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Abstract

A Volume of fluid method is used to solve a one particle bubble flow, and a two droplet flow. For systems
with large number of bubbles and/or droplets, direct numerical simulation is necessary, since there are
no analytical solutions and empirical results are often muddled. To achieve good models for particle
interaction it is best to start with simple cases. Two particle-interaction cases have been simulated and
are presented in this paper. The bubble colliding with a wall and a head on droplet/droplet collision.
These simulations have been done with a Volume of fluid multi marker method with a piecwise linear
interface calculation scheme (VofMMRK), which has been implemented in OpenFOAM R©. The 2D
scheme has been held up to a benchmark [15] and gave accurate results, with at least first order
convergence and reasonable computation cost. The 3D case has been compared to mphBox [9] and
shows good overlap. Parallelization has been applied and speedup is investigated, with simple domain
decomposition computing time is nearly halved when using double the amount of processors, however
this speedup stagnates when using 32 processors. This may be due to the solver, the decomposition
or the (small) size of the problem. Some background and application information on Lubrication is
provided, which could be used to examine new and old particle interaction models.
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Chapter 1

Introduction

There are many different types of fluid problems, the two fluid flow, which is presented in this paper, is
only one of them.Two fluid flow is a common occurence in industry, for example for steam production or
in nuclear reactors [4], a more commonly recognised two fluid flow is rain. Like for most fluid problems
the governing equations are given by a certain form of the Navier-Stokes equations. The equations
used in this paper are not a simple form of the Navier-Stokes equations, and are therefor not analytically
solvable.
Luckily more and more accurate and efficient schemes are made to solve these flows. We will use a
volume of fluid method to solve a one particle bubble flow, and a two droplet flow. Extra challenges can
be present in two fluid flow as well: turbulence, special boundary condition or just sheer size. This makes
it computationally expensive to solve these flows accurately. On top of that empirical results for large
bubbly flows are not accurate due to vision problems or influence of probes, making direct numerical
simulation (DNS) not only convienent, but also necessary. It is important to find computationally cheaper
ways to solve multi bubble flows with near contact accurately. The direction we chose to start this
process is by looking into lubrication theory, we did a literature study into the history and scientific
relevance of lubrication theory. Using this theory could lead to cost efficient schemes on coarser grids,
while still staying accurate. However this theory is not accurate for the whole flow field, so models need
to be found to implement this theory to practice. Applying this theory is left for future research.
In this paper we laid the groundwork of the afore mentioned solution by delivering a DNS which is
accurate and introducing the steps which could be taken to decide whether the lubrication theory is
applicable in this case. The cases laid out in this paper, Bubble/Wall and Droplet/Droplet, were chosen
to compare with existing results as well as the relevancy to the near-contact question. Comparing
results with already existing results is the only benchmark for problems for which no analytical solution
or empirical result is available.
For the DNS we will use a Volume of Fluid (VOF) method. This method will be discussed in the first
Chapter [2]. The platform in which it will be programmed, OpenFOAM R©, will then shortly be discussed
in Chapter [3]. We will compare the cases to the results of other papers, namely Hysing [15] and Cifani
[9], in Chapter [4] and Chapter [5]. In Chapter [6] you can read about Lubrication theory and its possible
application. The conclusions and recommendations for future research can be found in the last Chapter
[7]. To improve reading of the equations a nomenclature is included in appendix [D].
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Chapter 2

The Model

2.1 Mathematical Formulation

In this paper we will assume a viscous, incompressible, isothermal, immiscible two-fluid flow. This will
be described by the Navier-Stokes equations. Isothermal means that the temperature will not influence
the flow, making the energy equation superfluous. The flow is thus solely based on the continuity and
momentum equations. The immiscibility, non mixability, of the two fluids will be modeled by a source
term, acting locally around the interfaces between the two fluids. This source term ensures that we can
solve the equations over the entire domain. The governing equations can be found in equations 2.1 and
2.2.

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · (2µD) + ρg + S, (2.1)

∇ · u = 0. (2.2)

Here u is the velocity field, t the time, ρ the density, p the static pressure, µ the dynamic viscosity, and
g is the gravity. The deformation tensor, D, is given by Di,j =

∂iuj+∂jui

2 . Lastly S is the local source
term for the interaction between the two phases. This interfacial tension force is given by S = σκnδ(n),
where σ is the surface tension and κ the curvature of the surface area, n is the local unit normal to the
interface and δ(n) the dirac delta function on the surface area.
Since we want to solve the equations over the entire domain, we need to define a density and dynamic
viscosity, which account for the particles in the fluid. These are respectively defined by equations 2.3
and 2.4.

ρ = αρp + (1− α)ρf . (2.3)
µ = αµp + (1− α)µf . (2.4)

Here α is the volume fraction field, the subscript p is used for the particle values, whereas the sub-
script f stands for the surrounding fluid values. The formulation now slightly changes from the method
mentioned in Cifani [8], since we will now use a multiple marker approach [20]. This means that each
particle has its own volume fraction field (αi), with 0 ≤ αi ≤ 1. This is to prevent numerical coalescence.
The volume fraction field shows the location of particles, inside the particle the field equals 1, outside it
equals 0. The volume fraction field used in equations 2.3 and 2.4 is now defined as α = max

i
(αi). To

follow the spatial distribution inside the flow a transport equation for each of the volume fraction fields is
solved, which can be found in equation 2.5.

∂αi
∂t

+ u · ∇αi = 0 ∀ i ∈ N (2.5)

2.2 Numerical Algorithm

We will look into the discretization of equations 2.1, 2.2 and 2.5, where we will spend some extra at-
tention on the source term S from equation 2.1. We have five unknowns in these equations, namely
u = (u v w), p and α. From this unknowns the velocity field and the pressure are coupled by equation
2.1, leading to four unknowns for three equations. We will use the continuity equation 2.2 as the fourth
equation, however this does not contain the pressure. We will use a special coupling technique, in which
we apply the divergence operator onto the momentum equation 2.1 [13].
We will first apply a semi-discretization on the momentum equation 2.1 [16]. For this semi-discretization
we only discretized the time derivative, while keeping the spatial derivative in partial differential forms,
so we can use the mass conservation to eliminate terms and end up with the Poisson equation for
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2.2. NUMERICAL ALGORITHM 7

the pressure [13]. After we semi-discretize the equations we will use the PISO, Pressure-Implicit-Split-
Operator, of OpenFOAM R©, which is used for transient calculations, but is limited in time step by the
Courant number [13]. The Courant number, also called Courant-Friedrichs-Lewy condition, is a nec-
essary condition for convergence. Keeping to this condition makes sure information does not reach
second or third neighbor cells, which are not taken into account in the explicit time stepping scheme.
The semi-discretized equation can be found in equations 2.6 - 2.9.

acuc = H(u)−∇p̂+ F , (2.6)

with H(u) =
∑
nb

anbu
n+1
nb +

1

∂t
[2(ρu)nc −

1

2
(ρun−1

c )], (2.7)

p̂ = p− ρg · x, (2.8)

and F = Sn+1 − g · x∇ρ. (2.9)

This form is derived from a second order backward differencing scheme in time [8]. In these equation
the subscript c is the center of cell, whereas the subscript nb means all the nearest neighboring cells.
The coefficients ap and anb result from the discretization of the time derivative, the diffusion term and
the convective term for all the neigbouring cells. A full description on how to find these coefficients can
be found in [25]. The term F from equations 2.6 and 2.9 contains the discretization of the remainder of
the gravity term, after we used the modified pressure in equation 2.6, given by equation 2.8.
From the semi descrete form of the equation 2.6 you can attain the discrete velocity field at the cell faces
(subscript cf ) by using interpolation and a face-centred gradient operator, this can be seen in equation
2.10.

ucf =

(
H(u)

ac

)
cf

− (
1

ac
)cf [∇cf p̂− (F )cf ]. (2.10)

After applying the continuity constraint 2.2 to equation 2.10 we get the well known Poisson equation for
the pressure, equation 2.11.

∇ ·
[
(

1

ac
)cf∇cf p̂

]
= ∇ ·

(
H(u)

ac

)
cf

+∇ ·
[
(

1

ac
)cf (F )cf

]
. (2.11)

The PISO algorithm can be summed up as follows:

1. Set the boundary conditions related to the case.

2. Compute volume fraction fields. (Equation 2.13)

3. Compute interfacial force. (Equations 2.14)

4. Compute mean density and mean viscosity. (Equations 2.3 and 2.4)

5. Solve the discretized momentum equation to compute an intermediate velocity field. (Equation
2.6 )

6. Compute the mass fluxes at the cell faces.

7. Solve the pressure equation. (Equation 2.11)

8. Correct the mass fluxes at the cell faces.

9. Correct the velocities on the basis of the new pressure field.

10. Update the boundary conditions.

11. Repeat from 6 for the prescribed number of times.

12. Increase the time step and repeat from 1.

For step 2 we will look at the transport equation for the interface (Equation 2.5). This is done by a time
marching line advection, which is done sequentially along each coordinate with the algorithm proposed
by Puckett [23]. The interface in a grid cell can be defined as in equation 2.12.

n× x = q. (2.12)

Here n is the normal vector to the interface, x the position vector and q a parameter related to the
intersection points of the interface with the coordinate axes. Details about the relation between the
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volume fraction (α) and the parameter q can be found in the appendix of [8] and in Scardovelli [26].
This reconstruction method is programmed in OpenFoam and will give a sharp representation of the
interface. We will then separately advance the volume fraction field of each particle in time by an
operator split method, sequentially along each coordinate direction. The scheme, proposed by Puckett
[23], for the 3D algorithm can be found in equation 2.13.

αi,x = αni −∆t
∂(uαni )

∂x
+ ∆tαi,x

∂u

∂x
,

αi,y = αi,x −∆t
∂(vαi,x)

∂y
+ ∆tαi,y

∂v

∂y
, (2.13)

αi,z = αi,y −∆t
∂(wαi,y)

∂z
+ ∆tαi,z

∂w

∂z
,

αn+1
i = αi,z −∆t(αi,x

∂u

∂x
+ αi,y

∂v

∂y
+ αi,z

∂w

∂z
).

The last term in each of the intermediate equations of 2.13 is to correct for over- or undershoots, which
could occur after a single direction sweep. However this term vanishes in the total change, provided
that the velocity is divergence free, equation 2.2. The order of the direction sweeps are alternated to
reduce assymetries, where all permutations of direction sweeps are used.
For step 3, the interfacial force, we will use the continuum-surface-force (CSF) approach of Brackbill [6],
with an extension to a two marker approach, as done by Kwakkel [20]. We will use an interface value
smoothened over multiple cells, for the computation of the curvature. This technique is based on the
convolution of the volume fraction field α with a kernel Φ, to get to the smoothened field α̃. The details
of this technique can be found in [8] and [12].
The interfacial force in equation 2.9 is then given by equation 2.14.

(Sn+1)cf =
∑
i

σiκcf,i∇cf α̃n+1
i (2.14)

with κcf,i = ∇ · ñ = ∇ · ∇α̃
n+1
i

|∇ ˜αn+1
i |

(2.15)

Where σi is the surface tension of the ith particle, κcf,i the curvature at the cell face, and ñ is the
approximation to the normal.
In step 6 and 8 we calculated the mass fluxes at the cell faces. This means we calculate the outflow and
inflow of mass at every face of a cell. When we combine this outflow and inflow, a mass conservation
should hold, so no mass loss or mass gain. If this is not the case we have to make a change in the flow
field and thus the pressure. By iterating over this we will eventually reach a threshold value.
Note: in step 4 we will use the smoothened fraction field, α̃ = max

i
α̃i. And numerically bound this value

between 0 and 1, by setting values higher than 1 to 1 and likewise for lower than 0.



Chapter 3

OpenFoam

The method (VofMMRK) explained in the previous chapter has been implemented in OpenFOAM R© [22].
OpenFOAM R© stands for Open Source Field Operation And Manipulation, it is a programme used for a
lot of Computational Fluid Dynamics (CFD) problems. This programme has an object based C++ library,
with already exsting classes and its own notation. It provides a number of solvers, designed to solve
specific problems, and utilities, performing data manipulation tasks. You can think of mesh building or
decomposing as a utility. On top of the existing solvers and utilities you can add your own or modify
existing ones to fit your purpose.
To get to know more about OpenFOAM R© you can check the User Guide, available at:
https://cfd.direct/openfoam/user-guide/

3.1 The Case

The OpenFOAM R© case file is set up like any other case in OpenFOAM R©. An overview of this can be
found in figure 3.1. A sample of the files are attached in the appendix for clarity.

Figure 3.1: Flowchart of the structure of an OpenFOAM R© case for VofMMRK. In this figure the directo-
ries are bold, the files are plain, and the explanations are cursive.

Page 9



Chapter 4

2D DNS

In this chapter we will use the VofMMRK solver described in Chapter [2]. We will simulate three different
cases, examine the spatial convergence and compare this to results of other methods.

4.1 Benchmark

A good way to validate a new numerical method for a complex problem is using a benchmark. Since
there is no analytical solution to compare your results with, it would be good if different methods obtain
similar results. Therefor we will simulate the first testcase of the benchmark of Hysing [15]. In this
benchmark they apply both visual comparison of the results, as well as quantitative comparison. We
will only work on the first test case, a bubble undergoing moderate shape deformation, and not on the
second more challenging test case. This is because the results in the paper for this second testcase
were rather inconclusive on a number of points, among which the point of break up and the final form of
the bubble [15]. The used parameter values can be found in table 4.1.
The testcase we will be working on has a Reynolds number of 35 and an Eötvös number of 10 with
density and viscosity ratios equal to 10. The Reynolds number is a dimensionless quantity, a high
Reynolds number shows turbulent flows, whereas a low Reynolds number flow is a laminar flow. The
Reynolds number is here defined as Re =

ρfUgL
µf

. The Eötvös number is defined as Eo =
ρfU

2
gL

σ ,
and gives the ratio of gravitational forces to surface tension effects [15]. For these definitions we used
Ug =

√
g2r0, the gravitational velocity.

Experimental studies on this type of bubble have been done by Clift et al. [10] and the bubble should
end up in the ellipsoidal regime, however we will be doing a 2D simulation. The visual comparison of
the result will show that in the 2D case it will also end up in the ellipsoidal regime. We will compare the
results on circularity, the center of mass, and the mean rise velocity of the bubble.

symbol value
Density of the fluid ρf 1000
Density of the bubble ρb 100
Viscosity of the fluid µf 10
Viscosity of the bubble µb 1
Surface tension of the bubble σ 24.5
Gravity g (0 − 0.98 0)
Initial location of the bubble (x, y) (0.5, 0.5)
Initial bubble radius r0 0.25
Dimensions of the box X,Y [0, 1], [0, 2]
Gridsize (nx x ny) 40x80, 80x160, 160x320, 320x640
Maximum Courant number C 0.45
Maximum Interface Courant number CI 0.45

Table 4.1: Physical quantities of the first test case of the Hysing Benchmark [15].

Page 10



4.1. BENCHMARK 11

We will calculate the norms and rate of convergence as in the paper [15], for ease repeated in
equations 4.1 - 4.7.

Center of Mass Xc = (xc, yc) =

∫
Ωb
xdx∫

Ωb
dx

. (4.1)

Circularity γ =
2πr

Pb
. (4.2)

Rise velocity U c =

∫
Ωb
udx∫

Ωb
dx

. (4.3)

l1 error ||e||1 =

∑NTS
t=1 |qt,ref − qt|∑NTS
t=1 |qt,ref |

. (4.4)

l2 error ||e||2 =

(∑NTS
t=1 |qt,ref − qt|2∑NTS
t=1 |qt,ref |2

)1/2

. (4.5)

l∞ error ||e||∞ =
maxt |qt,ref − qt|

maxt |qt,ref |
. (4.6)

Rate of Convergence ROC =
log10(||el−1||/||el||)

log10(hl−1/hl)
. (4.7)

Here the subscript c means the center of an object, the subscript b means it is from the bubble. P
stands for perimeter and q for the different quantities, namely Center of Mass, Circularity and Rise
velocity. NTS is the number of time steps, and ref is the reference solution, the solution from the finest
grid, with 1

h = 320. Lastly the supscript l is the grid refinement level. We were supposed to calculate
these values at every time step, we however only saved the data of certain moments in time, this may
influence our results slightly.
The statistics from the simulation can be found in table 4.2 and figure 4.2. Were we can see that the
computation time is scaling quadratically with 1

h , so linearly with the number of grid cells.
We made the figure of the bubble shapes for all the grid sizes at time t = 3 to visually compare with the

1/h NTS CPU in s
40 174 6.01
80 285 29.17
160 512 174.85
320 997 872.39

Table 4.2: Statistics from the simulation of Hysing testcase1, where NTS is number of time steps.

benchmark as well. We can see that the results are in agreement with the benchmark, since they are
converging to the black line. This can be found in figure 4.1. We can also clearly see that the bubble did
end up in the ellipsoidal regime as expected.
For the error norms and the rate of convergence we attained the values found in table 4.3.

1/h ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞
Center of mass
40 1.09E-01 1.10E-01 1.30E-01
80 5.19E-02 1.07 5.23E-02 1.07 5.94E-02 1.13
160 1.82E-02 1.51 1.84E-02 1.50 2.06E-02 1.53

Rise velocity
40 7.89E-02 8.75E-02 9.05E-02
80 3.85E-02 1.03 3.89E-02 1.17 3.82E-02 1.24
160 1.11E-02 1.80 1.14E-02 1.77 1.35E-02 1.50

Circularity
40 9.78E-03 1.22E-02 2.28E-02
80 1.62E-03 2.60 1.94E-03 2.65 3.43E-03 2.73
160 4.66E-04 1.79 6.60E-04 1.56 1.29E-03 1.42

Table 4.3: Relative error norms and convergence rates for testcase 1 of the Hysing Benchmark [15].
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Figure 4.1: The contour, c = 0, 5, of the bubble at time t = 3 for testcase 1 of the Hysing Benchmark [15].
Here red is for gridsize 40 x 80, green for 80x160, blue for 160x320 and purple for 320x640. The result
in black is the result of mphBox [9], which coincides with the reference result of the Hysing Benchmark
[15].

Comparison to Benchmark

When looking at the results a couple of things come to mind. First of all our error norms seem higher
than that of any of the other codes. And the order of convergence of the VofMMRK scheme does not
seem to reach second order, which seems also true for the FreeLIFE group, but the TP2D comes close
to second order and the MooNMD even goes to forth order when looking at the Center of Mass. For
this simulation we used the adjustable time step from OpenFOAM R©, which keeps the Courant number
automatically below a certain value yet takes the largest time step possible. This might have caused
the scheme to be less than second order, due to a temporal error. Therefor we also did this simulation
with a stationary time step, which can be found in Appendix A.
When looking at statistics we see a comparable result of CPU per time step with the TP2D group,
but a much smaller number of time steps taken. This could lead to a temporal error and may explain
the discrepancy between the results from the VofMMRK code compared to the others. The FreeLIFE
group seems to take a lot more computation time, which makes finer resolutions more expensive. When
looking at the figure we see that the CPU is scaling with second order with respect to gridsize. This is
as expected, since we double the amount of cells in two directions, thus squaring the amount of work.
The number of time steps seems to influence it a little as well, eventough it is scaling close to linearly
with respect to the grid size.
All in all this method seems to get quite good results with relative low computation cost and has the
possibility to improve results with even higher resolution.
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Figure 4.2: The CPU time in a loglog plot against the gridsize. The CPU time is given in blue, first order
is given in red and second order is given in green.
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4.2 Bubble/Wall

We did a direct numerical simulation of this case to see how the solver performed with more challenging
parameters. The values can be found in table 4.4. We also wanted to see the modeling of near contact
with the wall. To see how the simulation dealt with the boundary condintions, and if convergence
could once again be obtained. Lastly this simulation is a good reference when looking at near-contact
situations. It could be investigated if the contact near a wall is similar to a head on collision, and could
be used for simulating collisions on coarser grids, by using a reflection method. Lastly we can see if a
lubrication correction is needed for contact with a wall as well.

symbol value
Density of the fluid ρf 1000
Density of the bubble ρb 1
Viscosity of the fluid µf 10
Viscosity of the bubble µb 0.1
Surface tension of the bubble σ 1.96
Gravity g (0 − 0.98 0)
Initial location of the bubble (x, y) (0.5, 0.7)
Initial bubble radius r0 0.25
Dimensions of the box X,Y [0, 1], [0, 1]
Gridsize (nx x ny) 40x40, 80x80, 160x160, 320x320, 640x640
Maximum Courant number C 0.45
Maximum Interface Courant number CI 0.45

Table 4.4: Physical quantities for the Bubble/Wall case.

(a) gridsize is 40x40

(b) gridsize is 640x640

Figure 4.3: The volume fraction field, α, for the different grids at different time steps, starting at 0s with
intervals of 0.5s till 8s. Here the inside of the bubble is red, while the outer fluid is blue.

From all the relevant data, such as the volume fraction field (α), the pressure (p), and the velocity (U ),
we decided to mainly focus our attention on the volume fraction field. In figure 4.3 we can see the time
evolution of this simulation at the coarsest and the finest grid. There is a big difference between these
two, which shows that a convergence study is relevant. For example at time t = 4, top right situation,
we see some extra attributes in the coarsest grid, and at time t = 8 a whole extra gap appears. We
will look into these times and two earlier times, namely t = 1 and t = 2, and make a contour plot of the
bubbles on all the grid sizes, this can be found in figure 4.4.
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(b) t = 2
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(c) t = 4
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(d) t = 8

Figure 4.4: The contour,c = 0.5, of the bubble on the different grids at different time steps. Grid 40x40
is in red, 80x80 is in yellow, 160x160 is in green, 320x320 is in blue, and 640x640 is in purple.

We also looked at mass conservation of this method, the results can be found in figure 4.5. The
formulation of the relative area difference is found in equation 4.8.

relative area distance =

∑
nx,ny

α(t = 0)−
∑
nx,ny

α(t)∑
nx,ny

α(t = 0)
. (4.8)

From the figure we can conclude that there is a mass loss, since the volume of the bubble reduces over
time, while the density stays constant. We can see that this mass loss takes place when there is a lot of
movement, whereas it slows when the bubble is barely moving. The error is of the order O(10−5) and
is not dominant.

We will use the same quantities, error, and convergence rate calculations as in the previous section,
equations 4.1 - 4.7. The results for this simulation can be found in table 4.8.

Conclusion

We looked at this case to see how the method would be dealing with more challenging parameters. It
seems that we get accurate results and that the computation time per time step has gone down since
the previous simulation. We can either assume that the method is capable of more challenging param-
eters or scrutinize the set-up a bit more. It seems that some parameters are indeed more challenging,
but the critical velocity is probably smaller, leading to smaller Reynolds numbers. Nevertheless we once
again see convergence and still have an interesting case for the near contact question. It is not possible
to answer if it is similar to a head-on collision, since we don’t have that type of data here. The boundary
conditions do influence the solution largely, we now see a bigger difference between the grids, espes-
cially at t = 8. This is not only for the coarsest grid, but also for the grid with 1

h = 80. This shows that
lubrication correction might also be necessary for the wall collision case, where we see the thin film
geometry. Lastly we conclude that the mass loss of this method was not dominant for this case, since
the order (O(10−5)) was smaller than the other errors.
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Figure 4.5: The relative area error compared to the numerical area at t = 0, which shows some mass
loss over time. Here grid 40 x 40 is in red, 80x80 is in yellow, 160x160 is in green, 320x320 is in blue,
and 640x640 is in purple.

nx ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞
Center of mass
40 1.62E-01 1.65E-01 1.95E-01
80 7.17E-02 1.18 7.22E-02 1.19 8.66E-02 1.17
160 3.03E-02 1.24 3.05E-02 1.24 3.49E-02 1.31
320 9.48E-03 1.67 9.67E-03 1.66 1.36E-02 1.36

Rise velocity
40 3.05E-01 2.63E-01 4.18E-01
80 1.77E-01 0.78 1.46E-01 0.85 1.40E-01 1.57
160 1.02E-01 0.80 7.39E-02 0.98 6.72E-02 1.06
320 4.77E-02 1.09 2.91E-02 1.35 2.47E-02 1.45

Circularity
40 1.60E-02 1.92E-02 3.55E-02
80 5.37E-03 1.57 6.37E-03 1.59 9.10E-03 1.96
160 1.71E-03 1.65 1.94E-03 1.71 2.69E-03 1.76
320 4.34E-04 1.98 4.72E-04 2.04 6.36E-04 2.08

Table 4.5: Error norms and convergence rates for the bubble/wall collision.

nx NTS CPU in s
40 429 11.37
80 479 53.64
160 596 304.55
320 10005 2814.94
640 2316 30234.51

Table 4.6: Statistics from the simulation of the case of the bubble/wall collision.
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Figure 4.6: The CPU time in a loglog plot against the gridsize. The CPU time is given in blue, first order
is given in red and second order is given in green.
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4.3 Droplet/Droplet

For particle-particle interaction a head on collision of two equally sized particles is the simplest start.
That is why we did a DNS of a droplet/droplet collision. We simulated this case first with physical
parameters, however the simulation did not seem stable and too much was happening. That is why we
choose to use the mathematical parameters, used for the droplet/droplet collision in the paper of Cifani
[9]. The values of these parameters can be found in table 4.7.

symbol value
Density of the fluid ρf 0.001
Density of the droplets ρb 1
Viscosity of the fluid µf 0.0005
Viscosity of the droplets µb 0.05
Surface tension of the droplets σ 0.24
Gravity g (0 0 0)
Initial location of the droplet 1 (x, y)1 (1.8, 2)
Initial location of the droplet 2 (x, y)2 (3.2, 2)
Droplet radius r 0.5
Dimensions of the box X,Y [0, 5], [0, 4]
Gridsize (nx x ny) 40x32, 80x64, 160x128, 320x256, 640x512
Maximum Courant number C 0.45
Maximum Interface Courant number CI 0.45

Table 4.7: Physical quantities used for the head on collision of two droplets.

To show what we are simulating we made another time loop, for two different grids. This shows once
again that grid refinement is very important. These time loops can be found in figure 4.7. From this
time loop it seems that it takes approximately 1 second to get to the height of the colision but it takes
almost twice as long to get back to the original shape. To look into the difference between the different
grid sizes more clearly we made a contour plot at six interesting times. These plots can be found in
figure 4.8. In the contour plot we can once again see convergence. We did the convergence study with
the Hysing quantities for both the droplets separately, where the rise velocity is now the droplet velocity.
The equations used for the calculation can be found in section [4.1], equations 4.1 - 4.7. In Table 4.8
and Table 4.9 you can find the results for the convergence, respectively the statistics of the simulation.
We also like to make sure that the two droplets in the collision are symmetric, that is why we decided to
compare the circularity of both the droplets. This can be found in figure 4.9. In this figure we can see
that on a coarse grids there is a slight dissymmetry, however this disappears with finer resolution.

Conclusion

This is the first simulation in which two particles, and thus the first simulation in which the multi marker
approach is used. We get good results with the solver, with a symmetric setup we get symmetric results
on fine resolutions. We see once again the sligthly higher than first order convergence. We see that the
computing cost are similar to those of the first simulation (Section [4.1]). We do however have less grid
cells, the difference in cost is probably due to the fact that we have two particles. We chose this case
due to its relevance of the near contact question. It is hard to answer if lubrication theory is needed,
but we can clearly see that the collision on finer grids leads to a slightly higher rebound velocity. Which
could indicate that the pressure between the particles is underestimated on coarse grids.
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(a) grid 40x32

(b) grid 640x512

Figure 4.7: The volume fraction field, α, for the different grids at different time steps, starting at 0s with
intervals of 0.5s till 4s. Here the inside of the droplet is red, while the outer fluid is blue.
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Figure 4.8: The contour, c = 0.5, of the two droplets on the different grids at different time steps. Grid
40x40 is in red, 80x80 is in yellow, 160x160 is in green, 320x320 is in blue, and 640x640 is in purple.
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nx ||e||1 ROC1 ||e||2 ROC2 ||e||∞ ROC∞
α1

Center of mass
40 3.15E-01 3.24E-01 4.65E-01
80 1.43E-01 1.14 1.46E-01 1.15 2.04E-01 1.19
160 6.73E-02 1.08 6.79E-02 1.10 7.97E-02 1.36
320 2.19E-02 1.62 2.21E-02 1.62 2.65E-02 1.59

Droplet velocity
40 5.41E-01 5.21E-01 4.97E-01
80 3.26E-01 0.73 3.01E-01 0.79 2.99E-01 0.73
160 1.58E-01 1.04 1.55E-01 0.96 1.72E-01 0.79
320 6.49E-02 1.28 6.22E-02 1.32 6.74E-02 1.35

Circularity
40 2.90E-02 3.88E-02 9.24E-02
80 6.39E-03 2.18 8.63E-03 2.17 1.74E-02 2.41
160 2.91E-03 1.14 4.04E-03 1.09 8.09E-03 1.11
320 9.44E-04 1.62 1.25E-03 1.69 2.81E-03 1.53

α2

Center of mass
40 3.35E-01 3.39E-01 4.21E-01
80 1.44E-01 1.22 1.45E-01 1.23 1.73E-01 1.29
160 6.28E-02 1.19 6.36E-02 1.19 7.48E-02 1.21
320 2.13E-02 1.56 2.17E-02 1.55 2.77E-02 1.43

Droplet velocity
40 5.07E-01 5.07E-01 5.03E-01
80 2.78E-01 0.86 2.81E-01 0.82 2.92E-01 0.77
160 1.58E-01 0.81 1.53E-01 0.88 1.67E-01 0.84
320 6.46E-02 1.29 6.03E-02 1.34 6.57E-02 1.39

Circularity
40 2.98E-02 4.09E-02 9.93E-02
80 6.65E-03 2.16 9.25E-03 2.14 1.86E-02 2.41
160 3.04E-03 1.13 4.31E-03 1.10 9.07E-03 1.04
320 9.51E-04 1.68 1.32E-03 1.71 2.91E-03 1.64

Table 4.8: Error norms and convergence rates for the case of the head on collision between two droplets.

nx NTS CPU in s
40 226 6.9
80 241 24.86
160 353 136.62
320 588 1118.1
640 1116 18407.65

Table 4.9: Statistics from the simulation of the case of the head on collision between two droplets.
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Figure 4.9: The circularity of the two droplets on diferent grids. Here the circularity of the left bubble
is given in red for the coarsest grid, and in blue for the finest grid. The circularity of the right bubble is
given in green for the coarsest grid and in purple for the finest grid.
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Figure 4.10: The CPU time in a loglog plot against the gridsize. The CPU time is given in blue, first
order is given in red and second order is given in green.



Chapter 5

3D comparison

In this chapter we will use the VofMMRK solver in a 3D setting. We will simulate the droplet/droplet
collision again and compare it to the results of Cifani [9]. This case is simulated in parallel, so we also
added a section on parallelization and speedup.

5.1 3D Droplet/Droplet Collision

We also did the simulation of a droplet/droplet collision in 3D. We added this DNS to make another
comparison and see the work of the solver for 3D cases. This could also be used to test if the models
produced in 2D would obtain similar results in 3D. The parameters for this case can be found in table
5.1. This case was also done with the code mphBox of Cifani [9]. A visual comparison of the results of
these codes is done. We were planning on doing a finer resolution case as well to see how the code
evolved compared to the results gained by Cifani [9]. However due to some problems with the initial
velocity and high computational cost this could not be achieved in the time frame.
To show what we are simulating we made another time loop, which can be found in figure 5.1. For the

symbol value
Density of the fluid ρf 0.001
Density of the particles ρb 1
Viscosity of the fluid µf 0.0005
Viscosity of the particles µb 0.05
Surface tension of the particle σ 0.24
Gravity g 0
Initial location of the particle 1 (x, y, z)1 (1.3, 1.5, 1.5)
Initial location of the particle 2 (x, y, z)2 (2.7, 1.5, 1.5)
Bubble radius r 0.5
Dimensions of the box X,Y, Z [0, 4], [0, 3], [0, 3]
Gridsize (nx x ny x nz) 128 x 96 x 96
Timestep dt 0.0004

Table 5.1: Physical quantities used for a head on collision of two droplets in 3D.

comparison of the VofMMRK method with the mphBox, we made a slice right down the middle of the
z-axis and made a vector field view of the velocity at different time steps, which can be found in figure
5.2. We see that the results almost overlap, though the differences grow a little with time.
The statistics can be found in table 5.2.

nx NPU NTS execution Time in s
128 16 10000 131381.88

Table 5.2: Statistics from the simulation of the case of the head on collision between two particle in 3D,
NPU is number of processors used

Page 23
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Conclusion

The solver is able to simulate 3D simulations, which compare quite accurately with the solver from Cifani
[9]. It seems however that the VofMMRK solver is slightly delayed with respect to the droplet movement
compared to mphBox [9]. When looking at section [4.3] this might improve with higher resolution.
It would be good to do some grid refinement, or even coarsening, to check the convergence of the 3D
solver. However doubling the grid in every direction will probably take at least eight times as long, and
probably slightly more looking at 2D results. We do not have computation cost from the mphBox solver,
so the only comparison for this are the 2D cases. It is however hard to make a comparison between
these cases. When we look at the computation time per timestep per grid cell, we see that this is of the
same order with the 2D case. However for the 3D case we are using 16 processors whereas for the 2D
case we only used 1.
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 1.5

(e) t = 2

Figure 5.1: The volume fraction, α, at different time steps, starting at 0s with intervals of 0.5s till 2s.
Where the droplets are red.
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Figure 5.2: The velocity vector field (U ) and the droplet location at the different times. The values of
vofMMRK are given in blue and the results of mphBox are given in red.
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5.2 Parallelization speedup

In section [5.1] the abbreviation NPU, number of processors used, was already mentioned. By using
multiple processors we can reduce the total computation time, this is called parallelization. OpenFOAM
has built-in scripts for parallelization, the method of parallel computing used by OpenFOAM R© is based
on domain decomposition [22]. This method is done in three phases, decomposing in seperate domains,
using the decomposePar utility, running the application in parallel, with the MPI (Message passing
interface) Run command, lastly you can reconstruct the entire domain, using the reconstructPar utility,
or post-process each of the domains seperately.
The mesh decomposition can be done in multiple ways, here we used simple geometric decompositon
which splits the domain into the number of pieces in each direction given by the vector. For example for
16 processors we used the decomposition (4 2 2) dividing the x−direction in four parts, the y−direction
in two, and the z−direction in two.
Parallelization would ideally reduce the computation time by half if double the number of processers
are used, this is however usually not the case. This is due to the communication needed between
the processors on the boundaries of the decomposed domains, such that there are no discontinuities.
Other overhead cost could be in the tracking of particles, which could be necessary for the expansion
to particle-particle interaction [28]. The way in which you decompose your domain could also be of
influence.
In table 5.3 you can see the results of the speedup for the finest grid of the 3D case mentioned in section
5. We only simulated a short time (till t = 0.001), to get an idea of the speedup. Where we used the
following decompositions (1 1 1), (2 1 1), (4 1 1), (2 2 2), (4 2 2) , and (8 2 2). The speedup is then given
by the following calculation Speedup(NPU) = CPU(NPU/2)

CPU(NPU) . We used the parameters found in table
5.1, except that the grid size was larger, namely 256x192x192. We used both the adjustable time step
function from OpenFOAM R© as a stationary time step of dt = 0.000025.

NPU CPU in s Mean CPU per timeStep in s Speedup
ATS
1 5611 401
2 3393 242 1.65
4 2192 157 1.55
8 1342 96 1.63
16 708 51 1.90
32 623 45 1.14

SDT
1 12911 323
2 9571 239 1.35
4 9086 227 1.05
8 6712 168 1.35
16 4601 115 1.46
32 5877 147 0.78

Table 5.3: Speedup values for the fine 3D droplet/droplet case, where ATS stands for Adjustable Time
Step, and SDT stands for stationary dt. We simulated the fine 3D case from section 5.1 till t = 0.001 for
a different number of processors.

Conclusion

Ideally we wish the speedup to be equal to 2 since we double the number of processors, however you
can see that it is slightly less, as expected. We can see that the adjustable time step is more com-
putational expensive when using just a few processors but gets cheaper as the number of processors
increases. Also notable is the fact that the speedup is doing welll up to 16 processors for this problem,
but at 32 processors the values decrease, for the stationary time step it even gets slower. This might
be because at 32 processors the communication between the processors about the boundary condi-
tions has higher computational cost than the actually algorithm itself. It is also possible that a different
decomposition leads to a better speedup or that the case simulated is simply not big enough for that
number of processors, leading to a decrease in efficiency.
The overall lower computational cost of the adjustable time step is easy too explain, since only 14 time
steps were taken compared to the 40 of the stationary time step. We looked into the CPU time a bit
more, and saw it could be composed into four groups, The VOF algorithm (2-4), the U equations (5), the
first P equations (6-10) and the second P equations (6-10). Where between brackets we mentioned the
steps of the PISO algorithm seen in section [2.2]. Where the VOF algorithm and the U equations were



28 CHAPTER 5. 3D COMPARISON

comparable, the P equations stood out. Why the difference in CPU time for these equations is so much
higher for the stationary time step than for the adjustable time step, I cannot explain. The calculations
are added in appendix B.
This results may vary for different cases, but we like to recommend using if possible at least 16 proces-
sors when simulating 3D data, since it will save a lot of time.



Chapter 6

Lubrication

6.1 History and scientific relevance of lubrication

So far we have been dealing with the description of a two fluid flow system. In such a system different
types of interaction take place. The particles are moved by the fluid, but at the same time influence
the fluid itself. The walls influence both the flow and the location of the particles. These interactions
are already taken into account by the transport equation 2.5, the interfacial force source term in the
Navier stokes equations 2.1 and the boundary conditions on the field. However there is another type
of interaction, namely the particle-particle interaction. This interaction consists of a number of different
phenomena, like collisions, resulting in coalescence, bouncing or deformation, breakups and repulsive
forces. Each of these phenomena is an intricate problem for simulation. For example the Volume of
Fluid method contains the problem of numerical collision [20], which happens when particles are within
one grid cell distance of each other. The extension to the multiple marker approach resolves this prob-
lem, but prohibits collisions completely.
The accurate simulation of particle-particle interaction is more important when more particles are in-
volved, Yao et al. [30] mentiones that the particle-particle interaction will even dominate the hydrody-
namic behaviors in high concentration cases. The research done in this field is extensive, however most
of the papers target only one specific problem, like two rigid spheres in an unbounded fluid of equal size
([17]), or two particles freely moving in a cylinder [21] and [30]. Based on this research different inter-
action models are also investigated, like the following collision models: critical velocity models ([19]),
energy models ( [14], [27]), film drainage models ([20], [11], [7]) or damper-spring models ([18]).
Many of these methods are based on Lubrication theory. Lattice Boltzman and Stokes multipole simu-
latians incorperarte the lubrication force when the particles are in near contact. While in the distributed
Lagrange multiplier method they are applied to the particles instead of refining the grid [1].
Yao et al. [30] mentions that their analysis reveals that particle-particle interaction can be neglected
when the separation distance is three times larger than the sum of particles radii when the two particles
are identical, while Kwakkel [20] mentions that coalescence typically takes place if the film thickness h
is of O(100) nm, at this scale the van der Waals force becomes active. However a lot of interaction is still
possible between those occurences. And making a grid where each cell is of order O(100) nm makes it
nearly impossible to simulate even small problems. Local refinement methods could be a solution to this
problem[29]. However we choose to look into the possibility of applying the thin-film lubrication theory
on a coarse grid, to get more accurate solutions. How this could be achieved can be found in section
6.3.
The motivation for this approach is that the thin film equation leads to the loss of a dimension, making
a 3D problem a 2D problem, and making the equations analytically solveable. The classical theory, as
expanded below, states that the lubrication force goes to infinity as the distance between the particles
goes to zero. This would mean that the particles would be prevented from touching. The theory of
lubrication originates from O. Reynolds, with his wel known Reynolds equations, and his heuristic way
of finding these equations to apply to industrial purposes, like sliding bearings or circular bearings [24].
Since 1886 extensive research has been done on these equations. The use has been expanded to
model all different kind of lubricant layers, and multiple generalisations have been done to adhere to the
shape of the problem [2].

6.2 Theory

We will now look at the classical Lubrication theory. We will show a heuristic approach of deriving the
Reynolds equations from the Navier Stokes equations. We will get the simplification by assuming a
thin film geometry between the surfaces (i.e., one dimension in the fluid domain is far smaller than the
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other two)[2]. A more rigorous mathematical approach, based on assymptotic expansion can be found
in [3]. First we consider an incompressible Newtonian lubricant in an isothermal and isoviscous regime,
exactly like the assumption made in section 2.1 except that instead of a two-fluid system we only have
one fluid. The Navier-Stokes equations for this case are given by equations 6.1 and 6.2.

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+ ν∆u+ ρf , (6.1)

∇ · u = 0. (6.2)

Once again u = (u v w) and p denote respectively the fluid velocity field and the pressure, ρ, ν and f
the density, kinematic viscosity and external volume forces. To reduce the complexity of this equations
in this geometry, thin film, we get the simplification from the fact that the length scale (Lxy) in the xy
plane of the film is significantly larger than the length scale Lz in the z−direction. When the fraction
is small, typically ε = Lz

Lxy
≤ O(101) [2], we can apply scaling of the original equations to reduce the

dimension of the problem.
We will define the new spatial coordinates and velocity components as follows:

X =
x

Lxy
, Y =

y

Lxy
, Z =

z

Lz
, (6.3)

U =
u

Uxy
, V =

v

Uxy
, W =

w

Uz
. (6.4)

From equation 6.2 it is then easy to see that Uz = εUxy. And the scaled pressure and scale time can
be defined as in equation 6.5 and equation 6.6 respectively.

P = p
εRe

ρU2
xy

, (6.5)

T = t
Uxy
Lxy

. (6.6)

Here the Reynolds number is defined as Re =
UxyLxy

ν .
We can now introduce all the new variables (of equations 6.3, 6.4, 6.5, and 6.6) into equations 6.1
and 6.2. Neglecting the body forces (f ), and terms smaller then O(ε2), we will obtain the 3D-Reynolds
equations given in equation 6.7.

ε2Re(
∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
+W

∂U

∂Z
) = − ∂P

∂X
+
∂2U

∂Z2
,

ε2Re(
∂V

∂T
+ U

∂V

∂X
+ V

∂V

∂Y
+W

∂V

∂Z
) = − ∂P

∂X
+
∂2V

∂Z2
, (6.7)

∂U

∂X
+
∂V

∂Y
+
∂W

∂Z
= 0.

To be noticed is that the missing equation in the momentum conservation implies that the pressure is
constant across the lubricant film. Moreover, passing to the limit when ε tends to zero and coming back
to the original variables, we get the simplified model of equation 6.8.

∂p

∂x
= µ

∂2u

∂z2
,

∂p

∂y
= µ

∂2v

∂z2
, (6.8)

∇ · u = 0.

6.3 Application

As seen in the Bubble/Wall and the Droplet/Droplet collision cases there is convergence happening
between the grid sizes. The Bubble/Wall shows a clear gap in the coarser grids, which could be due to
an underestimation in the outflow from the thin film, a lubrication correction might help solve this without
going to finer resolutions. In the Droplet/Droplet case the motivation is a bit less clear, however the
rebound velocity seems to be underestimated on coarser grids.
It is also good to notice that the computation costs gets huge for finer grids and 3D-simulations, using
lubrication theory and a coarse grid could possibly reduce these cost while still leading to accurate
solutions. When investigating the application of lubrication theory to this problem it is wise to start with
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a 2D investigation, luckily a similar reduction to a 2D-Reynolds equation exists. As mentioned in section
6.2 some assumptions were made in the deduction of the Reynolds equations. One of them involved
that the boundaries of the fluid film are solid walls. This is obviously not the case in this research,
however from the motivation given in section 6.1 it seems a correction is needed on coarse grids, and
this theory might improve results on coarse grids.
First we will look at the 2D equations, where ε =

Ly

Lx
, and solve them according to the approach of [5].

∂p

∂x
= µ

∂2u

∂y2
,

∂p

∂y
= 0. (6.9)

We will combine this with the fact that the change in height (h = h1−h2), should be equal to the outflow
(Q) in the x−direction, or simply put

∂h

∂t
+
∂Q

∂x
= 0, (6.10)

where Q(x) =

∫ h2(x)

h1(x)

u(x, y)dy.

Since in equation 6.9 the pressure is independent of y, we can integrate the velocity in the x−direction
over y twice and get:

u(x, y) =
1

2µ

∂p

∂x
(y2 − (h2 + h1)y − 1

2
(h2

1 + h1 + h2
2 + h2)) +

u2 − u1

h2 − h1
y +

u1h2 − u2h1

h2 − h1
. (6.11)

Here we used u(x, h1) = u1, u(x, h2) = u2. We will then use equation 6.10 to get:

∂h

∂t
+

∂

∂x
(

∫ h2(x)

h1(x)

(
1

2µ

∂p

∂x
(y2 − (h2 + h1)y − 1

2
(h2

1 + h1 + h2
2 + h2)) +

u2 − u1

h2 − h1
y +

u1h2 − u2h1

h2 − h1
)dy) = 0,

∂h

∂t
=

∂

∂x
(
u1h2 − u2h1

2
+

2
3 (h3

1 + h3
2) + 1

2 (h2
1 − h2

2)

2µ

∂p

∂x
). (6.12)

Intergrating this twice over x for a given domain (x0, x1) we get:

p =

∫ x1

x0

2µ
2
3 (h3

1 + h3
2) + 1

2 (h2
1 − h2

2)
(

∫ x1

x0

∂h

∂t
dx− u1h2 − u2h1

2
)dx. (6.13)

We now have an equation for the pressure in the thin film gap (equation 6.13), and an equation for the
velocity (equation 6.11).
There are some ways in which this could be applied to the given method. First of all we could do a
numerical implementation in which we do a lubrication correction for a certain domain. So we could
first calculate the solution over the whole domain. Look at the locations where particles are within a
certain distance and get a new computational domain, the ’thin’ film between the particles. We could
then calculate the solution to the Reynolds equations where we use the originally calculated velocity
and pressure values at the boundaries as the boundary conditions. An obtain for that distance was
mentioned in Yao et al. [30], particle-particle interaction becomes dominant if two particles come within
three times the sum of the particle radii of each other. However a parameter study could be done on the
best value of this distance, since the thin film equations are based on a thinner film than three times the
sum of the particle radii.
A second option which could be interesting to examine is adding a source term in the transport equation
of the volume fraction 2.5, to correct for the difference in flow between the Reynolds equations and the
Navier Stokes solution.
One could try to apply these methods to the coarse grid solution with nx = 40 and then compare the
results with the fine grid solution nx = 640. When implementing this method into a multi-particulate flow
more problems may arise with parallelization and tracking collisions efficiently, though outside the scope
of this paper some information can be found in [28].



Chapter 7

Conclusion and Recommendations

No analytical solution for multi-bubble systems exist, and experimental results are often muddled.
Therefor it is important to have dependable simulation methods for applications in industry or nature.
Multi-bubble system need to incorperate all types of fluid interaction. In this paper we look for ways
to improve particle interaction, while still staying computationally cheap. This was done by a literature
study into Lubrication theory and a DNS of two simple cases, Bubble/Wall and Droplet/Droplet.
The simulation was done by th VOF-PLIC method of Cifani [8] with the multiple marker extension. This
approach, based on Kwakkel [20], prevents numerical coalescence and makes bouncing of particles
possible. We examined the accuracy of this method by comparing it with the Hysing benchmark study
[15], and doing a spatial convergence investigation. The VofMMRK method gave accurate results when
comparing it to the benchmark. Good results were already attained on the coarsest grid, this combined
with a slightly higher than first order convergence and low computation cost makes this method suitable
for further investigation. The theoratical 2nd order convergence was not reached, changing tolerances
or number of corrections in the PISO scheme might still make this 2nd order attainable. It would also be
good to do an investigation into what Courant number should be used when using the adjustable time
step, since using this did lead to different results.
For the analysis of the 3D case we had to look in a different direction. We compared the results of the
VofMMRK method with mphBox from Cifani [9]. Once again we obtained a visually good overlap for the
results. However it was difficult to get quantitative results about the performance. This was due to some
time constraint and considerably larger computation cost. It would be good if some convergence study
could still be done. A good tool for 3D simulations is parallelization, using more processors to speed up
the computation time. Parallelization by mesh decomposition was investigated and showed a decrease
of almost half of the computation time when using double the amount of processors.
We examined the cases Bubble/Wall and Droplet/Droplet to get a better idea of the application needed
to get better results. One of the questions was if this cases are similar. This was impossible to answer
due to different parameters, though the question still remains interesting and could be investigated in
the future. The Bubble/Wall showed the thin film geometry described in Lubrication theory. In this sim-
ulation the finer grids clearly resolved the flow in this thin film better than the coarser grids. It seems as
if this phenomena could certainly be approved by applying the lubrication theory. In the Droplet/Droplet
case the necessity was less obvious. However the rebound speed on the coarser grids was lower. It is
possible that applying lubrication theory could improve this.
Some background information on particle-particle interaction and lubrication theory has been given.
Future research could be done on the cases simulated in this work. One could try to apply the theory in
multiple ways, some initial ideas are suggested here, namely a partail domain replacement or a source
term in the volume fraction advection equation. However a lot of other different methods for particle
interaction do already exist. It would be interesting to get a clear overview of the existing methods, and
a comparison of their performances. It would then also be interesting to see how different collisions are
resolved as well, think of different radii or different angle of approach, since these are rarely discussed
in papers.
Lastly I would like to make some recommendations with respect to the VofMMRK solver and its im-
plementation. The solver seems to be working well for one and two particles and gets fairly accurate
results with relatively coarse grids. These factors make this solver ideal for doing initial investigation,
however the method is now only working for up to 2 particles. If one would like to simulate multi-particle
solutions an extension of the initAlpha utility is needed. On top of that it would be wise to make the initial
velocity a utility as well, so that you do not have to recompile the code for every different situation.
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Appendix A

Benchmark results with stationary
time step

We redid the case from section [4.1] with a stationary time step. We started with a dt of 0.001 for the
coarsest grid, and halved it for every refinement. Due to some time constraint we ran the finer cases
in parallel. We hoped that using a stationary time step would lead to second order convergence. The
parameters are repeated for ease in table A.1. We once again calculated the quantities, error norms
and rate of convergence defined in equations 4.1 - 4.7. The results can be found in Table A.2.

symbol value
Density of the fluid ρf 1000
Density of the bubble ρb 100
Viscosity of the fluid µf 10
Viscosity of the bubble µb 1
Surface tension of the bubble σ 24.5
Gravity g (0 − 0.98 0)
Initial location of the bubble (x, y) (0.5, 0.5)
Bubble radius r 0.25
Dimensions of the box X,Y [0, 1], [0, 2]
Gridsize (nx x ny) 40x80, 80x160, 160x320, 320x640
Time step dt 0.001, 0.0005, 0.00025, 0.000125

Table A.1: Physical quantities of the first test case of the Hysing Benchmark [15].

1/h ||e||1 ROC1 ||e||2 ROC2 ||e||/inf ROCinf

Center of mass
40 1.10E-01 1.12E-01 1.41E-01
80 4.74E-02 1.22 4.77E-02 1.24 5.41E-02 1.39
160 1.60E-02 1.57 1.63E-02 1.55 2.16E-02 1.33

Rise velocity
40 1.15E-01 1.23E-01 1.14E-01
80 4.93E-02 1.23 4.87E-02 1.33 4.21E-02 1.43
160 1.63E-02 1.60 1.64E-02 1.57 1.77E-02 1.25

Circularity
40 5.12E-02 1.45E-01 4.55E-01
80 4.38E-02 0.22 1.46E-01 -0.01 4.61E-01 -0.02
160 4.30E-02 0.03 1.46E-01 0.00 4.62E-01 0.00

Table A.2: Relative error norms and convergence rates for testcase 1 of the Hysing Benchmark [15].

Conclusion

We can see that the scheme still does not reach its expected second order convergence. The only
possibility I can think of for reaching its second order of convergence is setting the tolerances of the
PISO scheme stricter.
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1/h NPU NTS execution Time in s
40 1 3000 170.03
80 1 6000 2010.42
160 4 12000 6221.44
320 24 24000 15357.59

Table A.3: Statistics from the simulation of the Hysing benchmark with a stationary time step, NPU is
number of processors used

We did examine the difference between the different time stepping methods as well. On the finest grid
there seemed to be almost no difference, however on the coarsest grid the difference was quite big. In
figure A.1 we show the difference between this solutions. From this we can conclude that the maximum
Courant number for the simulations with an adjustable time step was set too high. This is probably due
to the transport equation for the volume fraction (equation 2.5). When looking at the courant numbers
of this simulation we see a Courant number of the order O(10−2) and an interface Courant number of
the order O(10−3), which is significantly lower than the number used in the ATS simulations.
Comparing the computation time is a bit harder due to the use of multiple processors for the finer grid.
When looking at the two coarser grids we do however see that the computation time per time step is
also slightly higher.

x

y

0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

1.3

Figure A.1: The bubble at time t = 3 on the coarsest grid 1
h = 40. Here red is the SDT, blue is the ATS

and black is the reference solution of the benchmark [15].
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CPU Data Speedup

Time CPU VOF algorithm CPU U equations CPU first P equations CPU second P equations Total CPU per time step
2,94E-05 24,01 4,27 9,24 16,87 64,33
6,41E-05 24,83 4,48 10,69 16,52 57,51
0,000104768 23,38 4,24 9,25 21,68 59,47
0,000151885 23,49 3,95 5,82 15,34 49,57
0,000208426 23,62 4,01 4,97 12,04 45,6
0,000274391 24,52 3,96 4,54 13,23 47,24
0,000346952 23,86 4 4,76 12,76 46,31
0,000428583 23,97 4,32 5,68 12,29 47,28
0,000523819 24,19 4,18 5,41 13,46 48,23
0,000619055 24,59 4,2 4,75 12,69 47,29
0,000714291 24,6 4,15 4,79 14,15 48,66
0,000809528 24,93 4,22 4,7 14,33 49,21
0,000904764 24,24 4,07 4,39 13,01 46,74
0,001 23,58 4,32 4,75 12,91 46,8

Mean 24,13 4,17 5,98 14,38 50,30
Maximum 24,93 4,48 10,69 21,68 64,33
Minimum 23,38 3,95 4,39 12,04 45,6

Table B.1: Analysis of the speedup data with an adjustable time step for 16 processors.
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Time CPU VOF algorithm CPU U equations CPU first P equations CPU second P equations Total CPU per time step
2,50E-05 21,92 4,25 9,78 16,08 62,23
5,00E-05 21,7 4,48 9,99 16,19 53,22
7,50E-05 21,49 4,38 9,89 20,27 56,89
0,0001 21,75 4,01 5,5 17,31 49,46
0,000125 21,52 3,81 5,17 11,46 42,86
0,00015 21,81 3,98 4,78 10,65 42,17
0,000175 22,68 4,1 4,73 8,98 41,35
0,0002 21,73 4,05 5 12,08 43,74
0,000225 21,52 3,93 5,38 10,89 42,62
0,00025 22,17 4,22 5,32 9,87 42,5
0,000275 21,68 4,01 4,86 11,33 42,79
0,0003 21,58 3,99 5,21 12,47 44,13
0,000325 22,06 4,51 4,92 11,39 43,82
0,00035 22,34 4,21 5,09 11,68 44,19
0,000375 22,61 4,1 5,17 10,66 43,47
0,0004 22,9 4,47 4,91 8,97 42,1
0,000425 22,34 4,57 5,34 10,2 43,39
0,00045 22,69 3,87 5,46 9,46 42,37
0,000475 22,33 4,82 5,4 10,77 44,19
0,0005 23,32 4,38 5,33 10,79 44,78
0,000525 21,55 4,47 5,36 12,35 44,62
0,00055 21,89 4,21 5,39 9,91 42,41
0,000575 26,91 6,22 21,89 68,02 124,11
0,0006 20,32 4,22 17,61 48,58 91,72
0,000625 19,75 4,7 18,37 62 105,62
0,00065 22,01 4,54 21,69 61,17 110,15
0,000675 21 4,36 18,75 61,45 106,5
0,0007 20,33 4,36 20,32 68,16 114,15
0,000725 21,25 4,01 18,44 71,69 116,18
0,00075 25,58 5,05 23,62 73,54 128,91
0,000775 24,69 5,23 25,16 76,35 132,38
0,0008 33,68 7,4 26,45 80,76 149,67
0,000825 29,29 5,54 24,47 86,72 147,33
0,00085 31,72 5,8 24,06 84,8 147,64
0,000875 29,98 5,77 24,23 82,09 143,35
0,0009 37,11 5,74 24,24 78,75 147,28
0,000925 29,5 8,5 27,52 76,61 143,62
0,00095 27,77 5,21 23,44 81,37 138,64
0,000975 27,49 5,22 22,6 79,34 135,72
0,001 31,02 6,74 24,27 80,81 144,48

Mean 24,12 4,79 13,38 39,65 83,17
Maximum 37,11 8,5 27,52 86,72 149,67
Minimum 19,75 3,81 4,73 8,97 41,35

Table B.2: Analysis of the speedup data with a stationary time step for 16 processors.



Appendix C

OpenFOAM R© files

We added the files which were typically different for the case and could be usefull to reproduce the
results.

0 directory

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : 2 .3 .0
|
| \\ / A nd | Web: www.OpenFOAM. org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

vers ion 2 . 0 ;
format b inary ;
c lass v o l S c a l a r F i e l d ;
l o c a t i o n ” 0 ” ;
ob jec t alpha1 ;

}
/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

dimensions [0 0 0 0 0 0 0 ] ;

i n t e r n a l F i e l d uni form 0;

boundaryFie ld
{

r i g h t
{

type zeroGradient ;
}
l e f t
{

type zeroGradient ;
}
back
{

type empty ;
}
f r o n t
{

type empty ;
}
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top
{

type zeroGradient ;
}
bottom
{

type zeroGradient ;
}

}

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

constant directory

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : 1.4
|
| \\ / A nd | Web: h t t p : / / www. openfoam . org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

FoamFile
{

vers ion 2 . 0 ;
format a s c i i ;

ve rs ion 2 . 0 ;
format a s c i i ;
c lass d i c t i o n a r y ;
l o c a t i o n ” constant ” ;
ob jec t i n t e r f a c e P r o p e r t i e s ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

sCe l l s a lpha1 6;
sCe l l s a lpha2 6;

sigma sigma [1 0 −2 0 0 0 0] 0 .24 ;

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : 1.4
|
| \\ / A nd | Web: h t t p : / / www. openfoam . org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
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FoamFile
{

vers ion 2 . 0 ;
format a s c i i ;

ve rs ion 2 . 0 ;
format a s c i i ;
c lass d i c t i o n a r y ;
l o c a t i o n ” constant ” ;
ob jec t t r a n s p o r t P r o p e r t i e s ;

}

/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

phase1
{

t ranspor tModel Newtonian ;
nu nu [0 2 −1 0 0 0 0] 0 .05 ;
rho rho [1 −3 0 0 0 0 0] 1 ;

}

phase2
{

t ranspor tModel Newtonian ;
nu nu [0 2 −1 0 0 0 0] 0 . 5 ;
rho rho [1 −3 0 0 0 0 0] 0 .001;

}

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

system

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : dev
|
| \\ / A nd | Web: h t t p : / / www.OpenFOAM. org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

vers ion 2 . 0 ;
format a s c i i ;
c lass d i c t i o n a r y ;
ob jec t fvSchemes ;

}
/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

ddtSchemes
{

d e f a u l t backward ;
}

gradSchemes
{

d e f a u l t Gauss l i n e a r ;
grad ( p ) Gauss l i n e a r ;
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}

divSchemes
{

d e f a u l t Gauss l i n e a r ;
d i v ( phi ,U) Gauss vanLeer ;
d i v ( nHf , gTv ) Gauss vanLeer ;

}

laplacianSchemes
{

d e f a u l t Gauss l i n e a r uncorrected ;
}

in terpo la t ionSchemes
{

d e f a u l t l i n e a r ;
}

snGradSchemes
{

d e f a u l t uncorrected ;
}

f l uxRequ i red
{

d e f a u l t no ;
p ;

}

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : dev
|
| \\ / A nd | Web: h t t p : / / www.OpenFOAM. org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

vers ion 2 . 0 ;
format a s c i i ;
c lass d i c t i o n a r y ;
ob jec t f v S o l u t i o n ;

}
/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

so l ve rs
{

p
{

so l ve r PCG;
p recond i t i one r
{

p recond i t i one r GAMG;
to le rance 1e−03;
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r e l T o l 0 ;
smoother DICGaussSeidel ;
nPreSweeps 0;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration t rue ;
nCel ls InCoarses tLeve l 100;
agglomerator faceAreaPair ;
mergeLevels 1 ;

}
t o le rance 1e−6;
r e l T o l 0 ;

}

pF ina l
{

$p ;
to le rance 1e−12;
r e l T o l 0 ;

}

U
{

so l ve r PBiCG ;
p recond i t i one r DILU ;
to le rance 1e−8;
r e l T o l 0 ;

}
UFinal
{

so l ve r PBiCG ;
p recond i t i one r DILU ;
to le rance 1e−8;
r e l T o l 0 ;

}

}

PIMPLE
{

momentumPredictor yes ;
nCorrectors 2 ;
nNonOrthogonalCorrectors 0 ;

pRefCel l 0 ;
pRefValue 0 ;

}

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= |
|
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O pera t i on | Version : 2 .2 .0
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|
| \\ / A nd | Web: www.OpenFOAM. org
|
| \\ / M a n i p u l a t i o n |
|
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

vers ion 2 . 0 ;
format a s c i i ;
c lass d i c t i o n a r y ;
l o c a t i o n ” system ” ;
ob jec t i n i t A l p h a D i c t i o n a r y ;

}
/ / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ / /

method s i n g l e ;

l e v e l 16;

s i n g l e
{

R 0 . 5 ;
xc 1 . 8 ;
yc 2 ;
zc −0.005;

}

ar ray
{
}

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ / /
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Nomenclature

Throughout this paper many symbols have been used. We tried to mention them here in certain sub-
categories. When one of these symbols is bold in the text, it signifies that this symbol is a vector, tensor
or matrix. Capital letters are mostly used to signify the non dimensional parameter of that quantity,
however could also be a typical scale.

Field variables
u (u v w) Velocity field
t Time
ρ Density
p Static pressure
p̂ p− ρg · x Modified pressure
µ Dynamic viscosity
ν Kinematic viscosity
g Gravity vector
σ Surface tension
κ Curvature
α max

i
αi Volume fraction field

x (x, y, z) Location vector
Re U L

ν Reynolds number, nondimensional parameter

Special conventions
D Di,j =

∂iuj+∂jui

2 Deformation tensor
S σκnδ(n) Interfacial tension force
n Unit normal
δ(.) Dirac delta function
||e||. Vector error
Ψ Kernel operator for smoothening, details in [26]

X

∫
Ωb

xdx∫
Ωb
dx

Center of Mass

γ 2πr
Pb

Circularity

U

∫
Ωb

udx∫
Ωb
dx

Rise velocity

ε the fraction in the thin film
C u∆t

∆x Maximum Courant number

General
r Radius of a particle
n number of gridcells
Ω Domain
P Perimeter
O(.) Big O notation, signifying order
nm Nano meter
N Set of Natural numbers

Abbreviations
VOF Volume of fluid
NTS Number of time steps
ref reference value
ROC Rate of convergence
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NPU number of processors used
ATS Adjustable Time Step
SDT Stationary delta t
PISO Pressure-Implicit-Split-Operator

super- and subscripts
.b Bubble
.p Particle
.f Surrounding fluid
.nb Neabouring grid cells
.c Center of grid cell
.cf Cell faces
.x in the x−direction
.y in the y−direction
.z in the z−direction
.1 Belonging to particle 1
.2 Belonging to particle 2
.n Time step indicator
.̃ Smoothened
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