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Abstract

This thesis presents OpenIMPRESS, an open source immersive telepresence
system that aims to provide an immersive telepresence experience while
being easy to set up and accessible for other researchers to use as well.
The system is designed around three features that are intended to increase
immersion and usability for the users; mobility at the remote location, an
immersive view of the remote environment and a virtual embodiment.

The system is designed in an asymmetrical way, where the visitor is
virtually transported to the visitee’s environment using a virtual reality
system that displays a virtual representation of the visitee’s surroundings. A
virtual embodiment of the visitor is projected into the visitee’s environment
using Microsoft’s HoloLens augmented reality glasses. The HoloLens’ low
resolution geometrical scan of the environment is used as a basis for the
scene that is shown to the visitor, which is extended with more detailed
point clouds that are captured with commodity depth cameras.

A user test was conducted in which was evaluated how the three design
aspects contribute to the performance and experience of a telepresence sys-
tem in a collaborative context. Four system configurations were prepared;
one “baseline”, in which all design features have been implemented and three
“test” configurations from which one of the three design feature’s implemen-
tations was removed respectively. Thirty pairs of people participated, which
had to perform a series of tasks in an escape room-like setting, once with the
“baseline” configuration and once with one of the “test” configurations. We
saw that especially view independence and immersive display had positive
effects on the performance and the visitor’s feeling of spatial presence. All
aspects increased the system’s usability for the visitor.

The designed system has been implemented and has been found to be
useful by other researchers already as well. Whats more, we have shown
that the implemented design features do indeed improve the experience and
usability of the system which can be useful for other research in the area of
telepresence as well.
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Chapter 1

Introduction

Connecting directly with others over distance has become an important part
of peoples everyday life. Where people previously had to wait to meet in
person, texting and calling nowadays allows people to directly communi-
cate with each other from a distance, allowing them to perform tasks that
previously required to travel.

Although texting and calling has become part of our day to day private
and work life, compared to being physically present, this technology is still
limited in the way that callers are perceived and can act in each other’s
environment. Telepresence systems try to close this gap. The ultimate goal
is to make a user feel like he or she is actually present with the other person
in their environment.

Current research towards telepresence systems can be divided into two
categories; conferencing telepresence systems, where the focus lies on making
remote people feel present with each other, and collaborative telepresence
systems that besides making people feel present together also focus on mak-
ing them feel present in the remote environment.

In conferencing telepresence systems the focus lies on supporting con-
versations between people by providing tools to better express themselves
compared to a simple phone call, for example by offering high-quality audio
and high-definition life-size video (Feldmann et al., 2010) or stereoscopic
displays (Maimone and Fuchs, 2011). A typical application of those systems
is often found in conferencing over distance for companies but also in social
contexts like (video-)calling with friends and family. Conferencing telepres-
ence is mostly implemented in a symmetrical fashion, which means that at
both remote locations people are captured and visualized in the same way,
as there is normally no reason to bias the system in favor for somebody
by for example given one user access to tools the other doesn’t have; all
participants are regarded equal.

In this thesis we focus on collaborative telepresence systems. Those
systems support collaboration between people by virtually transporting a
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CHAPTER 1. INTRODUCTION

remote visitor into the visitee’s environment. Hereby the focus is less on
conversation and more on action; the remote visitor should be able to operate
in the visitee’s environment as if they were really there. Typical applications
can be found in use cases where a local person requires help from a remote
person, for example car repairs, training and investigation work. In these
scenarios, the remote visitor needs access to the environment of the visitee,
but not the other way around. Therefore, collaborative telepresence systems
are ideally asymmetrical (Steed et al., 2012). The visitee for example needs
help with their car or with the crime scene they are at, while the environment
of the visitor is of less interest to the visitee. I.e., the visitor needs to feel
present in the visitee’s environment.

The main aspect that contributes to this feeling of presence is immersion
(Slater, 2003). A system that is more immersive will make a remote visitor
feel more present than a less immersive system. The immersiveness of a
system cannot be expressed on a one dimensional scale, as it consists of
multiple aspects that together contribute to the overall immersiveness. In
the next section we will discuss those aspects in more detail.

1.1 Telepresence System Design Aspects

We recognize three main aspects that contribute to an immersive telepres-
ence system; mobility at the remote location, an immersive view on the
remote environment and the ability to have an effect on the remote envi-
ronment. Those aspects are used throughout this thesis to discuss other
telepresence systems and make design decisions for our own system. We
will now discuss each aspect in more detail by using examples from previous
work.

Mobility at the remote location Allowing the visitor to view the scene
independently instead of being fixed to a static view or to a local user, is an
important aspect in telepresence systems that focus on remote collaboration.
It allows users to simultaneously work in different parts of the scene and gives
the remote visitor more situational awareness (Fussell, Setlock, and Kraut,
2003).

Different types of view independence have been explored over the years.
One solution is to physically manipulate the remote camera, a popular imple-
mentation of this are telepresence robots. They usually consist of a camera
and screen on wheels that can be controlled be the remote visitor over the
internet (Figure 1.1). A video stream of the visitors face is displayed on
the robot’s screen while the robot captures images of the environment and
sends them back to the visitor. This way a remote visitor has the ability
to navigate a space and get a sense of the environment. A lot of different
telepresence robots have been developed, most of them are also commercially
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Figure 1.1: A Double telepresence robot.

available (Kristoffersson, Coradeschi, and Loutfi, 2013). Although telepres-
ence robots give a remote visitor a physical body and complete freedom to
navigate the environment, it also has its drawbacks. A telepresence robot
can be considered clunky, as the unawareness of the visitor about the robot’s
body means it could easily bump into things or get stuck somewhere. Also
the speed and the amount of perspectives the robot allows for are often
limited.

First-person omnidirectional video 

Voice communication
Body Ghost

Fir

Capture omnidirectional image

Image stabilization Reconstruct virtual visual space

Viewing interaction 

Figure 1.2: Overview of JackIn Head (Kasahara and Rekimoto, 2015).

Other solutions make use of a synthesized view based on imagery cap-
tured from the visitee’s perspective. In such a scenario, a local person wears
a camera that streams a first-person perspective to the visitor. This limits
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the navigational freedom of the visitor, although solutions have been made
that still give the visitor some degree of independence from the local per-
son. For example, JackIn Head (Kasahara and Rekimoto, 2015) uses a 360◦

degree camera mounted on a person’s head to allow a remote visitor to look
around in the person’s environment (Figure 1.2). Similarly, Gao et al. (2016)
made a system that uses a tracked head mounted depth camera instead of a
360◦ camera. The images are oriented to the visitor in such a way that when
the worker turns his/her head, the projected image at the visitor would turn
as well and therefore requires the visitor to turn his/her head to follow the
image. This doesn’t give the visitor any extended navigational freedom, but
helps the visitor to keep track of the worker’s current orientation.

Another solution is demonstrated by Tait and Billinghurst (2015), which
used a statically mounted depth camera above a table to create a live 3D
scan of the workplace. The visitor was then free to navigate this live 3D
scan with a virtual camera using a desktop user interface. They researched
the effect of this in a collaborative setting and showed that it results in
“faster task completion time, more confidence from users, and a decrease in
the amount of time spent communicating verbally during the task”.

An immersive view on the remote environment The way the re-
mote environment is presented to the visitor has effect on the telepresence
experience as well. A more immersive display makes the visitor feel more
present in a virtual environment (Baños et al., 2004). A display with a
wider field of view will for example fill more of the visitor’s view with the
remote environment which draws their attention away from the local envi-
ronment. Telepresence systems have used different display systems that can
be distinguished by the degree of immersion they provide the visitor. Ear-
lier systems used 2D monitors on which a video stream of the local user is
displayed, like the HandsOnVideo system (Huang and Alem, 2011). Newer
systems try to immerse the visitor more in the remote environment, this is
often done with head mounted displays as shown in by Tecchia, Alem, and
Huang (2012). Other display systems are also used, like CAVE projection
systems where multiple walls of a room are projected with live images from a
remote environment as shown by Komiyama, Miyaki, and Rekimoto (2017).
Those systems are often used in combination with head tracking to make
the movement of the images match the visitor’s head movements.

Have an effect on the remote environment Besides allowing a remote
visitor to observe an environment, telepresence systems usually also allow
visitors to have a certain degree of effect on this environment. This can
be done by adding virtual elements to the environment or by physically
manipulating the environment.

Virtual elements can be used for supporting interaction between people
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(a) (b) (c)

Figure 1.3: Various styles of virtual assistance overlays. a) Spatial remote
pointing (Kasahara and Rekimoto, 2014); b) Remote helper’s hands dis-
played on a monitor (Tecchia, Alem, and Huang, 2012); c) Remote helper’s
hands displayed in a HMD (Gao et al., 2016).

by showing things to the local users through a display. This can be done
by overlaying instructions from the remote visitor onto the local user’s view
by for example using a monitor in front of the local user or using a head
mounted display (HMD). The instructions can consist of annotation-style
elements, like arrows and markers as shown by Kasahara and Rekimoto
(2014) (Figure 1.3a). Those are mainly used to direct the local user to
certain elements in the environment.

To assist the local user in tasks that require more fine control, an overlay
of the remote user’s hands are often used, as shown by Amores, Benavides,
and Maes (2015), Tecchia, Alem, and Huang (2012), Gao et al. (2016), and
Huang and Alem (2011) (Figure 1.3b and Figure 1.3c). This allows the
remote users to guide the local user in a more natural way when dealing
with object manipulation tasks, like repair or construction tasks by using
gestures one would intuitively use.

Physical manipulation is another way to make visitors have an effect on
the remote environment, for example by allowing them to move objects.
By themselves telepresence robots already manipulate the environment, as
they are a physical entity that makes part of an environment. By driving
around (and maybe even by bumping into things) they allow a remote visitor
to have an effect on this environment. By equipping a telepresence robot
with a dedicated component for object manipulation, like a robotic arm, the
meaningfulness of those manipulations can be increased (Paulos and Canny,
2001).

Benavides, Amores, and Maes (2015) made a system called Remot-IO
that allows a remote visitor to manipulate dedicated internet connected
objects by using virtual gestures, without requiring a physical embodiment.
They demonstrate the system with a radio that is connected to the system.
The remote user can turn the knobs by using hand gestures that are captured
and translated into physical rotations on the radio knobs.
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The current state of the art in the field of mixed reality telepresence
is Holoportation (Orts-Escolano et al., 2016). This system uses consumer
grade AR and VR display technologies in combination with a new 3D capture
system to capture full 360◦ 3D models of people and objects and visualize
them at a remote location in real-time. All of this is done with the goal of
creating an experience that resembles physical presence as close as possible.
Users at both locations use a HoloLens HMD to get an independent view
on each other’s environment. Although no physical manipulation of each
other’s environment is possible, the high resolution scans of the users allow
for very precise gestural instructions that are properly aligned with their
context. Orts-Escolano et al. (2016) conducted a preliminary qualitative
user study with 10 participants, using a social interaction and a physical
object manipulation task. The participants noted how more intuitive it is
compared to normal phone calls or using Skype.

Besides providing an immersive experience, a successful telepresence sys-
tem will also have to be accessible. We aim to make a system that can be
used by other researchers as well, therefore it should be easy for people to
set up an environment for a virtual visit, as well as for people to go on a vir-
tual visit. Next to being easy to set-up, the system should also be easy and
intuitive to use, for which we can look at factors like the users’ performance,
usability and presence.

1.2 Research Questions

This thesis is about the design, implementation and evaluation of a mixed
reality telepresence system called OpenIMPRESS, which stands for open
source immersive presence system. The goal is to create a telepresence
system that is both immersive and accessible. This puts OpenIMPRESS in
line with the work that is done on Holoportation but where Holoportation
aims to be an exercise in the field of computer vision and computer graphics,
focusing on realism by pushing technologies to their limit, our work does
not try to improve on that. OpenIMPRESS focuses instead on the (social)
interaction and collaboration aspects that systems in this line of research
may be used for. The goal is to make an open system that can be used
as a basis by other researchers as well. We try to do that by making a
system that only uses off the shelf consumer hardware, is flexible and easily
reconfigurable and makes use of open source code or freely available software
which makes it accessible for anybody that wants to use it.

This leads to the following first main research question and subquestions:
RQ1. How to create a state of the art end-to-end mixed reality telepresence
system that is immersive and accessible?

• RQ1.1. How to create an immersive telepresence experience?
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• RQ1.2. What components can be used, while keeping it accessible?

• RQ1.3. How to cover a large working area?

• RQ1.4. How to make the system easy to set-up and use?

Compared to previous telepresence systems and research, OpenIMPRESS
uses puts previously tested components in a different context than the ones
they have originally been tested in. This means that a lot of knowledge
about how those aspects help or hinder collaboration may not apply any-
more. For example; VR has been used in telepresence systems before, but
in most cases only in combination with a first person view on the remote
environment which, at the most only allows the remote visitor to change the
rotation of the view (Gao et al., 2016). Full view independence has been
tested only in combination with a 2D monitor set-up, not in combination
with VR (Tait and Billinghurst, 2015). Overlaying gestures from the visitor
onto the visitee’s view has been tested as well, both in VR and with 2D in-
terfaces but not with (full) view independence (Tecchia, Alem, and Huang,
2012; Amores, Benavides, and Maes, 2015; Fussell, Setlock, Yang, et al.,
2004). A better understanding on how those aspects influence collaboration
would be necessary to pinpoint what aspects are worth further research and
development efforts.

Also, those components have always been tested in slightly different sce-
narios, with different types of systems and tasks. We now have the opportu-
nity to better compare the effects of those components, by evaluating them
while keeping variables like the system and tasks the same.

This leads us to the second main research question, which is: RQ2. How
do the three telepresence system design aspects influence the performance and
experience of the users in a collaborative problem solving task?

To answer this question we focus on the aspects presented in section 1.1.
Because OpenIMPRESS does not (yet) have the ability to let the visitor
have a physical effect in the on-site location directly, we limit the aspect of
affect the remote environment to visual effects only. Which means in this
case the visualization of the visitor in the visitee’s environment. This results
in the following three subquestions:

• RQ2.1. How does view independence influence the performance and
experience of the users in a collaborative setting?

• RQ2.2. How does using an immersive display influence the perfor-
mance and experience of the users in a collaborative setting?

• RQ2.3. How does giving the visitor a virtual embodiment influence
the performance and experience of the users in a collaborative setting?

Those questions are answered with a quantitative user study detailed in
chapter 6.
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Chapter 2

Background: Free Viewpoint
Video

Many remote collaboration tools allow the visitor to see the local environ-
ment through a fixed perspective. This can be from a fixed camera in the
room or from a user-worn camera capturing the visitee’s view. For Open-
IMPRESS on the other hand, we try to create an immersive telepresence
experience, which includes giving the visitor mobility at the local environ-
ment. The group of technologies that focus on the creation and playback of
video content that enables viewers to choose their own perspective during
playback is called Free Viewpoint Video (FVV).

This aspect is identified as a major challenge for the implementation of
this system and therefore discussed in more detail1. Smolic (2011) divides
the FVV pipeline into seven steps (Figure 2.1) of which the most important
ones are discussed individually below.

Figure 2.1: The FVV pipeline (Smolic, 2011).

In this chapter, we look at the most relevant aspects of free viewpoint
video for our telepresence system. Each aspect is explained and examples

1Most of this section has been taken from Harmsen (2017).
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are presented of their implementations in other systems. Section 2.1 Acqui-
sition focuses on how FVV is captured by explaining the different kind of
camera’s and set-ups. Section 2.2 Processing present different techniques of
how the acquired data can be processed and represented. Section 2.3 Display
presents different options of how to display the FVV data. Section 2.4 con-
cludes the chapter by summarizing the presented techniques and pointing
out which are the most relevant for OpenIMPRESS.

2.1 Acquisition

To capture FVV one can use an outward or an inward acquisition topology
(Figure 2.2). An outward topology means that the capturing devices are
faced outwards from a center point (like 360◦ cameras). In this case the
viewer is limited to rotational perspective changes only and one could ar-
gue whether this can be considered Free Viewpoint Video as the viewpoint
remains the same. With an inward topology the capturing devices are all
pointed at the same subject from different locations around that subject, so
instead of allowing the viewer to look around from the same point in space,
the viewer can “travel” to different points in space and observe the subject
from there.

Figure 2.2: Left: Outward FVV; Right: Inward FVV (Lee, Tabatabai, and
Tashiro, 2015).

A popular way to capture FFV content is to use one or more designated
depth cameras that next to capturing a regular 2D image also capture a
separate depth map that gives each pixel in the 2D image a depth coordinate.
This property makes it especially interesting for FVV as this means one can
create a volumetric capture of a scene in real-time. There are various depth
cameras on the market that use different technologies to determine the depth
information. Langmann (2014) conducted a comparative study, analyzing
the differences between various models of depth cameras.

A depth camera that is used extensively is the Microsoft Kinect (Kuster
et al., 2011) (Hauswiesner, Straka, and Reitmayr, 2011) (Cazamias and Raj,
2016). Izadi et al. (2011) present a system that generates a 3D mesh repre-
sentation of a scene based on the depth data from the Kinect sensor. This
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technique requires the user to move the sensor around the scene so it can
be captured from multiple angles. By fusing those different views together
a high quality model of the scene is generated. Because the scene is cap-
tured from multiple angles over an extended period of time, this technique
is capable of producing high quality models but therefore is also less ideal
for real-time streaming as it assumes no objects are moving while captur-
ing. This technique is usually applied when creating a map of an indoor
environment (Khoshelham and Elberink, 2012) (Henry et al., 2012).

Systems made to capture moving objects also exist; they usually consist
of multiple Kinect sensors and have become popular among researchers to
create FVV’s of objects and persons (Kainz et al., 2012) (Doc-Ok, 2014).
Google put this into practice in their experiment called “Virtual Art Ses-
sions”2, in this experiment a group of artists were asked to create a sculp-
ture in virtual reality. Normally a spectator wouldn’t be able to see both
the artist and the artwork at the same time, because they exist in different
“realities”. To solve this, Google (2016b) recorded the artists volumetri-
cally while they worked on their piece. Those recordings were then mixed
together with the virtual environment and distributed online so spectators
can watch FVV of the artists sculpting their virtual artworks in mid-air.
Maimone and Fuchs (2012a) developed a system using multiple Kinect sen-
sors for real-time volumetric 3D capturing of environments specifically for
telepresence applications. Kinect sensors project infrared light patterns onto
the environment in order to determine its distance from objects. This can
cause problems when one uses multiple Kinects in the same environment be-
cause a Kinect then can’t distinguish its own patterns from other Kinect’s
patterns. To solve this problem, the system uses an IR interference reducing
method which is based on shaking the sensor (Maimone and Fuchs, 2012b)
(Butler et al., 2012). The shaking causes the patterns emitted by the other
Kinects to be blurred out, thus improving the detection of the sensor’s own
pattern and therefore reducing the interference.

2.2 Processing

The captured scene can be represented in a way somewhere between an im-
age based representation or a geometry based representation (Smolic, 2011),
as shown in Figure 2.3.

On one end of the spectrum is the image based approach. In this ap-
proach there isn’t any knowledge about the geometry of the scene; images
from each camera are processed and transmitted as separate videos. In-
terpolation can generate intermediate views, but a high capture density is
required to get an acceptable quality.

2https://developers.google.com/web/showcase/2016/art-sessions

10

https://developers.google.com/web/showcase/2016/art-sessions


OpenIMPRESS - An Open Immersive Telepresence System

Figure 2.3: 3D scene representations for 3DV and FVV (Smolic, 2011).

On the other end, with a geometry based approach the scene is repre-
sented by three dimensional meshes on which image textures are applied.
Depending on the method of acquisition, this requires an accurate and ro-
bust 3D reconstruction of the scene which can be challenging but allows
more freedom of navigation when viewing. Carranza et al. (2003) made one
of the first attempts and developed a system to create a geometry based
representation of human actors using a seven-camera setup. A virtual hu-
man body model was put in the right pose by comparing its silhouette to
the silhouettes of the actor from the different camera angles. Since then,
those capture systems have become more advanced, as shown by Collet et
al. (2015). They use an inward acquisition topology with 106 cameras from
which high quality 3D tracked meshes are generated.

Alternative approaches that lie in between image and geometry based
approaches are also possible; instead of using meshes, point clouds can be
used to represent geometry. Point clouds can be generated by assigning each
pixel of a 2D color image a depth value (and thus creating a 3D coordinate)
and placing that pixel in 3D virtual space. Sensors like the Microsoft Kinect
exactly provide this kind of data, thus making this approach relatively easy
to implement. Using point clouds reduces the complexity of the processing
step drastically, as no geometry has to be generated from this data. Also,
it is more forgiving when capturing complex objects; “Using point clouds
enables the alignment for scenes full of objects that are difficult to model;
for example, trees.” (Zhao, Nister, and Hsu, 2005). This is because fewer
assumptions are made during the processing of the displayed data and thus
relatively fewer mistakes are made. The disadvantage of skipping the 3D ge-
ometry reconstruction step is that objects look less solid because the spaces
in between the points of the point cloud are not getting filled in.

In order to send the data that is captured, it has first to be encoded and
compressed. Compression is necessary to keep the data stream within the
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bandwidth limits. There are different encoding and compression methods
available for different types of Free Viewpoint Video. For encoding geom-
etry based FFV, the MPEG-4 standard provides an extension called the
Animation Framework eXtension (AFX) which allows to define high-level
geometry, texture, volume, and animation components for enhanced inter-
active multimedia applications (Bourges-Sévenier and Jang, 2004) (Smolic
et al., 2006). A lot of research has also been done already into compression
algorithms for streaming volumetric point cloud video data: (Moreno, Chen,
and M. Li, 2017) (Moreno and M. Li, 2016) (Rusu and Cousins, 2011) (Kam-
merl et al., 2012) (Mehrotra et al., 2011) (Sohn, Bajaj, and Siddavanahalli,
2004).

2.3 Display

Before 3D data can be displayed it has to be rendered. This means that the
3D data is turned into image data that can be displayed on for example a
monitor. 3D video-game engines like Unity R© or Unreal Engine R© are very
suitable for this, as their main task is converting 3D data into 2D image
data that can be displayed on screens, but besides that they also allow for
integration of custom features, offer a lot of support via online forums, are
free to use for these purposes and offer easy integration with virtual reality
headsets.

Virtual reality (VR) headsets or head mounted displays (HMD) have
recently become a popular way of displaying virtual environments. HMDs
allow for the user to be completely immersed in a virtual world by means of
a stereoscopic display that covers a big part of the user’s field of view and
sensors that register the user’s movements and translate them to virtual
movements. There are multiple HMDs currently on the market including
models that require a phone to be installed to act as a screen, sensor and
playback device and models that have the screen and sensors already built-
in but need to be wired to a PC to function. Of this last group the Oculus
Rift and the HTC Vive are the most popular models and are also often used
in research settings. Both now support full room-scale positional tracking
which gives access to the head’s current position and rotation in the physical
space.

The disadvantage of using a virtual reality HMD like the HTC Vive is
that the user is completely shut out of the real environment and bystanders
can’t get a proper idea of what the operator is doing. Using an augmented
reality (AR) headset instead of a VR headset solves this problem partially.
AR headsets like the Microsoft Hololens (Microsoft, 2016) use transparent
glasses that allow for virtual objects to be displayed on top of the user’s
view of the real world.

Another option would be to use a stereoscopic projection screen in combi-
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nation with head-tracking to create an immersive experience like Pouliquen-
Lardy et al. (2016) used for their research experiment. The advantage of
this method is that bystanders can look at the same display as the opera-
tor is looking at and can therefore better place the operator’s actions into
context.

2.4 Conclusion

This chapter presented different aspects of free viewpoint video systems. We
discussed different acquisition, processing and display techniques, together
with examples of various implementations. We saw that techniques that
are used in FVV systems can be a good basis for a telepresence system. In
fact, the line between a FVV system and a telepresence system can often be
difficult to draw, especially with a live streaming FVV system.

When a certain FVV technique is chosen, it determines many of the
characteristics of the telepresence system that especially the visitor will ex-
perience. For example: the acquisition technique determines what the visitor
will be able to see and the level of detail, the processing technique deter-
mines how much freedom the visitor will have in navigating the captured
data and the display technique determines for a big part how immersed the
visitor will be.

In the next section we discuss the design choices that are made for the
OpenIMPRESS system, including parts inspired by FVV.
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Chapter 3

Architecture and Global
Design

OpenIMPRESS is designed as a mixed reality telepresence system that uses
the latest consumer electronics to capture, stream and visualize an envi-
ronment and the people in it with the goal to make people feel as present
as possible from a physically remote location. This chapter describes the
choices that were made when designing this system and the architecture
that those choices eventually lead to.

3.1 Global Design Considerations

The design of OpenIMPRESS is based on the idea of making the visitor
feel as if being present at the on-site location and making the visitee feel
as if the visitor is present with him or her there as well. The system spans
two different locations: the on-site location and the remote location, where
respectively the on-site operator (OSO) and the remote operator (RO) are
located. Compared to Holoportation (Orts-Escolano et al., 2016), this sys-
tem is asymmetrical. This means that there is a clear distinction between
the RO, who visits the on-site location and the OSO, who is being visited.

The basics of the system are shown in Figure 3.1. At the on-site location
the environment is captured and sent to the remote location. Here, the RO
can freely navigate a virtual representation of this environment. The RO’s
head and hand movements are captured and sent back to the OSO where
they are visualized to the OSO. The OSO is wearing a Microsoft Hololens
HMD, which are augmented reality (AR) glasses. They can display content
on top of the real world using transparent displays that are placed in front of
the user’s eyes. Besides visualizing elements in an environment, the Hololens
can also be used to capture an environment. The Hololens is equipped with
multiple depth sensors that are used to create a spatial model of its current
environment in real-time and track its own location within this environment.
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Figure 3.1: OpenIMPRESS basic system overview.

A geometrical representation of this spatial model is send to the RO, where
it serves as a low quality but wide area representation of the environment.
This model is extended with scans acquired by one or more depth camera’s
that are also installed at the on-site location. Those scans are visualized
as point clouds and serve as a more detailed but narrow representation
of the environment. In order to properly align the point clouds from the
depth camera’s with the low quality spatial model, the depth camera’s are
equipped with AR markers. Those markers can be scanned by the Hololens
to determine their position relative to the HoloLens’s spatial model. This
position is then sent to the remote location where it is used to align the point
cloud data. Figure 3.2 shows the envisioned set up procedure experience step
by step plus a basic interaction.

3.1.1 AR vs VR

In our design we want to make the RO feel transported into the OSO’s
space and make the OSO feel like the RO is there with them. Orts-Escolano
et al. (2016) mention in their findings that participants that used their AR
condition felt as if their remote partner was there with them in their space,
while participants that used the VR condition had the impression of being
in the partner’s space. This suggest that for making people feel transported
to another location VR may be a better option, where AR is more ideal for
making people feel like they are being visited.

Our design is informed by this and therefore the RO is using a VR
setup and the OSO is using AR. The RO’s own surroundings are completely
blocked from the RO, leaving only the visualization of the on-site location’s
environment. The OSO on the other hand, can see the on-site location’s
environment as he or she would normally be able to, as well as the superim-
posed representation of the RO. This is assumed to be more ideal for remote
assistance scenarios, where only the OSO’s environment is of importance and
adding information about the RO’s environment would create confusion.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: a) OSO installs a depth camera. b) OSO calibrates the depth
camera. c) RO receives spatial mesh from HoloLens. d) RO receives point
clouds, which are aligned with spatial mesh. e) RO points at objects using
controllers (green cones). f) OSO sees RO representation through HoloLens.

3.1.2 On-site environment capturing

Research question RQ1.3. focuses on how to cover a large working area.
Current telepresence systems that make use of 3D scans are often limited by
the area in which the users can operate. 3D depth camera’s are installed at
pre-planned strategic places and their extrinsics (position and orientation)
are determined during a calibration step which is necessary to properly align
their captured views to each other and to the rest of the virtual representa-
tion. This fixes the size of the scanning area and thus also fixes the working
area that can be used during a telepresence session.

For OpenIMPRESS we looked at solutions that allow for more dynamic
reconfiguration of the scanning area. So that when the work shifts to a
different location, the scanning space adapts on the fly and the RO is kept
involved in the task at hand.

The different solutions that have been considered all build on top of the
HoloLens’ built-in tracking system. The HoloLens automatically creates a
geometrical spatial model of each environment it visits by continuously scan-
ning its surroundings and updating the spatial model when necessary. This
model can then be used by developers to make their applications interact
with the environment. Because it is not intended to be viewed by itself,
the spatial model is a relatively low resolution model and contains no color
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information, although techniques exist for adding color later on1 2. Despite
this limited level of detail, it still contains a lot of useful general information
about the wearer’s environment; the size and shape of the room, locations
of furniture, doors and windows and the shape of them. Because the spatial
model is extended and updated with the current working environment in
real-time and without requiring any user intervention, it is an easy starting
point for covering a large working space. Also, the absence of the need for
the users to do any setup actions or calibration steps helps with keeping the
system easy to set-up and use. This brings us to the first solution that is im-
plemented for covering a large working area. The spatial model is streamed
from the OSO’s HoloLens to the RO where it is used as a base layer of the
virtual representation of the OSO’s environment.

This base layer is extended with high resolution point clouds. They add
more detail to the overall virtual representation of the OSO’s environment.
They are captured by 3D depth cameras, like the Microsoft Kinect, that are
placed in the working area. Compared to the spatial model, a point cloud
usually contains substantially more detail, as it has a higher resolution, has
a higher refresh rate, is more accurate and contains color. When available,
point clouds are clearly the preferred way of visualizing the OSO’s environ-
ment. The problem is that it is difficult to cover OSO’s complete environ-
ment with 3D cameras to allow the point cloud to be available everywhere,
that’s why the spatial model is used to fill the “empty gaps”.

The point clouds will have to be positioned correctly relative to each other
and to the rest of the virtual representation. To do this, a calibration step
is necessary in which the extrinsics of the cameras is determined. There are
several methods that can be used for calibration.

A dedicated positional tracking system can be used, like OptiTrack or the
HTC Vive tracker, to track each depth camera’s location in the environment.
This method is the most reliable but requires an extra component to be set
up and therefore compromises the ease of deployment.

Another option is to attach the depth camera on top of the Hololens.
The location of the Hololens is already known and therefore, by attaching
the depth camera to the Hololens, the depth camera’s location will also be
known. Garon et al. (2016) have used a similar set-up for different purposes.
To keep the whole system mobile they also attached a stick-PC and a battery
pack to the Hololens. This method retains the ease of deployment as it
doesn’t introduce extra components (it makes use of the tracking from the
Hololens) but it is limited to tracking the location of only one depth camera.

The relative positions between the depth cameras and the spatial mesh
can be calculated by creating an algorithm that searches for similar geomet-

1http://www.matrixinception.com/wp/hololens-roomscan-reloaded/
2https://github.com/ywj7931/Hololens_Image_Based_Texture/
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rical patterns. This method is the most versatile as it doesn’t need any extra
components to be added to the system and scales when more depth cameras
are added. The downsides are that there has to be overlapping data and it
requires recognizable features in the geometry and complex algorithms that
make it prone to making mistakes.

We chose to attach printed markers on each depth camera and solving
their locations using the image camera on the Hololens. This method is
scalable as an unique marker can be added for each depth camera, but is
limited by the camera on the Hololens, which has to be able to see the
markers to be able to solve their locations. Because the cameras are not
supposed to be moving this is not a big problem. If cameras are moved from
their initial location anyway, their locations will have to be solved again by
“observing them” with the camera of the Hololens.

3.2 System Configurations

Besides telepresence, a system like OpenIMPRESS can be used for a variety
of different applications by modifying how the system is configured. Four
main system configurations have been identified that differentiate themselves
by either displaying the captured data in real-time or at a different point in
time and having the captured data being played back at either the same or
at a different location from where it was captured.

physically
co-located dislocated

temporally
co-located modified reality remote assistance
dislocated in-place training relive memory

Table 3.1: The basic system configurations with corresponding application
examples

Table 3.1 shows the four basic possible configurations in relation to each
other. Temporal co-location means that the viewer receives the recorded
data as it’s being recorded. Temporal dislocation means that the viewer is
looking at data that is prerecorded. Physical co-location means that the
viewer is standing physically at the same location from where the data was
or is being recorded; the virtual environment is aligned with the physical
alignment. Physical dislocation means that the viewer is looking at the
virtual environment while being at a physically different location from where
the data was or is being recorded.

Depending on how the system is configured, it can be applied in different
application scenarios. Of course those basic configurations can be extended
to suit different scenarios by for example supporting multiple people viewing
or capturing at the same time, using different playback or recording devices
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and using different ways of distributing the recorded content. For this thesis
however, we will focus on the remote assistance application, which means
we use a temporally co-located and physically dislocated configuration.

3.3 Architecture

The architecture of the system is based on the design considerations from
section 3.1. A architecture diagram is shown in Figure 3.3. The system
is split up into seven main components. The system can be reconfigured
by disabling or rearranging certain components to make it more suitable
for different scenarios. Each component can also be used separately and be
integrated into other systems if necessary.

Figure 3.3: The system architecture diagram of OpenIMPRESS.

The On-Site Environment Capture and Visualization System focuses on
capturing the on-site environment with as much detail as possible and vi-
sualizing it at the remote location. The Transform Management System
manages the sharing of multiple transform between the RO and OSO. The
Annotation System enables the RO to create annotations in the OSO’s envi-
ronment. The Networking System handles all the data connection between
components that have to communicate over a network. The VR Compo-
nents manage the experience the user has in VR. The Hand Gesture System
captures the RO’s hands and displays them at the OSO. The Verbal Com-
munication System allows the RO and OSO to talk with one another by
using their voice.

Each component is described in more detail in chapter 4 together with
implementation details.
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Chapter 4

Implementation

In this chapter we present how the different components that are described
in section 3.3 are implemented.

4.1 On-Site Environment Capture and Visualiza-
tion System

The On-Site Environment Capture and Visualization System contains all the
components that are used to capture the OSO’s environment and visualize
it at the RO. It can be divided into two subsystems; one for point-cloud
data and one for mesh data.

4.1.1 Depth Camera Streamer

The Depth camera streamer1 is a standalone component written in C++
that captures depth and color image data from a depth sensing camera and
transmits them over a network using an UDP Connector. Different versions
of this component exist that are made to work with different brands of
depth cameras or with different libraries for the same camera. Versions
for the Microsoft Kinect V2 using the default Microsoft library2 and the
libfreenect2 library3 have been made, as well as for the Intel RealSense
camera4.

The current version of the streamer uses JPEG compression on the color
image data, encoding each frame as a separate JPEG image, and no compres-
sion on the depth data. A next step in the development of this component
would be to find and implement an appropriate compression algorithm for
the depth data as well.

1Most of this component is developed by Jan Kolkmeier
2https://developer.microsoft.com/en-us/windows/kinect
3https://github.com/OpenKinect/libfreenect2
4https://github.com/IntelRealSense/librealsense
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4.1.2 Point Cloud Viewer

The Point-Cloud Viewer contains a collection of components that receive,
process and visualize point-cloud data from various sources in the 3D envi-
ronment.

FrameSource is a component that standardizes the way that sources of
point-cloud data provide their data to the rest of the system. Several types
of FrameSources exist, like: KinectSource which provides data directly from
a Kinect V2 camera and RandomSource which provides random data that is
useful for testing the performance of the renderer. DepthStreamingSource is
the only source that is actually used in OpenIMPRESS at the moment, this
source allows data that is sent by a Depth Camera Streamer to be received
and passed on to be visualized.

After data from the Depth Camera Streamer is received by the UDP
Connector, it is passed on to the DepthStreamingListener. Here the type of
data the packet holds is detected and fed into the appropriate parser. Then,
the parsed data is passed to a processor that calculates the xyz-coordinates
of each pixel based on the camera intrinsics and combines it with the data
from color packets into a coherent PreFrameObj consisting of:

• An array of xyz-coordinates for each pixel

• An array of color values for each pixel or raw DXT1 or JPEG com-
pressed data representing the color data for each pixel

• The camera’s position and rotation values

When a new PreFrameObj is completed it is queued into the frameQueue
of the FrameSource.

The PointCloudViewer is the component that manages the visualization
of the point cloud data. It starts by calling the public function GetNewFrame
of a FrameSource. When this function is called, FrameSource will retrieve
the newest PreFrameObj from the queue and convert it into a FrameObj.
This conversion converts the raw color and depth data into Unity Texture2D
objects which allow them to be read directly by the shader for rendering.
Because only the newest frame is retrieved from the queue and the rest
is discarded, this conversion step is only executed when it is certain that
a particular frame will be visualized as it takes a relatively long time to
execute and can only be executed in the main loop and thus affects the
frame rate directly in a negative way.

The PointCloudViewer contains a mesh object that holds one vertex
for every point in the point cloud. A material with a shader is applied
to this mesh that reads the color and position textures and colorizes and
displaces the corresponding vertices accordingly, which is how the point
cloud is visualized. After the PointCloudViewer receives a FrameObj it will
apply the depth and color textures to the material of the mesh object. It
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will create a new mesh object if one doesn’t exist already or if the resolution
doesn’t match the one of the FrameObj. The mesh object is basically a
dummy, as the positions of the vertices are not actually used by the shader,
but it is still necessary to make the shader work properly as the shader needs
to be applied to an object that holds the same amount of vertices as the
amount of points in the point cloud. Because Unity has a maximum limit
of 65534 vertices per object, the mesh is split up into multiple horizontal
segments depending on the resolution of the point cloud. The mesh also
contains two UV maps that map every vertex in the mesh to a different
pixel in the color and position textures.

The shader works by first repositioning the vertex based on the corre-
sponding position in the position texture (rgb = xyz) which can be found
using the UV map that was created during the creation of the mesh. This
happens in the vertex shader. The output is passed on to the geometry
shader. In the geometry shader the vertex is extended to four vertices in
order to create a quad. The vertices are converted from world space coordi-
nates to screen space coordinates, while made sure that they face the user
no matter from what direction they’re viewed from. This is passed on to
the fragment shader, where the color for each vertex is retrieved from the
color texture using the UV map.

4.1.3 Depth Camera Tracker

To properly align the point clouds with the rest of the scene at the RO, the
location and orientation (extrinsics) of the corresponding depth camera need
to be known. Those are determined by making use of AR markers that are
placed on top of the camera and the Vuforia toolkit5 running on the OSO’s
Hololens. A QR code is chosen to serve as a marker because of its distinct
features, which make it easily tracked by the Vuforia toolkit. Marker holder
tools have been made that make it easy to attach a marker to a Kinect V2
in a consistent manner. The OSOTool that runs on the Hololens allows the
OSO to scan markers on the fly. This is necessary when the cameras have
been moved or when the system has just been started. The OSOTool will
display a white border around a marker as soon as it’s detected. When the
user faces in the same direction as the marker, the border will turn green.
This indicates that the marker is ready to be scanned (Figure 4.1). By
making the “tap” gesture, the OSOTool will start collecting measurements
of the marker’s position and rotation during two seconds. During this time,
the border will turn red. After the measuring has completed, any outliers
are removed and the rest is averaged. This averaged value is considered the
true transform of the marker, and it will start being sent to the RO every
couple of seconds using a UDP Connector.

5https://developer.vuforia.com/
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Figure 4.1: A marker with the green border viewed trough the Hololens and
the OSO performing the tap gesture.

At the RO, marker transforms are received and the (constant) offset
between the marker and the camera lens is subtracted from it. Then, the
transform is linked to the corresponding Point Cloud Viewer so that the
frame objects contain the correct camera position and rotation values and
the point clouds can thus be rendered at the correct location in the scene.

4.1.4 Spatial Mesh Streamer

The spatial mesh is the virtual geometrical representation the Hololens gen-
erates of its environment. The spatial mesh is used as a base layer to create
a basic understanding of the OSO’s environment. To do this, the spatial
mesh data is retrieved, serialized and sent from the OSO’s Hololens to the
RO, where it is deserialized and rendered.

The complete spatial mesh is subdivided into multiple smaller meshes
called surfaces. Those surfaces, which are each about 2 m3, are continuously
updated where necessary. A surface usually gets updated when the Hololens
gets pointed towards the area in the real world it corresponds to, as the
sensors will only then be able to scan that particular area.

Example code from Microsoft’s Mixed Reality Toolkit was used as a
starting point. The “RemoteMapping” Unity example from this toolkit
shows how to: retrieve the spatial mesh data, serialize it, send it, receive
it and render it. Although the example already shows how to do each of
the required steps, a couple of things still needed to be changed in order to
properly integrate it with OpenIMPRESS.

The example code is designed to send all the currently available surfaces
and thus complete spatial mesh model from a Hololens to a PC using a
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(a) (b) (c)

Figure 4.2: The spatial mesh, rendered with a solid shader (a), with a
transparent shader (b) and in combination with a point cloud (c).

voice command. The networking component has been replaced with a UDP
Connector so it connects over UDP instead of TCP and automatically find
the correct IP and port numbers to connect to. Instead of sending the mesh
on command, for OpenIMPRESS the mesh has to be sent automatically
in order the keep the spatial mesh at the RO up to date with the one at
the OSO. Surfaces of the spatial mesh that are being scanned get updated
around every three seconds, so the automatic send interval was set to three
seconds as well. Because the complete mesh can be substantially large,
retrieving, serializing and sending it usually results in a noticeable stutter.
Luckily, it is unnecessary to always send the complete mesh, as only small
portions of it get updated at a time. In order to keep track of which surfaces
have been updated and thus have to be sent, surface objects have been
modified to include a “sent” boolean that is set to false when it is created or
updated and to true as soon as it has been sent. As soon as a surface gets
removed, its ID will be added to a list that keeps track of which surfaces
have been removed. Every three seconds this list is sent to the RO as well.
After it’s sent it is cleared so that a removed ID doesn’t get sent twice.

4.1.5 Spatial Mesh Viewer

The Spatial Mesh Viewer receives spatial mesh data from the OSO and cre-
ates mesh objects based on this data that are placed in the 3D scene at
the RO. A point cloud representation is often used together with the spatial
mesh. By default the spatial mesh is rendered using a solid shader (Fig-
ure 4.2a), this makes the mesh look like a solid object and one won’t be able
to see through it. This can become problematic when used in combination
with other elements in a scene, especially with a point cloud representation
of the same environment. Because the spatial mesh is not very precise nor
accurate, blobs of spatial mesh often end up covering parts of the point cloud
when the point cloud would actually have give a better impression of how
that specific part of the scene looks like. Therefore a transparent shader was
chosen for the rendering of the spatial mesh at the RO (Figure 4.2b). This
allows the point cloud to be seen even it if it is positioned behind a spatial
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mesh surface (Figure 4.2c) and, as an additional benefit, gives in a visual
way less meaning to the spatial mesh (as it’s not that accurate anyway).

4.2 Transform Management System

There are several (virtual) objects of which the current transforms (position
and orientation) have to be shared from the RO to the OSO and the other
way around. The Transform Management System includes those objects,
their virtual representations and the component that manages those objects
and makes sure the right transform is applied to the right object.

Figure 4.3: The RO’s head and controller transforms visualized in the
Hololens

Objects of which the transforms are sent from the RO to the OSO in-
clude the head and controllers that are tracked by the HTC Vive system
(Figure 4.3). Transforms that are sent from the OSO to the RO include the
head transform as tracked by the Hololens and the transforms of various
AR markers which are tracked by the Vuforia AR plugin running on the
Hololens (as further explained in section 4.1.3).

4.2.1 Transform Manager

The Transform Manager keeps track of incoming and outgoing transforms.
It makes use of a serializer that reads an object’s transform and encodes
it into a byte stream so that it can be sent over the network using an
UDP connector instance. Once received, the data is deserialized to obtain
a transform that can be applied to an object again. Using an extra value,
the transformID, that is passed into the serializer as well, the Transform
Manager at the receiving side is able to distinguish between transforms from
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different objects and can apply a received transform to the corresponding
object correctly.

4.2.2 Hololens Transform

One of the features of the Hololens is that it automatically creates a 3D
model of its environment and tracks its own position and orientation in
this environment using various built-in sensors that are managed in the
background without the user having access to them. The position of the
Hololens is used to make sure virtual objects are always rendered to appear
at the same place in the environment even when changing perspective. The
position is tracked very precisely because any errors or jumps would break
the illusion. Besides using this transform for rendering things from the right
perspective, it can also be used to visualize the OSO at the RO at places
where the depth cameras can’t reach. Because of the precise tracking, small
head movements are copied as well, which can communicate meaning by
themselves and thus can help with collaboration. A visor-like 3D model has
been made to represent the location of the Hololens at the RO.

4.2.3 HMD and Controller Transforms

The RO’s head and hand transforms are sent to the OSO to allow the OSO
to see where the RO is currently located in their own environment. The
head and hand transforms are determined by using the transforms from the
HMD and the controllers tracked by the HTC Vive system. At the OSO,
the same visor model that is used at the RO to visualize the OSO’s head
transform is used to visualize the RO’s head transform. A stretched pyramid
model is used to visualize the transforms of the controllers at the OSO. This
creates a kind of pointer which makes it easier for the RO to point at things
because of its pointy end.

4.3 Annotation System

Annotation functionality is added in the form of a line drawing tool. With
this tool, the RO is able to draw lines with varying colors and thicknesses
in the OSO’s environment. All “brush strokes” the RO makes are sent
to the OSO in real-time, where they are displayed as holograms in OSO’s
surroundings using the Hololens (Figure 4.4). The interface is similar to
what is used in the Tilt Brush VR application (Google, 2016a); the RO
uses the Vive controllers to paint in 3D space by holding down the trigger
button. By pressing the touchpad button a menu appears on which the user
can select the size and color of the brush and toggle between making the
brush act as an eraser or not.
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(a) (b)

Figure 4.4: a) The RO annotating the OSO’s environment. b) The annota-
tions as seen by the OSO.

For every type of line drawing event, a serializer and deserializer has
been developed. This allows to encode the events and send them over a
network, and therefore visualize the drawing somewhere else in real-time.
The data is sent and received using instances of the UDP Connector.

The following components are developed as part of the line drawing
system.

4.3.1 Line Maker

The Line Maker is a component that generates different events for the ac-
tions related to line drawing based on user input. Those events include:

• NewPoint The NewPoint event gets triggered when a line is extended
with a new point. The arguments are the ID of the corresponding line
(lineID), the index number of that point on the line (index) and the
coordinates of the point in the 3D space (point).

• LineSettings The LineSettings event gets triggered when information
is available about a line. The arguments are the ID of the correspond-
ing line (lineID), the color of the line (col) and the width of the line
(width).

• RemoveLine The RemoveLine event gets triggered when a line is re-
moved. The only argument is the ID of the corresponding line (lineID).

• ResetLines The ResetLines event gets triggered when all lines should
be removed from the scene. It contains no arguments.

The Line Maker component reads the position of the tip of the pointer,
which acts at the brush, and uses that position as the source of the lines.
It contains a couple of variables that can be set by other components; a
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color and size variable that should be set to the user selected values, a pause
boolean for pausing the drawer when for example the brush moves over a
menu and a mode selector that can be switched between Draw and Erase.
While the user holds down the trigger button Line Maker will continuously
emit new points from the pointer’s tip by generating NewPoint events. The
events will all have the same index number, thus overwriting the previous
point, unless the distance is large enough compared to the previous point
or the direction of the brush makes a large enough change. In that case
the index number will be increased, thus leaving the previous point as a
permanent point of the line.

4.3.2 Line Viewer

The Line Viewer component receives events from a Line Maker component
and draws lines according to those events. To actually visualize the lines it
uses the Line Renderer6 component that comes by default with Unity. The
Line Renderer component draws a line between two or more points given in
an array, with a given width and material. Line Viewer creates a new Line
Renderer instance for every line that has to be drawn and keeps track of all
created instances by putting them in a list.

When the NewPoint event is triggered it checks whether a line with the
LineID of that new point already exists. If it exists, the new point will be
added to that line’s points array, possibly replacing an existing point if the
new point’s index in the array was alreay filled. It the line doesn’t exist, a
new Line Renderer instance will be created to which the new point will be
added. When a LineSettings event is received Line Viewer will search for
the Line Renderer instance with the LineID from the event, creating a new
one if it doesn’t exist, and applying the width and color settings to it. The
RemoveLine event will make Line Viewer search for the corresponding Line
Renderer instance and delete it if it exists. The ResetLines event will make
Line Viewer remove all the current lines.

4.4 Networking System

Several components were developed for connecting the different components
of the system with each other over the internet and managing the data
streams between them.

4.4.1 UDP Connector

The UDP Connector is the component that sits in between the various soft-
ware components that need to send or receive data from another remote

6https://docs.unity3d.com/Manual/class-LineRenderer.html
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component and the actual networking library. If a pair of components need
to exchange data they’ll each need one instance of the UDP connector with
the same “socketID”, but opposite “pairID’s”. An instance of the UDP con-
nector component is always given a “socketID”, which describes the type of
data that this connection is used for. There always need to be two instances
of the UDP Connector with the same socketID in a session but with opposite
pairID’s; A and B. The UDP Connector will independently try to connect
with an UDP Connector with the same socketID but opposite pairID. To do
this, it communicates with the Matchmaking Server, registering itself and
requesting the IP address and port number of the other UDP Connector
instance. After receiving this data the UDP Connector will try to directly
communicate with the other UDP Connector instance. It will send an empty
packet every 2 seconds to let the other instance know the connection is still
working. If it didn’t receive a packet for more than 5 seconds, it will assume
the connection is lost and it will ask the Matchmaking Server for a new port
number and IP address.

4.4.2 Matchmaking Server

The Matchmaking Server keeps track of all UDP Connector instances, and
makes sure they are all kept up to date with the latest IP address and port
number of the UDP Connector instances they have to connect to. When a
UDP Connector registers itself it also sends an unique ID (UID) based on
the device it is running on. With this UID, the matchmaking server can
group UDP Connector instances together by device.

“Sessions” can be used to allow multiple OpenIMPRESS environments
to run simultaneously while making use of the same Matchmaking Server.
A session contains a list of devices that belong together and of which their
UDP Connectors are allowed to make connections between each other. In
order to make a pair of UDP Connector instances connect, not only will
they need to have the same socketID and opposite pairID, their devices also
need to be assigned to the same session.

There are two main advantages of using a matchmaking server instead
of trying to connect the various parts with each other manually. Firstly, IP
addresses usually don’t stay the same over time. Public IP’s change because
the ISP7 is often free to assign a different IP to a connection and local
IP’s often change after the router’s DHCP server’s lease time has expired
which means a new IP will be assigned. This makes it difficult to manually
keep track of what IP addresses need to be filled in, let alone what port
number to use. The matchmaking server automatically keeps track of both
IP addresses and port numbers by just reading the source IP address and
port number from the register packet that it receives from a client.

7Internet Service Provider
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Secondly, a matchmaking server allows for connecting clients that are
behind a firewall, this is also known as UDP hole punching (Ford, Srisuresh,
and Kegel, 2005). When manually trying to connect over the internet to a
computer or device that is connected through a router, one often finds they
have to configure the router’s NAT8 port-forwarding settings to allow data
that comes in at a certain port to be forwarded to the wanted device. By
using a set-up with a Matchmaking Server, any necessary port-forwarding
rules will be automatically set in the background. This works as follows:
when a packet is sent out by a device behind a NAT, the NAT will set
an exception for incoming data that is received at the port from which
the device’s packet was sent to be routed back to that same device. This
way communication becomes possible without having to set port-forwarding
rules manually. As soon as the Matchmaking Server receives a packet from
a client, the packet’s source port will already be forwarded to the client’s
private IP by the NAT. This means that all the IP addresses and port
numbers the matchmaking server receives will always direct packets to the
wanted destination, even when they’re sent from a different client after the
matchmaking server shared IP and port numbers between two matching
clients.

Figure 4.5: The Matchmaking Server web GUI

A web user-interface has been developed9 for the Matchmaking Server
where a user can see which UDP Connector instances have been registered,
create sessions and modify the devices that are assigned to them. (Fig-
ure 4.5)

8Network address translation
9Developed by Jan Kolkmeier
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4.5 VR Components

The VR Components contain all the elements that add to providing the user
a good experience in VR. First of all, the VR system itself of course is part
of this, as well as a component that controls the navigation and a component
that displays a settings menu and manages the interaction of the RO with
it.

4.5.1 VR System

An HTC Vive is used which is an off the shelf consumer VR headset. Be-
sides the headset itself it also includes two controllers. The headset and
the controllers are all being tracked using the Lighthouse tracking system
(Niehorster, L. Li, and Lappe, 2017), which makes use of two base stations
that have to be placed a maximum of 5 meters apart at the borders of the
“play area”. The Lighthouse tracking system tracks the positions and ori-
entation of the headset and controllers with sub-millimeter accuracy, which
means that even small movements by the user are picked up. This is used
to make the movements of the images that are shown inside the headset
correspond with the movements of the user, and make the visualizations of
the controllers in VR match the locations in reality.

4.5.2 Navigation

When using a free viewpoint system a navigation interface is necessary to
allow the RO to choose their perspective. Because the RO is viewing the
scene in VR the system had to satisfy some extra requirements compared
to free viewpoint systems that use a 2D screen solution.

Navigation in VR is a problem that many VR game developers are strug-
gling with and many solutions have already been proposed. Early VR games
often used classic game controls like mouse and keyboard or a dedicated
game-pad to move the player through the VR environment. This means
that the movement that is perceived in the headset does not correspond with
the actual movement of the player’s body. For many people this resulted in
motion sickness and VR game developers started looking for different ways
of implementing navigation in VR. With the new generation of VR head-
sets like the HTC Vive starting to support room-scale tracking, VR game
developers were given a couple of meters of walking area that they could let
the players navigate in. This meant the navigation problem was solved for
games that didn’t require the player to navigate more than a couple of me-
ters. To allow players to navigate further developers started making use of
a navigation paradigm they call teleportation. It is usually implemented by
letting the users point their controller to a free spot in the VR scene around
them and instantly transporting them there after they press one of the con-
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troller’s buttons. This then gives the player a new area to walk around in,
confined by the borders of the players physical room. From an experience
point of view this is less ideal, as with every “jump” the player makes, they
have to reorient themselves at their new area. This also means that players
can now navigate way faster and further than they would normally be able
to. That is why the teleportation feature is often limited in the distance
that it allows the player to travel and the number of times it can be used in
succession without waiting.

Another solution that has been used is to have the player stand on a
virtual vehicle that can be controlled to navigate around the virtual envi-
ronment. This reduces motion sickness because all the physical movements
of the player still correlate with the observed movements relative to the
vehicle.

For OpenIMPRESS a new solution has been implemented that is best
described by calling it dragging. To navigate, users press and hold down
the grip buttons of one controller and move the controller in the opposite
direction of where they want to go. It can be explained as “gripping the
environment and dragging yourself around in it”. Besides using their head
to rotate, users can also use dragging with two controllers to rotate around
the world’s up-axis.

A similar control mechanism is implemented in VR games such as Echo
Arena10. This game takes place in a zero gravity environment, where players
can float around by grabbing onto virtual objects and pulling themselves
forward. The difference with our implementation is that in the game the
player can only drag if he/she is holding a virtual fixed object, where in
OpenIMPRESS the user can use it anywhere.

From our own experience dragging resolves the motion sickness issue
while still avoiding the “jumps” that occur when using teleportation or the
need for a virtual vehicle. The absence of motion sickness can be explained
by the fact that all observed movements are still directly linked to the move-
ments of the player, only instead of making use of their feet they are using
their hands. The fact that players still have to move themselves and put
effort in if they want to be fast also removes the need for unintuitive restric-
tions that usually are needed when using teleportation.

4.5.3 Settings Menu

A simple menu system has been implemented to allow the RO to change var-
ious settings. For now, only one menu has been implemented for changing
parameters of the Line Maker. It lets the user select the color and thick-
ness of the brush and select whether the brush should draw or erase lines
(Figure 4.6).

10https://www.oculus.com/experiences/rift/1369078409873402/
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Figure 4.6: The settings menu being used to change the brush size.

The menu is opened when pressing the touchpad on either of the two
controllers and will be attached to the controller on which the button was
pressed. Settings can then be adjusted by pointing the other controller to
the menu and using the trigger button for making selections. The menu was
created using Unity’s UI system11 and support for input using the Vive VR
controllers was added using a modified version of Unity-VRInputModule12.
Unity-VRInputModule was modified to only show the laser pointer when
pointing at a menu to make a clear distinction for the user between when
the controller is used for menu inputs or for something else.

4.6 Hand Gesture System

Besides using the Vive controllers for making gestures, the RO can also use
his or her hands on their own by making use of the Hand Gesture System.
The difference with using the controllers is that this system doesn’t require
the RO to hold anything in their hands and it allows for more detailed
gesturing as all joints in the hands are individually tracked and visualized.
In OpenIMPRESS the hands are captured at the RO and sent to the OSO,

11https://docs.unity3d.com/Manual/UISystem.html
12https://github.com/wacki/Unity-VRInputModule
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(a) (b) (c)

Figure 4.7: a) The RO using the gesture system to point. b) The RO’s
hands as seen by the RO and the OSO (c)

where they are visualized as floating holograms (Figure 4.7). This system
consists of a Leap Hand Sensor to capture the position of the hand and
individual fingers and a Leap Hand Viewer to visualize the captured data.

4.6.1 Leap Hand Sensor

The Leap Motion sensor is a sensor that is used to track the hands of a user
with high precision without the need of special trackers or gloves on the
hands themselves. It makes use of infrared light and two infrared cameras
to light up the hands and track them in 3D space. It is often placed facing
upwards between the keyboard and the monitor in desktop set-up scenarios.
Since the Orion driver was released, Leap Motion started support for using
the sensor in VR applications. In this scenario, the sensor is attached to the
front of the HMD, so that it can always see the hands of the user when they
are held up on front of them. The data the sensor collects is encoded in so
called frames which can be sent to a viewer so a visualization can be made.

4.6.2 Leap Hand Viewer

The Leap Hand Viewer takes hand frame data from a Leap Hand Sensor
and visualizes it by applying this to a 3D model of a hand (or multiple
models, depending on how many hands are encoded in the frame). This
way, the RO’s hands can be displayed with a highly detailed 3D model in
the OSO’s Hololens but also in the RO’s VR environment so the RO can see
what he or she is doing. At the OSO’s Hololens, a modified version of the
default viewer13 is used as Leap Motion’s original code doesn’t work on the
Hololens.

13https://github.com/ZhengyiLuo/LeapMotion_Hololens_Asset
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4.7 Verbal Communication System

VoIP support has been included in OpenIMPRESS, allowing the RO and
OSO to talk to each other. A VoIP Manager component has been developed
to do this. This component runs at both the OSO and the RO. It accesses
the system’s microphone using Unity’s built-in Microphone class14. Because
this class is supported on both the desktop version of Unity and the Hololens,
the same code can be used on both devices.

The latest audio samples are fetched from the microphone and are sent
to the VoIP Manager of the other system. Both the sample frequency and
number of channels that the samples are recorded with are sent as well.
This meta information ensures that the receiving end can properly play the
samples back again. When an audio packet is received, the samples are
applied to an audio clip that will be created if it didn’t exist yet or will
be overwritten with a new one if it wasn’t set up with the correct sample
frequency or amount of channels. This clip can contain a maximum of
10 seconds of audio samples that will be continuously extended with new
samples as they are received. If (after 10 seconds) the array of samples is
filled, the samples will be added to the start of the array again. This clip is
played back using an Unity AudioSource component15.

14https://docs.unity3d.com/ScriptReference/Microphone.html
15https://docs.unity3d.com/ScriptReference/AudioSource.html
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Chapter 5

Preliminary evaluation

A simple preliminary evaluation was done after a large part of the system
had been implemented. This chapter first explains what the differences
were compared to the final system, then the details of the user test that was
conducted and finally what the choices are that were made based on the
results of the user test.

The research questions of this evaluation are What is the minimum size
of object features that can be correctly observed by the RO? and How do
users experience using this system for collaboration?.

5.1 System differences

When this evaluation was conducted, the OpenIMPRESS system was not
yet as completely implemented as described in chapter 4. This is because
some features described in chapter 4 are actually based on the results of
this evaluation. The purpose of this evaluation was to check what worked
and what didn’t work at the time to get a better idea of what should be
improved or added.

Verbal Communication System The system didn’t include the Verbal
Communication System. For verbal communication a Skype call was started
between two computers that were standing in both rooms.

Hand Gesture System The system didn’t include the Hand Gesture
System. Only the controllers were used to make gestures and to point at
things.

Annotation System It was not possible for the RO to make annotations
in the OSO’s space, as the Annotation System was not yet implemented.
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(a) (b) (c)

Figure 5.1: a) Both sizes of one of the 5 puzzle blocks used in experiment.
The shortest edges on the larger objects are 80mm; 36mm on the smaller.
b) Point cloud representation of puzzle blocks at RO. c) Target puzzle con-
structions used during test, visible only to RO.

Networking System No Matchmaking Server was yet implemented, there-
fore IP addresses and port numbers had to be manually entered by the
experimenters before an experiment took place.

5.1.1 Method

An informal pilot test has been conducted using the OpenIMPRESS system
as it is described above. The test focused on getting a better understanding
of the applications that are possible with the current level of detail and what
steps still need to be taken in order to increase the usability and allow the
system to be used in more applications.

A object construction task was chosen, as it involves collaboration be-
tween users and can be controlled for differently sized building blocks. The
test involved two differently sized collections of puzzle blocks (Figure 5.1a).
Constructions made out of the puzzle blocks were shown in the virtual en-
vironment of the RO (Figure 5.1c). The participants were given the task
to recreate those constructions at the capture scene. The RO could use
gestures to point at the blocks and indicate how to move them and talk to
the OSO using a Skype voice connection. The OSO had to manipulate the
blocks while being guided by the RO’s instructions. After a construction
was finished, the next construction was built using smaller pieces. The par-
ticipants were asked to join in an open interview after a construction with
the smallest pieces was built or they gave up. The interview focused on: the
overall quality of the system, whether they felt present and the experience
of playing as the RO and OSO.

One pair of participants (one female, one male) was invited to engage
with the system and both participants completed the test once as RO and
once as OSO.
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5.2 Results

Both participants were able to recreate the given construction using the
large blocks. When using the smaller sized blocks it became more difficult
for both participants; the first participant acting as RO did not manage to
finish the (correct) construction while the second took longer and resorted
to verbal descriptions to describe the construction instead of making use of
visual cues and gestures, as the blocks became too small to distinguish.

The participants were impressed with the rendering of the point cloud
and had the feeling they were present at the same location. However, they
noted how it was sometimes difficult to get on the same page and described
a mismatch between the RO’s and the OSO’s realities, mainly because of
misalignment in the point clouds and the lack of detail, especially when
using the smaller sized blocks.

When asked about the pointers and gestures, one participant noted that
she mainly used the pointers for gesturing instead of pointing. Also, when
asked whether they would prefer more detailed methods for gesturing, such
as hands, they responded that pointers were good enough.

One participant remarked that in the role of RO, he missed the capability
of manipulating objects himself. He suggested to add purely virtual blocks
that can be manipulated by the RO and are displayed as holograms at the
OSO as well. This would allow the RO to describe the instructions more
clearly without having to rely too much on the point cloud’s level of detail.

The participants also noted how objects become more clear when held
closer and/or parallel to the depth cameras. The first RO asked repeatedly
to pick up a block and hold it in front of the camera in order to get a better
view while the second RO asked to align the pieces on the table in parallel
to the camera’s picture plane.

One observation made is that the Hololens’ tracking inside the envi-
ronment may drift over time or get lost completely when its view gets ob-
structed. This may result in the HoloLens’s coordinate system to change,
causing inconsistencies between the worlds of the RO and the OSO. A re-
calibration of the depth sensors is required in this case.

5.3 Discussion

To answer the first research question (What is the minimum size of object
features that can be correctly observed by the RO? ) we see that the par-
ticipants had no trouble finishing the puzzles using blocks with edges of
80mm but started having trouble when blocks with sides of 36mm had to
be used. We therefore assume the minimum size of object features that can
be correctly observed by the RO is between 36 and 80mm.

The second research question (How do users experience using this system
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for collaboration? ) can be answered by looking at the participant’s responses
during the open interview. Overall, it is a positive experience; The users
had the feeling of being at the same location and the pointers worked good
enough for making their intentions clear. A negative point was the level of
detail of the point cloud, which made it sometimes difficult for the users to
get on the same page.

Based on the results of the preliminary evaluation some points for im-
provement can be found. First of all, the overall quality and level of detail
of the point-cloud appears to limit the experience in multiple ways. Because
the alignment between the cameras is often a bit off, it becomes unclear what
the shape of a certain object is when it is being captured by multiple cam-
eras from different angles. The resolution of the cameras themselves seems
also to be a limiting factor, judging by the fact that users would hold an
object closer to them to increase the level of detail.

There are several solutions that could help improve the point-clouds’
quality. To get the point-clouds to align with each other more precisely,
an algorithm could try and match overlapping pieces geometry and slightly
adjust the calibration, similarly to what Kowalski, Naruniec, and Daniluk
(2015) showed in their refined camera pose estimation step. Another solution
could be to average out any errors that occur when scanning a marker,
which can be done by sampling the camera’s calibration AR marker over a
longer period of time or to add a second marker that is fixed on a different
angle. To be sure about what solutions are actually needed, a more in-depth
experiment would be necessary in which the cameras and the AR marker
tracking are tested in a controlled environment and a overview is made of
where the observed errors in the alignment are actually being introduced.

The level of detail of the point-clouds themselves can also be improved by
making use of filters that take into account the various errors that the Kinect
v2 camera is known to introduce (Sarbolandi, Lefloch, and Kolb, 2015).
Effects like “flying pixels” are relatively easy to correct for by making use
of filters like the one described by Kowalski, Naruniec, and Daniluk (2015).

The RO noted that he was lacking the ability to manipulate anything from
his side, which he felt was needed to explain certain action more efficiently.
This can be a sign of the limitations of the current gesturing system that
solely relies on pointers. Ways to convey more meaning could be added
to the system. Instead of using controllers, the design could focus more on
capturing natural gestures without hardware interference like having to hold
controllers. Also, the ability to draw annotations in the scene could help
give the RO more possibilities to make their instructions clear.

We noticed how the OSO sometimes loses track of where the RO is
located. There are different factors can be the cause of this; the limited field
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of view of the HoloLens, the absence of spatial sound and the clearness of the
RO’s visualization. The limited field of view of the HoloLens’ display makes
it difficult to find the RO, the OSO often has to scan the whole environment
around themselves by rotating their head to find the current location of their
partner. Because upgrading the displays of the HoloLens is not within the
scope of this project we have to look at possible workarounds. A possible
solution could be a guidance system that points the OSO to the RO when
the RO is currently not in view. By integrating the audio component into
the system, 3D sound effects can be used to make it appear the source
of the other user’s voice matches the virtual position he or she is currently
located. This enables situations where the RO can draw the OSO’s attention
into their direction by just talking to them.

The current visualization of the RO consists of three relatively small
objects that float in the OSO environment; a visor for the head and a pointer
for each hand. This minimalistic representation can make it difficult for the
OSO to spot the RO. A solution could be to extend the representation
with more body parts, which increases the total volume and increases the
chances of being seen. Also, the colors of the parts that make up the RO’s
representation should be easily recognizable; the current color of the visor is
black, which in a holographic display is difficult to see. Choosing a brighter
color could help with this problem as well.

From the experimenter side of things, we noticed how setting up the
system took a considerable amount of time. A big part of that time was spent
on updating IP addresses and port numbers in the different components so
that data was being sent to the right destinations. Human mistakes often
slipped in that would delay the setup process significantly. A solution would
be the addition of a system that keeps track of which data streams are
available and updates the IP addresses and port numbers automatically.

Based on the findings of this preliminary evaluation, the system has been
adapted and extended with extra components. To give the RO more possi-
bilities to express him/herself, the system has been extended with the Hand
Gesture System and the Annotation System. The Verbal Communication
System has been added to make it easier to set up an audio connection be-
tween users and to make locating the RO easier by making use of 3D located
sounds. To further assist the OSO in locating the RO’s virtual embodiment,
an arrow is added that slowly appears when the RO’s visor has not been in
the OSO’s view for 5 seconds and points the OSO into the direction of the
RO’s current location. Also, the color of the visor is changed from a dark
grey color to a light blue color. The Networking System has been added to
make it easier for researchers to set up the system.
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Main evaluation

This chapter presents the main evaluation that was conducted of OpenIM-
PRESS. The main evaluation focused on determining how the three telep-
resence design aspects (view independence, using an immersive display and
the use of a virtual embodiment of the visitor) contribute to the performance
and experience of a telepresence system in a collaborative context.

Different implementations of those design aspects have been evaluated
in studies before. Those studies often had the main focus on only one of
the three design aspects, with the remaining two aspects only partially or
not at all implemented. Immersive VR displays have for example been
used in telepresence systems before, but using a fixed viewpoint (Amores,
Benavides, and Maes, 2015) or with view independence only limited to ro-
tational motions (Gao et al., 2016). Also, full view independence has been
used in telepresence before, but not with any remote embodiment (Tait and
Billinghurst, 2015) or an immersive VR display. Giving the visitor a (vir-
tual) remote embodiment is often tested with a view locked to the visitee’s
perspective but not with full view independence.

A collaborative task was chosen as the main context for this evaluation,
because it is one of the main use cases for telepresence systems and it is a
context in which the system’s various components play a role.

To gain a more complete understanding of how these design aspects affect
the performance and experience of telepresence systems, we perform three
separate experiments to individually test them. The research question of
this evaluation is composed as follows:
RQ2. How do the three telepresence system design aspects influence the
performance and experience of the users in a collaborative setting? The
research question is split up into the following three subquestions:

RQ2.1. How does view independence influence the performance and expe-
rience of the users in a collaborative setting?

RQ2.2. How does using an immersive display influence the performance
and experience of the users in a collaborative setting?
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RQ2.3. How does giving the visitor a virtual embodiment influence the
performance and experience of the users in a collaborative setting?

We will first discuss how the three design aspects are expected to affect
performance and different dimensions of the experience. Then, the setup of
the system and design of the study are presented. Finally, the results are
discussed and the research questions answered.

6.1 Performance

We expect all three telepresence design aspects (section 1.1) to increase the
performance of the users in a collaborative context. The performance of the
users is described by the the time that it takes to complete a task and the
amount of errors that are made. A lower time equals a higher performance
and a lower amount of errors equals higher performance as well. The exact
performance measures that are used are explained in section 6.7 after the
task has been explained in more detail.

View independence By giving the RO an independent view it is ex-
pected that the time required to complete a task decreases. This is because
less effort needs to be spent on adjusting the RO’s view which decreases
the total time spent on the task. Less errors are expected to be made as
well, because it is easier for the RO to maintain an overview of the current
situation, he/she is therefore more effective in completing the task without
errors.

Immersion Using an immersive display at the RO is expected to decrease
the amount of time that is required and the amount of errors that are pro-
duced during a task. The lack of certain spatial cues when not using an
immersive display, like depth and a wide field of view, make it more difficult
for the RO to support the OSO in tasks that especially require the ability to
recognize three dimensional features of objects and require the RO to have
an overview of a relatively large area. For example when using a 2D monitor
to determine how far something is away in a 3D environment. Allowing the
RO to recognize those cues is expected to decrease the time that is required
and the amount of mistakes that are made.

Embodiment Giving the RO a virtual embodiment is expected to de-
crease the time that is needed and the amount of errors that are made dur-
ing a task. The embodiment supports the RO when explaining him-/herself
by increasing the amount of channels that can be used for communication.
This decreases the amount of time that is required for communication while
increasing the effectiveness and thus decreasing the amount of errors.
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6.2 Experience

The three telepresence design aspects (section 1.1) are each expected to
affect a different set of dimensions of the users’ experience. Where giving
the RO an embodiment to express him/herself with gestures towards the
OSO is, for example, expected to help the communication between the two,
letting the RO use an immersive diplay is expected to have more effect on his
or her feeling of presence in the remote environment. We will first present the
different dimensions of experience that are relevant and afterwards, explain
for each design aspect which dimensions are expected to be affected and
why.

Usability refers to the extent to which a system can be used in a par-
ticular task by the intended users regarding effectiveness, efficiency and
satisfaction.

Spatial presence is a measure of the feeling of being in a certain environ-
ment. People can feel spatially present in real environments although the
term is most often used to describe the feeling in a virtual environment.
It is closely related to immersion, although the two terms are not inter-
changeable. Spatial presence is a subjective measure based on the user’s
experience, whereas immersion is a variable of the technology. A technol-
ogy that is more immersive tends to create a stronger feeling of presence
at a user (Schubert, Friedmann, and Regenbrecht, 2001). “The definition
implies that an individual perceives and experiences media stimuli almost
in such a way as if they were real, even though they are not” (Hartmann
et al., 2015).

Co-presence is a measure for how aware the users are of each other. It
focuses on whether the user feels like he or she is not alone and is aware of
the other but also on whether the user feels like the other is aware of them.

Perceived message understanding is a measure for how well the users
think they understand messages from the other user and how well the users
think the other user understands their messages.

Perceived behavioral interdependence is a measure for how much the
user feels like his or her behavior affects the other user’s behavior and how
much the user feels like his or her own behavior is affected by the other
user’s behavior.

How those dimensions of experience are exactly measured is explained
in section 6.7. For each of the three design aspects, we will now describe
which of the dimensions of experience we assume are affected and in what
way we assume they are affected.
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View independence With view independence we describe the aspect of
allowing the RO to independently change the perspective he or she has on
the OSO’s environment.

We expect the usability of the system to increase when allowing the RO
to view the scene from a different perspective than only the OSO’s. In a
scenario without view independence, what the RO sees is determined by the
OSO. Therefore, the RO has to communicate to the OSO if he/she wishes
to view the scene from a different perspective. With view independence, the
RO can look at what is needed without the help of the OSO, this decreases
the time that is spent on system related communication, leaving more time
to focus on the task at hand, increasing the efficiency and therefore also the
usability.

We expect the user’s feeling of spatial presence to increase when enabling
view independence. Especially when used in combination with VR, view
independence allows the RO to experience the virtual representation of the
OSO’s environment in a way that is more natural and more closely resembles
how one would navigate through an environment in reality.

We expect the RO’s feeling of co-presence to increase with view indepen-
dence. Without view independence, the RO won’t be able to see the OSO,
as the RO will be observing the scene through the OSO’s perspective. By
adding view independence, the RO will now be able to observe the OSO as
if he or she is standing in the same room, which makes the RO more aware
of the OSO and thus increases the co-presence.

We expect the perceived behavioral interdependence of both users to de-
crease when view independence is added. Without view independence, there
is a strong connection between the user’s behaviors. Especially the RO’s be-
havior is highly dependent on the OSO’s, as the RO only sees what the OSO
sees and has to base his/her behavior on that. Therefore, when allowing the
RO to view the scene independently from the OSO, their behaviors are also
expected to become more independent.

Immersion With immersion we describe the aspect of visualizing the vir-
tual representation of the OSO’s environment using immersive viewing tech-
nologies like a VR display instead of using a 2D desktop monitor.

We expect the use of immersive displays to to have positive effect on
the usability for the same reasons we expect them to increase the user’s
performance. As mentioned above: it takes less effort and feels more natural
to engage with a virtual environment when using this technology. This
makes performing tasks and helping others in the same environment more
effective and efficient, which makes the system more usable.

We expect Spatial presence to increase when using an immersive viewing
technique, as the immersiveness of a system is one of the main contributors
to a user’s feeling of spatial presence.
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We expect the feeling of co-presence to increase, mainly at the RO. The
immersive view on the remote environment will make the RO less distracted
by his/her own environment and make it easier for the RO to locate people
in the remote environment, therefore he/she becomes more aware of them
and the feeling of co-presence is increased.

We expect the perceived message understanding to increase when system
is more immersive. Because an immersive viewing technique makes it easier
for the RO to locate people and makes him/her feel like being in the same
environment as the OSO, communication is expected to become easier and
therefore increasing the perceived message understanding.

Embodiment With embodiment we describe the aspect of giving the RO
a virtual embodiment in the OSO’s environment. This embodiment allows
the OSO to see the where the RO is currently standing and the direction
he/she is currently looking in. It also allows the RO to make gestures, point
to things and express him-/herself with basic body language.

By adding an embodiment of the RO, we expect the usability to increase.
The ability to make use of gestures and the addition of information about
the what the OSO is currently focusing on will have the result that less
verbal instructions are required to make a point come across and therefore
the efficiency of the system is increased which makes it more usable.

Gestures have been shown to support visuo-spatial aspects of the speaker’s
meaning (Wu and Coulson, 2007) and support speech comprehension espe-
cially in difficult communication conditions (Obermeier, Dolk, and Gunter,
2012). We therefore expect that adding the ability for the RO to make use
of gestures to increase the perceived message understanding.

We expect that giving the RO an embodiment will increase both user’s
feeling of co-presence. The virtual embodiment of the RO will make the
OSO more aware of the RO and direct more attention to him/her. This
will make the RO also feel like the OSO is more aware of him/her, thus
increasing the feeling of co-presence of both users.

6.3 Hypotheses

Based on the expectations described in section 6.1 and section 6.2, hypothe-
ses have been formulated. For each of the three subquestions the hypotheses
are listed below.

RQ2.1. How does view independence influence the performance
and experience of the users in a collaborative setting?

H1.1 View independence decreases the total task duration.

H1.2 View independence decreases the amount of errors.
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H1.3 View independence increases usability for the RO.

H1.4 View independence increases spatial presence of the RO.

H1.5 View independence increases co-presence for the RO.

H1.6 View independence decreases perceived behavioral interdependence
of the RO.

H1.7 View independence decreases perceived behavioral interdependence
of the OSO.

RQ2.2. How does using an immersive display influence the per-
formance and experience of the users in a collaborative setting?

H1.1 Immersion decreases the total task duration.

H2.2 Immersion decreases the amount of errors.

H2.3 Immersion increases usability for the RO.

H2.4 Immersion increases spatial presence for the RO.

H2.5 Immersion increases co-presence for the RO.

H2.6 Immersion increases perceived message understanding of the RO.

H2.7 Immersion increases perceived message understanding of the OSO.

RQ2.3. How does giving the visitor a virtual embodiment influence
the performance and experience of the users in a collaborative
setting?

H3.1 Giving the visitor a virtual embodiment decreases the total task
duration.

H3.2 Giving the visitor a virtual embodiment decreases the amount of
errors.

H3.3 Giving the visitor a virtual embodiment increases usability for the
RO.

H3.4 Giving the visitor a virtual embodiment increases usability for the
OSO.

H3.5 Giving the visitor a virtual embodiment increases perceived mes-
sage understanding of the RO.

H3.6 Giving the visitor a virtual embodiment increases perceived mes-
sage understanding of the OSO.
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H3.7 Giving the visitor a virtual embodiment increases co-presence of
the RO.

H3.8 Giving the visitor a virtual embodiment increases co-presence of
the OSO.

6.4 Task

The task for the user experiment was selected using the following require-
ments.

Collaborative The task needs to be collaborative by nature and require
the participants to work together. It should be impossible to solve the task
without any communication between the two participants. Information that
the OSO requires to complete the task should for example be only given to
the RO, so that only by collaborating the task can be completed.

No prior knowledge possible The task should remove the possibility for
people with prior knowledge of the task to have an advantage. For example:
imagine a task where the OSO has to construct an engine but only the RO
has the manual, if the OSO turns out to be a car mechanic any remote help
from the RO won’t be useful anymore; the OSO will already know what to
do. This would mean that no collaboration is necessary and create invalid
results.

Encourages the use of OpenIMPRESS features The task should
provide reasons to use the features of OpenIMPRESS. In particular, the
task(s) should contain a navigation component that makes use of the wide
area scanning capabilities, an object recognition component that makes use
of the detailed scanning capabilities and an object manipulation component
that makes use of the verbal and non-verbal communication capabilities of
the system.

Fun With a task that is regarded fun it will become easier to recruit
participants to run the study with. The hypothesis is that a fun experiment
description will lower the threshold for people to participate and leaving
participants with a positive experience will increase the likelihood that they
recommend other people to participate as well.

An escape room like environment was used for the experiment in which
the participants were tasked with retrieving a four-digit code by solving
three escape-room-like puzzles. This task was chosen as it fulfills all the
requirements that were mentioned before. Escape rooms are designed to
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(a) The escape room where the
OSO is located.

(b) The room nearby where the
RO is located.

Figure 6.1: The two rooms that are used in the experiment.

be a collaborative experience, as mentioned by Nicholson (2016): ”Escape
rooms require teamwork, communication, and delegation”. They are also
being played by males and females equally which suggests that there is not
strong bias for a certain gender. They are becoming a popular leisure time
activity, which is expected to easily draw people to participate in the study.
Because the tasks are presented as puzzles in a playful context, they can
be designed to be more abstract in order to disconnect them from any real-
world knowledge and remove any bias that this could give. This design
freedom also makes it easier to incorporate aspects that encourage the use
of OpenIMPRESS features like navigation, object recognition and object
manipulation.

One participant, the on-site operator (OSO), is located in the escape
room (Figure 6.1a) and the other participant, the remote operator (RO), is
located in a room nearby (Figure 6.1b). From this nearby room, the RO is
remotely present in the escape room to help the OSO complete the tasks.

The escape room consists of the following three tasks that need to be
completed in the order in which they appear. A map of the escape room is
shown in Figure 6.2, depicting where each task is located.

1. Navigation Task - Radiation beam avoidance The RO is tasked
to lead the OSO through a maze of virtual radiation beams that only
the RO can see while making sure the OSO’s head never touches one
of the beams. This puzzle can be thought of as a laser maze, but with
the exception that only a remote partner can see the lasers. Also, to
increase the visibility and difficulty, beams with a thickness of around
25 cm are used instead of thin laser rays.

2. Recognition Task - Block shape collection Six blocks with dif-
ferent shapes are lying on the ground and the OSO needs to collect
three specific ones to use in the next step. Only the OSO is able to see
a virtual display depicting which blocks need to be collected. There-
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Figure 6.2: Map of the escape room and the relative locations of the three
tasks. 1) Radiation beam avoidance task; 2) Block collection task; 3) Block
alignment task.

fore the RO needs to recognize the correct blocks on the ground and
communicate to the OSO which ones he or she needs to collect.

3. Manipulation Task - Block alignment The three blocks that are
collected during the previous puzzle will start emitting a virtual laser
beam that only the RO can see once they are placed on top of the
table. The blocks need to be positioned in such a way that the lasers
point to the markers behind the table. To do this, the RO has to
communicate to the OSO how to manipulate the blocks. Once each of
the markers are lit by a laser beam, a part of the code will be displayed
on the screen.

In the instructions to the participants, no specific priority on speed or
accuracy was given. When asked, the participant was instructed to complete
the experiment in the way that he/she felt the most comfortable with. A
video of a pair of users completing all three tasks can be found on YouTube1.

1https://youtu.be/X1dxVtRf0ws
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6.5 System set-up

6.5.1 Configurations

This evaluation is based on a comparative design, where the performance and
experience of the users are compared between a system with all three design
aspects implemented and with one of them, respectively, not implemented.
To do this, four different system configurations have been prepared; one with
all the design aspects implemented and three in which every time a different
design aspect is not implemented individually. We will now present each
configuration separately for more details.

Baseline In the baseline configuration the system is configured in the same
way as it it described in chapter 3. The RO wears the VR headset, is free
to walk around and its head position and hands are visualized as holograms
at the OSO.

No embodiment The no embodiment configuration disables the holo-
graphic representation of the RO at the OSO. The visor, representing the
RO’s head position, and the visualization of the RO’s hands are removed.
The visualization of the hands that the RO would see in the virtual repre-
sentation of the on-site environment are disabled as well. This effectively
removes any visual representation of the RO in both the view of the RO and
the OSO.

Non-immersive The non-immersive configuration replaces the VR head-
set with a conventional 2D monitor, keyboard and mouse set-up, similar to
the set-up shown by Tait and Billinghurst (2015). Instead of navigating by
physically walking, the RO has to use the same mouse and keyboard controls
that are often found in first person shooter video-games; the arrow keys are
used to translate the view to a different position and the mouse is used to
rotate the view in a different direction.

The RO can still use his or her hands for pointing or gesturing; the leap
motion hand sensor that is otherwise attached to the front of the VR headset
is now positioned pointing up below the keyboard so the hands are detected
when the RO holds them up in front of the screen. This may introduce
extra difficulty, as the RO now has to switch between using his/her hands
for navigating and using them for making gestures.

Dependent view The dependent view configuration removes the ability
for the RO to independently walk around by fixing the RO’s viewpoint to
the viewpoint of the OSO, similar to what Kasahara and Rekimoto (2015)
did with JackIn head or what Gao et al. (2016) did in one of the conditions
of their research experiment.
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This configuration however, introduces a mismatch between the RO’s
movements and the movements that are perceived in VR, as the movements
in VR are now copying the movements of the OSO instead of the RO. This
mismatch between perceived movement and actual movement is known to
introduce nausea (Groen and Bos, 2008). Therefore, a couple of precautions
are made in order to reduce this effect. First, the RO is asked to sit down
in a chair and is recommended to keep head movements to a minimum as
they won’t affect the RO’s view anyway. Secondly, the movements of the
OSO are filtered with a low-pass filter before they are copied to the RO.
This removes any abrupt movements or shocks that are likely to make the
RO nauseous. The RO now smoothly follows the OSO’s movements instead
of experiencing every little bump.

In an attempt to further reduce sickness, self-evaluated experiments have
been done where the RO’s movements were retained to some degree. This
was done with the intent to keep a connection between perceived movement
an actual movement. Fast movements by the RO were copied but any in-
troduced deviation from the OSO’s position would be smoothly corrected
by pushing the RO’s view back to the OSO’s view again. It turned out that
this made the problem worse, as this promoted to look around yourself but
gets confusing when it doesn’t work as expected. Therefore it was decided
to turn this feature off and tell users to not move their head when they are
using the system in this configuration.

6.5.2 Modifications

Besides the different configurations, some other modifications have been
made to OpenIMPRESS specifically for this experiment as well. Certain
elements have been disabled while others have been added compared to the
system explained in chapter 4.

Hololens Alignment Borders Aligning the Hololens properly on a par-
ticipant’s head can sometimes be a difficult task, especially when nothing is
being displayed in the Hololens’s view. To help with this problem, a red bor-
der that touches the borders of the Hololens’s field of view has been added.
While helping the participant put on the glasses, the researcher can now ver-
ify whether the glasses have been installed properly by asking whether the
participant can all the corners of the red rectangle. If the participant can’t
see all the corners, the rectangle serves as a guide for moving the glasses
in the right direction. The border is only visible during the setup part of
the experiment. When the experiment starts, the border disappears so it
doesn’t interfere with the rest of the experiment.
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Radiation Beams For the first task of the experiment, the OSO has
to navigate through a maze consisting of radiation beams that only the
RO can see (Figure 6.3). Three dimensional beams have been designed and
incorporated into the RO’s virtual representation of the on-site environment.
The beams are constructed out of two cylinders with different diameters, one
inside the other, that rotate in opposite directions around their own axis.
Noise textures have been applied to both cylinders in order to make them
more visible.

Figure 6.3: One of the two radiation beam maze layouts.

A collider has been added so that collisions with the OSO’s Hololens
can be detected. Six of those beams have been put together in different
orientations to form a maze layout. Two layouts have been made in total;
one for the first round and one for the second round in order to reduce the
learning effect.

OptiTrack An Optitrack system is used to track the position and orien-
tation of the blocks in the escape room. The blocks are covered with unique
patterns of OptiTrack’s precision sphere markers (Figure 6.4), so that the
OptiTrack system can identify and track the individual blocks. The infrared
light from the OptiTrack camera’s was found to interfere with the Kinect
V2, which would be unable to detect any depth in parts of the scene that
are covered by a OptiTrack camera. This was solved by turning down the
OptiTrack cameras’ infrared LED light intensity2.

2LED value was set to “2” using the “Devices pane” in the Motive software (https:
//v110.wiki.optitrack.com/index.php?title=Devices_pane)
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Figure 6.4: Blocks with OptiTrack markers attached to them.

The OptiTrack Unity plugin3 was used to receive the tracking data from
OptiTrack’s Motive software in Unity.

Block Lasers and Markers The tracking data from the OptiTrack sys-
tem is aligned with the coordinate system that is used in the rest of Open-
IMPRESS by manually offsetting the coordinates that are received from the
OptiTrack system in Unity. This way, the locations of the blocks as tracked
by the OptiTrack system align with the locations where the RO sees the
blocks. Virtual laser beam objects are created and linked to the OptiTrack
tracking data so that each block emits one laser beam (Figure 6.5). The
laser beams check whether they hit one of the three marker objects using
Unity’s raycast functionality4. A marker object is a black rectangle that
participants are told to point the laser towards. A soon as a laser is pointed
towards one, it will gradually change color until it has become green. As
soon as all three markers are green, the safe code is revealed. In Figure 6.5b
the three marker objects are shown while being lit by the lasers.

Code Revealer Next to displaying the code and the current state of the
marker objects to the RO, the OSO is also shown those things. To do this,
a Code Revealer component has been added, which receives data from the
RO’s computer and displays the current state of the laser markers and the

3https://v20.wiki.optitrack.com/index.php?title=OptiTrack_Unity_Plugin
4https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

53

https://v20.wiki.optitrack.com/index.php?title=OptiTrack_Unity_Plugin
https://docs.unity3d.com/ScriptReference/Physics.Raycast.html


CHAPTER 6. MAIN EVALUATION

(a) The RO is adjusting one of the
blocks’ orientation.

(b) All laser markers are lit and
the correct code is displayed to the
OSO.

Figure 6.5: The blocks, lasers and marker objects as seen by the RO.

safe code on a monitor in the escape room (Figure 6.6). This component is
implemented in Unity and runs independently on a separate computer. The
output is displayed on a monitor that is positioned behind the table of the
block alignment task. This way, the OSO gets direct visual feedback when
a block has been aligned properly and can see the code once all three have
been aligned.

Figure 6.6: The code revealer interface as seen by the OSO on a monitor.

Experiment Management System The Experiment Management Sys-
tem keeps track of the current state of the experiment and makes sure all
components are set to the right state when necessary. It is integrated into
the software that runs at the RO and communicates with the other remote
components using the Networking System. It manages the following tasks:
It sends a message to the HoloLens to disable the alignment borders when
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the experimenter presses the special key combination to start the experi-
ment and a message to enable them when the stop combination is pressed.
It sends the safe code to the code revealer as soon as all three laser markers
are lit and a message to hide the code when the system starts, as well as
messages about whether each laser marker is currently lit or not. It also
sends a message to the HoloLens whenever the HoloLens’ transform collides
with one of the beams from the radiation beam avoidance task. When this
happens, a red flash is displayed on top of both the RO’s and the OSO’s
views in combination with a zapping sound to warn them that the OSO hit
a radiation beam.

6.5.3 Data Logger

Logging functionality was added to OpenIMPRESS which captured all data
that got sent and received at the RO, which encompasses all the streaming
data in the system. This is useful because it provides a standardized way for
determining the duration of an experiment by taking the difference between
the timestamp of the start command and the end command. This is also
useful for future research because the data contains a lot of information
about the interactions participants had, like head positions, hand gestures,
verbal communication and 3D scans of the room.

6.5.4 Layout

The layout of the physical components at the on-site location is shown in
Figure 6.7. The dimensions of the escape room area are 3,0m X 5,6m.

Three Kinect V2 depth cameras are installed at the borders of the room
to capture the room from above. The first is installed at the end of the
maze, pointing to the start location. This way, when the OSO is walking
through the maze, he/she will be facing the camera which cleared image for
the RO. The second camera is pointing towards the blocks that are lying
on the ground. Because the first camera also partially has the blocks in its
view, will be visible to the RO even when one of the cameras gets covered by
the OSO. The third camera is positioned behind the table of the alignment
task to point down to it from the top. It captures what is positioned on top
of the table as well as who is standing in front of it. This allows the RO
to get a good overview of the blocks and how the OSO has to manipulate
them.

Six OptiTrack cameras are installed around above the table in order to
track the location and orientation of the blocks using the reflective markers
that are attached to the blocks.

There are two PC’s located outside of the escape room. PC 1 processes
the data from the first two Kinect cameras and streams them to the RO
using two instances of the Depth Camera Streamer (subsection 4.1.1).
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Figure 6.7: A map of the system’s technical components in the escape room.

PC 2 processes and streams the data from the third Kinect camera and
runs an instance of OptiTrack Motive which receives and processes the data
from the OptiTrack cameras and calculates the transforms of the blocks
based on that. It also runs the Code Revealer software component, which is
shown on the connected display in the escape room.

Before a experiment run begins, the OSO sits behind the first table and
fill in the questions on the questionnaire laptop. Next on the same table, the
safe is located which the participants can open at the end of the complete
experiment.

A wireless router is located on top of the table with PC 1. The router is
connected to both PC’s and the internet with a gigabit Ethernet connection
and to the HoloLens with a wireless 802.11ac connection.

At the remote location the layout is relatively simple compared to the
on-site location. A desktop PC is set up in on corner of the room on a table
with a monitor, mouse and keyboard and the rest of the room is used as
the play area for the VR setup. The play area is positioned in such a way
that there is enough physical space to allow the RO to freely walk inside the
virtual representation of the on-site environment without bumping into any
physical obstacles.
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6.6 Study design

The experiment is split into three sub experiments; an independent view, an
immersive display and a virtual embodiment experiment.

Each experiment is designed with a single within subject variable “con-
figuration” at one of two levels: baseline and test. This means that each pair
completes the escape room twice. Once in the baseline configuration, and
once in the test configuration of in the respective experiment. The order of
“configuration” is counterbalanced.

In the independent view experiment, the two levels of “configuration”
thus are the baseline (independent view) configuration and the dependent
view configuration. In the immersive display experiment, the two levels of
“configuration” thus are the baseline (immersive display) configuration and
the non-immersive configuration. In the virtual embodiment experiment,
the two levels of “configuration” thus are the baseline (virtual embodiment)
configuration and the no embodiment configuration (subsection 6.5.1).

Ten pairs participated in each experiment, which results in 60 partici-
pants who participated in total. Participants were recruited using messages
on social media and mouth to mouth communication. Most of the partici-
pants are students or employees at the University of Twente. Participants
were asked to sign up, preferably in pairs, using an online form. If a partic-
ipant signed up alone, he or she would be paired with another participant
that signed up alone.

The group consisted of 31 males and 29 females, the mean age is 25.9
years (sd: 9.0, max: 57). 8 pairs are male-male, 7 pairs are female-female
and 15 pairs are male-female. 83.3% of the participants report to have tried
VR once or twice before and 8.3% says to use it frequently where 66.7%
report to have tried AR once or twice before and 3.3% reporting to use it
frequently.

One pilot test for each of the three experiments has been conducted
before the actual experiments started. Based on those pilot tests it was
found that there was still confusion about some of the tasks’ details. This
is why next to written task instructions, the RO and OSO also receive an
explanation about the tasks from the experimenter directly.

6.7 Measures

For getting an indication of the performance we are looking at the duration
and the amount of errors. The duration is determined automatically by
subtracting the timecode of the “start data packet” which indicates the start
of the run from the timecode of the “code reveal data packet” which was
sent when the participants finished the last puzzle thus indicating the end
of the run. The amount of errors are described by the amount of times the
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OSO hits one of the radiation beams in the radiation beam avoidance task.
This is measured by counting the amount of “radiation hit data packets”
that are sent during a particular run.

For getting an indication of the users’ experience we look at usability, spa-
tial presence, co-presence, perceived message understanding and perceived
behavioral interdependence.

We measure usability using the System Usability Scale (SUS) (Brooke
et al., 1996). It consists of 10 questions on how the user perceived the
system; whether he/she would have needed support or training, and the
overall complexity of the system. The answers are used to calculate a single
score from 0 to 100 that rates the overall usability of the system using the
scoring system detailed by Brooke et al. (1996).

We use the igroup presence questionnaire (IPQ) (Schubert, Friedmann,
and Regenbrecht, 2001) to measure the participant’s spatial presence. This
questionnaire consists of 14 questions on a 5-point Likert scale, of which
6 relate to spatial presence. To compute the spatial presence score, the
scores from negative questions are inverted after which the average of those
6 questions’ scores is calculated.

We use the Networked Minds Measure of Social Presence (Harms and
Biocca, 2004), a questionnaire focusing on social presence, to measure co-
presence, perceived message understanding and perceived behavioral inter-
dependence. It consists out of 36 questions in total, providing the following
six subscales: co-presence, attentional allocation, perceived message under-
standing, perceived affective understanding, perceived emotional interde-
pendence and perceived behavioral interdependence5.

Before starting the experiment, participants were also asked to fill in
the Immersive Tendencies Questionnaire (Witmer and Singer, 1998) which
was used to “measure differences in the tendencies of individuals to experi-
ence presence”. Specifically, a version of this questionnaire that was revised
by the UQO Cyberpsychology Lab (2004) was used. It consists out of 18
questions and provides scores on the following four subscales: tendency to
become involved in activities, tendency to maintain focus on current activ-
ities, tendency to play video games and tendency to become emotionally
affected.

5We take the average of the item scores associated to the respective subscales. It should
be noted that in Harms and Biocca (2004), they only report positive factor loadings for
the respective items, although some items are clearly phrased as the inverse. We thus
have inverted the items (7, 8, 11, 12, 17, 18, 21 and 22) before computing the scores for
the purposes of this study
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6.8 Experiment procedure

Before the experiment begins, the experimenter starts with selecting one of
the three experiments, selecting whether the baseline or the altered condition
is presented first and whether the first or second maze layout it presented
first. This is done using a predefined sequence where, with maze 1 presented
first, the three experiments are first done with the “baseline” configuration
first and then with the “test” configuration first after which everything is
repeated with maze 2 presented first.

A table is made to help the experimenter keep track of where in this
sequence the user tests are currently positioned, this table can be seen in
section A.1. This appendix also contains a random sequence of 1’s and 0’s
that is generated to ensure the participants get the RO and OSO task as-
signed randomly. Before every experiment the next number in the sequence
is selected. If the number is 0, the first person stepping through the door
would be assigned the role of OSO. If the number is a 1, the first person is
assigned the RO role.

A checklist is made that the experimented can use during the experiment
(section A.2). It contains fields to write down the names of the participants,
and fields to check off each step that the experimenter has to take to complete
an experiment. For every step it contains information about the location
where it should take place and the text the experimenter should say or the
action the experimenter should take.

When the participants arrive, they are welcomed and led into the remote
location room. After a basic introduction about what is going to happen, the
OSO is asked to follow the experimenter to the on-site location room. Both
participants are asked to read and fill in the consent form (section A.5) and
fill in the pre-experiment questionnaire on the computers in their own rooms.
After they are done filling in the questionnaire, the experimenter presents
them the RO and OSO instructions (section A.4 & section A.3) accordingly
and does a walk-through of the steps together with each participant to make
sure they understand what has to happen.

Then, the OSO is helped to put on the HoloLens in the escape room
area. The HoloLens is aligned by making sure the participant can see all
edges of the boundary rectangle displayed in the HoloLens. The experi-
menter explains that the participant should try not to cover the front of the
HoloLens with anything, to prevent the sensors loosing track of the envi-
ronment. If they do loose track during an experiment and the “Trying to
map your surroundings” message appears, the participant is asked to inform
the experimenter immediately so the HoloLens can be re-calibrated and the
experiment either restarted or continued. The OSO is asked to wait in a
corner of the escape room and the experimenter turns on a Skype connection
with their phone so they can communicate from the other room. Then, the
experimenter leaves the room to set up the RO.
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Depending on which condition is selected, the RO is asked to either put
on the VR headset or sit behind the desk. The software is then started by
the experimenter, which starts the connection between the RO and OSO.
The experimenter confirms whether the participants can hear each other and
asks the RO to look for the OSO within the virtual representation of the
escape room. In a condition where the RO has an embodiment at the OSO,
the OSO is asked to follow the arrow that is displayed in the HoloLens to
find the RO. In order to give the participants an idea of how the gesturing
system works, the RO is asked to place his or her hand on top of one of the
poles in the middle of the room and the OSO is asked whether he or she can
see the hand on op of the pole and to shake hands with each other.

Then, the OSO is instructed to walk to the start position and if the
participants don’t have any further questions, the experimenter starts the
experiment by pressing the right key combination on the keyboard. After
the participants have finished, they are helped to take of their HMD’s and
asked to fill in the post-experiment questionnaire on the computers in their
rooms. When the questionnaires are filled in, the participants are set up
for the second run with either the baseline or altered condition depending
on which one was done in the first run. A tutorial will be done again
explaining only the parts that are required for that particular condition
that hasn’t already been explained during the tutorial of the first run. The
experiment is started and after the participants found the code, they will
fill in the post-experiment questionnaire for the second time as well. After
both participants filled in the questionnaire, the RO is asked to follow the
experimenter to the on-site location room, where the participants can open
the safe together with the code they found during the experiment. The safe
contains candy, which the participants can take as a reward for participating.

The experimenter will answer any remaining questions the participants
may still have and (if there is enough time left) offers the participants to try
the experiment from the other room as well.

Due to a bug in the point-cloud renderer, the RO system could freeze at
random moments in time. The RO software then had to be restarted by
the experimenter, after which it would work again. Restarting the software
could take up to 30 seconds, during which the RO would see for the most
part a black image. This freeze occurred during six different experiment
runs. In those cases a decision was made whether to restart the experiment
or to continue at the same point in the experiment at which the system froze
depending on how far the run had already progressed.
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6.9 Data Processing

This section will explain how the data was processed after it was captured
during the experiments.

6.9.1 Duration Extraction

During some experiments the system had to be restarted mid-run. This
meant that the automatically generated log data files of those runs were
split into two. This made the method of measuring the difference between
the timestamps of the start and end commands to determine the duration
of a run invalid. In order to measure the duration in those cases, camera
footage was used as a reference to manually determine the total length of a
run.

Depending on how far the participants were into the experiment, the
experiment was either resumed at the point where the participants were
at the moment the system restarted or the experiment was restarted from
the beginning. If the experiment was restarted from the beginning and
task 1 was already completed, the time is counted during the first attempt
until task 1 is finished, after which the remaining time is counted in the
second attempt after task 1 is finished, otherwise only the time of the second
attempt is used.

If the experiment was resumed with the participants staying in position,
the extra time that was lost to restarting the system is cut out, so that only
the true time that was needed to solve the tasks remains.

6.9.2 Learning Effect

To determine if there was a learning effect influencing the performance, a
test was done in which the total task durations measured in the baseline
condition of first runs are compared to those of second runs across all exper-
iments. The dataset is split up into two groups and one outlier is removed
from the second run group (Figure 6.8) which resulted in a sample size of
15 for the first run group and 14 for the second run group.

Shapiro-Wilk normality test for both groups resulted in p-values greater
than 0.05, which implies we can assume normality. An F-test resulted in a
p-value of 0.021, which implies we cannot assume equal variances. A one-
tailed, independent-samples t-test was conducted to compare the total task
duration in the baseline configuration during the first run and the second
run. There was a significant positive difference in the scores for first runs
(M=305.73, SD=91.66) and second runs (M=214.56, SD=47.00); t(21.187)
= 3.403, p = 0.0013. This suggests that the total task durations in the
first run are indeed longer than in the second run, which means there was
a learning effect that influenced the performance of the participants. The
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Figure 6.8: Total task durations in the baseline condition, between first and
second runs.

average decrease in the required time due to the learning effect is 91,17
seconds, which is determined by taking the difference between the average
durations of the first and seconds runs.

To compensate for this learning effect, those 91,17 seconds are added to
all durations measured in a second run. This is not skewing the data in
favor of a particular condition, because every condition contains the same
amount of samples that are collected in a first and in a second run and
therefore same amount of time is added to all conditions.

6.9.3 Data Analysis

Because this was an experiment with a within-subject design, we look at
the difference between the paired scores from the two runs by the same pair
of participants. The scores of the condition with the design aspect disabled
(dependent view, non-immersive & no embodiment) are subtracted from the
scores of the condition with the same design aspect enabled (independent
view, immersive display & virtual embodiment). This creates a positive
number when a particular design aspect resulted in a higher score and a
negative number when that design aspect resulted in a lower score.

Score differences for all measures were considered outliers when they fell
outside 1.5 times the interquartile range above the upper quartile and bellow
the lower quartile. This is shown in the accompanying box plot figures in
section 6.10 by marking outliers with a point above or below a box plot.
Scores that produced an outlier were removed from the dataset and thus
not further used during the analysis of that particular measure.

By default, a one-tailed paired-samples t-test is performed on the scores
to determine whether there is a statistically significant difference between
the scores from the condition with a particular design aspect enabled and
the condition where it is disabled.
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A paired t-test assumes that the difference in paired scores is normally
distributed. Therefore, before conducting a t-test, a Shapiro-Wilk test is
conducted on the differences to test this. In case the test shows that the
distribution of the differences is significantly different from normal distri-
bution, a paired samples Wilcoxon test is used instead of a paired t-test.
In section 6.10 the result of the Shapiro-Wilk test is not shown unless it is
significant.

All tests are performed using R version 3.4.3 (2017-11-30) x86 64-w64-
mingw32 and the plots are generated using ggplot2 version 2.2.1.

6.10 Results

The results of the statistical tests are presented separately under the corre-
sponding hypothesis.

6.10.1 View independence

3 H1.1 View independence decreases the total task duration. A
one-tailed, paired-samples t-test was conducted to compare the total task
duration in independent view and dependent view conditions (Figure 6.9).
There was a significant negative difference in the scores for independent view
(M=301.040, SD=74.400) and dependent view (M=348.644, SD=66.133)
conditions; t(9) = -2.614, p = 0.014, mean of the differences = -47.604.
This suggests that view independence does indeed decrease the total task
duration compared to a fixed view.

7 H1.2 View independence decreases the amount of errors. A
one-tailed, paired-samples t-test was conducted to compare the amount of
beam hits in independent view and dependent view conditions (Figure 6.10).
There was not a significant negative difference in the scores for independent
view (M=1.111, SD=1.269) and dependent view (M=0.889, SD=1.269) con-
ditions; t(8) = 0.686, p = 0.744, mean of the differences = 0.222. This shows
no evidence to support that view independence decreases the amount of er-
rors compared to a fixed view.

3 H1.3 View independence increases usability for the RO. A one-
tailed, paired-samples t-test was conducted to compare the SUS score of
the RO in independent view and dependent view conditions (Figure 6.11).
There was a significant positive difference in the scores for independent
view (M=77.778, SD=10.266) and dependent view (M=66.944, SD=14.185)
conditions; t(8) = 3.506, p = 0.004, mean of the differences = 10.833. This
suggest that view independence does indeed increase the usability for the
RO compared to a fixed view.
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3 H1.4 View independence increases spatial presence of the RO.
A one-tailed, paired-samples t-test was conducted to compare the perceived
spatial presence score of the RO in independent view and dependent view
conditions (Figure 6.12). There was a significant positive difference in the
scores for independent view (M=6.233, SD=0.610) and dependent view
(M=5.150, SD=1.101) conditions; t(9) = 4.079, p = 0.001, mean of the
differences = 1.083. This suggests that view independence does indeed in-
crease spatial presence of the RO compared to a fixed view.

3 H1.5 View independence increases co-presence for the RO. A
one-tailed, paired-samples t-test was conducted to compare the co-presence
score of the RO in independent view and dependent view conditions (Fig-
ure 6.14). There was a significant positive difference in the scores for
independent view (M=4.407, SD=0.501) and dependent view (M=4.111,
SD=0.577) conditions; t(8) = 3.411, p = 0.005, mean of the differences
= 0.296. This suggests that view independence does indeed increase co-
presence of the RO compared to a fixed view.

7 H1.6 View independence decreases perceived behavioral interde-
pendence of the RO. A one-tailed, paired-samples t-test was conducted
to compare the perceived behavioral interdependence score of the RO in in-
dependent view and dependent view conditions (Figure 6.15). There was not
a significant negative difference in the scores for independent view (M=4.367,
SD=0.576) and dependent view (M=4.050, SD=0.604) conditions; t(9) =
1.934, p = 0.957, mean of the differences = 0.317. This shows no evidence
to support that view independence decreases perceived behavioral interde-
pendence of the RO compared to a fixed view.

7 H1.7 View independence decreases perceived behavioral inter-
dependence of the OSO. A one-tailed, paired-samples t-test was con-
ducted to compare the perceived behavioral interdependence score of the
OSO in independent view and dependent view conditions (Figure 6.15).
There was not a significant negative difference in the scores for independent
view (M=3.967, SD=0.399) and dependent view (M=4.167, SD=0.423) con-
ditions; t(9) = -1.450, p = 0.090, mean of the differences = -0.200. This
shows no evidence to support that view independence decreases perceived
behavioral interdependence of the OSO compared to a fixed view.

64



OpenIMPRESS - An Open Immersive Telepresence System

6.10.2 Immersion

3 H2.1 Immersion decreases the total task duration. A one-tailed,
paired-samples t-test was conducted to compare the total task duration in
immersive and non-immersive conditions (Figure 6.9). There was a signifi-
cant negative difference in the scores for immersive (M=298.029, SD=81.956)
and non immersive (M=358.348, SD=119.836) conditions; t(8) = -2.105, p
= 0.034, mean of the differences = -60.319. This suggests that immersion
does indeed decrease the total task duration.

7 H2.2 Immersion decreases the amount of errors. A one-tailed,
paired-samples t-test was conducted to compare the amount of beam hits in
immersive and non-immersive conditions (Figure 6.10). There was not a sig-
nificant negative difference in the scores for immersive (M=0.750, SD=1.389)
and non-immersive (M=1.375, SD=1.188) conditions; t(7) = -0.886, p =
0.203, mean of the differences = -0.625. This shows no evidence to support
that immersion decreases the amount of errors.

3 H2.3 Immersion increases usability for the RO. A one-tailed,
paired-samples t-test was conducted to compare the SUS score of the RO in
immersive and non-immersive conditions (Figure 6.11). There was a signifi-
cant positive difference in the scores for immersive (M=77.250, SD=15.831)
and non-immersive (M=59.000, SD=17.288) conditions; t(9) = 3.222, p =
0.005, mean of the differences = 18.250. This suggests that immersion does
indeed increase usability for the RO.

3 H2.4 Immersion increases spatial presence for the RO. A one-
tailed, paired-samples t-test was conducted to compare the perceived spa-
tial presence score of the RO in immersive and non-immersive conditions
(Figure 6.12). There was a significant positive difference in the scores for
immersive (M=5.633, SD=1.165) and non-immersive (M=4.017, SD=1.738)
conditions; t(9) = 2.735, p = 0.012, mean of the differences = 1.617. This
suggests that immersion does indeed increase the spatial presence for the
RO.

7 H2.5 Immersion increases co-presence for the RO. A one-tailed,
paired-samples t-test was conducted to compare the co-presence score of the
RO in immersive and non-immersive conditions (Figure 6.14). There was
not a significant positive difference in the scores for immersive (M=4.367,
SD=0.520) and non-immersive (M=4.150, SD=0.506) conditions; t(9) =
1.361, p = 0.103, mean of the differences = 0.217. This shows no evidence
to support that immersion increases co-presence for the RO.
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Figure 6.9: Total Task Duration Differences
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Figure 6.10: Amount of Beam Hits Differences

3 H2.6 Immersion increases perceived message understanding of
the RO. A one-tailed, paired-samples t-test was conducted to compare
the perceived message understanding score of the RO in immersive and non-
immersive conditions (Figure 6.13). There was a significant positive differ-
ence in the scores for immersive (M=3.833, SD=0.692) and non-immersive
(M=3.278, SD=0.607) conditions; t(8) = 3.780, p = 0.003, mean of the
differences = 0.556. This suggests that immersion does indeed increase per-
ceived message understanding for the RO.

3 H2.7 Immersion increases perceived message understanding of
the OSO. A one-tailed, paired-samples t-test was conducted to compare
the perceived message understanding score of the OSO in immersive and
non-immersive conditions (Figure 6.13). There was a significant positive dif-
ference in the scores for immersive (M=4.250, SD=0.517) and non-immersive
(M=3.733, SD=0.903) conditions; t(9) = 1.935, p = 0.042, mean of the dif-
ferences = 0.517. This suggests that immersion does indeed increase per-
ceived message understanding for the OSO.

6.10.3 Virtual embodiment

7 H3.1 Giving the visitor a virtual embodiment decreases the to-
tal task duration. A one-tailed, paired-samples t-test was conducted to
compare the total task duration in virtual embodiment and no embodiment
conditions (Figure 6.9). There was not a significant negative difference in
the scores for virtual embodiment (M=331.437, SD=93.044) and no embod-
iment (M=301.716, SD=103.732) conditions; t(9) = 1.229, p = 0.875, mean
of the differences = 29.721. This shows no evidence to support that Giving
the visitor a virtual embodiment decreases the total task duration.
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Figure 6.11: System Usability Scale Score Dif-
ferences
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Figure 6.12: Spatial Presence Score Differences
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Figure 6.13: Perceived Message Understanding
Score Differences
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Figure 6.14: Co-Presence Score Differences
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Figure 6.15: Perceived Behavioral Interdepen-
dence Score Differences

7 H3.2 Giving the visitor a virtual embodiment decreases the amount
of errors. A one-tailed, paired-samples t-test was conducted to compare
the amount of beam hits in virtual embodiment and no embodiment condi-
tions (Figure 6.10). There was not a significant negative difference in the
scores for virtual embodiment (M=0.600, SD=0.699) and no embodiment
(M=1.400, SD=1.776) conditions; t(9) = -1.309, p = 0.111, mean of the
differences = -0.800. This shows no evidence to support that Giving the
visitor a virtual embodiment decreases the amount of errors.

3 H3.3 Giving the visitor a virtual embodiment increases usability
for the RO. A one-tailed, paired-samples t-test was conducted to com-
pare the SUS score of the RO in virtual embodiment and no embodiment
conditions (Figure 6.11). There was not a significant positive difference in
the scores for virtual embodiment (M=70.500, SD=11.714) and no embod-
iment (M=73.250, SD=13.126) conditions; t(9) = -1.029, p = 0.835, mean
of the differences = -2.750. This suggests that Giving the visitor a virtual
embodiment does indeed increase the usability for the RO.

7 H3.4 Giving the visitor a virtual embodiment increases usability
for the OSO. A one-tailed, paired-samples t-test was conducted to com-
pare the SUS score of the OSO in virtual embodiment and no embodiment
conditions (Figure 6.11). There was not a significant positive difference in
the scores for virtual embodiment (M=79.444, SD=8.640) and no embodi-
ment (M=77.500, SD=7.289) conditions; t(8) = 1.306, p = 0.114, mean of
the differences = 1.944. This shows no evidence to support that Giving the
visitor a virtual embodiment increases the usability for the OSO.
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7 H3.5 Giving the visitor a virtual embodiment increases perceived
message understanding of the RO. A one-tailed, paired-samples t-test
was conducted to compare the perceived message understanding score of the
RO in virtual embodiment and no embodiment conditions (Figure 6.13).
There was not a significant positive difference in the scores for virtual em-
bodiment (M=4.067, SD=0.459) and no embodiment (M=4.200, SD=0.414)
conditions; t(9) = -1.350, p = 0.895, mean of the differences = -0.133. This
shows no evidence to support that Giving the visitor a virtual embodiment
increases perceived message understanding for the RO.

7 H3.6 Giving the visitor a virtual embodiment increases perceived
message understanding of the OSO. A one-tailed, paired-samples t-
test was conducted to compare the perceived message understanding score
of the OSO in virtual embodiment and no embodiment conditions (Fig-
ure 6.13). There was not a significant positive difference in the scores for
virtual embodiment (M=4.017, SD=0.319) and no embodiment (M=4.133,
SD=0.205) conditions; t(9) = -1.000, p = 0.828, mean of the differences =
-0.117. This shows no evidence to support that Giving the visitor a virtual
embodiment increases perceived message understanding for the OSO.

3 H3.7 Giving the visitor a virtual embodiment increases co-
presence of the RO. A Shapiro-Wilk normality test for the differences
between the co-presence score of the RO in virtual embodiment and no em-
bodiment conditions was conducted which resulted in a p-value of p=0.00067.
This implies that the distribution of the differences are significantly different
from normal distribution. Therefore, normality can not be assumed and a
paired-samples t-test cannot be used.

A paired samples Wilcoxon test was conducted to compare the co-presence
score of the RO in virtual embodiment and no embodiment conditions (Fig-
ure 6.14). There was a significant positive difference in the scores for vir-
tual embodiment (M=4.350, SD=0.412) and no embodiment (M=3.883,
SD=0.798) conditions; V = 28, p = 0.022, mean of the differences = 0.467.
This suggests that Giving the visitor a virtual embodiment does indeed in-
crease co-presence for the RO.

7 H3.8 Giving the visitor a virtual embodiment increases co-presence
of the OSO. A one-tailed, paired-samples t-test was conducted to com-
pare the co-presence score of the OSO in virtual embodiment and no em-
bodiment conditions (Figure 6.14). There was not a significant positive
difference in the scores for virtual embodiment (M=4.167, SD=0.624) and
no embodiment (M=4.050, SD=0.478) conditions; t(9) = 0.606, p = 0.280,
mean of the differences = 0.117. This shows no evidence to support that
Giving the visitor a virtual embodiment increases co-presence for the OSO.
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Figure 6.16: Gaming frequency of ROs in the
non-immersive condition.
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Figure 6.17: Total task duration in the non-
immersive condition plotted against the RO’s
gaming frequency

6.11 Exploratory study

Besides using the captured data to test the hypotheses from section 6.3, we
used the data as well to answer questions that arose during and after the
experiment.

Gaming Frequency We observed a distinction between participants who
were having difficulties navigating in the non-immersive configuration using
the 2D desktop interface and participants who didn’t seem to have difficul-
ties with it. For participants who had difficulties navigating, the total time
needed to complete the tasks seemed to be longer as well. Navigating in
the non-immersive condition is done by using keyboard and mouse controls
that are often found in popular video games as well. Therefore we hypoth-
esize that participants who have more experience playing video games will
have less difficulties navigating the virtual representation of the on-site en-
vironment in the non-immersive condition which results in a lower total task
duration.

We used question 14 of the ITQ (How often do you play arcade or video
games? ) to make a distinction between participants who never to occa-
sionally play video games and participants who play occasionally to often.
Figure 6.16 shows the distribution of the answers given on this question by
the RO’s who used the system in the non-immersive condition. Those RO’s
have been split up into two equal populations; 5 who play video games never
to occasionally and 5 who play occasionally to often.

We can look at Figure 6.17 to compare the total task duration of RO’s
who never to occasionally play video games (M=433, SD=130) and those
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Figure 6.19: Total task duration in the base-
line condition plotted against the RO’s gaming
frequency.

who play occasionally to often (M=283, SD=54) in the non-immersive con-
figuration. We see a clear increase in the mean time for RO’s who play never
to occasionally. This suggests that RO’s who game more often were indeed
faster in completing the tasks in the non-immersive configuration.

Based on the effect that gaming experience seems to have on the per-
formance in the non-immersive condition, we looked at whether gaming
experience also affects the performance in other conditions. This can give
an insight in whether the keyboard and mouse controls are the cause of
the better performance for RO’s that game more often or whether gaming
frequency is an overall indicator for better performance in remote collabo-
rative work scenarios. We use the baseline condition for this comparison,
as all participants have completed this condition which allows us to work
with more samples compared to using the no embodiment or dependent view
conditions.

As can be seen in Figure 6.18, four participants selected the middle
option, those will be disregarded. This results in a group of 17 RO’s who
play never to occasionally and a group of 9 RO’s who play occasionally to
often.

We can look at Figure 6.18 to compare the total task duration of RO’s
who never to occasionally play video games (M=330, SD=92) and those who
play occasionally to often (M=277, SD=54) in the baseline configuration.
We see that the means of the two groups are closer together than they
were with the non-immersive configuration but still show a difference. This
suggests that “gamers” may be more motivated to perform in collaborative
tasks compared to “non-gamers” but that this advantage becomes especially
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Figure 6.21: Co-presence between the RO and
OSO in the baseline condition.

noticeable when they use a desktop interface that is similar to what they
use when playing video-games.

OSO vs RO The OpenIMPRESS system is asymmetrical, this means
that the part of the system that the RO uses is different from the part the
OSO uses. Where the RO is presented a completely virtual representation
of the on-site environment, the OSO is physically there and the system only
overlays a virtual embodiment of the RO on top of the OSO’s view of the
real environment. This means that there is a difference in the experience
that the system provides to both users.

Because the users have to interact with the system in different ways, we
may expect this to lead to a difference in usability. Also, because there is
a difference in how both users perceive each other (the RO can see a visor
and a complete point cloud of the OSO’s body where the OSO can only
see the RO’s hands and visor), we expect a difference in co-presence. We
expect that the asymmetrical nature of the system results in a difference in
usability and co-presence between the RO and OSO. For this comparison
we use the SUS and co-presence scores from ROs and OSOs in the baseline
condition.

First, we will look at the SUS scores between the RO (M=75.42, SD=12.80)
and OSO (M=78.08, SD=7.924) using Figure 6.20. We see that the means
are relatively close to each other but that the scores from the RO are more
spread out than the scores from the OSO are. This suggests that on average
there is not a difference in usability between the RO and OSO, but that
from person to person there is more variance in how usable the system is
perceived by the RO.
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Next, we will look at the co-presence scores between the RO (M=4.40,
SD=0.468) and OSO (M=4.31, SD=0.603) using Figure 6.21. Again we see
that the means are relatively close to each other but that the scores from
this time the OSO are a little bit more spread out. This suggests that on
average the users feel each other’s presence with the same strength, but that
there is more variance in the OSO’s feeling of co-presence.

6.12 Discussion

Three design aspects of our mixed reality telepresence system have been
tested to understand how they affect the performance and experience of the
users in a collaborative context. Each aspect has been tested in a study
in which the participants had to collaborate once in the system configured
with all aspects implemented and once configured with the aspect not imple-
mented. Because the configurations had the other two aspects implemented
in both cases, this resulted in scenarios that give new insights into how
those aspects influence performance and experience in a telepresence system
compared to previous research.

View independence Allowing the RO to freely walk around in the virtual
representation of the on-site environment has a positive influence on the
overall performance, usability for the RO and the feeling of spatial and
co-presence of the RO. This is in line with the results found by Tait and
Billinghurst (2015), which showed the positive effects of view independence
on the quality of the collaboration using a desktop interface. This research
builds on top of that by showing that with an immersive display and a
virtual embodiment of the RO, positive effects are measurable as well.

We didn’t find evidence for view independence decreasing the perceived
behavioral interdependence for either user as was hypothesized in H1.6 and
H1.7. The idea was that by disconnecting the RO’s view from the OSO’s
view, their behaviors would become more independent as the RO can now
independently navigate through the virtual representation of the on-site en-
vironment. When looking at Figure 6.15 we have a strong indication that
view independence actually increases the perceived behavioral interdepen-
dence for the RO instead of decreasing it. This could be a result of the
increased efficiency of the system which allows the RO to respond to the
OSO’s actions more directly.

We assumed that view independence makes the system become more
usable because of the RO being able to look at what he/she needs without
the need to ask the OSO. After observing the participants, this didn’t always
seem to be the case. With the block collection task, the RO often asked the
OSO to hold up a block so it would be better visible, even when the RO
could freely look at objects from different perspectives.

73



CHAPTER 6. MAIN EVALUATION

This is probably a side effect of the limited resolution of the depth cam-
eras and the fact that they only scan objects from one side, thus giving no
information about the back of an object without it physically being rotated
in front of the camera. This effect has been minimized by placing multi-
ple depth cameras at the on-site location so objects would be scanned from
multiple sides, but because of alignment errors it could sometimes still be
confusing as to how an object actually looked like. Higher resolution cam-
eras and filter algorithms that correct for alignment errors and gaps in the
point cloud data could be a good solution for this issue. Also, converting
the point cloud data into a mesh could help, as it gives more certainty about
contours of an object compared to using a direct point-cloud representation.

Immersive display Visualizing the virtual representation of the on-site
location to the RO using an immersive VR display did decrease the total
task duration, increase the usability and perceived spatial presence for the
RO and increase the perceived message understanding for both users.

As expected, the feeling of presence in the virtual environment was in-
deed higher compared to using a desktop set-up, which is one of the main
selling points for using VR in the first place. The system is rated more
usable by the RO but not by the OSO (Figure 6.11). This can be explained
by the fact that the system appeared the same to the OSO in both condi-
tions; whether the RO is using a VR display or a desktop monitor, in both
conditions the RO has a virtual embodiment that can freely navigate the
environment and looks the same. The increased usability that was perceived
by the RO apparently did not translate into a higher usability for the OSO
as well.

By observing the participants we could see that a lot of RO’s had trou-
ble navigating through the virtual representation of the environment in the
non-immersive condition using the 2D desktop interface. Those participants
often tried to give instructions to the OSO from a perspective in which it
was difficult to see important parts of the task, by parts for example being
obscured by other parts or just being far away. We observed for example
some RO’s trying to give instructions about how to navigate through the
maze while looking at the maze from the end of the maze while the partici-
pant is still standing at the beginning of the maze. Because the navigation
in the non-immersive condition used controls that are relatively common in
video games, we expect this behavior to be correlated with the amount of ex-
perience the RO has with playing video games. In the exploratory study we
indeed found that RO’s who reported to play video-games regularly needed
a lower time on average to complete the tasks.

Observations of the RO’s in this condition also seem to suggest that
moving around a lot improves performance. RO’s that completed the tasks
relatively fast often seem to move around a lot, especially in the maze task.
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We hypothesize this to be a technique that is used to compensate for the
lack of stereoscopic depth perception when using a 2D monitor; by moving
around a part of the scene the motion parallax can create a impression of
the relative depth when other cues are absent (Rogers and Graham, 1979).
The lack of stereoscopic depth perception can also be a reason for the hand
gesture system not being used relatively often. It looked like people had
trouble understanding how far away their hands exactly were from their
position in the virtual representation.

The higher usability score from the RO seems to be easily explained
when looking at the reaction of some of the participants that switched from
the desktop condition to the VR condition, announcing how much better
and easier the system was to use in VR.

Virtual embodiment Giving the RO a virtual embodiment did increase
the usability and co-presence for the RO. This seems to suggest that, at least
for the RO, having a virtual body in the virtual representation of the on-site
environment and in the on-site environment itself has a positive effect on
the experience.

However, we didn’t find an increase in any of the performance measures
or in both users’ perceived message understanding. This is hypothesized to
be because of the users still needing to learn how to properly make use of the
advantages of having an embodiment. By observing the participants we saw
that the RO often navigated the OSO through the maze by only using their
voice while the ability to use hand gestures was available. Some participants
didn’t seem to realize they could use them only until the last task, while
others tried to use them for navigation but didn’t persist and fell back to
verbal commands after it didn’t work for them as expected. A reason could
be the limited field of view of the Hololens and the OSO not being able to
see the hands, especially when they are held close the the OSO’s head. The
RO would sometimes ask whether the OSO could see his or her hands and
just fall back to voice if there was any confusion.

Another reason for not finding an increase in both users’ perceived mes-
sage understanding could be the fact that voice communication was available
in all configurations. This could have made the participants feel like they
were able to understand each other well enough independently from whether
there was a virtual embodiment of the RO or not. This could also have lead
to a ceiling effect; that the voice communication caused the measurement
scales to be maxed out, prohibiting to measure a further increase that a
virtual embodiment would cause. If we look at Figure 6.22 we see that the
scores in the configuration where only voice communication was possible are
indeed close to 5, which is the maximum value that the scale allows.

No increase in co-presence was found for the OSO. We expected that
the visualization of the RO would make the OSO more aware of the RO’s
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Figure 6.22: Perceived Message Understanding between the RO and OSO
in the no embodiment configuration.

presence compared to not being able to see the RO at all and therefore in-
crease the feeling of co-presence. The limited field of view of the HoloLens
and the reduced visibility by the absence of a torso in the RO’s embodi-
ment can be reasons for the OSO not noticing the RO enough to become
significantly more aware of him/her. Interestingly, the co-presence of the
RO did increase when giving him/her a virtual embodiment. This could be
a sign that, although the OSO didn’t feel any difference, the OSO behaved
differently towards the RO when a virtual embodiment was available. The
OSO could for example have directed their communication more towards the
RO, which made the RO therefore feel more addressed and more co-present.
Another explanation could be that because the RO could now see his/her
own hands, the RO just assumed that the OSO would feel more co-present
with him/her. An additional user test could be performed in which the the
virtual embodiment only gets disabled for the OSO. In this case, the RO
would be able to see their hands in both conditions, limiting the cause of
a potential increase in co-presence to only the OSO’s behavior towards the
RO.

Different types of techniques were used to navigate through the maze:
navigating the OSO using voice commands like “up, left, forward”, making
the OSO understand where the beams are by pointing out their locations
using hands, often in combination with afterwards holding a hand where the
OSO should go, the RO going through the maze him or herself and telling
the OSO to follow while not looking at the OSO or the RO moving his/her
hand through the maze while walking backwards and looking at the OSO.
This last method seemed the most effective, the fastest time recorded used
this method. This shows that having an embodiment could indeed be more
effective, but only in combination with a proper technique. Because in this
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experiment it was left to the participants to come up with a way to use
the available tools, they may not have been used in the most effective way
possible. Although this gives a better impression of how intuitive the tools
are to use, in most use cases users would first have a bit more training and an
explanation of how the tools can be used in the most optimal way for their
scenario. Doing this before running the experiment could have arguably
lead to more fair results.

If we look at Figure 6.12, we see that giving the RO a virtual embodiment
did seem to have a positive effect on the feeling of spatial presence of the
RO. It is hypothesized that this is because of the RO’s hands now being
visible in the virtual scene which give the RO a visual cue that helps to
feel more present in the virtual representation. By looking at Figure 6.12
we also see that giving the RO a virtual embodiment seems to increase the
feeling of spatial presence for the OSO. We try to explain this by looking
at the questions of the IPQ (Schubert, Friedmann, and Regenbrecht, 2001).
The questions about spatial presence focused on the feeling of being present
in the virtual environment. Because the OSO’s visualization of the virtual
environment is limited to the embodiment of the RO, it is logical that the
OSO scores higher on spatial presence when there is an embodiment at the
OSO compared to when there isn’t an embodiment visualized.

In this evaluation we looked at how the design aspects of our telepresence
system, which are described in section 1.1, influence the performance and
experience of the users in a collaborative setting. This was done by con-
ducting a user study in which 60 people participated. The user study was
split up into three sub-studies that each evaluated the effects of either view
independence, an immersive display or a virtual embodiment. Pairs of two
participants collaborated remotely on a series of tasks in an escape room
setting, once with all of the three design aspects enabled and once with one
of the aspects disabled. By comparing the performance and scores of ques-
tionnaires about usability, spatial presence and social presence between the
two runs, the effects of the design aspects were determined.

In the next chapter we will use the results of the user study to answer
each of the research questions separately.
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Chapter 7

Conclusion

We presented OpenIMPRESS, an open source immersive telepresence sys-
tem for remote collaboration applications. The system has been designed
with a focus on giving the users an immersive experience and making it ac-
cessible. The first research question was as follows: How to create a state of
the art end-to-end mixed reality telepresence system that is immersive and
accessible? It has been split up into four subquestions, which are answered
individually below.

The main evaluation focused on answering the second research question:
How do the three telepresence system design aspects influence the perfor-
mance and experience of the users in a collaborative setting? This question
was split up into three sub questions; one for each design aspect, which are
answered individually below as well.

7.1 Research Questions

RQ1.1. How to create an immersive telepresence experience? To
ensure an immersive experienced we based the design on three aspects that
have been understood to be important in telepresence systems; mobility at
the remote location, an immersive view on the environment and the ability
to affect the remote environment. The mobility aspect is covered by making
use of free viewpoint video techniques to scan and visualize the on-site en-
vironment to give the visitor complete freedom to navigate trough a virtual
representation of this environment. By using a VR headset, the visitor has
an immersive view on the on-site environment. A basic model of the visitor
including detailed scans of the hands is made and displayed at the visitee,
which gives the visitor the ability to have an effect on the people in the
remote environment.

RQ1.2. What components can be used, while keeping it acces-
sible? To make the system accessible, only commodity hardware compo-
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nents are used in OpenIMPRESS. The visitor part uses a generally available
VR system that is currently becoming popular among the gaming commu-
nity. This is extended with a consumer grade Leap Motion hand sensor to
provide hand tracking, allowing the visitor to use detailed hand gestures in
the shared space.

The visitee part is using a HoloLens, which at the point of writing is
available as a developer edition, but should become available for consumers
soon as well. To scan the on-site environment we use commodity depth
cameras like the Microsoft Kinect and the Intel RealSense.

RQ1.3. How to cover a large working area? To cover a large working
area we make use of the HoloLens’ automatically generated spatial model as
a basis of the virtual representation of the remote environment. This ensures
that wherever the visitee goes, there will be a representation available for
the visitor to navigate in. By making use of the Hololens’ tracking system,
we also allow on the fly recalibration of the depth cameras so the working
area can be reconfigured as necessary.

RQ1.4. How to make the system easy to set-up and use? There are
multiple aspects that make thee system easy to set-up. First of all, the net-
working system allows connecting the different components with each other
with relative ease, by using a web-interface on which the user can create ses-
sions and assign components to those sessions. It also circumvents the need
of manually managing port forwarding settings of routers through which
components connect to the internet, which greatly decreases the threshold
for setting this system up in different environments. Secondly, because of
the focus on usability of the HoloLens, the steps that are required to get it
to work are similar to what people are used to with current mobile devices
like smartphones.

The system has been made easy to use by relying on natural interactions
as much as possible. The visitor can navigate by physically walking around
and use hand gestures as one would do in the real world as well. At the
visitee, a virtual representation of the visitor is visualized as a three dimen-
sional hologram that integrates with the visitee’s environment as one would
expect, which promotes natural interactions from the visitee.

RQ2.1. How does view independence influence the performance
and experience of the users in a collaborative setting? View inde-
pendence has a positive influence on the performance. On average, partic-
ipants finished the complete experiment 14% (48 seconds) faster when the
visitor was free to navigate independently trough the virtual representation
of the on-site environment.
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It also has a positive influence on the experience the visitor has with the
system. It was rated more usable on the system usability scale and it resulted
in a higher feeling of spatial- and co-presence for the visitor. We didn’t see
a decrease of the perceived behavioral interdependence when switching from
the dependent view condition to the independent view condition; users don’t
feel their behaviors become more independent when the visitor’s view isn’t
locked to the visitee’s.

RQ2.2. How does using an immersive display influence the per-
formance and experience of the users in a collaborative setting?
Immersive displays seem to have a positive influence on the performance.
The time participants needed to complete the experiment dropped by 16.8%
(59 seconds) on average when the visitor used an immersive VR display
compared to when the visitor used a 2D desktop display. As shown in sec-
tion 6.11, people that game regularly did seem to have less problems using
the non-immersive display than people who don’t.

Using an immersive display also has a positive effect on the experience.
By using an immersive display the system received a higher usability score
from the visitor and gave the visitor a higher feeling of spatial presence.
Co-presence did not increase; the visitor doesn’t become more aware of
the visitee when using an immersive display. Message understanding does
increase for the visitor but not for the visitee, which shows that immersion
helps with making communication easier for the person that is immersed.

RQ2.3. How does giving the visitor a virtual embodiment influence
the performance and experience of the users in a collaborative
setting? Giving the visitor a virtual embodiment does not seem to have
an effect on the performance but does have a positive effect on the visitor’s
experience. The visitor rated the system more usable when he/she had a
virtual embodiment, but there was no difference in the visitee’s usability
rating when a virtual representation of the visitor was available.

Both users don’t perceive a higher sense of message understanding when
a virtual embodiment of the visitor is displayed, this suggests that gestures
and body language don’t outweigh the other communication channels avail-
able to the participants

The co-presence of the visitor does increase when he/she is given a virtual
embodiment, but the visitee’s co-presence doesn’t.

Overall we see that view independence and using an immersive display
both contribute to a higher performance in the form of a decrease in the
total task duration and make the visitor feel more spatially present in the
virtual representation of the visitee’s environment.
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(a) The teleoperator’s
view when assisting the
bystander in performing
CPR.

(b) The OSO’s view
while navigating the
RO through a maze in
a trust building study.

(c) OpenIMPRESS be-
ing used at the Twente
Science Night.

Figure 7.1: Cases of OpenIMPRESS being used in other settings.

View independence, using an immersive display and giving the visitor a
virtual embodiment all make the system more usable for the visitor. View
independence and giving the visitor an embodiment both make the visitor
feel more co-present with the visitee. Equipping the visitor with an immer-
sive VR display also helps the visitor with communication by increasing the
perceived message understanding.

All three design aspects either have a positive influence on the perfor-
mance, the experience or both.

7.2 Additional Findings

Besides the evaluations done in chapter 5 and chapter 6, OpenIMPRESS
has also been used in contexts other than remote collaboration and more
informal settings. During those sessions some additional findings were made
which are discussed in this section.

Other Uses OpenIMPRESS has already been used in a variety of different
scenarios; from other research to public demos.

The system has been adapted to serve in a study into how mixed reality
telepresence can assist in emergency first response scenarios where CPR has
to be performed. In this case, a expert teleoperator gives instructions to a
bystander that has to perform CPR on a patient. The bystander is in this
case the OSO wearing a HoloLens, and the teleoperator is the RO who is
virtually present using VR (Figure 7.1a). OpenIMPRESS has been adapted
to include useful tools that the teleoperator can use to guide the bystander
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through the necessary steps to perform successful CPR, like instructional
videos, arrows and rhythm bars.

The system has also been adapted and used for a study into building
trust between people. In this case a physically co-located configurations
was used, where the OSO had to guide the RO to follow a path that was
only partially visible for the RO (Figure 7.1b).

Next to being used in other research, OpenIMPRESS has also been de-
moed at a public science event (Figure 7.1c) and at an AR/VR workshop1.

Mobility A main feature of our system is the mobility that the RO has
in the remote environment’s representation. When leaving the area that
is covered by the depth cameras, the RO loses a detailed view of the on-
site location. The only visual cues that are left are the HoloLens’ spatial
model and a minimal representation of the OSO based on the location of
the HoloLens. We expected that in those conditions the system would not
provide any advantages compared to rudimentary telecommunication tech-
niques like phone calls. We found out however, that it still provides an
unique experience to both the RO and OSO that can be used in various
scenarios, with the advantage of not having to set up anything; the OSO
only needs to wear a HoloLens with an internet connection. This setup al-
lows the OSO to walk anywhere while still having the RO virtually present.
Because the HoloLens is continuously updating the spatial model while the
OSO is moving, the virtual representation of the on-site environment at the
RO is updated where needed as well. This allows the RO to follow the OSO
wherever they go. The RO can follow by physically walking or, when the RO
hits the limits of their own environment, by using the “dragging” method
described in subsection 4.5.2.

The aspect of mobility is similar to what is done with Jack-in Head
(Kasahara and Rekimoto, 2015). In this system the visitee is wearing a
360◦ camera that allows the visitor to look around wherever they go. The
difference with OpenIMPRESS is that in OpenIMPRESS the visitor can
freely navigate the on-site location and isn’t locked to the OSO’s perspective.
Because the RO is also visualized as its own entity in the view of the OSO
using the holographic display capabilities of the HoloLens, the OSO is also
inclined to treat the RO as such. This completely changes the dynamics of
the user’s relationship while using the system compared to a phone or video
call, because among others, things like personal space and gaze suddenly
start playing a role. It is a refreshing realization when using this system that
a remote partner can just follow you through a door, walk next to you in a
hallway and enter a completely different room while you can talk to them and
see their hand gestures as if they were actually right there with you, without
any interruptions or the need to set anything up in the spaces beforehand.

1https://www.4tu.nl/ht/en/events/workshop_virtual_augmented_reality/
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The combination of the spatial model and the annotation system allows the
RO to create drawings that take the OSO’s space in account.

Games Various games emerged while people were trying out the system.
For example a game of tag, where the RO has to try to find and capture
the OSO. As we learned from The Matrix (The Wachowskis, 1999), the laws
of physics don’t have to apply in virtual reality. By using the “dragging”
gestures, the RO can fly above the surface as if there is no gravity. This
creates new and interesting dynamic to the classic game of tag, that allows
for scenarios that would otherwise be impossible.

Another example made use of the annotation capabilities to create vir-
tual three dimensional artwork in at the on-site location. This is similar
to how people use Tilt Brush (Google, 2016a), with the difference of now
having a real environment as the canvas. Some people used this function-
ality to play a game where the RO has to draw something and the OSO
has to recognize what is being drawn as fast as possible. The fact that the
drawings can be made in 3D literally adds a new dimension to this game,
which is normally played on a piece of paper or on a (touch)screen.

Detail The experience for the RO is relatively limited in such a completely
mobile configuration because of the lack of detailed scans from dedicated
depth cameras. Ideally, we would use high resolution real-time point clouds
captured with depth cameras that are built into the HoloLens. This would
allow for a detailed representation with a fast refresh rate of the area the
OSO is currently facing. Technically, the HoloLens actually has depth cam-
eras built in already, although the raw data is not accessible and only used
to create and maintain the spatial model in the background. Creative solu-
tions could be applied to achieve the same effect. On of those solutions is
demonstrated with the setup build by Garon et al. (2016), which mounted
an additional depth camera on top of the HoloLens including a stick-PC and
battery pack to process and stream the captured data while still retaining
a mobile system.
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7.3 Future Work

Now that the system has been implemented, tested and found to work, we
identified some areas for improvement.

Platform Independence At the moment the functionality of the system
is fixed depending on the role of the user. The RO uses VR to view point
clouds of the OSO and it’s environment and the OSO uses a HoloLens to
see a rudimentary visualization of the RO. A next step could be to make the
system more platform independent to allow point clouds to be displayed in
the HoloLens as well, for which the work of Kowalski, Naruniec, and Daniluk
(2015)2 can be used as a basis.

We see different use cases for displaying point clouds in the HoloLens.
First of all, it can be used to increase the level of detail of the RO’s virtual
representation. By pointing one or more depth cameras to the RO in the
RO’s physical environment a full body 3D scan of the RO can be made.
By using the body index frames that are provided by the Microsoft Kinect
SDK3, we can easily filter out background objects so that only the RO’s
body is displayed.

Another use case for point clouds in the HoloLens is to display previews
to the OSO of what the depth camera’s are capturing in the OSO’s environ-
ment before it gets streamed to the RO. We noticed that there isn’t a user
friendly way for the OSO to determine what the cameras are seeing, which
can be challenging during set-up.

Making the system more platform independent also encompasses allow-
ing the RO use AR glasses instead of VR glasses. This blurs the line between
RO and OSO, resulting in a more symmetrical system similar to Holopor-
tation (Orts-Escolano et al., 2016). In a temporally dislocated but physi-
cally co-located scenario (section 3.2), where previously recorded material is
played back at the same location to be used for training purposes for exam-
ple, using AR glasses like the HoloLens could make more sense than using
VR glasses.

Modularity By making the system more modular, the system could sup-
port a wide range of new use cases. With modularity we mean, making it
easy to add or remove components like extra HoloLenses or extra viewing
locations. Adding extra HoloLenses would for example allow multiple peo-
ple at the same location to interact with the same remote visitor. This can
also work the other way around; by allowing multiple RO’s to join a session,
people from multiple remote locations can be virtually present at the on-site
location.

2https://github.com/MarekKowalski/LiveScan3D-Hololens
3https://msdn.microsoft.com/en-us/library/windowspreview.kinect.

bodyindexframe.aspx
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The main challenge when making the system more modular is updating
the Networking System. Right now, data is always sent from one compo-
nent to one other component. When for example adding multiple RO’s,
data from the on-site depth cameras and HoloLens(es) need to be sent to
multiple locations. Depending on the implementation, this would require a
fundamental change in the design of the Matchmaking Server or in both the
Matchmaking Server and the UDP Connector.

One option would be to change the role of the Matchmaking Server
from solely keeping track and matching IP addresses and port numbers to a
central data hub. In this case, all data that needs to be shared will first be
sent to the server, where it will be forwarded to one or multiple destinations.
The advantage here is that, the UDP Connector always has to sent the data
to only the server, even when it has to be sent to multiple other components,
which reduces the bandwidth requirements at the clients.

Another option would be to allow the individual UDP Connector com-
ponents to connect to multiple other UDP Connectors. In this case the
Matchmaking Server keeps its current role, but needs to get extended to
support keeping track of multiple connections per component. This makes
the system slightly more complex but is more scalable, as the entire system
doesn’t get limited by the bandwidth at the Matchmaking Server.

Robotics Right now only virtual elements that the RO can manipulate
are added to the OSO’s environment through the HoloLens. This allows the
RO to have an effect on the OSO’s environment but doesn’t allow the RO
to directly physically manipulate objects. In many use cases, the OSO can
be seen as an extension of the RO; physically manipulating the environment
based on the RO’s instructions.

Robotics could be a solution to allow the RO to directly physically ma-
nipulate the on-site environment, without the need for the OSO to act as
a middle-man. Robotic arms can be programmed to follow the RO’s hand
movements, which can already be successfully captured with the current
system. Because of safety and speed limitations that have to be taking
into account when using robotics, we envision the RO’s robotic physical
embodiment to be used in conjunction with the virtual embodiment. For
example, adding specific robotic zones in the on-site environment, in which
the robotic arms lock to and start tracking the RO’s hands when they are
moved into that zone. This gives the RO the freedom to navigate the on-site
environment as is currently possible with the system but also allows the RO
to physically manipulate the on-site environment at specific places where it
is deemed necessary.
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7.4 Final Thoughts

The designed system is implemented, tested and has been found to work.
The system’s accessibility has been proven by other researchers who suc-
cessfully adapted and used the system for their own research. We have also
shown that the implemented design features do indeed improve the expe-
rience and usability of the system, which are useful insights for continuing
research in the area of telepresence.

We hope to see that this work is used to spark a trend into making
telepresence systems more accessible and available to the general public.
Like advances in the current communication systems have made it a com-
modity to be able to communicate with everybody though text and voice,
the same can become true for telepresence. A telepresence system that is
both immersive and accessible could easily disrupt the way we travel, work
and communicate with people that are far away from us.

We are convinced that our contribution will help to further the research
and development of telepresence systems and are eager to see what other
advances lie ahead.
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Bourges-Sévenier, Mikaël and Euee S Jang (2004). “An introduction to the
MPEG-4 animation framework extension”. In: IEEE transactions on
Circuits and Systems for Video Technology 14.7, pp. 928–936.

Brooke, John et al. (1996). “SUS-A quick and dirty usability scale”. In:
Usability evaluation in industry 189.194, pp. 4–7.

Butler, D Alex, Shahram Izadi, Otmar Hilliges, David Molyneaux, Steve
Hodges, and David Kim (2012). “Shake’n’sense: reducing interference
for overlapping structured light depth cameras”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,
pp. 1933–1936.

Carranza, Joel, Christian Theobalt, Marcus A Magnor, and Hans-Peter Sei-
del (2003). “Free-viewpoint video of human actors”. In: ACM transac-
tions on graphics (TOG). Vol. 22. 3. ACM, pp. 569–577.

Cazamias, Jordan and Abhilash Sunder Raj (2016). “Virtualized Reality
Using Depth Camera Point Clouds”.

Collet, Alvaro, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev,
David Calabrese, Hugues Hoppe, Adam Kirk, and Steve Sullivan (2015).
“High-quality streamable free-viewpoint video”. In: ACM Transactions
on Graphics (TOG) 34.4, p. 69.

Doc-Ok (2014). 3D Video Capture with Three Kinects. url: http://doc-
ok.org/?p=965 (visited on 05/26/2017).

87

http://doc-ok.org/?p=965
http://doc-ok.org/?p=965


BIBLIOGRAPHY

Epic Games (1998). Unreal Engine R©. url: https://www.unrealengine.
com.

Feldmann, Ingo, Wolfgang Waizenegger, Nicole Atzpadin, and Oliver Schreer
(2010). “Real-time depth estimation for immersive 3D videoconferenc-
ing”. In: 3DTV-Conference: The True Vision-Capture, Transmission and
Display of 3D Video (3DTV-CON), 2010. IEEE, pp. 1–4.

Ford, Bryan, Pyda Srisuresh, and Dan Kegel (2005). “Peer-to-Peer Com-
munication Across Network Address Translators.” In: USENIX Annual
Technical Conference, General Track, pp. 179–192.

Fussell, Susan R, Leslie D Setlock, and Robert E Kraut (2003). “Effects of
head-mounted and scene-oriented video systems on remote collaboration
on physical tasks”. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, pp. 513–520.

Fussell, Susan R, Leslie D Setlock, Jie Yang, Jiazhi Ou, Elizabeth Mauer,
and Adam DI Kramer (2004). “Gestures over video streams to support
remote collaboration on physical tasks”. In: Human-Computer Interac-
tion 19.3, pp. 273–309.

Gao, Lei, Huidong Bai, Gun Lee, and Mark Billinghurst (2016). “An oriented
point-cloud view for MR remote collaboration”. In: SIGGRAPH ASIA
2016 Mobile Graphics and Interactive Applications. ACM, p. 8.

Garon, Mathieu, Pierre-Olivier Boulet, Jean-Philippe Doironz, Luc Beaulieu,
and Jean-François Lalonde (2016). “Real-Time High Resolution 3D Data
on the HoloLens”. In: Mixed and Augmented Reality (ISMAR-Adjunct),
2016 IEEE International Symposium on. IEEE, pp. 189–191.

Google (2016a). Tilt Brush. url: https://www.tiltbrush.com/ (visited
on 02/10/2018).

— (2016b). Virtual Art Sessions. url: https://developers.google.com/
web/showcase/2016/art-sessions.

Groen, Eric L and Jelte E Bos (2008). “Simulator sickness depends on fre-
quency of the simulator motion mismatch: An observation”. In: Presence
17.6, pp. 584–593.

Harms, Chad and Frank Biocca (2004). “Internal consistency and reliability
of the networked minds measure of social presence”. In:

Harmsen, Emiel (2017). “IMPRESS Immersive Presence System using an
Universal Volumetric Scene Pipeline”.

Hartmann, Tilo, Werner Wirth, Peter Vorderer, Christoph Klimmt, Holger
Schramm, and Saskia Böcking (2015). “Spatial presence theory: State of
the art and challenges ahead”. In: Immersed in Media. Springer, pp. 115–
135.

Hauswiesner, Stefan, Matthias Straka, and Gerhard Reitmayr (2011). “Free
viewpoint virtual try-on with commodity depth cameras”. In: Proceed-
ings of the 10th International Conference on Virtual Reality Continuum
and Its Applications in Industry. ACM, pp. 23–30.

88

https://www.unrealengine.com
https://www.unrealengine.com
https://www.tiltbrush.com/
https://developers.google.com/web/showcase/2016/art-sessions
https://developers.google.com/web/showcase/2016/art-sessions


OpenIMPRESS - An Open Immersive Telepresence System

Henry, Peter, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox
(2012). “RGB-D mapping: Using Kinect-style depth cameras for dense
3D modeling of indoor environments”. In: The International Journal of
Robotics Research 31.5, pp. 647–663.

Huang, Weidong and Leila Alem (2011). “Supporting hand gestures in mo-
bile remote collaboration: a usability evaluation”. In: Proceedings of the
25th BCS Conference on Human-Computer Interaction. British Com-
puter Society, pp. 211–216.

Izadi, Shahram, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, et al. (2011). “KinectFusion: real-time 3D recon-
struction and interaction using a moving depth camera”. In: Proceedings
of the 24th annual ACM symposium on User interface software and tech-
nology. ACM, pp. 559–568.

Kainz, Bernhard, Stefan Hauswiesner, Gerhard Reitmayr, Markus Stein-
berger, Raphael Grasset, Lukas Gruber, Eduardo Veas, Denis Kalkofen,
Hartmut Seichter, and Dieter Schmalstieg (2012). “OmniKinect: real-
time dense volumetric data acquisition and applications”. In: Proceedings
of the 18th ACM symposium on Virtual reality software and technology.
ACM, pp. 25–32.

Kammerl, Julius, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli, Michael
Beetz, and Eckehard Steinbach (2012). “Real-time compression of point
cloud streams”. In: Robotics and Automation (ICRA), 2012 IEEE In-
ternational Conference on. IEEE, pp. 778–785.

Kasahara, Shunichi and Jun Rekimoto (2014). “JackIn: integrating first-
person view with out-of-body vision generation for human-human aug-
mentation”. In: Proceedings of the 5th Augmented Human International
Conference. ACM, p. 46.

— (2015). “JackIn head: immersive visual telepresence system with omnidi-
rectional wearable camera for remote collaboration”. In: Proceedings of
the 21st ACM Symposium on Virtual Reality Software and Technology.
ACM, pp. 217–225.

Khoshelham, Kourosh and Sander Oude Elberink (2012). “Accuracy and
resolution of kinect depth data for indoor mapping applications”. In:
Sensors 12.2, pp. 1437–1454.

Komiyama, Ryohei, Takashi Miyaki, and Jun Rekimoto (2017). “JackIn
space: designing a seamless transition between first and third person
view for effective telepresence collaborations”. In: Proceedings of the 8th
Augmented Human International Conference. ACM, p. 14.

Kowalski, Marek, Jacek Naruniec, and Michal Daniluk (2015). “Live Scan3D:
A Fast and Inexpensive 3D Data Acquisition System for Multiple Kinect
v2 Sensors”. In: 3D Vision (3DV), 2015 International Conference on.
IEEE, pp. 318–325.

89



BIBLIOGRAPHY

Kristoffersson, Annica, Silvia Coradeschi, and Amy Loutfi (2013). “A re-
view of mobile robotic telepresence”. In: Advances in Human-Computer
Interaction 2013, p. 3.

Kuster, Claudia, Tiberiu Popa, Christopher Zach, Craig Gotsman, Markus
H Gross, Peter Eisert, Joachim Hornegger, and Konrad Polthier (2011).
“FreeCam: A Hybrid Camera System for Interactive Free-Viewpoint
Video.” In: Vision, Modeling, and Visualization, pp. 17–24.

Langmann, Benjamin (2014). “Depth Camera Assessment”. In: Wide Area
2D/3D Imaging: Development, Analysis and Applications. Wiesbaden:
Springer Fachmedien Wiesbaden, pp. 5–19. isbn: 978-3-658-06457-0. doi:
10.1007/978-3-658-06457-0_2. url: http://dx.doi.org/10.1007/
978-3-658-06457-0_2.

Lee, Chuen-Chien, Ali Tabatabai, and Kenji Tashiro (2015). “Free view-
point video (FVV) survey and future research direction”. In: APSIPA
Transactions on Signal and Information Processing 4, e15.

Maimone, Andrew and Henry Fuchs (2011). “Encumbrance-free telepresence
system with real-time 3D capture and display using commodity depth
cameras”. In: Mixed and augmented reality (ISMAR), 2011 10th IEEE
international symposium on. IEEE, pp. 137–146.

— (2012a). “Real-time volumetric 3D capture of room-sized scenes for telep-
resence”. In: 3DTV-Conference: The True Vision-Capture, Transmission
and Display of 3D Video (3DTV-CON), 2012. IEEE, pp. 1–4.

— (2012b). “Reducing interference between multiple structured light depth
sensors using motion”. In: Virtual Reality Short Papers and Posters
(VRW), 2012 IEEE. IEEE, pp. 51–54.

Mehrotra, Sanjeev, Zhengyou Zhang, Qin Cai, Cha Zhang, and Philip A
Chou (2011). “Low-complexity, near-lossless coding of depth maps from
kinect-like depth cameras”. In: Multimedia Signal Processing (MMSP),
2011 IEEE 13th International Workshop on. IEEE, pp. 1–6.

Microsoft (2016). Hololens. url: https://www.microsoft.com/en-us/
hololens.

Moreno, Carlos, Yilin Chen, and Ming Li (2017). “A dynamic compression
technique for streaming kinect-based Point Cloud data”. In: Computing,
Networking and Communications (ICNC), 2017 International Confer-
ence on. IEEE, pp. 550–555.

Moreno, Carlos and Ming Li (2016). “A Comparative Study of Filtering
Methods for Point Clouds in Real-Time Video Streaming”. In: Pro-
ceedings of the World Congress on Engineering and Computer Science.
Vol. 1.

Nicholson, Scott (2016). “The State of Escape: Escape Room Design and
Facilities”. In: Meaningful Play 2016. Lansing, Michigan.

Niehorster, Diederick C, Li Li, and Markus Lappe (2017). “The accuracy and
precision of position and orientation tracking in the HTC vive virtual re-
ality system for scientific research”. In: i-Perception 8.3, p. 2041669517708205.

90

https://doi.org/10.1007/978-3-658-06457-0_2
http://dx.doi.org/10.1007/978-3-658-06457-0_2
http://dx.doi.org/10.1007/978-3-658-06457-0_2
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens


OpenIMPRESS - An Open Immersive Telepresence System

Obermeier, Christian, Thomas Dolk, and Thomas C Gunter (2012). “The
benefit of gestures during communication: evidence from hearing and
hearing-impaired individuals”. In: cortex 48.7, pp. 857–870.

Orts-Escolano, Sergio, Christoph Rhemann, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, Mingsong Dou, et al. (2016). “Holoportation: Virtual 3d tele-
portation in real-time”. In: Proceedings of the 29th Annual Symposium
on User Interface Software and Technology. ACM, pp. 741–754.

Paulos, Eric and John Canny (2001). “Social tele-embodiment: Understand-
ing presence”. In: Autonomous Robots 11.1, pp. 87–95.

Pouliquen-Lardy, Lauriane, Isabelle Milleville-Pennel, François Guillaume,
and Franck Mars (2016). “Remote collaboration in virtual reality: asym-
metrical effects of task distribution on spatial processing and mental
workload”. In: Virtual Reality 20.4, pp. 213–220.

Rogers, Brian and Maureen Graham (1979). “Motion parallax as an inde-
pendent cue for depth perception”. In: Perception 8.2, pp. 125–134.

Rusu, Radu Bogdan and Steve Cousins (2011). “3d is here: Point cloud
library (pcl)”. In: Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on. IEEE, pp. 1–4.

Sarbolandi, Hamed, Damien Lefloch, and Andreas Kolb (2015). “Kinect
range sensing: Structured-light versus time-of-flight kinect”. In: Com-
puter vision and image understanding 139, pp. 1–20.

Schubert, Thomas, Frank Friedmann, and Holger Regenbrecht (2001). “The
experience of presence: Factor analytic insights”. In: Presence: Teleoper-
ators & Virtual Environments 10.3, pp. 266–281.

Slater, Mel (2003). “A note on presence terminology”. In: Presence connect
3.3, pp. 1–5.

Smolic, Aljoscha (2011). “3D video and free viewpoint video—From capture
to display”. In: Pattern recognition 44.9, pp. 1958–1968.

Smolic, Aljoscha, Karsten Mueller, Philipp Merkle, Christoph Fehn, Peter
Kauff, Peter Eisert, and Thomas Wiegand (2006). “3D video and free
viewpoint video-technologies, applications and MPEG standards”. In:
Multimedia and Expo, 2006 IEEE International Conference on. IEEE,
pp. 2161–2164.

Sohn, Bong-Soo, Chandrajit Bajaj, and Vinay Siddavanahalli (2004). “Volu-
metric video compression for interactive playback”. In: Computer Vision
and Image Understanding 96.3, pp. 435–452.

Steed, Anthony, William Steptoe, Wole Oyekoya, Fabrizio Pece, Tim Weyrich,
Jan Kautz, Doron Friedman, Angelika Peer, Massimiliano Solazzi, Franco
Tecchia, et al. (2012). “Beaming: an asymmetric telepresence system”.
In: IEEE computer graphics and applications 32.6, pp. 10–17.

Tait, Matthew and Mark Billinghurst (2015). “The effect of view indepen-
dence in a collaborative ar system”. In: Computer Supported Cooperative
Work (CSCW) 24.6, pp. 563–589.

91



BIBLIOGRAPHY

Tecchia, Franco, Leila Alem, and Weidong Huang (2012). “3D helping hands:
a gesture based MR system for remote collaboration”. In: Proceedings of
the 11th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and its Applications in Industry. ACM, pp. 323–328.

The Wachowskis (1999). The Matrix. Warner Bros. Pictures.
Unity Technologies (2005). Unity R©. url: https://unity3d.com/.
Witmer, Bob G and Michael J Singer (1998). “Measuring presence in vir-

tual environments: A presence questionnaire”. In: Presence: Teleopera-
tors and virtual environments 7.3, pp. 225–240.

Wu, Ying Choon and Seana Coulson (2007). “How iconic gestures enhance
communication: An ERP study”. In: Brain and language 101.3, pp. 234–
245.

Zhao, Wenyi, David Nister, and Steve Hsu (2005). “Alignment of continuous
video onto 3D point clouds”. In: IEEE transactions on pattern analysis
and machine intelligence 27.8, pp. 1305–1318.

92

https://unity3d.com/


Appendices

93



Appendix A

Main Evaluation Appendices

94



 

1 1 0 0 0 0 

0 0 0 1 0 1 

1 1 0 1 0 0 

1 0 1 0 1 0 

0 0 0 1 1 0 

0 1 0 0 1 1 

 
 

 Baseline first Variation first 

No 
Embodiment 

 
 
   

Desktop 
 
 
   

Fixed 
 
 
   

 
O =   FALSE maze 1 first 
X =   TRUE maze 2 first 
  

A.1 Experiment Sequence Tables
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 RO OSO 

Name   

Nr   

 
 

Check Where What 

 INTERACT ● Reset blocks on the ground 
● Prepare questionnaire + randomizer tabs 
● Prepare consent form 

 PLAY ● Prepare questionnaire tabs 
● Prepare consent form 

 RECHARGE “Thanks for joining  in  this experiment. Together you’ll  go  on  a 
mission to retrieve a  safe code while  being  physically at two 
different locations. You’ll  do  two sessions in  total and  at the end  of 
each session you receive one  half of the code. During  this whole 
experiment you may have to wait sometimes while  I’m assisting the 
person in  the other room.” 
To RO: “please wait here for a  moment” 
To OSO: “please follow me” 

 INTERACT ● let OSO sit and fill in consent form 

 PLAY ● let RO sit and fill in consent form 

 INTERACT ● Let OSO fill in questionnaire 

 PLAY ● Let RO fill in questionnaire 

 INTERACT ● Let OSO read instructions 

 PLAY ● Let RO read instructions 

 
  

A.2 Experiment Checklist
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  BEFORE RUN 

 INTERACT ● Put on glasses, start OSOTool, scan marker 

 INTERACT “You’ll  be  getting help  from your partner through the Hololens, I’ll 
help  you put it on. Do you see how  the strap sits on  my head?” 
 
“Please never cover the front of the glasses with your hands, or 
anything else” 
 

● Help participant put them on. 
 
“Can you see all  edges of the red rectangle? 
It could  happen  that the glasses stop working for a  moment and 
show an  image with mountains and  a  message saying: “Trying to 
map your surroundings”, if this happens please  say so at that 
moment. 
If you could  stand here now, we will  do  a  short training with your 
partner before we start. Afterwards I’ll  ask you to move to the start 
position.” 

 INTERACT ● Start camera recording 

 INTERACT “I will  start a  Skype call  on  the laptop so you can hear me and  I can 
give  further instructions from the other room” 
 

● Start skype call 
● Disable mic on phone 

 
“I’ll  go  to setup your partner now, please  wait here, we will  make 
contact in  a  moment.” 

 PLAY ● Open correct RO scene 
● Get random block order 

○ Select blocks in unity 
○ Select blocks in motive 

● Check and select maze version 
● Check show full code 

 PLAY ● Start camera recording 

 
  

97



 

  VR CONDITION 

 PLAY ● Check webcam USB unplugged 

 PLAY ● Help RO put on VR glasses, and headphones 

 PLAY ● Start unity scene 
● Enable mic on phone 

 PLAY “You should  be  able  to see and  hear each other now. 
OSO, can you look away from RO? You should  see an  arrow 
appear that points towards, RO’s head. 
RO, Please hold  your hands in  front of you. 
OSO, can you see the hands? 
RO, now  cross your hands, you’ll  notice they start behaving 
weirdly, sometimes you’ll  have to remove your hands from your 
view and  re-enter them to fix this. Please lower  them now. 
OSO, did  you notice the hands disappear? 
RO, can you place  your finger on  top of the pole  on  the edge  of the 
wall  in  the middle  of the room? 
OSO, is that correct? 
Now, shake each other’s hand. 
RO, please  find the wall  with the text about the keys, this is where 
instructions will  appear.” 
 
“Alright, we’re  ready to start. 
OSO, please  go  to your start position. 
I’ll  stop talking as soon as the experiment starts, that’s also  the 
moment when  the beams will  become active and  you can start the 
mission. 
Three… Two… One….” 
 

● Press ‘U’ ‘I’ keys 
● Mute phone mic 
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  DESKTOP CONDITION 

 PLAY ● Check webcam USB plugged in and Vive unplugged 

 PLAY ● Explain fps controls 

 PLAY ● Start unity scene 
● Enable mic on phone 

 PLAY “You should  be  able  to see each other now. Please hold  your 
hands in  front of you. 
OSO, can you look away from RO? You should  see an  arrow 
appear that points towards, RO’s head. 
OSO, can you see the hands? 
RO, now  cross your hands, you’ll  notice they start behaving 
weirdly, sometimes you’ll  have to remove your hands from your 
view and  re-enter them to fix this. Please lower  them now. 
OSO, did  you notice the hands disappear? 
RO, can you place  your finger on  top of the pole  on  the edge  of the 
wall  in  the middle  of the room? 
OSO, is that correct? 
Now, shake each other’s hand. 
RO, please  find the wall  with the text about the keys, this is where 
instructions will  appear.” 
 
“Alright, we’re  ready to start. 
OSO, please  go  to your start position. 
I’ll  stop talking as soon as the experiment starts, that’s also  the 
moment when  the beams will  become active and  you can start the 
mission. 
Three… Two… One….” 
 

● Press ‘U’ ‘I’ keys 
● Mute phone mic 
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  AFTER RUN 

 PLAY ● Press ‘O’ ‘P’ keys 
● Enable phone mic 

 
“Well done! OSO, I’ll  be  there in  a  minute” 
 

● Disable phone mic 
● Stop unity scene 

 
“RO, you can take the headset off. 
Please take a  seat and  fill  in  this questionnaire” 
 

● Turn off camera 

 INTERACT “you can take the headset off. 
Please take a  seat and  fill  in  this questionnaire”  
 

● Turn off camera 

 
 

  END 

 PLAY If both are done with the questionnaire. 
 
“Please walk with me to the other room”  

 INTERACT “You should  be  able  to open  the safe now” 
 

● They find candy 

 INTERACT “Do you still have any questions?” 
 

● Show RO the room and maybe explain about how the 
system works. 

 INTERACT ● Turn off camera mic 
● Put Hololens on charger 
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Instructions for On-site Operator 
 
At the end of this room a safe code is stored which can open the safe in front of you. 
Your assignment is to retrieve this code and open the safe. 
The code is protected by three assignments that you’ll have to overcome to crack the code, 
each of these assignments are explained below. 
To successfully retrieve the code you’ll need help from your remote partner, who has essential 
information on each assignment. 
 

 
 
1. Radiation beams 
Dangerous beams of radiation are blocking your path. One problem; they are invisible. Luckily 
your remote partner has the equipment to spot them and guide you safely around them. 
While radiation is bad for your whole body, make sure that especially your head doesn’t get into 
the beam! 
 
2. Keys 
Six key blocks with different shapes are lying on the ground, you need to collect three specific 
ones to use in the next step. Your remote partner knows exactly which of the keys you’ll need to 
take. 
 
3. Key alignment 
Each key, from the previous assignment, will emit an invisible laser beam in a random direction 
that only your remote partner can see. Position the three blocks correctly on the table to point 
the lasers on to the markers on the screen. Once each of the markers are lit by a laser pointer, 
part of the code will be displayed on the screen. 

A.3 OSO Instructions
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Instructions for Remote Operator 
Your partner is on a mission to retrieve a code to open a safe. Your assignment is to help him or 
her accomplish that mission. By using openIMPRESS you can help your partner by being 
virtually present in the same room and guide him or her through the three assignments that 
protect the code, each of these assignments are explained below. Your support is essential for 
the success of the mission. 
 

 
 
1. Radiation beams 
Dangerous beams of radiation are blocking your partner’s path. One problem: your partner can’t 
see them. Luckily you have the equipment to spot them and guide your partner safely around 
them. 
While radiation is bad for your partner’s whole body, make sure that especially his or her head 
doesn’t get into the beam! 
 
2. Key shapes 
Six key blocks with different shapes are lying on the ground, your partner needs to collect three 
specific ones to use in the next step. The keys that need to get collected are shown to you in 
VR. 
 
3. Laser alignment 
Each of the three keys will emit an invisible laser beam in a random direction that only you can 
see. Make sure the three keys get positioned correctly on the table. The lasers need to point to 
the markers behind the table. Once each of the markers are lit by a laser pointer, part of the 
code will be displayed on the screen. 

A.4 OSO Instructions
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CONSENT FORM 
Project title: openIMPRESS  
Researcher: Emiel Harmsen 
 
Data collection explanation: You have been invited to participate in an experiment in virtual and               
augmented reality. You and another participant will be located in different rooms. Depending on your               
role within this experiment you will be asked to either wear a Head Mounted Display (HTC Vive) or                  
Augmented Reality Glasses (Microsoft Hololens). The person wearing the Head Mounted Display will be              
virtually present in the room with the other participant. Together you will go on a mission to retrieve a                   
four digit code to unlock the safe. The mission consists of three assignments for which you’ll have to                  
collaborate in order to complete them. 
 
The goal of this experiment is to evaluate  openIMPRESS,  an open source remote presence system. 
Video recordings made during the test will be used to analyze the interactions, and responses of the                 
system. The total duration of the experiment is approximately 60 minutes. The recorded material will not                
be shared and will be dealt with anonymously, with exception of the videos or snapshots of the videos                  
that will be shared for publication and/or explanation of our research activities. We will blur your face if                  
you prefer.  
 

Please check the boxes.  

1. I have read the explanation and I understand that I can ask  questions at any time.   □ 

2. I understand that I can quit at any time, without having to give a reason, and that my test will 
not be part of any data analyses.   □ 

3. I give permission for my data to be used for the goals of this test and for future  research into 
VR-telepresence applications.   □ 

4. I give permission for the use of my video recordings to be shared in (popular) scientific 
presentations and written publications.   □ 

 

5. I prefer that any footage will be  blurred to make me unidentifiable  for the purposes mentioned in point 4.  

○ yes, please blur                   ○  no, use images as is, I don’t mind my face being visible 

 
 
______________________________________________________    
Name participant  
 
 
____________________  _____________________  
Signature participant Date 
 
 
_____________________  
Signature researcher 

A.5 Consent form
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