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1. Introduction

Since the beginning of civilisation timekeeping has been essential for its functioning.
Working together is not very productive if one person turns up a year after the other.

The notion of when something should happen is also very important in electronics. The
periodic signal that is used for this timing reference is either called a clock signal or
Local Oscillator (LO). Digital circuits rely on this clock to time when an operation is
done and the next one can begin. Analog circuits like a mixer, can use an LO to select
which channel to receive.

Because the function of the circuit relies on this timing, the accuracy of the timing
signal partly determines the circuit’s performance. In the field of frequency synthesis
jitter or phase noise gravely impact that accuracy. Jitter being the time deviation of the
zero-crossings of the timing signal, as compared to an ideal version of that timing signal.
Phase noise is the frequency domain equivalent of jitter. Both therefore, say something
about the accuracy of the zero-crossings of the timing signal.

But, as is often the case in electronics there are many circuit parameters as can be
seen in figure 1.1, each representing a possible performance metric. Depending on the
application a different parameter can be the performance limiting factor.

In the case of Phase-Locked Loops (PLL) there is usually a focus on jitter and power
consumption parameters.

For instance, when using a PLL for the clock in a digital circuit it should have low jitter
to allow for high speed operation. It should also consume little power so that it can last

Jitter <¢———» Power

/ \

Robustness Supply Voltage

Tunability -«—» Accuracy

Figure 1.1.: A few circuit parameters that can be a measure of quality.
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longer on a battery.

However, if a PLL is used to select the channel for a radio application like Bluetooth it
also important how fast it can change its output frequency. Bluetooth may change its
channel 1600 times per second meaning it stays tuned to one frequency for only 625 ps.
In order to have as much time as possible to send data the channel switching time of the
PLL must be much shorter than 625 ps [1]. That means the required channel switching
time is in the order of 10 ps.

1.1. Phase-Locked Loops

The previous section explained that there is a need for an electronic timing signal and
that applications can have performance requirements for any circuit parameter. Now it
is time to take a closer look at the most employed synthesizer timing signal architecture,
called the Phase-Locked Loop (PLL). A basic schematic for a PLL is shown in figure 1.2.
A PLL can either be used to synchronize its output frequency with its input frequency or
to synthesize a new output frequency from a fixed frequency source. This thesis focusses
on using a PLL as a frequency synthesizer.

Reference Plise Charge Loop JeiEeE
P Frequency > > : P Controlled ©
A Detector Ui AL Oscillator
A
Frequency |
Divider |

Figure 1.2.: Block schematic for a basic PLL.

In the case of frequency synthesis the ”reference frequency” from figure 1.2 comes from
a high fidelity timing reference. Commonly used as this reference are piezoelectric mate-
rials. Usually these are quartz crystals and have therefore come to be known as crystal
oscillators (XO). The jitter of an XO can be very low at for example 124.9fs when in-
tegrated from 100 Hz to 200 kHz [2]. The absolute frequency accuracy of an XO is also
very good and usually in the order of 10 to 50 ppm [2]. The biggest down side of using
crystals without a PLL is that the available output frequencies are only up to tens-of-
megahertz and without the PLL cannot be changed over a wide range.

Firstly, for modern day applications these frequencies are quite low, as applications using
frequencies of multiple gigahertz are commonplace. Secondly, most applications that use
a timing signal no longer operate on just one frequency, like radio-frequent communica-
tion, analog-to-digital converters and digital circuits. Instead, mixers switch frequencies
to select a different channel and digital circuits vary their clock frequency to conserve
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power.

Thus, an XO is a good reference to start from. However, a functional block in series
is needed that converts the high fidelity signal from the XO into a tunable high output
frequency. This functional block is either called a Clock Multiplier Unit, Frequency
Synthesizer or Frequency Multiplier depending on whether the output signal is used as
a time or frequency reference.

There are various known frequency synthesizer architectures of which the most important
ones are outlined in [3, Chapter 1.3]. That thesis builds the case for the Phase-Locked
Loop (PLL) as being the best choice for a high-speed low jitter frequency synthesizer.

Looking at PLL publications, more often than not the jitter and power consumption
are the key performance metrics and therefore focus of the publication. In order to
objectively compare PLL implementations with respect to jitter and power consumption,
a Figure-Of-Merit (FOM) was derived in [4]. This FOM indicates how far from ideal a
PLL is with respect to jitter versus power dissipation. A lower FOM indicates a better
design.

Currently, the lowest published FOM is held by the Sub-Sampling Phase-Locked Loop
(SSPLL) developed by Gao et al. [5] at the Integrated Circuit Design group of the
University of Twente.

However, jitter and power dissipation are only two of many performance measures.

For example tunability, is an area where the SSPLL could be improved. A big downside
of the traditional PLL is that the output frequency is always stepped by an integer
multiple of the reference frequency. These PLLs are therefore called integer-N PLL. The
SSPLL in [5] is also of this type.

For instance, this integer stepping of the output frequency directly determines how close
adjacent channels can be in a communication link. In modern communication links
many closely spaced channels are used to increase the link capacity. To build such a
link using an integer-N PLL would require a very low reference frequency to match the
channel spacing. For instance, in the GSM-900 standard the channels are spaced only
200kHz apart [6]. The reference frequency is usually at least ten times higher than the
loop bandwidth. This results in a trade-off between channel spacing and the switching
time between channels, which is proportional to the loop bandwidth.

To break this trade-off fractional-N PLLs were introduced. A fractional-N PLL can also
have an output frequency in between the usual integer steps. A very innovative method
to make a fractional-N SSPLL was published in [7].

A publication by Hsu et al. [8] focusses on the SSPLL robustness to perturbations. In
this paper it is shown that the SSPLL from [9] loses lock after a perturbation is injected
into the loop and then takes several microseconds to recover lock. As mentioned before
and illustrated with the example of bluetooth, in a lot of applications this is too long.
Before the publication of [8] the dynamic behaviour of the SSPLL was not properly
considered, but has been of growing interest ever since because of its crucial role in
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practical applications.

1.2. Research Questions

The paper by Hsu et al. [8] opened up an internal discussion around the topic of SSPLL
dynamic behaviour. Furthermore, in the recommendations of the PhD thesis by Gao [10]
a related comment is found: ”In some applications, the PLL settling time is an important
specification. In the current design, a classical PLL with dead zone function as the FLL.
Having a dead zone during frequency acquisition slows down the PLL settling, which
may be problematic. It is worthwhile to investigate the settling behaviour of the SSPLL
further.”

The discussion and newly found information led to the following research questions:

> What is the influence of the dead zone in the phase frequency detector on the
sub-sampling phase-locked loop dynamic behaviour?

> Can the robustness to perturbations of the SSPLL design from [9] be improved
without removing the dead zone in the phase frequency detector?

> Can the dynamic behaviour of the SSPLL design from [9] be improved by optimiz-
ing its configuration?

1.3. Thesis Outline

Before going deeper into the analysis of SSPLL dynamic behaviour some general in-
formation about PLLs and specifically SSPLLs will be presented in chapter two. The
chapter closes with a discussion of some issues of SSPLLs.

Chapter three and four focus on finding answers to the research questions of the SSPLL
design. Chapter three starts with loop filter design and loop stability. After that come
simulations and analysis related to channel switching. Chapter four continues the simu-
lations, but focusses on lock perturbation instead. The results from these two chapters
are used to answer the research questions.

The thesis ends with a summary of the important conclusions from the thesis followed
by recommendations for future work.



2. Phase-Locked Loop

This chapter will briefly describe some concepts concerning Phase-Locked loops (PLL) in
general. Later on about the specific implementation called Sub-Sampling Phase-Locked
Loop (SSPLL) that is the subject of this thesis will be discussed.

The simplest way of describing a PLL to an electrical engineer is by saying it is a voltage
buffer for the phase domain. Like a voltage buffer a PLL is a feedback loop, where the
output tracks the input. However, the quantity of interest is the phase of the signal
instead of the voltage. By setting the feedback ratio the relation between the in and
output of the loop can be defined. When moving on to study the inner working of a
PLL things become more tricky. Depending on the node under inspection the quantity of
interest may change from phase to current, voltage or frequency. Despite being difficult
to analyse, many have studied and written about the PLL because of its usefulness in
electronics. An important application for PLLs is as a frequency synthesizer, which is
also the focus of this thesis.

The basic buildings blocks for a PLL are shown in figure 2.1. The reference frequency
is usually a crystal oscillator (XO) whose jitter can be very low at for example 124.9 fs
when integrated from 100 Hz to 200 kHz [2]. The absolute frequency accuracy of an XO
is also very good and usually in the order of 10 to 50 ppm [2]. The biggest down side
of using crystals without a PLL is that the available output frequencies are only up
to tens-of-megahertz and cannot be changed over a wide range. The application area
for PLL frequency synthesizers is very wide from the audio range all the way to the
gigahertz range.

The Phase Frequency Detector (PFD) modulates the width of its output current as a
measure for the phase difference between the reference and the divided VCO output.
The Charge Pump (CP) converts this voltage to a current to be fed into the loop filter and
theoretically provides infinite gain. The total charge going into the loop filter is called
a charge packet and is expressed by Igp * Tp,. Where T,, denotes the on time of the
charge pump transconductance and adds a degree of freedom for possible gain control.
A schematic of the PFD followed by a charge pump and its characteristic are shown
in figure 2.2. The PFD-CP characteristic shows a linear relation between the average
output current icp on the y-axis and the phase difference between the reference and the
divided VCO output Agg;,, on the x-axis. At a phase difference of 27 the average output
current reaches its maximum. For a bigger phase difference the characteristic repeats
itself, due to the periodic nature of the compared signals. What is very important, is that
the sign of the average output current is positive for all positive phase differences and
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negative for all negative phase differences. This property gives the PFD its frequency
discrimination ability. The sign continuity means that the loop control action for a
certain frequency difference is always in the same direction. If the characteristic would
have additional zero-crossings, the loop control action would also be zero for multiple
points. That would mean that there are multiple frequencies on which the PLL could
lock. One of the things that makes PLLs useful is the ability to uniquely control the
output frequency. Having multiple lock frequencies would mean a loss of this ability.
The loop filter suppresses high frequencies and gives the necessary degrees of freedom
to stabilise the loop. Together with the PFD and CP an integrator is formed. This is
important for the steady-state phase error, which will be discussed in section 2.1.

The Voltage Controlled Oscillator (VCO) is a tunable frequency synthesizer that can
provide the desired gigahertz output range.

The frequency divider scales the output frequency by a factor N and in doing so sets the
relation between the in and output frequency by the same factor.

The most common way to work with a PLL is to use a phase domain model which is
presented in the next section.

Reference Pl Charge Loop Vi
- Frequency > > - - Controlled ©
ARG Detector L2 A Oscillator
A
Frequency |
Divider |
Figure 2.1.: Block schematic for a basic PLL.
i
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Figure 2.2.: Schematic of phase-frequency detector and charge pump and its character-
istic. [9]
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2.1. Phase-Locked Loop Phase Domain Model

PLLs are nonlinear, time-discrete circuits and are difficult to analyse and describe with
mathematics. Therefore, a linear time-continuous model is often used and is competent
provided that the loop bandwidth is much smaller than the reference frequency which
acts as the sample frequency for the PFD. The rule of thumb for PLL design is that the
loop bandwidth is at least ten times smaller than the reference frequency in order for
the continuous time approximation to be good enough [11].

Figure 2.4 shows the phase domain model for a PLL. Most PLLs use a loop filter like
the one shown in figure 2.3. This reduces the VCO output phase noise by adding extra
suppression for high frequencies on the voltage that tunes the VCO (Viypne). The trans-
impedance of this filter is given by:

1
Lout 1 (8 + RiC )
() L G2 s(s+ 1%1551%22) @1)

Equation 2.1 shows that the filter has two poles and one zero. In the phase domain
the VCO is modelled as K, /s as is shown in figure 2.4. This PLL is therefore a third
order system, which is difficult to work with. However, this third order system can be
approximated by a second order, by placing one pole at a much higher frequency than
the others. This is done by making the second filter capacitance Co much smaller than
the first. By doing this approximation the system is very similar to a standard second
order system from control theory. In section 3.1 the loop filter and loop stability will be
discussed further.

By doing the second order approximation the following equations describe the PLL
transfer function:

B 26wns + w?
C T 82+ 26wys + w2

| KpaK veo
= | Ao 2.
v C1N 23)

_ & Kde'ucoCl

H(s) (2.2)

24
¢ 2 N (24)
I,

Where N is the feedback frequency division factor, £ the damping factor, w,, the natural
frequency, Kyc, the VCO tuning gain, K, ¢4 the PFD gain and I, the charge pump
current.
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2.2. Phase-Locked Loop Figure-Of-Merit

When working on improving PLLs it is convenient to have a performance number with
which to compare if progress has been made. For many circuits an equation for such
a number exists. Often the number is called the Figure-Of Merit (FOM). Even though
there are many possible measures of quality as was indicated in the introduction by figure
1.1, there are two that are most used for PLLs when trying to quantify performance. The
first is the VCO output phase noise or jitter variance when viewed in the time domain.
The second is the PLL power consumption.

In a paper by Gao et al. [4] the most used FOM for PLLs is derived:

Ot.PLL 2. PPLL)
1s 1mW

Where oy prr, is the PLL output jitter and Pprr, is the total PLL power consumption.
The FOM increases with more power consumption and more output jitter. Because the
goal is to create a PLL with as little power consumption and output jitter as possible,
a lower FOM indicates a better PLL design.

FOMPLL =10- loglO(( (2.6)

Vout

R1 ——C2

N

Figure 2.3.: The schematic for the two pole, one zero loop filter.

Pout
Qref _:©—> Kpfd —T Zlf(s) — cho/s ou o

1/N -t

Figure 2.4.: The phase domain model of a PLL.
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The derivation begins by analysing the propagation of noise sources through a typical
PLL phase domain model such as in figure 2.2. From this an optimal PLL loop band-
width is derived. The choice of PLL loop bandwidth minimizes the total PLL output
phase noise when the phase noise contributions from the reference and loop equal that
of the VCO. This also means that the loop and the VCO should be given an equal power
budget.

The paper then goes on to show that the in and output frequency have no influence on
the output jitter variance.

Lastly, if the assumption is made that all power consumption is dynamic power then it
can be shown that the PLL output jitter variance is inversely proportional to the power
consumption.

2.3. Sub-Sampling Phase-Locked Loop

With the goal of obtaining the lowest possible FOM, a PLL should have as little output
jitter as possible while consuming as little power as possible.

Often the dominating noise source from the loop is the charge pump. If a feedback gain
Bop is defined from the PLL output to the charge pump output, it can be shown that
the charge pump noise is suppressed by the square of this gain [9]:

Sicpn
262 p

Where Liy,—pand,cp is the single side-band noise power to carrier power ratio and S;cpn
the power spectral density of the charge pump current noise.

To obtain a low FOM the feedback gain should be increased with no additional power
consumption.

Einfband,CP ~ (27)

This is the basis for using a different kind of phase detector with a higher gain instead
of the traditional PFD. The Sub-Sampling Phase Detector (SSPD) shown in figure 2.5
is exactly that. The difference with the traditional PFD shown in figure 2.2 is that the
SSPD directly samples the VCO output every reference period and outputs a voltage
proportional to the phase difference between the reference and the VCO. This is illus-
trated in the SSPLL block schematic shown in figure 2.6.

Combined with a charge pump this gives the characteristic shown in figure 2.5. The
characteristic shows a sinusoidal relation of the phase difference between the reference
and the VCO A¢yco and the average output current icp. The maximum average out-
put current is reached at a phase difference of 7/2 modulo 27. In contrast to the PFD,
the SSPD characteristic has multiple zero-crossings. This means that the SSPD is not
able to discriminate between different frequencies like the PFD can.

Because the VCO frequency is N times higher than the reference in frequency synthe-
sizers, the VCO output has a very high slew rate. This translates to a very high phase
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gain. In [9] the feedback gain for the traditional PFD and SSPD are given by:

Icp
—_— — 2~8
Bep.prD 5N (2.8)
210
ferss = Avco - ; = (2.9)
gs.ef f

The equation for the ratio of the VCO output to PD output gain between a traditional
PFD and SSPD is therefore given by:

A
Pepss _ - . Avco

2.10
Bcp,PFD Viseff (210

Where N = ]f::;, Ay co is the VCO output amplitude, Vs o ¢ 7 is the effective gate-source
voltage of the MOS transistor. This ratio is much larger than 1, because 47, N > 1 and
usually Ayco > Vysepp. Therefore the SSPD offers more charge pump noise suppression
than a traditional PFD, resulting in a higher FOM.

[ Icp
Ve _ Ayeog, b
_) Sampler —> W Lip=8nV sam vcosm

=Vpe + Ao SINQA ot + Breo)

— icp

Ref D \
Ve ,—@ Ly=g Voo ideal locking point

........... = AVcogm

L A¢VC0
T

Figure 2.5.: Schematic of a sub-sampling phase detector and charge pump and its char-
acteristic. [9]

One downside to using an SSPD is that it is frequency agnostic meaning it does distin-
guish between sampling N - fref, (N 4+ 1) - frey or any other multiple. The way this was
solved in [9] was to include a second loop that provides the frequency locking. This sec-
ond loop was a traditional PLL with a Dead-Zone (DZ) added to the PFD. This enables
the SSPLL to lock to the correct frequency. After that lock is made the traditional PFD
is in its DZ and does not contribute to the phase noise.

Lastly, the feedback gain of the SSPD can actually be too high. Section 3.1 will explain
that a higher feedback gain requires a larger loop filter capacitance for loop stability.
The feedback gain should just be high enough to make the charge pump noise negligible.
If the feedback gain becomes higher than that point, the loop filter capacitance must
become very large for loop stability without gaining any noise benefit. The feedback

10
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gain can then be said to be unnecessarily high and should be reduced. In [9] this was
done by adding a Pulser block that only turns on the charge pump for a fraction 7,,; of

the sampling period T..s. This reduces the feedback by a factor ;’”‘;. The gain reduced

feedback gain is given by:

2Icp . Tpul
Viserf Tref

Bepss = Aveo - (2.11)

The combined structure of sub-sampling and frequency loop is called a Sub-Sampling
Phase-Locked Loop. A schematic of an SSPLL is shown in figure 2.6.

Sub-Sampling Loop

fueo » Sub-
Sampling | Vsspp ; Charge
fret Ny Phase Pump
""|__ Detector
A
fref -
> Pulser Isspp
Voltage
| V, f
Reference cp Lpop wne o | Controlled out
Frequency Filter ;
Oscillator

+
Ipep
frei‘
Phase-
V
o Frequency P Dead Zone - clitee

LY » Detector PR

Frequency | o fuco
Divider |

Frequency Loop

Figure 2.6.: Block schematic of an SSPLL.

2.3.1. Sub-Sampling Phase-Locked Loop Phase Domain Model

The phase domain model for an SSPLL is shown in figure 2.7. The frequency loop is
basically a traditional PLL but with a DZ added to the PFD for the reasons mentioned in
the previous subsection. The sub-sampling loop contains the SSPD which has the higher
gain compared to the traditional PFD and does not require a divider in the feedback
path. The loop filter can be the same as used before of which the trans-impedance is
given by equation 2.1. Again the second order approximation is applied. The two loop

11
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are simply superimposed to obtain the following transfer function:

2 2
H(s) = N— §wns + wp . (2.12)
54 4 28wps + wi
= \/(Bpfd + 5sspd)cho (213)
O
Ry
§= 7\/(ﬂpfd + Bsspd)chocl (214)
Kpfd ICP
e p— 2.1
S (2.15)
21, Toul
ﬁsspd = Ksspd = Avco L. (216)

V;)d Tref

Where N is the feedback frequency division factor, £ the damping factor, w,, the natural
frequency, K., the VCO tuning gain, 3,74 the PFD gain, SBys,q the SSPD gain, I,
the charge pump current, A, the VCO amplitude and V,4 the SSPD transconductance
overdrive voltage.

Because this is a linearised model the DZ is not taken into account. The DZ could be
added by making 3,74 dependent on the phase difference between the reference and the
divided VCO output. The PFD feedback gain would then be as equation 2.8 for phase
differences outside the DZ and zero for phase differences inside the DZ.

Sub-Sampling Loop

+
— Ksspd

A4
z

P,
Pref Z\f(s) Kyeo/s OUlo

j
Koa 1

\

v+

1/N

A

Frequency Loop

Figure 2.7.: The phase domain model of an SSPLL.
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2.3.2. Research Questions About the Sub-Sampling Phase-Locked Loop

The original publication of the SSPLL in [9] reported the lowest PLL FOM at the time.
Since then there have been many follow up designs all reporting very low FOMs.

A paper by Hsu et al. [8] suggests that the relock time after a disturbance of the SSPLL
could use some improvement, because it ”may not be acceptable in many clock synthesis
applications”. The paper suggest that the relock time after a disturbance of a PLL needs
to be in the order of 1 s though it never mentions a specific target. In one example the
SSPLL took 2.5 ps to regain lock where a traditional PFD took 0.4 us.

In the recommendations of the PhD thesis by Gao [10] a similar comment is found: ”In
some applications, the PLL settling time is an important specification. In the current
design, a classical PLL with dead zone function as the FLL. Having a dead zone during
frequency acquisition slows down the PLL settling, which may be problematic. It is
worthwhile to investigate the settling behavior of the SSPLL further.”

Combined with an internal discussion at the beginning of this thesis the following ques-
tions where raised:

> What is the influence of the dead zone in the phase frequency detector on the
sub-sampling phase-locked loop dynamic behaviour?
Specifically, in the event of channel switching or lock perturbation the size of the
DZ could influence the PLL settling time.

> Can the robustness to perturbations of the SSPLL design from [9] be improved
without removing the dead zone in the phase frequency detector?
The big advantage of the original SSPLL was its high phase detector gain and
therefore low output noise. By removing the PFD DZ the SSPLL robustness is
improved at the cost of mitigating the noise advantage.

> Can the dynamic behaviour of the SSPLL design from [9] be improved by optimiz-
ing its configuration?
It is not known whether the parameter value choices of the original SSPLL design
took dynamic behaviour into account.

13






3. Channel Switching Simulations of a
Sub-Sampling Phase-Locked Loop

This thesis started by explaining the growing interest in the Sub-Sampling Phase-Locked
Loop (SSPLL) dynamic behaviour, because of its crucial role in practical applications.
Specifically, a paper published by Hsu et. al. [8] raised the issue of the SSPLL’s ro-
bustness to perturbations. The proposed solution was to remove the Phase-Frequency
Detector (PFD) Dead Zone (DZ) present in the original design from [9]. However, re-
moving the PFD DZ mitigates a large part of the noise benefits that the original SSPLL
presented.

In this chapter the goal is to find out more about the dynamic behaviour of SSPLLs
through simulation and analysis. The insight gained could lead to an SSPLL imple-
mentation that keeps all the noise benefits of the original design, but is also robust to
perturbations.

The dynamic behaviour of the SSPLL will be examined in two practically relevant situ-
ations:

1. Channel Switching: the output frequency of an SSPLL can be electronically set
by changing the feedback division ratio. If the SSPLL was previously locked on a
different ratio the output is made to switch from one frequency to another, or one
channel to another and it is called channel switching. As was illustrated with a
bluetooth example in chapter 1 a PLL that can quickly switch between channels
can be very useful.

2. Lock Perturbation: If any charge is injected into a phase-locked SSPLL that causes
a loss of that lock, it is called lock perturbation. In case a perturbation is large
enough to force the SSPLL out of lock it is of interest to know how fast the SSPLL
is able to regain lock so that normal operation of integrated circuit can be resumed.

The reason for using simulations as a research tool instead of trying a fully analytical
approach is that PLLs are non-linear time-discrete circuits and therefore difficult to
handle mathematically. However, as presented in chapter 2 some approximations can be
made to get a linear (SS)PLL model that can for instance be used in the lock situation
alongside the simulations to gain insight.

The model used for the simulations will be presented in section 3.1. Section 3.2 will
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

cover the first channel switching simulations after which section 3.3 will present new
analysis based on insight gained from [8] and the first simulations. Section 3.4 will
present adjusted channel switching simulations, because of the new insight from section
3.3. There will be intermediate conclusions and the chapter will close with an overall
conclusion.

3.1. Simulation Model

In order to find relations between the settling time, Loop BandWidth (LBW) and Loop
Gain Ratio (LGR) a Simulink model of a PLL was created. The schematic of the model
is shown in figure 3.1. It has been designed to be representative of the design published
in [9]. The parameters are set by the script found in appendix A.

The following list clarifies the function of each block in the model:

> The “Reference” block represents the crystal oscillator source and outputs a sine
wave with frequency f.; and amplitude A,.;.

> The “SubSampling PD” block is a simple sample and hold function that samples
“VCO” at the rising edge of “REF”.

> The “gm” block is a transconductance equal to the gm.

> The “Pulser” is a block that only passes its /., input when PUL is high.

Tpul

> The “Pulse Generator” makes pulses with a width equal to Tror

every 1. seconds.

> The block “PFDwDZTrefo2_V1” is a Phase-Frequency Detector with a DZ of
Tref/2 based on figure 4.13 from [9]. Its implementation is shown in figure 3.2.

> The “Charge Pump” consist of two gain blocks equal to I, but of opposite sign.

> The “Loop Filter” represents a filter with two poles and a zero that are set by z1,
p2 and p2. Subsection 3.1.1 describes the filter design.

> The “perturbation” block enables the injection of a perturbation with amplitude
Apert, length Wi,y and time of occurrence Tpers.

> The “Vtune_init” block allows for the setting of an initial offset Viyne_init 00 Viune
representing an initial charge on the Loop Filter.

> The “VCOwNoise” block is a Voltage Controlled Oscillator with amplitude Ao,
free-running frequency fy,, gain K., and possibility of adding band-limited white
noise Syeo-
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3.1. Simulation Model

> The “Zero-Order Hold” block captures the VCO output and sends it to the Matlab
workspace. It also sets the simulation step size T,

> The “Divider” block is a phase transparent frequency divider, that is set to divide
its input frequency by N.

3.1.1. Design of the Loop Filter

The purpose of the loop filter is to suppress the current pulses coming out of the phase-
frequency detector. The simplest implementation for this would be a single capaci-
tor. This proves problematic however, because together with the pure integrator in the
VCO the accumulated phase around the loop would be —180° for all frequencies. The
Barkhausen criteria say that in this situation loop stability would not be guaranteed.
Therefore a zero should be added to the filter to compensate the phase at the 0dB
open-loop gain crossing to ensure stability. This can be implemented by a resistor in
series with the capacitor.

With the correct choice of capacitance and resistance the loop is now stable. However,
the high frequency currents from the phase-frequency detector will again cause spikes on
the VCO control signal (Viyne) due to the resistor, adding phase noise and even spurious
tones at the PLL output.

By adding a second pole to the filter far away from the first one, the suppression of high
frequencies is increased while only giving up a little phase margin. The resulting loop
filter is shown in figure 3.3. The transimpedance of this filter is given by:

Vou 1 (5+7e)
Z(s) = = 5t~ (3.1)
Iin O s(s+ Rllgilci)

Because of the expansive knowledge on second order systems and their behaviour, it is
beneficial to approximate the PLL as second order instead of trying to analyse the full
third order transfer function. This can be done by designing the second filter pole far
away from the first by choosing Cs < %

The loop filter values can now be calculated by using the second order closed loop trans-
fer function of the phase domain model for an SSPLL shown in figure 2.7.
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Figure 3.1.: The schematic for the Simulink model with a DZ of T}..f/2.
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Figure 3.2.: The schematic for the PFD model with a DZ of T}..f/2.
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19



3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

) = Ve 62
. \/ (Boga + gslspdmm 59
{= %\/ (Bpga + Bsspd) KueoC1 (3.4)

Bptd = 2{5’\, (3.5)

Bsspd = Avcogj’ (3.6)

Where N is the feedback frequency division factor, £ the damping factor, w,, the natural
frequency, Kyc, the VCO tuning gain, S,rq the PFD gain, B4, the SSPD gain, I,
the charge pump current, A,., the VCO amplitude and V,4 the SSPD transconductance
overdrive voltage.

Koyeo, Aveo and N are assumed to be determined by the application and therefore not
free to choose. Because there are more unknowns than equations Bgspd, Iep, Voa, § and
wy, are choices to be made by the designer based on desired performance.

Bsspa is chosen high enough for sufficient loop noise suppression. V4 is usually chosen
to put the transistor comfortably in strong-inversion and saturation for the specific
technology node. I, then results from the choice of Bs4,q and V4. For the damping
factor £ usually a value close to 1 gives good transient behaviour. For w, there is a
condition that ensures that the continuous time approximation for the PLL remains
valid. The condition is that the loop bandwidth should be much smaller than the input
frequency: 2.5w, << wiy, where the 2.5w, represents the —3 dB loop bandwidth of the
second order transfer function. A derivation of this bandwidth can be found in section
9.6 from [12]. With these choices made C and R; are given by:

Cl _ (/Bpfd "‘f;spd)cho (3.7)
2&wn,

R, = 3.8

! (ﬁpfd + ﬁsspd)cho ( )

At this point it should be noted that on could define the loop gain in an SSPLL in
multiple ways leading to different values. In the phase domain model shown in figure 2.7
the two loop transfers are superimposed. A common way of defining the loop gain would
be by taking the derivative of the loop transfer around the lock point. Following this
definition the two loop gains around the lock point are simply added and its derivative
is taken.

The characteristic of an SSPD is shown in figure 2.5. Due to the sinusoidal output of the
VCO, the phase-current transfer of the sub-sampling loop is sinusoidal with a periodicity
of 27 in the phase domain or T}, in the time domain.
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3.1. Simulation Model

The phase-current transfer of a PFD without a DZ shown in figure 2.2, has sawtooth
shape with a periodicity of 27 in the phase domain or T;.f in the time domain.

By combining these two characteristics and characteristic is shown in figure 3.4. After
taking the derivative around the lock point a loop gain is obtained. The loop gain
from other definitions may lead to more conservative estimates, possibly allowing for a
design with better dynamic behaviour. However, by using this definition and resulting
optimistic value for the loop gain, loop stability is ensured.

Icp
1.0 P
0.5
At
-1.0 -0.5 0.5 1.0
~Tref Tref
_05 Tvco
-1.0

Figure 3.4.: The combined time-current transfer of the sub-sampling and frequency loops
without a DZ.

A point that wasn’t touched upon in the paper by Gao [9], is the influence of the gain
reduction implementation on loop stability.

As explained in section 2.3, the feedback gain should just be high enough to make the
charge pump noise negligible. If the feedback gain becomes higher than that point, the
loop filter capacitance must become very large for loop stability without gaining any
noise benefit. The feedback gain can then be said to be unnecessarily high and should
be reduced.

In [9] this was done by adding a pulser block that only turns on the charge pump for a
fraction 73, of the sampling period T}..;. This reduces the feedback by a factor %
Other gain reduction techniques could be used, such as adjusting the gm. However,
if a gain reduction technique is chosen that doesn’t significantly shorten the output
pulse of the sub-sampling phase detector, the Zero-Order Sample and Hold (ZOSH)
effect becomes significant and should be added to the loop transfer. The following
equation describes the ZOSH effect as a function of is the input angular velocity w,
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

sample frequency Ty = T,y and the hold-pulse width-scaling factor p.

1- exp ]“”)TS _ sm(“’st) —jwpTy

2Ts = 2T5 Texp —— (3.9)

Hzosh( ) -

For p = 1 the pulse width is equal to Ts. One can quickly deduce that the transfer
function magnitude then contains zeroes at multiples of the sample frequency. This is
illustrated by the Mathematica plots 3.5a and 3.5b in which the magnitude and phase
are plotted from left to right for p = 1,0.1,0.01. The sample frequency for this example
is 1 x 10rad/s.
For the green plot p = 1 and the first zero occurs at 1 x 10°rad/s and gives a dip of
which the magnitude is limited by the calculation accuracy. The subsequent zeroes are
at every multiple of the sample frequency.
The Orange plot shows what happens when p = 0.1. By making the hold-pulse ten
times narrower, the sample frequency is effectively increased by the same amount. This
can be seen by observing that the first and subsequent zeroes for the orange graph are
at ten times higher angular velocity compared to the green graph.
By increasing p again by ten times the blue graph is obtained. As before the sample
frequency is effectively also increased tenfold making the zeroes move to ten times higher
angular velocities.
All of this is a problem because the VCO output frequency that needs to be sampled is
exactly an integer multiple of the reference frequency. Without any loop gain in the lock
point there is no loop noise suppression, meaning increased phase noise at the SSPLL

output. Because of this effect the gain reduction implementation as used in [9] is likely
the best choice for achieving a low PLL FOM.
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3.2. Channel Switching simulations

3.2. Channel Switching simulations

In this section simulations will be used in order to find out more about the dynamic be-
haviour of Sub-Sampling Phase-Locked Loops and more specifically the channel switch-
ing behaviour. Channel switching is when a PLL is tuned from one output frequency to
another by changing the division ratio in the feedback.

The goal of these simulations is to find out how the following SSPLL parameters influ-
ence the channel switching behaviour, with an emphasis on the time it takes to regain
phase lock:

> Size of the Dead-Zone (DZ): a distinct difference between a classic PLL using a
Phase-Frequency Detector (PFD) and an SSPLL is the dual loop structure and
the presence of a DZ in the frequency loop. The DZ ensures that in lock the
phase noise is determined by the sub-sampling loop. In [8] it is shown that the DZ
influences the SSPLL reaction to a perturbation, this section will examine if this
is also the case for channel switching behaviour.

> Loop Gain Ratio (LGR): the presence of two loops in an SSPLL and therefore two
loop gains, begs the question if there is an LGR that optimises channel switching
behaviour. LGR is defined as the ratio between the sub-sampling and the frequency
loop feedback gains: ﬁ;;f%.

> Loop BandWidth (LBW): in most dynamic systems the LBW plays a role in the
behaviour. Therefore the relation of the channel switching behaviour with respect
to the LBW will be studied.

The simulation model that will be used was introduced in section 3.1. The block
schematic and phase domain model of the SSPLL can be found in figures and 2.6 and
2.7.

The rest of the simulation setup will be explained in subsection 3.2.1, followed by the
channel switching simulation results and a discussion in subsection 3.2.2. The section
will close with a conclusion in subsection 3.2.3.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

3.2.1. Channel Switching Simulation Setup

In these channel switching simulations the quantity of interest is the time it takes for
the output frequency to settle to within a certain error from the pre-set division ratio.
However, because Vy,e is directly related to the output frequency and an instantaneous
frequency is more difficult to determine than a voltage, Viyne will be evaluated and give
the same information. Using the equation:

out — T N - r - T
Wune = f L ff = f ef ff (3.10)

Kyvco Kyvco

the Viyne for a certain multiplication integer N is known. In this simulation f..; = 50
MHz, ff. = 2.2 GHz, N = 45 and K., = 50 MHz/V corresponding to a Viyne of 1V.
The settling time will be the measured quantity and is defined as the time when Viype
falls within a chosen boundary of its final value. The maximum simulation time is 25 s
which is more than enough for the PLL to lock, given that the range of interest is sub-
10 ps as was explained in chapter 1. If the PLL is not able to lock within that time a
settling time of 25 s will be recorded. By recording 25 ps instead of “no lock” the results
can be included in numerical result graphs.

In classic control theory a 2% error limit from the theoretical steady-state value is often
used. Due to the similarity of those applications and a PLL the same limit is maintained
here.

To find the influence of the DZ on the dynamic behaviour two variations of the model
are simulated. In the original model the DZ was T}..f/2, because this was how it was
implemented in [9)].

In the publication [8] it was proposed to remove the DZ, because of its negative effect
on the robustness to perturbations of the SSPLL. Therefore, the second choice for the
DZ is to reproduce the implementation of [8] and remove the DZ.

Proposed SSPLL Robustness Improvement

Although [8] showed that the robustness to perturbations was improved compared to
[9], the output phase noise was higher. The idea behind the SSPLL is to use only the
SSPD for the phase lock, because of its high detection gain giving lower output phase
noise than a traditional PFD. A PFD is used to get the correct frequency lock, because
the SSPD cannot distinguish between multiples of the frequency it samples. This means
that on its own an SSPD doesn’t correct the loop output towards the desired integer
multiple of the reference frequency. The DZ is added so that when the correct frequency
is locked the noise performance is not degraded by the PFD. Therefore, by removing the
DZ entirely a core advantage of the SSPLL is lost.

A compromise between having a DZ of T}..y/2 and no DZ, is to reduce the size of the DZ
without removing it. This should give both the noise benefit of the original SSPLL and
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3.2. Channel Switching simulations

have similar robustness to perturbations as was shown by removing the DZ. Looking
again at figure 2.5 shows that the next zero crossing after the lock point is at a phase
difference of Te/2. Therefore, choosing the size of the DZ smaller than T,.,/2 only
leaves the desired lock point. To change the size of the PFD DZ shown in figure 3.2 the
”CLK?” signal of the second flip-flops should be changed. For a DZ of T)¢,/2 the “CLK”
signal for the pair of flip-flops on the right-hand side should be changed to the inverted
VCO output, instead of “/IREF” and “IDIV”. This PFD with a DZ of T, /2 is shown in
figure 3.6. The changes compared to the PFD with a DZ of T;..;/2 from figure 3.2 are
green. This solution both reduces the size of the DZ providing the mentioned benefits
and can be implemented with no additional components using existing signals.
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Figure 3.6.: Schematic of a PFD with a DZ of Tye./2.

Expectations for the Simulations

Going into the simulations there where no expectations of what effect the DZ or LGR
would have on the channel switching behaviour, because there was no theoretical de-
scription available or conceived beforehand. The LGR will be varied from 1 to 450 in
course steps with the intent of revealing a pattern or relation to the settling time from
the simulation results. The simulation will be run with the DZ removed and then with
the DZ set to the size of Tycr/2 and Tiyeo/2.

For the effect of LBW a theoretical basis was found in [12] of which a summary is given
here:

In [12, Chapter 10.3] an expression is derived that describes when the output frequency
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of a PFD-PLL falls within an arbitrary boundary « that indicates a chosen relative
frequency error, after switching from one division ratio “N1” to another “N2”.:
N1
12l —gu) <a (3.11)
Where g(t) is the time domain closed loop transfer function and u(t) the unit step
function. For a type-II integer-N PLL with £ < 1, g(t) is given by:

g(t) =1 —[cos(v/1— Ewpts) — \/16752 sin(y/1 — E2wpt,)] expswnts (3.12)
For the settling time, only the envelope of the signal is important resulting in the fol-
lowing expression for a:
N1

1— | -V2exp ¥nts < o 3.13
N2 P

This expression can be rewritten to an expression for the settling time ¢4:

N1
ty = V2 1og(M) (3.14)
wn, o

Equation 3.14 reveals an inverse relation for ¢; with the natural frequency w, and there-
fore with the LBW of the PLL defined as 2.5w,,. A derivation of this bandwidth can be
found in section 9.6 from [12].
Using equation 3.14 and substituting the values N1 = 44, N2 = 45, LBW = 272,50 M H z
, Wy = % = 27mlebrad/s and o = 0.02 the calculated settling time is t5 = 0.1us.
The LBW is set to 0.63, 1.25, 2.50 and 5.00 MHz.

Tradional PFD Simulations Result for Comparison

To have a ground for comparison for the upcoming simulations a PLL with a regular
PFD is simulated. The schematic of the PFD is shown in figure 3.7. The LBW is set
to 2.50 MHz and the simulations were run using the script found in appendix A. This
means that the expected tune voltage is 1 V.

The simulated Ve voltage is shown in figure 3.8. The simulation result shows that the
tune voltage settles to 1V with an overshoot going to 1.5V.

The simulated 2% settling time is 0.81 ps. It turns out that equation 3.14 gives rather
optimistic values and that in practice settling times are longer.

It should also be noted that equation 3.14 does not take into account any SSPLL specific
parameters like LGR or DZ. Therefore, the predictive value for an SSPLL is likely to be
worse.

These results and figure 3.8 can be used as a reference for the result of the upcoming
simulations done with the SSPLL.
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Figure 3.7.: Schematic of a standard PFD.
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Figure 3.8.: Graph of Vi, for a PLL with an LBW of 2.50 MHz.
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Simulation Setup Variables Table

The simulation parameters and values are shown in table 3.1.

Table 3.1.: Summary table of the channel switching simulation setup.

Parameter Value(s)

Frep (Hz) 50e6

Aref (V) 0.5

Fir (Hz) 2.2¢9

Ao (V) 0.5

Kyeo (Hz/V) 50e6

N1 44

N2 45

Sour (Hz) 2.25¢9

‘/tune (V) 1

Iy (A) 20e-6

Vo (V) 200e-3

£ 1

Apert (V) 0.5

Type of the DZ | linear binary

Size of the DZ | none Tref/2 Tyco/2
LGR 1 25 50 75 100 125 150 200 250 300 350 400 450
LBW (Hz) 0.63¢6  1.25¢6 2.50e6
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3.2.2. Channel Switching Simulation Results and Discussion

The simulations were run using the script found in appendix A. The recorded settling
times are shown in figure 3.9, 3.14 and 3.12.

The y-axis in the graphs indicates the settling time in ps. The x-axis covers the range
of LGRs that were simulated. The various LBWs are indicated by different colors and
shapes shown in the legend on the right of the graphs.

For reference, an example of the simulated Vy,,. for a correctly locking PLL is shown in
figure 3.8.

Phase-Frequency Detector With a Dead Zone of T,.¢/2

Looking at the simulation results shown in figure 3.9, the fastest settling times for an
SSPLL with a DZ of T;..y/2 are at an LGR of 25.

For comparison to the traditional PFD, the simulated Viy,e for an LGR of 25 and LBW
of 2.50 MHz is shown in figure 3.10. Compared to figure 3.8 the response is a lot slower.

Vtune 2% settling times for an SSPLL with a DZ of Tref/2

25.00 ¢ L L 4 = |
20.00
= 15.00 A I ¢ LBW =5.00 MHz
= A LBW = 2.50 MHz
g A ALBW =1.25 MHz
£ 10.00 , LBW =0.63 MHz
A
5.00
A
A A
R 4 * *
0.00 L R 4 *

0 50 100 150 200 250 300 350 400 450
Loop Gain Ratio (Bsspd/Bpfd)

Figure 3.9.: The 2% Vjune settling times of an SSPLL with a DZ of T,.s/2 versus loop
gain ratios.

For an LGR of 1 and LBW of 0.63 and 5.00 MHz the PLL does not achieve lock within
25ps. The graphs of Ve for LBW is 0.63 MHz is shown in figure 3.11. It can be seen
that the loop overshoots the 1V target. Looking closely at Viyne, after overshooting the
target some sinusoidal activity can be seen. This activity comes from the sub-sampling
loop that is unable to pull the loop to any nearby voltage corresponding to an integer

29



3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

lock. The frequency loop takes a very long time react. When it finally does react,
it overshoots the 1V target again and the story repeats. The same goes for LBW is
5.00 MHz.

Looking again at figure 3.9 there is a trend for longer settling times as the LGR gets
higher. The results also reveal that for an SSPLL with a DZ of T}..f/2 the LGR should
at least be lower than 300, because the SSPLL then fails to lock at any LBW. In the
region between LGR 1 and 100 the SSPLL locks with every LBW, though some results
are almost 25 ps.

Time (us)

Figure 3.10.: Graph of Viype for an SSPLL with a DZ of T,..¢/2, LGR of 25 and LBW of
2.50 MHz.

10 15
Offset=0 Time (us)

Figure 3.11.: Graph of Vjyne for an SSPLL with a DZ of T;.¢/2, LGR of 1 and LBW of
0.63 MHz.
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Phase-Frequency Detector Without a Dead Zone

The channel switching simulation results for the PFD without DZ are shown in figure
3.12. For the SSPLL without a DZ the lowest settling times are at an LGR of 1.
Compared to 3.8 the simulated graph of Viyne shown in figure 3.13 is very similar. An
important difference is that there are some minor ripples on the final voltage. The
severity of these ripples became less after decreasing the simulation step time. It is
therefore believed that these ripples are due imprecision if the simulation. By removing
the DZ the lock point of both loops has to be exactly the same. Otherwise there could
be a back and forth between two very similar, but not identical lock points. With more
computing power this imperfection could be studied further.

Vtune 2% settling times for an SSPLL without DZ

25,00 $ ¢ & ¢ o 9 L 4 ® 3 >
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A
A
A A
5,00
0,00 ¥
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Loop Gain Ratio (Bsspd/Bpfd)

Figure 3.12.: The 2% Viune settling times of an SSPLL without a DZ versus loop gain
ratios.

Above LGR 1 the results are inconsistent, but unlike for the DZ of T.,/2 it is hard to
say whether those points represents situations where the SSPLL does not lock correctly.

This is because the final Vj,,. already contains a lot of remaining activity due to the
lack of DZ.

From the results in figure 3.12 it is concluded that for an SSPLL without a DZ the LGR
should at least not exceed 200, because there are no more locked results above that.
There is not a very clear trend visible from the results, because there are so many points
were the SSPLL failed to lock within 25 ps. There is an optimum around LGR equal to
1.
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Phase-Frequency Detector With a Dead Zone of T),.,/2

In figure 3.14 the results are shown for the SSPLL with a DZ of Ty co/2. The lowest
settling times are at an LGR of 1. The graph of Vi, for a LGR of 1 and LBW of
2.50 MHz is shown in figure 3.15.

Compared to figure 3.8 the response is slower, but again due to the DZ the final voltage
has no remaining PFD activity. Compared to figure 3.10 the response is faster.

Time (us)

Figure 3.13.: Graph of Vi, for an SSPLL without DZ, LGR of 1 and LBW of 2.50 MHz.

Vtune 2% settling times of an SSPLL with a DZ of Tvco/2
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Figure 3.14.: The 2% Viune settling times of an SSPLL with a DZ of T,.,/2 versus loop
gain ratios.
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Only for LBW equal to 1.25 MHz and 0.63 MHz there are results that lock within 25 ns
for an LGR higher than 1. Zooming in on the final voltage for LGR is 50 and a LBW of
2.50 MHz shown in figure 3.16, it can be seen that the final voltage shows activity despite
the presence of a DZ. This means that the SSPLL is not actually locked correctly. This
also goes for all other points with LGR higher than 1.

For an SSPLL with a DZ of T,.,/2 only LGR 1 works for all frequencies and also shows
the fastest settling times. There are so few correctly locked simulation results available
that it is impossible to draw any meaningful conclusion about a trend.

Time (us)

Figure 3.15.: Graph of Viype for an SSPLL with a DZ of Ty, /2, LGR of 1 and LBW of
2.50 MHz.

Time (us

Figure 3.16.: Zoomed graph of Vi, for an SSPLL with a DZ of T,.,/2, LGR of 50 and
LBW of 1.25 MHz.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

3.2.3. Preliminary Conclusion About the Channel Switching Simulations

So far it has become clear that the LBW has an inverse relation with the settling time
and that a higher LGR either breaks the SSPLL or makes the settling time longer. Only
in the case of an SSPLL with a DZ of T,..¢/2, an LGR higher than 1 lowered the settling
time.

In figure 3.17 the fastest simulations settling times for the different DZs are shown. The
graph seems to suggest that the relation between the DZ and settling time is that a bigger
DZ has slower settling behaviour. The graph also shows the theoretical settling time
that was discussed in subsection 3.2.1. As stated previously, the theory underestimates
the settle time. The match to the simulation results without a DZ could be improved
by multiplying equation 3.14 by 6.

Comparison of SSPLL 2% Vtune channel switching settling times

10,00
9,00
8,00
7,00 A
6,00 BLBW =5.00 MHz
5,00 4 *LBW =250 MHz

4,00 LBW =1.25 MHz
ALBW=0.63 MHz
3,00

A
2,00
1,00
3 i 3

0,00 &
no DZ Tref/2 Tvco/2 Equation 3.14

Settling time (us)

Size and Type of the Dead Zone

Figure 3.17.: Graph comparing the settling times for the different DZs.

The simulations showed that the 2% limit taken from classical control theory to measure
the settling time turns out to be too big, because it doesn’t exclude some wrong lock
points. The settling limit needs to be adjusted for further simulations.

Upon further reading of [8], the paper also noted a maximum current relation between
the two loops in an SSPLL. This next section will expand upon this to derive a maximum
for the LGR.

Another insight was that the PFD with DZ as used by [9] and shown in figure 3.2 is not
linear, but binary due to the second pair of flip-flops not being reset. The consequences
of this will also be discussed in the next section. In section 3.4 a linear PFD with DZ will
be proposed to see if it shows any benefits with regard to dynamic behaviour compared
to the binary PFD with DZ used previously.
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3.3. Loop Gain Ratio Analysis

From the results of the settling simulations a rough insight evolved into what the relations
between LGR, LBW and DZ are. However a theoretical explanation is still lacking. The
block schematic of an SSPLL can be found in figure 2.6 and its phase domain model in
figure 2.7.

In [8] a relation between the average current of the sub-sampling and frequency loop is
given to ensure proper control action of the combined loop. In the paper it is argued
that the time-current transfer function of the sub-sampling and frequency loop has to
be superimposed to get the combined transfer. While it is more common to look at
the phase-current transfer of a PLL, in this case the time-current transfer gives the
better picture. The SSPLL is unique in that it has two loops that operate with different
frequencies. The frequency loop operates using the reference and divided VCO output.
However, the sub-sampling loop operates using the reference and direct VCO output.
This difference means that 27 has a different meaning in the two loops. The frequency
loop defines 27 as a period of the reference T,.r. The sub-sampling loop defines 27
as a period of the VCO Ty, Using the conventional phase-current transfer would be
confusing because it would be unclear what the meaning of 27 phase difference would
indicate. By going to the time domain this ambiguity is solved.

The time-current transfer of the individual linear PFD without DZ from figure 2.2 and
SSPD from figure 2.5, are shown in figure 3.18 and 3.19. The combined time-current
transfer is shown in figure 3.20. For the purpose of illustration the feedback division
factor N is equal to 10 in this section.

The paper goes on to say that in order to ensure that only one lock point exists, this
combined transfer should have positive average current output for positive time differ-
ences and negative average current output for negative time differences. In this way the
combined characteristic is able to control the loop to the right integer frequency. As
explained in chapter 2 the SSPD alone does not have this property, precisely because
its characteristic does not have this sign continuity for positive or negative phase/time
differences. Together with expressions for the average output currents of the SSPD and
PFD Iyspq and I,fq from [9], this results in the following equations that need to be
satisfied to maintain the proper control action in an SSPLL:

Isspd + m >0 (315)
“Lsspd < % (316)
T 21, . Tpul
Isspd = A'uco : Icpp SlH(Aﬁbvco)%ef (317)
— 1
Lfa = =2 Adain 1
pfd =5 AP (3.18)

Where I,s,q and Iprq are the average output currents of the SSPD and PFD, A, the
VCO output amplitude, /., the charge pump current amplitude, V,4 the transconduc-
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

tance overdrive voltage and 7, the gain reduction pulse duration.

Tcp
1.0 P
0.5
At
-1.0 -0.5 0.5 1.0
—Tref Tref
-0.5
-1.0

Figure 3.18.: The time-current transfer of the frequency loop without a DZ.

Tcp
1.O*p
0.5¢
VANIVAN N\ At
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~Tref Tref
_05! Tvco
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Figure 3.19.: The time-current transfer of the sub-sampling loop.

Using this information a theoretical limit for the LGR can be derived. Because in [§]
there is no DZ this case will be treated first and then be expanded upon to the cases
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3.3. Loop Gain Ratio Analysis

with a DZ. For all analysis in this section it is assumed that:

Tres =N - Toco (3.19)
27 27
Adgin = At - wpop = At - — At 3.20
¢d ! Tref N - Tvco ( )
2T 2 - N
Adyco = AL - Wyeo = At - = At- 21
¢ “ Tyeo Tref (3 )

Where A¢y;, is the phase difference and At the time difference between the zero-crossing
of the reference frequency and divided VCO frequency, w;.s the angular frequency of the
reference, T,y the reference period, ¢, is the phase difference between the reference
frequency and VCO frequency, wye, the angular frequency of the VCO and T, the VCO
period.

3.3.1. Loop Gain Ratio Boundary for a linear PFD without a Dead Zone

For correct operation of the SSPLL the sign of the time-current characteristic of the
combined loop, must be positive for a positive time difference and negative for a negative
time difference. Looking at figure 3.20 it can be seen that for an SSPLL without a DZ
the boundary of this condition is found when the time difference At = %Tvco. At that
time difference the sinusoidal transfer of the SSPD is at its first minimum starting from

Icp
1.0 P
0.5
At
-1.0 -0.5 0.5 1.0
~Tref Tref
_05 Tvco
-1.0

Figure 3.20.: The combined time-current transfer of the sub-sampling and frequency
loops without a DZ.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

the lock point. Using this data and equation 3.16 the following relations are derived:

3 3

At = ZTUCO = WTT@JC (322)

3
Adgip = mQﬂ' (3.23)

3
AQSUCO == 1277' (324)
~Lsspa < Ipfa (3.25)
—A -Hﬂsm(m )2l < Lop p g (3.26)

vCo Icp vco Tref = or div .
21 Toul I, 3

—Apeo - =L .gin(= - 27) 2L < 2= 3.27
veo* 37 - -sin(g - 2m) Ty = 274N " (3:27)
Toul . _3Vod (3.28)

Tref 8ZV/lvco

Equation 3.28 represents the maximum gain reduction factor for correct operation of the
dual loop structure. With this equation the maximum LGR can be derived, where B4pq
and [, ¢q represent the sub-sampling and frequency loop open loop gains from [9]:

I,
= 2
/Bpfd 27TN (3 9)
21, Toul
Baspd = Apeo - P . P 3.30
sspd vCo Vod Tref ( )
QICP Tpul
ﬂsspd AUCO ' Vod ’ Trey
LGR = 2 = - (3.31)
pfd 2N
A . 21017 . 3Vod 3
LGRypy = — o Yot SNAveo _ g ~ AT (3.32)
cp
2r N

3.3.2. A Linear Phase-Frequency Detector with Dead Zone of 7,.;/2

Before moving on to analyse the LGR for a linear PFD with a DZ, its design is proposed
as shown in figure 3.21. To make the binary PFD from figure 3.2 linear, a reset should
be added to the second flip-flops. This reset should simply be the same as is used for
the first pair of flip-flops. Like before, to make the DZ T),.,/2 the ?CLK” signal of the
second flip-flops should be the inverted VCO output. This is shown in figure 3.22 the
changes are coloured green.
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Figure 3.21.: Schematic of the linear PFD with DZ of T..r/2.
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Figure 3.22.: Schematic of the linear PFD with DZ of Tc0/2.

39



3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

3.3.3. Loop Gain Ratio Boundary for a linear PFD with a Dead Zone

Now the same derivation can be done using the linear PFD with DZ of T.¢/2 shown in
figure 3.21. The introduction of a DZ of T,.f/2 changes the PFD time-current transfer
as shown in figure 3.23.

The PFD now only produces an output current when the time difference is greater than
Trep/2. This also means that the PFD effectively loses half of its maximum average
output current % Combining this new PFD transfer with the SSPD transfer from
figure 3.19, the combined time-current transfer with a linear PFD DZ of T..¢/2 is shown
in figure 3.24. This means that the time difference when the control condition from

Icp
1.0 P
0.5
At
-1.0 0.5 0. 1.0
~Tref Tref
_05 Dead Zone of Tref/2
-1.0

Figure 3.23.: The time-current transfer of the frequency loop with a linear PFD with DZ
of Tre f / 2.

equation 3.16 should be evaluated is now At = %T veo + TT;f when the division ratio N

is even, because this time-difference is where the SSPD transfer has its first minimum

outside of the DZ. The assumption is still that T}..; = N - T}, leading to the following

equations:
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3.3. Loop Gain Ratio Analysis

3 Thes 3 N 31
At = -T, — =Theol=+ =) =Trer(— + = 3.33
4 veo + ) "uco<4+ 2) f(4N+2) ( )
3 1
Adain = (~ + )2 34
gbdw (4N+2) T (33 )
3 N
A vco — 7 —)2 .
bueo = (o + 3 )2m (3.35)
_Isspd < Ipfd (336)
21, Toul I I
_Avco' L s A vco pe <2A iv_ﬂ 337
Uy S(Abueo)p " S 5 A = (3:37)
21, .3 N Toul I 3 1 1
—Apep - L. Sy o) P 2P T Do P )
v G g g s Ge T (3:38)
21, ) Toul 31,
Sy " Zoog) B T .
v s1n(4 ) Trey = AN (3.39)
Tpul - 3Vod (3.40)

Tre f ~ 8N Avco

Where sin(%Qw) = 0 is used.

The value for the maximum gain reduction factor is the same results as in equation 3.28.
Therefore the maximum LGR is also the same 37” ~ 4.7 as equation 3.32.

For N is odd the time difference should be changed to At = %Tmo + Trzef , because of the
sinusoidal nature of the SSPD. The I, ;4 now becomes three times lower resulting in a

three times lower maximum gain reduction factor ;”—“} and LGR § ~ 1.6.
re

T
1.0p

0.5

Dead Zone of Tref/2

-1.0

Figure 3.24.: The combined time-current transfer of the sub-sampling and frequency
loops with a linear PFD with DZ of T,.¢/2.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

Dead Zone of T,.,/2

If the DZ is reduced to Tyco/2 as in figure 3.22, the PFD only produces an output current
when the time difference is greater than T.,/2. This means that the starting point for
the analysis is now Tyco/2 instead of Tj..r/2. The SSPD characteristic now has its first
minimum outside of the DZ at At = %Tvco + %Tvco. The loss of average output current

in the PFD due to the DZ of Tyeo/2 = Trep/(2N) is now Typg = 22 A¢gy, = 22 = L

2r N — 2N
This gives the following derivation of the maximum gain reduction factor:
1 1 3 3
At = ZTUCO + §Tvco = ZTvco = ﬂTref (341)
3
3
Apyeo = 1271' (343)
—Lsspd < de (344)
21, . Tpul I I
— Ao - ﬁ sm(Ang)% < 2—‘;’;A¢div - 2;@ (3.45)
21, 3 Toul _ Lep 3 I
Ay =P gin(Z27) . P < 2P onp TP 3.46
veo 3 Sin(72m) Ty = 274N~ 2N (3:46)
21, 3 Tpul I
—A 2P gin(Zog) . P < P 3.47
vCo V,Od SIH(4 7T) Tref =UN ( )
Toul - Vod (3.48)

Tref a SNA’UCO

This gain reduction factor is three times less than equation 3.28. The maximum LGR
for a SSPLL with a linear PFD with a DZ of T,.,/2 is therefore 5 for N is both even
and odd.
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Tcp
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Figure 3.25.: The time-current transfer of the frequency loop with a linear PFD with DZ

of Thyeo/2.
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Figure 3.26.: The combined time-current transfer of the sub-sampling and frequency
loops with a linear PFD with DZ of T¢,/2.
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3.3.4. Loop Gain Ratio Boundary for a binary PFD with a Dead Zone

The PFD with DZ of T,¢/2 as described in [9] is not linear but binary as shown in figure
3.2, because the second flip-flops are never reset. This causes the current output to not
increase linearly to its maximum of /., when the time difference is greater than T,../2.
Instead the output current is maximum for all time differences greater than T.¢/2. The
time-current transfer for this binary PFD is shown in figure 3.28.

Icp
1.0
0.5
At
-1.0 -0.5 0. 1.0
-Tref Tref
_05 Dead Zone of Tref/2
-1.0

Figure 3.27.: The time-current transfer of the frequency loop with a PFD with binary
DZ of Tcz/2.

To find the maximum gain reduction factor the right-hand side of equation 3.16 now
changes to Iy, instead of %’;Aqﬁdw — I% in case of the linear PFD with a DZ of T,y /2
(eq. 3.37).

This also means that there is no more difference between even and odd N. That is,
because no matter at what time difference the SSPD characteristic has its minimum
outside of the DZ, the average current output of the PFD is maximum. Therefore, the
time difference at which to evaluate the average output current from the SSPD remains

the same at At = %Tvco + TT;f.
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3 T, 3 N 3 1
At = ZTvco + ;ef = Tvco(z + 5) = Tref(ﬁ + 5) (3'49)
3 N
A¢ain = (1 + 5)27r (3.50)
Adeo = (-5 4+ 1y (3.51)
vee =N T 20" ‘
_Isspd < Ipfd (352)
21,
*Avco : ch Sin(Aﬁbvco)% < Icp (353)
od ref
21 3 N Toul
—A - Gin((S 4+ ) o) B2 <« 3.54
vCo ‘/od 11’1((4 + 2) ﬂ-) Tref > lep ( )
Tpul Vod
- < 3.55
Tref a 2Avco ( )
Because this result for ;f—’:; is different from equation 3.28 the maximum LGR is also
different:
LGR = Pespd _ Aveo Jot Tres (3.56)
Pz 2K
A . QICP . Vod
vco
LGRmaa: = ‘;Od 24veo =2nN (357)
27r11<7
Tcp
1.0 AVAVAVAVAV
0.5
-1.0 -05 . 10 M
~Tref Tref
~05 Dead Zone of Tref/2
ANNNN 1.0

Figure 3.28.: The time-current transfer of the frequency loops with a binary PFD with
DZ of Tcz/2.
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Dead Zone of T,.,/2

The size of the DZ is decreased to Tyeo/2 by clocking the right-hand side pair of flip-
flops with the inverted VCO output in figure 3.2 as shown in figure 3.6. The changes
are shown in green. The time-current transfer of the binary PFD with a DZ of T,.,/2 is
shown in figure 3.29.

Because the second pair of flip-flops is not reset, the average output current of the
PFD can now only change every Ty, seconds of time difference. Therefore if the time
difference is only just longer than the DZ T,.,/2, the average output current will be

Iytg = Iep - %”C;. In other words, the time-current transfer is now a stair case with
e

minimal step size §F assuming ;”—C; = % The combined time-current transfer is shown
Te

in figure 3.30.

1.0

0.5

At
TTéf

Dead Zone of Tvco/2

-1.0

Figure 3.29.: The time-current transfer of the frequency loop with a binary PFD with
DZ of Tyeo/2.
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The derivation for the maximum gain reduction factor then becomes:

1 1 3 3

At = ZTUCO + §Tvco = ZTUCO = WTref (3‘58)

3
Adgin = N 2w (3.59)

3
Adyeo = 127 (3.60)
_Isspd < Ipfd (361)

21., . Toul I
I S T 3.62
veo Vo Sln( d)vco) Tref =N ( )

21, 3 Toul 1
—A P gin(Z22g) - 2P <« 2P 3.63
veo " - sm(4 ) Ty = N (3.63)
Tpul < ‘/;)d (364)

Tref o 2NAvco

From which the maximum LGR for a binary PFD with a DZ of T\,¢,/2 can be determined:

A 2lcp  Tpul
vCo :

d ’ VO T’I‘E
LGR = %Sp = S d f (3.65)
cp
pfd 2N
A . ZICP . Vod
vco 2N Ayeo
LG Riae = Vod = 27 ~ 6.28 (3.66)
cp
2rN
Tcp
1.0
0.5
-1.0 -0.5 0.5 1.0 At
-Tref Tref
_05 Dead Zone of Tvco/2
-1.0

Figure 3.30.: The combined time-current transfer of the sub-sampling and frequency
loops with a binary PFD with DZ of Ty,/2.
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3.3.5. Summary of the Loop Gain Ratio Analysis

In this section the control loop current equation for an SSPLL (eq. 3.16) from [§],
was used to derive an equation for the maximum Loop Gain Ratio of an SSPLL with
and without a Dead Zone. To the author’s knowledge, the important difference in the

outcome of these equations between even and odd division ratios N was not mentioned
in [8].

Table 3.2 summarizes the calculated maximum LGRs from this section.

Table 3.2.: Summary of the calculated maximum LGRs for an SSPLL.

Parameter Value

Type of DZ Linear Binary

Size of DZ none Tref/2 Toco/2 Tref/2 Tyco/2
LGR, 4y for even N 37” 37” 5 21N 27
LGRypaq for odd N | 21 z z 2N 2nm

The analysis from this section suggests that an SSPLL with a binary PFD, correct
locking is possible with a higher LGR than with a linear PFD. A possible benefit of this
could be to reduce the power consumption of the frequency loop, achieving a lower PLL
FOM with the frequency loop always turned on.

In [9] part of the reason for the low FOM, was that the frequency loop was turned off
once the SSPLL was locked. In [8] it is noted that this is impractical, because it reduces
the SSPLL robustness to perturbations.

Reducing the frequency loop power consumption allows for the frequency loop to remain
on without affecting the PLL FOM too much.

However, so far the simulation results have shown that a high LGR does not benefit the
channel switching speed of an SSPLL.

The next section will repeat the channel switching simulations, but with different pa-
rameters to check the theory presented in this section. It will also be interesting to see
if using a linear or binary PFD makes a difference in the simulated settling times.
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3.4. Channel Switching Simulations - Continued

With the new found theoretical basis for the LGR the simulations should be redone to
check the predicted maximum LGRs from section 3.3. Also, the previous simulations
intentionally had a big step size in the LGR, because it was unclear what the expected
outcome would be. Now that there is a potential theoretical basis for the LGR, the LGR
step size can be reduced.

With the new linear PFD the channel switching simulations will be redone in subsection
3.4.2. Like before the section will close with a comparison of the simulation results.

The goal of these simulations is the same as in section 3.2: to find out how the following
SSPLL parameters influence the channel switching behaviour, with an emphasis on the
time it takes to regain phase lock. An added goal is to confirm the proposed theory
from section 3.3 and if using a linear or binary PFD makes a difference in the simulated
settling times.

3.4.1. Channel Switching Simulation Setup - Continued

The simulations were run using the script found in appendix A.

This time the simulations are now run with five different PFD DZs: without a DZ, linear
DZ of T,cy, linear DZ of T,,, binary DZ of T;..y and a binary DZ of T),.

In order to zoom in on the proposed theoretical limit from section 3.3, the LGR is now
varied from 1 to 20.

The LBW is set to 0.63, 1.25, 2.50 and 5.00 MHz.

Another change from before is the settling limit. The 2% was taken from classical
control theory, but is actually way to big of a margin in the context of PLLs to have
a correct indication of lock. This was a problem in the interpretation of the previous
results, as there where some incorrect locking points among them. This was explained
in subsubsection 3.2.2 and shown in figure 3.16. To avoid this the new reduced settling
limit will be 0.1%.

Expectations for the Simulations

From the previous results the expectation is that a smaller DZ corresponds to faster
settling times. The expectation for the LBW is still that it has an inverse relation to
the settling time.

For the LGR the expectations can now be based on the theory proposed in section
3.3. The maximum LGRs for which the SSPLL has a single lock point are shown in
table 3.2. The expectation here is that every simulation with an LGR higher than the
corresponding value from table 3.2 has multiple lock points and could therefore fail to
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

lock to Viyne = 1V. If there are correctly locking results for LGR higher than the
calculated maximum it does not directly disprove the theory presented in section 3.3.
The prediction is that it only means the SSPLL configuration and simulation settings
where such that it happened to lock to the correct integer. Even though according to
the theory from section 3.3 there are multiple lock points. By changing the simulation
condition slightly for these cases it could be shown that a different lock is achieved. An
example of an easy small change, is to change the LGR by 1. Another possibility is to
inject a voltage into Viune. By following this approach it can be shown that the theory
from section 3.3 is at least not wrong.

Simulation Setup Variables Table

The simulation parameters and values are shown in table 3.3.

Table 3.3.: Summary table of the channel switching simulation setup.

Parameter Value(s)

frer (Hz) 50e6

Aref (V) 0.5

frr (Hz) 2.2¢9

Apeo (V) 0.5

Kyeo (Hz/V) 50e6

N1 44

N2 45

four (Hz) 2.25e9

Viune (V) 1

I, (A) 20e-6

Voa (V) 200e-3

13 1

Apert (V) 0.5

Type of the DZ | linear binary

Size of the DZ | none Tref/2 Tyeo/2

LGR 1 2 3 4 5 10 20
LBW (Hz) 0.63e6 1.25e6 2.50e6 5.00e6
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3.4.2. Channel Switching Simulation Results and Discussion - Continued

The recorded settling times are shown in figure 3.31, 3.37, 3.38, 3.33 and 3.35.

The y-axis in the graphs indicates the settling time in ps. The x-axis covers the range
of LGRs that were simulated. The various LBWs are indicated by different colors and
shapes shown in the legend on the right of the graphs.

For reference, an example of the simulated Vi for a correctly locking PLL is shown in
figure 3.8.

Linear Phase-Frequency Detector Without a Dead Zone

The channel switching simulation results for an SSPLL with a linear PFD without a DZ
are shown in figure 3.31. The calculated maximum LGR for this type and size of DZ is
3m/2.

There are a number of data points with LGR higher than LGR = 4.7. The theory says
that for these LGRs there exist multiple locking points including the correct one. It is
possible that the correct locking point was entered by “accident” and that a change in
simulation parameters or a perturbation can showcase other unwanted locking points.
By changing the LGR by only 1, other lock points could be shown.

In figure 3.32 the zoomed graph Viyne is shown for LGR equal to 9 and LBW is 5.00 MHz.
This is only 1 different from the simulation for LGR is 10 with the same LBW. By making
this small change the SSPLL no longer locks to the correct integer. This shows that
there is more than one lock point for LGR is 9. By making minor changes in simulation
conditions, the same can be shown for the other points with LGR higher than 4.7.
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Vtune 0.1% settling times of an SSPLL with a PFD without DZ

25,00 ¥ = ™
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20,00
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Figure 3.31.: The 0.1% Viune settling times of an SSPLL without a DZ versus loop gain
ratios.

— Viune
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Figure 3.32.: The zoomed graph of Ve for a PFD without DZ LGR 9 and LBW
5.00 MHz.
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Linear Phase-Frequency Detector with a Dead Zone of Tref/2

The channel switching simulation results for an SSPLL with a linear PFD with a DZ of
Tre/2 are shown in figure 3.33. The calculated maximum LGR for this type and size of
DZ is 3w /2 for N is even and 7/2 for N is odd, with N = 45 for these simulations.
Looking at figure 3.33 there are a couple of correctly locking results for LGR is 10 and
20. This time by injecting a disturbance an incorrect lock point can be exposed as is
shown in figure 3.34 for LGR is 10 and LBW 1.25 MHz. Minor changes in simulation
conditions can show the same for the other points with LGR higher than 1.6.

Vtune 0.1% settling times of an SSPLL with a linear PFD with DZ of Tref/2
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Figure 3.33.: The 0.1% Viyne settling times of an SSPLL with a linear PFD with DZ of

Tref /2 versus loop gain ratios.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

Linear Phase-Frequency Detector with a Dead Zone of T, /2

The channel switching simulation results for an SSPLL with a linear PFD with a DZ of
Tyeo/2 are shown in figure 3.35. The calculated maximum LGR for this type and size of
DZ is 7/2.

The results in figure 3.35 show multiple points that fall outside the expectations. By
injecting the same disturbance as before it can again be shown that these configurations
do indeed suffer from multiple lock points. This is illustrated in figure 3.36 for an LGR
of 2 and LBW 1.25 MHz.

10 15
Time (us)

Figure 3.34.: The zoomed graph of Vi for a linear PFD with DZ T,.y/2 LGR 10 and
LBW 1.25 MHz.
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3.4. Channel Switching Simulations - Continued

Vtune 0.1% settling times of an SSPLL with a linear PFD with DZ of Tvco/2
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Figure 3.35.: The 0.1% Viyune settling times of an SSPLL with a linear PFD with DZ of
Tyeo/2 versus loop gain ratios.
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Figure 3.36.: The zoomed graph of Ve for a linear PFD with DZ T).,/2 LGR 2 and
LBW 1.25 MHz.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

Binary Phase-Frequency Detector With a Dead Zone of T)..f/2

The channel switching simulation results for an SSPLL with a binary PFD with a DZ
of Tycf/2 are shown in figure 3.37. The calculated maximum LGR for this type and size

of DZ is 2w N.

The expected result is that there will be correct locking for every LGR in figure 3.37.
There is a trend visible of decreasing settling times for higher LGR. This agrees with

the observations from subsection 3.2.2.

Vtune 0.1% settling times for an SSPLL with a binary PFD with DZ of Tref/2
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Figure 3.37.: The 0.1% Viune settling times of an SSPLL with a binary PFD with DZ of

Tref/2 versus loop gain ratios.
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3.4. Channel Switching Simulations - Continued

Binary Phase-Frequency Detector with a Dead Zone of T),/2

The channel switching simulation results for an SSPLL with a binary PFD with a DZ
of Tyeo/2 are shown in figure 3.38. The calculated maximum LGR for this type and size
of DZ is 2.

Figure 3.38 shows that for LGR lower than 27 there is correct locking, there are also
some points for higher LGR.

However, when the SSPLL is again injecting with a disturbance at t = 10us the incorrect
lock points can be shown. Figure 3.39 illustrates this. By making minor changes in
simulation conditions, the same can be shown for the other points with LGR higher
than 27.

Vtune 0.1% settling times of an SSPLL with a binary PFD with DZ of Tvco/2
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Figure 3.38.: The 0.1% Viune settling times of an SSPLL with a binary PFD with DZ of
Tyeo/2 versus loop gain ratios.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

3.4.3. Comparison of the Channel Switching Simulation Results

In this subsection the five DZs are compared based on their best simulation results.
Figure 3.40 shows the recorded 0.1% settling times for all tested dead zones along with
the calculated values using equation 3.14. The data points chosen for the comparison
are at the LGR that gave the lowest settling times. The LGRs and corresponding DZs
for which the fastest results were simulated are shown in table 3.4.

Table 3.4.: Lgrs and corresponding DZs for the fastest channel switching simulation re-

sults.
Parameter Value
Type of DZ Linear Binary
Size of DZ none Tref/2 Toco/2 Tref/2 Toco/2
LGR with fastest results | 1 1 1 20 3

Figure 3.40 shows the predicted inverse relation between LBW and settling time.
Overall the fastest times where recorded with the binary PFD with a DZ of T}c,/2.
The calculated values using equation 3.14 are about a factor 2 lower than the simulation
results for the SSPLL without a PFD DZ. This accuracy is enough to use equation
3.14 as a first rough estimate of the channel switching settling time, but because of the
non-linear time-discrete nature of PLLs simulations remain a necessary tool.

10 15
Time (us)

Figure 3.39.: The zoomed graph of Vi, for a binary PFD with DZ T,.,/2 LGR 10 and
LBW 5.00 MHz.
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3.5. Conclusion About the Channel Switching Simulations

3.5. Conclusion About the Channel Switching Simulations

The aim of this chapter was to find relations between the channel switching behaviour
and the Loop Band Width, Loop Gain Ratio and size of the Phase Frequency Detector
Dead Zone in Sub-Sampling Phase-Locked Loops. To this end a Simulink model was
made. The LBW and LGR values were varied using a Matlab script shown in appendix
A and tables 3.1 and 3.3.

In the original paper about the SSPLL [9] the DZ was equal to T,.¢/2 and this therefore
served as the starting point of the comparison.

In [8], a paper commenting on the slow dynamic behaviour of the SSPLL, it was proposed
to remove the DZ to improve the SSPLLs robustness to perturbations. The paper indeed
showed an improved response to disturbances and therefore the second choice for the
DZ was to remove the DZ.

This thesis proposed a compromise between these two ideas by making the DZ as small
as possible without removing it. This should give both the noise benefit of the original
SSPLL and have similar robustness to perturbations as was shown by removing the DZ.
The edge surrounding the lock point of the sub-sampling loop is Ty /2 and therefore
this was the third choice of DZ.

The time it took for the VCO control voltage (Viyne) to come within 2% of its final value
was used as a measure of comparison.
The initial simulation results showed an upper limit of LGR is 300 for the DZ of T,..r/2

Comparison of SSPLL 0.1% Vtune channel switching settling times
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A  LBW =250 MHz

LBW = 1.25 MHz
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Figure 3.40.: A comparion of the 0.1% Viyne settling times of an SSPLL with different
DZs for their optimal LGR.
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3. Channel Switching Simulations of a Sub-Sampling Phase-Locked Loop

and LGR is 1 for the DZ of Ty, /2. For the simulation without a DZ a clear limit could
not be determined due to the inconsistent results.

The relation between the DZ and settling time seemed to be that a bigger DZ has slower
settling behaviour. The calculated settling times given by 3.14 were about 6 times faster
than the simulation results.

The 2% limit was taken over from classic control theory because the PLL structure
strongly resembles the applications in that field. The first simulations showed this limit
to be too big, because it didn’t exclude some wrong lock points. Therefore it was adjusted
to 0.1% for the next simulations.

Using information from [8] a theoretical basis for the LGR was derived. The theory
agreed with the results from the first simulations, but more refined simulations were
needed to make the theory plausible.

It was also discovered that the PFD proposed in [9] is binary (without reset) rather than
linear as had been presumed up to this point. A linear PFD with DZ was proposed to
compare against the binary PFD based on settling time.

For the next set of simulations the limit used to determine the settling time was reduced
from 2% to 0.1%, to more clearly distinguish between correct and incorrect lock points.
By reducing the range over which the LGR was varied for the simulations, the limits
predicted by the new LGR theory were shown to be plausible. However, with more
computing power more accurate simulations could be done to increase and reinforce the
empirical evidence for the theory presented in section 3.3.

The author would also like to note that the use of a certain boundary around Viyne as
a condition for phase lock does not seem totally unambiguous. For instance, if there is
an unwanted interaction between the two SSPLL loops, but the LBW is low enough to
suppress it within the chosen boundary a false positive would be recorded. It could be
valuable to look into a different lock definition based instead on the current output of
the two loops. It is likely however, that due to mismatch and other noise sources present
in practical SSPLL implementations, this definition would only find use in the context
of simulations.

To draw a conclusion about which DZ gives the fastest channel switching settling times
the fastest simulation results for each DZ were compared in figure 3.40. Equation 3.14
was used as a theoretical reference and its calculated values deviated by a factor two.
Though that is close keeping in mind that equation 3.14 was derived for traditional PLLs,
it could be valuable to try to develop a settling time equation specifically for SSPLLs.
The fastest times where recorded with the binary PFD with a DZ of T}¢,/2. For now
it doesn’t seem like the linear PFD has any advantage over the original binary PFD.
An exact theoretical reason why the binary PFD shows faster simulated settling times
is missing.
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4. Lock Perturbation Simulations of a
Sub-Sampling Phase-Locked Loop

In this section simulations will be used to find out what the relations are between Lock
Perturbation settling time and Loop Band Width, Loop Gain Ratio and size of the PFD
Dead Zone. Lock Perturbation means a situation where any charge is injected into the
PLL from outside forcing the PLL out of lock.

The simulation model that will be used was introduced in section 3.1. The rest of the
simulation setup and will be explained in subsection 4.1, followed by the lock perturba-
tion simulation results and discussion in subsection 4.2 and a comparison in subsection
4.3.

4.1. Lock Perturbation Simulation Setup

In these lock perturbation simulations a voltage will be injected on the Vi, voltage
while the PLL is locked. The voltage injection will need to be high enough to throw the
PLL out of lock. A choice was made for a perturbation of 0.5V.

The time it takes for the output frequency to again match the pre-set division ratio is
the quantity interest. The expected Viyne is therefore simply 0'V.

The settling time will be the measured quantity and is defined as the time when Vi,
falls within a 0.01% boundary of its final value. The maximum simulation time is 25 ps,
because that is already much longer than the zero to ten micro seconds time scale of
interest. If the PLL is not able to regain lock within that time a settling time of 25 s
will be recorded.

The simulations were run using the script found in appendix A. The choice for LBWs
remains the same as with the channel switching simulations at 5.00 MHz, 2.50 MHz,
1.25 MHz and 0.63 MHz. Also remaining the same are the now five PFD DZ variations
of binary Tycf/2 and Tyeo/2, linear Trer/2 and Tyeo/2 and lastly no DZ.

Because of the theory developed in section 3.3 the choice for the LGR of the PFD
without and linear DZ is limited to 1. For the PFDs with binary DZ of T,.f/2 and
Tyeo/2 there could be an optimal LGR different from the ones found from the channel
switching simulations. A binary PFD with DZ T,.;/2 has a maximum LGR of 27N,
which for N = 45 comes down to 283. For a DZ of T}.,/2 the maximum LGR is 27. By
running simulations at intermediate LGRs and reviewing the results an optimum may
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4. Lock Perturbation Simulations of a Sub-Sampling Phase-Locked Loop

be found for these two DZ variants.

4.1.1. Expectations for the Simulations

The expected result is that LBW will show an inverse relation with the LPS settling
time, because in in subsection 3.2.1 it was shown that the closed loop transfer function
has this relation. The same applies here, because a perturbation on Vi, can be referred
back as a change of the input. Therefore, this injected change of the tune voltage can be
modelled as a scaled change of the input frequency whose dynamic behaviour is modelled
by the closed loop transfer function.

For the LGR it is expected that the theory of section 3.3 holds. The calculated maximum
LGRs are shown in table 3.2. This means that for a linear PFD the maximum LGR
with a unique lock point is 7/2. For the binary PFD with a DZ of T,.¢/2 this is 2nN
and with a DZ of Ty /2 this is 27.

For the linear PFDs the LGR range is so small that it is assumed there will be no
significant performance difference over the range. Therefore, the LGR in this case is set
to 1.

For the binary PFDs the range is bigger such that there could be an optimum LGR.
However, there is no theoretical basis for what this optimum should be. Therefore, the
simulations will be run with varying LGR over its range to see if any optimum becomes
visible.

The expected results from changing the size of the DZ if that smaller DZ will have a
faster settling time. In [8] this was shown for removing the DZ. Also in that paper an
equation for the reaction time 7T, was derived depending on the size of the DZ in the
phase domain ¢4, and the size of the perturbation Ve,:

N'd)dz

= 4.1
277chov;)ert ( )

which shows that a smaller DZ will need less time to react and also a bigger perturbation
will lower the reaction time. The reaction is of course not the entire settling time and
depending on the size of the DZ, perturbation and LBW it may be more or less significant.
For instance, if the perturbation is 0.5V and the DZ T,.,/2 the reaction time will be
0.02ps. If that is combined with a small LBW of say 100kHz the expected settling
time will still be in the order of (tens-of) ps. Therefore the relative contribution of the
reaction time was small.

4.1.2. Simulation Setup Variables Table

The simulation parameters and values are shown in table 4.1.
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4.2. Lock Perturbation Simulation Results

4.2. Lock Perturbation Simulation Results

All lock perturbation simulations were run using the script found in appendix A. Because
the linear PFDs with and without DZ share the same single LGR, those results are
plotted in the same graph shown in figure 4.1. The settling times for the binary PFD
with DZ of T,cr/2 and T,c,/2 are respectively shown in figure 4.7 and 4.5.

The y-axis in the graphs indicates the settling time in ps. The x-axis covers the range
of LGRs that were simulated. The various LBWs are indicated by different colors and
shapes shown in the legend on the right of the graphs.

4.2.1. Phase-Frequency Detector Without a Dead Zone

Based on equation 4.1 and the results from [8] it was expected that removing the DZ
would give fast relock times. The results show sub 5 ps relock times for all but one LBW
size. For the simulation with LBW equal to 5.00 MHz the remaining PFD activity causes
voltage peaks that exceed the 0.1% limit around the final tune voltage. As an example
of the simulation results the graph of Vi, for a LBW of 2.50 MHz is shown in figure
4.2.

Table 4.1.: Summary table of the channel switching simulation setup.

Parameter Value(s)

Frep (Hz) 5006

Aref (V) 0.5

ffr (Hz) 2.2e9

Apeo (V) 0.5

Kopeo (Hz/V) | 50e6

N1 44

N2 44

Fout (Hz) 2.25¢9

Viune (V) 1

I, (A) 20e-6

Voa (V) 200e-3

¢ 1

Apert (V) 0.5

Type of the DZ | linear binary

Size of the DZ | none Tref/2  Tyeo/2

LGR 1 2 3 4 5 6 10 20 50 75 100 200
LBW (Hz) 0.63e6 1.25e6 2.50e6 5.00e6
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4. Lock Perturbation Simulations of a Sub-Sampling Phase-Locked Loop

Vtune 0.1% settling times of an SSPLL with a linear PFD
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Figure 4.1.: Lock Perturbation settling times for an SSPLL with a linear PFD without
DZ, DZ of Tyef/2 and Tyeo/2.

Figure 4.2.: Simulation result for an SSPLL with linear PFD without DZ, LGR 1 and
LBW of 2.50 MHz.
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4.2. Lock Perturbation Simulation Results

4.2.2. Linear Phase-Frequency Detector With a Dead Zone of T,,,/2

Filling out equation 4.1 for a DZ size of Tye,/2 = m/N gives an expected reaction time of
0.02 ps. Looking at the results for this DZ in figure 4.1 the settling times are significantly
longer than the predicted reaction time. This indicates that the size of the DZ is not the
main cause of the long settling times that were recorded. In this case it appears that the
LBW and the linear implementation of the DZ have far more impact on the dynamic
behaviour. The graph of Viyne for a LBW of 2.50 MHz is shown in figure 4.3.

Figure 4.3.: Simulation result for an SSPLL with linear PFD with DZ of T}¢,/2, LGR 1
and LBW of 2.50 MHz.

4.2.3. Linear Phase-Frequency Detector With a Dead Zone of 7T,.;/2

For a DZ of T,.;/2 = 7 the reaction time given by equation 4.1 is 0.9 ps. In figure 4.4
this can be seen in the time the tune voltage stays at 0.5V before the PFD reacts. The
reaction time is now a more significant part of the overall dynamic behaviour.
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4. Lock Perturbation Simulations of a Sub-Sampling Phase-Locked Loop

4.2.4. Binary Phase-Frequency Detector With a Dead Zone of 7,.,/2

From the results shown in figure 4.5 there is an optimum visible at LGR equal to 3. For
this LGR and a LBW of 2.50 MHz the graph of Ve is shown in figure 4.6. The reaction
time of 0.02 s is not a significant part of the settling time and is not clearly visible at
the time scale of figure 4.6.

Figure 4.4.: Simulation result for an SSPLL with linear PFD with DZ of T}..y/2, LGR 1
and LBW of 2.50 MHz.

Vtune 0.1% settling times of an SSPLL with a binary PFD with DZ of Tvco/2
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Figure 4.5.: Lock Perturbation settling times for an SSPLL with a binary PFD with DZ
of Tyeo/2.

66



4.2. Lock Perturbation Simulation Results

4.2.5. Binary Phase-Frequency Detector With a Dead Zone of T,.;/2

Looking at the results in figure 4.7 the lowest settling times can be found at LGRs
between 5 and 50. For a LBW of 0.63 MHz a trend can be seen. From the point of LGR
higher than 50 onwards the settling times become significantly longer. Combining these
results with that of the previous channel switching simulations an LGR of 20 is in both
cases a good choice. In figure 4.8 the graph of Viyne is shown for an LGR of 20 and an
LBW of 2.50 MHz. The reaction time of 0.9 us can be seen in the part of the graph that
is at 0.5V.

For an LGR of 1 and a LBW of 5.00 MHz the simulation result of V. is shown in figure
4.9. In the figure it can be seen that the voltage keeps overshooting the zero volt target,
due to the combination of the high LBW and binary PFD with the large DZ of T,..f/2.
For LGR equal to 2 and a LBW of 1.25 MHz a similar situation occurs, leading to the
tune voltage endlessly jumping over and under 0 volt.

Figure 4.6.: Simulation result for an SSPLL with binary PFD with DZ of T}.,/2, LGR
3 and LBW of 2.50 MHz.
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4. Lock Perturbation Simulations of a Sub-Sampling Phase-Locked Loop

Vtune 0.1% settling times for an SSPLL with a binary PFD with DZ of Tref/2
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Figure 4.7.: Lock Perturbation settling times for an SSPLL with a binary PFD with DZ
of Trer/2.
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Figure 4.8.: Simulation result for an SSPLL with binary PFD with DZ of T;.;/2, LGR
20 and LBW of 2.50 MHz.
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4.3. Comparison of the Lock Perturbation Simulation Results

4.3. Comparison of the Lock Perturbation Simulation Results

In figure 4.10 the fastest lock perturbation simulation results for each DZ are shown
together. On the x-axis is indicated the size of the DZ as well as the PFD type, linear
or binary. On the y-axis is the time it took for the particular SSPLL configuration to
regain phase lock.

For the PFD without DZ the LGR is 1. Its result with a LBW of 5.00 MHz is 25 s
because the remaining PFD activity causes voltage peaks that exceed the 0.1% limit
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Figure 4.9.: Simulation result for an SSPLL with binary PFD with DZ of T;.;/2, LGR
1 and LBW of 5.00 MHz.

Comparison of SSPLL 0.1% Vtune lock perturbation settling times
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Figure 4.10.: Comparison of Lock Perturbation settling times.
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4. Lock Perturbation Simulations of a Sub-Sampling Phase-Locked Loop

around the final tune voltage. This result will be disregarded for the rest of the com-
parison.

For both linear PFDs the LGR is 1. The results of the binary PFD with DZ of T}, /2
are at LGR equal to 3. The results of the binary PFD with DZ of T,.¢/2 are at LGR
equal to 20. These are the same LGRs as shown in table 3.4.

The results for the linear PFD without DZ and the binary PFD with DZ of T,.,/2 are
the fastest. Both the binary PFDs recover lock faster than the linear versions.

The difference between the DZs of T,.. ¢ /2 and T /2 is the reaction time as described by
equation 4.1. This can be seen by comparing figure 4.3 and 4.4 for the linear PFDs and
figure 4.8 and 4.6 for the binary PFDs. In those figures the reaction time can be seen as
the width of the graph that is at 0.5V from ¢t = 0s onwards. With a DZ of T}..;/2 this
reaction time is clearly visible and was previously calculated to be 0.9 us for the setup
of these simulations.

4.4. Conclusion About the Lock Perturbation Simulations

In this section simulations were done with the goal of finding relations between lock per-
turbation settling time and LBW, LGR and size of the PFD DZ. A voltage perturbation
was injected onto the V.. voltage to force the SSPLL out of phase lock and see how
fast it would recover lock depending on varying parameters.

Because of the wider range of LGRs available for the binary PFDs based on the theory
presented in section 3.3, the LGR was varied to identify any optimum that might exist.
For the linear PFDs the available LGR range was not wide enough to warrant a similar
investigation and their simulations were all run with LGR equal to 1.

For the binary PFD with DZ of T}¢/2 an optimum range was found for an LGR between
5 and 50. The binary PFD with DZ of T),.,/2 showed an optimum for LGR equal to 3.

From [8] equation 4.1 was found that expresses the time it takes the phase at the VCO
output to accumulate to equal the PFD DZ for a given constant voltage perturbation at
Viune-

From the simulation results it was concluded that this reaction time is the difference
between the settling times for a DZ of T,¢r/2 and Tye/2. The significance of this
reaction time contribution to the total settling time, depends on how big the voltage
perturbation is, the size of the DZ and the LBW. With the 0.5V perturbation that
was used for these simulations the effect of reaction time may have been understated
in the results. By decreasing the size of the perturbation the reaction time could be
accentuated more.

Equation 4.1 gives a reaction time of 0.9 s for the DZ of T}..r/2 and 0.02 pis for the DZ of
Tyeo/2. If the voltage perturbation is decreased by a factor 5 to 0.1V the reaction times
increase to 4.5us and 0.1 ps. In many cases the reaction time of 0.1us for a DZ T,c,/2
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4.4. Conclusion About the Lock Perturbation Simulations

would still be a minor part of the total settling time, which is in the order of several ps.
However, in the case of a DZ of T,¢/2 the increase to a reaction time of 4.5 ps will likely
have a huge impact on the total settling time, which is also in the order of several ys.

Comparing all results shows that the PFD without a DZ and the binary PFD with DZ
of Tyeo/2 give the fastest lock perturbation settling times. The binary PFD with DZ of
Trer/2 may still be good enough, but that depends on the expected perturbations and
required maximum relock time. Both binary PFDs have faster settling times than their
linear counterparts.

Finally, if noise performance is also considered the binary PFD with a DZ of T\,¢,/2 gains
a big advantage over the PFD without DZ, because in lock its PFD is fully disabled and
therefore does not influence the phase noise at the VCO output.
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5. Thesis Conclusion

The goal of this thesis was to find out more about the dynamic behaviour of SSPLLs
through simulation and analysis. A paper published by Hsu et. al. [8] raised the issue
of the SSPLL’s robustness to perturbations. The proposed solution was to remove the
PFD DZ present in the original design from [9]. However, removing the PFD DZ turns
out to negate a large part of the noise benefits that the original SSPLL presented. The
insight gained has led to a proposed SSPLL implementation that keeps all the noise
benefits of the original design and is also robust to perturbations. At the beginning of
this thesis the following questions where raised:

> What is the influence of the dead zone in the phase frequency detector on the
sub-sampling phase-locked loop dynamic behaviour?

> Can the robustness to perturbations of the SSPLL design from [9] be improved
without removing the dead zone in the phase frequency detector?

> Can the dynamic behaviour of the SSPLL design from [9] be improved by optimiz-
ing its configuration?

Channel Switching Behaviour

The first step was to make a Simulink simulation model that could reproduce the known
dynamic behaviour from [9]. In doing so the analysis for loop stability revealed a Zero-
Order Sample and Hold effect (ZOSH) that was previously not included. This ZOSH
effect was not significant in the original SSPLL design, because of the gain reduction
implementation that was used. The hold pulses were made shorter, thereby reducing
gain and coincidentally removing the ZOSH effect. If the gain reduction would be im-
plemented without this shortening of the hold pulse, the ZOSH transfer function would
make the loop gain zero at multiples of the reference frequency. Because of this effect
the gain reduction implementation as used in [9] is likely the best choice for achieving a
low PLL FOM.

The dynamic behaviour of PLLs was divided into three situations: start-up, channel
switching and lock perturbation. The focus of this thesis was on robustness to pertur-
bations, therefore only the latter two situations were analysed.
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5. Thesis Conclusion

Next the simulation model was used to find relations between the channel switching
behaviour and the Loop Band Width, Loop Gain Ratio and size of the Phase Frequency
Detector Dead Zone in SSPLLs. To this end three variations of the Simulink simulation
model were made, the difference between them being the size of the DZ of the PFD. The
LBW and LGR are parameters whose value was varied using the Matlab script found in
appendix A.

In the original paper about the SSPLL [9] the DZ was equal to T,¢¢/2 and this therefore
served as the starting point of the comparison.

In [8], a paper commenting on the slow dynamic behaviour of the SSPLL, it was proposed
to remove the DZ to improve the SSPLLs robustness to perturbations. The paper indeed
showed an improved response to disturbances and therefore the second choice for the
DZ was to remove the DZ.

This thesis proposed a compromise between these two ideas by making the DZ as small
as possible without removing it. This should give both the noise benefit of the original
SSPLL and have similar robustness to perturbations as was shown by removing the DZ.
The edge surrounding the lock point of the sub-sampling loop is Tyeo/2 and therefore
this was the third choice of DZ.

Using results from some initial simulations together with information from [8] a theoret-
ical basis for the LGR was derived. At the same time it was discovered that the PFD
proposed in [9] is binary (without reset) rather than linear as had been presumed up to
this point. A linear PFD with DZ was proposed to compare against the binary PFD on
the point of settling speed.

The channel switching settling times for each DZ were compared in figure 3.40. The
fastest settling times where recorded with the binary PFD with a DZ of Ty, /2. The
linear PFD showed no advantage over the original binary PFD.

Lock Perturbation Behaviour

After the channel switching simulations, the goal was to find relations between lock per-
turbation settling time and LBW, LGR and size of the PFD DZ. A voltage perturbation
was injected onto the V.. voltage to force the SSPLL out of phase lock and see how
fast it would recover lock depending on varying parameters.

Because of the wider range of LGRs available for the binary PFDs based on the theory
presented in section 3.3, the LGR was varied to identify any optimum that might exist.
For the linear PFDs the available LGR range was not wide enough to warrant a similar
investigation and their simulations were all run with LGR equal to 1.

For the binary PFD with DZ of T}¢/2 an optimum range was found for an LGR between
5 and 50. The binary PFD with DZ of T),.,/2 showed an optimum for LGR equal to 3.

From [8] equation 4.1 was found that expresses the time it takes the phase at the VCO
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output to accumulate to equal the PFD DZ for a given constant voltage perturbation
at Viune. From the simulation results it was concluded that this reaction time is the
difference between the settling times for a DZ of T;.y/2 and T, /2. The significance of
this reaction time contribution to the total settling time, depends on how big the voltage
perturbation is, the size of the DZ and the LBW.

Comparing all results shows that the PFD without a DZ and the binary PFD with DZ
of Theo/2 give the fastest lock perturbation settling times. The binary PFD with DZ of
Trer/2 may still be good enough, but that depends on the expected perturbations and
required maximum relock time. Both binary PFDs have faster settling times than their
linear counterparts. Finally, if noise performance is also considered the binary PFD with
a DZ of Ty /2 gains a big advantage over the PFD without DZ, because in lock its PFD
is fully disabled and therefore does not influence the phase noise at the VCO output.

Dynamic Behaviour

Combining the information obtained in this thesis leads to the conclusion that removing
the PFD DZ improves the SSPLL dynamic behaviour as was shown in [8]. However,
this is at the cost of added phase noise at the VCO output with respect to the original
SSPLL design from [9].

By reducing the size of the PFD DZ to Ty.,/2 a similar improvement in robustness is
obtained, while retaining the noise benefits of having a PFD DZ. The SSPLL FOM will
be worse though by the extra power consumption of the DZ flip-flops in the PFD that
are now clocked at fy., instead of f..;. Also, in the original SSPLL paper the frequency
loop was turned off, further improving the FOM at the cost of robustness.

The fastest dynamic behaviour is obtained by using a binary implementation of the DZ
of Tyeo/2. The linear PFD with DZ presented in this thesis has shown no advantage over
the binary version when applied in an SSPLL. An exact theoretical explanation for this
is not known. However, for now it is valuable to know the distinction between these two
implementation with regard to the LGR theory developed in this thesis.

Lastly, it should not be forgotten that the choice of LBW also has a high influence on
dynamic behaviour. Usually though, its choice is based on reducing the VCO output
phase noise instead of dynamic behaviour.
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5. Thesis Conclusion

5.1. Recommendations for Future Work

The conclusions in this thesis are based on behavioural simulations done in Mathworks’
Simulink. Great effort was taken to make the simulation model behave as the published
SSPLL reference. However, it is possible that there are unforeseen issues. To this end a
good next step would be to validate the model behaviour by using more computational
precision and more scenarios.

The use of a certain boundary around V;,,. as a condition for phase lock does not seem
totally unambiguous. It could be valuable to look into a different lock definition based
instead on the current output of the two loops.

Equation 3.14 was derived for traditional PLLs and its predicted values came within a
factor two or more from the simulations results. Therefore, it could be valuable to try
to develop a settling time equation specifically for SSPLLs.

If there is enough confidence in the competency of the Simulink model and the conclu-
sions from this thesis an SSPLL should be made with the proposed reduced size of the
DZ. The novelty of that SSPLL would be combining the already published levels of low
PLL FOM with a more robust design.

Another big step forward for the SSPLL concept would be to improve its tunability by
making it fractional-N. A very promising way of doing this was published in [7].
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A. Matlab Simulation Script

% This script sets the PLL simulation parameters

Reference
f_ref = 50e6; % reference frequency
T_ref = 1/f_ref; % reference period
A_ref = 0.5; % amplitude of the reference
ref_bias = 0; % reference bias Voltage
S_ref = 1e-20; % reference noise power
%display(’reference set’)

Divider
N = 45; % feedback division ratio
f_set = f_ref*N; % intended PLL output frequency
%display(’divider set’);

Voltage Controlled Oscillator
A_vco = 0.5; % VCO output amplitude in Volts
f_fr = 45x%f_ref; % Free-Running VCO frequency in Hz
K_vco = 50e6; % VCO sensitivity in Hz/V
V_tune_set = (f_set-f_fr)/K_vco; % intended Vtune voltage
S_vco = 1e-20; % VCO noise power

%display (°VCO set’);

Output to Workspace and Simulation Sample Time

T_zoh = le-12; % zero order hold sample time

%display(’Sampling time set’);
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A. Matlab Simulation Script

Phase Detector, Pharge Pump and Loop Gain

I_cp = 20e-6; % the Charge Pump current

V_od = 200e-3; % the effective Vgs of the SS CP gm

gm = -2xI_cp/(V_od); % the SSCP gm

tau_pul = 1%0.7074*T_ref/1000; % the pulse duration for the SSPD gain control
B_pfd = I_cp/(2*pix*N); % Gao eq. 4.3

B_sspd = abs(A_vco*gm*tau_pul/T_ref); % Gao eq. 4.8

B = B_pfd+B_sspd; % superimposed loop gain
LGR = B_sspd/B_pfd; % Loop Gain Ratio

%display(’CP set’);

Loop Filter

xi =1; % set the damping factor of the open-loop transfer
w_n = 2xpi*xf_ref/50; % set the natural frequency of the open-Loop transfer
C_1 = BxK_vco/(w_n"2); % first pole cap

C_2 = C_1/(2x(4*xi"2-1)); % second pole cap

C_eq = C_1xC_2/(C_1+C_2); % equivalent cap

R_1 = 2xxi*w_n/(B*K_vco); % resistance that give a zero

z_1 =-1/(R_1%C_1); % first Loop Filter zero

p_1 = 0; % first Loop Filter pole

p-2 = -1/(R_1*C_eq) ; % second Loop Filter pole

K_1f = 1/C_2; % Loop Filter gain

fdisplay(’filter set’);

Perturbation

A_pert = 0.5;

T_pert = 100e-6;
W_pert = 100e-6;
Delta_pert = 0.02e-6;
V_tune_init = 0;

perturbation amplitude in Volt
perturbation period in seconds
perturbation width in seconds
perturbation delay in seconds
initial Vtune voltage

N

%display(’perturbation set’);

finished setting parameters

%display(’end of line’);
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