
Drift correction using a multi-rate
extended Kalman filter

Robin Knuppe
s1496735

Abbreviations
HMD – head mounted display.
XME – Xsense MVN engine.
OPS – optical positioning system.
Pose – orientation and translation. (typically represented by a 4x4 matrix in this document)
KF – Kalman Filter.
RMS – Root mean square.

Abstract

This work proposes an algorithm to improve an existing positioning system in a virtual reality
application. This existing system uses the inertial based XME (Xsense MVN engine) which is prone
to drift. Drift is a real problem, because accidents can happen when the virtual world is misaligned
with the designated play area in the real world. After considering several approaches we settled on
using a second positioning system in the form of an optical inside-out approach. In order to deal
with the opportunistic and desynchronised nature of this method we developed a multi-rate
extended Kalman filter for the sensor fusion. The filter was designed with two update steps, one for
each positioning system. One update step takes the pose of the OPS and the other a delta pose of the
current and previous XME pose. With this approach a test was done where the designed OPS error
model and the delta approach were compared to simple alternatives. The test used a third, proven,
pose estimation system (the optitrack) to provide ground truth poses. The results show that the OPS
error model doesn't improve much over a static error. The delta approach is very preferable
compared to the non delta approaches tested. The results also show that the algorithm does correct
the drift.

Contents
 1 Introduction:..4
 2 Optical positioning..5

 2.1 Literature Review...5
 2.1.1 Inside-out or Outside-in..5
 2.1.2 Optical positioning feature based or using Fiducial markers..7
 2.1.3 Feature and marker Hybrid systems..9
 2.1.4 Marker type...9

 2.2 Marker detection and pose estimation..10
 3 Sensor fusion...11

 3.1 Kalman Filter..12
 3.2 Available data...12

 3.2.1 Model..13
 3.2.2 Noise estimation..16
 3.2.3 Extended Kalman Filter..18
 3.2.4 Multi-rate..19

 4 Experiment/ test:..22
 4.1 Setup...22
 4.2 Results...24

 5 Discussion..29
 6 Conclusion...30
 7 Future work...30

 1 Introduction:
Within a virtual reality simulation a user has limited awareness of his/her surroundings. This makes
it important that the system accurately aligns the virtual world with the real world. If they do not
align, a user may walk into obstacles (for example walls or other players) in the real environment
while avoiding them in the virtual one. Besides in augmented reality and virtual reality pose
estimation is also an important aspect in robotic navigation.

RE-liON works on a multi user virtual reality simulator. The application is meant to provide
realistic virtual training scenarios for several fields of crisis management. Small teams are able to
partake in a virtual scenario together. Because the environments in these scenarios are virtual, the
same physical environment can be used for many different scenarios. The setup of the system itself
is mobile, meaning that it is relatively simple to move the setup to an other location if required. This
simulator is used as the target application for this research.

For pose estimation RE-liON currently uses a full body wearable motion capture suit (from Xsense
https://www.xsens.com/) that possesses a series of inertial measurement units that track the user's
relative movements limb from limb. With the Xsense MVN Engine (XME) poses (translation and
orientation) are generated for a range of body parts by fusing magnetometer measurements together
with the IMU measurements. The poses are generated at a high frequency with small relative error,
but the XME suffers from drift (accumulated error) when it is used for longer periods of time.
Besides drift sudden distortions can also happen. Because XME works relative to itself, it is not
able to recover without additional data.

A second pose estimator is used to tackle the problem of drift. The estimations of both systems can
be combined to create a more robust and accurate system. The second estimator should provide data
that enables the positioning system to recover from drift and other possible errors. This means that
the second pose estimator mainly serves as a correction for the XME positioning system. Optical
positioning systems (OPS), which are discussed in detail in section 2, fulfil the requirements of
being portable and lightweight, as well as robust, accurate and free of drift. For those reasons we
chose to use an OPS in this work.

The extra data the OPS offers is fused together with the XME data in an effort to increase the
robustness of the positioning system. A popular technique for sensor fusion is the Kalman Filter. A
few challenges arise fusing the systems together when using the Kalman filter. Both positioning
systems work individually, in separation of each other. In this case that means that both systems
work in different coordinate systems. Furthermore the timing and frequency of the OPS depends on
whether markers are detected in a frame. Not only is the frame rate of the camera different from that
of the XME system. The OPS provides intermittent measurements which depends on the actual
circumstances and cannot be predicted. In this work we address both these problems.

Another challenge we encountered is that the error on the OPS measurements are not normally
distributed. Kalman filters are predicated on the assumption that both observation noise and system
noise are normally distributed. As we will discuss in section 3.2.2, not only is the observation noise
of the OPS not normally distributed, its statistics depend on the measurement. We leverage these
properties of the noise to make the fusion more accurate.

This leads us to the following main question:
• Does the proposed model correct the drift and thus increase the accuracy over time

compared to the XME?
With the following secondary questions:

• How do we tackle the misalignment of the positioning systems?
• How do we fuse together two positioning systems with different rates, where one also has

inconsistent timing?
• How to deal with measurement dependent noise?

A model has been developed using the extended Kalman filter to tackle these challenges. The model
makes use of two different update steps, one for each of the pose estimators. This was done to
circumvent the challenge of timing and frequency differences. To tackle the varying misalignment,
which grows as the XME accumulates drift, between the two coordinate systems we used the
difference between the latest and second latest poses of the XME system. Because of this we refer
to the model as the delta model throughout the document. We also propose a noise model for the
OPS measurements that depends on the size of the marker by counting the amount of pixels.

 2 Optical positioning
In this chapter several design options are explored. We start with the cameras' placement, mounted
on the users or around the tracking area. Then we look at what method of tracking we will use.
After we decided to use markers we explored some different marker options.

 2.1 Literature Review

 2.1.1 Inside-out or Outside-in

For optical solutions in tracking a person's location there are two approaches. You can either use
inside-out tracking or outside-in tracking.

Outside-in
An optical outside-in solution would be
where one or more cameras are placed so
they would cover the whole playing field.
Users can be identified and their positions
can be calculated as long as they are in
the view of one or more cameras.
Markers can be used to make the
identification or pose estimation easier
and more accurate. Markers would serve
as an indication of the the actual point
that is supposed to be tracked.

Figure 1: Outside-in tracking using three optical
sensors. The user can be equipped with markers for
tracking or identification.

Cam 1 Cam 2

Cam 3

User

Inside-out
A solution for inside out optical
pose estimation is when one or
more cameras are mounted on the
user(s). Images of the natural
features in the environment or
markers placed in the
environment allow the position of
the user to be estimated. Kiyoung
et al [KMYWJ05] present a game
that uses an inside-out approach
where the markers are placed on
the ceiling while a camera facing
upwards is mounted on the users'
head.

Both options are realisable in the
target application. So they are

compared to each other to decide which one seems most suitable.

• Tracking area:
◦ For the outside-in approach the tracking area is as big as the area the cameras can cover

but are still able to correctly track the users. Depending on the how the cameras are
placed in the environment, it might be difficult to cover larger areas. For example: If the
cameras are mounted on a support on the side line of the area, the middle of the field
might not be covered depending on the range of the cameras. For inside-out tracking the
area size depends on the method used. If natural features are used the area is
theoretically limitless. If a system that relies on markers is used, the size is limited to the
area where the markers are placed.

• Cameras used:
◦ For outside-in the number of cameras required depends on the area that needs to be

covered as well as the range of the cameras. If one camera covers the whole area, one
can be sufficient. Using more than required could result in an increase of the robustness
and/or accuracy. For inside-out at least one camera per user is needed. In this case
multiple cameras can also be used to increase the robustness and/or accuracy. Also
different types of cameras can be explored. For example stereo cameras or cameras that
are capable of measuring depth. Although such camera offer limited benefits with
marker-based systems, they can be beneficial when natural features are being tracked.

• Camera failure:
◦ When camera failure occurs using an outside-in approach the tracking area decreases

(unless it has complete overlap with other cameras). During camera failure in an inside-
out the user will not be able to receive any optical pose estimations any more, but it
should have minimal effect on the other users.

• Setup:
◦ In the inside-out configuration the cameras are likely to be mounted on the equipment

users are wearing. For outside-in the camera(s) need to be distributed in and/or around
the designated area. Also the power supply need to be addressed here. Although outside-
in cameras can use wired power provision ans inside-out cameras require portable
battery-provided power, in the current setup inside-out cameras can be connected to the

Figure 2: Inside-out tracking. A camera mounted on the head
mounted display allows for pose estimation of the person's
head. (image source: https://www.oculus.com/en-
us/blog/welcome-atman-binstock-chief-architect/)

mobile computer which is already present. The downside is that it will demand some of
the limited onboard processing power and memory. For outside-in each camera needs to
be connected to the server of the application.

• Occlusion:
◦ Because the users already possess the XME pose estimations, occlusions aren't a big

problem in this application. For either approaches, if occlusion occurs or not, the
positions are continuously estimated by XME. Although the longer a user is tracked
solely on the XME measurements, the more drift can be expected.

The inside-out application is chosen as more favourable mainly because of the setup. That setup
enables an easy accessible power supply for the camera. The tracking area is also more easily
defined and markers are generally easier to install around the area than cameras are. Also this way
there is no identification process needed for the user.

 2.1.2 Optical positioning feature based or using Fiducial markers

Visual odometry is known as the process of estimating the change in position over time through the
use of subsequent images. Through the use of optical flow in the images relative motion can be
estimated. Visual odometry includes lots of techniques popular in robot localization. The basic
structure of a visual odometry procedure is as follows:

1. The acquisition of image(s).

2. Correction the image of possible camera distortions.

3. Detecting features and correlate them to the previous frame(s).

4. Outlier filter.

5. Motion estimation.

6. Repopulation/ key-frame update (if necessary).

C. Forster et al [CMD14] present a open source implementation of their semi direct visual odometry
approach. In their approach they eliminate the need for feature extraction by operation on pixel
intensities directly. They claim it provides increased robustness in little, repetitive, and high
frequency-texture envorinments compaired to traditional solutions.

Extensions to visual odometry are SLAM (Simultaneous localization and mapping) and PTAM
(Parallel tracking and mapping) [JTD14]. SLAM and PTAM use visual odometry techniques to
calculate the relative motion but at the same time also maps the environment simultaneously (or
parallel). The additional information the map provides can then be used to help with the drift. The
map also helps the system to be able to recover fast when it loses track of its pose, for example
when movement between two frames is large enough that little to no features of the previous frame
are visible in the new frame. If the new frame does contain features which are already mapped
before, it should be able to recover relatively fast. It should be noted that during the map generation
drift is still present.

In contrast to the visual odometry solutions, a fiducial marker solution provides immediate pose
estimations instead of relative movement estimation. The use of markers increases robustness and
reduces computational requirements. However it requires engineering the environment [SN06].
Before a marker based system becomes operational an initial setup step of marker placement is
needed. The marker layout must also be known to the system. A basic marker detection procedure

consists of the following steps:

1. The acquisition of image(s).

2. Correction the image of possible camera distortions.

3. Detecting potential markers.

4. Outlier filter.

5. Marker identification

6. Pose estimation.

In [SILT12] section 4.4.1 they give general guidelines about when to use marker based tracking in
favour of feature tracking. Some of the cases that might apply to the target application:

• Challenging static environments for feature tracking.

◦ In these environments feature tracking can become very unreliable, for example an
environment with a low amount of traceable feature. Another example is environments
with repetitive textures. Here feature tracking solutions can become confused due to the
large number of similar features. It is possible to alter the environment by adding
additional features to track, but in that case it loses an advantage it has over using
fiducial markers.

• Non static environments.

◦ When the background of the environment contains (a lot of) moving objects or persons it
might confuse a feature based tracking system as features can constantly change. For
example an environment with trees. Trees can already be considered to have repetitive
texture but the features also vary in position as soon as a the wind blows through the
leaves.

• Occlusion

◦ When the background often gets occluded by moving objects or persons a feature-based
tracking system can lose track. When the camera is no longer occluded it is possible for
such a system to recover, but this gets harder if the camera's pose changes during the
occlusion. Then the there could be little to no familiar features left to figure out the
current pose.

• Convenient coordinate frame.

◦ Without some additional and/or initial information a feature based tracking system will
not be able to deduce earth coordinates or scale. A marker-based system will easily be
able to deduce those as they are provided the necessary information in the marker
dimensions.

• Efficiency

◦ Typically, marker-based systems are easier to implement. So if tracking is not the focus
of a project it is generally faster to get to a proof of concept using a marker-based
system.

• Limited computational capacity

◦ Generally marker-based systems are less demanding with processing power and
memory.

The marker-based approach is preferable for a multitude of reasons: 1) It is computationally less
demanding. 2) It estimates in a convenient (absolute) coordinate frame. 3) It is allowed to alter the
environment for the target application. 4) a marker approach is able to recover easily if it has
suffered from occlusion.

 2.1.3 Feature and marker Hybrid systems

A hybrid system will be able to use the versatility of the feature-based system with additional
information from markers. The markers can be used as a means to correct potential drift in the
feature based system and serve as a good initialisation point for getting the right scale and
coordinate space.

This option is not chosen because the XME pose estimation already has similar results to a feature-
based solution. They both support high relative changes but suffer from a drift. The XME system is
currently a vital part of the system. Next to pose estimation it is also used for estimating a person's
stance.

 2.1.4 Marker type

When using predetermined markers there are several option to choose from.

Active / passive markers
The choice is between active and passive markers. Active markers are markers which actively send
a signal, an optical application for this is the usage of lights as markers. Often infra red lights are
used, as these are invisible for the human eye but visible with a camera with an infrared filter.
Although one should be careful using this in
environments with a lot of infrared light from the
environment (for example outside in sunlight). A
similar option can be used with passive markers. In
that case the camera will be equipped with the infra
red lights, and the markers used are retro reflective.
A retro reflective marker reflects light back to the
source with a minimum of scattering. More popular
is a passive black and white marker, which can
simply be printed on a piece of paper.

Shape
The research in [STOR12] showed that the most
popular are square and circle shaped markers. Both
can be used for pose estimation, but prior work
indicates that that using circles has a higher pose estimation accuracy and is more robust to noise
and perspective distortion [AJD11a]. Square markers on the other hand have a larger data capacity.
Square markers are still chosen instead of circle markers because of the accessibility/ license of the
available libraries.

Identification:
To be able to use multiple markers the markers have to be distinguishable. In [SILT12] they
mention three types:

• Template markers: each marker has its own template, when a marker is detected. Its
template will be matched with the template database to see which template it most
resembles.

• Barcode markers: These often have a binary data grid in which can be converted to a
identification number. They can also make use of error correction. A. Rice et al [ACJ05]
presents a scheme that makes efficient use of the available payload while still providing a
large degree of error correction which they claim requires the minimal amount of computer
vision.

Figure 3: A collection of different markers
used by different libraries.

• Imperceptible markers: Markers that are not immediately recognised as markers, for
example the use of images or miniatures.

Size and colour
Bigger is better for pose estimation as the shape of the marker is described in more pixel (when
looking from the same distance) and they will be better recognised from a longer range. But they
also are easier occluded or partially out of frame. Black and white offers the highest contrast, but
colours might enable easier recognition of the marker by colour filtering.

Position (vertical/ horizontal)
For this work we place the markers on the ground rather than placing them on walls. There are more
options available for placement density when placing the markers on the ground. There can also be
a guaranteed distance to one or more markers for the users in that case. If desired both options can
be easily used together. For the thesis only ground markers are used. These markers are assumed to
have a height of 0.

 2.2 Marker detection and pose estimation

To make optical pose estimations the ArUco library is used (presented by S. Garrido-Jurado et al
[SRFM14]). The library is easy to implement and is available for use under a BSD license. They
show the results are comparable with other AR libraries (for example: ARTag [FIAL05] and
ARToolKit [DD07]) which also offer pose estimation with AR-markers. They claim to have better
results in terms of false positive rate.

The ArUco library uses contour based algorithm to find the markers. After getting an image as input
the library uses the following steps to make a pose estimation:

1. An adaptive threshold on the greyscale image to get a binary image. An adaptive threshold
thresholds around the relative local contrast. The adaptive threshold is preferred over a
normal threshold to deal with unequal lighting. It also immediately serves for line detection.

2. Rectangle detection: The contours of each blob in the image is extracted. After a polygonal
approximation is performed. Blobs that are not approximated to 4-vertex polygons are
discarded. Several other checks are implemented as well (to thin out the number of potential
markers).

3. Identification. The remaining potential candidates will enter the identification process. After
a perspective projection of the candidate, it is divided in a binary data grid. The 4 different
rotations of the grid are then checked to see if one of them belongs in the marker dictionary.
If none of the rotations belong in the dictionary a correction method is available. A. Pagani
et al [AJD11b] described several design options in their section about marker identification.
ArUco uses the so called Code Bins (subdivision in binary bins) which is the most
commonly used method.

4. Pose estimation. First corner refinement is applied by applying linear regression to the
marker side pixels to calculate their intersection. The corners are then used for pose
estimation by iteratively minimizing the re-projection error of the corners.

Optical sensor:
The “Logitech HD Pro webcam 910 (http://support.logitech.com/product/hd-pro-webcam-c910)”
is a monocular camera used for this work. The camera has an advertised maximum frame rate of 30
fps when using a 640x480 resolution. This camera is used because it was available at the start of the
research. In preliminary testing it was deemed sufficient for testing as it was able to detect markers

http://support.logitech.com/product/hd-pro-webcam-c910

well enough up to a distance of 3 meters. A higher resolution should increase the range and
accuracy of the pose estimation (as there will be more pixels describing the marker). Although a
higher resolution will also increase the computation time of the marker detection.

Camera calibration
To preform accurate optical pose estimation, the camera's intrinsic calibration should be known. To
find the intrinsic parameters a popular camera calibration method is used. The OpenCV library has
the necessary methods to calculate the intrinsic parameters as well as some distortion coefficients.
The parameters can be saved and reused for the camera. This process should be done for each
individual camera.

Hand-eye calibration
The position delivered by the XME corresponds to a point that falls within the user's head. It is not
entirely clear where this position is in relation to the IMU sensors. The position of the optical sensor
is on top of a user's helmet on the front. The relative position of these positions is supposed to
remain constant and thus is considered rigid.

Because the optical pose estimator estimates the
position of the camera, the relation between the
that position and the XME position should be
known. If not, the XME will be corrected to the
camera position and as the camera position is
actually several centimetres in front of the XME
position errors are introduced. These errors are
especially noticeable when a user rotates. Then
both the OPS and XME both measure an
different translation (see Figure 4).

A proper way to estimate the relation is to use a
existing hand-eye calibration technique. But for
this work hand measurements were taken with
measurement tape. These measurements are
expected to contain a small error. An existing
algorithm was not used to save time as it falls
outside of the scope of the project.

 3 Sensor fusion
In this chapter the fusion algorithm that is used in this project is explained. First a short explanation
for the algorithm we want to use, the Kalman filter. Then we look at what information the
positioning systems give us, followed by how we use that information to form a model for the filter.
Because the model can't be used by the standard Kalman filter we then explain how it is used with
the Extended Kalman filter.

Figure 4: When a user rotates him/ her-self on
the pivot point of the XME head position, the
XME will not perceive a change in the
position. However, as the camera is not
positioned on that pivot point the optical
sensor will measure a translation (assuming
the optical sensor is able to estimate its pose
in both poses). In the image the green dot
represents the XME head position and the
camera is positioned on the front on top of the
user and is coloured red.

Yaw: 0
XME: (0,0)
OPS: (0,2)

Yaw: π
XME: (0,0)
OPS: (0,-2)

 3.1 Kalman Filter

A popular technique used for sensor fusion is the Kalman filter [KALM]. The Kalman filter consists
of two parts, the prediction step and the correction step. The Filter first predicts the next state based
on the previous estimate and the state transition model in (1) and also predicts the corresponding
covariance with added noise in (2) in the prediction step. Then, in the correction step, a Kalman
gain is calculated based on the relative certainty of the measurements and the current state
prediction (3). The Kalman gain is a relative weight for the measurements and current prediction.
Using the Kalman gain and the measurements, the predicted state is updated to get the corrected
state in (4). Then the corresponding covariance is calculated using the same Kalman gain (5). (The
control vector is omitted as no control input is included).

Prediction:

X̄ k=F X̂ k−1 (1)

P̄k=F P̂k−1 F T
+Q k (2)

Estimate:

K k=P̄ k HT
(H P̄k H T

+Rk)
−1 (3)

X̂ k= X̄ k+K k (M k−H X̄ k) (4)

P̂ k=(I−K k H) P̄ k (5)

Where:

F = Transition matrix
H = Observation matrix
I = Identity matrix
X̄ = Predicted state
X̂ = Estimated state
P̄ = Predicted Covariance
P̂ = Estimated Covariance
M = Measurements / Observations
Q = Process noise
R = Measurement noise
K = Kalman gain

(6)

 3.2 Available data

First we look at the information that is provided by the positioning systems. Using this information
a model is created. The XME delivers a series of poses containing an estimated translation and
orientation of several body parts of a user. A pose is constructed as follows:

Pose = [
R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
T x T y T z 1

] (7)

Where the R values are part of the rotation and T of the translation.

The poses are not directly measured. XME instead uses accelerometers and gyroscopes together
with magnetometers to calculate the poses. Furthermore, the poses delivered are not the poses of the
sensors themselves, but rather of bones of body parts nearby the sensors. These poses will be called
XME poses in this document.

Only the pose of the head is used for fusion. The head is chosen because the position and
orientation of a user's head are crucial when it comes to virtual reality as the eyes are located there.
The VR world is therefore rendered with respect to the head's pose. The helmets users wear are also
an easy location to mount a camera and this way the camera's images can also be used for other
applications, for example to give a user vision of what is ahead of him/her (if needed) without
removing the HMD. (In addition, in the current application, users typically carry a weapon. If the
weapon is inside the camera's field of view, it can also be used to improve the weapon's pose
estimation.)

The OPS delivers a pose estimation with a similar structure as the pose in (7). This pose is the
translation and orientation of the camera. It is estimated relative to the marker found in an image. If
no marker is detected in a particular frame, the OPS doesn't deliver a pose.

Both systems deliver a similar output pose estimation of the same pose. So when using them
together they can be considered as competitive. The only problem with this is that they both work in
a different coordinate system. The XME pose is estimated as a relative rotation and translation to its
initialisation position. This initial position is reset every time a XME calibration is performed. The
XME calibration matches a person's body pose to the virtual character pose. In contrast, the OPS
pose is estimated relative to the marker(s). The system should possess the layout (the position and
rotation) of each participating marker. Without the position and orientation of the markers in world
space the OPS can only estimate its pose in relation to the marker.

 3.2.1 Model

To be able to use the Kalman filter, a model is needed. The variables modelled together with their
transition need to be specified. It is also required to specify how the observations contribute to the
state. The state vector used is shown in (8). The state vector consists of the following:

• X and Z position together with a yaw of the forward vector (in a coordinate system where Y
is perpendicular to the ground). These are the values that we want to estimate for the
positioning system. The pitch and roll are not included in the filter as XME itself delivers
adequate measurements without drift using the accelerometer (which makes use of the
gravity). The Y position (the height) is also excluded as the XME value is deemed adequate.
(thus only simplifying the model by excluding them)

• The Delta (differences between Statek and Statek−1) values of the X and Z
translation and the Yaw rotation. These are the changes between the latest two iterations.

• The movement speed, the movement direction and the yaw rotation speed. These values are
used to predict the next state.

State vector = [
Positionx

Positionz

Yaw
Δ Position x

Δ Position z

ΔYaw
Movement speed
Movement direction
Yaw rotation speed

] (8)

When transitioning to the next state Statek the formulas in (9) are used for the prediction step.
Where Δ t is the time between Statek and Statek−1 .

xposk = xposk−1+speed k−1 Δ t sin (directionk−1)

zposk = zposk−1+speed k−1 Δ t cos(directionk−1)

yaw k = yawk−1+ yawSpeed k−1Δ t
Δ xposk = speed k−1 Δ t sin(directionk−1)

Δ zposk = speed k−1 Δ t cos(directionk −1)

Δ yawk = yawSpeed k−1 Δ t
speed k = speed k−1

direction k = directionk−1

yawSpeed k = yawSpeed k−1

 (9)

Although the XME delivers a pose, the pose will not be directly used in the filter. The reason for
this is that the position the XME delivers is relative to its initial position. The position is basically a
summation of all the movements made since the initialisation. The measurements XME uses for its
pose are accurate but still have a small error. This means that the summation will also include the
sum of all the errors which results in a drift which means that the position that is delivered will
become less accurate over time. If the position with increasing variance is used as a direct
measurement, it will result that the XME observations will contribute less and less to the estimation
(this is visible in the results where the delta model is compared to a position model). At some point
this causes the filter to almost solely estimate the position on the prediction (and optional OPS
observations). As the predictions alone can't deliver accurate estimations over longer periods of
time, this approach isn't a viable option. So instead the difference between two XME measurements
are used, the deltas (10). The error between two XME measurements does not keep increasing over
time (Figure 5). The individual error between two pose measurements can still differ depending on
the time between measurements.

XME Measurements = [
Δ Positionx

Δ Positionz

ΔYaw] (10)

The OPS measurements also deliver a pose. The X and Z measurements are used directly, only the
yaw isn't used directly. The yaw will be the result of (12). This is done to synchronise the number of
complete rotations an user has done with the current OPS observation, as the rotation used in the
filter is a continuous summation of the deltas. The reason for this is to keep the yaw representation
linear for the filter (Figure 6). Additionally, 2π will be added or subtracted if the difference
between yawk

ops
− yawk −1

kalman is still above π or below −π . This is done to ensure the
smallest rotation is used. No deltas are calculated for the OPS observation because they are assumed
to be available very inconsistently.

OPS Measurements = [
Position x

Position z

Yaw] (11)

yaw k
ops

= yawk
OPS measured

+ yaw k−1
kalman

−(yawk−1
kalman mod 2π) (12)

Figure 5: Illustrative noise representations for consecutive steps. The X means that there are is no
observation available. The bigger the size of the circle, the higher the noise variance.

t0 t1 t2 t3 t4 t5 t6 t7 t8

XME pose

OPS X X X X X X X

XME X

Figure 6: difference in scale for yaw. The continuous one is used for our model.

-1250
-1150

-1050
-950

-850
-750

-650
-550

-450
-350

-250
-150

-50
50

150
250

350
450

550
650

750
850

950
1050

1150
1250

-1500

-1000

-500

0

500

1000

1500
The same rotation visualised on different scales

Circle scale Continuous

Degrees

D
e

g
re

e
s

 3.2.2 Noise estimation

During preliminary testing of the pose estimation we
noticed that the error on the OPS measurements wasn't
normally (Gaussian) distributed. In particular, that the
error on the OPS measurement correlates with the size
of the marker in the camera image. This latter size is
available when the detection is done, so that we can
estimate the noise on the measurement as a function of
the marker's size. In this section we develop this idea
and describe how we parametrise the OPS measurement
noise.

To get a rough estimation of error that is measured,
multiple measurements in a grid shape have been made
(Figure 7). It was a 7 by 7 meter grid with the marker
position in the centre of the grid, resulting in a
maximum X and Z distance of 3 meter (with maximum
distance in the corners being √32

+32). The marker
in the middle has dimensions of 29.5 x 29.5
centimetres. The positions in the grid were measured by
hand with the help of spring rulers.

On each of the 48 positions (no measurements were taken on position 0,0) 5 series of 30 frames
were taken with 5 different yaw angles. The angles don't follow a predefined value. Instead they are
decided by the position of the marker in the camera image. This is done to ensure that there are
always 5 measurements with different angels as the angle at which the marker is visible changes
with the distance to the marker.

For this test a camera (the Logitech HD Pro webcam 910) was
mounted on top of a pole which in turn was mounted on a mobile
cart (Figure 8). The height of the camera in this setup is 1.80
meters. The camera was connected to a mobile computer running
the pose estimation software. A pivot point directly underneath the
camera was used to rotate around for the different angles.

The pose estimation software calculates a pose for each frame in
which the marker is identified. If the marker is successfully
identified in all frames it would total to 7200 poses. These estimates
are then checked on how much they differ from the measured
positions.

An overview of the estimations is presented in Figure 9. Each
measurement position consist of collections of arrows. The colour
coding of the arrows (except black) corresponds with the marker
position in the image (far left, left, middle, right and far right). The
black arrows are cases where the estimation presumes a wrong
perspective (Figure 11). These cases are discarded. The magenta
circle in the images represents the 3 meter distance to the marker.

Figure 7: Measurement positions in
grid formation. The orange square is
the marker position and the blue tilted
squared are the positions where
measurements were taken.

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4
measurement positions

X in meters

Z
 in

 m
e

te
rs

Figure 8: Camera mounted
on a pole on a cart. The
camera is connected to a
mobile computer that
processes the computer
vision application.

Each of the remaining poses is compared to the
measured value. The distances between the
measured and estimated position are regarded as
errors. Figure 10 shows the same error but then
against the area of the marker in pixels.

A function of the trend-line of the error against
the marker area is calculated for use in the sensor
fusion. It is recommended to recalculate the
function when using different camera settings
because different settings might give different
results, especially if the resolution is different.

There were no recorded instances where the
marker was identified with a wrong id. There
were also no recorded instances in false positives
(finding a marker where there is no marker)

The value used for OPS observation noise is
calculated based on the area of the marker found
in the image instead of the distance because the
distance is estimated and the area is measured.
The Yaw currently has no estimated noise value.
The same counts for the observation noise for XME
measurements and for process noise. The values for
those is set by a trial and error approach.

Figure 9: Estimated positions and directions
of the camera pose for the grid test. The black
arrows are estimations which took a wrong
perspective and are discarded. The rest of the
colour coding represents the roughly where
the marker was positioned in the image (far
left, left, middle, right, far right).

Figure 10: The error between measured and estimated positions.
The trendline is used for error estimation for OPS
measurements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(x) = 174.11 x^-0.93

Estimation error against the marker area

Pixels

e
rr

o
r

in
 m

e
te

rs

 3.2.3 Extended Kalman Filter

The state transition includes non linear formulas and because the regular Kalman filter requires the
model to be linear, the Extended Kalman filter is used instead. The Extended Kalman filter is very
similar to the Kalman filter but has added linearisation of the state transition model and the
measurement model. Formulas (13) to (17) are of the extended Kalman filter, where only (13) and
(16) have a small change compared to the regular Kalman filter. An other difference is that F and H
are now Jacobian matrices of f(X) and h(X) which have to be recalculated every iteration.

Prediction step:

X̄ k= f (X̂ k−1) (13)

P̄ k=F k P̂k−1 F k
T
+Q k (14)

Estimation step:

K k=P̄ k HT
(H P̄ k H T

+Rk)
−1 (15)

X̂ k= X̄ k+K k (M k−h (X̄ k)) (16)

P̂k=(I −K k H) P̄k (17)

Where the state transition Jacobian is calculated by:

F k =
δ f
δ X

= [
1 0 0 0 0 0 Δ t sin(ak−1) vk−1 Δ t cos (ak −1) 0
0 1 0 0 0 0 Δ t cos (ak−1) −vk−1Δ t sin(ak−1) 0
0 0 1 0 0 0 0 0 Δ t
0 0 0 0 0 0 Δ t sin(ak−1) vk−1 Δ t cos (ak −1) 0
0 0 0 0 0 0 Δ t cos (ak−1) −vk−1Δ t sin(ak−1) 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

] (18)

The XME and OPS both have their own observation Jacobian described by (The observation
Jacobian matrices stay the same for this application):

Figure 11: The pose estimation algorithm sometimes confused the
camera pose of the left image with that of the right image. The right
image is of the same marker but then taken upside down from the
opposite side.

H k
xme

=
δh
δ X

=[0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0] (19)

H k
ops

=
δh
δ X

=[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0] (20)

Addition
After the traditional update step is completed the speed and direction are set based on the updated
delta values and the delta time using (21).

speed k =
√ (Δ xposk

2
+Δ zpos k

2
)

Δ t
directionk = atan2(Δ xposk ,Δ zposk)

yawSpeed k =
Δ yawk

Δ t

(21)

 3.2.4 Multi-rate

As mentioned before, the camera pose estimations are only available when the marker is detected
by the camera, which result in very inconsistent measurements, see Figure 12 for a illustrative
visualisation. This means that the filter has to deal with non-uniform multi-rate observations.

In [GSDR11] two solutions are very briefly mentioned. The first one is to synchronize to a higher
order. The second is to weigh the uncertainty of each measurement with how often they occur. Nutzi
et al [GSDR11] further developed the second solution, but simplified the weighing. They put the
noise value of the measurements towards infinite if there were no recent measurements available.
This results into almost completely ignoring those measurements. In [AM07] this goes one step
further by only performing the prediction step of the filter. Thus completely ignoring the available
measurements because others are missing.
In [SFD14] they mention synchronizing to the system update cycle. This is a popular choice in
many systems, including navigation systems, industrial systems, and transportation systems, and
others. The reason for it being that the fusion is often done on a central processing location.

For our model we use neither of those solutions. Instead we use a different update step for the XME
and OPS observations. Then we apply the appropriate update as soon as we receive a measurement

Figure 12: Illustrative visualisation of observations available over time. It is possible that that an
OPS observation includes multiple observations.

time

XME:

OPS:

from one of the systems. And because of the difference in frequency this means that it continuously
gets updated using the XME measurements but infrequent and irregularly by the OPS. This is
possible for our model as we don't need both observations to make an estimation.

XME only
If only a XME observation is present, the X, Z and yaw values are only predicted and left
untouched in the traditional update step as we don't have any observation of these values. The
prediction is done by using the value of the previous state and adding the predicted delta values. But
after the update step updated delta values are available. This means that we can make a better
estimation of the position values using: (22).

xposk = xposk−1+Δ xposk

zposk = zpos k−1+Δ zposk

yawk = yaw k−1+Δ yawk

 (22)

For the covariance we use the same idea. The noise values of the estimated deltas is added to the
noise values of the previous estimated positions.

OPS only

If only an OPS observation is present, the best estimate is the updated estimate of the update step.

OPS and XME
If observations of both systems are available at the same time, they are processed after each other.
With the OPS observations(s) going first.

Multiple OPS observations
Next to different timings, the OPS can also deliver multiple poses at the same time. This can occur
when multiple markers are identified in a single image. The maximum number of poses is
undefined. It can be defined how many are allowed in the filter, as it can be questioned how much
(for example) a sixth pose has to offer for additional information. But Instead an approach is used
that allows a variable number of observations. When multiple OPS observations are available at the
same time they are concatenated together in the measurement matrix.

For example, if three OPS observations are available, we have 9 measurements in total. All three of
the OPS observations are identical to (11). Each also have their own measurement error. (23), (24)
and (25) show how the values are concatenated. The measurement matrix then looks as follows:

Figure 13: Steps taken when only an XME observation is available. This corresponds with
formulas: (13)(14) -> (15)(16)(17) -> (22) -> (21).

Predict UpdateXME only
Correct position

with deltas
Set speed,

Direction

Figure 14: Steps taken when only OPS observations are available. This
corresponds with formulas: (13)(14) -> (15)(16)(17) -> (21)

Predict Update Set speed,
DirectionOPS only

M = [
M 1

M 2

⋮

M n] , M k
OPS

= [
[
Positionx

Positionz

Yaw]
OPS 1

[
Positionx

Positionz

Yaw]
OPS 2

[
Positionx

Positionz

Yaw]
OPS 3] (23)

The corresponding observation matrix then looks like:

H = [
H 1

H 2

⋮

H n] , H k
OPS

=[
[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0]

OPS 1

[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0]

OPS 2

[
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0]

OPS 3] (24)

The individual noise matrices of the observations are concatenated diagonally. The non diagonal
values are filled with zeroes:

R =[
R1 0 0 0
0 R2 0 0
0 0 ⋱ 0
0 0 0 Rn] , Rk

OPS
= [

[
r 1 0 0
0 r 2 0
0 0 r3

]
OPS 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 [

r 4 0 0
0 r5 0
0 0 r6

]
OPS 2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 [

r7 0 0
0 r8 0
0 0 r9

]
OPS 3] (25)

The r values are calculated based on the measurements themselves (see chapter). The
measurements are assumed to be all conditionally independent given the observations, meaning
each individual noise matrix only has values on the main diagonal.

 4 Experiment/ test:
After some preliminary testing to see if the filter works, an experiment was done in order to
quantify how well it performs. The goal of the experiment is to:

• Investigate whether the proposed model decreases or eliminates the drift.
• Show why a delta XME model is chosen instead of a model using the XME position data as

is.
• See how the OPS error model performs compared to a simple static average.

A third pose estimator is used as a ground truth in order to compare the results. All three of the pose
estimators record their measurements over a certain amount of time independent of each other
(however the XME and OPS are recorded simultaneously in the same application). The same data is
then reused in multiple experiments to keep the results comparable. An Optitrack system was used
for this (http://optitrack.com/). The Optitrack system uses a set of infrared cameras combined with
retro-reflective markers for its pose estimation. The Optitrack works independently on another
system concurrent with the other pose estimators. The results of the Optitrack are compared with
the results of the XME and the proposed model to draw conclusions. As the Optitrack measures at
an independent rate, only the measurements that are closest within a maximum time frame of 100
milliseconds are used for comparison. There also exist a few gaps in the OptiTrack data where it
was unable to track the user, for example if the user was walking outside of the tracking area.

 4.1 Setup

For the experiment, four markers are placed on the ground in between the Optitrack cameras so
both systems share the same tracking space. In this area data was captured for all three pose
estimators at the same time. A retro-reflective marker used by the Optitrack was mounted on top of
the user close to the camera. After completing the data collection of the test run, the data of the
XME and OPS is fed to the algorithm. The results of the fusion are then compared to the results of
the Optitrack. There were no predefined patterns or movements. Although a few unusual
movements have been made to challenge the XME tracking. These movements include walking
backwards and sitting on a chair with wheels to ride across the room and back. The chair riding in
particular, is a movement that is known not to be tracked correctly by the XME, because the legs
stay still but the body moves. This movement was included to see how the algorithm recovers from
inaccurate XME input.

The duration of the test was 13 minutes and 35 seconds. The number of observations within a 100
time frame to a Optitrack observation are 85310 for XME and 2261 for OPS. In Table 1 the number
of observations for each minute are displayed. On average the XME produces 104.8 observations
per second and OPS produces 2.8 observations per second. The KF produces fewer than the XME
because some of the XME observations are filtered out based on the time between the
measurements was sometimes lower than a single millisecond (or exactly the same).

1 2 3 4 5 6 7 8 9 10 11 12 13 14

XME 5251 5934 7200 7198 5293 5411 6895 5059 7199 7199 6919 7021 6951 1780

OPS 61 21 18 258 160 126 165 316 132 198 309 300 182 15

KF 4477 5278 6557 6711 4907 4724 5801 4336 6569 6720 6381 6493 6321 1559

Table 1: Number of observations that are within 100 milliseconds of a OptiTrack observation (each
minute). There are less KF observations than XME observations because some of the XME
measurements have been filtered out because the time between the current and the previous
measurement was too low. The 14th minute is not a whole minute, the recording was cut off
somewhere in that minute.

Figure 15: The route walked during the test. The
rout has a gradient from black to red indicating the
start and end of the test. At some points the user
walked outside the tracking area which are not
visible in this figure (a line directly to the point
when the user is tracked again is drawn instead).
The green lines are one meter lines on both the X
and the Z axis as a scale. The lines cross at the
point where both X and Z are 0 in the experiment.

 4.2 Results

In general the results of the OPS weren't optimal in this test. There were easily noticeable bad pose
estimations at certain points in the test. It was easily noticeable as the pose estimated by the OPS
was jumping around while the other pose estimators displayed the user standing still. These jumps
were caused by the OPS not correctly detecting the corners of the markers sometimes. After some
investigation it can be explained by an error in the rectangle detection in in the pose estimation. It
seemed that in some cases the detected corners were not of the marker itself but rather of the border
of the sheet the marker is printed on. In Figure 16 an example of this behaviour is shown. It is
unclear what causes this exactly as the marker is clearly visible in the binary image. A simple future
solution for this is to increase the white space between the marker and the border of the sheet that
the marker is printed on.

Besides those errors the results of the pose estimators still isn't impressive. In Table 2 the results are
shown of the XME, OPS and also the KF (using the proposed method) compared to the OptiTrack
results. Even though the overall numbers are high it still shows that the fusion does improve the
results as the results for the KF are lower than those of the XME.

MEAN STD

XME 0.64 0.49

OPS 0.21 0.25

KF 0.22 0.35

Table 2: The mean and standard deviation in meters. (compared to the OptiTrack results).

XME delta model VS XME position model
We used an altered version of our proposed model so it could use the pose measurements directly
instead of using the delta values. The changes entail: the observation matrix, which is now similar
to that of the OPS. The second change is how the speed and direction after the update step is set is
calculated, because the model doesn't receive updates for the delta values any more. Instead it now
calculates the speed and direction based on the difference between the current and previous filtered
results. We did two tests with this altered model. One with the XME keeping the same noise model
as the XME noise model used in the proposed model. With the other we use an accumulative noise
model for the XME that better displays the expected noise for the XME pose measurements. In this
test we accumulate the noise vales of the XME measurements per observation. Because the XME
position value is expected to contain more noise over time, this noise model will reflect that to the
filter. This test is done to confirm the challenges mentioned and see if the proposed method works
better.

Figure 16: pose estimation error

In Figure 17 the results of test with the low XME noise values are compared to the XME
measurements to show that the results are very similar. This approach has little to no improvement
over the raw XME measurements.

The data in Figure 18 is an comparison of the same test but now with the accumulated XME noise
model. We again made the comparison with the XME measurements to look for improvements.
Here it looks like like there is some improvement in the averages when looking at minutes 8 to 12.
But the increasing standard deviation over time shows that the results become more unstable the
more time passes. There is also the abnormality in 13th minute where the error on the filter results
became very high. This seemed to be because the speed and direction update was large in one case,
which caused the predictions to be large as well. Normally if this would happen the filter would
correct itself with the following measurements, but because the expected noise on the XME
measurements had became higher than the prediction noise, the filter had trouble correcting itself.

Figure 17: The kalman filter results when using the XME pose data directly with a low noise
model compared to the raw XME output.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Kalman filter results using XME position data with a low noise model

XME

KF

Individual minutes

E
rr

o
r

in
 m

e
te

rs

In Figure 19 a part of the result of the two tests are shown in comparison with the Optitrack and raw
XME data. It shows how the results don't seem to improve over the raw XME data.

OPS noise model
We compared the results using the proposed Delta model with two different noise models for the
OPS measurements. We compare a standard deviation and the proposed OPS noise model. We claim
that the proposed model would better represent the noise on the measurements and thus lead to
more accurate results. In Figure 20 it is visible that using the proposed noise model on average
leads to slightly better results. The overall average for the standard deviation method is 0.237 ±
0.093 and the for the proposed (pixel) method 0.206 ± 0.087.

Figure 18: The Kalman filter results when using the XME pose data directly with an
accumulating noise model compared to the raw XME output. The error measured of the
Kalman filter in the 13th minute is higher than depicted here, but the chart is cut off at 2
meters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Kalman filter results using XME position data with an accumulating noise model

XME

KF

Individual minutes

E
rr

o
r
in

 m
e

te
rs

Figure 19: The four images are of lines drawn through all the postiion data in the 10th minute. The
data is in order from left to right from: Optitrack, raw XME, Kalman filter results using XME
position data with a low noise model and the last one is of the Kalman filter results using the XME
position data with an accumulating noise model.

Drift correction
We compare the results of the proposed delta model with the proposed OPS noise model with the
XME measurements to see if the results of the extended Kalman filter don't suffer from the same
drift that is present in the XME measurements.

In Figure 21 it is visible that the mean error of the XME measurements rises over the duration of the
experiment. For the Kalman filter results the mean error doesn't seem to rise. The mean error at the
first and last minute are very close. This suggests that the Kalman filter results do not experience
the same drift as the XME does.

What also seems interesting are the values at minutes 6 and 7. The means are much higher for the
XME results there. This can be explained by the movements of the user at that time. At that time the
user sat down on an office chair and rolled across the room and back. The fact that we returned back
at the same point where we started explains why the high increase in error subsides again.

Figure 20: Mean error for the Kalman filter results. One using the error model based on the
number of pixels the marker is represented by and the other with a static number (the
standard deviation).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

The kalman filter results when using the standard deviation
 and the proposed error model based on the number of pixels

STD

Pixel

Individual minutes

E
rr

o
r

in
 m

e
te

rs

After comparing the mean XME error at the start with the mean error at the end of the test there
seems to be a drift of 4-5 centimetre per minute. This approximation should not be taken as a
standard drift for the XME, it is highly likely the drift was artificially introduced. Although it can
happen and our purpose was to illustrate how the XME alone cannot recover from it.

In Figure 22 our different results are summarized of the experiments with the standard pose XME
measurements (the blue and the red) and our proposed method (yellow). In this comparison one can
clearly see that the proposed method performs better.

Figure 21: Mean errors for the XME, OPS and KF positions compared to the OptiTrack
measurements. The results are calculated separately for each minute.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mean error compared to the Optitrack seperate for each minute

XME

OPS

KF

Individual minutes

M
e

a
n

 e
rr

o
r

in
 m

e
te

rs

Figure 22: Kalman fitler results using XME position data instead of the proposed delta XME
data. 2 different noise models are explored. The results of the proposed method are also
included for comparison.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Kalman Filter results when using the XME position with different noise models

Low error

Accumulated error

Proposed method

Individual minutes

E
rr

o
r

in
 m

e
te

rs

 5 Discussion
Several tests have been done to get an idea on how the proposed method performs. In this chapter
we are going to discus these results.

Delta approach vs position approach
The Kalman filter results when using poses for XME observations with a low noise model are
basically the same as the XME results. This is as expected because we are basically telling the filter
that the XME is very accurate. The OPS measurements have a very small influence because the
next XME measurements will undo any changes made.

The second test used the error model that increases in the expected noise by accumulation the
observation noise over time. The results seemed to be more accurate than the XME measurements
by themselves. Although in the thirteenth minute the error skyrocketed. It is also expected that the
accuracy will get worse over time. The standard deviation on the errors seems to grow over time,
which means the results become less stable as can be seen in Figure 19. Besides these drawbacks
the results are also worse than the proposed method (Figure 22) in general.

Multi-rate
The corrections are only done when OPS observations are available. So it is not continuously
corrected. And the corrections are also dependant on the quality of the observation. Inaccurate OPS
observations can hurt the results more than correct. In Figure 21 it is visible that the Kalman filter
results are still very much dependant to the XME results. This is visible by looking at the 6st and 7th

minute, where the filter's error is much higher than the OPS measurements error. So if the XME
measurements are faulty, the Kalman filter will give inaccurate results. However, the algorithm is
able to recover if the XME measurements become accurate again and OPS measurements are
available.

Noise model OPS
Comparing our approach for the error model of the OPS with the standard deviation (Figure 20)
reveals that our model doesn't give a big improvement. This isn't a very surprising result
considering the data set used. Because the pose estimation algorithm itself already has an upper
limit where it will detect markers so does the error associated to it. This means that the error of our
approach will never deviate far from the standard deviation. If the maximum marker detection range
would be increased, a higher improvement would be expected from the proposed noise model
compared to the static noise model.

Drift
The average results per minute (in Figure 21) show that while the XME error keeps getting larger
over time, the error for the Kalman filter results stays more or less the same. This suggests that the
fusion corrects the drift. What is interesting is that in the fourth and fifth minute the OPS
measurements are worse than both the XME and the Kalman filter results. It is expected that the
Kalman filter results can only reach the accuracy of the OPS measurements. So if if the OPS
measurements are less accurate than the XME measurements, the Kalman filter is expected to
produce worse results than the XME measurements. This is expected because the OPS
measurements would 'derail' the results by trying to correct the XME with less accurate
measurements. A possible explanation is by the fact that there is a big difference in the amount of
measurements of the sensors. The the OPS has a significantly lower number of measurements. So it
is possible bad measurements created a high average error, but the filter results has more iterations
after a good measurement than after a bad one. Thus on average the Kalman results are better.

 6 Conclusion
In this work a sensor fusion algorithm based on the extended Kalman filter is used to correct the
drift for pose estimation. The algorithm fuses together two independent measurements from two
different pose estimation systems, the XME and the OPS. The delta model used to align the
coordinate systems allows these systems to fuse together rather than to compete with each other.
The use of two different update steps that can be used individually circumvents the need to
synchronize the measurements for the filter. An implemented restriction in the marker detection
limits the usefulness of the measurement-based noise model for the OPS, resulting in only slight
differences compared to the static noise model. Overall it is shown that the algorithm corrects the
measurements of drift when comparing the results of the fusion algorithm with the results of a third
party pose estimator.

 7 Future work
As the overall goal was to improve the existing
system by eliminating the drift, much effort went
into the fusion of the measurements instead of the
accuracy of the measurements themselves. So there
are lots of improvements available that weren't
implemented in this work. For example: the offset
between the camera and XME head poses are
roughly estimated in this research. Just as the several
noise values in the Kalman filter. But there exist
algorithms to calculate these values.

Furthermore the accuracy of the OPS can improve as
well, in the recorded data we encountered cases
where the marker detection incorrectly found the
dimensions of the marker. These incorrect dimensions resulted in an inaccurate pose. So further
marker detection improvements are recommended.

The applicability of the system in the application setting isn't tested. So it is unknown how well it
performs in a real case. Will the algorithm correct often, fast and accurate enough to be dependable?
The next step should be to test how well the the current system performs in the application setting.
The focus of the test should be to find out if the system is reliable enough for users to prevent
accidents caused by the misalignment of coordinate systems.

There also remains the subject of how the correction is performed. Should the users be immediately
corrected to the best estimated position or should there be a transition period towards that (which
will slow down the correction rate). Or should the correction only take place when a user is moving
to make the changes feel less sudden? Several methods could be tested on users to see what they
experience the most comfortable. And possibly there could be looked at a trade-off between the
accuracy and comfort.

Figure 23: the result of the adaptive
threshold. One marker is present in the
bottom right corner of the image.

References
KMYWJ05: K. Kim, M. Lee, Y. Park, W. Woo, J. Lee, ARPushPush: Augmented Reality Game in
Indoor Environment, 2005

CMD14: C. Forster, M. Pizzoli and D. Scaramuzza, SVO: Fast semi-direct monocular visual
odometry, 2014

JTD14: J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-Scale Direct Monocular SLAM, 2014

SN06: S. Hesameddin, N. Shoushtari, Fast 3D Object Detection and Pose Estimation for
Augmented Reality Systems, 2006

SILT12: S. Siltanen, Theory and applications of marker-based augmented reality, 2012

STOR12: J. Stork, Camera pose estimation with circular markers, 2012

AJD11a: A. Pagani, J. Koehler, D. Stricker, Circular markers for camera pose estimation, 2011

ACJ05: A. Rice, C. Cain, J. Fawcett, Dependable Coding of Fiducial Tags, 2005

SRFM14: S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, M.J. Marín-Jiménez,
Automatic generation and detection of highly reliable fiducial markers under occlusion, 2014

FIAL05: M. Fiala, ARTag, a fiducial marker system using digital techniques, 2005

DD07: D. Wagner, D. Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile Devices, 2007

AJD11b: A. Pagani, J. Koehler, D. Stricker, Detection and Identification Techniques for Markers
Used in Computer Vision,

KALM: R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems,

GSDR11: G. Nützi, S. Weiss, D. Scaramuzza, R. Siegwart, Fusion of IMU and Vision for Absolute
Scale Estimation in Monocular SLAM,

AM07: A. Smyth, M, Wu, Multi-rate Kalman filtering for the data fusion of displacement and
acceleration response measurements in dynamic system monitoring, 2007

SFD14: S. Safari, F. Shabani D. Simon, Multirate multisensor data fusion for linear systems using
Kalman filters and a neural network, 2014

	1 Introduction:
	2 Optical positioning
	2.1 Literature Review
	2.1.1 Inside-out or Outside-in
	2.1.2 Optical positioning feature based or using Fiducial markers
	2.1.3 Feature and marker Hybrid systems
	2.1.4 Marker type

	2.2 Marker detection and pose estimation

	3 Sensor fusion
	3.1 Kalman Filter
	3.2 Available data
	3.2.1 Model
	3.2.2 Noise estimation
	3.2.3 Extended Kalman Filter
	3.2.4 Multi-rate

	4 Experiment/ test:
	4.1 Setup
	4.2 Results

	5 Discussion
	6 Conclusion
	7 Future work

