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Management summary

Company & Motivation
This graduation project is conducted as part of the Industrial Engineering and Management
master program in cooperation with Infineon Technologies AG. Infineon is a German semi-
conductor manufacturer producing chips, sensors, and microcontrollers. To stay competitive
and satisfy customer demand quickly Infineon places inventory at various stock points within
their supply chain. However, the more products are stored, the higher the costs due to the
binding capital effect of stock. Thus, Infineon has to balance the trade off between high stocks
(characterized by a high α-service level) and high costs when examining its supply chain plan-
ning processes. In this thesis, we concentrate on the planning process of two products: chips
for contactbased and contactless payment of the Chip Card & Security (CCS) department.
The relevance lies in their high production volume and revenue share of more than 25% of
CCS‘s total revenues.

Research objective
The graduation project aims to solve the below stated research objective:

Improve the supply chain planning process according to the service level and
respective costs at CCS for two particular products considering the stocking
strategies as well as the approach of quantifying the amount of wafers to be
released to production.

The stocking strategy concerns the decision where to place inventory and which amount
to be stored. The production release approach examines the question how to quantify the
amount of wafers (release quantity) to be started in production in advance. Usually, the pro-
duction of wafers, which are thin slices of semiconductor material and serve as basis for many
products, is started on forecast due to long processing times. This enables faster response to
customer demand. A clever chosen approach of estimating the needed quantity helps cutting
costs as stock levels can be reduced at the same α-service level.

Methodology
The existing simulation model (discrete event simulation) of Infineon‘s flexibility & econo-
metrics team is used to study various scenarios. These combine different stock strategies
and production release approaches among others the current practice. Before conducting the
simulation study we require to parametrize the simulation model to the needs of the two
exemplary products. This involves to ensure that the generated demand by the simulation
model is similar to the observed demand of the products such that results are valid. An
iterative approach is performed consisting of setting the parameters in the demand genera-
tion method and subsequently assessing the fit between the generated demand and observed
demand. The fit is assessed by a modified Kolmogorov-Smirnov approach where we compare
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the total area between the cumulative distributions of the two demand series. The iterations
are stopped when the total area is < 10% of the area below the cumulative distribution of
the observed demand. To check the consistency of the chosen demand series we further apply
the Chi-Square test.

Analysis of current situation
Infineons supply chain has three stock points (up- to downstream): the master storage, die
bank, and distribution centre. The amount of products stored at these stock points is determ-
ined by the target reach. The target reach is defined as the safety stock in number of weeks.
Currently, CCS has a target reach of 13 weeks at the master storage, and no stocks at the
die bank nor the distribution centre since the customer order decoupling point (CODP) lies
at the master storage and thus products become customer specific in the downstream man-
ufacturing steps. Storing at the master storage employs the risk pooling effect. The stocks
are managed periodically (per week). The production up to the master storage is done on
forecast by using a four month moving average (MA) over the historical data. The remaining
manufacturing steps are continued when a customer order arrives. The overall performance
can be given by the α-service level. The α-service level becomes either 100% when all orders
are satisfied by the on-hand inventory during period t, or it becomes 0% when demand is not
satisfied completely from stock. Currently, the α-service level is 98%.

Conclusion

• Both new production release approaches: a simple MA over five weeks as well as single
exponential smoothing (SES) outperform the current approach that uses a simple four
months MA since they allow faster reaction in production as fluctuations are not as
smoothed out as with a large time horizon of four months.

• Applying either of these new approaches costs can be cut by 40% since the target reach
can be reduced from 13 to five weeks while keeping an α-service level of 98%.

• Comparing the simple MA over five weeks and SES, the moving average performs slightly
better. In addition, as it is easy to understand and to apply, we recommend to use the
simple MA with a five week time window. That is, reducing the current time window
from 16 to five weeks.

• When keeping the current production release approach, the target reach at the master
storage can be reduced from 13 to about eight weeks while having only a marginal drop
by around 0.5% in the α-service level of currently 98%.

Recommendations

• Enhance the demand generation method of the simulation model such that it is able to
create intermittent and autocorrelated demand which is currently not supported by the
simulation model. Note, the products we are considering do not show autocorrelation
nor are classified as intermittent, however there are autocorrelated and intermittent
products at Infineon.

• In addition, implement machine capacity and idle costs as currently capacity is unlim-
ited and costs are solely evaluate according to the WIP and stock levels. However, in
reality capacity is restricted and idle costs play an important role as machines are very
expensive.
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• Last, more elaborated approaches of quantifying the amount of wafers to be started
in production in advance such as advanced exponential smoothing techniques, Holt
Winter procedure, or ARIMA models may be examined when the demand shows a
trend, seasonality, or autocorrelation.
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Chapter 1

Introduction

Semiconductors are part of everyone’s daily life. When it comes to electronics such as smart-
phones, power tools, medical systems, automobiles, robots and many more, semiconductor
devices are an indispensable component of it. And still, the number of applications for mi-
crochips is continuously growing since the transistor was invented in 1948. The competition
among semiconductor manufacturers goes hand in hand with the increasing demand. Making
it necessary for companies to not only offer their products at favourable prices but also to
deliver on time [29]. Thus, companies strive for a competitive advantage through their supply
chain management.

Infineon Technologies AG (Infineon), a German semiconductor manufacturer, uses discrete
event simulation (DES) to continuously improve its supply chain and to remain competitive.
Simulation depicts a system in a software based model with the purpose of understanding its
behaviour or evaluating different strategies [56]. Hence, one aim is to reveal bottlenecks and
deficiencies. By altering input parameters one tries then to remedy these weaknesses. As a
result improved system settings are proposed.

A crucial factor of a simulation is its validity. Meaning that the simulation model has
to reflect reality appropriately. This includes that the input data to the simulation model is
accurate. Commonly, one generates input data which reflects observed values. This research
supports Infineon to find a method that assesses the fit between observed and generated data
such that the simulation input can be verified to reflect reality sufficiently. After evaluating
the accuracy of the input data we further conduct a simulation study to improve the stocking
strategies as well as the method of controlling the production start for two exemplary products
of the Chip Card & Security division.

We start with briefly introducing Infineon in section 1.1 and continue by motivating the
research topic in section 1.2. Then, in section 1.3 and section 1.4, we define the core problem
and formulate the research questions which contribute to solving the problem. Last, sec-
tion 1.5 describes the scope and limitations of our research and section 1.6 concludes the
chapter with the Plan of Approach.

1.1 Company Introduction

Infineon is a semiconductor company, that manufactures devices such as diodes, transist-
ors, and integrated circuits known as ‘chips’ or ‘microchips’. It is positioned in four main
markets: Chip Card & Security (CCS), Automotive (ATV), Industrial Power Control (IPC),
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and Power Management & Multimarket (PMM), where it holds leading positions. It strives
for excellence by making life easier, safer and greener.

Main applications for Infineon’s products in CCS are microcontrollers for payment sys-
tems, governmental identification documents, and sim cards to Gemalto, Oberthur, and G&D.
ATV offers among others driver assistance and security systems such as airbags and ABS as
well as general electronics like lighting and windowlifts. Customers include Bosch, Contin-
ental, and Tesla. IPC focuses on electric engines, renewable energy as well as energy trans-
mission and conversion for machines, locomotives, wind turbines, and solar collectors sold
among others to Siemens and ABB. The PMM division provides chips for consumer goods
for instance mobile devices, televisions, and computers, and sells these to large OEM’s and
various large semiconductor distributors.

Infineon’s microelectronic revenues are about $6.5 billion with around 35,400 employees
worldwide in the fiscal year 2016. This is allotted to 41% of Automotive, 17% of Indus-
trial Power Control, 32% of Power Management & Multimarket, and 10% of Chip Card &
Security [36].

The master’s thesis is conducted with the scenario & econometrics team of the corporate
supply chain department at Infineon in Neubiberg. The team contributes to the success of
Infineon by providing analyses and support services to the business divisions. This includes
analysing trends and innovations over all four main markets and proposing interventions in
the supply chain planning.

1.2 Research motivation

The key challenges faced by semiconductor supply chain management such as of Infineon
include product variability (also refered to as product mix), demand fluctuations, long lead
times, and a 24x7 production. These challenging issues influence the manufacturing efficiency,
delivery performance, and volume elasticity considerably [9].

Product variability emerges due to the mere fact that product details are often customer
specific. These may solely be slight changes or enhanced versions, however they alter the
product noticeably. A reason for the rapid development of products is Moore’s law, which
states that the number of transistors on an integrated circuit is doubling every two years [45].
Also, the wide spectrum of applications for semiconductors leads to a variety of products.
Applications range from chips for smart cards, over microcontrollers for automobiles, to large
power supplies in industry. Hence, semiconductor companies manufacture an immense range
of products simultaneously. This product variability issue is aggravated by unpredictable
demand, long lead times, and a 24x7 production at Infineon. Semiconductor companies are
plagued by demand fluctuations due to their upstream position in the end-to-end supply
chain. Before a semiconductor device reaches the end customer it moves along the supply
chain, in our case from Infineon to distributor to customer. This fosters the Bullwhip effect
that distorts demand information as it is transmitted up the chain. More precisly, demand
variability increases when travelling upstream [43]. Due to the Bullwhip effect, firms in
upstream positions cope with high demand fluctuations that impair controlling inventory,
forecasting demand and scheduling production. Long lead times and a 24x7 production add
up to this difficulty. The manufacturing process of integrated circuits takes up to three to
four month. The process from the silicon raw material to the finished good comprises four
main processes: Wafer fabrication, sort, assembly or packaging, and final test, some of these
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including several hundred steps [29]. However, many costumers do not order three month
in advance. Thus, to hedge against uncertainties semiconductor companies need to hold
comparably large inventories [9]. These problems are strengthened by a 24x7 production at
Infineon. A 24x7 production does not allow for volume flexibility, meaning that a high demand
cannot be fulfilled by increasing production hours since production runs already continuously.
Hence, incorrect volume planning cannot be remedied by working extra hours, but instead
leads to delayed deliveries, which in turn reflect a poor delivery performance.

To hedge against manufacturing inefficiency, demand uncertainty, and missing volume
elasticity Infineon places stocks at various stocking points in its supply chain. To help the
divisions improve their stocking strategies Infineon’s flexibility & econometrics team uses
discrete event simulation. Usually, the different strategies are evaluated according to the
trade off between the α-service level and the costs.

1.3 Problem definition

In a former project Infineon’s flexibility & econometrics team performed a simulation study
for a group of products of CCS which showed that stocks can be reduced drastically. In this
project we continue the successful collaboration with the CCS division. They are interested
in analysing various stocking strategies and production release approaches for two particular
products. That is, we try to answer the following questions:

stocking strategy:

1. At which stocking locations to place inventory in the supply chain?

2. How high should the inventory be at these locations?

production release approach:

3. How to quantify the amount of wafers to be released to production in advance?

The two products are of relevance for CCS due to their high production volume and revenue
share of more than 25% of CCS’s total revenue. To provide CCS with answers to these
questions, we use the existing simulation model. It was built by the scenario & econometrics
team and further enhanced as part of a master’s project such that it allows for flexible product
structures [13]. It is described in more detail in chapter 3. With the simulation model we
are able to run various experiments where we alter the stocking strategy and the production
release approach.

A key part of a simulation study is to have accurate input data. That is, the generated
data should be similar to the observed data. Otherwise, results are misleading and proposed
solutions do not show the same behaviour in reality as they do in simulation. Currently, there
is no established method at Infineon to validate the generated input data according to the
observed input data. As part of this project, we require to find a method that assesses the
fit between the generated and observed data.

The input data to the simulation model is the demand of the produced products. We
distinguish the demand into a forecasted and an actual demand arrival process. By forecast
we refer to the estimated quantity customers buy. Marketing creates this forecast by using a
four month moving average of the historical orders which is then validated by the supply chain
planner. By demand we refer to the actual orders customers place. Those two arrival processes
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Figure 1.1: Production start according to forecast and further processing on basis of customer
orders

differ since the forecast represents a moving average and the demand refers to the actual orders
customers place. Figure 1.1 presents where in the supply chain the marketing forecast and the
customer orders are employed. For the products we are considering, the marketing forecast
is used to start the production of unprocessed wafers up to the diversification point (master
storage). Hence, the current production release approach is based on the marketing forecast.
Whereas the customer orders are used to start the production of the pre-processed wafers
from the diversification point onwards. The chips become customer specific and are waiting
at the distribution centre for delivery to the customers.

The simulation model generates the customer orders. To receive valid simulation results,
we require that the generated data resembles actual customer order data such that their
characteristics are similar. Figure 1.2 shows an example of actual and generated demand data.
There exists various techniques in the literature to compare two time series and assess their
fit. For example, we can use forecast accuracy measures such as the MAE (Mean Absolute
Error), the MAPE (Mean Absolute Percentage Error) and the SMAPE (Symmetric Mean
Absolute Percentage Error). These measures compare a forecasted value at time t with the
observed value at time t. The difficulty with these measures is that they compare two points
with one another and do not consider the overall behaviour of the time series. However, we are
rather interested in a statistical equivalent behaviour than in the exact values. The advantage
of having a statistical equivalent behaviour is that we can generate various realisations of this
demand behaviour and use it for several simulation runs. This ensures that the output is not
only based on one realisation but on many and thus reduces the effect of outliers. Hence, we
want to find a method with which we can assess the fit between two time series regarding
their statistical behaviour.

Our procedure is as follows. We parametrize the arrival processes in the given simulation
model such that the generated data represents observed data according to our defined method.
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Figure 1.2: Example of actual versus generated demand data

Next, we use the adjusted simulation model to study the two products of CCS. This regards
various stocking strategies and production release approaches which are evaluated according
to the service level as well as respective costs. We aim to find the set up that improves the
supply chain planning of CCS.

In summary, we can formulate the core problem in the following statement:

Improve the supply chain planning process according to the service level
and respective costs at CCS for two particular products considering the
stocking strategies as well as the approach of quantifying the amount
of wafers to be released to production.

To be able to solve this core problem we need to solve the two subproblems below which
are strongly interconnected with the core problem and thus are highly emphasized. These
are:

Parametrize the order arrival process in the existing simulation model
such that the generated demand data correctly describes the observed
data to make the simulation results more representative.

Define a method to assess the fit between generated and observed values
according to their statistical behaviour.

To solve the core problem, we proceed with the research cycle which provides a framework
to generate lacking knowledge [30]. Our knowledge questions are formulated as research
questions in the next section.
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1.4 Research problem

1.4.1 Research goal

Currently Infineon does not have an established method that assesses the fit between the
historical demand and generated demand data. In order to receive valid simulation results
the input to the simulation model has to reflect observed values correctly. A key prerequisite of
the method is its ease of use. Consequently, the goal of this research is, firstly, to parametrize
the arrival process such that it models the true behaviour of representative products, secondly,
to construct a method which assesses the fit between generated and observed data, and thirdly,
to conduct a simulation study for two exemplary products of CCS. This simulation study aims
to consider various stocking strategies as well as approaches to quantify the amount of wafers
to start in production in order to give alternatives to the current practice.

1.4.2 Problem statement

The problem statement is formulated to generate the needed knowledge.

‘How can Infineon assess the fit between the generated and observed
demand data for representative products of the CCS division and para-
metrize the simulation’s arrival process to obtain valid results?’

We want to exploit existing techniques to evaluate the fit between two time series. Values
at time t of the generated data do not need to match values of the observed data at time t
exactly, but we aim to assess whether the overall behaviour of the series is statistically similar.

1.4.3 Question formulation

To tackle the problem statement, we formulate several research questions. Each research
question including its sub questions corresponds to a chapter of this thesis. These research
questions will be answered by interviews with employees of Infineon, reviewing available liter-
ature, performing an elaborative data analysis, developing a method to evaluate the behaviour
qualitatively and conducting a simulation study.

Current situation.
First, we obtain in-depth knowledge of the current situation. For this purpose we look

at two domains, the broader context and the data of the considered products. The context
involves gathering information about how supply chain planners at CCS define production
volume, which data sources are used and how orders influence the production start. In
addition, we look closer at the data of the representative products and conduct an analysis
to identify patterns.

1.1) How is the supply chain planning carried out?

a) How is the supply chain set up?
b) Which products are representative and appropriate to consider?
c) Which data sources are used for storing the demand data at CCS?
d) How do orders and forecasts influence production start?

1.2) How does the demand data of the representative products from Chip Card &
Security behave?
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a) What patterns can be identified in the data?
b) Which statistical measures are important to consider?

Simulation model.
We use discrete event simulation to analyse various system settings. Thus, we explain the

methods, inputs, and outputs of the existing simulation model.

2) How is the simulation model set up?

a) What is the purpose of the simulation model?
b) What is the structure of the model, e.g. logic, input and output parameters?
c) How does the simulation model work?
d) What are the input and output parameters of the simulation model?

Literature review.
We continue with a literature review to study existing approaches concerning how data

series can be compared. Several approaches exits in literature which concern among others
forecast accuracy measures, time series similarity measures, and hypothesis tests. This lays
a foundation to assess our arrival process which should model observed demand behaviour
appropriately.

3) What solution approaches exist in literature to assess the fit between generated
and observed demand data?

a) How can two time series be compared?
b) What are the advantages and disadvantages of these measures and methods?

Parametrization and fit between time series.
The next step is to parametrize the arrival process of the simulation model to generate

demand data which represents the behaviour of the observed data. Moreover, we apply a
suitable method to assess the fit between two time series based on the findings of the literature
review.

4) How do we need to parametrize the simulation model to create accurate demand
data?

a) What input parameters are relevant?
b) How accurately does the generated data fit to the observed data?
c) How can we improve the fit between the historical data and the generated

data?

Simulation study and Evaluation.
The simulation study is performed in order to assess several stocking strategies and pro-

duction release approaches for the analysed products of CCS. To compare the various ap-
proaches we need to define key performance indicators (KPIs). The results of the simulation
study serve as an indication how CCS can improve their supply chain planning process. We
conclude the thesis with recommendations and an outlook.

5) How can the planning process of CCS be improved?

a) Which strategies can be used to start production?
b) Which stocking locations should be used to store items?
c) How high should the stocks be at the various stocking points?
d) What are the improvements of the proposed set ups?
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1.5 Research Scope and Limitations

Due to time constraints of this research project and some limiting factors we narrow down
the scope and mention simplifying assumptions.

As introduced earlier, Infineon is structured in four divisions, all of which provide a wide
range of products. Since time constraints do not allow considering all products, we will focus
on two exemplary products from Chip Card & Security (CCS). We restrict our selection
to products of CCS for the reason that these products show a volatile behaviour, whereas
products from for example ATV are rather stable in their demand patterns. Furthermore,
the existing simulation model is built on the supply chain specifics of products from CCS.
Hence, major modifications of the simulation model will not be required.

We can omit the validation of the simulation model since it was validated by a previous
master’s thesis that enhanced the used model [13]. By valid we mean that the physical supply
chain is mapped well enough in the simulation. The focus solely lies on adjusting the existing
model with an accurate parametrized demand and forecast signal, however, we do not focus
on the process steps in the simulation to accurately represent the supply chain.

In addition, we differentiate this master’s project from a previous project which was
also done with Infineon’s flexibility & econometrics team in cooperation with the Faculty of
Behavioural, Management and Social scienes of the University of Twente [1]. The previous
project considered the trade off between the utilisation of machines and the resulting costs
of storing inventory. A higher utilisation of machines leads to a higher cycle time due to a
higher work in process (WIP). The focus lied on improving the accuracy of the simulation
model. In contrary, in this project we concentrate on the trade off between the service level
(associated with high stocks) and the respective costs without considering machine capacity.
Moreover, we focus on adapting the simulation model according to two particular products
to improve their planning process.

1.6 Plan of Approach

A well-known approach of structuring and solving research is the Managerial Problem Solving
Method (MPSM). The method intends to solve an action problem as identified in section 1.3,
which states to improve the supply chain planning process of Infineon and thereby modelling
demand behaviour according to observed values. The MPSM is composed of various phases.

1. Identifying the problem

2. Planning the problem-solving process

3. Analysing the problem

4. Generating alternative solutions

5. Choosing a solution

6. Implementing the solution

7. Evaluating the solution

Figure 1.3 below maps these phases to the chapters of the thesis to give a brief overview
of the structure and determine the activities for each step.
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Figure 1.3: Plan of Approach
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Chapter 2

Current situation

To start with, section 2.1 introduces the supply chain process of Infineon and goes into more
detail regarding the planning of CCS and its products which we simulate later in this project
to improve their stocking levels. In section 2.2, we continue with a data analysis that serves
as a basis for modelling the arrival process of the demand and forecast in the simulation. The
focus of the data analysis lies on two high runner products.

2.1 Current Situation

2.1.1 General description of Infineon’s supply chain and its planning

In order to manage its supply chain processes Infineon implemented the Supply Chain Oper-
ations Reference Model (SCOR), which is a management tool recommended by the APICS
Supply-Chain Council. It describes the business activities associated with five distinct phases
to satisfy customer demand [19]. The phases are: Plan, Source, Make, Deliver, and Re-
turn. Figure 2.1 shows how these five phases of the SCOR model link to Infineon’s supply
chain.

We focus on the activities of the plan and make process which are relevant for our simu-
lation study and only give a brief description of the other three phases. The discussion in the
remainder of this section refers to the internal documents [19,55] of Infineon. The plan process
is responsible for balancing the available resources with the given requirements. The source
process takes care of the deliveries from internal and external suppliers, including purchasing
activities as well as sourcing logistics. The make process includes the main production steps
of the supply chain, namely fabrication, sort, assembly and final test. The deliver process
concerns all sorts of deliveries to internal and external customers and thereby taking care of
order management, and invoicing customers. Last, the return process deals with products
that are either returned by Infineon to its suppliers or by customers to Infineon [19].

The Plan process.
Figure 2.2 shows the plan process which is further divided into five subprocesses. We con-

centrate on the demand planning at an operational level concerning a time horizon of about
six months. The subprocesses are responsible for different tasks: 1) The capacity planning
aggregates machine resources that are available, 2) the demand planning is responsible for
machine requirements needed to produce specific products and 3) the supply planning bal-
ances the capacity with the demand, thereby creating a production request for production
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Figure 2.1: SCOR model linked to Infineon’s supply chain [19]

Figure 2.2: Plan processes at Infineon [55]

management and a constrained forecasts, that is, the amount Infineon can sell considering
available machine resources, for order management. Last, 4) the production management
as well as 5) the order management establish and communicate plans for production and
customer deliveries, respectively.

There are two major activities in the demand planning process on the operational level
regarding our simulation study. First, the generation of a forecast of what Infineon could sell
into the market in number of pieces per week. We aim to model this weekly forecast data in
the simulation model to increase the model’s validity. Second major activity is the definition
of the target reach for the stocking points. The target reach is defined as the safety stock
in number of weeks. That is, the supply chain planner determines how much to store at the
various stocking locations for each product. Stocks are needed for three main reasons:

1. Uncertainty in demand and production

2. Long cycle times

3. Strategic decisions

Demand uncertainty occurs due to varying orders of customers and production uncertainty
occurs due to machine downtime which varies the cycle time. Stocks are built to hedge against
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these uncertainties. In addition, cycle times are quite long due to a complex manufacturing
process. To be able to respond quickly to customer demand, stocks are needed to reduce
the lead time. Moreover, stocks are necessary when production gets transferred to another
production location. E.g., production may be transferred from location 1 to location 2,
however, customers may require to further receive their products from location 1 since they
solely certified location 1. Thus, we need to build up stocks for these customers with products
of location 1.

We intend to improve stocking levels and the approach of quantifying the amount to start
in production by conducting the simulation study because it is important that stocks are
neither too low nor too high. If stocks are too low, master storage and diebank products
are missing and customer orders cannot be confirmed. As a result Infineon loses revenue
and dissatisfies its customers who may move to competitors. On the other hand, if stocks
are too high, Infineon invests in unnecessary products and hence raises the bind capital.
Moreover, it increases the risk of scrapping master storage products, die bank goods and fin-
ished products [55]. This situation can be described by the trade off between the service level
and costs. A high service level indicates comparably high stocks and thus also high costs,
whereas low stocks are associated with a lower service level and also lower costs. The aim is
to balance this trade off.

The Make process.
The main result of the make process is the finished product, namely the silicon chip or

microchip. Making silicon chips is one of the most complex manufacturing tasks. It is grouped
into front end and back end, taking between 40 and 100 days (6-15 weeks), and up to 20 days
(3 weeks), respectively. In the front end chips are produced onto the silicon wafers. In the
back end wafers are diced into single chips. These single chips are equipped with an outer
package containing pins or a conductive surface to connect with other electronic components.
Both processes are separated by the die bank. Figure 2.3 gives a schematic overview of the
process and possible stocking points, similarly to the existing simulation model.

Wafers are produced from raw silicon, which builds the basis for microchips. Silicon is
used due to its properties as a semiconductor. Depending on the treatment it either conducts
or blocks the flow of electricity making it ideal to function as a transistor.

Figure 2.3 illustrates the description of the process steps: To start with, the silicon wafers
are treated in the fabrication (FAB), where the developed chip design is coded onto the wafer.
To fit several millions of transistors onto a single chip it is build up in three dimensions
consisting of various layers. Steps in the process involve lithography, furnace, implanting,
deposition as well as etching and these are repeated multiple times until the integrated circuit
is completely built in the wafer. The master storage serves as a stocking point for processed
wafers containing several hundreds of chips each. Subsequently, in the sort, wafers are tested
for their functionality and marked accordingly. Also, one should note that the products we are
considering are receiving customer specific information during this step. The rather general
products are made to stock up to the master storage. We call them basic types. Whereas the
customer specific products out of sort are produced upon order requests up to the die bank
or distribution centre. We call them sales products. Hence, the sort is a diversification point
in our supply chain, which indicates that the customer order decoupling point lies rather
upstream in the supply chain. This is called make-to-order. Later, at the die bank customer
specific products are stored temporarily waiting for disposition and further production at
the assembly. There is no defined target reach at the die bank, however to fill up machine
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Figure 2.3: Make process at Infineon [55]

capacities more products than requested may be produced. At the assembly wafers are cut
into individual chips and in the die bonding a package is attached to the chips. It is followed
by the wire bonding, where interconnections between the integrated circuit and its package
are made. Finally, the chips are moulded, trimmed and formed. Now they are ready for
the last quality check, the Burn-in testing. It stresses the component under supervision to
detect defective chips. Chips which fail this test are sorted out. The last part of Infineon’s
supply chain forms the distribution centre (DC). At this stocking point finished products
are stored before they are transferred to the customers [19]. Typically, there is no stock at
the distribution centre for make-to-order products. However, customers may request to have
finished products at the distribution centre or products may be stored temporarily before
delivery [37].

The cycle time (CT), defined as the length of time spent by a product unit in the system
from the release of the wafer into the fabrication until finishing the last step in the test takes
up to four month without considering storage time in the master storage or die bank. Two to
three months are allotted to the front end and roughly one month is allotted to the back end.
These long cycle times especially in the front end indicate that it is necessary to use forecasts
up to the master storage and die bank such that customer orders can be fulfilled quickly in
order to stay competitive.

Infineon’s supply chain process is spanned over a global network, meaning that there are
various production and stocking locations spread all over the world. Front end facilities are
among others in Dresden (Germany), Regensburg (Germany), Villach (Austria) and Kulim
(Malaysia) and external suppliers include the Taiwan Semiconductor Manufacturing Company
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Table 2.1: Plan cycle time for production steps of BT1 and its sales products

Basic type BT1 Front End BackEnd

Productionstep FAB SORT ASSEMBLY TEST

Facility: CT in day Dresden: 91 Dresden: 18 Regensburg: 7 Regensburg: 0

TSMC: 91 ADT: 7 Wuxi: 7 Wuxi: 0

Table 2.2: Plan cycle time for production steps of BT2 and its sales products

Basic type BT2 Front End BackEnd

Productionstep FAB SORT ASSEMBLY TEST

Facility: CT in day Dresden: 70 Dresden: 14 Amkor: 9 Amkor: 7

TSMC: 70 ADT: 4.5 Regensburg: 7 Regensburg: 0

Wuxi: 7 Wuxi: 0

(TSMC, Taiwan) and Ardentec (ADT, Taiwan). Back end facilities are located among others
in Regensburg (Germany), Warstein (Germany), Malacca (Malaysia) and Wuxi (China). Ex-
ternal partner is for instance Amkor Technology (United States of America). The die bank
locations are either based at the front end or the back end facilities [19].

2.1.2 CCS’s high runner products

Chip Card & Security (CCS) focuses on products in three main areas: payment systems,
governmental identification documents and mobile communication [36]. The two products we
are considering, BT1 and BT2, belong both to payment systems. Product BT1 is a chip for
contactbased payment integrated in credit and debit cards and BT2 is a chip for contactless
payment also integrated in credit and debit cards. Other payment systems are mobile payment
and NFC-based contactless payment. Products BT1 and BT2 are of main interest, since they
contribute to CCS’s yearly total revenue by >25% and have a high production volume. [31].

As we introduced Infineon’s supply chain in the previous section, we give here some further
information of the two products. Table 2.1 and Table 2.2 summarize the specific CTs in days
per production step and also depict the facility locations where the treatment takes place.
When production is started at the fabrication we speak of basic types. BT1 and bp are both
basic types. In the sort step these two basic types receive customer specific information and
are then identified as sales products. A basic type can serve as a basis for several hundreds
sales products. In our case, 95 different sales products are made from basic type BT1 and
about 180 sales products are made from basic type BT2. Later, we solely consider the largest
sales products of each basic type which account for ≥ 85% of the total volume. These are
six sales products for BT1 and ten sales products for BT2. Customers order on sales product
level [37].

The front end production steps, fabrication and sort, of basic type BT1 take place at three
locations depending on the workload. These are Dresden, TSCM as well as ADT. That is,
they produce at the facility with the lower utilization in order to be able to respond quicker
to demand. The rather large time difference of eleven days in the sort between Dresden (18
days) and ADT (7days) is due to transportation. E.g. from fabrication at TSMC to sort
in Dresden [31]. Assembling and testing is done in Regensburg and Wuxi. The cycle time
for the test itself is negligible and therefore indicated with zero in the table. The total cycle
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Figure 2.4: Delivery reliability at Infineon

time sums up to roughly four months, where a large part of about three and a half months is
allotted to the front end and only a small part of about two weeks is allotted to the back end.
Hence, it is significant to plan the right amount of stocks in the front end stocking points,
master storage and die bank, to decrease the lead time and fulfil demand quickly. Otherwise,
if production is started when orders arrive, lead times are too long for a highly competitive
market. Basic type BT2 is processed at the same locations in front end and back end with
similar cycle times. Next to the back end locations, there is also a facility of Amkor with a
slightly higher cycle time which is due to their internal production process.

Clearly, the amount of produced products is dependent on the customer demand. As
mentioned earlier, we distinguish between actual customer orders and marketing forecast. A
customer order is a request by a customer for a certain amount of one or more customer
specific products containing a delivery wish date. Customer orders are produced up to the
distribution centre. A marketing forecast, on the other hand, is an approximation of what and
how much a customer may order in the future and is done by marketing using a four month
moving average over the historical orders. Marketing forecasts are produced up to master
storage. This is done in order to decrease the lead time as the cycle time at the frontend can
be omitted when orders are produced from master storage. There are no products produced
on forecast to the die bank or the distribution centre, since die bank and DC products are
customer specific and the risk of scrapping products is too high [31,37]. Currently, the amount
of wafers at the master storage cover a target reach of 13 weeks.

The performance of the current approach, which defines the release quantity in front end
by a four months moving average with a target reach at the master storage of 13 weeks is
measured at Infineon by the delivery reliability (DR). The DR is an internal key performance
indicator (KPI) which is calculated for each product. A delivery is considered to be reliable if
the proof of delivery (POD) is a date between the customer’s wish date minus some delivery
window and the first confirmed delivery date by the supply chain planner plus some delivery
window as shown in Figure 2.4.

The current delivery reliability for the products BT1 and BT2 is 93%. Note that, the
current simulation model does not include a method which captures the interaction between
the supply chain planner and the customers such that the DR can be measured since it would
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introduce a higher level of complexity and may reduce the runtime of the simulation model.
Instead, in order to prevent unnecessary high complexity the α-service level is implemented
in the simulation model. It is chosen since it captures the idea of the DR without introducing
further complexity. Similarly to the DR, the α-service level becomes either 0% when not
all demand is met by on-hand inventory or it becomes 100% when all demand is met by
on-hand inventory explained in detail in section 3.3.2. Note that, backorders are not taken
into account. Since we have given the delivery reliability but not the α-service level, we need
to find the α-service level that corresponds to the DR of 93%. This is done by using the
current simulation model. The simulation model was verified by [13], thus we can determine
the current α-service level by running the simulation for both basic types with a target reach
of 13 weeks at the master storage and a four months moving average over historical data to
determine the release quantity. This results in an α-service level of 98%.

2.1.3 Stocking policy approaches at Infineon

Infineon uses various approaches to plan stocking levels at the master storage, die bank, and
distribution centre ranging from basic approximations to advanced simulation-based methods
thereby increasing the quality of the proposed solution along with the effort. The following
discussion based on [21] shows how we classify our project.

A basic approach on a high aggregation level is using a rule of thumb. The supply chain
planner estimates the target reach according to his experience and uses the estimated value
for all products. Thus, there is no differentiation between products nor fluctuations over time
are considered. Nevertheless, it is easy to apply.

To add more detail, ATV introduced the ‘Enhanced Inventory Planning’ for some of their
products. At this level of detail, products are considered separately and the target reach
is calculated for the various stocking points by using an echelon stock policy. An echelon
stock policy is characterized by central control and the visbility of customer demand in the
entire network. An installation stock policy, on the other hand, is characterized by local
control and the demand at each stocking point is based on the demand from the downstream
stockpoints [6]. For the calculation general inventory models such as the (R, S ) policy are
used, where every R periods (weekly) an order is placed to rise the inventory position to
the order-up-to level S. In order to apply these inventory models, usually the assumptions
of a normal distributed demand as well as the independence of succeeding time periods are
made, where demand of one period has no influence on demand of a subsequent period [6].
A normal distributed demand facilitates computations and gives a good approximation when
demand is high enough [61]. Note that, there exist extensions in the literature in case of
non-normal demand and dependent time periods. Fortuin examines five different probability
density functions for the demand (Gaussian, logistic, gamma, log-normal, Weibull) [25]. He
finds that except for the logistic distribution expressions are much more complex. Burgin
further investigates on the Gamma distribution and devotes considerable effort to develop
approximations [10]. In addition, other distributions such as Poisson [57], Laplace [51], and
Negative binomial [20] have been studied. For a further listing and according references we
refer to [57]. A short discussion is also provided in section 5.3. The described approaches are
analytical methods to define the order-up-to level S for the stockpoints in multi-echelon in-
ventory systems. It is advisable to use analytical methods when computations are comparably
easy and assumptions such as a stable average demand rate are met [41,57].

In contrast, simulation-based approaches are preferred over analytical methods when com-
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plex relationships and detailed structures are modelled as well as when time depending events
occur. Simulation allows to explicitly model the relation between products, machines, and
operators. That is, different products may have different processing times and different routes
through the system. These may further be influenced by various operators. Simulation also
allows to include variability in processing times due to machine downtime. In addition, the
product structure (basis product splits up into several specific products) can be included in a
simulation model with the according demand for the specific sales products. Moreover, even
though discrete event simulation implies with its name that events occur at discrete time
steps, we can easily vary at which time steps to execute an action, e.g. every time step, every
second time step or make it dependent on some conditions. Furthermore, another advantage
is that actions can be triggered depending on certain conditions, which may be varying itself.
Last, a practical upside of simulation is that processes and changes over time can be shown
in graphs and moving figures. This facilitates the understanding of the system behaviour and
the communication with management. Thus, using simulation allows for higher flexibility
than analytical methods. However, it also requires a higher amount of effort and detail.

Since the manufacturing process of Infineon is highly complex with interactions between
various processing steps, variability in the demand and processing times as well as a complex
product structure and on the other hand, there is already an existing simulation model for
the process of products from CCS, we decide to use discrete event simulation. Specifying
the approach of simulation, our aim is to parametrize the demand generation method in the
existing simulation model such that it reproduces the behaviour of observed demand precisely.
Hence, we require to assess the fit between the generated and observed demand by a suitable
method. With the enhanced simulation model we aim to improve the target reach, that is
the stocking strategies as well as the production release approach, which is currently based
on a four months moving average. The used key performance indicators (KPI) to measure
the performance of the strategies are the service level and the costs, which we explain in
section 3.3.2.

2.2 Data Analysis

We choose simulation to improve the supply chain process of CCS. To receive valid simulation
results, the input to the simulation model has to reflect reality well enough. Thus, we conduct
a comprehensive data analysis using Excel and the statistical software R to learn about the
data’s behaviour. R is used in addition to Excel since it has the advantage of various build
in functions such as statistical tests and is able of coping with large data sets. To start
with, we gather several data sources and select one based on its completeness and validity.
Next, we give a numerical and graphical summary of the data. In addition, we attempt to
decompose the time series into a trend, seasonality, and error term. As this fails to recognize
a suitable trend or seasonality, we further consider the autocorrelation of the time series to
detect whether there are succeeding periods of increasing/decreasing demand. Having several
periods with an continuously high demand rises the probability of stock outs. Thus, we
conclude that autocorrelated data behaves differently to non autocorrelated data. That is,
if the generated data is autocorrelated, but the historical data is not or vice versa, wrong
conclusions from the simulation results may be drawn.
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2.2.1 Demand patterns

We gather and consolidate several data sources in order to have a complete and valid repres-
entation of customer orders. The below mentioned requirements ensure that the data source
is representative:

1. Data should be on a weekly basis.

2. Data should contain data points over a minimum of 52 weeks.

3. Data should contain the requested quantities per sales product.

4. Requested quantities by customers should be represented in pieces.

5. Data should contain the due week of the order.

Since planning of customer shipments occurs on a weekly basis we require the level of data
to be weekly as well. Further, we opt for a time span of minimally 52 weeks to have a data
set that has enough data points to draw conclusions and represents patterns sufficient. Next,
customers order the sales products in number of pieces. Last, we require the due week of the
orders that customers request such that we can represent how demand occurs over time and
to identify dependencies between time periods.

For the validation of the data sources we compare the revenue figures in e with the annual
report for the fourth quarter of the fiscal year 2015 and the first three quarters of 2016. We
assume that comparing the revenue figures of the available data sources with the annual report
is suitable to determine whether the data is complete and contains all sales. This comparison
shows that one out of three potential data sources is sufficient for further analysis as it differs
only by 2%, whereas the other data sources differed by more than 15% due to missing and
incomplete data. The sufficient data source is called data mart order processing (DMOP).

The maximum difference between the data of DMOP and the annual report on a quarterly
basis is 3% and the minimum is roughly 0%. Aggregating the numbers on a yearly basis res-
ults in a difference of about 2%. The difference may be due to returned orders or when
actual payments fall into another quarter. We assume that this represents the demand well
enough. Regarding the above defined requirements, the DMOP data fulfils conditions 1 to 4.
However, it does not fulfil condition 5, that is, the due week as requested by the customer is
not contained in the data. Nevertheless, it contains the week the order was delivered at the
customer site. We assume that this is sufficient to represent the demand for a certain week
and hence neglect the case that orders are delivered deviating from the due week.

Demand behaviour on the example of basic type BT1.

On the example of basic type BT1 we present the results of our data analysis which aims
to provide us with a better understanding of the data and its behaviour. The data analysis
was done using Excel as well as the statistical software R. The graphical summary of basic
type BT1 is plotted in Figure 2.5. It represents the orders in pieces per week over two years,
from January 2014 to December 2015. One can see that the deliveries increase over time
and that they are fluctuating. The increase over time is due to the product life cycle which
suggests that demand grows until it matures and eventually levels off [31].

Table 2.3 summarizes several statistics for basic type BT1 and its three largest sales
products accounting for roughly 72% of the total volume to draw some first conclusions from
the data set. Note, later in the simulation study we consider the largest six sales products,
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Figure 2.5: Delivered orders of BT1 in pieces (millions) per week from January 2014 to
December 2015

which make up ≥ 85% of the total volume. The mean demand of the basic type over the
two years is about 10 million pieces per week with a standard deviation of around 6 million
pieces. When calculating the coefficient of variation (CV), which indicates the dispersion of
data points, we receive a value of 0.61. It means that the deliveries are fluctuating since
the CV is > 0, however these fluctuations are not very large. Moreover, the median lies with
about 8 million pieces comparable close to the mean demand and therefore suggests that the
distribution of the values is not skewed to the right or to the left but rather symmetric. Last,
we classify the demand pattern by the scheme of Syntetos & Boylan [59] described in subsec-
tion 4.1.1. We choose this categorization since it can be applied independent of the empirical
data set. The basic type is classified as smooth meaning that it has moderate fluctuations
and constantly occurring demand. This implies for the planning that the production release
in front end can be rather stable.

Looking closer at the data, we consider the largest sales products of the basic type BT1.
In total 95 sales product (SP) are manufactured on basis of this basic type. The largest
three sales products, SP1, SP2 and SP3, account for 39%, 24% and 9% over the two years,
respectively. When looking at the data of 2015 only, the amount of the three sales products
even increases to a total of 91%. SP1 has a mean of about 4 million pieces per week over the
two years per week , SP2 has a mean of about 2 million pieces and SP3 has a mean of about
1 million pieces. The median for SP1 lies close to the mean suggesting that there are no big
outliers and that the distribution is rather symmetric. However, the median of SP2 and SP3
is zero, meaning that over the two years in 50% of the weeks there are no orders delivered.
This also implies that the distribution is skewed to the left. Furthermore, the coefficient of
variation for all three products shows that SP1 has a smaller relative variability compared to
SP2 and SP3, where SP3 has the largest relative variability. However, the variability of all
three sales products is still noticeably. This is in accordance with the classification in erratic
for SP1, and lumpy for SP2 as well as SP3. The erratic and lumpy demand patterns are both
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Table 2.3: Summary statistics of delivered orders per week for basic type BT1 and its three
largest sales products

BT1 SP1 SP2 SP3

Mean 9,916,641 3,876,597 2,388,385 897,302
Median 8,501,889 3,791,629 0 0
Standard Deviation 6,090,168 3,362,978 3,747,042 1,513,485
Minimum 1,020,868 0 0 0
Maximum 28,130,769 11,338,889 14,961,713 9,795,001
CV 0.61 0.87 1.57 1.69
Classification of
Syntetos & Boylan

smooth erratic lumpy lumpy

characterised by fluctuating demand, while demand occurs frequently in the case of an erratic
classification but rather seldom in case of a lumpy classification. Erratic demand patterns
imply for the planning that forecasts of demand should not be based solely on one demand
point as this may lead to large over- and underestimates. On the other hand, for the planning
of lumpy demand Croston [14] suggests to analyse the volume of the non-zero demand and
the interval between successive non-zero orders separately. Thus, two forecasts are made, one
for the volume of the order and one for when the next order will occur.

Last, we consider the correlation among the sales products to check whether there are any
dependencies among them. The Pearson correlation coefficient for two samples X and Y is
defined by [64]

rX,Y =

∑n
t=1(xt − x̄)(yt − ȳ)

√
∑n

t=1(xt − x̄)2
√

∑n
t=1(yt − ȳ)2

(2.1)

The analysis shows that the sales products are not correlated among each other. Results
can be found in Appendix A.

Times series decomposition for BT1.
Time series decomposition is a classical method of time series analysis. It tries to discover

patterns in the historical data and extrapolates these into the future. In contrast, regression
analysis aims to reveal an explanatory relationship between one or more independent variable
and the output [22]. We focus on time series decomposition as we are interested in the
patterns and not in an explanatory relationship. Time series decomposition breaks down a
time series into subpatterns that identify separate components. This gives the analyst a better
understanding of the series, and improves accuracy in forecasting since suited forecasting
models can be chosen on the obtained information. Thereby, it assumes that the data is a
function of a trend-cycle, seasonality and an error term [22,33]:

Data = f(trend-cycle, seasonality, error) (2.2)

There are two approaches of the classical decomposition [22, 33]: 1) Additive models and
2) multiplicative models. Additive models assume that seasonal fluctuations stay the same,
whereas multiplicative models assume that seasonal fluctuations decrease or increase over
time. Our data shows no significant increase or decrease in the variance over time. Hence, an
additive approach is applied which comprises the four steps below :
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1. Estimating the trend-cycle.

2. Removing the trend-cycle component.

3. Estimating the seasonal component.

4. Estimating the error term.

Time series data is often described by a non-stationary process. For a non-stationary
process the mean and/or the variance change over time whereas a stationary process has
the property that the mean and variance are constant and do not change over time [8].
Clearly, if there is a trend in the data the series is non-stationary as the mean changes over
time. However, many models assume stationarity. Stabilizing the mean can be achieved by
either differencing or de-trending the series, stabilizing the variance can be achieved by log-
transformation of the data [33]. To detect non-stationarity various statistical tests such as
the Dicker-Fuller tests exist in literature.

As we found that the variance does not change significantly over time, we do not need to
stabilize it. A stabilization of the mean beforehand is also not necessary as it is part of the
decomposition to remove the trend of the data. The trend-cycle is estimated by calculating
an appropriate moving average. For instance, when data is monthly a 12th order centred
moving average can be used to represent how the data develops over a year. Similarly with
daily data, we calculate a 7th order moving average to show the trend over a week. Since
our data is weekly we would assume to calculate a 4th order centred moving average to ag-
gregate the data over a month. However, this results in a random pattern that cannot be
described as a trend. Therefore, we increase the order of the moving average such that more
data points are aggregated and thereby smoothing the trendline. This results in a 26th order
moving average of our weekly data meaning that we aggregate data points over six months in
order to detect a smoothed trend. It is reasonable to use a 26th order moving average since
the planning horizon is also 26 weeks. Next, we detrend the data by subtracting the trend
from the time series. This leaves us with the seasonality and an error term. The seasonal
component is estimated by calculating a seasonal index per week over the two years since the
data is weekly. From the plot shown in Appendix B, one can see that there is no seasonality
recognizable. Hence, we can conclude to detect a trend the data needs to be smoothed by
aggregating it over at least six months otherwise a random pattern is drawn and there is no
recognizable seasonality in the data.

2.2.2 Autocorrelated demand data

Erkip et al. [23] find that autocorrelation is important to detect consecutive periods of in-
creased demand. In case of positive autocorrelated demand safety stock needs to be higher
to attain the same stock out probability than in case of non autocorrelated demand. Thus,
we are interested in investigating whether the observed demand shows autocorrelation.

Autocorrelation of basic type BT1.
The autocorrelation measures the internal dependency of a time series between two time

periods [8]. Similarly to the correlation coefficient, which measures the dependency between
two variables, the autocorrelation gives a value between -1 and 1 for highly negative and
highly positive correlated values, respectively. In contrast, values close to 0 indicate that
there is no correlation, that is, time periods are independent.
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The autocorrelation for the time series Y at period t and lag k is defined in Equation 2.3.
That is, it is the correlation between period t and the kth lagged period [64].

rk =
E[(Yt − µ)(Yt−k − µ)]

σ2
=

∑n
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )

∑n
t=1(Yt − Ȳ )2

(2.3)

When applying the stated definition of autocorrelation, also called serial correlation, a
constant mean and variance over time are assumed.

For the time series of the basic type BT1 the variance stays constant over time and we
neglect small changes as we compared the variance for the first six lags and only detected
small variations. However, as we saw from the time series decomposition in the previous
section, there is a smoothed trend recognizable. Hence, we stabilize the mean by de-trending
the series before calculating the autocorrelation. De-trending the data is done by calculating
a 26 weeks centred moving average and subtracting it from the time series. Next, we calculate
the autocorrelation for lags one to eight. This shows no significant autocorrelation between
these lags as all values fall below the threshold value of about 0.2. This threshold value is
approximated by a hypothesis test, which is further described in Appendix C.1.

We can conclude from the investigation of the autocorrelation for the basic type BT1 that
there are no dependencies between time periods and hence they behave independently.

We also assess the generated demand data according to autocorrelation. Note that we
elaborate on the procedure of generating the demand in chapter 5. The evaluation of the
generated demand data shows that it is neither autocorrelated. Thus, we do not face any
problems due to autocorrelation within the data series. Nevertheless, we looked at other
products of Infineon which do show autocorrelation, e.g. from ATV and PMM shown in
Appendix C.2. These products are Body Power, Powertrain and Radarchips. Hence, when
demand is generated the method should be able to create autocorrelated demand.

Stock outs due to autocorrelation.
Showing autocorrelation in solely one of the demand series, either the historical or the

generated one, but not reflecting it in the other one can cause problems when defining stock
levels. Stock levels may then be either too low leading to an increased stock out probability
or too high resulting in larger holding costs.

The problems caused by correlated demands have been studied among others by Erkip et
al. [23], Charnes et al. [11], as well as Lau andWang [40]. Their research differs in the approach
how autocorrelation is created. Erkip et al. analyse the effect of autocorrelation for real-world
demand of consumer products. Charnes et al. employ an autocovariance function whereas
Lau and Wang use an ARMA process to create autocorrelated demand. The research shows
that if positive autocorrelation in demand goes undetected and stock levels are set on basis of
uncorrelated demand, the actual probability of stock outs will be higher than expected. This
can be explained by the continuous increasing demand over multiple periods. In contrast,
non autocorrelated demand does not show high demand occurrences over multiple succeeding
periods. Similar results have also been found by Fotopoulos et al. [26].

We construct an example ourselves to demonstrate the difference in stock out probabilities
for positive autocorrelated and non autocorrelated demand, where we apply autocorrelation
in the first four legs. The analysis compares the number of stock outs for both series. A
stock out occurs when the demand at time t cannot be satisfied by the production output
of time t plus the stock at the end of the previous time period t − 1. We determine the
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production output at time t as the ten weeks moving average of the demand for periods t−20
up to t − 10. We use a period of ten weeks since it approximately reflects the cycle time
from the production start in the fabrication to the master storage from which the customer
demand is fulfilled. Moreover, we do not consider backlogs, that is, in case of a stock out
the stock level is set to 0, but does not become negative. This implies that there are less
stock outs than in the case were backlogs are considered. When we consider backlogs the
demand at time t includes not only the orders at time t, but also the backlog up to time
t. Thus, the overall demand is higher and hence the probability of a further stock out
increases. The generated time series having positive autocorrelation is constructed using
a sine function and some random error term, more precisely the values are computed by:
demandt = (1 + factor ∗ sinus(t/4) + random) ∗ 100, where 0 ≤ factor ≤ 1, t are time
periods 1, 2, ..., n and the random number is drawn from a uniform distribution of range [0,1].
The whole term is scaled by 100 in order to make demand more realistic. One should note,
that the higher the factor, that is, the closer it is to one, the higher is the autocorrelation. We
choose a factor of 0.3 such that the autocorrelation in the first four lags varies between 0.2 and
0.3 which we consider as realistic. The time series without autocorrelation is constructed by
drawing a random number between the minimum and maximum value of the autocorrelated
data series such that both series are comparable, that is, they have a similar range and mean.
The computation in the Excel spreadsheet can be found in Appendix C.3.

The comparison shows that the number of stock outs for positive autocorrelated demand
is approximately 55.48% higher than uncorrelated demand when the stock level is chosen
under the assumption of uncorrelated demand. The reason for a higher stock out probability
in case of positive autocorrelated demand can be explained by the different behaviour of the
data. Positive autocorrelated demand has a high demand over multiple consecutive periods.
This stresses the system since it has to provide a high amount of products over consecutive
time periods. In contrast, uncorrelated demand behaves randomly such that a week of high
demand is usually followed by a week of lower demand. This allows the system to recover.

The drawn results indicate that it is necessary to detect autocorrelation in the demand.
Hence, for the simulation study we have to make sure that the generated and historical data
behave the same, otherwise we will have distorted results regarding the stocking levels. In the
case that the generated data contains positive autocorrelation but the historical data does
not, stocks will tend to be too high. That is, the results will suggest higher stocking levels
to hedge against a continuing increase of demand over multiple time periods. However, as
this continuing increase does not occur stocks will accumulate. In the case that the generated
data does not contain positive autocorrelation but the historical data does, stocking levels
will tend to be too low. This leads to a shortage of products and a drop in the service level
since customer will face longer lead times.

2.3 Conclusion

In this research we consider two exemplary products of the division Chip Card & Security,
where one product is a contactbased and the other one a contactless chip. Due to their
high volume which accounts for ≥ 25% of CCS’s yearly revenue, they are highly relevant.
The study about the plan and make process at Infineon in subsection 2.1.1 shows that the
production of chips takes up to four month, where approximately three months are allotted
to the front end and roughly one month to the back end. That is, in order to stay competitive
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and respond quickly to customer demand products have to be produced on forecast. Since the
basic types we are considering become customer specific sales products in the sort, production
upon forecast is only done up to the master storage where they are still generic. This practice
is done to prevent producing highly specific products on forecast. The forecasts, on which
the production is based, are made by calculating a four months moving average over the
historical data. The further processing from the master storage to the distribution centre is
then initiated by customer orders. The current target reach at the master storage is 13 weeks
for both products which results in an α-service level of 98%.

From the data analysis based on the deliveries of the two basic types BT1 and BT2 for
the years 2014 and 2015 we receive several findings. The time series decomposition shows
that there is a slightly upward trend for both basic types, however there is no seasonality
recognizable. The upward trend is due to the product lifecycle. These two payment products
require a security certificate [31]. The certificate is valid for four years and hence the product
lifecycle spans over four years. Renewing the certificate is possible, however it is not very
common. That is, the deliveries are likely to increase furthermore, but eventually will level off
as the certificate expires by the end of 2018 [31]. In addition, analysis reveals that there is no
significant autocorrelation for both basic types. That is, the periods are independent of one
another. However, we consider the autocorrelation as an important statistical measure since
it indicates whether succeeding time periods show a rising demand. This in turn increases
the probability of stock outs as we examine in subsection 2.2.2 and advice to employ another
stocking strategy. Indeed it does not apply to our considered products, but there are products
of Infineon having autocorrelation. Last, we investigate the correlation among sales products
for each basic type. It showed that there is no significant correlation. Hence, the deliveries
of the sales products do not influence each another.
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Chapter 3

Simulation model

Simulation is a powerful tool when studying various stocking strategies since the impact
of various systems settings can be examined in the simulation model first, before apply-
ing changes to the real world as these may be too expensive, too dangerous or just im-
possible. Thus, it offers the opportunity to understand, evaluate, and improve a complex
system without taking high risks.

The existing simulation model is used to define the best stocking strategies for the two
basic types and to consider various approaches to determine the release quantity. The release
quantity is defined as the amount of wafers to be released in production. The model resembles
the production process as described in subsection 2.1.1. It was developed by Infineon’s flex-
ibility & econometrics team and further enhanced by a master thesis [13]. As part of the
thesis it also got validated. In our project we implement minor modifications such as various
production release approaches. The model is built with the Anylogic software version 7.3.5
professional. Anylogic is a java-based simulation tool which enables discrete event simulation,
system dynamics, and agend based modelling. The model under consideration is a discrete
event simulation. It is called discrete since the state, which are the variables that describe
the system, changes at separate points in time. At these points in time an event is triggered.
Events are instantaneous occurences that may result in a changed state of the system. In con-
trast, the state of a continuous system changes constantly with respect to time, for example
the state such as the position of a flying airplane is changing with respect to time [41].

At Infineon we address four simulation levels. These levels are distinguished by their
scope of the considered supply chain steps. At a high level the end-to-end supply chain is
modelled whereas at a low level single workcentres (machines) are described. The four levels
are (top-down):

• Level 4: The end-to-end supply chain from the supplier to the customer.

• Level 3: The internal supply chain of Infineon. It is part of the end-to-end supply chain.

• Level 2: A single factory or single site of the internal supply chain.

• Level 1: A single workcentre of a factory.

We model the internal supply process of two basic types illustrated by Figure 3.1. Thus,
we can class our model with level 3. It can be divided into three main parts: Plan, Make, and
Data (input and output of simulation) which correspond to section 3.1, section 3.2, and sec-
tion 3.3.

An optimization approach between service level and inventory via simulation 27



CHAPTER 3. SIMULATION MODEL

Figure 3.1: Snippet of the graphical user interface of the simulation model built with anylogic

3.1 Plan functions

3.1.1 Release quantity

The planning covers the decision of how many products to be started into the production,
at the wafer start (WS), the master storage (MS), the die bank (DB), and the distribution
centre (DC). It matches the demand with the supply and releases the according quantity.
Figure 3.2 illustrates the planning at the stock points. The release quantity in each period t
at the stock points is determined as follows:

releaseWS = FCCTWS
+ (target reachMS - stockMS) + (target reachDB - stockDB)

+ (target reachDC - stockDC) + backlog - WIPFE - WIPBE

releaseMS = OrderCTMS
+ (target reachDB - stockDB)

+ (target reachDC - stockDC) - WIPFE + backlog - WIPBE

releaseDB = OrderCTDB
+ (target reachDC - stockDC) + backlog - WIPBE

releaseDC = Ordert + backlog

The amount of wafers to be started into front end (releaseWS) is determined by the
forecasted demand during the cycle time (FCCTWS

) from start in production to the finished
product, the target reach at each of the downstream stock points netted by the actual stocks
as well as the current backlog and the work in process in front end (FE) and back end
(BE). Similarly, the release quantity at the master storage is dependent on the incoming
orders during the cycle time from the master storage to the customer (CTMS), the netted
target stocks at the downstream stock points, the backlog as well as the downstream work in
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Figure 3.2: Weekly planning of release quantities at the stock points in the simulation model

process. The release quantity at the die bank considers the incoming orders during the cycle
time from the die bank to the customers (CTDB), the netted stocks at the distribution centre,
the backlog and the work in process in back end. Last but not least, at the distribution centre
the orders of period t and the backlog are released.

3.1.2 Demand generation

In the following it is explained how the demand generation method works in general. We
discuss in section 5.2 how the parameters are determined such that it applies to the two
basic types. To clarify, the parameters are entered manually in an internal database file
of the simulation before the run is started. Further note, the simulation model creates a
forecast, which we call simulation forecast, however this forecast should not be confused
with the marketing forecast. It is important to note, that when we simulate the current
practices in chapter 6, we do not use the simulation forecast to predict the demand of the two
basic types, but instead use a moving average over the historical data (marketing forecast).
Nevertheless, we describe it since it is part of the demand generation method. We give a
definition in the description below.

In Figure 3.3 we schematically show the logic of the demand generation. In week one the
method creates demand for each defined sales product over the next 26 weeks by a truncated
normal distribution. A horizon of 26 weeks is chosen, since the short term planning at Infineon
covers a time frame of 26 weeks. The calculations is defined below:

value = roundToInt[normal(min,max, µ, σ, random)]

with min = 0

max = 2 ∗ average demand

µ = average demand

σ = cv ∗ average demand

A value from a truncated normal distribution is drawn with minimum 0 since the demand
cannot become negative, and a maximum of two times the average demand of the sales
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Figure 3.3: Illustration of the demand generation in the simulation model

product, a mean µ equalling the average demand as well as a standard deviation σ. In week
two all values in the period between the freeze fence (FF) and the defined horizon are modified
according to some method and a new demand point for week 27 is created. We call the period
from the freeze fence to the defined horizon simulation forecast. Demand during this period
is changing each week. On the other hand, the demand from the current week to the freeze
fence are known incoming orders which do not change. Hence, the freeze fence sets the time
horizon for which the demand stays constant. That is, for the two basic types we set the
freeze fence according to the cycle time of the master storage (CTMS) to imitate that orders
are known at the master storage.

The calculations for the demand adjustment given below are such that demand points
lying further afar in the future are varying more than demand points closer in the future.
This reflects the increasing uncertainty illustrated in Figure 3.4. The adjustment for each
forecast point ∈ [FF ; t+ 26] in week t is calculated as follows:

biasSigma = (AAMax−AAMin) ∗ (t− 1)AAN

(26− 1)AAN
+AAMin

value = roundToInt[normal(σ′ ∗ biasSigma, µ′, random)] ∗ previousForecastPoint

if(previousForecastPoint+ value < 0)

value = −previousForecastPoint

where the parameters AAMax and AAMin describe the changes in the furthest and
closest horizon, respectively and AAN controls whether biasSigma is linear (AAN = 1),
concave (AAN < 1), or convex (AAN > 1). Furthermore, µ′ and σ′ describe the change in
the mean and standard deviation. In section 5.1 we further examine these parameters.
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Figure 3.4: Illustration of the increasing uncertainty range over the simulation forecast

3.2 Make functions

The make part of the simulation corresponds to the make process described in section 2.1.1.
The steps are represented by the yellow and red icons in Figure 3.1. The yellow icons rep-
resent stocking positions and the red icons represent processing steps. We have four stocking
positions, namely the wafer start (WS), the master storage (MS), the die bank (DB), and the
distribution centre (DC). However note, the wafer start represents the source to the process.
The stocking positions are modelled by queue elements where the products remain until they
are processed by the next facility. Moreover, we have five facilities where the processing of the
products takes place. These are fabrication 1 (FAB1), fabrication 2 (FAB2), sort, assembly
(ASSY), and test. They are modelled by delay elements representing the processing time
at each facility. Currently, there are no capacity restrictions for the processing steps. The
fabrication is split up into fabrication 1 and fabrication 2 in case that the master storage lies
inbetween the steps of the fabrication. This can be set up by splitting the total cycle time
of the fabrication between fabrication 1 and fabrication 2 accordingly. In our case, the cycle
time of the fabrication is completely allotted to fabrication 1 as the master storage lies at the
end of this process. Defining the cycle times for the facilities belongs to the data part of the
simulation.

3.3 Input and output data

The data of the simulation model comprises both, the input and output data. The input data
allows to set up various system settings which are stored in internal database files. These are
entered manually before the simulation run. The output data gives the α-, β-, and γ-service
level as well as the total costs defined below in Equation 3.2, Equation D.1, Equation D.5,
and Equation 3.4. They are not only shown in diagrams during the simulation run but can
also be exported automatically to an Access database at the end of the simulation in order
to elaborate on the data analyses.
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3.3.1 Experimental and system settings

The input parameters stored in internal database files are distinguished in system and experi-
mental settings. System settings are basic type specifics and experimental settings are factors
we alter for each experiment to study the system behaviour. Relevant system settings are:

• Freeze fence: The number of periods from now onwards into the future where demand
does not get modified.

• Average sales price. It is used to calculate the costs.

• Profit margin. It is also used to calculate the costs.

• Front end cost share: The split of costs allotted to front end and back end.

• Weighted cost of capital: It represents the costs of investing capital in products stored
at master storage, die bank or distribution centre.

• Cycle time: The number of days the processing takes at the fabrication, sort, assembly,
and test.

• Product structure. It specifies the diversification point.

The experimental settings concern the target reach at the master storage, die bank, and
distribution centre. They define the number of weeks that stock should be available at each
storage location. We vary these three parameters in the simulation study in chapter 6 to
evaluate various stocking strategies.

3.3.2 Key Performance Indicators

The evaluation of the stocking strategies and production release approaches in section 6.3
is done according to the α-service levels as well as the total costs (TC). The service level
indicates how well we satisfy customer orders. That is, whether we deliver on time and can
meet customer demand. The KPIs are evaluated over several weeks (t = 1...T ) and various
simulation runs (r = 1...R). The service levels are measured at the end of the supply chain,
that is, each week t the incoming orders and outgoing deliveries are compared. Notice, in the
simulation model week t corresponds to time period t.

α-service level.
The α-service level gives the probability that the incoming demand during period t is com-
pletely met by on-hand inventory. It either becomes 0% when demand is not met completely
or it becomes 100% when demand is met completely. Note, that backorders of previous weeks
are not considered as part of the incoming demand for period t [60]. The α-service level is
defined by [60]:

α-sevice level = P{demand during time period t ≤ on-hand inventory (3.1)

at beginning of time period t} (3.2)

It is implemented in the simulation model by aggregating over all sales products (p =
1...P ), weeks (t = 1...T ), and replications (r = 1...R):

α-sevice level =

∑R
r=1

∑P
p=1

∑T
t=1 αrpt

R ∗ P ∗ T (3.3)
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Next to the α-service level, the simulation model also provides the β- and γ-service level.
For an detailed explanation we refer to Appendix D since we do not use them to evaluate the
approaches. Nevertheless, they may be used in addition to the α-service level.

Costs.
Next to achieving a high service level, we aim to keep the total costs considerable low. The TC
are the fixed capital costs bind in products. It is calculated by the weighted average cost of
capital (wacc) times the value of the WIP and the stock locations:

TC = wacc * (value of WIP + value of stock points) (3.4)

In the simulation model the calculation of the costs is divided into two task: the distri-
bution of the total bound capital along the facilities and the weekly calculation of the total
value in the supply chain [13].

The distribution of the costs along the facilities is done top down. First, costs are split
proportionally between front end (costFE) and back end (costBE) according to the ‘front end
cost share’ and then further divided between the facilities. The costs are based on the cost
per unit (costunit) which is defined by the difference between the average selling price (asp)
and its profit margin:

costunit = (1−margin)asp (3.5)

costFE = costunit ∗ costshareFE (3.6)

costBE = costunit ∗ (1− costshareFE) (3.7)

(3.8)

The costs at the facilities FAB and sort in front end as well as at assembly (ASSY) and test
in back end are assigned according to the cycle time (CT) of each processing step denoted
by CT processing step. Moreover, the costs of the fabrication are split between fabrication 1
(FAB1), incurred before the product enters the master storage, and fabrication 2 (FAB2),
incurred after the master storage and before the sort step:

Costs in front end:

costFAB = costFE
(

CTFAB/CTFE
)

(3.9)

costFAB1 = costFAB
(

CTFAB1/CTFAB
)

(3.10)

costFAB2 = costFAB
(

CTFAB2/CTFAB
)

(3.11)

costSORT = costFE
(

CTSORT /CTFE
)

(3.12)

Costs in back end:

costASSY = costBE
(

CTASSY /CTBE
)

(3.13)

costTEST = costBE
(

CT TEST /CTBE
)

(3.14)

The second tasks considers the weekly calculation of the value in the supply chain. It is
calculated by the average value of WIP and inventory at all facilities and stock points denoted
by valueSC . The WIP value at each facility is calculated as the WIP units times the average
cost of each unit at the respective facility. The same procedure is done for the inventory value:
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the total stock units times the cost of the units at the respective stocking point. The costs at
the stock points are the accumulated costs of the previous facilities. The total costs (TC) are
the value of goods in the supply chain times the the weighted average cost of capital (wacc),
which describes the rate of return that could have been earned when investing elsewhere. We
define the TC over all replications and weeks as follows:

TC =

∑R
r=1

∑T
t=1wacc ∗ valueSCRT

R ∗ T (3.15)

Note, that we do not consider idle costs as input of the total costs since we concentrate
on the trade off between keeping enough products in stock at the various locations and the
costs of storing these products.

3.4 Conclusion

To improve the supply chain planning process we use discrete event simulation since it is able
to capture complex relations between processes. The existing model represents the supply
chain of Infineon with its plan and make process. The plan functions are responsible for
starting production whereas the make functions concern the processing steps. This model
can be used to study various stocking strategies and production release approaches. The
evaluation of the various procedures is done by considering the respective service level and
costs. However, before we use the model for our simulation study we need to parametrize
it according to the situation of the two exemplary basic types. This includes to generate
demand similar to the observed one. In chapter 4 we study how we can assess the fit between
the generated and observed demand.
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Chapter 4

Literature review

The aim of this thesis is to improve stocking levels of two basic types as well as determining
the release quantity in front end by using discrete event simulation. In order to receive
precise results, the demand arrival process has to generate demand data that captures the
stochastic behaviour of the observed demand data. The closer the generated demand data is
to the observed data the more accurate are the simulation results. Thus, we are interested in a
measure that assesses the fit between the generated and observed data. In the literature, there
exist various measures to compare time series. One can compare two time series using forecast
accuracy measures explained in section 4.2. Forecast accuracy measures evaluate the residual,
also called error term, between forecasted and observed values. Another way of evaluating
the similarity between two time series are time series similarity measures, which we elaborate
in section 4.3. Similarities can be based on the distance, on features of the two series, or on the
shape of the series. Last, in section 4.4 we consider hypothesis tests or also called ‘goodness of
fit’ tests to assess the fit between two data series. One can distinguish these tests between one-
sample and two-sample tests. One-sample tests evaluate whether an empirical distribution is
drawn from some known distribution whereas two-sample tests evaluate whether two empirical
distributions are drawn from the same unknown underlying distribution. In this case, we speak
of consistent data. We are interested in the two-sample tests to compare the generated and
observed demand and evaluate whether they are consistent. Before we discuss the several
methods, we give some theoretical background in section 4.1 on how demand data can be
classified, we provide definitions for time series as well as stochastic processes, and introduce
two basic concepts of forecasting demand.

4.1 Introducing common terms and concepts

4.1.1 Categorization of demand patterns

To start with, we give a well-known classification of demand patterns according to Syntetos &
Boylan [59], which we refer to in the remainder of this thesis. Other classification approaches
exist, for example Williams [63] partitions the demand according to its variance. Eaves [18]
revises this classification scheme and proposes a categorization based on the demand size
variability as well as lead time variability. However, the cut off values of these approaches
apply only to the particular empirical situation under study. This is not the case for the
classification of Syntetos & Boylan. They show that their proposed cut off values can be used
for any empirical demand data, which they classify into four categories: smooth, intermittent,
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erratic, and lumpy. The categorization is based on the squared coefficient of variation (CV2)
as well as the average inter-demand interval (ADI):

• Smooth demand is quite stable with rather low fluctuations and demand occurring in
most of the periods: CV 2 ≤ 0.49 and ADI ≤ 1.32

• Intermittent demand is also quite stable, but demand occurs rarely: CV 2 ≤ 0.49 and
ADI ≥ 1.32

• Erratic demand is characterized by large fluctuations in demand and regular demand
occurrences: CV 2 ≥ 0.49 and ADI ≤ 1.32

• Lumpy demand has also large fluctuations in demand, but rather few demand occur-
rences: CV 2 ≥ 0.49 and ADI ≥ 1.32

Figure 4.1 summarizes the cut of values and according categories of the demand classi-
fication.

Figure 4.1: Categorization of demand patterns according to Syntetos&Boylan [59]

4.1.2 Time series and stochastic processes

A time series is a collection of observations made sequentially in time [8,22]. If the observations
are made at fixed points in time t1, t2, ..., tN , the series is said to be discrete, otherwise, if the
observations are made continuously over time, the time series is said to be continuous. The
time series we are analysing are discrete since we consider the demand at fixed points in time.
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Furthermore, a time series can be described either as deterministic or as stochastic. A time
series is deterministic if its future values can be determined exactly by some mathematical
function. That is, future values are known and no randomness exists. For example they
can be calculated by zt = 2 ∗ sin(πt). On the other hand, a time series is stochastic if its
future values are described by a probability distribution, that is future values are not known
in advance and are said to be non-deterministic [8]. Obviously, our data is stochastic.

A stochastic process is a collection of random variables which describe a random phe-
nomenon evolving over time. Thus, a stochastic process can be described by a set of random
variables (Z1, Z2, ..., ZN ) and their corresponding probability distribution p(Z1, Z2, ..., ZN )
for representing the different values at different times. Then, a non-deterministic time series
can be viewed as a realization of a stochastic process [8]. We distinguish between station-
ary stochastic processes and non-stationary stochastic processes. As mentioned earlier in
section 2.2.1, a stationary process is based on the assumption that the joint probability dis-
tribution of the observations does not change when shifting all the observations forward or
backward in time [8]. This is, that the mean µzt and variance σzt for a stationary process is
the same for all random variables Z1, Z2, ..., ZN . The assumption is not met by non-stationary
processes. That is, the mean and the variance of non-stationary processes change over time.
In case there is an upward (or downward) growing trend in the data, the process is non-
stationary since the mean increases (or decreases) over time. Stationarity of the data is for
example important when we consider autocorrelation. For the autocorrelation we need the
data to be stationary otherwise it shows the increasing (or decreasing) trend but one does not
know whether the series itself is autocorrelated. Therefore, the trend needs to be removed
such that the series becomes stationary.

4.1.3 Basic forecasting techniques

The production in front end is started in advance. Thus, we need a forecast to determine
the release quantity. There exists a variety of methods to create a forecast ranging from basic
to advanced techniques. We are concentrating on basic techniques since we will use these to
determine the production release quantity in subsection 6.1.1. Forecasting methods based on
smoothing can be distinguished into averaging and exponential smoothing methods [22, 46].
Averaging methods rely on equally weighted observation. In contrast, exponential smoothing
methods rely on an unequal set of weights, where more weight is given to observations lying
closer in the series and less weight is given to observations lying farther away in the series.
These weights are exponential decreasing as the observation gets older [22].

Averaging methods.
The mean and the simple moving average are two basic techniques to forecast the next value
where each observation is weighted equally. The mean takes the average over all observations
n and the simple MA takes the average over the last k observations. Using a simple MA, we
can write the forecast for the next value FMA

t+1 in period t + 1, which relies on the previous
observations Yi, as follows [22]:

FMA
t+1 =

1

k

t
∑

i=t−k+1

Yi (4.1)

A new forecast point is calculated each time a new observation becomes available. Increasing
the order k the forecast becomes more smooth. Note, the simple moving average of order

An optimization approach between service level and inventory via simulation 37



CHAPTER 4. LITERATURE REVIEW

k = n is just the mean and the MA of order k = 1 is the naive forecast [22].

Exponential smoothing methods.
On the other hand, in exponential smoothing methods there are one or more smoothing para-
meters which determine the weights assigned to the observations. Methods are among oth-
ers SES, Holt’s Linear Exponential Smoothing, and Holt’s Trend and Seasonality method [22,
46]. SES is the simplest of the exponentially smoothing methods which we will apply in sub-
section 6.1.1. Using SES, we can write the forecast FSES

t+1 for period t + 1 in terms of the
observed point Yt and its forecasted value Ft for period t where we assign the weights α ∈ [0, 1]
and (1− α) [22, 33,46]:

FSES
t+1 = αYt + (1− α)Ft (4.2)

This can be written as:

FSES
t+1 = Ft + α(et) (4.3)

where et = Yt − Ft is the forecast error in period t. Thus, the forecast represents a weighted
moving average of the previous observed value Yt adjusted by the error of the last forecast
et. When α has a value close to 1, the new forecast includes a substantial adjustment for the
error in the previous forecast. Usually, α is chosen in such a way that the applied forecast
accuracy measure is minimized [22].

4.2 Forecast accuracy measures

In order to evaluate a forecast one commonly uses a suitable forecast accuracy measure to
compare the difference between the forecast and observed data. In our case, we do not assess
the forecast data, but the generated data by the simulation model. We describe how one
usually proceeds when using forecasting methods to create data and assess its accuracy to
the observed data.

Forecast accuracy measures generally assess how well a forecasting method predicts actual
data. Usually, the observed data is partitioned into a training set, called ‘in-sample-data’,
and a test set, called ‘out-of-sample-data’. The training set is used as input for the forecasting
method such as a MA and SES in order to create forecasting data, afterwards the generated
data is compared to the test set according to some accuracy measures [22, 33]. These meas-
ures can be distinguished in scale-dependent and scale-independent measures. As the name
suggests, the scale-dependent measures rely on the scale of the data. That is, if the data is for
example given in million of pieces then the measure is also given in million of pieces. On the
other hand, the scale-independent measures do not rely on a scale. They are either described
in percentage or given as relative measure. Relative measures compare a method with some
benchmarking method. First, we explain scale-dependent measures and continue later in this
section with scale-independent measures.

4.2.1 Scale-dependent measures

Let yi be the ith observation and ŷi denote a forecast of yi. The forecast error is simply
ei = yi − ŷi, which is scale-dependent as it is on the same scale as the data [33]. Commonly
used and intuitive scale-dependent forecast accuracy measures are the mean squared error
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(MSE), the mean absolute error (MAE), and the root mean squared error (RMSE) [22,33,57]
defined below:

MSE = mean(ei
2), i = 1, ..., N (4.4)

MAE = mean(|ei|), i = 1, ..., N (4.5)

RMSE =
√

mean(ei2), i = 1, ..., N (4.6)

The MSE computes the mean over the squared difference between the observed and forecasted
data. The MAE computes the mean over the absolute difference between the observed and
forecasted data and the RMSE takes the root of the mean over the squared differences. These
measures have in common that they are easy to understand and to compute. The advantage
of using absolute or squared values is that negative and positive values do not offset each
other [32]. They are suitable when one has a feeling for the magnitude of the data since these
measures are given on the same scale as the data or for the MSE the scale is even larger
since one computes the squared difference. Therefore, the RMSE is often preferred to the
MSE since it takes the root and hence is on the same scale as the data [34]. However, as
these measures are scale-dependent one cannot compare them among data sets with different
scales. For example, if we have two data sets with MSE1 and MSE2, respectively and we
compute MSE1 > MSE2, one would usually conclude that the forecast for the second data
set is more accurate than the forecast for the first data set since the MSE2 is smaller than
the MSE1. But one has to pay attention since the first data set may be in million of pieces
and the second data set may be in thousands of pieces. In that case, one cannot conclude
that the forecast for the second data set is better than the forecast for the first data set as the
MSE are on different scales and hence difficult to compare. Thus, when comparing measures
of data with different scale, one should use scale-independent accuracy measures.

4.2.2 Scale-independent measures

In order to compare forecast accuracy measures of data sets with different scales one can
use percentage errors which are scale-independent. The percentage error is given by pi =
100ei
yi

. Common percentage errors are the mean absolute percentage error (MAPE), and the
symmetric mean absolute percentage error (SMAPE) [33,34] as defined below:

MAPE = mean(|pi|), i = 1, ..., N (4.7)

SMAPE = mean(200 ∗ |yi − ŷi|
yi + ŷi

), i = 1, ..., N (4.8)

The MAPE computes the mean over the absolute percentage error and the SMAPE computes
the mean over the absolute difference between the observed and forecasted value divided by the
sum of the observed and forecasted values and multiplies this fraction by 200. The advantage
of these percentage errors are their scale-independence. Hence, the forecast accuracy can
be compared among data sets with different scales. But, they have the disadvantage that if
values are very low a small deviation between the observed and forecasted data leads to a
high percentage error. In case that the observed value is one unit and the forecasted value
are two units the MAPE is 100% [57]. In some cases a deviation by one is significant, in
other cases a deviation by one is not significant. When we think of a product that has low
production cost, then producing one or two of these products is not a high risk. On the other
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hand, when the production costs are very expensive we risk a lot of capital when producing
two products where only one is needed. A second disadvantage is that the percentage error
is not defined when demand is zero [33, 57]. Thus, in case of lumpy demand where there are
many periods with zero demand percentage errors are not suitable [32].

Furthermore, Makridakis [44] argued that for the same error value ei MAPE puts a heavier
penalty on positive errors, that is if values are overforecasted, than on negative errors, that is
if values are underforecasted, due to the different value yi in the denominator. For example, in
the case of overforecasted values with observed value yi = 100 and forecasted value ŷi = 150,
we have an error of ei = 50 and we receive a MAPE of MAPE = 100∗ 50

150 = 50%. In the case
of underforecasted values with an observed value of yi = 150 and a forecasted value of ŷi = 100,
we still have an error term of ei = 50, but the MAPE results in MAPE = 100∗ 50

100 = 33.33%
since yi differs. Therefore, he proposed the ‘Symmetric’ MAPE [44]. However, SMAPE
is not as symmetric as its name suggests according to Goodwin and Lawton [28]. For the
same value of the observed data yi, SMAPE puts a heavier penalty on lower forecasts than
on higher forecasts. For example, if we have an observed value yi = 100, a lower forecast
ŷl = 50 and a higher forecast ŷh = 150, then the SMAPE of the lower forecast is SMAPEl =
200 ∗ 50

150 = 66.67% and of the higher forecast it is SMAPEh = 200 ∗ 50
250 = 40%. Further,

SMAPE is difficult to interpret since on the one hand it has no lower bound, that is it can
become negative in case that forecasted values can take on negative values even though it
is an ‘absolute percentage error’ and on the other hand its upper bound is 200% making
comparisons with alternative percentage errors ambiguous [32, 34]. As we generate demand
data, we do not have negative values as demand is always ≥ 0, and hence in our case the
SMAPE is bounded from below by 0. Nevertheless, the upper bound is still 200% and thus
makes comparison difficult.

Infineon uses a modification of SMAPE, also called SMAPE 3, which we shortly discuss
here. A definition is given in Equation 4.9, where yi is the observation and ŷi is the forecast
point in week i:

SMAPE3 =
n

∑

i=1

|yi − ŷi|
yi + ŷi

(4.9)

It does not multiply the fraction by 200 and thus, its results range from 0% to 100% mak-
ing it easier to interpret and compare with other percentage errors. Further, even though
it cannot completely eliminate the upward bias, it alleviates the problem when forecasts are
low compared to when forecasts are high by summing the denominator and nominator sep-
arately [35]. At Infineon, the problem of an undefined error when demand is zero is avoided
by not considering these periods. However, this distorts the information since the SMAPE
is not updated accordingly. In case there was an under- or overforecast the SMAPE would
decrease, in case of a correct forecast the SMAPE would improve.

Further scale-independent measures include measures based on relative errors and relative
measures [34]. These accuracy measures use a benchmark method, most often the naive
forecasting method, which takes the observed value of the previous period as forecast for the
succeeding period, to compare various approaches. Measures based on relative errors divide
the error ei obtained from the examined forecasting technique by the error e∗i obtained from
the benchmark method. Thus, the relative error is denoted as ri = ei/e

∗
i . Then we can define
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the accuracy measures as [32, 34]:

Mean Relative Absolute Error(MRAE) = mean(|ri|)), i = 1, ..., N (4.10)

Geometric Mean Relative Absolute Error(GMRAE) = gmean(|ri|), i = 1, ..., N (4.11)

The MRAE computes the mean over the absolute relative error and the GMRAE computes
the geometric mean over the absolute relative error. The geometric mean is defined as the
nth root of the arithmetic product of the values 1, ..., n, it can be written as n

√
r1 ∗ r2 ∗ ... ∗ rn.

The disadvantage of these measures is that the error obtained from the benchmark method
can be very small or zero as with intermittent or lumpy demand and in that case the error is
not defined since it would involve a division by zero [32].

Instead of using measures based on relative errors, one can also use relative measures. A
relative measure compares two forecasting methods by dividing some accuracy measure of
the forecast method of interest by the same accuracy measure for the benchmark method.
Let MAE denote the measure of the method of interest and MAEb denote the measure of
the benchmark method, then the relative measure is given by RelMAE = MAE/MAEb.
Similarly, one can define relative measures using MSE, RMSE or MAPE. When the RMSE is
applied, we speak of Theil’s U statistic. The interpretation of relative measures is straight-
forward. A value < 1 indicates that the method of interest performs better than the bench-
marking method, and vice versa, a value > 1 indicates that the benchmarking method gives
more accurate values [22, 34]. However, relative measures can only be applied when compar-
ing forecasting methods, for example when one is interested whether forecasting method 1 or
forecasting method 2 provides more accurate results. Thus, they are not applicable when the
out-of-sample forecast accuracy is measured where forecasts are generated by applying only
one method.

The introduced measures are all point estimates that is they compare the observed value
at time t with the forecasted value at time t. Thus, one tries to predict the actual value
exactly, but does not account for the overall behaviour of the data. However, as we are not
interested in the exact values but rather want to capture the overall behaviour of the data such
as short upward trends that may lead to stock outs, we further consider time series similarity
measures to assess the fit between the generated and observed data as well as hypothesis tests
that evaluate whether two samples come from the same underlying distribution.

4.3 Time series similarity measures

Time series similarity measures evaluate the (dis)similarity between time series. Thus, they
try to recognize similar objects even though they are not mathematically identical [24]. His-
torically, the research for similarity measures has been done mainly by the pattern recognition
and data mining commmunity, where similarity measures are used as criterion for indexing
and clustering of time series in databases [27, 39].

Various categorizations of time series similarity measures exist in literature. In [17], Ding
et al. differentiate the measures into four categories: Lock-step, elastic, treshold-based and
pattern-based measures. Another categorization done by Esling and Agon in [24] proposes
the four categories: shape based, edit based, feature based and structure based similarity
measures. For our further discussion of various similarity measures we use the classification
of Esling and Agon [24] which we consider as most suited. We do not further consider Lock-
step measures since they are distance measures which compare the ith point of one time
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series with the ith point of another time series [17] and thus, have the same disadvantages
for our case as the considered forecast accuracy measures. That is, they compare specific
values and do not account for the overall behaviour. However, as we consider the time series
as realizations of a stochastic process we allow for inequalities in the ith point.

The most frequently used shape based similarity measure is dynamic time warping (DTW).
It was introduced by Berndt and Clifford [7] and applied to speech recognition as well as data
mining. Other than the lock step measures, DTW allows a time series to be ‘streched’ or
‘compressed’ in time to better match with some other time series. Hence, when comparing two
time series where one of them is the same as the other one but shifted forward or backward
in time, DTW will give a perfect fit for these two series. There exist a variety of extensions
to the original DTW. Ding et al. [17] propose to constrain the warping window size which
improves the accuracy for measuring time series similarities and speeds up computation.

Edit based similarity measures are based on the idea to find the minimum number of
operations that transform one time series into the other one by applying insertion, substitution
and deletion [24]. Historically, these measures were used to show the difference between
strings. The Longest Common SubSequence (LCSS) distance using the model proposed of
Andre-Joesson and Badal [4] is a commonly known edit based similarity measure. A treshold
parameter ǫ is introduced. In case that the distance between two points from two time series
is less than the threshold value ǫ they are considered to match. Extensions to this measure
are made by Vlachos et al. [62]. He adds a warping treshold γ which constrains the matching
of the points such that the temporal dimension is considered. Another commonly used edit
distance measure is the Edit Distance on Real sequence [12], which also introduces a threshold
value ǫ similar to the LCSS. Contrary to LCSS, they assign penalties according to the length
of gaps between two matched pairs.

Feature based similarity measures compare selected features such as coefficients from
discrete fourier transform for both time series. Vlachos et al. [62] extract period features in
order to compare time series among each other. Thereby, they aim to detect and monitor
structural periodic changes and determine similarities between time series by considering the
periodicity. Therefore, a two-tier approach is developed which considers the information in
both the autocorrelation and the periodogram [62]. Janacek et al. [38] propose a likelihood
ratio statistic for discrete fourier transform coefficients to test the hypothesis of difference
between series. Therefore, they take the fast fourier transforms and base the distance metric
on the differences in the periodogram of the series.

Last, we shortly look at structure based similarity measures which are especially applicable
for longer series. Compared to the other introduced measures they do not try to find local
similarities between patterns but rather look at a higher scale to identify global similarities
in series. Therefore, they incorporate prior knowledge about the data generated process [24].
That is, they determine the similarity by considering whether one series comes from the same
underlying model such as ARMA than the other one.

Most of the introduced time series similarity measures are based in some way on fourier
transforms, that is they take the periodicity of a series into account. These measures are not
suitable as our data does not show periodicity. In addition, structure based measures consider
the similarities of the underlying model. As we do not have any knowledge of the underlying
model, they are not applicable. Others are based on the distance between two series either
by transforming one series into the other one with a minimum number of operations, or by
considering the exact shape of a series. Dynamic time warping considers the distance between
two time series by comparing the ith point of one series with all points of the other series.
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Hence, it measures the exact distance but allows for time shifts, however not for randomness
in the data. On the other hand, edit based distance measures such as the LCSS and EDR
allow for local time shifts and noise in the series by introducing a threshold value. Thus, they
may be applicable for comparing the time series.

4.4 Hypothesis tests

We continue with a discussion on ‘goodness of fit’ tests, also called ‘one sample’ tests, and
‘two sample’ tests, where the former ones are used to evaluate the fit of observed values (one
sample) with a theoretical distribution and the later ones, which are often a modification of
the test statistics for the one sample case, are used to test whether two samples are drawn from
the same distribution. Thereby, no assumption about an underlying theoretical distribution
is made [16]. Since we want two compare two data series, we are interested in the methods
that allow to evaluate the fit of two samples.

A goodness of fit test is a statistical hypothesis test that evaluates whether the obser-
vations X1, X2, ..., Xi are an independent sample drawn from a particular distribution. The
underlying null hypothesis can be stated in general by [16,41]:

H0: The X ′
is are IID random variables with distribution function F̂ .

The two sample test evaluates whether the samples X and Y of size n and m, respectively,
both come from the same underlying distribution, where all n + m random variables being
mutually independent. The null hypothesis can be stated by [16]:

H0: The X ′
is and Y ′i s come from the same underlying distribtion.

In order to test such a hypothesis one computes the value for an appropriate test statistic
using the observed data and compares it with the critical value at a level of significance α.
The null hypothesis is rejected if the test statistic exceeds the critical value.

These tests can be described more formally as parametric, non-parametric and distribution-
free. A parametric hypothesis makes assumptions about the underlying distribution and
concerns specific parameters. The number of parameters is finite. An example of such a
hypothesis is ‘that a normal distribution has a specified mean and variance’ [58]. On the
other hand, non-parametric tests still make assumptions on the underlying distribution but
do not consider the parameters. A hypothesis would be ‘that a distribution is of normal
form with both mean and variance unspecified’ [58]. Similarly to non-parametric hypotheses,
distribution-free tests do not consider parameters and in addition do not make any assump-
tions on the underlying distribution [58], as formulated in the hypthesis for the two-sample
tests.

Since we assess whether two samples are drawn from the same underlying distribution
without knowledge of the true parameters and distribution, we are interested in distribution-
free hypothesis tests. There exist a variety of distribution-free goodness of fit tests in literat-
ure, however, we will not discuss all of them, but restrict ourselves to the discussion of the most
commonly known ones, the Chi-Square, the Kolmogorov-Smirnov and the Anderson-Darling
test.

4.4.1 Chi-Square Test

The Chi-Square test, which is the oldest goodness of fit test and was introduced by Pearson in
1900 [48], is a more formal comparison of a histogram with a fitted density or mass function.
The data under consideration is binned into several intervals. As binning involves a loss of
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information and choosing the size of the intervals sometimes is considered to be arbitrary, it
is recommended to avoid unnecessary binning of data and use the Chi-Square test when data
is discrete only [50].

In the one-sample case, where we compare an empirical distribution with a hypothesized
probability distribution of interest, we start with binning the observed data into k adjacent
intervals [a0, a1), ...[ak−1, ak) and define Ni to be the number of observations in the ith bin,
where n =

∑k
i=1Ni is the total number of observations. Next, we determine the expected

proportion of observations pi that would fall into the ith bin according to the hypothesized
distribution. In the continuous case, we have pi =

∫ ai
ai−1

f̂(x) and in the discrete case, we have

pi =
∑ai

ai−1
p̂(xi). Note that, npi gives the expected number of observations that would fall

into the ith interval. The Chi-square test statistic is computed by [41,50]:

χ2 =
k

∑

i=1

(Ni − npi)
2

npi
(4.12)

If the difference in the number of observed values and the expected number of observations
(Ni−npi) is large, we expect the fit to be poor. Thus, when χ2 statistic is large we reject the
null hypothesis that the empirical distribution comes from the hypothesized distribution. On
the other hand, if the difference between the number of observed and expected observations
is small, we expect the fit to be good and do not reject the null hypothesis [41].

Next, we consider the two-sample case, that is, whether two empirical distributions are
consistent. Therefore, let Ri be the number of observations in bin i for the first data set and
let Si be the number of observations in bin i for the second data set. The Chi-Square test
statistic is defined by [50]:

χ2 =

k
∑

i=1

(Ri − Si)
2

Ri + Si
(4.13)

Considering both equations, Equation 4.12 and Equation 4.13, note that in the two-sample
case the denominator is not the average, but the sum of Ri and Si. This is due to the reason
that each term in a Chi-square sum is required to model the square of a normally distributed
quantity with unit variance and the variance of the difference of two normal quantities is the
sum of their individual variances [50].

As mentioned earlier, the binning of data leads to a loss of information. Again, this
is reflected in the power of the test. By power we refer to the probability that the correct
decision is taken when the alternative hypothesis is true. That is, the power is the probability
of rejecting the null hypothesis when the alternative hypothesis is true. The Chi-Square test
has less power than the Kolmogorov-Smirnov or Anderson-Darling test. However, it is simple
to apply to discrete data.

4.4.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test for the one-sample case compares an empirical cumulative
distribution function Fn created on basis of observed values with the hypothesized cumu-
lative distribution function F̂ . The empirical distribution is defined by Fn(X(i)) = i/n for
i = 1, 2, ..., n. This is a step function which increases by 1/n at each ordered data point [41].
To evaluate the goodness of fit between the observed values and the hypothesized distri-
bution function, the closeness between the empirical distribution Fn and the hypothesized
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Figure 4.2: Kolmogorov-Smirnov test

distribution F̂ is measured. The test statistic Dn describes the maximum (vertical) distance
between Fn and F̂ for all values of x [41], where each distance is weighted equally. That is,
there are no distinctions made between the distances in the tails of the distributions or the
distances in the head of the distribution as it is done in the Anderson-Darling test, which
we explain in the next section, namely subsection 4.4.3. Figure 4.2 visualizes the idea of the
Kolmogorovo-Smirnov test.

The test statistic is computed by:

Dn = max(D+
n , D

−
n ) (4.14)

where D+
n = max

1≤i≤n
(
i

n
− F̂ (X(i))) and D−n = max

1≤i≤n
(F̂ (X(i))−

i− 1

n
) (4.15)

The null hypothesis ‘H0: The X ′
is are IID random variables with distribution function F̂ ’ is

rejected in favour of ‘H1: The X ′
is are not IID random variables with distribution function

F̂ ’, when the test statistic Dn is greater than the critical value regarding a significance α.

The original form of the Kolmogorov-Smirnov test assumes that the hypothesized distri-
bution is continuous and all its parameters are known. In that case, the distribution of Dn

does not depend on the distribution of F̂ . That is, a single table of all values for dn,1−α is
sufficient for any hypothesized continuous distribution [41].

When modifying this original test one can evaluate whether two samples, Fn and Gm,
are drawn from the same underlying distribution without any knowledge of the underlying
distribution [46]. The null and alternative hypothesis are then stated as: H0: The X ′

is and
Y ′i s are from a common distribution function’ against ‘H1: The X ′

is and Y ′i s are not from
the same common distribution’. Similarly to the original form of the test, the test statistics
compares the largest distance between the two empirical cumulative distribution functions
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and is defined in the following [47]:

Dmn =

(

m ∗ n
m+ n

)1/2

sup
x
|Fn(x)−Gm(x)| (4.16)

The null hypothesis is rejected by a significance level α if Dmn > c(α), where c(α) =
√

−1
2 ln(

α
2 ) [54]. The Kolmogorov-Smirnov test for the one sample or two sample case is

widely used in literature and industry. However, in our case it is difficult to apply since the
test requires that the values are continuous. In case of discrete values the test statistic Dmn is
not defined since the empirical distribution has jumps and thus we cannot take the supreme
value for each value of x.

4.4.3 Anderson-Darling Test

Anderson and Darling also developed a distribution-free goodness of fit test. The advantage
of the Anderson-Darling statistic over the Kolmogorov-Smirnov statistic is, that they do not
assign the same weights to the difference |Fn(x) − F̂ (x)| for each value of x, but define a
weight function and thus detect discrepancies in the tails of the distributions where the main
differences for many distributions of interest lie [3]. The weights are largest at the tails. It
can be shown that the Anderson-Darling test statistic can be computed by [2]:

A2
n = −n− 1

n

n
∑

i=1

(2i− 1){ln[F̂ (X(i)] + ln[1− (F̂ (X(n+1−i)))]} (4.17)

where x(1) < ... < x(n) is the ordered sample of size n and F̂ (X(i)) for i = 1, 2, ..., n is the
theoretical cumulative distribution to which we compare the sample. The null hypothesis is
rejected at a significance level α if A2

n exceeds some critical value an,1−α. D’Agostino and
Stephens [15] provide among others tables for the critical values an,1−α for five continuous
distributions.

Modifications of the original test statistic proposed by Pettitt [49], generalize the formula
for the two-sample Anderson-Darling test:

A2
n =

1

mn

N−1
∑

i=1

(MiN − ni)2

i(N − i)
(4.18)

where N = n +m is the ordered and combined sample of the X’s and Y ’s with sample size
n and m, respectively and Mi is defined as the number of X’s that are less than or equal to
the ith observation of the ordered and combined samples of X and Y . The null hypothesis
which states that the two samples X and Y are drawn from the same distribution is rejected
at a level of significance α if the two-sample test statistic exceeds the critical value.

4.5 Conclusion

In order to compare two time series we looked at different approaches, namely forecast ac-
curacy measures, time series similarity measures, and hypothesis tests. Forecast accuracy
measures compare the ith point of one time series with the ith point of the other time series.
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The difference is called error term and is further evaluated. Hereby, we distinguish scale de-
pendent and scale independent measures. Scale dependent measures such as the MSE, MAE,
and RMSE have the drawback that one cannot compare the measures when scales are dif-
ferent. Though, scale independent measures overcome the drawback of having to scale data
first, they are not defined when demand is zero. As most of the sales products are lumpy, that
is there are many periods of zero demand, we cannot apply these measures. In addition, they
do not account for the overall behaviour, but compare points. Thus, making it not applicable
to our case.

Next, we considered time series similarity measures. These measures are widely used in
pattern recognition and data mining research areas to search for similar objects. Most of
the introduced time series similarity measures are either based on fourier transforms, that is
they consider the periodicity of a time series, or on the distance between two series either
by transforming one series into the other one, or by considering the exact shape of a series.
The methods based on fourier transform are not suitable since our data does not show any
periodicity. Though, edit based distance measures such as DTW, the LCSS and EDR allow
for local time shifts and hence may be applicable, we decide due to reasons of practicability
to further consider hypothesis tests.

Hypothesis tests are used to test whether two samples are drawn from the same un-
derlying distribution if so, they are considered as consistent. Hence, they account for the
overall behaviour of two time series. The Chi-Square test, Kolmogorov-Smirnov test, and the
Anderson-Darling test are three widely used hypothesis tests in industry and research. All
three of them are non-parametric and distribution-free tests. The Chi-Square test is applic-
able to both, continuous and discrete data, whereas the other two tests assume a continuous
distribution. In our case, the data is discrete, however we can create a stepwise cumulat-
ive distribution for the data series to be able to compare the absolute differences as done
in the Kolmogorov-Smirnov and Anderson-Darling test. The Chi-Square test has the draw-
back of binning the data and hence loosing information, which results in a lower power. By
power we refer to the probability of rejecting a false null hypothesis. However, it can be
applied to discrete data without modifying it. The Anderson-Darling test differs from the
Kolmogorov-Smirnov test that it puts heavier weights on the tails of the distributions where
many distributions differ and hence gives more precise results. Nevertheless, we decide to
use the Kolmogorov-Smirnov test since we do not need the precision of the Anderson-Darling
test. We modify the Kolmogorov-Smirnov test such that we compare the total area between
two distributions. This allows to compare various generated distributions among each other,
however it does not indicate which distribution gives the best fit to the observed one. Thus,
we take the Chi-Square test to assess the general fit of the two series.
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Chapter 5

Generating demand and checking

the fit between data

Figure 5.1 schematically shows the interactions between the input, the output, and the simu-
lation model. The simulation model was verified and validated by the scenario & econometrics
team of Infineon [13]. Thus, we concentrate the validation solely on the input to the sim-
ulation model. Roughly, we distinguish the input parameters between system settings and
demand generation parameters. With system settings, explained in detail in subsection 3.3.1,
we refer to the parameters which describe the specifics of the basic types. These are para-
meters such as the cycle times of the processing steps, the costshare between front end and
back end, the product structure as well as the freeze fence. They are set according to the
knowledge of the two responsible supply chain planners. The generated demand, on the other
hand, needs to be validated by checking the fit with the observed data. Therefore, we modify
the Kolmogorov-Smirnov test to choose the best generated series out of many and assess its
fit by applying the Chi-Square test, which is done using Excel.

The chapter is structured as follows, we analyse the existing demand generation method
by an experimental study in section 5.1, where we aggregate the data using R and analyse
the output with Excel. Next, section 5.2 describes the parametrization of the demand signal.
We conclude the chapter with suggestions for improving the demand method in section 5.3.

Figure 5.1: Interaction between input, simulation model, and output

An optimization approach between service level and inventory via simulation 49



CHAPTER 5. GENERATING DEMAND AND CHECKING THE FIT BETWEEN DATA

5.1 Experimental study of demand generator

In order to parametrize the demand generating method accurately, we study it experimentally.
We investigate various set ups of the input parameters. Thereby, we treat the method as a
black box and solely analyse the outputted demand using R and Excel. We check whether the
method is able to create smooth, intermittent, erratic, and lumpy as well as autocorrelated
demand. The parameters are set manually in an internal database file of the simulation before
the run is started. An detailed description how the demand generation method is implemented
is given in subsection 3.1.2. The method creates demand for the next 26 weeks (six months)
to emulate the short term planning of Infineon that spans over six months. To reflect that
the unrealised demand of the future is changing, the demand points in the simulation forecast
period are modified according to some adjustment term. The following input parameters
regard the demand generation method and the adjustment:

• Average demand (µ): The average demand per sales product. We do not use actual
demand values, but scale them down, since large values slow down considerably the
simulation run time.

• Coefficient of variation (cv): The ratio between the standard deviation and average
demand per sales product. Note, the standard deviation σ can be calculated by cv ∗ µ.

• Change in standard deviation (σ′): A constant value that is used in the adjustment
term to reflect the changes in the standard deviation.

• Change in average demand (µ′): A constant value that is used in the adjustment term
to reflect the changes in the average demand.

• AAMax : Describes the changes in the furthest demand point.

• AAMin: Describes the changes in the closest demand point.

• AAN : Controls whether biasSigma is linear (AAN = 1), concave (AAN < 1), or
convex (AAN > 1) as shown in Figure 5.2, Figure 5.3, and Figure 5.4, respectively
(where AAMax = 2, AAMin = 1).

Figure 5.2: biasSigma linear Figure 5.3: biasSigma concave

Table 5.1 shows the input parameters for the demand generation method. We varied each
parameter between a minimum and maximum value by a stepsize given in the last column.
The range of the values is chosen by considering former parametrizations of the demand
method and taking common values into account. One may notice, that we omit to vary
the mean as it would solely lead to another centre around which the demand fluctuates and
thus makes comparison and conclusions difficult. Note, that when parametrizing the demand
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Figure 5.4: biasSigma convex

Table 5.1: Input parameters to demand generating function

min max step

average demand (µ) 10 10 1
coefficient of variation (cv) 0.2 1.4 0.2
change in standard deviation (σ′) 0.1 0.3 0.05
change in mean (µ′) 0 0.1 0.05
aamax 0.5 2 0.5
aamin 0 1.5 0.5
aan 0 1.5 0.5

method according to the considered sales products, we do set various mean values. Combining
the parameters for each value results in 6720 experiments. We run the 6720 experiments for a
period of 52 weeks, such that we receive 52 demand points for each experiment. Furthermore,
we set the freeze fence to one week, that is, the demand is continuously modified in each
week. A warmup period is not considered since we are interested in the demand only and do
not consider any performance measurements yet.

Once we obtain the demand over the period of 52 weeks for each experiment, we evaluate
it according to various measurements, namely, its mean, its standard deviation, the minimum
and maximum value, its coefficient of variation, the average demand interval and the autocor-
relation for lag one to five. Moreover, we classify the demand in smooth, intermittent, erratic
and lumpy as described in subsection 4.1.1. By evaluating these measurements we aim to
reveal any particular behaviour and relations between the parameters.

The analysis shows two results. The demand generating method does not produce auto-
correlated demand. When we evaluate the autocorrelation in lag one to five we obtain no
significant autocorrelation with a 5% level of significance. For details on the autocorrelation
threshold value see Appendix C.1. Second, it does not create intermittent demand. Intermit-
tent demand is characterized by rather small fluctuations around its mean, and many periods
of no demand. A possible reason why the demand generation method is not able to create
intermittent demand is, that zero-demand is generated when the fluctuations are high, and
thus created by cutting extreme negative values to fulfill the requirement that demand is ≥ 0.

The demand of the two basic types and their sales products do neither show autocorrel-
ation nor are they classified as intermittent as we elaborate in subsection 2.2.1, and subsec-
tion 2.2.2. Thus, in our case we do not run into problems when generating demand with
this method. Therefore, we can use the current implemented method to create the demand
patterns of the sales products. However, when we examine the autocorrelation of some other
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products from ATV and PMM, we find that there are basic types showing significant auto-
correlation in the first lag as shown in Appendix C.2. Also, products may be classified as
intermittent. Hence, on a long term it is necessary to modify the demand generation method
such that it allows to create intermittent as well as autocorrelated demand. We provide sug-
gestions how to improve the method in section 5.3. Furthermore, the experimental study of
the demand generation method shows that there are no clear recommendations how to set
the parameters, such that a particular demand pattern, e.g., smooth, intermittend, erratic,
and lumpy, is generated. Hence, one has to try several set ups in order to receive the desired
demand behaviour.

5.2 Parametrization of the simulation model and evaluating

the fit

The parameters concerning the basic type specifics (system settings) are set and validated ac-
cording to the knowledge of the two responsible supply chain planners from CCS with whom
we lead a discussion. The demand generation parameters, on the other hand, are set by an
exhaustive search where the fit between the generated and observed demand is evaluating by
a modification of the Kolmogorov-Smirnov procedure in subsection 5.2.1. The best fitted gen-
erated demand is subsequently validated by applying the Chi-Square test in subsection 5.2.2.

5.2.1 A modification of the Kolmogorov-Smirnov approach

We follow a three-phase approach shown in Figure 5.5 using Excel. This is done for each
sales product. We have six sales products for basic type BT1 and ten sales products for
basic type BT2 accounting for ≥ 85% of the volume (in pieces). In the preparation phase
we set the parameters in the generation method such that statistical measures as the mean
and coefficient of variation show similar values to the observed data. In the second phase,
we evaluate various parametrizations for the same observed demand. Thus, we are interested
in the question: which parametrization does give the better fit to the observed data. In the
last phase, described by subsection 5.2.2, we evaluate the best parameter setting found in the
second phase according to the Chi-square test.

We modify the approach of the Kolmogorov-Smirnov test to our needs. In its original
form the Kolmogorov-Smirnov test computes the absolute difference between the cumulative
distributions of two data series and takes the supreme value as input to the test statistic.
Thereby, it assumes that the two empirical distributions are continuous. Note, that there are
extensions to the Kolmogorov-Smirnov test for discrete data. However, these are not straight
forward as the distribution of the test statistic D is much more difficult to obtain for discrete
data since it depends on the null model [5]. As we have discrete data, one would assume that
we apply the extension of the Kolmogorov-Smirnov test for the discrete case. But, we omit this
for two reasons. First, and that is the main reason, we do not apply the Kolmogorov-Smirnov
test in its original sense, but adapt it to our needs and second, since the extension is not
straight forward, this may introduce some source of non-applicability due to its need of deeper
understanding. Therefore, we stretch the assumption for continuity by making our discrete
distributions stepwise continuous. We order both data series, the observed data X1, ..., Xn

and generated data Y1, ..., Yn in ascending order and assign cumulative probabilities, F (x)
and G(y), respectively, to the ordered values. We define the cumulative probability, F (xi)
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and G(yi), of the ith data point to be i/N , where i is the ith rank of the ordered series and
N is the total number of points in each of the series, note that N = Nobs = Ngen. Next,
we define the cumulative probabilities for each integer z (since the data is discrete) in the
range of the observed data[a, b] and compare the distributions at these defined points. For
example, if the values range from a=0 to b=130, we define the cumulative probabilities at
the values of z = 1, 2, 3, ..., 130 by assigning F (z) = F (x), where we choose the greatest
x for which holds ≤ z. Elaborating on this example, for the data in the range of [0, 130],
we order our observed X1, ..., Xn and define the cumulative probability of the ith rank to
be F (xi) = i/130. As we have discrete data, we may have several probabilities F (xi) for
⌈xi⌉ = ⌈xi+1⌉ = ... = ⌈xi+k⌉ = z. In this case, we assign F (z) = F (xi+k) where xi+k is the
greatest integer ≤ z.

Following the above approach allows us to compute the absolute difference between the
two data series at each point z. For further evaluation of two different parametrizations we
do not consider the supreme value of the absolute differences as in the Kolmogorov-Smirnov
test, since the supreme value may be the same for two different parametrizations as shown
in Figure 5.6. This case occurs when we assign the same cumulative probability for some
value of z to both generated data series, G1(z) and G2(z), where it happens that the absolute
difference at this point z is the maximum in the data series. As a result, we would not have
an indication which of the two parametrizations performs better. Instead, we assess the total
area between the cumulative probability distributions of the observed and generated data as
shown in Figure 5.7. That is, parametrization 1 performs better than parametrization 2, if
the area between the observed and generated data 1 is smaller than the area between the
observed and generated data 2 as stated in the equation below. We can write the sum instead
of the integral since we consider discrete data:

Difference1 =

b
∑

a

|F (z)−G1(z)|dz < Difference2 =

b
∑

a

|F (z)−G2(z)|dz (5.1)

With this approach we are able to compare various parametrizations of the demand gen-
eration method with one another and make suggestions which one of them fits better to the
observed data. This is of practical use as it is common in practice to try various paramet-
rizations and check which one fits best. We stop the parametrization either when the total
area between the curves of the generated and observed data is Leq10% of the area below the
observed data or after testing more than 5 settings.

However, the approach does not allow to make an overall statement whether a fitted
data series is good in general. That is, we receive some value for the total area between
the cumulative distribution of the observed and generated data, but do not know whether
this value refers to a good or bad fit of the generated data. We can solely compare various
parametrizations according to the total area and decide for the parametrization with the
smallest total area.

5.2.2 Applying the Chi-Square test

In order to have an indication how well the fit between the observed and generated data per-
forms in general, we apply the Chi-square test for the two-sample case as described in subsec-
tion 4.4.1. Since this is a test for discrete data, we do not have to make any modifications to
the approach. We use the Chi-Square test to verify that the chosen parametrization accord-
ing to the modified Kolmogorov-Smirnov procedure is accurate enough. As the Chi-Square
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Figure 5.6: Kolmogorov-Smirnov approach

Figure 5.7: Modified Kolmogorov-Smirnov approach for sales product 1 of basic type BT1
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statistic has the drawback of binning data and hence loosing information we do not solely rely
on the Chi-square test but rather perform it in order to get an indication of the fit between
the data.

The evaluation according to the Chi-Square test is done for the parametrization which
gives the smallest total area between the observed and generated data. For each sales product
of the two exemplary basic types we compute the Chi-Square statistic according to Equa-
tion 4.13 and compare it to the critical value ck−1,1−α, which is drawn from a Chi-Square
distribution with k − 1 degrees of freedom, where k is the number of non-empty bins and
a significance level of α [50]. For the computed values of the Chi-square statistic and the
according critical value we refer to Appendix E. The evaluation shows, that the Chi-Square
statistic falls in almost all cases except two below the critical value, that is, with a signi-
ficance level of α = 1% we can state, that the two empirical distributions for the according
sales products are consistent and thereby, validate our approach of the modified Kolmogorov-
Smirnov scheme. For the two cases where the Chi-Square statistic is greater than the critical
value, that is, for SP6 of the basic type BT1 and SP7 of the basic type BT2, we further check
the plot of both cumulative distribution functions and consider the term (Ri − Si) for each
bin i. In case of SP6 we find that there is a large difference in the second bin and for SP7 we
find that there is a large difference in the first bin. As both basic types do only account for
a small amount of the overall demand, namely 1.8% and 2.4%, we omit further adjustment
of the demand parameters as it is quite time consuming. In general, we recommend when
observed and generated demand data to not fit according to the Chi-square test to first try
another parametrization. If this does not show to improve the fit, we suggest to check how
much of the sales’s product volume accounts to the overall volume. If this is below some
threshold value, e.g. 10%, one may be advised to use the parametrization anyhow. If it is
above the threshold value, we suggest to adapt the demand generation method according to
the considerations in the next section.

5.3 Improving the demand generation method

We recommend to modify the demand generation method such that it allows for autocorrel-
ation as well as intermittent demand and becomes more user friendly, that is, it makes the
parametrization straight forward with parameters that are easy to understand. An overview
of relevant characteristics to be considered when improving the method is given in Figure 5.8.
In addition, when modifying the demand generation method, one also needs to take into
account to change the approach how the simulation forecasts are generated.

We suggest to be able to choose from a set of distributions listed below to create demand
even though, the normal distribution often provides a good fit to the observed data as stated
in [57]. Tyworth and O’Neill [61] suggest to use the normal distribution if the ratio σL/x̂L does
not exceed 0.5, where σL is the standard deviation of the demand during the replenishment
lead time and x̂L is the expected demand during the replenishment lead time. Otherwise,
they propose to use another distribution as well. One may check which one of the available
distributions fits best to the observed demand and decide for the appropriate one. In case
none of the distributions fit, one may use a simple statistics distribution considering the
parameters such as the mean, CV2, and range to describe its behaviour. In the following we
give some distributions to be considered.

• Discrete uniform: For demand that is varying among two integers where we have little
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Figure 5.8: Relevant characteristics to be considered when improving the demand generation
method

further information [41].

• Gamma distribution: For frequently occuring demand, when the demand distribution
is skewed to the right [10].

• Poisson distribution: For low moving items. Demand occurs seldomly (lumpy or inter-
mittent demand) [53].

• Compound Poisson distribution: Demand size is described by some distribution F and
demand occurences is described by Poisson process [52].

• (Negative) binomial [41]

• Geometric [41]

In addition, when demand is intermittent or erratic according to the scheme of Syntetos &
Boylan [59] explained in subsection 4.1.1, we recommend to describe the demand size and the
demand occurrences separately, similarly to the compound Poisson distribution. That is, one
chooses a distribution for the volume of the demand and another one for the occurrences. This
allows to model slow moving items. Another approach for the current implementation would
be to introduce a new parameter that describes the average inter-demand interval (ADI), that
is, the average number of periods with no demand over the simulation horizon. In case that
the current average demand interval falls below the desired value, zero demand is created for
the next one to two weeks, otherwise we omit to create zero demand.

Last, we require to be able to create autocorrelated demand as this influences the stocking
strategies. The same stocking strategy may lead to stock outs and thus a lower service level
in case of autocorrelated demand compared to non autocorrelated demand as we elaborate
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in subsection 2.2.2. Hence, to draw the correct conclusions from the simulation results, it
should be included in the simulation model. One possible approach to implement positive or
negative autocorrelation in the demand generation method is to use an ARMA model as it is
done in [11]. The autoregressive coefficient, which determines the autocorrelation value, can
be set as desired.

Table 5.2 summarizes the parameters which we identify that are necessary to describe
the demand behaviour. They may be further considered to be implemented in the demand
generation method. Note, this is not a restricted enumeration but aims to give ideas for further
elaborations. The parameters include the mean, median, range, CV2, autocorrelation, and
ADI for which we give a definition and description in the same table. The mean and median
are chosen in order to describe the overall shape of the distribution. That is, to examine
whether the demand is skewed to the left or to the right. The range and CV2 serve to
describe the spread and fluctuations of the demand. The autocorrelation is chosen to reflect
whether there is an increasing or decreasing trend in the demand over several periods. Last, we
find that the ADI is relevant to distinguish between frequently occurring and non-frequently
occurring demand.

The recommended actions are a first practical approach to improve the current demand
generation method. Nevertheless, they need further elaboration regarding their realization.
As our focus lies on the improvement of the stocking levels, we do not further implement
the possible improvements due to time constraints. Furthermore, for the two considered
basic types we are able to generate sufficient similar demand by checking various set ups of
the parametrization and evaluating this to the modified Kolmogorov-Smirnov approach and
Chi-Square test.
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Measures Explanation Definition Meaning

Distribution Shape:
Skewness

Skewness:
Absence of symmetry

ν =
E[(X−µ)3]

σ3

Data may be skewed to the left or right.
If skewed to the left: median < mean
If skewed to the right: mean < median

Distribution Location:
mean, median

Mean:
Average of a sample

µ =
∑

xi

N Average value of a data set.

Median: Value in the
middle of an ordered data set

Median < mean: data skewed to the left;
rather many values (>50%)
are smaller than the mean.
Median > mean: data skewed to the right;
rather many values (>50%)
are larger than the mean.

Distribution Variability:
Range, CVˆ2

Range: Difference between
the smallest and largest value

Range = Max−Min Describes the spread of the data.

CVˆ2: sets the standard deviation
in relation to the mean

CV 2 =
(

σ
µ

)2 CV2 ≤ 0.49: smooth, intermittent
CV2 > 0.49: erratic, lumpy

Autocorrelation
Measures the internal relation
within a data series

rk =
E[(Xt−µ)(Xt−k−µ)]

σ2

rk > thresholdvalue (autocorrelation):
demand increase/decrease over
succeeding periods
rk < thresholdvalue (no autocorrelation):
demand does not increase/decrease
over succeeding periods

Average inter-demand
interval (ADI)

Measures the average number of
periods between succeeding orders
where N=number of total periods
and DN=number of periods where
demand occurred

ADI = N
DN

ADI <= 1.32: smooth, erratic
ADI >1.32: intermittent, lumpy

Table 5.2: Relevant parameters for describing the demand behaviour, explanations are based on [41]
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5.4 Conclusion

We set up the simulation model according to the needs of the basic types and their corres-
ponding sales products as well as validate the input parameters. Input parameters such as
the cycle times at the processing steps and the profit margin are validated by discussions with
the two responsible supply chain planners. On the other hand, we choose the best set up of
the demand generation parameters by using a modified approach of the Kolmogorov-Smirnov
statistic. Hereby, we evaluate the total area between the observed and generated cumulative
distribution to compare several parametrizations and choose the one with the smallest area.
This set up is then validated by applying the Chi-Square test. It allows to make an overall
statement whether the fit is good. The evaluation shows that all fitted series except for two
sales products are suited according to the Chi-Square test. As the two demand series only
account for 1.8% and 2.4% of the overall demand we omit to test further parametrizations.
Last, we recommend improvements to the demand generation method. These include to allow
for periods with zero-demand, creating autocorrelated demand as well as being able to choose
from various distributions for the demand generation. The given recommendations are a first
practical approach, however they need further research regarding their realization. Since our
focus lies on simulating the supply chain and considering various planning strategies we do not
further implement the improvements. Having parametrized the simulation model according
to the observed demand with the current method and given a method to assess the fit, we
solved the two subproblems:

Parametrize the order arrival pocess in the existing simulation model such that the gen-
erated demand data accurately describes observed data to make the simulation results more
representative.

Define a method to assess the fit between generated and observed values according to their
statistical behaviour.

This enables us to tackle the core problem of improving CCS’s planning process in the
next chapter.
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Chapter 6

Improving the supply chain

planning process for two exemplary

basic types

We state in our problem definition in section 1.3 to improve the supply chain planning pro-
cess at Chip Card & Security (CCS) for two exemplary basic types. Therefore, we use the
fine tuned simulation model to compare various production release approaches and stocking
strategies to provide CCS with recommendations. These suggestions serve as an indication
which steps can be taken to enhance their current practices. The planning methods are eval-
uated according to the service level and cost trade off. That is, the higher the stocks, the
faster is the delivery and the more unlikely is it to run into backlog. However, higher stocks
increase the costs. Thus, we aim to balance a high service level at relative low costs.

In section 6.1 we start with introducing the examined planning concepts for determining
the production releases in front end as well as various stocking strategies. Next, 6.2 shows the
experimental design and gives an overview how we determined the number of replications,
the warm-up period, and the run length. In section 6.3 we present and discuss the results of
the simulation study and section 6.4 concludes the chapter with a sensitivity analysis.

6.1 Planning concepts for determining stocking levels

The planning process at CCS for determining stocking levels of their two exemplary basic
types includes two concepts: The production release approach as well as the stocking strategy.
The production release approach describes how we determine the amount of wafers to be
started in front end in advance where actual orders are not known yet. On the other hand,
the stocking strategy defines at which stock points to place inventory and the inventory level.
That is, the amount of stock at the stocking points.

6.1.1 Production release approaches

When production is started in front end, one does not know the demand in advance as the
customer order decoupling point (CODP) lies further down in the supply chain. The CODP
defines where in the supply chain the customer order entry lies. Figure 6.1 illustrates various
decoupling points for the supply chain of Infineon, namely make-to-order, assemble-to-order,
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Figure 6.1: Customer order decoupling points at Infineon based on the illustration of [6]

and make-to-stock. Activities upstream of the CODP are forecast driven since customer
orders are not known yet, whereas activities downstream of the CODP are order driven
where demand is known [6].

The CODP of the two examined basic types lies at the master storage since products
become customer specific in the sort step described in section 2.1.1. The amount of wafers to
be started in front end (wafer start) up to the master storage is forecast driven. Currently,
a four months moving average is used as forecast. As the processing time from wafer start
to the master storage takes fairly long, between ten to thirteen weeks, it is important that
there are enough products stored at the master storage to satisfy customer demand. In case
there is a shortage at the master storage, customers face long lead times and may migrate to
competitors.

For the simulation study we define three production release approaches including the
current one. Our aim is to examine which one of the approaches results in the best service
level and cost balance. The production release approaches are defined below and Figure 6.2
illustrates the time horizon of the used data. Next to the current approach, which uses a four
month moving average over the historical data, we define one approach that applies a moving
average not only over historical data but also over known orders as well as another approach
that uses single exponential smoothing (SES) as explained in subsection 4.1.3.

We denote the approaches by ‘Hist’,‘Order’, and ‘SES’ to differ between historical demand
data, order data, and forecasted demand data using SES, respectively. Historical demand are
realised orders of the past (t = −1,−2, ...), order data are the incoming orders at the master
storage that are known for the next three weeks (t = 0, t = 1, t = 2), and forecasted demand
data is determined by single exponential smoothing:

1) ‘Hist’-approach: The release quantity is determined by a moving average over the last
four months of demand data as it is currently done. It considers historical demand data
from weeks t = −16 up to week t = 0.

2) ‘Hist&Order’-approach: The release quantity is defined by a moving average over the
last two weeks of observed demand as well as the known incoming orders for the next
three weeks, that is weeks t = −2, t = −1, t = 0, t = 1, and t = 2 are taken into account.

3) ‘SES’-approach: The release quantity in week t is described by single exponential
smoothing of the observed and forecasted demand data in week t − 1 where we define
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Figure 6.2: Time horizon of the production release approaches

the smoothing parameter αSES = 0.7. We choose the value for α such that the forecast
for the next data point relies mostly on the observed demand.

We define these three approaches since the first one covers the used practices of today,
and the second one uses data that is known in practice and may lead to a better reaction
in front end since the horizon is smaller and actual orders are taken into account. The last
one is chosen to consider the possibility of using a more elaborated forecast technique instead
of a simple moving average, where the forecast takes the observed demand and the forecast
error of the previous week into account. The smoothing parameter αSES can be varied
between [0, 1]. We set it to 0.7 such that a higher weight is applied to the observed demand
data and a lower weight to the forecast error. However, this can be adapted if necessary.
These three approaches are implemented in the current simulation model using Java. Next
to determining the approach of production release, we are interested in the target reach at
the storage locations which give the best service level and cost balance.

6.1.2 Stocking strategies

In general, products are stored at three different storage locations, the master storage, the
die bank, and the distribution centre. Depending on where we store the products their added
value and thus their storage costs is lower or higher. Products stored upstream in the supply
chain, for example at the master storage, have a lower value, and hence, the associated
storage costs are less expensive. Contrarily, products stored downstream in the supply chain,
for example at the distribution centre, have a higher value and thus the storage costs are
more expensive. Another factor that influences the decision where to store products is the
lead time. The lead time for products stored upstream in the supply chain is longer than for
products stored downstream in the supply chain. This in turn may reflect on the customer
satisfaction. However, we also need to keep the CODP in mind when taking the decision
where to store products. Generally, products that do not become customer specific may be
stored at all three storage locations. Products that become customer specific, on the other
hand, may only be stored at upstream stock points since producing customer specific products
is too risky.
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Figure 6.3: Various existing combinations for storing items at the stocking points in Infineon’s
supply chain

Next to the decision where we store products, we are interested in how much to store at
the stocking points to receive a sufficient service level while having appropriate expenses. The
more products we store, the more likely we are to satisfy customer demand from stock and
hence have a higher service level, however the associated costs also increase. Thus, there is a
trade-off between service level and costs when setting the target reach.

When considering the three storage points there are seven combinations where to stock
items as shown in Figure 6.3. We can either store at only one of the stock points, at two
points each or at all three of them. Furthermore, the target reach may vary for each stock
point. It may be favourable to have a higher target reach at the master storage to employ
the risk pooling effect.

Usually, with a make-to-order CODP, as it is the case for the two exemplary basic types,
one has a stock point solely at the master storage since products become customer specific
in the succeeding processing steps and thus, we would need to know which customer specific
sales products to produce to die bank or distribution centre. Hence, there is no planned
stock at the die bank nor the distribution centre. Nevertheless, there may be cycle stock.
Cycle stock are goods that are stored at die bank before further processing due to capacity
limits in back end or finished products waiting at the distribution centre for deposition to the
customer. Another reason for occurrence of cycle stock may be a large lot size. In production
a fixed quantity is produced (lot size). However, in case the lot size is larger than the ordered
quantity, more products are produced than needed. Since the CODP of the two products lies
at the master storage, we solely take strategy 3) shown in Figure 6.3 into account. Hence,
we employ risk pooling, that is, demand variability is reduced by aggregation across sales
products [6].
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6.2 Experimental design and set up

On the one hand, we consider how to define the amount of wafers to start in front end in
advance and on the other hand, we consider which storage locations to use and how high
the inventory should be at these locations. The various approaches are evaluated according
to the α-service level and respective costs described in section 3.3.2. Section 6.2.1 gives the
design of the experiments. However, before running the experiments we define the warm-up
period, that is the time interval needed to warm up the system such that the results are not
biased and we set the run length as well as the number of replications, which is explained in
section 6.2.2.

6.2.1 Experimental design

For each of the three production release approaches, the stocking strategy 3) is taken into
account. That is, we vary the target reach at the master storage between one and thirteen
weeks (13 set ups) to see the effects when reducing the master storage from the current target
reach (13 weeks) to a lower target reach. Combining the set ups with the three production
release approaches results in 3 ∗ 13 = 39 experiments. The range of the target reach at
the master storage, die bank, and distribution centre is in accordance with the target reach
applied in practice. Table 6.1 summarizes the factors as well as corresponding levels of our
experiments.

Table 6.1: Experimental design for the simulation study of two exemplary basic types

Factor Levels # of levels

production release approach {‘Hist’, ‘Hist&Order’, ‘SES’} 3
Stocking strategies target reach (weeks)
master storage {1, 2,..., 13} 13
die bank {0} 1
distribution centre {0} 1

Total number of experiments 3x13x1x1= 39

6.2.2 Number of replications, warmup period, and run length

Due to the random nature of a statistical process it is necessary to run an experiment not
only once, but several times. Running an experiment once gives a particular realization of the
random variables which may have large variations. Thus, to capture the true characteristics of
the simulation model, it is necessary to run the experiments various times such that individual
outliers do not erroneously influence the simulation output [41].

Determining the number of runs can either be done by an estimation such as the Replic-
ation/Deletion Approach described in [41] or by an exact algorithm such as the Sequential
Procedure of Law and Carson [42]. First, we use the approximation to determine the number
of replications and afterwards verify it with the exact algorithm. The Replication/Deletion
Approach as well as the Sequential Procedure result in two to 14 replications per experiment
for both basic types. As we do not evaluate all 39 possible experimental settings but restrict
ourselves to nine, we add some more replications and decide to run each experiment for 15
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independent runs. In Appendix F.1 we elaborate on the Replication/Deletion Approach as
well as the Sequential Procedure.

Furthermore, the performance measures of a simulation may either depend on initial
conditions, then we speak of transient system behaviour, or they do not depend on initial
conditions, then we call it steady-state behaviour [41]. A simulation that models a shop
which opens at 9am in the morning where no customers have arrived yet is an example of a
transient system since the performance measures are influenced by the number of customers
that arrive over the day, but not by customers of the previous day as we consider them to be
served. On the other hand, a production line which runs 24x7 where it reaches a steady state
after a certain period does not depend on the initial conditions as we assume that there is
always work in process in the production line and thus, the performance of an empty system
is not representative for the true system behaviour. In case that performance measures do
not depend on initial conditions, we need to determine a warmup period. That is, we do not
include the first couple of weeks in our performance measures until the system is warmed
up. Generally, the longer the warmup period is, the less is the impact of the initial state.
However, also the longer is the run length. Hence, one should be aware of the trade off
between reducing the impact of the initial state and the run length [41]. The modelled supply
chain has a steady state behaviour and thus, we determine a warmup period which will not
be included in the performance measures. A simple and general technique is the graphical
method of Welch [41]. Welch’s method for determining the warmup period is based on the
idea to plot the moving averages of the observations and choose the time interval as warmup
period where the observations appear to converge. Appendix F.2 describes the procedure
in detail. From the graphical method one would choose a warmup period of approximately
40 weeks. Again, as we do not apply this procedure to each experiment but solely to one
experiment per basic type we decide to set the warmup period to 52 weeks (hence, to one year)
and consider it to be adequately large to exclude initial state behaviour of the performance
measures.

Last, the run length is set to 208 weeks (four years) of which 52 weeks (one year) account
for the warm up period and the remaining 156 weeks (three years) are taken into account to
collect the data and establish the performance measures. We consider three years of collected
data to be sufficiently large in order to draw profound conclusions.

6.3 Results

The results of the simulation study provide us with an indication of the system behaviour,
which we can use to propose recommendations regarding the production release approach and
favourable stocking strategies. They are evaluated according to the α-service level and costs.

We show the main results for both basic types in Figure 6.4 and Figure 6.5. The figures
illustrate the three production release approaches, ‘Hist’, ‘Hist&Order’, and ‘SES’. For each
of them, we plot the 13 stocking strategies according to their α-service level given on the
x-Axis and the relative total costs shown on the y-Axis, which are scaled according to the
overall highest total costs for the reason of confidentiality.

Considering the overall performance of the three production release approaches, we can
see that taking historical and order data into account when calculating the moving average or
using single exponential smoothing for production release outperforms the current approach
as the points lie to the far right where the α-service level increases. Both new approaches
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Figure 6.4: α-service level versus total costs of the three production release approaches and
considered stocking strategies for basic type BT1

Figure 6.5: α-service level versus total costs of the three production release approaches and
considered stocking strategies for basic type BT2
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deviate only slightly in their service level and costs. This valuable insight demonstrates that
a clever chosen production release approach in front end can already lead to an improved
α-service level. On average, for product BT1 the ‘SES’ approach improves the α-service
level towards the ‘Hist&Order’ approach by 1% and towards the ‘Hist’ approach by 8%.
Comparing the ‘Hist&Order’ and ‘Hist’ procedure, shows that using historical and known
order data outperforms the use of historical data by 7%. Similar results are found for product
BT2. The ‘SES’ approach outperforms the ‘Hist&Order’ approach by 1% and the ‘Hist’
approach by around 5%.

Both new approaches have in common to consider less observed data points and thus
react faster to variations in demand where fluctuations are not as strongly smoothed out
as in the ‘Hist’ approach. The ‘SES’ approach is based on the last observed demand point
and its respective forecasted value and the ‘Hist&Order’ approach includes a moving average
over five weeks. A larger time window, on the other hand, would suggest of having a rather
stable amount of wafers to be released in front end since demand fluctuations are smoothed
out whereas a shorter time window suggests more fluctuations in the amount of wafers to be
started. A rather stable amount of wafers to be released in front end may be favourable when
production is fluctuating since it stabilizes the overall production flow.

Looking closer at the individual stocking strategies, we are interested in those, which
achieve a similar service level to the current one (98%) but at lower costs. These are high-
lighted in Figure 6.4, and Figure 6.5. Note, we denote the strategies by (X,Y, Z) where
X, Y , and Z are the target reach at the master storage, die bank and distribution centre,
respectively. For both basic types we do not have stocks at the die bank, and distribution
centre, thus Y = 0 and Z = 0. Figure 6.4 illustrates that the master storage for product BT1
can be decreased to a target reach of five weeks when using either the ‘Hist&Order’ or the
‘SES’ approach and still achieving a similar α-service level to the current one of 98%. This
result is shown more clearly in Figure 6.6. Figure 6.6 illustrates the change in the α-service
level when decreasing the target reach at the master storage for product BT1. For strategies
‘SES’ and ‘Hist&Order’ the change in the α-service level is only marginal when decreasing
the target reach down to five weeks. A significant drop by more than 3% in the service level
occurs when further decreasing the target reach to two weeks. Thus, it is advisable to keep a
target reach of at least five weeks. Furthermore, when continuing to use the current approach,
‘Hist’, the target reach can also be reduced to eight weeks without a strong change in the
α-service level. Those reductions in the target reach for all three approaches result in a cost
decrease compared to the current target reach of 13 weeks as shown in Figure 6.7. For both
new approaches a cost reduction of about 40% is achieved at a target reach of five weeks and
for the current approach a cost reduction of 20% is achieved at a target reach of eight weeks.
It also shows that a 10% reduction of costs can be already achieved by decreasing the target
reach to eleven weeks. Hence, with a target reach reduction of solely two weeks cost savings
are comparably high.

Similarly, for product BT2 the target reach at the master storage can be reduced down
to four weeks when using the ‘Hist&Order’ approach and to three weeks when employing the
‘SES’ approach which results in a cost decrease of around 50%. Thus, it is highly recommended
to employ another production release approach as it safes costs by more than 50%. Detailed
results for BT2 are given in Appendix H.

Up to now we checked graphically how much we may reduce the target reach for each
production release approach to keep the current service level. Next, we analytically check
by how many weeks we can reduce the target reach without a significant change in the α-
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Figure 6.6: Change in the α-service level when decreasing the target reach at the master
storage for each of the production release approaches of basic type BT1

Figure 6.7: Reduction in costs compared to the current costs when decreasing the target reach
at the master storage for basic type BT1
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Table 6.2: 95% confidence intervals for the α-service level for basic Type BT1

Hist 95% CI Hist&Order 95% CI SES 95% CI

stocking strategy LB UB LB UB LB UB

(13, 0, 0)Hist vs (11,0,0) 0.004 0.009 - 0.010 - 0.005 - 0.010 - 0.005
(13, 0, 0)Hist vs (8,0,0) 0.019 0.027 - 0.006 - 0.002 - 0.007 - 0.003
(13, 0, 0)Hist vs (5,0,0) 0.081 0.099 0.002 0.008 0.000 0.006

service level by constructing a confidence interval (CI) using the paired-t approach. If the
two system configurations do significantly differ, the confidence interval will not contain zero,
otherwise, if the system configurations do not significantly differ, the confidence interval will
contain zero. Note that, two systems are correlated if they use the same common random
numbers, that is, the seed values of the various simulation replications are the same for both
configurations. The advantage of using the same common random numbers is the introduction
of useful correlation which in turn reduces the variance among the two system configurations
and leads to a smaller confidence interval [41]. For a detailed explanation of the paired-t
approach we refer to Appendix G.

We construct the 95%-CI comparing the current strategy (13, 0, 0)Hist with (11,0,0),
(8,0,0), and (5,0,0) for each production release approach given in Table 6.2. This shows
for the current approach that statistically there is a significant difference in the α-service
level when reducing the target reach to eleven, eight, or five weeks as the confidence interval
does not contain zero. However, in praxis one may still reduce the target reach at the current
approach as the confidence intervals are fairly small and the drop of the α-service level is
marginal. For strategies ‘Hist&Order’ as well as ‘SES’ the CIs for a target reach of eleven or
eight weeks are negative. That is, both approaches are significantly better than the current
approach. Moreover, for a target reach of five weeks the CIs contain zero, that is, there is
no significant change in the α-service level. Hence, this strengthens the advice of applying
a new production release approach and simultaneously reducing the target reach when the
current α-service level is considered to be sufficient. In case that the α-service level should be
improved at the same costs, a new production release approach can be applied while keeping
a target reach of 13 weeks.

The question remains whether one of the new approaches is significantly better than
the other one. Therefore, we compare the ‘Hist&Order’ and ‘SES’ approach by construct-
ing the 95% CI for the α-service level and the costs for strategies (11,0,0), (8,0,0), and
(5,0,0). Table 6.3 provides the CIs. The CIs show that the ‘Hist&Order’ approach has sig-
nificantly lower costs at the same α-service level for a target reach of eleven or eight weeks.
Moreover, for a target reach of five weeks the costs are still significantly lower, however, also
the α-service level is significantly lower. That is, the ‘Hist&Order’ approach outperforms the
‘SES’ approach regarding the costs for a target reach of eleven, eight, or five weeks. Note,
for a target reach of five weeks it has an impact on the α-service level compared to the ‘SES’
approach. However, comparing it to the current approach ‘Hist’, there is no significant impact
on the α-service level at a target reach of five weeks. Hence, we would advice to choose the
‘Hist&Order’ approach. Furthermore, the ‘Hist&Order’ approach has the advantage that it
is fairly easy to apply and to understand.

In conclusion, the results show that a careful chosen time window over which we calculate
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Table 6.3: 95% confidence intervals for the costs and α-service level comparing the
‘Hist&Order’ with the ‘SES’ approach for basic type BT1

95% CI for costs 95% CI for α

strategies LB UB LB UB

(11, 0, 0)Hist&Order vs (11, 0, 0)SES - 0.020 - 0.018 - 0.001 0.001
(8, 0, 0)Hist&Order vs (8, 0, 0)SES - 0.023 - 0.022 - 0.001 0.000
(5, 0, 0)Hist&Order vs (5, 0, 0)SES - 0.028 - 0.026 - 0.001 - 0.001

the moving average to release the according quantity in production is favourable, since one
can achieve the same service level as for the current approach but at lower costs. This leads
us to the question whether a shift of the time window improves the ‘Hist&Order’ approach
and whether varying the smoothing parameter αSES outperforms the current ‘SES’ approach.
This is further examined in the next section.

6.4 Sensitivity Analysis

The results of the previous section showed that a smaller chosen time window (‘Hist&Order),
or using single exponential smoothing (‘SES’) performs better than the current approach
which uses a simple moving average over four months. We are now interested, what impact
a shift of the time window for the ‘Hist&Order’ approach as well as another value for the
smoothing parameter αSES of the ‘SES’ approach have on their performances. Thus, we
determine the following three additional approaches:

1) ‘Hist&Ordershift’: Shifting the time window backward: Moving average over the last
five weeks (weeks t = −5, ...,−1) such that known incoming orders are not considered.

2) ‘SESα=0.1’: Setting the smoothing parameter αSES = 0.1. That is, the forecasted point
in week t+ 1 relies mainly on the previous forecasted value of week t.

3) ‘SESα=0.9’: Setting the smoothing parameter αSES = 0.9. That is, the forecasted point
in week t+ 1 relies mainly on the previous observed value of week t.

Figure 6.8 and Figure 6.9 show the results of the sensitivity analysis when shifting the
time window backward and varying the smoothing parameter.

Shifting the time window backward means that we do not take incoming orders into ac-
count. That is, we can assess the impact of considering known incoming orders for production
release. Figure 6.8 illustrates both approaches, the ‘Hist&Order’ approach including incoming
known orders for the simple moving average and the ‘Hist&Ordershift’ approach considering
solely historical data. There is a slight shift to the left when incoming order data is omit-
ted meaning that the ‘Hist&Order’ approach remains better. Thus, taking known incoming
orders into account when defining the release quantity in front end is advisable even though
the information is lagged by a period of up to eleven weeks. To give an example, we provide
in Table 6.4 the started quantities in front end, the quantities arriving at the master storage,
and the incoming orders at the master storage in week t where we assume a processing time
of 13 weeks. In week t = 0, we start the production in front end according to the average
demand of weeks t = −2, up to t = 2 as shown in row one, column one, where the demand
of weeks t = −2 and t = −1 are observed orders and the demand of weeks t = 0, t = 1, t = 2
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Figure 6.8: Sensitivity analysis for BT1

Figure 6.9: Sensitivity analysis for BT1
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Table 6.4: Example of production release in front end and incoming orders at the master
storage

master storage

week t
production release

in front end
arriving quantities
from production

incoming
orders

0 (o−2 + o−1 + o0 + o1 + o2)/5 (o−15 + o−14 + o−13 + o−12 + o−11)/5 o0
1 (o−1 + o0 + o1 + o2 + o3)/5 (o−14 + o−13 + o−12 + o−11 + o−10)/5 o1
2 (o0 + o1 + o2 + o3 + o4)/5 (o−13 + o−12 + o−11 + o−10 + o−9)/5 o2

... ... ...
13 (o11 + o12 + o13 + o14 + o15)/5 (o−2 + o−1 + o0 + o1 + o2)/5 o13

are known incoming orders. (Note, an order that arrives at the master storage is known three
weeks in advance). Since the processing time from production release up to the master storage
takes 13 weeks, this started quantity including the orders of weeks t = 0, t = 1, and t = 2
will arrive at the master storage in week t = 13 shown in row five column three. However,
the known orders, o0, o1, and o2 already arrive at the master storage in weeks t = 0, t = 1,
and t = 2. Thus, the release in front end lags behind the incoming orders by up to eleven
weeks. Nevertheless, according to the results in Figure 6.8 it seems advisable to include the
known incoming order data.

Varying the smoothing parameter has only little influence on the performance of the ‘SES’
approach as one can see in Figure 6.9 where we show the ‘SES’ approach for an αSES of 0.7
(base case), 0.1, and 0.9. It slightly indicates that a smaller chosen αSES performs better
than a larger αSES as both approaches, ‘SES’ with 0.7 and ‘SESα=0.1’, outperform ‘SESα=0.9’.
That is, the forecasted value in week t + 1 should mainly rely on the forecast error of week
t but not on the previous observed value in week t. This result is reasonable as we detected
that there is no autocorrelation within the time series. That is, succeeding time periods do
not show any correlation.

6.5 Conclusion

Summarizing the chapter, we study various production release approaches as well as stocking
strategies for the two exemplary basic types in order to provide Chip Card & Security with
recommendations according to their planning procedure. Currently, the production releases
in front end are driven by a moving average over historical data for a rather large time horizon,
namely of 16 weeks. However, we find that considering a smaller time window of about five
weeks (‘Hist&Order approach) to compute the moving average or using single exponential
smoothing (‘SES’ approach) decreases the costs by around 40% at the same service level of
currently 98%. The cost reduction is due to a lower target reach at the master storage since
a 98% service level can be achieved with a target reach of five weeks for the new approaches
whereas the current approach has a target reach of 13 weeks. When deciding to keep the
current approach, ‘Hist’, the master storage can still be reduced to around eight weeks at
only a slight drop of 0.5% in the α-service level which in turn results in a cost reduction of
20%. Morover, we can conclude from the results that calculating the release quantity by a
simple moving average over a large time window, which would lead to a more stable amount of
products released in front end, is not preferable since it reacts slower to demand fluctuations.
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Thus, we recommend to rather choose a smaller time window, e.g. of five weeks, to determine
the amount of wafers to be released in front end in order to accelerate the reaction. This time
window should be chosen such that incoming orders which are known three weeks in advance
are taken into account.
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Chapter 7

Conclusions and recommendations

In section 1.3, we formulate our problem definition along with two sub problems. These
require to parametrize the demand generation method in the existing simulation model such
that the generated demand accurately describes the observed demand. In order to assess the
fit between the observed and generated demand we need to define an appropriate method. The
parametrization of the simulation model can then be adjusted such that the fit between the
data meets the requirements of the defined method. As a result, we can use the parametrized
model to study two exemplary basic types of Chip Card & Security according to their supply
chain planning process and propose recommendations as well as improvements of their current
practises. To solve these problems we determine our research questions in subsection 1.4.3.

7.1 Conclusion

We summarize the findings regarding the research questions which lead us to solve the prob-
lem definition in section 1.3 of this research project. Detailed explanations for each of the
questions are given at the end of every chapter.

How is the supply chain planning carried out?
Infineon is a semiconductor company producing chips, sensors, and microcontrollers. These
products are characterized by a long cycle time which ranges between one to four months
as they require an elaborate processing. To provide a competitive advantage towards other
vendors, Infineon aims to keep lead times to customers low. This requires a smooth planning
process where capacity and demand are matched accordingly. Due to the long cycle times
production usually starts before demand is known in order to reduce the lead time to cos-
tumers. That is, one has to make an estimation of how much to start in front end. For the two
considered products, a contactbased and a contactless payment chip, the quantity to release
in production is defined by using a four months moving average over the historical demand.
The released quantity is then processed up to the first storage location in Infineon’s supply
chain, the master storage, since the products become customer specific in the downstream
processing steps. The question arises whether there is a more clever way to define the quantity
to release in production and the amount of products to store at the stocking location which
we answer during this research by conducting a simulation study. However, the input para-
meter of the simulation need to be fine tuned according to the considered products such that
they reflect reality. We choose simulation for practical reasons since on the one hand there is
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an existing simulation model and on the other hand simulation allows for highly complex in
interconnected processes as of the supply chain process of Infineon.

How does the demand data of the representative products from CCS behave?
Before we start to answer the questions how to define the amount of wafers to start in produc-
tion and how much to store at the stocking locations, we aim to analyse the demand data in
depth such that we can generate statistical similar demand to use as input in our simulation
model. The data analysis is done for each of the two basic types and their corresponding
sales products that make up ≥ 85% of the volume. We perform among others a time series
decomposition, classification into smooth, intermittent, erratic, and lumpy demand as well as
calculate various statistical measures, such as mean, standard deviation, and autocorrelation
which provides us with a first insight into the behaviour of the data. The time series decom-
position shows that there is neither a trend nor seasonality in the data, that is, fluctuations
occur due to a rather random customer demand behaviour than due to reoccurring events.
Furthermore, it is noticeable that most of the sales products are classified as lumpy, thus, the
demand is fluctuating with rather many periods of no demand. Aggregating the sales product
on basic type level shows that fluctuations level of each other and demand occurs more fre-
quently such that it is classified as smooth. Finally, we emphasise to consider autocorrelation
in order to detect subsequent periods with increasing demand since they stress the system,
that is, the probability of stock outs increase which in turn leads to a lower delivery perform-
ance. Our considered products do not show autocorrelation, however there are products from
e.g. ATV and PMM showing autocorrelation and thus may require another stocking strategy.

How is the simulation model set up?
At Infineon various approaches exist to determine stocking levels. These range from basic
rule of thumbs to enhanced inventory methods using common safety stock calculations on the
assumption of a normal distributed lead time to elaborated approaches such as discrete event
simulation. Discrete event simulation has the advantage of being able to capture random-
ness not only in the lead time but also in the demand and process steps and incorporating
interactions within the supply chain among manufacturing and stocking locations. In addi-
tion, simulation is able to capture time dependent events and conditions. We use an existing
discrete event simulation model to examine stocking strategies for two exemplary basic types
since the supply chain of Infineon is highly complex and in order to give accurate recommend-
ations we need to capture the interactions of the production process. The simulation model
which we adapt to our needs was built by the scenario & econometrics team of Infineon.
It models the whole supply chain of Infineon with its various processing steps and stocking
points from the releases of the wafers in front end to the finished products in back end. When
adapting the simulation model to the two exemplary basic types, we require to parametrize
the demand generation method such that it produces demand similar to the observed one in
order to receive accurate simulation results.

What solution approaches exist in literature to assess the fit between generated and observed
demand data?

The generated demand should match the observed demand such that the output of the sim-
ulation model is precise and recommendations are valid. There exists a variety of approaches
in literature to compare observed and forecasted data according to their fit. Techniques are
forecast accuracy measures, time series similarity measures as well as hypothesis tests. Fore-
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cast accuracy measures are point-to-point methods which compare the observed data at time
period t with the generated data at time period t. Thus, they do not allow differences in the
observed and generated data for time period t even though their overall behaviour according
to the mean, standard deviation, and autocorrelation may be similar. However, as we want
to capture the overall behaviour they are not suitable. Furthermore, we consider time series
similarity measures. Similarly to forecast accuracy measures do these ones compare one to
many points, thus giving more freedom, or are based on the periodicity of the data. Since our
data does not show periodicity and we consider a one to many point approach as unsuitable to
capture the whole behaviour of the data we further look into goodness of fit tests. They allow
to test the hypothesis whether two data sets come from the same underlying distributions. As
we aim to compare the overall statistical behaviour of two data series we find the two-sample
hypothesis test sufficiently for our needs. Hereby, we decide to use the Kolmogorov-Smirnov
as well as the Chi-Square test, which are commonly used in practice and rather easy to apply.

How do we need to parametrize the simulation model to create accurate demand data?
The parameters of the demand generation methods need to be set such that we receive gen-
erated demand similar to the observed one. In an experimental study we examine whether
there are any indications how to set the parameters in order to receive a particular demand
behaviour. However, we find that there are no clear rules for parametrizing the demand
generation method. Thus, we use an iterative approach by searching for the parameter set-
tings that fit the desired demand data comparing the outcome using a modification of the
Kolmogorov-Smirnov approach. Eventually, we evaluate the final chosen demand by the Chi-
Square test which shows that the fit between the data series is sufficient. However, not only
for the reason that this procedure is quite time consuming but also that the demand genera-
tion method is not able to create intermittent nor autocorrelated demand, we recommend to
improve the demand generation method. Suggestions are to allow for various distributions,
explicitly setting the average-inter-demand interval, as well as incorporating the possibility
of autocorrelated demand.

How can the planning process of CCS be improved?
After parametrizing the simulation model accurately we conduct a simulation study to im-
prove the planning process for two exemplary basic types of Chip Card & Security. Thereby,
we consider the questions how to define the amount of wafers to start in production and
how much to store at the various stocking locations. We look at three production release
approaches, the current one which uses a simple moving average over four months, a second
one which applies a simple moving average over historical and order data for a time horizon
of five weeks and a third one which uses single exponential smoothing. Next to this, we vary
the amount of stock at the master storage. Note, for both basic types stock is kept solely
at the master storage where the CODP lies since products become customer specific in the
downstream processing steps. The simulation study shows that using a smaller time win-
dow for calculating the simple moving average or applying single exponential smoothing to
quantify the amount of wafers to be released in front end outperforms the current approach.
That is, fluctuations are not as smoothed out as with a large time window and thus reactions
are faster. Hence, we recommend CCS to shorten their time horizon to at least eight weeks
over which they calculate the moving average. With both new approaches the target reach
can be reduced from currently 13 to around five weeks while keeping an α-service level of
around 98%. This in turn reduces the costs by 40%. In addition, when deciding to keep the
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current approach, the target reach can still be reduced to around eight weeks at a marginal
drop in the α-service level, however a large cost reduction of 20%. The tendency of being
able to reduce stocks was also seen by the supply chain planners of CCS, however there was
no particular idea how much stocks can be reduced. Thus, the simulation output confirms
their gut feeling and provides an analytical approach of determining the target stock.

7.2 Recommendations

We gave suggestions for improving the supply chain planning of CCS and found a way to
create accurate input data to the simulation model by assessing the fit between two time
series. However, this research also has some limitations that may be overcome by further
research:

• Demand generation. We are able to generate the demand using the current demand
generation method, however this method is not able to capture all demand patterns,
such as autocorrelation and intermittent demand. Therefore, we suggest to improve
the demand generation method such that it allows for intermittent and autocorrelated
demand. Furthermore, it may be desired to create demand from other distributions
such as the Poisson or Gamma distribution.

• Complex production release approaches. We quantify the production release amount
by a simple moving average over various time horizons and using single exponential
smoothing. However, we do not consider other forecasting approaches. Thus, it may
be suitable to apply more elaborate forecasting methods such as advanced exponential
smoothing techniques, Holt Winter analysis, or ARIMA models [22] in order to quantify
the production amount.

• Machine capacity. Currently, the simulation model under study presents the processing
steps without a capacity restriction for machine availability. That is, machines are
always available and we do not build queues in front of the machines. For the considered
basic type BT2 this may be a further point to consider, since the production in front end
of this basic type is restricted. Thus, we cannot release a higher quantity than the given
limit, which in turn restricts the applicability of the production release approaches.

• Idle costs. The defined total costs are based on the WIP and the weighted average cost
of capital, but do not consider idle costs. Idle costs occur when machine capacity is not
fully used for further production. Another approach of evaluating strategies may then
be determined by balancing bind capital in inventory versus reducing idle costs.

• Autocorrelated products. We find in an constructed example that the probability of
stock outs for autocorrelated products is approximately 55.48% higher than for non-
autocorrelated products. Therefore, we strongly recommend to analyse the autocorrel-
ation for the observed and generated data as planning strategies may differ. To confirm
this observation we suggest to simulate the planning procedures with autocorrelated
and non-autocorrelated demand such that one can detect whether different strategies
perform better in either case.

• Simulation at ATV/PMM/IPC. Simulation results are individual and currently done for
two products of CCS. The remaining divisions ATV, PMM, and IPC, may also benefit
from using discrete event simulation for analysing their planning processes. This may
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not be done for two particular products but products may be grouped into categories
with certain specifics which may then be simulated and results can be taken as an overall
tendency. At present, a project with ATV is initiated to examine the target levels of
product groups using the build simulation model.

• Comparing results with simple approaches. So far, we proposed to use simulation in
order to improve the planning process. Nevertheless, simple approaches such as ‘one
size fits all’, which estimates the target stock levels by a rule of thumb, as well as the
‘enhanced inventory management’, that uses commonly known stocking policies such as
the (R,S) policy, require considerably less effort and may still lead to similar results.
Thus, it is advisable to assess the outcome of different approaches according to their
performance improvement and effort needed.
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Appendix A

Correlation among sales products

In Table A.1, we give the correlation among the six biggest sales products for basic type BT1.
The correlation coefficient, with a range of [-1, 1] indicates whether two data series are positive
or negative correlated, that is, whether they influence one another or not. For example, if
there is a high positive correlation between two sales products one could conclude, that these
two sales products get often ordered together. However, in our case the correlation coefficient
fluctuates around 0, and hence we can conclude that there are no correlations among the sales
products.

Table A.1: Correlation matrix for the six biggest sales products of the basic type BT1

SP1 SP2 SP3 SP4 SP5 SP6

SP1 1.00 0.35 -0.01 -0.36 -0.33 -0.09
SP2 0.35 1.00 -0.04 -0.22 -0.15 -0.01
SP3 -0.01 -0.04 1.00 -0.09 -0.23 -0.24
SP4 -0.36 -0.22 -0.09 1.00 0.48 0.12
SP5 -0.33 -0.15 -0.23 0.48 1.00 0.10
SP6 -0.09 -0.01 -0.24 0.12 0.10 1.00
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Appendix B

Decomposition of time series

Decomposition of time series for BT1 into a trend, seasonal component and error term.

Figure B.1: Additive decomposition of time series data for product BT1
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Appendix C

Autocorrelation

C.1 Autocorrelation threshold value

In order to determine whether there is significant autocorrelation within a data series one
can compute a threshold value. This threshold value is approximated by an Hypothesis test,
which tests H0 : rj = 0 against H1 : rj 6= 0. The null hypothesis would be rejected with a
5%-level of significance if:

|rk| >
1.96√
T

(C.1)

under the assumption that Yt ∼ N(0, σ2) and where T is the number of data points [64].

C.2 Autocorrelated products at Infineon

In Figure C.1, Figure C.2,and Figure C.3, we show the autocorrelation for lags zero to 20
of three exemplary products computed in R by the function ‘acf’. The dashed line indicates
whether the autocorrelation is significant. That is, if the autocorrelation exceeds the dashed
line as it is the case for the three products, the autocorrelation is significant. Further note, that
lag zero always has a autocorrelation of one since the time series with itself (no lagged values)
is perfectly correlated. How the significance level is specified is described in section C.1.
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Figure C.1: Autocorrelation for lags 1 to 20
of product 1

Figure C.2: Autocorrelation for lags 1 to 20
of product 2

Figure C.3: Autocorrelation for lags 1 to 20 of product 3

C.3 Stock outs in existence and non existence of autocorrela-

tion

Table C.2 and Table C.3 show the analysis of the number of stock outs, denoted as ‘Sum
LostOpp’ for generated data with and without autocorrelation. We show the first 30 time
periods out of 1040 periods. The autocorrelation for the first four legs is given in Table C.1.

From our previous analysis in subsection 2.1.2 we determine the cycle time to be approx-
imately 10 weeks from the start of production in the fabrication up to the Masterlager where
customer demand arrives. In order to produce a sufficient amount of basic type units during
this lead time of 10 weeks we determine the production quantity in time period t = 11 to be
the average demand over 10 weeks that is from t = 1 up to t = 10. The production output
in time period t = 20 is then defined as the average demand over time periods t = 1 up to
t = 10. The production output for the periods one to twenty is the average demand over all
periods. The demand for the non autocorrelated series is generated by drawing a random
number between the minimum and the maximum value of the autocorrelated series, where
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the autocorrelated series is generated by a sine function and some random term. The stock
at each period t is calculated by subtracting the demand of period t from the stock at period
t− 1 plus the production output at t. In case that demand exceeds the stock of period t− 1
plus the production output at t, it is set to 0. The number of stock outs is calculated by
summing the number of periods where the stock is 0.

Table C.1: Autocorrelation of first four legs for non autocorrelated and autocorrelated demand

AC lag1 AC lag2 AC lag 3 AC lag 4

Non autocorrelated demand -0.016 -0.032 0.009 -0.007
Autocorrelated demand 0.311 0.310 0.281 0.230
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Table C.2: One example of the first 30 periods out of 1040 periods for non autocorrelated
demand

time period t
Production
output

Non autocorrelated
demand

Stocks
Lost
opportunity

Sum LostOpp

1 151 117 302 0 5
2 151 158 295 0
3 151 210 236 0
4 151 79 308 0
5 151 91 368 0
6 151 181 338 0
7 151 121 368 0
8 151 146 373 0
9 151 183 341 0
10 151 83 409 0
11 151 178 382 0
12 151 76 457 0
13 151 222 386 0
14 151 141 396 0
15 151 201 346 0
16 151 198 299 0
17 151 96 354 0
18 151 138 367 0
19 151 195 323 0
20 151 175 299 0
21 137 148 288 0
22 143 161 270 0
23 135 217 188 0
24 136 85 239 0
25 142 94 287 0
26 153 158 282 0
27 155 127 310 0
28 152 216 246 0
29 152 151 247 0
30 153 162 238 0
... ... ... ... ...
1040 ... ... ... ...
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Table C.3: One example of the first 30 periods out of 1040 periods for autocorrelated demand

time period t
Production
output

Non autocorrelated
demand

Stocks
Lost
opportunity

Sum LostOpp

1 150 135 301 0 13
2 150 158 293 0
3 150 133 310 0
4 150 156 304 0
5 150 179 275 0
6 150 168 257 0
7 150 153 254 0
8 150 153 251 0
9 150 127 274 0
10 150 212 212 0
11 150 156 206 0
12 150 145 211 0
13 150 153 208 0
14 150 199 159 0
15 150 160 149 0
16 150 148 151 0
17 150 155 146 0
18 150 159 137 0
19 150 227 60 0
20 150 197 13 0
21 157 220 0 1
22 160 190 0 1
23 158 208 0 1
24 160 207 0 1
25 165 145 20 0
26 163 190 0 1
27 161 141 20 0
28 161 131 50 0
29 161 125 86 0
30 171 143 114 0
... ... ... ... ...
1040 ... ... ... ...
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Appendix D

The β- and γ-service level

The β-service level provides the proportion of demand (not including backorders) during a
period t that is fulfilled by on-hand inventory and thus delivered without delay [60]. To give
an example, if the average demand during a period is 50 units and the average backorder
quantity during a period is 5 units, then the β-service level becomes 90% which gives the
proportion of demand that is fulfilled immediately. Often the β-service level is also described
as fill rate. It is calculated by [60]:

β-sevice level = 1− E(backlog at the end of time period t)

E(demand during time period t)
(D.1)

In the simulation model the β-service level is described by considering the change in the
backorders between week t− 1 and week t. In case that the backorders at the end of week t
increase compared to week t−1 we could not deliver all demand from stock, thus the β-service
level will decrease accordingly. The backorders borpT at the end of week T are the difference
between the orders orpt up to the end of week T and the deliveries drpt up to the end of week
T :

borpT = max

[

T
∑

t=1

(orpt − drpt) , 0

]

(D.2)

The β-service level in week t for product p and replication r is then defined by the delta in
the backorders between week t−1 and week t. Thereby, it compares the amount of backorders
for week t to the ordered quantity in week t. If the backorders are rather small compared
to the ordered quantity, then the β-service level will be rather high and vice versa, if the
backorder quantity is rather large compared to the ordered quantity, the β-service level will
be rather small.

β-sevice levelrpt = max

[

1− max (borpt − bor,p,t−1, 0)

max (orpt, 1)
, 0

]

(D.3)

In order to compare the various stocking strategies, we aggregate the β-service level across
all sales products (p = 1...P ), weeks (t = 1...T ), and replications (r = 1...R):

β-sevice level =

∑R
r=1

∑P
p=1

∑T
t=1 βrpt

R ∗ P ∗ T (D.4)
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The γ-service level extends the β-service level by also taking backorders from previous
weeks into account. Thus, it measures not only the amount of backorders, but also the time
needed to fulfill all backorders and thus to recover from a high demand period. That is, it
relates the expected sum of the accumulated backorders at the end of period t (backlog level)
to the expected demand during period t. It is defined by [60]:

γ-sevice level = 1− E(backlog level at the end of time period t)

E(demand during time period t)
(D.5)

E.g., during a period of five weeks with an expected demand of 50 units per period backlog
occurs in week four and five of 30 and 40 units each. The accumulated backlog in week four
is 30 units and in week five is 30 + 40 = 70 units. The expected backlog level is then the
sum of the accumulated backlogs divided by the period length: (30 + 70)/5 = 20. Thus, the
γ-service level can be calculated by 1− (20/50) = 60% [60].

In the simulation model the γ-service level is described for each week t, product p, and
replication r by the backorders and the incoming orders up to week T for product p and
replication r:

γ-sevice levelrpT = max

[

1− borpT
max(orpT , 1)

, 0

]

(D.6)

When aggregating it over all sales products (p = 1...P ), weeks (t = 1...T ), and replications
(r = 1...R), we define the service level as follows:

γ-sevice level =

∑R
r=1

∑P
p=1

∑T
t=1 γrpt

R ∗ P ∗ T (D.7)
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Appendix E

Chi-Square test for evaluating the

fit between the observed and

generated data

We apply the Chi-Square test to the observed and generated data that gives the smallest total
area between the cumulative distribution functions according to the modified Kolmogorov-
Smirnov scheme. The Chi-Sqare statistic is computed from [50]:

χ2 =
k

∑

i=1

(Ri − Si)
2

Ri + Si
(E.1)

where Ri is the number of observations in the ith bin for the observed data and Si is the
number of observations in the ith bin for the generated data. The critical value is drawn from
a Chi-Square distribution with k− 1 degrees of freedom and a significance level of α, where k
is the total number of bins. The number of bins is defined by the square root rule

√
n where

n is the total number of observations [41]. Table E.1 and Table E.2 provide the computed
values for the sales products of the two exemplary basic types. We choose a significance level
of α = 1%.

Table E.1: Chi-square statistic and critical value for the sales products of basic type BT1

BT1 SP1 SP2 SP3 SP4 SP5 SP6

Chi-square statistic 7.16 6.08 14.62 3.91 4.85 41.63
Critical value 18.48 21.67 21.67 16.81 18.48 23.21

Table E.2: Chi-square statistic and critical value for the sales products of basic type BT2

BT2 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10

Chi-square
statistic

6.61 17.15 11.81 4.38 8.31 14.14 66.57 13.91 7.19 2.77

Critical value 21.67 23.21 21.67 13.28 16.81 16.81 20.09 15.09 15.09 24.72
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Appendix F

Number of replications and warmup

period of simulation study

F.1 Defining the number of replications

In the following, we describe in detail how we define the number of replications using the
Replication/Deletion Approach, which is an approximation, as well as verifying this by the
exact algorithm of the Sequential Procedure. For these explanations we refer to [41].

The output of a simulation are realizations of identical independent distributed random
variables which vary due to the stochastic nature of the simulation. Due to the variations
in the output it is necessary to run the simulation several times such that we can capture
the true characteristics of the simulation model. Therefore, we aim to reduce the width of
the confidence interval for the mean of the performance measure X such that it becomes
sufficiently small. The width can be reduced by increasing the number of replications n. The
half width of the confidence interval is given by:

tn−1,1−α/2

√

S2
n

n

X̄n
(F.1)

where the sample mean X̄n and sample variance S2
n of the performance measure can be

computed from:

X̄n =
1

n

n
∑

j=1

Xj and S2
n =

1

n− 1

n
∑

j=1

(Xj − X̄n)
2 (F.2)

The confidence interval should become sufficiently small. In this context ‘sufficiently small’
is given by the relative error γ = |X̄n − µ|/µ. That is, that the sample mean X̄n should not
deviate more than γ from the true µ. Since we have to estimate γ by γ = |X̄n − µ|/X̄n, we
use the corrected target value γ′ = γ/(1+γ). This is then be used to determine the minimum
number of replications n∗ for which the estimated relative error is ≤ γ′:

n∗ = min







i ≥ n :

t
i−1,1−α/2

√√
S2
n/i

|X̄n|
≤ γ′







(F.3)
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Rewriting the above term as follows, we can estimate n∗ by Equation F.8:
(

ti−1,1−α/2
√

S2
n/i

|X̄n|γ′

)

≤ 1 (F.4)

(

ti−1,1−α/2
√

S2
n/i

|X̄n|γ′

)2

≤ 12 (F.5)

(

ti−1,1−α/2

|X̄n|γ′

)2

∗ S2
n

i
≤ 1 (F.6)

(

ti−1,1−α/2

|X̄n|γ′

)2

∗ S2
n ≤ i (F.7)

(

ti−1,1−α/2

|X̄n|γ′

)2

∗ S2
n ≤ n∗ (F.8)

In case of the Replication/Deletion Approach, we start with running the experiments for
some n (not too large) and estimate X̄n as well as S2

n for our performance measure, the α-
service level. Note, we do not define the number of replications for each single experiment due
to the large amount of experimental settings, but restrict ourselves to three stocking strategies
per production release approach. That is, we look at nine experimental set ups. The chosen
stocking strategies, which we denote by (X,Y, Z) where X, Y , and Z are the target reach
at the master storage, die bank and distribution centre, are strategies (1, 0, 0), (4, 0, 0), and
(13, 0, 0). We run the experiments for n = 15 replications. Computing the values of X̄15 and
S2
15 for each experiment, we can calculate n∗ from Equation F.8.

Table F.1 provides the number of replications for both basic types according to the
Replication/Deletion Approach.

Table F.1: Number of replications according to the Replication/Deletion Approach for both
basic types

BT1 BT2

Estimated #
replications

Hist Hist&Ord FC Hist Hist&Ord FC

(1,0,0) 12 7 7 4 5 4
(4,0,0) 8 3 10 2 4 3
(13,0,0) 6 2 6 2 3 2

The Sequential Procedure does not run many replications at once, but evaluates the width
of the confidence interval given by Equation F.1 after each additional replication according
to the corrected target value γ′. That is, after each run, we evaluates the confidence interval
and stop for the n where it holds that:

tn−1,1−α/2

√

S2
n

n

X̄n
≤ γ′ (F.9)

In Table F.2 we give the number of replications according to the Sequential Procedure
for both basic types. They are slightly different to the Replication/Deletion Approach, but
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are not much larger. Nevertheless, as we do not evaluate the number of replications for each
experiment, we decide to take these values as an indication and run each experiment for 15
replications.

Table F.2: Number of replications according to Sequential Procedure for both basic types

BT1 BT2

Exact #
replications

Hist Hist&Ord FC Hist Hist&Ord FC

(1,0,0) 14 7 8 7 5 6
(4,0,0) 10 5 8 6 3 5
(13,0,0) 8 4 6 5 3 4

F.2 Determining the warmup period

For a system with steady state behaviour, we do not collect the performance measures from
the beginning of the simulation where the system is still empty, but start collecting data
when the system is warmed up and hence capture the true characteristics of the steady state
behaviour. Welch’s method for determining the warmup period is based on the idea to plot
the moving averages of the observations and choose the time interval as warmup period where
the observations appear to converge. Describing it in more detail, we start with calculating
the mean of the ith observation (i = 1, 2, ...,m) from the jth replication (j = 1, 2, ..., n). The
mean Ȳi =

∑n
j=1 Yji/n per observation i is taken since it reduces the variance of the averaged

process Ȳ1, Ȳ2, ... but still reflects the transient behaviour when the system is empty. Next,
to smooth out high-frequency oscillations in the averaged process but keeping the longterm
trend, we calculate the moving averages Ȳi(w) with a window w. These moving averages are
then plotted and the time period where the Ȳ1(w), Ȳ2(w), ... seem to converge is chosen as
warmup period [41]. When applying this procedure to our case, we takem = 156 observations,
that is, we collect the data each week over three years and choose n = 10 replications as this
is suggested to be sufficiently large. Next, we calculate the moving averages for the windows
w = 4, w = 10, and w = 15 and plot them into a graph shown in Figure F.1 to define the
warmup period. From the graph one can see that the moving averages Ȳi(w) converge where
i is approximately 40. As we do not evaluate all experimental settings according to their
warmup period, we decide to increase the warmup period up to 52 weeks, which we consider
to be sufficiently large.
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Figure F.1: Graphical method of Welch for determining the warmup period on the example
of the basic type BT1
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Appendix G

Comparing two system

configurations using the paired-t

approach

Two system configurations can be compared on the basis of some performance measure by
forming the confidence interval for the difference in the expectations [41]. In case they do
significantly differ, the confidence interval will not contain zero. On the other hand, in case
they do not significantly differ, the CI will contain zero. When two systems are correlated,
that is, they use the same common random numbers, one can apply the paired-t approach.
Introducing correlation between two system configurations has the advantage of reducing the
variance which in turn leads to a smaller confidence interval. For the two system configur-
ations with observations Xj (j=1,...,n) and Yj (j=1,...,m), where n = m, µX = E(X), and
µY = E(Y ), we can construct the 100(1-α)% confidence interval for the difference in the
expectations ζ = µX − µY . Therefore, we define

Wj = X̄j − Ȳj (G.1)

W̄ =
1

n

n
∑

j=1

Wj (G.2)

V ar(W̄ ) =
1

n(n− 1)

n
∑

j=1

[Wj − W̄ ]2 (G.3)

where the confidence interval can be found from:

W̄ ± tn−1,1−α/2

√

V ar(W̄ ) (G.4)
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Further results of simulation study

for product BT2

Figure H.1: Change in the α-service level when decreasing the target reach at the master
storage for basic type BT2
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APPENDIX H. FURTHER RESULTS OF SIMULATION STUDY FOR PRODUCT BT2

Figure H.2: Reduction in costs compared to the current costs when decreasing the target
reach at the master storage for basic type BT2
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