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Abstract

A lot of research has been done in the development of aspect-oriented languages and

the number of these languages are rapidly increasing. The ALIA4J approach supports

the development of these languages by providing an API and runtime model that can be

shared among language implementations. Coding the translation to Java code that uses

the ALIA4J API is not trivial . This thesis proposes a generic framework for compilers

build on Xtext, that performs ALIA4J speci�c Java code generation such as con�gur-

ing ALIA4J Attachments. The framework can be re-used for di�erent aspect-oriented

language implementations. For the purpose of demonstration, an AspectJ compiler is

build that uses this framework. For comparison the compiler is also build without the

framework. The compiler that uses the framework turns out to have less bloated code and

required less e�ort from the language developer since the code generation is accomplished

by the framework.
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Introduction

This thesis proposes to design a generic framework to build compilers for aspect-oriented

languages. The framework uses ALIA4J that provides a language-independent meta-

model and execution environment. The framework generates Java code that uses the

API provided by ALIA4J. This code is an intermediate representation of the advanced-

dispatching structure of the program that is compiled. The framework is re-usable among

multiple compilers and frees the language developer from writing code generation tem-

plates to produce ALIA4J speci�c Java code for every new compiler that he develops.

Reusing this framework results in creating more readable compilers with less e�ort.

1.1 Current language implementation approach using ALIA4J

A considerable number of advanced-dispatching languages are being developed for re-

search reasons. Advanced-dispatching languages are languages such as aspect-oriented

and event-driven languages. It is observed that they share some goals that are real-

ized in di�erent ways. Four of these languages, eAspectJ [8], IIIA [9], EScala [10] and

Tracematches [11], have been compared by identifying commonalities and di�erences.

EAspectJ and Tracematches for example both support event composition however eA-

spectJ realizes this using logical and hierarchical composition but Tracematches uses

regular expressions.

To support the commonalities among advanced-dispatching languages, there exists an

approach called ALIA4J to help building compilers for these languages by o�ering a

language-independent meta-model and execution environment that can be shared among

language implementations. ALIA4J also o�ers meta-model re�nements for concrete lan-

1



2 Introduction 1

guages. The meta-model is implemented as a set of Java classes in the ALIA4J API and

is used to express the majority of the semantics of advanced-dispatching language con-

structs. Using this information, the execution environment derives an execution model

of the program's dispatching.

1.2 Problem Statement

Working with the ALIA4J API to express semantics of language constructs and writing

a code generation template to produce this code for every new compiler is a tedious task.

It leads to lengthy code that is less readable. It is therefore important for the language

developer to have a layer of abstraction that will free him from working with the ALIA4J

API directly and writing code generation templates for this. The language developer

needs a framework that will enable him to develop compilers for di�erent aspect-oriented

languages using ALIA4J with minimal e�ort.

1.3 Approach and Contribution

This thesis proposes to design a re-usable and generic Xtext-based framework for aspect-

oriented language compilers, that performs ALIA4J speci�c code generation. Xtext is a

framework that can be used to develop domain-speci�c or general purpose languages. It

includes the ability to generate a parser for a language described by an Xtext grammar,

an abstract syntax tree (AST), scoping components and a code formatter. In addition

it generates an eclipse-based IDE that is tailored for the language providing code high-

lighting and content assist. Xtext uses the concept of Ecore (meta-)models internally for

activities such as validating the program structure and generating code for it. When a

program is compiled, a model is created that represents the program's structure. From

this model, another model is created that represents the structure of the Java code that

will be generated.

The proposed framework contains a meta-model for ALIA4J in the form that can be

used with Xtext. It allows both an ALIA4J model and a Java model to be inferred from

the model that represents a parsed program. The Java model contains that Java part

for the program. AspectJ for example allows Java code in the advice body of an as-

pect. The ALIA4J model however contains dispatch related information of the program.

It is used to generate appropriate Java code for con�guring ALIA4J Attachments and

Specializations using the ALIA4J API.
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The framework is used to realize a compiler for the aspect-oriented language AspectJ.

This implementation turns out to be more readable and concise then an implementation

without the framework. It also demonstrates the extensibility of the framework with

regard to adding re�ned meta-model entities.

1.4 Outline

The remainder of this thesis is structured as follows.

Chapter 2 gives a discussion on the motivation of the work presented in this thesis.

Chapter 3 presents the necessary technical background information to understand

the framework.

Chapter 4 gives the architecture of the framework in detail.

Chapter 5 describes an implementation of a compiler for the AspectJ language and

gives an evaluation of the framework.

Chapter 6 summarizes this thesis and presents future work.
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Motivation

2.1 Di�erent languages sharing the same concepts

A lot of research has been done in the development of advanced-dispatching languages

and the number of these languages are rapidly increasing.

Dispatching is the execution mechanism that resolves abstractions and binds con-

crete functionality to their usage. A common example of dispatching in object-oriented

languages is receiver-type polymorphism: Whenever a method is invoked, the runtime

environment chooses between di�erent implementations of the method in the type hi-

erarchy depending on the dynamic type of the receiver object. The term dispatch site

is used to refer to the place from where the method is called or a �eld accessed. Lan-

guages that go beyond this traditional received-type polymorphism are referred to as

advanced-dispatching languages. In these cases a dispatch can consider additional and

more complex runtime states, and that functionality can be composed in di�erent ways.

Languages that are event-driven or aspect-oriented are advanced-dispatching languages.

We have observed that di�erent event-driven and aspect-oriented languages share

some goals but realize them partially in di�erent ways. In particular a comparison has

been done for the languages eAspectJ [8], IIIA [9], EScala [10] and Tracematches [11].

Commonalities have been identi�ed by investigating mechanisms that languages use to

support their features. The following section 2.1.1 gives an explanation on event-driven

and aspect-oriented programming. Section 2.1.2 then de�nes the comparison criteria and

compares those languages using this criteria.

5



6 Motivation 2

2.1.1 Event-driven and aspect-oriented programming

The event-driven programming paradigm in object-oriented languages is based on im-

peratively triggered events. By imperative we mean that there is some user-de�ned code

that realizes the triggering of an event. Triggering an event means to announce to the

running program that an event has occurred. A part of the program that depends on

the occurrence of the event is noti�ed and reacts to that event by executing code. This

so-called subscriber can react to multiple events by registering to more then one event

type. It is also possible to combine events into more complex events by forming a hierar-

chy: A subscriber can react to an event and trigger a new event. Registering a subscriber

can only be done in terms of an event type. When the developer is only interested in

events that have speci�c properties (e.g. method arguments), a subscriber still needs to

be registered to an event type. In order to select a more speci�c occurrence of the event,

the event properties need to be checked imperatively before reacting to the event.

The aspect-oriented programming (AOP) paradigm features implicit events. Implicit

events (e.g. method calls) are announced by the execution environment. In AOP these

are called join points. A pointcut is a construct that selects join points and thus can

be viewed as a declarative event description or selector. As opposed to the event-driven

paradigm, a pointcut can additionally refer to properties of the event such as method

names and arguments. If constraints on these properties are satis�ed, the event is se-

lected. The equivalent of a subscriber in AOP is an advice. This is combined with a

pointcut within an aspect.

In both paradigms, an event is created and a subscriber can react to the event. There

are notable di�erences however. In the event-driven programming paradigm the focus is

on triggering the event at the right place. In the AOP paradigm we focus on selecting the

right event instances.

In the following section a comparison is made between languages that have characteris-

tics of both paradigms. The term event description is used to refer to the mechanism to

select an event instance.

2.1.2 Comparing the languages

The criteria that is used to compare those languages are described in the following. A

visualization of the comparison between the investigated languages is depicted in the

table below.
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History-based information There are various reasons why we may want to access

the history of a program. One reason is to access past information to in�uence current

decisions. We examined how access to past events or data can be expressed. Do the

languages support imperative code to collect this information or do they support declara-

tive de�nitions? It turned out that all the investigated languages support history-based

information. However the approaches have di�erent ways of computing history-based

information and executing advice code based on this.

Tracematches support declarative retrieval of history while EScala has no support for

this at all. eAspectJ and IIIA support declarative history only through the cflow and

cflowbelow constructs inherited from AspectJ.

Both eAspectJ, IIIA and EScala support imperative code to collect history.

Event Description and Abstraction Another criteria is the re-usability of event

descriptions and the way they can be composed into more complex descriptions that are

capable of selecting multiple events. How do di�erent approaches allow the composition

of event descriptions to be expressed? This composition may be supported by di�erent

mechanisms like using special operators, inheritance, etc.

Event composition by binary operators is supported in all the investigated languages

except Tracematches. In Tracematches events are composed in the form of regular ex-

pressions over joinpoints. In eAspectJ it is besides binary composition also possible to

declare hierarchies of events by allowing an event to trigger a more abstract event.

Description eAspectJ IIIA EScala Tracematches

declarative history cflow,

cflowbelow

cflow,

cflowbelow

No traces

imperative history Yes Yes Yes No

event composition logical + hi-

erarchical

logical logical RE

re-usability events +

subscribers

events +

subscribers

events +

subscribers

tracematch

2.2 Implementing advanced-dispatching languages

As stated in the previous subsection, di�erent languages share the same concepts how-

ever they are implemented in di�erent ways. Both IIIA and Tracematches are realized
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di�erently using the AspectBench Compiler (abc) [12]. EScala is not implemented using

abc. eAspectJ does not have a compiler implementation currently.

Compilers translate from high-level language to low-level language. A traditional

compiler consist of several phases such as the following:

Syntactical analysis: The source program is parsed and checked whether it conforms

to the syntax of the source language. In this phase an Abstract Syntax Tree (AST)

is build to represent the program structure. This representation is then used in the

following phases.

Context analysis: The parsed program is analysed to check whether it conforms to

source language contextual constraints. An example is to check if the type of a

variable corresponds to the value that an expression assigns to it.

Code generation: Low-level language code is generated according to the semantics of

the source language.

When developing a compiler, one should pay attention to all those phases. The code

generation phase is more complex for advanced-dispatching languages. Aspect-oriented

languages such as AspectJ weave code with some other program code to obtain the �nal

result.

New languages are often developed as extensions of existing languages where the

source code of the extension is transformed to the intermediate representation of the

language that is extended. Compiler frameworks allow code transformations to be re-used

for languages that are related in syntax. An example is the AspectBench Compiler (abc)

that is speci�cally designed for implementing extensions to AspectJ. The frameworks do

not allow this re-use across language families. The next section therefore outlines an

approach that makes this possible.

2.3 The ALIA4J solution to shared concepts in di�erent lan-

guages

As described in the previous subsection, compiler frameworks do not allow code trans-

formations to be re-used across language families. Developing compilers for languages

that share the same concepts such as the ability to gather historic information, leads

to redundant work. The goal of ALIA4J [1] is to ease the burden of implementing

advanced-dispatching languages. ALIA4J adds a layer of abstraction by providing a
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language-independent meta-model of dispatching as an intermediate language. It also

provides an execution environment that can be reused among di�erent language imple-

mentations.

2.3.1 The Language Independent Advanced-dispatching Meta-model

Dispatch-related constructs of advanced-dispatching languages largely overlap in their

semantics and the majority of the semantics of these constructs can be described in a

language-independent way using the meta-model provided by ALIA4J. This meta-model

of advanced-dispatching declarations is called LIAM 1. LIAM is implemented as a set of

plain Java classes. An abstract view of the meta-model is shown in Figure 2.1. Core

concepts of various dispatching mechanisms are captured in LIAM as an intermediate

language.

The representations de�ned in this intermediate language are used to automatically

derive an execution model of the program's dispatching. This is done using a framework

for execution environments, called FIAL 2, that is additionally provided by ALIA4J.

Figure 2.1: Abstract view of the Language Independent Advanced-dispatching Meta-
model

The abstract meta-model is re�ned for concrete languages. There are for example di�er-

ent implementations for the LIAM Action, Context, Predicate and Pattern. The entities

and re�nements of this meta-model are explained in the following paragraphs.

Pattern. A LIAM Pattern describes a dispatch site. There are �ve prede�ned sub-

classes of Pattern o�ered by LIAM to model types of dispatch sites such as calls to a

method, constructor or static initializer, and reading or writing �elds.

1The Language Independent Advanced-dispatching Meta-model. See http://www.alia4j.org/
alia4j-liam/

2The Framework for Implementing Advanced-dispatching Languages. See http://www.alia4j.
org/alia4j-fial/

http://www.alia4j.org/alia4j-liam/
http://www.alia4j.org/alia4j-liam/
http://www.alia4j.org/alia4j-fial/
http://www.alia4j.org/alia4j-fial/
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Context. A Context models the dependency on runtime values. Contexts are able to

expose di�erent kind of values available during dispatch such as, e.g., the ArgumentContext

that captures a single argument value and the CallerContext to capture the receiver

object.

Atomic Predicate. An AtomicPredicate provides the ability to test values that are

available during dispatch. For example a dynamic type check of an argument can be

accomplished using an InstanceOfPredicate parameterized with an ArgumentContext.

Predicate. Composite predicates are provided to allow a more complex selection of

a joinpoint. This is possible by allowing the construction of trees with inner nodes as

conjunctions (AndPredicate) or disjunctions (OrPredicate) and leafs (LeafPredicate)

Specialization. A Specialization entity associates a Pattern with a Predicate to select

speci�c calls. It also allows the declaration of a list of contexts to de�ne which runtime

values need to be exposed to Actions at the selected dispatch.

Action. After the evaluation of predicates, an action needs to be performed. This is

modelled using a LIAM Action entity such as a MethodCallAction to call an individual

method or a ThrowAction to raise an exception.

Attachment. A Specialization is associated with an Action using an Attachment en-

tity. When a dispatch is selected using the Pattern and Predicate in the Specialization,

the context values de�ned by the Specialization are passed as arguments to the Action.

Schedule Information The Schedule Information that is associated with an Attach-

ment, speci�es when the Action is executed relative to the dispatch site. This can be

Before, After or Around similar to AspectJ.

2.3.2 Translation to ALIA4J Entities

In this section, the compilation from an advanced-dispatching language to the ALIA4J

intermediate language is explained. This compilation is not trivial since the output

should be ALIA4J speci�c API calls in Java. This leads to a lot of accidental complexity.

As explained in section 2.2, a compiler consists of several phases. This section however

focusses on the code generation phase. Using an example program written in the language

AspectJ, it is shown how the output of ALIA4J source code should look like. Since the
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focus in this section is not on how to build a compiler, we assume that the language

developer creates this output source code manually.

Consider the program shown in Listing 2.1. This program de�nes a pointcut, named

secureAccess, that selects an execution of the method named update from the class

model.Account. There is an advice block declared that will run before the method is

executed. This advice code consists of a statement that prints the message "Security

Applied!" to the console.

Listing 2.1: Small AspectJ program

1 public aspect Security {
2 pointcut secureAccess() : execution( * model.Account.update(..));
3 before() : secureAccess() {
4 System.out.println("Security Applied!");
5 }
6 }

When investigating the code produced by the AspectJ compiler, we notice that a class is

created for each de�ned aspect. All the standard Java members such as �elds, methods

and static initializer de�ned in the aspect are contained in this class. It also contains a

virtual method for each advice.

Using the same approach, a class Security is derived from the aspect by the language

developer with a method named adviceMethod to contain the advice code (Listing 2.2).

Listing 2.2: A Java class containing the advice code

public class Security {
public void adviceMethod () {

System.out.println("Security Applied!");
}

}

After this, the semantics of the AspectJ constructs need to be expressed using ALIA4J.

Listing 2.3 shows that this is done using ALIA4J API calls in the body of the method

performImport of a class that implements the org.alia4j.fial.Importer interface. This

method is executed before the program starts and is used to programatically deploy the

ALIA4J Attachments.

Pattern. LIAM comes with at least four re�nements of Pattern: ConstructorPattern,

FieldPattern, MethodPattern and StaticInitializerPattern.
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• The ConstructorPattern is used to match a constructor call. This corresponds to

.new(..) in AspectJ.

• The FieldPattern is used to match read or write access to a �eld. The get(..) and

set(..) are used respectively in AspectJ.

• The MethodPattern is used to match the execution of a method. This corresponds

to call(..) and execution(..) in AspectJ.

• The StaticInitializerPattern is used to match the static initializer of a class. In

AspectJ this is accomplished using the staticinitialization(..) construct.

Since the pointcut in this AspectJ program selects a method execution, a MethodPattern

is used to capture this information in Line 6-12. This Pattern speci�es the selection of a

method with the exact name update from the exact type model.Account. It allows any

modi�er of the method, return type, number of parameters and any exceptions to be

declared in the method signature.

Listing 2.3: Mapping the AspectJ program to ALIA4J

1 public class Importer implements org.alia4j.fial.Importer {
2

3 @Override
4 public void performImport() {
5

6 MethodPattern pattern = new MethodPattern(
7 ModifiersPattern.ANY,
8 TypePattern.ANY,
9 new ExactClassTypePattern(TypeHierarchyProvider.

findOrCreateFromNormalTypeName("model.Account")),
10 new ExactNamePattern("update"),
11 ParametersPattern.ANY,
12 ExceptionsPattern.ANY);
13

14 Predicate<AtomicPredicate> predicate = TruePredicate.
15 <AtomicPredicate> truePredicate();
16

17 Specialization specialization = new Specialization(pattern,predicate
,

18 Collections.<Context>singletonList(
19 ContextFactory.findOrCreateLazyObjectConstantContext(
20 TypeHierarchyProvider.findOrCreateFromNormalTypeName("security

.Security")
21 )
22 )
23 );
24
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25 Action action = ActionFactory.findOrCreateMethodCallAction(
26 TypeHierarchyProvider.findOrCreateFromNormalTypeName(
27 "security.Security"),
28 "adviceMethod",
29 TypeHierarchyProvider.findOrCreateFromClasses(new Class[] { }),
30 TypeHierarchyProvider.findOrCreateFromClass(Void.class),
31 ResolutionStrategy.VIRTUAL);
32

33 Attachment attachment = new Attachment(Collections.singleton(
specialization), action, ScheduleInfo.BEFORE);

34

35 org.alia4j.fial.System.deploy(attachment);
36 }
37 }

Predicate. LIAM comes with at least �ve re�nements of Predicate: OrPredicate, And-

Predicate, BasicPredicate, FalsePredicate and TruePredicate.

• The OrPredicate or AndPredicate are used to respectively calculate the logical

disjunction or conjuction of two predicates.

• The BasicPredicate is parameterized by an AtomicPredicate and can be used to

negate the value returned by the AtomicPredicate.

• The FalsePredicate and TruePredicate are used to return either a false or true value

respectively.

LIAM comes with at least four re�nements of AtomicPredicate: InstanceofPredicate,

ExactTypePredicate, MethodPredicate and ThresholdPredicate.

• An InstanceofPredicate is used to dynamically check the type of any object provided

by a Context. The predicate is parametrized with the Context and the required

type of the argument. An example where this is used is for the target, this or

args pointcut designators in AspectJ. In the case of args, the InstanceofPredicate

is used in combination with an ArgumentContext to check the type of an argument.

• The ExactTypePredicate is used in the same way as the InstanceofPredicate. The

only di�erence is that the type of the object must be exactly the same as the

required type.

• A MethodPredicate is evaluated by invoking a method with a boolean return type.

This is used to realize the if pointcut designator in AspectJ.
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• The ThresholdPredicate is used to calculate whether a value exceeds a pre-de�ned

threshold.

Since the AspectJ pointcut does not contain any construct based on some dynamic value

of the joinpoint context such as the this or args keyword, we use a predicate that always

evaluates to true (Line 14-15).

Specialization. Both the Pattern and the Predicate are combined in a Specialization

(Line 17-23).

Context. There are at least �ve re�nements of Context: ArgumentContext, CalleeCon-

text, CallerContext, ConstantObjectContext and LazyObjectConstantContext.

• The ArgumentContext captures a single argument value. This is used for the args

pointcut designator in AspectJ.

• The CalleeContext captures the callee of an execution. The target pointcut des-

ignator in AspectJ is an example where this is used.

• The CallerContext captures the callee of an execution. The this pointcut designa-

tor in AspectJ is an example where this is used.

• The ConstantObjectContext exposes a speci�c instance.

• The LazyObjectConstantContext creates an instance of a speci�ed class upon �rst

use and exposes the same instance at subsequent uses.

The Specialization in line 17 takes a list of context values. The �rst context value in

ALIA4J should correspond to the instance of the aspect. This context is necessary

because the instantiation strategy of AspectJ requires that an instance of the aspect be

created. Since the example program does not specify a per-clause in the aspect-header,

the issingleton is used as default. This AspectJ construct speci�es that the same instance

must be used for each advice execution. This instance must be created the �rst time an

advice of the aspect is executed. The LazyObjectConstantContext parameterized with

the aspect class security.Security is used to achieve this result (Line 19-22).

Action. LIAM comes with at least three re�nements of Action: MethodCallAction,

FieldReadAction and FieldWriteAction.

• The MethodCallAction is used to invoke a method.
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• The FieldReadAction and FieldWriteAction are used to execute a �eld read or write

action.

Since there is a execution pointcut designator used in the AspectJ program, a

MethodCallAction is created (Line 25-31) to specify that the method containing the

advice code will be called when the dispatch is selected and the predicate evaluated.

This action speci�es the name of the class "security.Security" containing the advice

code , the name of the method "adviceMethod", a list of the parameter types which in this

case is empty and the return type which is void. It also de�nes the ResolutionStrategy

which speci�es that the method is called on an instance (ResolutionStrategy.VIRTUAL).

If the method is static than the ResolutionStrategy.STATIC should be used.

Attachment. An Attachment associates the Specialization and the Action to be per-

formed (line 33). The ScheduleInfo.BEFORE speci�es that the Action will be performed

before the dispatch site.

Deployment. At last the Attachment is deployed to the execution environment.

2.3.3 Problem statement

As can be seen from Listing 2.3, the translation to ALIA4J Java code is not trivial.

Writing code generation templates to produce this Java code is as a result much more

complex. The example code in Listing A.1 of Appendix A shows how complex and

bloated a template can be. This thesis proposes a generic framework to build compilers

for aspect-oriented languages that will hide ALIA4J speci�c code generation from the

language developer. The goals and requirements for this framework are described in the

following section.

2.3.4 Goals and Requirements

The goals and requirements for the framework are explained in the following paragraphs.

Re-usability. Although there exists a meta-model and an execution environment that

can be used by multiple languages, there is still redundant work involved when building

multiple compilers to ALIA4J. This redundancy is mainly in the translation to ALIA4J

speci�c Java code. Coding this translation has to be done in all those compilers and

thus is a redundant activity. From section 2.3.2 we observe that the translation from an

advanced-dispatching language to the ALIA4J Java code is not trivial. Writing a code
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generator for this translation increases the complexity.

Even when using the Xtext framework as described in section 3.1 to build multiple

compilers to ALIA4J, the language developer is still involved in writing an ALIA4J

speci�c code generation for every new compiler. Ideally the language developer should

not be required to do this, and should only focus on LIAM and the high level language

constructs. We want to hide the complexity of the ALIA4J code generation in Xtext in

a reusable component.

The framework will have the task of generating Java code speci�c to ALIA4J which will

free the developer from this tedious task. The framework should be reusable among

di�erent aspect-oriented compilers. This should lead to faster development of aspect-

oriented language compilers.

Readability. Writing templates for code generators is not easy. Templates are complex

because they are meta-programs that can produce code for multiple programs. Template

programs are therefore in general more di�cult to understand.

When building compilers using ALIA4J, templates need to be developed by the lan-

guage developer to produce code such as the translated ALIA4J Java code shown in

Listing 2.3. This code is six times longer then the AspectJ program from section 2.3.2.

This is because factory methods are used to create concrete instances of LIAM entities

such as Contexts and Actions in Line 19 and 25 of Listing 2.3. The ALIA4J API also

uses naming conventions for these methods. This introduces an amount of inconvenience

and leads to bloated code which is less readable. The template to produce this code is

as a result much more bloated. See as an example lines 3-17 of the code in Listing A.1

of Appendix A. The mix of ALIA4J Java code with conditions and loops to generate the

right code shows how complex and bloated a template can be.

We therefore want to hide this template from the language developer and provide this

as a service. We intend to develop a re-usable code generator containing this template

that will ultimately improve the overall readability of a compiler implementation.

Extensibility. As discussed in section 2.3.1, ALIA4J provides an abstract language-

independent meta-model with re�nements for concrete languages. When implementing

a new language following the ALIA4J approach, it might be the case that the semantics

of the language cannot be expressed using existing meta-model re�nements. In this case

new LIAM re�nements need to be added. This e�ects the code generation component

since new code should be generated for the new entity. Ideally the framework should not

have to be changed. The framework should be extensible by supporting the addition of
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LIAM re�nements for new languages.

Complexity is a possible goal that is not targeted in this thesis. Generating ALIA4J

code can become very complex. Consider as an example the following AspectJ pointcut

expression:

(( call(x)|| get(y))&& this(F1))|| set(z)&& !(target(F2)&& args(..,F3)).

The call(x), get(y) and set(z) constructs will be mapped to three di�erent ALIA4J

Specializations since only one pattern is allowed per Specialization. The this(F1), target

(F2) and args(..,F3) will be mapped to three ALIA4J predicates. However ALIA4J

only allows the negated normal form of a predicate. This makes it even more complex

since this expression �rst has to be transformed into the negated normal form. This

complexity is also shared among compilers since multiple languages allow conjunctions

and disjunctions in their pointcut expressions. This kind of complexity could be hidden

from the language developer by allowing the framework to do this transformation.
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Background

3.1 Xtext

Since the generic compiler framework is build on top of Xtext, this section gives the

necessary background information to understand the framework. Xtext [2] is a framework

that is used to develop domain-speci�c or general purpose languages. It includes the

ability to generate an eclipse-based IDE that is tailored for the language providing syntax

highlighting and content assist.

Assume that a language developer wants to build a compiler based on Xtext for a

language called Alpha. The language developer �rst writes a grammar for this language

and based on this grammar �le, Xtext will generate a lexer, parser and a meta-model for

the language.

Xtext also generates a skeleton for a class called AlphaJvmModelInferrer. This class

is written in a language called Xtend and will be compiled to Java. This is further

described in section 3.3. The AlphaJvmModelInferrer is used to map the concepts from

the Alpha meta-model to concepts of the Jvm meta-model. This is a meta-model that

comes with Xtext and describes the AST of the Java language. A JvmModelGenerator

is used to generate Java code from this Jvm model.

When running the compiler, the program text will be parsed and a model will be

created based on the language meta-model. This model will be transformed into a Jvm

model from which Java code will be generated. This Java code is then compiled to byte

code using the Java compiler.

Language models. Since Xtext relies on the Eclipse Modeling Framework (EMF) [7]

internally, it generates a meta-model that describes the Abstract Syntax Tree (AST) of

19
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the language Alpha. This AST is an abstraction of the syntactical information of the

program. The language in which the meta-model is de�ned is called Ecore. Ecore is an

important part of EMF. EMF models are used by Xtext as the in-memory representation

of any parsed program.

Figure 3.1, depicts the generation of a model during runtime. The model contains

relevant information from the parse tree. We refer to this model as the language model.

Figure 3.1: A Parser parses a program and a model is created

Model Inference. The Model Inference part of Figure 3.3 depicts the transformation

by the AlphaJvmModelInferrer of a language model Alpha to a so-called Jvm model.

This is a model that conforms to the Jvm meta-model. Part of this meta-model is shown

in Figure 3.2. The classes de�ned in the meta-model that are mainly referred to in this

report are listed below.

• A JvmOperation corresponds to a Java method.

• A JvmField corresponds to a Java �eld.

• A JvmGenericType corresponds to a Java class or interface. This class contains a

property called members to refer to class members such as Java �elds and methods.

The process of transforming one model to another model in Xtext is called inferring.

The skeleton class AlphaJvmModelInferrer needs to be implemented by the developer

so that a correct Jvm model is inferred. The output of this inferring process is an

instance of the root of the Jvm meta-model, the JvmGenericType. To make the code

of the AlphaJvmModelInferrer readable and concise, the developer can make use of the

JvmTypesBuilder. This is a helper class that provides a lot of extension methods used to

generate the Jvm model. See section 3.3 for an explanation of extension methods.
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Figure 3.2: Part of the Jvm meta-model that comes with Xtext
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Code Generation. The JvmModelGenerator which is an implementation of the IGenerator

interface, is provided by Xtext to generate Java code from a Jvm model such as Java

classes and methods. It has as input a resource object with a collection containing both

the language model and the Jvm model and can output multiple �les to the �le system.

This process is shown in the Code Generation part of Figure 3.3.

Figure 3.3: Simpli�ed Xtext framework

3.2 Dependency Injection with Google Guice

One important facet when using Xtext is that it uses Dependency Injection (DI) as de-

�ned by JSR-330 [5]. A Java application typically consists of objects that collaborate

with each other. This means that objects depend on other objects to perform a partic-

ular task. Dependency Injection allows a framework to provide an instance of a class

that is depended on, instead of initializing this class by itself. The Xtext framework

heavily relies on DI to con�gure components within the framework. This minimizes the

coupling between components and enables the developer to use some other component
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implementation with minimal e�ort.

Google Guice [6] is the reference implementation of JSR-330 and is used by Xtext to

provide the DI features. Suppose that a class wants to use an IJvmModelInferrer. DI

can be achieved by declaring a �eld and annotating this using the Inject annotation as

Listing 3.1 shows.

Listing 3.1: Using DI in the JvmModelAssociator

1 @Singleton
2 public class JvmModelAssociator implements IJvmModelAssociator,.. {
3

4 @Inject
5 private IJvmModelInferrer inferrer;
6 ...
7 }

When the JvmModelAssociator class is instantiated, Guice sees that it requires an in-

stance of IJvmModelInferrer. In Xtext many instances are created by Guice itself. The

way for Guice to know how to instantiate classes for declared dependencies is by using a

Module. An abstract type is mapped to a concrete class using this module. Xtext uses an

enhanced version of Guice's Module API where certain methods are re�ectively invoked

to �nd which class to instantiate for a declared dependency. See as an example Listing

3.2.

Listing 3.2: A Module de�ning a binding with a concrete type

1 public abstract class AbstractAspectJRuntimeModule extends
DefaultRuntimeModule {

2 ...
3 public Class<? extends org.eclipse.xtext.xbase.jvmmodel.

IJvmModelInferrer> bindIJvmModelInferrer() {
4 return org.xtext.java.aspectj.jvmmodel.AspectJJvmModelInferrer.class;
5 }
6 }

In this example a binding is declared between the IJvmModelInferrer and the

AspectJJvmModelInferrer. The method name is the text "bind" followed by the name of

the abstract type which in this case is IJvmModelInferrer. The method returns a concrete

type, in this case AspectJJvmModelInferrer. This means that whenever Guice �nds that

an instance of IJvmModelInferrer is required, an instance of AspectJJvmModelInferrer

will be assigned to the speci�ed �eld. The instantiation and sharing can be con�gured to

specify whether a new instance is returned or one instance is shared across the application.
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3.3 Xtend

Xtend [4] is a programming language that is used in addition to Java when working with

Xtext. The Xtend Reference Documentation [4] gives the following de�nition of Xtend:

"Xtend is a statically-typed programming language which is tightly integrated

with and runs on the Java Virtual Machine. It has its roots in the Java

programming language but improves on many concepts.."

The concepts referred to are among others: Xtend translates to Java, the use of

extension methods and closures. The code shown in Listing 3.3 is taken from the Xtext

documentation [3] and demonstrates some of these features.

Listing 3.3: Snippet of Xtend code of DomainModelJvmModelInferrer [3]

1

2 @Inject extension JvmTypesBuilder
3

4 def dispatch void infer(Entity element,
5 IAcceptor<JvmDeclaredType> acceptor,
6 boolean isPrelinkingPhase) {
7

8 acceptor.accept(element.toClass(element.fullyQualifiedName) [
9 documentation = element.documentation

10 for (feature : element.features) {
11 switch feature {
12 Property : {
13 members += feature.toField(feature.name, feature.type)
14 members += feature.toSetter(feature.name, feature.type)
15 members += feature.toGetter(feature.name, feature.type)
16 }
17 Operation : {
18 members += feature.toMethod(feature.name, feature.type) [
19 for (p : feature.params) {
20 parameters += p.toParameter(p.name, p.parameterType)
21 }
22 documentation = feature.documentation
23 body = feature.body
24 ]
25 }
26 }
27 }
28 ])
29 }

Translates to Java. Xtend code is translated to Java code instead of byte code. This

means that the Java code can be viewed to understand what is going on as well as
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debugged when writing code in Xtend.

Extension methods. Extension methods enhance closed types with new functionality

optionally injected via JSR-330 [5]. Line 2 of Listing 3.3 shows how an instance of

JvmTypesBuilder is injected in the model inferrer. This JvmTypesBuilder de�nes methods

that act as an extension in the model inferrer.

Take as an example the element parameter of type Entity in line 4. This type is

de�ned in the language meta-model. A toClass method is invoked on an object of this

type in line 8 with the expression element.toClass. This method however is not de�ned

in the type Entity but in the JvmTypesBuilder. Listing 3.4 shows an example of some

methods de�ned in the JvmTypesBuilder that are used as an extension in the model

inferrer.

Listing 3.4: An example of methods de�ned in the JvmTypesBuilder

1 public JvmGenericType toClass(EObject sourceElement, QualifiedName name,
Procedure1<JvmGenericType> initializer) {

2 return toClass(sourceElement, name!=null?name.toString():null,
initializer);

3 }
4 public JvmGenericType toClass(EObject sourceElement, String name,

Procedure1<JvmGenericType> initializer) {
5 final JvmGenericType result = createJvmGenericType(sourceElement, name

);
6 if (result == null)
7 return null;
8 if(initializer != null)
9 initializer.apply(result);

10 ...
11 }
12 public JvmOperation toMethod(EObject sourceElement, String name,

JvmTypeReference returnType,
13 Procedure1<JvmOperation> init) {
14 JvmOperation result = TypesFactory.eINSTANCE.createJvmOperation();
15 result.setSimpleName(nullSaveName(name));
16 result.setVisibility(JvmVisibility.PUBLIC);
17 result.setReturnType(cloneWithProxies(returnType));
18 if (init != null && name != null)
19 init.apply(result);
20 return associate(sourceElement, result);
21 }

The code element.toClass(element.fullyQualifiedName)[..] of Listing 3.3 line 8

translates into a call to the JvmTypesBuilder as can be seen in Listing 3.5 line 4. The

element variable on which toClass is invoked, becomes the �rst parameter of the method
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call in Java.

Listing 3.5: Example Java code translated from Xtend

1 final Procedure1<JvmGenericType> _function = new Procedure1<
JvmGenericType>() {

2 public void apply(final JvmGenericType it) {..}
3 };
4 JvmGenericType _class = this._jvmTypesBuilder.toClass(element, name,

_function);
5 ...

The use of extension methods makes the code in the model inferrer more concise because

the JvmTypesBuilder can take care of instantiating and initializing Jvm types instead of

the inferrer. This leads less and concise code.

Closures. Closures are expressions which produce anonymous functions. A closure

can be an argument of an extension method by appending it to the method call. For

illustration see the code in square brackets between line 8 and 28 of Listing 3.3. This

code produces a function object as can be seen in Listing 3.5 line 1. This function

object is then passed to the toClass method of the JvmTypesBuilder. The function

object is applied on the resulting JvmGenericType using initializer.apply(result) in

line 9 of Listing 3.4. This means that the expressions in the closure are executed in the

context of the JvmGenericType. See as an example the expression members += feature.

toField(feature.name, feature.type) of line 13 in Listing 3.3. This results in creating

a JvmField and adding this to the members list attribute of the JvmGenericType.



4

The compiler framework

This section describes the compiler framework built upon Xtext. The compiler parses a

language model from a program text �le. From the language model both a Jvm model

and an ALIA4J model is inferred. Another Jvm model is inferred from the ALIA4J

model to contain the ALIA4J API calls to setup ALIA4J Attachments in Java. The Jvm

and ALIA4J models are used to generate code in textual form.

4.1 Reusable ALIA4J framework

Section 2.3.1 explained that ALIA4J provides a meta-model called LIAM that is im-

plemented as a set of Java classes. For this meta-model a grammar can be de�ned to

describe the syntax of a hypothetical language called ALIA4J. XText would infer an

Ecore meta-model from this which ideally resembles LIAM.

Instead of de�ning a grammar, this thesis proposes an Ecore version of LIAM. This

section explains this Ecore meta-model. It also explains part of the framework that infers

a Jvm model from an ALIA4J model. The rest of the framework is explained in section

4.2. This inferring process of a Jvm model from an ALIA4J model is depicted in Figure

4.1. The components with a background color are key contributions to the generic part

of the framework.

Language models. To make LIAM usable in Xtext, we created an Ecore version of

this meta-model. Part of this is depicted in Figure 4.2 and 4.3. When the Xtext-based

compiler is executed to compile a program written in the language ALIA4J, a model will

be generated based on the ALIA4J meta-model. This model corresponds to pointcut and

advice con�guration for an aspect-oriented language.

27
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Figure 4.1: Inferring a Jvm model from an ALIA4J model

The meta-model de�nes classes such as the ALIA4JAttachment and

ALIA4JSpecialization. Di�erent from LIAM is the fact that this Ecore version contains

an additional ALIA4JAspect that corresponds to an aspect con�guration. It contains a

collection of Attachments of which each corresponds to an advice/pointcut combination.

It also contains an aspectFQN String property to hold the fully quali�ed name of the

aspect. Languages that are not aspect-oriented may not have such a construct. In this

case, the language developer can assign any String to the aspectFQN property of the

ALIA4JAspect.

Additionally, an Attachment in the Ecore version can have one instead of multiple

Specializations. This however is a simpli�ed version and is not an inherit limitation.

A reference between two entities in Ecore can be modeled using a containment or

a non-containment reference. As opposed to the latter, a containment reference from

entity A to entity B speci�es that entity B is part of entity A and cannot exist by

itself. Ecore requires all entities to be contained by a resource directly or indirectly. An

entity is indirectly contained by a resource when it is contained by another object that

is contained by a resource. Because of this requirement an ALIA4JAttachment references

a ALIA4JSpecialization using a containment reference. An ALIA4JAttachment is in turn

contained by an ALIA4JAspect which is contained by a resource. This is important to

remember for the discussion later in this section.

Another di�erence is that the ALIA4JSpecialization contains a name property of a

String type. This name is used during the code generation that is described later in this
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Figure 4.2: The ALIA4J meta-model with the Attachment, Actions, Contexts and Pred-
icates.
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Figure 4.3: The ALIA4J meta-model containing the Patterns.
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section. Two ALIA4JSpecialization objects with the same name and used in the same

ALIA4JAspect are considered to be equal and will cause code for only one Specialization

to be generated.

An alternative to this approach is to create and share one ALIA4JSpecialization

between ALIA4JAttachment objects. Because a containment reference is used to reference

the ALIA4JSpecialization, it is not allowed for a ALIA4JSpecialization to be contained

by two di�erent ALIA4JAttachments. To solve this problem, the reference between an

ALIA4JAttachment and a ALIA4JSpecialization is changed to a non-containment refer-

ence. However this causes another problem because the ALIA4JSpecialization is now

not contained by any entity. This requires another entity such as the ALIA4JAspect to

contain the ALIA4JSpecialization. However this approach does not ideally resemble

LIAM where a Specialization is only referenced by an Attachment.

Other meta-model classes are explained in more detail in section 2.3.1.

From the Ecore version of this meta-model, a Genmodel needs to be created using the

eclipse wizard. This is a model that in addition to meta-model classes also contains in-

formation for generating the meta-model classes in Java. An example of this information

is the path where the generated classes will be output. Figure 4.4 shows the generated

ALIA4J Genmodel. The Model Directory property is set to emf-gen folder which means

that the classes will be generated to this folder.

Figure 4.4: The generated ALIA4J Genmodel.

The Java classes that are generated from the meta-model using the Genmodel are orga-

nized in the following Java packages:
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• org.alia4j - Interfaces and the Factory to create the Java classes.

• org.alia4j.impl - Concrete implementation of interfaces de�ned in org.alia4j.

• org.alia4j.util - The utility classes used by the EMF infrastructure.

Model Inference. Xtext would generate a skeleton class ALIA4JJvmModelInferrer if a

language called ALIA4J is implemented. This skeleton class is therefore implemented and

used to infer a Jvm model from the ALIA4J model that is later used for code generation.

A class diagram is shown in �gure 4.5. The ALIA4JJvmModelInferrer extends an abstract

model inferrer that is provided by Xtext. A snippet of the ALIA4JJvmModelInferrer can

be seen in Listing 4.1.

Figure 4.5: Class diagram of the ALIA4JModelInferrer

An ALIA4JAspect is transformed to a Java class that is used to setup the ALIA4J

Attachments that describe the pointcut and advice from the aspect.

To transform a meta-model entity to a Java class in Xtext, infer methods are used where

the �rst parameter represents the meta-model entity. The second parameter is of the

type IAcceptor. This IAcceptor class is provided by Xtext. The infer method uses this

class as a container to put all the resulting Java classes represented by JvmDeclaredType

objects. The caller of the infer method uses this IAcceptor to access those objects. The

IAcceptor is parametrized with JvmDeclaredType to specify that only JvmDeclaredType

objects are allowed to be put into the IAcceptor. A JvmDeclaredType represents a Java

class object in the Jvm model.

For illustration consider Listing 4.1 Line 1 where a Java class is inferred from an

ALIA4JAspect by de�ning an infer method that takes an ALIA4JAspect as the �rst argu-
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ment. Then in line 25, the ALIA4JAspect is transformed to a JvmDeclaredType by execut-

ing the toClass method. This is an extension method de�ned in the JvmTypesBuilder

class. Extension methods are explained in section 3.3. The toClass method returns

an initialized JvmDeclaredType object that represents a Java class for the aspect. The

method is called on the ALIA4JAspect to specify that the JvmDeclaredType is the result of

the ALIA4JAspect. The standard behaviour of Xtext is to create an association between

the source model and the Jvm model. The source model is the ALIA4J model. Xtext

uses the association internally to navigate between the two models. The toClass method

takes the name of the class as a parameter. The name of this class is derived from the

fully quali�ed name of the aspect concatenated with the text Aspect. The last argument

of the toClass method is a closure. This argument is appended to the method call. A

closure de�nes an anonymous function. For a detailed discussion on closures see section

3.3. The members that will be contained by the resulting Java class are added in this

closure using the members property of the JvmDeclaredType. This property refers to a

collection of all the Java methods and �elds added to the class. These class members are

discussed in the following paragraphs. The resulting JvmDeclaredType is then passed to

the accept method of the IAcceptor class.

One of the class members is a method used to setup the ALIA4J Attachments. In line

28 this method is created with the name setupAT. One obvious approach that we did not

take to organize the contents of this method is to include all Java code for the ALIA4J

Attachments and Specializations in this method. This however will not allow us to deploy

Attachments separately at di�erent times when running the program. Although this is

not a target in this thesis, it can be useful in future work. An aspect-oriented language

may have a construct to arbitrarily enable or disable an advice based on some runtime

condition.

The alternative approach that we take is to con�gure every Attachment in a separate

method. The setupAT method then delegates to each of these methods. The inferrer

loops through all the Attachments of the ALIA4JAspect in line 3. Then in line 13-21

a method is created for each attachment. These Java method objects are temporarily

stored in a Java collection and are later, after looping through all the Attachments, added

to the aspect class in line 27. The collection is per aspect and is accessed through the

method getMembersCollection.

An ALIA4J Attachment contains a Specialization that corresponds to the pointcut

to which an advice reacts. To allow an ALIA4J Specialization to be shared between

Attachments in Java, it is not possible to generate Java code for the Specialization in

the method of the Attachment. This prevents the same Specialization to be accessed by
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multiple Attachments since every Attachment is con�gured in its own method. This is

solved by creating a Java class �eld to store the Specialization. This �eld can then be

accessed from multiple methods containing the Attachments. The Specialization is then

con�gured in its own method.

As an illustration, lines 8-11 create a Java method for an ALIA4JSpecialization.

This method object is temporarily stored in a Java collection and added to the aspect

Java class in line 27. The name of this method is the name of the ALIA4JSpecialization

concatenated with the text _config. The paragraph Language Models explained that two

ALIA4JSpecialization objects with the same name will cause code to be created for only

one ALIA4JSpecialization. This means that only one Java method for the Specialization

will be added to the Java class instead of two Java methods for the two Specializations.

This is accomplished by passing the name of the Java method for the Specialization to

the collection when adding the Java method. If the collection already contains a Java

method with that name, it will be replaced.

The Java class �eld that is used for the Specialization is created in line 7. The name of

this �eld is determined by the name property of the ALIA4JSpecialization. This Java

�eld is also added to the collection in the same way as the Java method. The name of

the �eld is passed to the collection and if the collection already contains a Java �eld with

that name, it will be replaced.

In this simpli�ed inferrer, only MethodCallActions are supported. This is however

not an inherent limitation of the inferrer and can be extended to support another Action.

To support this, the meta-model needs to be changed to add an Action re�nement such

as the FieldWriteAction. This will be a subtype of ALIA4JAction. Then the for loop in

line 4 needs to be adapted to check the type of the Action. The name of the method

containing the attachment needs to be derived and the code for creating the Action and

assigning it to the Attachment needs to be added to the body of the method.

Listing 4.1: Snippet from the ALIA4JJvmModelInferrer translating ALIA4J to Jvm

1 def dispatch void infer(ALIA4JAspect aspect, IAcceptor<JvmDeclaredType>
acceptor, boolean prelinkingPhase) {

2

3 for(attachment : aspect.attachments) {
4 val action = attachment.action as ALIA4JMethodCallAction
5 val adviceMethodName = action.methodName
6 //Creating a field to hold the ALIA4J Specialization
7 getMembersCollection().put(attachment.specialization.name,

attachment.specialization.toField(attachment.specialization.name,...
8 //Creating a Java method to configure the ALIA4J Specialization
9 val specMethodName = attachment.specialization.name + "_config"
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10 getMembersCollection().put(specMethodName,
11 aspect.toMethod(specMethodName, ...
12 //Creating a Java method to configure the ALIA4J Attachment
13 val attachmentMethodName = adviceMethodName + "_attachment"
14 getMembersCollection().put(attachmentMethodName,
15 aspect.toMethod(attachmentMethodName, voidReturnType)[
16 ...
17 body = [’’’
18 Attachment attachment = new Attachment(...);
19 org.alia4j.fial.System.deploy(attachment);
20 ’’’]
21 ])
22 }
23 /* Creating a Java class containing ALIA4J Attachments and

Specializations.
24 */
25 acceptor.accept(aspect.toClass(aspectFQN.toString + "Aspect") [
26 ...
27 members += getMembersCollection.values()
28 members += aspect.toMethod("setupAT", voidReturnType)[ ... ]
29 ])
30 }

Code generation. As discussed in the previous paragraph, a Jvm model is inferred

from the ALIA4J model. From this Jvm model, Java code will be generated by the

JvmModelGenerator that comes with Xtext. The JvmDeclaredType from the Jvm model

results in a �le containing a Java class de�nition. Xtext uses the folder src-gen as a

default to contain the generated �les. The JvmDeclaredType has a name property that

contains the fully quali�ed name of the class. Both the name and the Java package of the

generated class is derived from the value of the name property. The JvmModelGenerator

generates the Java �le in a location that re�ects the Java package of the class. Consider

as an example a fully quali�ed name of x.y.Foo. The JvmModelGenerator will generate

a Java �le called Foo in a folder y that is again contained in a folder x. This folder x is

then contained in the default folder src-gen.

The Java class will contain Java methods and �elds de�ned by the members property

of the JvmDeclaredType. A JvmOperation object will result in a Java method and a

JvmField results in a Java �eld. The name, type and visibility of this Java �eld are

determined by properties of the JvmField. The name, visibility, parameters, return type

and possible exceptions that can be thrown by the Java method are also de�ned by

properties of the JvmOperation. The contents of the Java method is determined by a

property called body of the String type. The JvmModelGenerator will copy the value of

this property to the body of the Java method.
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A security example. Consider as an example an ALIA4J model of a Security aspect.

From this model a Jvm model will be inferred as discussed in the previous paragraphs.

Assume that this Jvm model contains a JvmDeclaredType with a fully quali�ed name of

model.Security. It contains a method for an Attachment and a method for a Specializa-

tion with the name secureAccess. A skeleton of the Java code that the code generator

produces for this model is shown Listing 4.2. As described in the previous paragraphs,

the JvmDeclaredType results in a SecurityAspect class de�nition that contains a method

setupAT in line 19 that delegates to two other methods.

One is the method secureAccess_specialization_config() in line 5 to setup the Spe-

cialization. This Specialization is saved to the secureAccess_specialization Java �eld

declared at line 3.

The other method before_advice_method_secureAccess_attachment() is declared in line

13 to setup and deploy the Attachment.

Listing 4.2: Java code skeleton resulting from an ALIA4J Jvm model

1 package model;
2 public class SecurityAspect {
3 private static Object secureAccess_specialization;
4

5 public static void secureAccess_specialization_config() throws
ClassNotFoundException {

6

7 MethodPattern pattern_secureAccess_specialization = new MethodPattern
(..); ...

8 secureAccess_specialization = new Specialization(
pattern_secureAccess_specialization,
predicate_secureAccess_specialization,

9 Arrays.asList(
10 ContextFactory.findOrCreateLazyObjectConstantContext(

TypeHierarchyProvider.findOrCreateFromNormalTypeName("model.
Security"))

11 ));
12 }
13 public static void before_advice_method_secureAccess_attachment() {
14 Attachment attachment = new Attachment(
15 Collections.singleton((Specialization)secureAccess_specialization),
16 ActionFactory.findOrCreateMethodCallAction(...), ...);
17 org.alia4j.fial.System.deploy(attachment);
18 }
19 public static void setupAT() throws ClassNotFoundException {
20 model.SecurityAspect.secureAccess_specialization_config();
21 model.SecurityAspect.before_advice_method_secureAccess_attachment();
22 }
23 }
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4.2 The complete framework

This section covers the complete framework considering the development of an aspect-

oriented language named Alpha. Xtext derives names of artefacts based on the name of

the language that is developed.

Language models. The Alpha meta-model is generated by Xtext for the language

Alpha as already explained in detail in section 3.1.

Model Inference. Section 3.1 described the use of the AlphaJvmModelInferrer to infer

a Jvm model from the Alpha model. For the generic part of the framework, we require an

additional ALIA4J model to be inferred besides a Jvm model. The ALIA4J model will be

used by the language developer to specify ALIA4J concepts. The language developer does

not have to consider ALIA4J API calls in Java. The ALIA4JJvmModelInferrer already

developed and described in section 4.1, will infer a Jvm model from this ALIA4J model.

Figure 4.7 shows the complete picture of model inference within the framework. The

generic part of the framework has the responsibility of transforming the ALIA4J model

into ALIA4J speci�c Java code. This part can be reused in any aspect-oriented language

development project.

To enable the inferring of both the ALIA4J and Jvm models, an

AbstractALIA4JEnabledModelInferrer has been developed that needs to be extended

by the AlphaJvmModelInferrer. Ideally the AlphaJvmModelInferrer should be called

AlphaJvmAndALIA4JModelInferrer however the skeleton class is generated by Xtext which

is not ALIA4J-aware. The skeleton also does not extend the

AbstractALIA4JEnabledModelInferrer.

Additionally, a helper class ALIA4JTypesBuilder has been developed, that provides

extension methods used to generate instances of the ALIA4J meta-model. This is anal-

ogous to the JvmTypesBuilder provided by Xtext. The relationship between the classes

is depicted in �gure 4.6.

A skeleton of the Alpha-speci�c model inferrer is shown in Listing 4.3. Line 3

and 4 show how both the JvmTypesBuilder and ALIA4JTypesBuilder are injected. The

ALIA4JTypesBuilder is added to the skeleton by the language developer.
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Listing 4.3: Xtend code skeleton of the Alpha-speci�c model inferrer

1 class AlphaJvmModelInferrer extends AbstractALIA4JEnabledModelInferrer {
2

3 @Inject extension JvmTypesBuilder
4 @Inject extension ALIA4JTypesBuilder
5

6 def dispatch void infer(AlphaObject element, IAcceptor<ALIA4JAspect>
acceptor) {

7 ...
8 }
9 def dispatch void infer(AlphaObject element, IAcceptor<JvmDeclaredType>

acceptor,boolean isPrelinkingPhase) {
10 ...
11 }
12

13 }

Figure 4.6: Class diagram of components in the Generic Framework

The skeleton is changed by the language developer to extend the class

AbstractALIA4JEnabledModelInferrer. The language developer also needs to implement

this skeleton to enable the AlphaJvmModelInferrer to infer both a Jvm and an ALIA4J

model from a language model. The AlphaJvmModelInferrer implements two infer meth-

ods inherited from the AbstractALIA4JEnabledModelInferrer.
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Figure 4.7: Inferring models in the Generic Framework
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The �rst infer method in Line 6-8 is used to infer the ALIA4J model. The second

parameter of type IAcceptor is used as a container to put all the resulting ALIA4JAspect

objects. The caller of the infer method uses this IAcceptor to access the ALIA4JAspect

objects. Type parameters are used to specify what type of objects are passed to the

IAcceptor. In this case the IAcceptor is parametrized with ALIA4JAspect.

The second infer method in Line 9-11 is used to infer the Jvm model. In this case the

IAcceptor is used to collect the JvmDeclaredType objects representing Java classes.

The ALIA4JAspect that is inferred using the �rst infer method needs to be input to

the ALIA4JJvmModelInferrer as shown by the arrow number 4 in Figure 4.7. The mecha-

nism by which this is accomplished is not shown in this Figure. However Figure 4.5 shows

that the AlphaJvmModelInferrer and the ALIA4JJvmModelInferrer are both used by a

class called ALIA4JModelAssociator. This class has been developed to execute both model

inferrers by taking the ALIA4JAspect that is inferred by the AlphaJvmModelInferrer

and executing the ALIA4JJvmModelInferrer to infer a JvmDeclaredType from the

ALIA4JAspect. The ALIA4JModelAssociator does this by extending and overriding the

JvmModelAssociator. The default behaviour of the JvmModelAssociator is to execute the

AlphaJvmModelInferrer to infer a Jvm model from the Alpha model by calling the infer

method on the model inferrer. The ALIA4JModelAssociator overrides this behaviour by

calling the two infer methods on the AlphaJvmModelInferrer explained earlier. It then

calls the infer method on the ALIA4JJvmModelInferrer using the resulting ALIA4JAspect

as an argument to the method.

Code generation. Xtext only allows one implementation of the IGenerator interface

to generate code. This is per default the JvmModelGenerator to generate Java code

based on a Jvm model. Since we also want to be able to generate other types of code,

a CodeGenerator class has been developed that will delegate to other implementations

besides the JvmModelGenerator. This is shown in Figure 4.8. The CodeGenerator receives

a resource containing all the generated models. This is shown by the top box in the �gure.

The CodeGenerator makes this resource available to the implementation it delegates to.

It is up to this implementation to decide which code to generate for which model type.

The CodeGenerator delegates to the default JvmModelGenerator that will generate

Java code for Jvm models. This is shown on the right side of the �gure. The left side

of the �gure shows that the CodeGenerator also delegates to an ALIA4JToXMIGenerator.

This is an implementation of the CustomGenerator interface that has been developed

in this project. An implementation of this interface is injected through dependency

injection. The CodeGenerator declares a �eld for the custom generator and the runtime



4.2 The complete framework 41

model con�guration speci�es which implementation should be injected as described in

section 3.2.

The ALIA4JToXMIGenerator implementation is developed to generate an XMI (XML-

based model interchange format) �le for ALIA4J models. This XMI �le is help-

ful by enabling to inspect the ALIA4J model visually in eclipse and to see whether

it is valid. Listing 4.4 shows a snippet of the runtime model to specify that a

ALIA4JToXMIGenerator implementation should be used. This allows the CodeGenerator

and the ALIA4JToXMIGenerator to be completely decoupled from each other. This also

creates the possibility to inject another class to generate other type of code.

Listing 4.4: Specifying a CustomGenerator implementation in the AlphaRuntimeModel

public Class<? extends org.xtext.alia4j.CustomGenerator>
bindCustomGenerator() {

return org.xtext.alia4j.ALIA4JToXMIGenerator.class;
}

Figure 4.8: Generating code in the Generic Framework
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4.3 Extensibility

When implementing a new language following the ALIA4J approach, the semantics of

the language must be described by either re-using existing meta-model re�nements, im-

plementing new re�nements, or a mixture of both. Suppose that we want to implement

a new re�nement of Predicate to express the control �ow construct from AspectJ. We

assume that ALIA4J already contains an implementation of the CFlowPredicate entity

that does not yet exists in the Ecore meta-model. To add this re�nement, there are

several solutions. This section describes three solutions for adding LIAM re�nements by

either creating subclasses or changing the framework to make it more extensible.

Adding a meta-model class. In both the solutions described in section 4.3.1 and

4.3.2, a new LIAM entity is added by changing the Ecore meta-model. To support the

control �ow construct from AspectJ a new predicate ALIA4JCFlowPredicate is created as

a subclass of the already provided ALIA4JPredicate. After this the meta-model classes

need to be re-generated as described in 4.1.

Extending the ALIA4JTypesBuilder. The ALIA4JTypesBuilder that is used to in-

stantiate and initialize ALIA4J types de�ned in the Ecore version of LIAM does

not know about a new type. One can create a subclass of the ALIA4JTypesBuilder

with an additional method to create and initialize the ALIA4JCFlowPredicate. The

ALIA4JTypesBuilder in Line 4 Listing 4.3 will be replaced by this subclass so the lan-

guage speci�c model inferrer can make use of the new extension method.

It is however not required to do this since the ALIA4JTypesBuilder is only used to make

the code of the model inferrer more concise. An alternative is to initialize the ALIA4J

type directly in the model inferrer.

4.3.1 Solution by extending the ALIA4JJvmModelInferrer

The current implementation of the ALIA4JJvmModelInferrer infers Java code speci�c

to every LIAM entity implementation. Listing 4.5 shows that there exists a spe-

ci�c generateALIA4JPattern and generateALIA4JPredicate method for every speci�c

ALIA4J Pattern and Predicate such as ALIA4JInstanceOfPredicate and

ALIA4JMethodPattern. The appropriate method is executed for every speci�c ALIA4J

Pattern or Predicate. These are passed as an argument to the method. The methods

are used to generate code that will be put in the body of the Java method used for the

ALIA4J Specialization. By adding a generateALIA4JPredicate method speci�c for the
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ALIA4JCFlowPredicate, this method will automatically be used to infer Java code when

a ALIA4JCFlowPredicate is encountered.

Listing 4.5: ALIA4JJvmModelInferrer with methods for Predicate implementations

1 def dispatch generateALIA4JPredicate(ALIA4JTruePredicate p, String
varName)

2 ...
3 def dispatch generateALIA4JPredicate(ALIA4JInstanceOfPredicate p, String

varName)
4 ...
5 def dispatch generateALIA4JPattern(ALIA4JMethodPattern pattern, String

varName)
6 ...

Since the ALIA4JJvmModelInferrer does not know what to infer from a new

ALIA4JCFlowPredicate, this means that the ALIA4JJvmModelInferrer needs to be changed

to infer Java code from the new LIAM entity. It is obvious that this is not the best ap-

proach since it requires to change and recompile the model inferrer provided by the

framework.

An alternative is to extend the ALIA4JJvmModelInferrer by creating a subclass

CustomALIA4JJvmModelInferrer as can be seen in Line 1 of Listing 4.6. Methods inherited

from the ALIA4JJvmModelInferrer can be used to generate other code. An example is

the generateALIA4JSpecializationCode method that is used in Line 9 to generate code

for every ALIA4J Specialization contained in the ALIA4JCFlowPredicate.

Listing 4.6: The CustomALIA4JJvmModelInferrer subclass

1 class CustomALIA4JJvmModelInferrer extends ALIA4JJvmModelInferrer {
2 def dispatch generateALIA4JPredicate(ALIA4JCFlowPredicate p, String

varName) {
3 ’’’
4 Set<Specialization> col = new HashSet<Specialization>();
5 «var i = -1»
6 «FOR spec: p.specializations»
7 «spec.name = "spec"+(i = i + 1)»
8 Specialization «spec.name»;
9 «spec.generateALIA4JSpecializationCode()»

10 col.add(«spec.name»);
11 «ENDFOR»
12 Predicate<AtomicPredicate> «varName» = new BasicPredicate<

AtomicPredicate>(
13 AtomicPredicateFactory.findOrCreateCFlowPredicate(col),true
14 );
15 ’’’
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16 }
17 }

For this custom class to be used instead of the default ALIA4JJvmModelInferrer, it

has to be speci�ed in the AlphaRuntimeModule described in section 3.2. Listing 4.7 depicts

this by returning the CustomALIA4JJvmModelInferrer class.

Listing 4.7: Binding the CustomALIA4JJvmModelInferrer in the AlphaRuntimeModule

public Class<? extends IALIA4JToJvmModelInferrer>
bindIALIA4JToJvmModelInferrer() {
return CustomALIA4JJvmModelInferrer.class;

}

4.3.2 Solution by delegating Java code inference to ALIA4J meta-

models

Another solution is to change the framework in such a way to incorporate the inference of

Java code in the ALIA4J meta-model entity itself, instead of in the model inferrer. The

ALIA4JJvmModelInferrer will delegate the inference by calling a special infer method on

the meta-model entity. This approach allows the ALIA4JJvmModelInferrer to only be

aware of abstract ALIA4J entities and eliminates the need for changing or extending the

ALIA4JJvmModelInferrer. This will increase the extensibility of the generic framework.

Adding a custom implementation of a ALIA4J meta-model entity will be enough.

This is demonstrated by adding a method String inferJava(String varName) to

the abstract ALIA4JPredicate and ALIA4JPattern. Every speci�c entity will provide an

implementation of this method. The implementation for the ALIA4JCFlowPredicate is

shown in Listing 4.8 which is analogous to the generateALIA4JPredicate method from

Listing 4.6. However the inference of Java code for the specialization is delegated to the

ALIA4JSpecialization by calling the inferJava method in Line 9.

Listing 4.8: The inferJava method implementation for the ALIA4JCFlowPredicate

1 public String inferJava(String varName) {
2 StringConcatenation _builder = new StringConcatenation();
3 _builder.append("Set<Specialization> col = new HashSet<Specialization

>();");
4 _builder.newLine();
5 int i = 0;
6 for (ALIA4JSpecialization spec: getSpecializations()) {
7 spec.setName("spec"+i++);
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8 _builder.append("Specialization " + spec.getName());
9 _builder.append(spec.inferJava());

10 _builder.append("col.add(" + spec.getName() + ")");
11 }
12 _builder.append(String.format("Predicate<AtomicPredicate> %s = new

BasicPredicate<AtomicPredicate>(",varName));
13 _builder.append(" AtomicPredicateFactory.findOrCreateCFlowPredicate(

col),true");
14 _builder.append(");");
15

16 return _builder.toString();
17 }

The meta-model Java classes are generated from the Ecore model. It is possible to

change the generated code but this code will get lost when the classes are re-generated.

To prevent this, the@Generated annotation of the class or method that contains the

changes needs to be removed. It is however easy to forget to remove this. It is obvious

that this is not the best way to implement changes.

A better idea is to implement the inferJava method separately from the generated

class. This is possible by extending the generated class. However this is still a problem

because the generated code does not know about the subclass. The code generated by

EMF contains a factory class that instantiates the individual classes. The factory class

generated for the ALIA4J meta-model is shown in Listing 4.9. The factory refers to other

generated implementations such as the ALIA4JInstanceOfPredicateImpl in Line 16 and

not to a possible subclass. This still forces us to change the generated code.

Listing 4.9: The generated Alia4jFactoryImpl implementation

1 /**
2 * <!-- begin-user-doc -->
3 * An implementation of the model <b>Factory</b>.
4 * <!-- end-user-doc -->
5 * @generated
6 */
7 public class Alia4jFactoryImpl extends EFactoryImpl implements

Alia4jFactory
8 {
9 /**

10 * <!-- begin-user-doc -->
11 * <!-- end-user-doc -->
12 * @generated
13 */
14 public ALIA4JInstanceOfPredicate createALIA4JInstanceOfPredicate()
15 {
16 ALIA4JInstanceOfPredicateImpl alia4JInstanceOfPredicate = new

ALIA4JInstanceOfPredicateImpl();
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17 return alia4JInstanceOfPredicate;
18 }
19 ...
20 }

A solution is to allow the class generator to know about subclasses and use them

automatically in the generated code. Xtext provides an EcoreGenerator that supports

this. The source path property of this generator can be set to the folder that will be

scanned to �nd subclasses. This EcoreGenerator is used in the work�ow con�guration in

Listing 4.10. This con�guration allows to declare object instances, attribute values and

references. Line 13 declares an instance of a component that cleans the emf-gen directory

where the generated classes will be output. Line 17 declares an EcoreGenerator instance

that will generate the meta-model classes. The srcPath property is set to where the

custom classes can be found and the genModel property to the generator model used to

generate classes. When running this Work�ow, the EcoreGenerator instance will search

for classes that extend one of the meta-model classes. The EcoreGenerator requires

those classes to have the name of the meta-model class post�xed with the text Custom.

This cannot be con�gured. A solution for allowing a di�erent name is to subclass the

EcoreGenerator. An example of a custom class is the ALIA4JCFlowPredicateImplCustom

that extends ALIA4JCFlowPredicateImpl. If the meta-model classes are already generated

when adding the subclass, the Work�ow should be run again. This Work�ow is de�ned

in a �le called alia4j.mwe2 shown in Listing 4.10 which is part of our framework.

Listing 4.10: The alia4j Work�ow de�nition �le

1 module org.eclipse.xtext.alia4j
2

3 import org.eclipse.emf.mwe.utils.*
4

5 var projectName = "org.xtext.alia4j"
6 var runtimeProject = "${projectName}"
7

8 Workflow {
9 bean = StandaloneSetup {

10 platformUri = ".."
11 }
12

13 component = DirectoryCleaner {
14 directory = "${runtimeProject}/emf-gen"
15 }
16

17 component = org.eclipse.emf.mwe2.ecore.EcoreGenerator {
18 srcPath = "platform:/resource/${runtimeProject}/src"
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19 genModel = "platform:/resource/${runtimeProject}/model/ALIA4J.genmodel
"

20 }
21 }

4.3.3 Solution by using a di�erent ALIA4J Ecore meta-model

Another solution is to make use of the naming conventions used in the ALIA4J API

to create speci�c entities of ALIA4J models. The API contains factory methods to

create entities. An example of a factory method to create a CFlowPredicate looks

like this: AtomicPredicate findOrCreateCFlowPredicate(final Set<Specialization>

specializations). The name of the method is always the text �ndOrCreate followed

by the name of the predicate concatenated with the text Predicate. Making use of this

information, a di�erent implementation can be used for the ALIA4J Ecore meta-model.

Instead of having a speci�c meta-model class for each possible entity re�nement, one

class is used with the following properties:

• The factory name. This is in the example an AtomicPredicateFactory.

• The predicate name such as the CFlow or Instanceof predicate.

• A map to contain the name and value of each parameter that needs to be passed

to the factory method. In the example of the CFlow predicate this is a collection of

Specializations. For an Instanceof predicate this is a Context and TypeDescriptor.

The intended generic Ecore model is visualized in Figure 4.9. The ALIA4JPattern,

ALIA4JPredicate, ALIA4JContext and ALIA4JAction entities have the properties de�ned

in the previous list. One can see that the specializations of these entities have been

removed if compared with the model described in section 4.1.

This meta-model makes it possible to implement a generic code generation mechanism

that will generate code for speci�c LIAM entities. In addition to the properties in the

previous list, the code generation depends on the type of the values in the map such as

Context, TypeDescriptor or a collection of Specializations. This makes it more compli-

cated because of the need for more generic support. A type-check needs to be done on

those values to determine what kind of Java code will be generated.

What makes it even more complicated is that from the name of a property in the param-

eter map, the parameter position in the factory method has to be inferred. This is not
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Figure 4.9: The intended ALIA4J meta-model when using the API naming conventions
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possible using Java re�ection. A solution to this is by explicitly annotating the factory

method to specify the parameter index for the parameter name. Re�ection will be used

to retrieve the parameter position and the code generator can generate the right code for

every parameter position of the factory method.

4.3.4 Comparison

In this section we compare the solutions presented in the previous sections by examining

the required changes to the framework when adding new LIAM entities. This comparison

is visualized in the table below.

In the �rst solution there is a need to change the ALIA4J Ecore meta-model for

every new LIAM entity. Then the model inferrer provided by the framework needs to be

extended for it to infer the Jvm model from the new entity. This does not scale very well

because the framework needs to be recompiled every time a new LIAM entity is added.

The second solution o�oads the code generation to the provider of the ALIA4J meta-

model entity. However this approach requires a custom implementation for every a new

LIAM entity. The meta-model Java classes need to be generated again for the framework

to know about the custom implementation. This also does not scale very well.

The third solution requires no implementation for a new LIAM entity and classes

provided by the framework do not have to be changed and recompiled. This makes the

framework very scalable.

Table 4.1: Comparison table for the three presented solutions

Solution Changes when adding new LIAM entity

By extending the ALIA4JJvmModelInferrer add new Ecore entity to the framework +

add subclassed ALIA4J model inferrer to

language implementation

By delegating Java inference to meta-model entity add new Ecore entity to the framework +

add subclassed entity to language imple-

mentation

By using a di�erent ALIA4J Ecore meta-model -
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Evaluation

5.1 AspectJ Compiler Implementation

The generic compiler framework is validated by developing an implementation for the

aspect-oriented language AspectJ. To demonstrate a clear separation between this lan-

guage speci�c implementation and the generic framework, these are implemented in dif-

ferent eclipse projects.

Language models. An Xtext grammar AspectJ.xtext is developed to de�ne the lan-

guage constructs. An AspectJ meta-model is derived from this Xtext grammar. Part of

the meta-model is depicted in Figure 5.1. The CompilationUnit meta-model class con-

tains type de�nitions represented by the TypeDefinition class. Those type de�nitions

can be a JavaClassDefinition, JavaInterfaceDefinition or an AspectDefinition. A

TypeDefinition speci�es several properties like the name of the type and the visibil-

ity such as public or private. A type contains members such as methods and �elds

that are respectively modelled by the JavaMethodDefinition and JavaFieldDeclaration

classes. These inherit from the JavaMember class. The AspectMember class models mem-

bers from aspects such as advice and pointcut declarations. These are modelled using

the AspectAdviceDeclaration and AspectpointcutDeclaration classes. A JavaMember

can also be an AspectMember because aspects can contain Java methods and �elds.

AspectMember therefore inherits from JavaMember.

Model Inference. Xtext generated a AspectJJvmModelInferrer skeleton class. This

class is changed to extend the

AbstractALIA4JEnabledModelInferrer to be able to infer both Jvm and ALIA4J models.

51
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Figure 5.1: Part of the AspectJ meta-model
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The inferring of models when compiling an AspectJ program is demonstrated in Figure

5.2. Part of the implemented AspectJJvmModelInferrer is shown in Listing 5.1. As

already described in section 4.1 and shown in Listing 4.3, there are two infer methods.

The �rst method from Listing 5.1 lines 10-49 shows the inferring of an ALIA4JAspect

from an AspectDefinition. The second method from lines 50-98 show the inferring of a

JvmDeclaredType from an AspectDefinition.

The �rst method loops through the members of an AspectDefinition such as an

AspectAdviceDeclaration or an AspectVariableDeclaration. The type of member is

determined by the Xtend switch statement. For every AspectAdviceDeclaration an

ALIA4JAttachment is inferred in lines 20-42. This is done using the toALIA4JAttachment

method from line 22. This method is an extension method provided by the

ALIA4JTypesBuilder. The ALIA4JSpecialization is inferred in line 23 through delegation

to the method inferSpecialization.

Lines 24-41 then infers an ALIA4JMethodCallAction. The parameter types of the method

that is called by this action are set in Line 27. The return type of this method is set in

line 32. The ScheduleInfo to specify when the action will call the method is set in lines

33-39. Both the specialization and action property of the Attachment are set in line 23

and 24.

The second method from lines 50-98 show the inferring of a JvmDeclaredType from

an AspectDefinition. This method also loops through the members of an

AspectDefinition. However since an aspect can contain normal Java �elds and methods

beside an advice, these are also taken into account when looping through the members. In

lines 67-78 a JvmOperation and JvmField are inferred from the JavaMethodDefinition and

JavaFieldDeclaration in the AspectJ model. In contrast to inferring an ALIA4JAttachment

from an AspectAdviceDeclaration in line 22, a JvmOperation is inferred in line 86. This

will contain the Java code from the advice. The name of this advice Java method must be

consistent with the name used in the MethodCallAction of the Attachment. This cannot

be ensured by the generic framework since the advice Java method is not created by the

framework but by the language speci�c model inferrer. One solution that we did not

take is for the language developer to create a method in the model inferrer to derive this

name. This method will then be called from two di�erent places namely when inferring

the ALIA4JMethodCallAction and when inferring the advice Java method.

To demonstrate an alternative approach, Lines 21 and 85 show how this is ensured by

allowing a custom meta-model class AspectAdviceImplCustom for the advice AST node

to infer the method name for the advice. This is similar to the approach discussed in

section 4.3.2 where a subclass of the meta-model entity is used to infer Java code. In
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Figure 5.2: Inferring models in the AspectJ Compiler
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this case the custom class contains a method inferAdviceMethodName to generate the

name for the advice method. This always generates the same name and is called by the

inferrer whenever this is required. The custom class is created by the language developer

to extend the advice meta-model class and is shown in Listing 5.2. Custom meta-model

classes can also be used to store information during the �rst step of inferring an ALIA4J

model. This information can then be accessed in the next step where the Jvm model is

inferred from the AspectJ model. By creating a class with the name of the meta-model

class post�xed with the text Custom, Xtext will use the custom class as a substitute of

the generated meta-model class.

Listing 5.1: The AspectJJvmModelInferrer inferring Jvm and ALIA4J models

1 class AspectJJvmModelInferrer extends AbstractALIA4JEnabledModelInferrer {
2

3

4 @Inject extension JvmTypesBuilder
5 @Inject extension TypeReferences typeReferences
6 @Inject extension IQualifiedNameProvider
7

8 @Inject extension CustomALIA4JTypesBuilder
9

10 /**
11 * Infer an ALIA4JAspect from an AspectDefinition
12 */
13 def dispatch void infer(AspectDefinition element, IAcceptor<ALIA4JAspect

> acceptor) {
14 val aspectName = element.fullyQualifiedName.toString
15 acceptor.accept(element.toALIA4JAspect() [
16 aspectFQN = aspectName
17 for (member : element.members) {
18 switch member {
19 AspectAdviceDeclaration : {
20 val pct = member.advice.pointcut as AspectPointcutReference
21 val adviceMethodName = (member.advice as

AspectAdviceImplCustom) .inferAdviceMethodName()
22 attachments += element.toALIA4JAttachment() [
23 specialization = inferSpecialization( pct.target ,

aspectName)
24 action = element.toALIA4JMethodCallAction() [
25 methodName = adviceMethodName
26 for(p : member.advice.parameters.parameters) {
27 parameters += p.toALIA4JParameter(p.name, p.

parameterType.simpleName)
28 }
29 val advice = member.advice
30 switch advice {
31 AdviceAround :{
32 returnType = advice.returnType.toString



56 Evaluation 5

33 scheduleInfo = ALIA4JScheduleInfo::^AROUND
34 }
35 AdviceBefore :{
36 scheduleInfo = ALIA4JScheduleInfo::^BEFORE
37 }
38 AdviceAfter :{
39 scheduleInfo = ALIA4JScheduleInfo::^AFTER
40 }
41 }
42 ]
43

44 ]
45 }
46 }
47 }
48 ])
49 }
50 /**
51 * Infer Aspect
52 */
53 def dispatch void infer(AspectDefinition element, IAcceptor<

JvmDeclaredType> acceptor,boolean isPrelinkingPhase) {
54 val JvmTypeReference voidReturnType = typeReferences.getTypeForName(

typeof(void) as Class, element)
55 val aspectFQN = element.fullyQualifiedName
56 val aspectStaticMembers = new LinkedList<JvmMember>()
57

58 acceptor.accept(element.toClass(aspectFQN) [
59 documentation = element.documentation
60

61 var JvmTypeReference alia4jSpecializationType = element.newTypeRef(
typeof(Object))

62 var List<String> methodcalls = new LinkedList();
63

64 for (member : element.members) {
65 switch member {
66 JavaMethodDefinition :{
67 members += member.toMethod(member.name, member.returnType)[
68 for(p : member.parameters) {
69 parameters += p.toParameter(p.name, p.parameterType)
70 }
71 ^static = member.^static
72 documentation = member.documentation
73 it.body = member.body
74 ]
75 }
76 JavaFieldDeclaration : {
77 for(id : member.declarators)
78 members += member.toField(id, member.type) [
79 ^static = member.^static
80 visibility=visibility
81 ]
82 }
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83 AspectAdviceDeclaration : {
84 val pct = member.advice.pointcut as AspectPointcutReference
85 val _adviceMethodName = (member.advice as AspectAdviceImplCustom

).inferAdviceMethodName()
86 members.add(member.toMethod(_adviceMethodName,voidReturnType)[
87 for(p : member.advice.parameters.parameters) {
88 parameters += p.toParameter(p.name, p.parameterType)
89 }
90 documentation = member.documentation
91 final = member.^final
92 body = member.advice.body
93 ])
94 }
95 }
96 }
97 ])
98 }
99 def ALIA4JSpecialization inferSpecialization(Pointcut pointcut, String

aspectFQN) {
100 val PredicatePatternAndContext result =

inferPredicatePatternAndContext(pointcut,aspectFQN)
101 val List<ALIA4JContext> _context = new LinkedList()
102 //Use a LazyObjectConstantContext to instantiate the advice class

containing the advice method
103 _context += pointcut.toALIA4JLazyObjectConstantContext(aspectFQN)
104 _context += result.contexts
105 return pointcut.toALIA4JSpecialization() [
106 pattern = result.pattern
107 predicate = result.predicate
108 contexts += _context
109 ]
110 }
111 def dispatch PredicatePatternAndContext inferPredicatePatternAndContext(

AspectPointcutExecution pct, String aspectFQN ) {
112 var ALIA4JPattern pattern = inferALIA4JMethodPattern(pct)
113 return new PredicatePatternAndContext(pct.toALIA4JTruePredicate(),

pattern, new LinkedList())
114 }
115 def dispatch PredicatePatternAndContext inferPredicatePatternAndContext(

AspectPointcutThis pct, String aspectFQN ) {
116

117 val context = pct.toALIA4JCallerContext()
118 val target = pct.target as FullJvmFormalParameter
119 val _predicate = pct.toALIA4JInstanceOfPredicate(context, target.

parameterType.qualifiedName)
120

121 return new PredicatePatternAndContext(_predicate, null, context)
122 }
123 ....
124 }
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Listing 5.2: A custom AST node for the Aspect Advice

public class AspectAdviceImplCustom extends AspectAdviceImpl {
public String inferAdviceMethodName() {
AspectPointcutReference pct = (AspectPointcutReference) getPointcut();
return "advice_method_" + pct.getTarget().getName();

}
}

Supporting c�ow. The ALIA4J Ecore meta-model did not have an

ALIA4JCFlowPredicate to use for the cflow construct of AspectJ. To support this, the

solution described in section 4.3.1 was used. A CustomALIA4JTypesBuilder has been

implemented and a subclass of the ALIA4JJvmModelInferrer has been developed. The

CustomALIA4JTypesBuilder is injected in line 8 of Listing 5.1.

Listing 5.1 line 100 shows that the inferSpecialization uses the method

inferPredicatePatternAndContext to infer a predicate, pattern and context for every

type of AspectJ pointcut expression construct such as execution and this. Which

inferPredicatePatternAndContext method is executed depends on the expression type.

By adding a new method for the cflow construct shown in Listing 5.3, one can infer

the right ALIA4J entities needed. The toALIA4JCFlowPredicate extension method from

CustomALIA4JTypesBuilder is used in line 2. Since the ALIA4JCFlowPredicate takes a

set of Specializations as parameter, the inferSpecialization method is used to infer a

Specialization from the expression within the cflow construct. This example however is

simpli�ed by allowing only one Specialization.

Listing 5.3: Inferring an added c�ow predicate

1 def dispatch PredicatePatternAndContext inferPredicatePatternAndContext(
AspectPointcutCFlow pctCflow, String aspectFQN ) {

2 val _predicate = pctCflow.toALIA4JCFlowPredicate(
3 inferSpecialization(pctCflow.pattern,aspectFQN))
4 return new PredicatePatternAndContext(_predicate, null, new LinkedList

())
5 }
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5.2 Security example using the AspectJ Compiler

This section describes the compilation of an example program using the AspectJ compiler

that is discussed in the previous section. Assume that a �le Security.aj contains an

AspectJ program as in Listing 5.4.

Listing 5.4: Example AspectJ program

1 public aspect Security {
2

3 pointcut secureAccess()
4 : execution( * ajia.model.Account.update(..));
5

6 before() : secureAccess() {
7 System::out.println("Security Applied!");
8 }
9

10 }

Language models. When this program is compiled, an AspectJ model is generated

that is depicted in �gure 5.3.

Figure 5.3: The AspectJ model resulting from the code in Listing 5.4

Model Inference. The language model is fed to the AspectJJvmModelInferrer that

is used to infer an ALIA4J and a Jvm model. This Jvm model is speci�c to the Java

code that is embedded in the advice part of the Security aspect. This ALIA4J model is
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given to the ALIA4JJvmModelInferrer to infer a Jvm model. This is shown in Figure 5.2

as ALIA4J Jvm model and is speci�c to ALIA4J con�gurations.

Code Generation. After this process, a resource containing both models is given to

the CodeGenerator. This is depicted in �gure 5.4.

Figure 5.4: Generating code in the AspectJ Compiler

The CodeGenerator delegates to the ALIA4JToXMIGenerator to serialize the ALIA4J

model to an XMI �le called Security-alia4j-model.xmi. This XMI �le can be viewed

graphically using eclipse and is displayed in Figure 5.5.

The CodeGenerator also delegates to the JvmModelGenerator to generate Java code

from the Jvm models. From the Jvm model, a Java �le Security.java will be created

with code that is shown in Listing 5.5. This class contains a method for each advice part

of the aspect with the appropriate Java code from the aspect.
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Figure 5.5: The serialized ALIA4J model as XMI

Listing 5.5: Translating Jvm model into Security.java

public class Security {
public void before_advice_method_secureAccess() {

System.out.println("Security Applied!");
}

}

The ALIA4J Jvmmodel will be transformed into a Java �le called SecurityAspect.java.

It contains Java code for ALIA4J as shown in Listing 5.6.

Listing 5.6: Translating the ALIA4J Jvm model into SecurityAspect.java

public class SecurityAspect {
private static Object secureAccess_specialization;

public static void pointcut_secureAccess() throws ClassNotFoundException
{

MethodPattern pattern = new MethodPattern(
ModifiersPattern.ANY ,
TypePattern.ANY,
new ExactClassTypePattern(TypeHierarchyProvider.

findOrCreateFromNormalTypeName("ajia.model.
Account")),

new ExactNamePattern("update"),
ParametersPattern.ANY,
ExceptionsPattern.ANY);
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Predicate<AtomicPredicate> predicate = TruePredicate.<AtomicPredicate>
truePredicate();

secureAccess_specialization = new Specialization(pattern,predicate,
Arrays.asList(
ContextFactory.findOrCreateLazyObjectConstantContext(

TypeHierarchyProvider.findOrCreateFromNormalTypeName("ajia.
security.Security"))

));
}

public static void before_advice_method_secureAccess_attachment() {
Attachment attachment = new Attachment(
Collections.singleton((Specialization)secureAccess_specialization),
ActionFactory.findOrCreateMethodCallAction(
TypeHierarchyProvider.findOrCreateFromNormalTypeName("ajia.

security.Security"),
"before_advice_method_secureAccess",
TypeHierarchyProvider.findOrCreateFromClasses(new Class[] { }),
TypeHierarchyProvider.findOrCreateFromClass(Void.class),
ResolutionStrategy.VIRTUAL), ScheduleInfo.BEFORE);

org.alia4j.fial.System.deploy(attachment);
}

public static void setupAT() throws ClassNotFoundException {
ajia.security.SecurityAspect.pointcut_secureAccess();
ajia.security.SecurityAspect.

before_advice_method_secureAccess_attachment();
}

}
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5.3 Evaluation

In this section, an evaluation is given for the generic framework. During this evaluation

the goals de�ned in section 2.3.4 are considered. These goals are Re-usability, Readability

and Extensibility.

Re-usability is one of the goals stated in section 2.3.4. This goal has been reached

by implementing the generic framework in a di�erent eclipse project which is then used

when implementing an aspect-oriented language. During the development of the AspectJ

compiler, the language developer used the ALIA4J meta-model and helper classes from

the framework to infer an ALIA4J model from the AspectJ model. The framework then

used this ALIA4J model to generate Java code speci�c to ALIA4J.

When implementing a new aspect-oriented language, the generic framework can be used

in the same way.

Readibility. Section 2.3.4 explained that code templates are in general di�cult to un-

derstand. They are meta-programs that can produce code for multiple programs. They

make compilers as a result less readable. One way to make the compiler implementation

more readable is to hide the code template from the language developer.

This goal has been reached because the framework includes the code template to gener-

ate ALIA4J speci�c Java code. This is hidden from the language developer. This makes

the language compiler much more readable then when the same compiler is implemented

using Xtext but without our generic framework.

As an illustration, we developed an AspectJ compiler based upon Xtext before build-

ing the framework. The AspectJJvmModelInferrer used by this compiler is much more

bloated then when using the framework. The reason for this is because in the implemen-

tation without the framework, code templates to generate Java code speci�c to ALIA4J

are included. Including those code templates results in much more bloated code and ef-

fort from the language developer. This is not the case when using the framework because

these code templates are already provided by the framework.

Another fact to point out is that the number of lines of code from the

AspectJJvmModelInferrer decreased from 436 to 341. This is about 100 lines less code.

Although these numbers may seem small, it must be pointed out that we only built a

prototype of the AspectJ compiler.
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Extensibility. In section 2.3.4 we de�ned extensibility as the support for the addition

of possible LIAM re�nements for new languages. ALIA4J provides an abstract language-

independent meta-model with re�nements for concrete languages. This might not be

su�cient when implementing a new language. New re�nements may be needed to ex-

press a construct of a new language.

There is support for the addition of possible LIAM re�nements as described by sec-

tion 4.3. Take as an example the implementation of the AspectJ compiler described

in section 5.1. Before building the AspectJ compiler, the Ecore version of the ALIA4J

meta-model did not have a predicate to describe the semantics of the cflow construct

of AspectJ. A CFlowPredicate has been added to the ALIA4J meta-model and the

ALIA4JJvmModelInferrer has been subclassed by a class called

CustomALIA4JJvmModelInferrer. This allowed the AspectJ compiler to describe the se-

mantics of cflow and generate code for it.

Other ways to improve the extensibility of the framework are described in section 4.3.

5.4 Related Work

The AspectBench Compiler (abc) [12] is a framework that supports the development of

extensions to AspectJ. The abc compiler consists of a Polyglot and Soot block. Polyglot

is used as a frontend to perform syntax and type checking for the language. Soot is a

bytecode analysis toolkit and is used by abc to perform code generation. When developing

an aspect-oriented language using abc, an existing language grammar can be modi�ed

and new passes through the abstract syntax tree (AST) can be added in Polyglot. Unlike

the approach in our framework, the abc compiler allows advice code to be woven with

Java classes. The AST of the aspect-oriented program is split into a pure Java AST

and an AspectInfo structure that contains aspect-speci�c information. The AspectInfo

is used for weaving the aspect-oriented program. In our approach aspect weaving is done

by ALIA4J and the code generation is done by our framework. As opposed to abc, our

generic framework can be used for di�erent advanced dispatching languages and is not

only restricted to languages with a syntax similar to AspectJ.
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Conclusions & Future Work

6.1 Conclusion

The ALIA4J approach eases the burden of implementing advanced-dispatching languages

by providing a language-independent advanced-dispatching meta-model (LIAM) to ex-

press semantics of language constructs. LIAM is implemented as a set of Java classes.

ALIA4J also provides an execution environment that can be shared across language im-

plementations.

The compilation to Java code that uses the ALIA4J API is not trivial and code

templates that generate this API code can become complex and bloated. Coding the

translation to ALIA4J speci�c Java code has to be performed by the language developer

for every language implementation when implementing compilers using this approach.

This thesis proposed a generic framework that can be re-used to build aspect-oriented

language compilers. ALIA4J speci�c Java code is generated by the framework by includ-

ing code templates for this Java code. The generic framework is re-usable, leads to more

readable compiler implementations, and is extensible by supporting the addition of new

LIAM entity re�nements.

The framework is built upon Xtext. Xtext supports the development of programming

languages by generating components such as a lexer and parser. It also generates an

eclipse-based IDE that is tailored for the language by providing code highlighting and

content assist. When a program is parsed, an Ecore model is created that represents the

structure of the program. We call this model a language model.

We developed an ALIA4J meta-model, which is an Ecore version of LIAM that is

usable in Xtext. This meta-model is included with the framework. The framework

allows an ALIA4J model and a Java model to be inferred from the language model.

65
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These models are then used to generated code.

This thesis also presents an AspectJ compiler that is built using the framework. The

implementation demonstrates the use of the framework without considering ALIA4J API

calls in Java.

6.2 Future Work

A discussion is given regarding the extensibility of the framework. This is an important

aspect since new languages may have constructs that cannot be expressed with existing

LIAM entities. The thesis draws the conclusion that the extensibility of the current

framework can be increased. Solutions are discussed that can be used to make the

framework more extensible in the future.

Another area to focus on during future work is the possible complexity of boolean ex-

pressions in pointcut expressions. These expressions will be mapped to di�erent ALIA4J

entities such as Specializations, Patterns and Predicates. ALIA4J only allows the negated

normal form of Predicate expressions. This makes it complex since the pointcut expres-

sion �rst has to be transformed into the negated normal form. This complexity is also

shared among compilers since multiple languages allow conjunctions and disjunctions in

their pointcut expressions. This kind of complexity could be hidden from the language

developer by allowing the framework to do this transformation.
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The code in Listing A.1 shows part of the ALIA4JModelInferrer. It includes code tem-

plates for the body of the methods that will be generated.

Listing A.1: Part of the ALIA4JModelInferrer with code templates

1

2 def dispatch generateALIA4JPattern(ALIA4JMethodPattern pattern, String
varName) ’’’

3 «IF pattern.parametersPattern instanceof ALIA4JExactParametersPattern»
4 TypeDescriptor[] types = new TypeDescriptor[«(pattern.

parametersPattern as ALIA4JExactParametersPattern).
typeDescriptors.size»];

5 «var i = -1»
6 «FOR type: (pattern.parametersPattern as

ALIA4JExactParametersPattern).typeDescriptors»
7 types[«i = i+1»] = TypeHierarchyProvider.findOrCreateFromClass(

Class.forName("«type»"));
8 «ENDFOR»
9 «ENDIF»

10

11 MethodPattern «varName» = new MethodPattern(
12 «pattern.modifiersPattern.generateALIA4JModifiersPattern»,
13 «pattern.typePattern.generateALIA4JTypePattern»
14 «pattern.classTypePattern.generateALIA4JClassTypePattern»
15 «pattern.namePattern.generateALIA4JNamePattern»,
16 «pattern.parametersPattern.generateALIA4JParametersPattern»
17 ExceptionsPattern.ANY);
18

19 ’’’
20

21 def dispatch generateALIA4JPattern(ALIA4JFieldPattern pattern, String
varName) {

22

23 var write = false

67



68 ALIA4J Generic Framework A

24 switch pattern {
25 ALIA4JFieldWritePattern : {
26 write = true
27 }
28 ALIA4JFieldReadPattern : {
29 write = false
30 }
31 }
32 val _write = write
33 ’’’
34 «IF _write»FieldWritePattern «varName» = new FieldWritePattern(
35 «ELSE»FieldReadPattern «varName» = new FieldReadPattern(
36 «ENDIF»
37 ModifiersPattern.«pattern.modifiersPattern.visibility.toString» ,
38 «pattern.typePattern.generateALIA4JTypePattern»
39 ClassTypePattern.ANY,
40 «pattern.namePattern.generateALIA4JNamePattern»);
41 ’’’
42 }
43 def dispatch generateALIA4JPredicate(ALIA4JTruePredicate p, String

varName) ’’’
44 Predicate<AtomicPredicate> «varName» = TruePredicate.<AtomicPredicate>

truePredicate();
45 ’’’
46

47 def dispatch generateALIA4JPredicate(ALIA4JInstanceOfPredicate p, String
varName) ’’’

48 Predicate<AtomicPredicate> «varName» = new BasicPredicate<
AtomicPredicate>(AtomicPredicateFactory.
findOrCreateInstanceofPredicate(

49 «p.context.generateALIA4JContext»,
50 TypeHierarchyProvider.findOrCreateFromNormalTypeName

("«(p as ALIA4JInstanceOfPredicate).type»")),
true);

51 ’’’
52

53 def dispatch generateALIA4JContext(ALIA4JContext context) ’’’
54 «IF context instanceof ALIA4JCalleeContext» ContextFactory.

findOrCreateCalleeContext()
55 «ELSEIF context instanceof ALIA4JCallerContext» ContextFactory.

findOrCreateCallerContext()
56 «ELSEIF context instanceof ALIA4JLazyObjectConstantContext»

ContextFactory.findOrCreateLazyObjectConstantContext(
TypeHierarchyProvider.findOrCreateFromNormalTypeName("«(context
as ALIA4JLazyObjectConstantContext).type»"))

57 «ELSEIF context instanceof ALIA4JArgumentContext» ContextFactory.
findOrCreateArgumentContext(«(context as ALIA4JArgumentContext).
argument»)«ENDIF»’’’
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