the queue, waiting for an available gate.
Finished Arrival Handling
4. No departure requests in queue, no aircraft waiting for arrival handling

or no towing truck available: Aircraft will go into waiting phase.
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Appendix C Schiphol CTMC With Tow Truck Capacity Limit

5. No departure requests in queue, some aircraft are waiting for arrival handling,
tow truck available: Aircraft that finishes arrival handling will be towed away im-
mediately in order to create space for an aircraft that is currently waiting for arrival
handling.

6. Departure requests in queue: Aircraft that finishes arrival handling goes straight into
its departure handling phase and queue decreases by one.

(Shifted) Departure Request
7. Aircraft available: Aircraft goes from waiting phase into departure handling.
8. No aircraft available: Departure request is added to request queue.
Finished Tow to Park
9. Not all towing trucks in use or ({no gate capacity problem or (no aircraft waiting

for arrival handling or no aircraft waiting for departure handling)} and {number of
aircraft at gate above the tow back limit}): Aircraft enters parking position.

10. All towing trucks in use, gate capacity problem, aircraft waiting for arrival handling
and aircraft waiting for departure handling : Towed aircraft enters parking position
and towing truck starts towing another aircraft from gate to parking. Waiting aircraft
goes into arrival handling.

11. All towing trucks in use, number of aircraft at gate below the tow back capacity limit.
While an aircraft is being towed to the parking location, the number of aircraft at
a gate dropped and aircraft that has been towed to parking can be towed back to a
gate immediately.

Finished Tow to Gate
12. Capacity problem: At this point, the tow back to the gate shouldn’t have started

in the first place. However, an aircraft is towed to the gate while there is no gate
available. The only way to solve this problem is to tow the aircraft back to a parking
location.

13. No capacity problem, not all tow trucks used or {all tow trucks used and (no aircraft
at park or number of aircraft at gate not under tow back limit)}, no demand request
queue: Aircraft enters waiting phase.

14. No capacity problem, not all tow trucks used or {all tow trucks used and (no aircraft
at park or number of aircraft at gate not under tow back limit)}, with demand request
queue: Aircraft will enter departure phase and queue decreases by one.

15. No gate capacity problem, all towing trucks in use, some aircraft at parking, number of
aircraft at gate under tow back limit, demand queue: Aircraft that arrives at gate goes
into departure handling phase. Start immediately with towing back a new aircraft
from park to gate.

16. No gate capacity problem, all towing trucks in use, some aircraft at parking, number
of aircraft at gate under tow back limit, no demand queue: Aircraft that arrives at
gate goes into waiting phase. Start immediately with towing back a new aircraft from
park to gate.

Finished Departure Handling
17. Aircraft waiting for arrival handling : Aircraft that finishes departure handling leaves,

waiting aircraft goes into arrival handling.
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18. No aircraft waiting for arrival handling and no aircraft at parking or there are no
towing trucks available or the number of aircraft at gate remains above towing back
capacity limit : Aircraft that finishes departure handling leaves.

19. No aircraft waiting for arrival handling, some aircraft at parking, towing truck avail-
able and total number of aircraft at gate drops below the tow back capacity limit :
Aircraft that finishes departure handling leaves and start towing aircraft back to
gate.

These events can be modeled by the transition classes in table C.2. Because of its complexity a
conventional notation is not given.
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i Guard Gi Change νi Rate αi(n, t)

1 n2 + n3 + n7 < Cg e2 λa(t)

2 n2 + n3 + n7 = Cg, n3 ≥ 1 e2 − e3 + e4 λa(t)

3 n2 + n7 = Cg, n3 = 0 ∨ n4 + n6 = Ctow e1 λa(t)

4 n2 ≥ 1, n1 = 0 ∨ n4 + n6 < Ctow, n8 = 0 e3 − e2 n2µa

5 n2 ≥ 1, n1 ≥ 1, n4 + n6 = Ctow, n8 = 0 e4 − e1 n2µa

6 n2 ≥ 1, n8 ≥ 1 e7 − e2 n2µa

7 n3 ≥ 1 e7 − e3 λd(t+ x)

8 n3 = 0 e8 λd(t+ x)

9 n4 ≥ 1, n4 + n6 < Ctow ∨ {(n1 = 0 ∨ n2 + n3 + n7 < Cg) e5 − e4 n4µtow

∧(n5 = 0 ∨ n2 + n3 + n6 + n7 > Ct)}

10 n4 ≥ 1, n4 + n6 = Ctow, n2 + n3 + n7 = Cg, n1 ≥ 1 e5 − e3 + e2 − e1 n4µtow

11 n4 ≥ 1, n4 + n6 = Ctow, n2 + n3 + n6 + n7 ≤ Ct n6 − n4 n4µtow

12 n6 ≥ 1, n2 + n3 + n7 = Cg e4 − e6 n6µtow

13 n6 ≥ 1, n2 + n3 + n7 < Cg, (n4 + n6 < Ctow∨ e3 − e6 n6µtow

(n4 + n6 = Ctow ∧ (n5 = 0 ∧ n2 + n3 + n6 + n7 > Ct))),

n8 = 0

14 n6 ≥ 1, n2 + n3 + n7 < Cg, (n4 + n6 < Ctow∨ e7 − e6 − e8 n6µtow

(n4 + n6 = Ctow ∧ (n5 = 0 ∧ n2 + n3 + n6 + n7 > Ct))),

n8 >= 1

15 n6 ≥ 1, n2 + n3 + n7 < Cg, n4 + n6 = Ctow, n5 >= 1 e7 − e8 − e5 n6µtow

n2 + n3 + n6 + n7 <= Ct, n8 >= 1

16 n6 ≥ 1, n2 + n3 + n7 < Cg, n4 + n6 = Ctow, n5 >= 1 e3 − e5 n6µtow

n2 + n3 + n6 + n7 <= Ct n8 = 0

17 n7 ≥ 1, n1 ≥ 1 e2 − e1 − e7 n7µd

18 n7 ≥ 1, n1 = 0, (n5 = 0 ∨ n4 + n6 = Ctow∨ −e7 n7µd

n2 + n3 + n6 + n7 > Ct)

19 n7 ≥ 1, n1 = 0, n5 >= 0, n4 + n6 < Ctow, e6 − e5 − e7 n7µd

n2 + n3 + n6 + n7 <= Ct

Table C.2: Transition classes for airport Arrival-Departure model including ground
handling and towing.
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Algorithms

Algorithm 1: GenerateTranstitionMatrix
Input : Markov State Set S

Current Time t
Transition Classes η = (η1, η2, . . . , ηk) with ηi = (Gi, νi, αi(s, t))

Guard Gi
Change Vector νi
State and Time dependent Rate Function α(s, t)

Output: Transition Rate Matrix Q
Uniformization Rate B

/* Initialize transition matrix */
1 n← |S|
2 Q← 0n×n
3 for s ∈ S do
4 for i = 1, . . . , k do
5 if s ∈ Gi then
6 s′ ← s+ νi

7 if s′ ∈ S then
/* Only add transitions to states that are included in the state

space. It might happen that some states are not found yet. */

8 Qs,s′ ← αi(s, t)

9 end
10 end
11 end
12 end

13 row_sumi ←
∑
j 6=iQi,j ∀i = 1, . . . , n

14 Qi,i ← row_sumi ∀i = 1, . . . , n
15 B ← max

i
row_sumi

16 return Q, B
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Algorithm 2: Discretization
Input : Continuous Time Markov Chain instance C = (S, η,R, p)

Markov State Set S
Transition Classes η = (η1, η2, . . . , ηk), ηi = (Gi, νi, αi(s))
Reward Vectors ρ = (ρ1, ρ2, . . . , ρl)
Current (Initial) State Distribution Vector p

Discretization Factor β ≥ 1
Time Horizon T

Output: Reward Results ri = (ri,t1 , ri,t2 , . . . ri,T ) ∀i = 1, . . . , l

1 t← 0
2 Q,B ← GenerateTransitionMatrix(S, t, η)

3 h← 1
βB

4 P ← I + hQ

5 for i = 1, . . . , l do
6 ri,t ← 〈ρi, p〉
7 end

8 while t < T do
9 t← t+ h

10 p← pP
11 for i = 1, . . . , l do
12 ri,t ← 〈ρi, p〉
13 end
14 end
15 return ri, i = 1, 2, . . . l
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Algorithm 3: Time-Inhomogeneous Discretization
Input : Continuous Time Markov Chain instance C = (S, η, ρ, p)

Markov State Set S
Transition Classes η = (η1, η2, . . . , ηk), with ηi = (Gi, νi, αi(s, t))
Reward Vectors ρ = (ρ1, ρ2, . . . , ρl)
Current (Initial) State Distribution Vector p

Discretization Factor β ≥ 1
Time Horizon T

Output: Reward Results ri = (ri,t1 , ri,t2 , . . . ri,T ) ∀i = 1, . . . , l

1 t← 0
2 tupdate ← GetNextRateUpdateTime(S, η, t)
3 Q,B ← GenerateTransitionMatrix(S, t, η)

4 h← 1
βB

5 P ← I + hQ

6 for i = 1, . . . , l do
7 ri,t ← 〈ρi, p〉
8 end

9 while t < T do
10 t← t+ h
11 p← pP

12 for i = 1, . . . , l do
13 ri,t ← 〈ρi, p〉
14 end

15 if t = tupdate then
16 tupdate ← GetNextRateUpdateTime(S, η, t)
17 Q,B ← GenerateTransitionMatrix(S, t, η)

18 h← 1
βB

19 P ← I + hQ

20 end
21 end
22 return ri, i = 1, 2, . . . l

Algorithm 4: GetNextUpdateTime
Input : State Space S

Transition Classes η = (η1, η2, . . . , ηk), with ηi = (Gi, νi, αi(s, t))
Time t

Output : Next Transition Rate Update Time tupdate
Parameter: Arbitrarily small ∆

/* Find the earliest time for which some transition rate changes. */
1 tupdate = min {t′ : t′ < t, |αi(s, t′)− αi(s, t′ −∆)| > 0} ∀i = 1, . . . , k s ∈ S
2 return tupdate
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Algorithm 5: Time-Inhomogeneous Discretization with Iterative State Exploration and Trun-
cation.
Input : Continuous Time Markov Chain instance C = (S, η, ρ, p)

Current (Initial) Markov State Set S
Transition Classes η = (η1, η2, . . . , ηk), with ηi = (Gi, νi, αi(s, t))
Current (Initial) Reward Vectors ρ = (ρ1, ρ2, . . . , ρl)
Current (Initial) State Distribution Vector p

Discretization Factor β ≥ 1
Time Horizon T
Truncation State Space Size Threshold τ
Truncation State Probability Threshold ε
Number of Steps per State Exploration υ

Output: Reward Results ri = (ri,t1 , ri,t2 , . . . ri,T ) ∀i = 1, . . . , l

/* Initialize transition matrix */
1 t← 0
2 tupdate ← GetNextRateUpdateTime(S, η, t)
3 Q,B ← GenerateTransitionMatrix(S, η, t)

4 h← 1
βB

5 P ← I + hQ

/* Calculate Rewards */
6 for i = 1, . . . , l do
7 ri,t ← 〈ρi, p〉
8 end

9 while t < T do
10 t← t+ h
11 p← pP

/* Calculate Rewards */
12 for i = 1, . . . , l do
13 ri,t ← 〈ρi, p〉
14 end

/* Update transition matrix if necessary */
15 if t = tupdate then
16 tupdate ← GetNextRateUpdateTime(S, η, t)
17 Q,B ← GenerateTransitionMatrix(S, η, t)

18 h← 1
βB

19 P ← I + hQ

20 end

/* Truncate and/or Explore state space if border is reached */
21 if max

s∈Sborder
ps > 0 then

22 if |S| > τ then
23 C ← TruncateStateSpace(C, ε)
24 end
25 C, Sborder, Q,B ← ExploreStateSpace(C, Q, t, Sborder, υ)

26 end
27 end

28 return ri, i = 1, 2, . . . l
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Algorithm 6: TruncateStateSpace
Input : Continuous Time Markov Chain instance C = (S, η, ρ, p)

Current (Initial) Markov State Set S
Transition Classes η = (η1, η2, . . . , ηk), with ηi = (Gi, νi, αi(s, t))
Current Reward Vectors ρ = (ρ1, ρ2, . . . , ρl)
Current State Distribution Vector p

Truncation State Probability Threshold ε
Output: New Continuous Time Markov Chain instance C = (S, η, ρ, p)

1 S∗ ← S

/* Truncate all states with a probability lower than epsilon */
2 for s ∈ S∗ do
3 if ps < ε then
4 p←

(
p1, p2, . . . , ps−1, ps+1, . . . p|S|

)
5 for i = 1, . . . , l do
6 ρi ←

(
ρi,1, ρi,2, . . . , ρi,s−1, ρi,s+1, . . . ρi,|S|

)
7 end

8 S ← S \ s
9 end

10 end

/* Normalize State Probability Vector */
11 pi ← pi

||p||
12 return C
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Algorithm 7: ExploreStateSpace
Input : Continuous Time Markov Chain instance C = (S, η, ρ, p)

Current (Initial) Markov State Set S
Transition Classes η = (η1, η2, . . . , ηk), with ηi = (Gi, νi, αi(s, t))
Current Reward Vectors ρ = (ρ1, ρ2, . . . , ρl)
Current State Distribution Vector p

Current Transition Matrix Q
Current Time t
Border States Sborder ⊆ S
Number of Steps per State Exploration υ
Reached Border Threshold ς

Output: New Continuous Time Markov Chain instance C = (S, η, ρ, p)
New Border States Sborder
Transition Rate Matrix Q
Uniformization Rate B

1 Sexplore ← {s ∈ Sborder : ps > ς}
2 for step = 1, . . . , υ do
3 Snewborn ← ∅
4 Sreached_border ← ∅
5 for s ∈ Sexplore do
6 for i = 1, . . . , k do
7 if s ∈ Gi then
8 s′ ← s+ νi
9 if s′ ∈ S then

/* Transition to existing state, add to trans mat. */
10 Qs,s′ ← αi(s, t)
11 if s′ ∈ Sborder then

/* Include border state in next exploration step. */
12 Sreached_border ← Sreached_border ∪ {s′}
13 Sborder ← Sborder \ s′
14 end
15 else

/* Transition to a new state. */
16 Snewborn ← Snewborn ∪ {s′}
17 S ← S ∪ {s′}
18 Q←

[
Q; 0|S|−1×1

]
// add zero column

19 Q←
[
QT ; 0|S|×1

]T
// add zero row

20 Qs,s′ ← αi(s, t)
21 p← [p; 0] // add zero probability for new state
22 end
23 end
24 end
25 end
26 Sexplore ← Snewborn ∪ Sreached_border
27 end
28 row_sums ←

∑
s′∈S\sQs,s′ ∀s ∈ S

29 Qs,s ← row_sums ∀s ∈ S
30 B ← max

s
row_sums

31 return C, Sborder, Q,B
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CTMC Python Code

The Python code of the markoff library as defined in section 13.7 including a script to use
this library for the airport instance as described in chapter 12 can be received upon request by
contacting the author at jordrood@gmail.com.
Though there are some code snippets of this library included in section 13.7, the full code is not
attached because it would drastically increase the size of this report.
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Appendix F

Rewards of Schiphol CTMC Runs

This appendix contains the results of all rewards of the Schiphol CTMC runs with discretization
factor 10 and threshold settings as in table F.1. The most interested reward has already been
presented in chapter 14. Furthermore, the last figure of this appendix shows the demand in the
case when the probability vector is not normalized after truncation.

Run State Threshold (τ) Truncation Threshold (ε) Exploration Scheme (υ)
1 2× 106 10−7 [1]*20 + [2]*20 + [3]*40 + [5]*40 + [10]
2 5× 106 10−7 [1]*10 + [2]*10 + [3]*20 + [5]*30 + [10]
3 8× 106 10−8 [1]*40 + [2]*40 + [3]*40 + [5]*40 + [10]

Table F.1: Threshold settings for 3 different runs for calculating the rewards of the
Schiphol CTMC model. For all runs a border probability ς = 1011 is used.
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Figure F.1: The expected demand for tow trucks according to the runs with threshold
setting as in table 14.1.
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Appendix G

Effect of Exploration Scheme

This appendix contains a brief analysis of the effect of an exploration scheme on the the run-
time performance and the truncation loss of the Schiphol CTMC model. The idea of such an
exploration scheme is to control parameter υ that indicates how many transitions have to be
explored when the state space is expanded (section 13.3). For this analysis 3 runs are carried out
using state space threshold τ = 8× 106, state probability threshold ε = 10−8, border probability
threshold ς = 1011 and discretization factor 10. The runs all use a different fixed state space
exploration parameter υ = 1, υ = 2 and υ = 5. Figure G.1 shows the effect of this exploration
parameter on the truncation probability loss for the first 600 minutes of a processed day. Figure
G.2 shows the corresponding runtime performance. From these figures it can be observed that

Figure G.1: Effect of exploration scheme on truncation loss.

a higher state space exploration parameter υ leads to a faster running program (υ = 5 ran 16 %
faster than υ = 1, 3.7 against 4.4 hours) with the trade-off of a higher probability loss. Though
this relation is not always consistent: the run using υ = 2 shows a higher probability loss after
600 minutes than the υ = 5 run.
In general it makes sense that a higher υ will cause the state space to expand more rapidly, which
leads to finding more irrelevant states in terms of probability mass. This rapid expansion causes
more state truncations, leading to a higher truncation loss. However, expanding the state space
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Appendix G Effect of Exploration Scheme

Figure G.2: Effect of exploration scheme on runtime performance.

for multiple transitions at a time is computationally less expensive. This follows from the fact
that the transition matrix can be used for more iterations before it needs to be updated. This
update consist of finding new states and stacking large sparse matrices, which can be expensive.
A state exploration scheme uses the advantages of of high and low exploration rates υ. After
a truncation, the algorithm takes advantage of small exploration rates since searching the state
space for a small amount of transitions does not add an unnecessarily amount of irrelevant states.
If, after a while, the state space truncation threshold τ has not been reached. A larger υ can
speed up the search process and improve running time.
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Glossary

AM110 Small towing truck.
AM210 Medium towing truck.
AM500 Large towing truck.
Bank System System of inbound and outbound peaks on an airport.
Building Blocks Blocks that correspond to an activity that can be simulated by

OPiuM.
Critical Resources Resources that often cause a flight schedule to be infeasible.
CHIP System that the KLM uses to track the usage of resources on the

day of operation.
Dispenser Fuel equipment that is used to tank an aircraft from the airport

fuel pipelines.
Fleet Lines Lines on a Gannt chart that represent a single aircraft. Flights

and reservations on this line are planned to be carried out by one
aircraft.

Freeze The (temporary) result of the flight schedule phase. The schedul-
ing process is literally frozen.

Freighter Cargo Aircraft.
Gateplanner Tool used by GS-TP to create a gate planning.
GTW Grote TankWagen, Dutch for big fuel truck.
Hub and Spoke Airline network strategy to mainly provide flights to and from a

single or multiple hub airports.
Infeasible Schedule A flight schedule that can not be operated with the current re-

sources.
KTW Kleine TankWagen, Dutch for small fuel truck.
Medium Body Aircraft Medium size aircraft, for KLM the EUR Boeing 737 fleet is con-

sidered to be medium body.
Operational Feasibility A schedule is operational feasible if it is expected that it will not

be a problem to operate the schedule with the current resources.
Operational Schedule A schedule that somehow included aspects of the day of operation.

In this report, an ‘operational’ schedule is the result of an OPiuM
simulation.

OPiuM KLM’s simulation software that is used to simulate flight and
ground process delays in a flight schedule.
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OPiuM Curve Cummulative probability curve that describes the probability of
the length of a process (building block) in OPiuM simulation.

Powerstow Small sized aircraft baggage conveyor loader.
Ramsnake Medium sized aircraft baggage conveyor loader.
Slot A right to take off or land an aircraft in a certain time interval.
Small Body Aircraft Small size aircraft, for KLM the Cityhopper fleet is considered to

be small body.
Turn(around) The process between an arrival and departure of an aircraft.
Wide Body Aircraft Big size aircraft, for KLM the ICA-fleet is considered to be wide

body.
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Abbreviations

AF Air France (airline).
AMS Amsterdam Airport Schiphol (IATA airport code).
ARR Arrival (of an aircraft).
BRP Base Rolling Planning. Four-weekly planning check by GS-TP.
BTS GS sub department responsible for loading and unloading baggage and cargo.
CRP Capacity Requirements Planning
CTMC Continuous Time Markov Chain.
DEP Departure (of an aircraft).
DISP Dispenser.
DL Delta (airline).
EUR Europe, used to indicate short haul flights within Europa.
FIFO First In First Out scheduling technique.
GB Gradient Boosting
GS Ground Services (department).
GS-TP Ground Services - Tactical Planning (sub department).
GTW Grote TankWagen, Dutch for big fuel truck.
IATA International Air Transport Association.
ICA Intercontinental, used to indicate long haul flights to other continents.
KL-AF KLM - Air France (airline group).
KLC KLM Cityhopper - Regional Subsidiary of KLM.
KLM Koninklijke Luchtvaart Maatschappij - KLM Royal Dutch Airways.
KPI Key Performance Indicator
KTW Kleine TankWagen, Dutch for small fuel truck.
LETO Lr Estimation TOol - working title of thes thesis at KLM
LIFO Last In First Out scheduling technique.
MAPE Mean Absolute Percentage Error
ML Machine Learning
MSE Mean Squared Error
OPC Operational Planning Cycle. Process to verify whether a schedule is opera-

tionally feasible.
RMSE Rooted Mean Squared Error
SPT Standard Processing Time.
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VOP Vliegtuig OpstelPlaats, Dutch for aircraft position; A location on an airport
where an aircraft can be placed/parked. This might be at a gate.
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Management Summary

This thesis study has been commissioned by KLM’s Network department in order to find answers
to the following questions.

1. What is the relation between a flight schedule and the resource demand for the most critical
ground resources as calculated by Ground Services - Tactical Planning (GS-TP) and is it
possible to quickly verify whether a flight schedule will be accepted after an operational
check?

2. Given that a schedule will not be accepted by Ground Services - Tactical Planning, how
can the Network capacity planners be advised to alter the schedule such that it increases
the probability of acceptation?

3. Given a flight schedule, what can be said about the demand for ground resources on the
day of operation?

Questions 1 and 2 are answered by implementing the plannings rules (i.e. PUGs) that GS-TP
uses in order to determine the resource demand of a planned schedule. It has been shown that
using these PUGs to generate tasks can give a sufficient indication of the planned demand for
some resources without the realization of a gate planning. For other resources, machine learning
models can be used in order to quickly estimate their demand.
The demand for ground resources on the day of operation (question 3) is estimated by applying
PUGs and the machine learning models on schedules for which flight delays are simulated by
OPiuM. It is shown that this approach provided a better estimator for operational demand than
the current planned demand as calculated by GS-TP.
Furthermore, a mathematical model is developed to evaluate the expected demand for tow
trucks that carry out widebody tows. Unfortunately, this model could not be validated because
of assumptions and generalizations that had to be made in the modeling phase.

Recommendations

It is recommended to use the implementation of PUGs and the machine learning models to give a
quick estimation of the resource demand as calculated by GS-TP during the network scheduling
phase. Both the resource demand and the lists of tasks that can be produced using these methods
can provide sufficient information to adequately implement schedule changes in order to prevent
operational infeasibility.
Comparison with actual data showed that for some resources it seems like the resource demand
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planning according to GS-TP differs consistently from the demand observed in operations. It
is recommended to study these cases in more detail in order to improve the planning of ground
resources.
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