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Chapter 1

Introduction

The world as we know today is built on the back of generations of mathemati-
cians, logicians and computer scientists. Computers and the programs which
run on them have become a necessity in all parts of the modern world. It was
not too long ago when in 1961 rooms full of mathematicians were laid off at
NASA and replaced by an electronic computer. Now, we have more computing
power in our pockets in the form of cellphones and we use it to communicate
wirelessly with friends, family and co-workers. Even governments assume each
citizen owns some sort of computer with internet access: The Dutch tax au-
thority is in the process of a multi-year project to switch from filing taxes using
paper to filing our taxes on-line. The infrastructure to enable all this includes
kilometres of optical or copper wiring, processors with components smaller than
a human hair is thin and screens with enough pixels so humans are unable to see
the different pixels with the naked eye. All this infrastructure is instrumented
by programs or software, written by programmers or software engineers. The
instructions they created are not as simple as one may think. Some is based on
mathematically proven logic. The logic we use today to create algorithms and
to prove that they work correctly has been studied and worked on by logicians
and mathematicians over multiple centuries. The combination of the disciplines
of logic and math with mechanical and electronic computers have given rise to
the discipline of computer science.

In order to automate all the different processes and tasks with software of
our daily life, programmers had to create a lot of software. Marc Andreessen
stated in 2011 that ”Software is eating the world” (Wall Street Journal). All
the software worldwide is difficult to maintain: new features, deprecation of pro-
gramming languages in favour of others and new execution platforms create the
need to constantly change and update software. The software is also complex:
we use software to organize and track all satellites, asteroids and space debris
near Earth, simulate the drag on a virtual air-plane design and to track, prevent
and solve traffic jams. Due to the scale and complexity many issues or bugs in
existing software exist and replacing or updating the existing systems is again
a difficult task. The discipline of software engineering within computer science
is focused on improving the way software is created to manage the maintenance
and complexity concerns.

Due to the sheer amount and complexity of software, new ways to manage
code have to be created to be able to switch execution platforms efficiently and



to prevent bugs. Large companies are driven to search for alternative ways
of managing their codebases [20] [23] [24]. ING are a prime example who are
researching if model-driven engineering is part of their solution. Their plan is
to create a Domain-Specific Language (DSL) called Rebel [24] to specify their
business logic and to generate the entire code base from these DSL specifications.
A DSL is a programming language specialized for a specific domain such as
Rebel is specialized to specify banking products. ING is researching if a DSL
may be used to consistently and unambiguously define specifications, show the
specifications graphically to help with interpretation and in the process also
save on time when developing the specifications. Also, new programming bugs
should not be introduced when using a verified code generator. This method
improves the reliability of the code.

Business logic/semantic issues still remain and one method of finding seman-
tic bugs is to (dis)prove properties such as invariants (a property which must
be always true). Our task is to find useful properties to verify and techniques
to prove these properties while the specifications are being written. It is there-
fore important that the technique used and the properties verified are able to
run on an average workstation within reasonable time. Finding and/or proving
properties such as safety (a certain state is never reached) and liveness (useful
progress is always made) properties increases the reliability of generated code
even further.

The DSL ING has developed and is currently researching is called Rebel.
Rebel is a DSL to specify banking products. Each banking product may be
specified using specifications which are based on the formalism of Symbolic
Transition Systems (STS). These variations of transition systems describe the
states and executions of a program with possibly an infinite state space. An
example of a STS may be seen in figure[l.1} There exist two nodes with the labels
Open and Frozen. The node Open has a start transition. The start transition
has a single constraint where each assignment which satisfies the constraint
is a starting state. 7 After” the start transition, some state holds and is in the
Open node. Between these nodes are the transitions Withdrawal, Deposit, Freeze
account and Unfreeze account. Each transition has a guard constraint (which is
above the line) and a relation constraint (which is below the line). A transition
may be taken when the current state satisfies the guard. When a transition
is taken, we move from the original state to some new state in the new node
so the original and new state together satisfy the relation constraint. We say
that each origin state and destination state which satisfy the guard and relation
constraints are related. With the relation constraint we are referencing two
states: the origin and destination state. Any variable in the relation constraint
which is postfixed with the ’ symbol is referencing a variable for the destination
state while any variable without the / symbol is referencing a variable for the
origin state.

Within the STS there may exist (in)finitely many paths from a starting
transition and starting node to other nodes by taking transitions. When some
state is reached for some node, we say that the state is reachable in that node.
A node is therefore an abstraction for a number of reachable states. With our
approach, we shall use properties called reachable state constraints where each
reachable state must satisfy the reachable state constraint.

With Rebel, ING is interpreting the transitions of a STS as actions as the
target for code generation. In our example of figure the Freeze account



Withdrawel

amount > 0 && amount <= balance
balance' == balance - amount

&&
status' == open Freeze account
status == open
balance' == balance
&&
balance >= 50 status' == frozen
&&
status == open Open Frozen
status == frozen
status' == open
&&
amount >0 balance' == balance
balance' == bzl;nce + amount Unfreeze account

status' == open

Deposit

Figure 1.1: STS for a bank account with withdrawal, deposit, freeze and
unfreeze account transitions.
Guards are above the line, relations below the line for transitions

action changes the status of the account to frozen. Each action is generated
as an API call and the guard and relation constraints then become pre- and
post-conditions which must be satisfied before and after each action.

The goal of this research is two-fold: 1) To define useful properties to verify
for a STS and 2) To detail our approach of verifying these useful properties for
a STS. The motivation to research these two goals is to increase the reliability
of the Rebel specifications or any other language which is based on the sym-
bolic transition system formalism. We shall show how we may prove that: 1) a
property holds for all states which are reachable (safety property) 2) there exist
no transitions which may never be taken (dead transitions) 3) there exist no
states so no transitions may be taken (sinkholes) 4) there exist no start tran-
sitions which may never be used (unsatisfiable start transitions) and 5) there
exist no reachable states that a transition may be taken (the guard is satisfied)
but can never finish (there exists no model for the relation) (unsatisfiable rela-
tion). The proving technique we shall show uses properties which symbolically
describe all reachable states for a node. We shall also show a method how to
deduce these reachable state constraints (RSCs) from existing RSCs or from
starting transitions. We shall also show that this method is not complete for
STSs which contain cycles in which case a user may supply a RSC for a node in
the specification. The two-step algorithm to first deduce all RSCs for some STS
(if possible) and then try to prove the five verification properties is nicknamed
Goose. We are unable to elaborate on the motivation for this name.

Prior to designing Goose we researched existing methods for verifying useful
properties for STSs. We found three tools: MCMT, Z3 and nuXmv. MCMT
is a tool designed to verify safety properties for STS-like systems where arrays



are also allowed as a type for variables. Unfortunately, a general translation
from an arbitrary STS to the input language of MCMT is not possible. Z3 and
nuXmv are tools designed to verify safety properties for arbitrary infinite-state
systems. STSs are included in this classification of systems. Z3 and nuXmv
each implement a variation of the IC3 algorithm which we will detail in chapter
We shall see that Z3 and nuXmv treat the STS to verify as a blackbox
and they try to recreate the graph structure with nodes and transitions using
symbolic properties similar to reachable state constraints. Z3 and nuXmv call
these properties frames. Because Z3 and nuXmv have to recreate the structure,
they are unable to leverage the knowledge of cycles in the system. When they try
to verify certain safety properties, they are forced to unwind the cycle in sequent
steps until they reach a counterexample or a fix-point. Unwinding the cycle may
increase the resources needed to (dis)prove a safety property considerably as we
will see in chapters and

Based on the goals and the research we shall answer a number of research
questions with this document. We shall elaborate on the research questions in
chapter This introduction is concluded with an overview of the structure
of this document in chapter [L.2

1.1 Research Questions

The goal of this document is two-fold: 1) To define useful properties to verify
for a STS and 2) To detail our approach of verifying these useful properties for
a STS. We have split these goals into a number of research questions. The list of
research questions below also contain a reference to a chapter. The referenced
chapter answers that specific research question.

1. What useful properties may be verified for a STS? (chapter

2. What verification techniques & tools exist which may help to verify prop-
erties about a STS? (chapter [3))

3. What approach may be taken to decrease the resources needed and to
increase the solvability to verify our chosen useful properties for a STS
over existing techniques? (chapter |4)

4. Ts this approach sound, complete, does it always terminate and what are
the practical limitations? (chapter |4)

5. Using a suite of Rebel specifications commonly used by ING, how do the
selected tools perform in terms of solvability and execution time to verify
on an average workstation and is the execution time within the practical
limit of a few seconds? (chapter [))

In chapter [3] we shall introduce the tools MCMT, nuXmv and Z3. As we
will explain, these are the existing tools that are able to only verify safety
properties for some STS. The practical application of these tools is limited
when the STS in question contains cycles. This was the motivation to create
our own approach which can verify several properties including safety properties
and is practically usable when the STS contains those cycles where the existing
work is found unusable. Therefore our list of research questions also contains
questions relating to our own approach.



Contributions

The initial goal of the research was to define useful verification properties and
to find and use an existing technique to verify the useful properties for arbitrary
STSs. We quickly found that the existing techniques have a long execution time,
as we will describe, when considering STSs containing cycles and certain safety
properties. This was the motivation to start designing our own approach which
uses user-given or generated properties which summarize all reachable states
per node, allowing to summarize all cycle iterations into a single property. A
prototype was developed and the ambition arose to evaluate the new approach
with existing approaches in terms of execution time and if it is able to solve
the query correctly (solvability). We also discovered that the new approach
is able to prove more verification properties than just safety properties. In a
later stadium we discovered that the tool Z3, which we use as a SMT solver
in our approach, is also able to verify safety properties for arbitrary STSs and
may even prove the other verification properties which we have defined. Due
to time constraints, this is pushed to future work. All in all the deliverables
of this research include this document with an overview of existing techniques,
the theoretical framework for the new approach and an evaluation of the new
approach with the existing approaches in terms of execution time and solvability
and a prototype implementing the new approach to be used for evaluation and
to show the feasibility of the new approach.

Methodology

In order to answer the research questions of chapter we have done the
following tasks:

1. Literature research for existing techniques to verify one or more properties
for arbitrary STSs.

2. Based on existing literature and discussions with ING define a number of
verification properties deemed useful to ING.

3. Evaluate existing techniques on what useful verification properties they
are able to verify and if they are applicable for the ING use-case.

4. Created the theoretical framework for a new approach which solved the
issues existing techniques had for the ING use-case.

5. Built a prototype implementing the new approach

6. Evaluated the prototype on what useful verification properties it is able
to verify and if it is applicable for the ING use-case.

These tasks were performed with the main goal of finding a technique which
is able to verify as many of the useful verification properties for the survey of
ING specifications as described in appendix [A] in reasonable time. We have
defined reasonable time as a few seconds on an average workstation. The work-
station used in the experiments of chapter [5|is deemed average by ING and the
researchers.
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1.2 Document Structure

Our document is structured as follows: We shall first introduce the concepts
of first-order logic, constraints, SMT solvers, STS and strongly connected com-
ponents in chapter We shall show how existing techniques relate to the
verification of STSs in chapter [3] Then we shall give our approach in chapter
and how it compares to existing techniques in chapter [5, The document con-
cludes with the areas of future work in chapter [6] and some concluding remarks

in chapter [7}
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Chapter 2

Pre-requisite Knowledge

In this chapter we shall define and cite the knowledge needed to understand our
approach in chapter[dl It begins with a description of first-order logic in chapter
[2:3] Then, we shall use first-order logic to define constraints in chapter 2.2 The
understanding of constraints and first-order logic is necessary for our overview
of SMT solvers in chapter and our definition of symbolic transition system
(STS) in chapter We will end the chapter with an overview of strongly
connected components in chapter [2.5)

2.1 First-order Logic

First-order logic is a logic allowing to describe statements about a set of entities
e.g. all chairs are made of wood. It is a more expressive logic compared to
proposition logic allowing to not only reason about true or false for specific
facts, but also reason if facts are true for all or some entities within a domain
D. For our research we shall use the syntax as described in Ben-Ari [8]. A first-
order logic formula may be constructed using a number of syntactical elements.
Examples include the ones given in table
Together, these syntactical elements allow to describe statements such as:

Vpot.3lid.isPot(pot) — isLid(lid) A lidForPot(lid, pot)
Every pot has a lid

Jear.hasColour(car, col)
There exists a car with colour col

It is important to note that first-order logic formulas are without predefined
interpretation. This means that while the labels of relations, functions, variables
and constants may hint to some semantic meaning, strictly, this first has to be
defined. For instance, the first example statement might seem to only work
for pots and lids. Any first-order logic statement might be interpreted for any
domain D which may consist of any entities. The property isPot of predicate
isPot(pot) might also be interpreted to have the meaning isHuman, isLid as
isEdible, lidFor Pot as canEat and we might take the domain of all living crea-
tures. Now, the statement is interpreted as All humans can eat an edible, living

12



Table 2.1: Examples of syntactical elements for first-order logic formulas

Syntactical Ele- | Example Definition
ment
Function flay,az...,a,)| A function f over parameters a; to a,.

Each parameter a; may be a constant,
variable or another function and evalu-
ates to a member of D. The function
maps every n-tuple of a; to a, to some
member in domain D.

Relation p(ai,as...,a,)| A relation p over parameters aj to a,.
Each parameter a; may be a constant,
variable or another function and evalu-
ates to a member of D. The function
maps every n-tuple of a; to a, to some
member in domain D.

Quantifier Vz.p(x) and | Define a statement p(x) for all members
Jz.p(x) or some members of D.
Variable x A free variable to be assigned some

member of D or quantified over D by
the existential or universal closure.

Constant a A constant which must be assigned
some member of D.
Boolean operator AV, =, Binary and wunary operators from

propositional logic.

creature. Therefore, when describing first-order logic formulas, it is important
to also note the domain and the meaning of the relations and functions.

The first example formula contains only bounded variables; variables pot and
lid are both bounded by a quantifier. The second example formula also contains
the constant or free variable col as it is not bounded by a quantifier. This symbol
has to be assigned a member of D in order to evaluate the formula to true or
false. If we say that col is a constant, we must assign it a member of D with the
interpretation. If we say that col is a free variable, we must assign it a member
of D with a variable assignment. The interpretation and variable assignment for
a formula are different. An interpreted formula may need a variable assignment
before the formula may be evaluated to true if it contains free variables. When
a formula is interpreted, the constants are assigned some member of D and the
remaining symbols are considered the free variables.

Evaluating a first-order logic formula

As we have shown, we have to describe the context of a formula or, in other
words, interpret the formula. This interpretation consists of a domain D, a
definition for all relations and functions and an assignment for all constants.

Definition 1. An interpretation I for a first-order logic formula F consists of
a domain D, a definition of all relations and functions and an assignment for
all constants.

13



In order to evaluate the truth value of some formula, we also need to assign
all free variables some member from D. o[zg < dy,...,x, + d,] will be used
as the syntax for variable assignment ¢ where values dj..d,, are assigned to the
respective variables xg..z,,.

Definition 2. With an interpretation I and an assignment to free variables
olx; < d;] a first-order logic formula may be evaluated to true or false.

Finally, when an interpretation I and some assignment to free variables o
evaluates some formula A to true, we consider that a model of A and we write
I,0 = A. When considering multiple formulae U = {44, ...A4,,}, a model is an
interpretation and assignment so that for each of the formulas I, 0 | A;.

Definition 3. Considering a set of formulae U = {Ay,...,An}, I, E U iff
VA, € U.I,0 = A

Satisfiability & Validity

When considering some (set of) formula A, the formula may have none or some
models. In some cases, the formula is always true. We call A satisfiable if there
exists a model for A, falsifiable if there exists a model for the negation of A,
valid if there are no models for the negation of A and unsatisfiable if there are
no models for A. Therefore, if a formula is not falsifiable it has to be valid and
if a formula is not satisfiable it is unsatisfiable.

Logical Consequence

Considering some set of first-order logic formulae U, there might exist other
formulae A that describe at least the same models as U. For instance, A =
Va.P(a) A R(a) is a logical consequence of U = {Va.P(a),Va.R(a)} as for all
models of U, the same models evaluate to true for A.

Definition 4. Given a set of formulae U and some formula A, A is a logical
consequence of U (written as U |= A) iff every model of U is a model A.

Theories

With first-order logic formulas we are able to specify properties for a set of enti-
ties. For instance, we may specify the commutativity of addition as the formula
Va.Vb.equal(+(a,b), +(b,a)) with the function + as the addition operator and
equal as the equality relation.

We may use a set of formulae to partition a specific set of models. If then for
every formula, which also has at least these models, it is also in the set then the
set is called a theory. In other words, the set is closed under logical consequence
for all possible formulae.

Definition 5. A set of formulae U is a theory iff for any formula A if U E A
then A€ U.

For a more detailed description of first-order logic, we would like to refer to
Ben-Ari [§].

14



2.2 Constraints

A constraint is a first-order logic formula which is always interpreted within the
mathematical and logical domain to true or false. We shall consider the domain
with the members B U Z U R U S U user-defined or in words: the boolean, in-
teger number, real number, string and user-defined domains. The user-defined
domain is a special domain which includes types with values defined by a user
as an enumeration. We consider a subset of mathematical, relational, proposi-
tional and string operators. Later in this section we detail which operators we
specifically consider.

Operators are functions and are defined for their respective subset of the
domains. For instance, addition + is defined as a binary operator for two
numbers to a single number and disjunction V is defined for two boolean values
to a boolean value. Constants and (free) variables may have a type. A type in
this context means that the variable or constant has a value which belongs to
one of the domains mentioned in the previous paragraph.

Constraints allow us to write properties in interpreted, widely known do-
mains. We may write the constraint a == 5 given that a is declared as an
integer variable. The constraint has the model o[5 < a]. This is an example of
a constraint with a single model. The constraint a > 100 may have infinitely
many models if a is an unbounded integer, while the constraint a < 0Aa > 0 is
unsatisfiable as there is no number which is both smaller and larger than 0.

Definition 6. A constraint is a first-order logic formula where the interpreta-
tion has domain D as BUZ URU S U user-defined, relations and functions are
defined as defined within the respective domains(+ is addition, — is minus, ==
is equality,...) and constants are always assigned. A constraint is always accom-
panied with the declaration of variables and their types Decl, and the declaration
of enumeration types Declenym

We also define the var(C) function.

Definition 7. Given a set of constraints C, the function var(C) returns the
set of all variables used in any c € C.

Language

With this chapter we will define the constraint language we will consider through-
out this document; including the definition of a STS. While different or broader
definitions may exist, we limit ourselves to the constructs and operators of this
chapter. The constraints we shall consider may be defined using the syntax
elements in tables and We consider values, variables, operators
and types. All variables must be free as we do not consider quantifiers in our
language. The types we consider are integer, real, boolean, string and enumer-
ation. Values have the type depending from which domain the constant symbol
is used. Variables must be declared with a type.

15



Table 2.2: Values/constants syntax elements for defining constraints

Value Semantics Type Syntax example
Integer number Constant number without deci- | Integer 4
mals
Real number Constant number with decimals | Real 4.5
Boolean value Constant true or false value Boolean true
String value Constant sequence of characters | String "abc192”
Enumeration Constant from collection of user- | User-defined Given
defined finite, constant values enum Answer =
Yes|No,  example
value: Yes

Table [2.2]shows which values are possible and how variables are defined. The
type of the variable is given when a variable is defined and after the definition
the variable may be used within any constraints. Enumerations are a special
kind of type. They are a user-defined type with a set of values. These values
are user-given, alphanumerical values with a user-given, alphanumerical type.
In our example table, the enumeration type Answer is defined with two values:
Yes and No. The definitions of enumeration types must be given separately for
the constraints where they are used.

Table 2.3: Variable syntax elements for defining constraints

Value ‘ Semantics

‘ Type

‘ Syntax example

Variable Identifier with a type denoting a | Integer,

possible but unknown value

Real, | Given wvarbalance :

Boolean, String or | Real, example vari-
user-given

able: balance

Table shows how variables may be declared and used. With the example,
we define the variable balance with the Real type outside of any constraint so
we may use the balance variable with any constraint.

Table 2.4: Mathematical operators for defining constraints

Operator | Semantics Unary/Binary | Syntax example
+ Add operator Binary operator | 4 +y

— Subtraction operator | Binary operator | 4 —y

* Multiply operator Binary operator | 6xy

/ Division operator Binary operator | 6/y

- Exponent operator Binary operator | 67y

% Modulo operator Binary operator | 6%2

— Negation operator Unary operator —y

The mathematical operators which we consider are defined in table All
binary mathematical operators, except modulo, are defined for all mathematical
types. The mathematical types are the integer and real type. Negation is defined
for all mathematical types and modulo is defined for the integer type.
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Table 2.5: Propositional operators for defining constraints

Operator | Semantics Unary/Binary | Syntax example
&& And operator Binary operator | true&&y

I Or operator Binary operator | truelly

! Not operator Unary operator | ly

— Implication operator | Binary operator | true — false

The propositional operators which we consider are defined in table All
propositional operators expect their arguments to be of boolean type and the
resulting expression type is boolean. Within this document we shall commonly
write the conjunction operator && also as A and the disjunction operator || also
as V.

Table 2.6: Relational operators for defining constraints

Operator | Semantics Unary/Binary | Syntax example
> Greater than or equals operator | Binary operator | 4 >=y

> Greater than operator Binary operator | 4 >y

< Lesser than or equals operator Binary operator | 6 <=1y

< Lesser than operator Binary operator | 6 <y

== Equals operator Binary operator ==y

= Not equals operator Binary operator | 5! =y

The relational operators which we consider are defined in table The
arguments of the operators must have the same types and the resulting type is
boolean. Also, the ’greater than’, 'greater than or equals’, ’lesser’ and ’lesser
than or equals’ operators are considered the mathematical relational operators.
Their arguments may only be one of the mathematical types. Within this
document we shall commonly write the > operator as >=, and < operator as
<=.

Table 2.7: String operators for defining constraints

Operator | Semantics | Type | Syntax example
++ ‘ Concatenation operator ‘ Binary operator ‘ Yab” + +y

The string operators which we consider are defined in table The argu-
ments must be of type string and the resulting type is also of type string.

Operator precedence

When a constraint such as 4 + 5 % 8.5 == 10 is to be evaluated, there may
be multiple orders in which the operators are evaluated. It might be ((4 4+
5) % 8.5) == 10 or (4 + (5% 8.5)) == 10. By setting the operator precedence,
we remove this ambiguity. Our operator precedence is based on the operator
precedence from the C programming language [2|. Operator precedence we shall
consider from highest priority to least:

1. —(negation)
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2.3 SMT Solver

Satisfiability Module Theories solvers, or SMT solvers, are a class of solvers
dedicated to finding models for first-order logic formulas and also constraints as
defined in chapter [2:2] The semantics of the pre-defined domains are given as a
theory. Each theory is the basis for a decision procedure to find models within
the interpretation domain of the theory such as real numericals and booleans.
The theory defines the semantics we commonly use with these domains such as
the addition operator + which is defined as the sum of two numbers. In other
words, SMT solvers solve first-order logic formulas interpreted as existentially-
closed constraints. The goal of SMT solvers is to find an assignment which
evaluates the formula to true or prove that no such assignment exists.

When we consider constraints for which we use a SMT solver to find a model,
the interpretation is set to the pre-defined domains. Therefore the SMT solver
tries to only find an assignment. We shall use the terms model and assignment
in this context interchangeably.

SMT solvers are a broadening of Satisfiability solvers (SAT solvers). SAT
solvers find models for arbitrary propositional formulas and therefore only use
the semantics for the boolean domain.

2.3.1 Z3

An example of a SMT solver is Z3 [14]. Z3 implements both a Z3-only DSL and
the SMT-LIB standard [7] input languages. The SMT-LIB is a standard for an
input language for SMT solvers; the motivation to design such a standard was
to create standardized benchmarks. The SMT-LIB input language is different
from our constraint language. For example, SMT-LIB uses the Polish notation
and equality in SMT-LIB is checked with the = symbol .

Listing 2.1: Example of Z3 query in SMT-LIB version 2.

(declare-var x (Int))
(declare-var y (Int))

(assert (= (+ x y) 5))
(assert (> x 2))

(check-sat)
(get-model)
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A formula to solve for Z3 is given in listing It specifies two variables x
and y for which it tries to find a model so that all assertions are true. A possible
model Z3 might give for this query is the assignment o[3 < x,2 < y]. The last
two commands check-sat and get-model respectively check the satisfiability
of the formula and return a model for the formula.

2.3.2 Solvability

SMT Solvers are programs implementing an attempt at an incomplete, non-
terminating decision procedure for the satisfiability of first-order logic formulae
extended with constraints. These programs will not terminate or return an
answer for some formulae. In the last case they will return unknown. When
the program is able to return an answer, it will state that the formulae have a
model (with a free variable assignment if applicable) or that some formulae has
no model. SMT solvers return the not satisfiable answer for the latter as it is
able to construct a proof that no model exists.

In general it is impossible to give a decision procedure for the satisfiability of
first-order logic formulae. Unbounded non-linear integer arithmetic is a class of
formulae for which finding a model in general is undecidable |13|. Also proving
the abscence of models for some formulae using certain quantifier patterns is
undecidable [8].

2.3.3 Proving validity with a SMT Solver

We have noted that a SMT solver is able to give three answers:

1. Satisfiable formula with a certain model
2. Unsatisfiable formula

3. Unknown

We can leverage a SMT solver to prove the validity of certain formulas.
As we have stated in chapter [2.1] validity is the absence of models for the
negation of the formula; in other words, the unsatisfiability of the negation of
the formula [8|.

Definition 8. Given some first-order logic formula P, P is valid if - P is
unsatisfiable.

As an example, we shall prove that all numbers which are not zero, are either
smaller or greater than zero. Or, as a universally closed constraint: A = [Vi €
R.4/=0 — i < 0V i > 0]. To show the validity of this formula, we have to
show the absence of falsifying models. A falsifying model is any model so that
the formula is false; in other words, that the negation of the formula is true.
So we ask Z3 to find a model for the formula: —A. If Z3 deems the formula
unsatisfiable, we know that our formula is valid and if Z3 deems it satisfiable
then the model is a counterexample to show for which model the formula is
false. In this case A is valid as Z3 states that the negation of the formula is
unsatisfiable.
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2.4 Symbolic Transition System (STS)

Transition systems (also known as state machines or automata) are one of the
fundamental concepts of formal methods for computer science and as such many
variants exist. Examples of where transition systems are used are ioco analysis
(testing) [26], parsing and grammers (compiler construction) [25] and process
algebra [22]. Our research will look specifically at symbolic transition systems
(STSs).

Description of STS

Unlike other transition systems, a STS considers a number of variables which we
shall call the state variables. These state variables together make up all possible
states. A state in this situation is a value assignment to all state variables.

Like all transition systems, STSs consists of nodes, directed transitions be-
tween nodes and start transitions for individual nodes. Each node corresponds
to a set of possible/reachable states and each transition defines a relation be-
tween states of the origin node to states of the destination node as a relation.
Each transition is guarded by a constraint which we call the guard. Only for
those states in the origin node for which the guard is true, the transition ex-
presses a relation to states in the destination node. In other words, the guard
restricts the reachable states of the origin node to that set of reachable states
for which the transition exists.

The transition describes the relation between states of the origin and desti-
nation node through both the guard and the transition relation. The transition
relation is a constraint which describes the relation between states of the origin
node and the destination node. The guard and transition relation together are
a relation between reachable states in the origin and destination node. Any
reachable state in the origin and destination are related if together they are a
model of both the guard and the transition relation.

Start transitions consist of a single constraint using the state variables to
describe a set of states which is reachable for some node.

We restrict the allowed syntax for constraints to the syntax introduced in
section

Example STS

As an example, we shall elaborate with figure The state variables are {i}
where variable i is of type integer. There is a starting transition entering the
node 7 is even with constraint ¢ == 0. While in the state ¢ is even, there are
2 possible transitions: increment ¢ with 2 and stay in ¢ is even and increment
1 with 1 and go to i is uneven or even. The ' symbol refers to the variable
1 after the transition, while the variable 7 without the ’ operator refers to the
variable before the transition. The definition of the ’ operator is given later
in this section. Both transitions have guards which are valid. The transition
from i is uneven or even to i is even shows how guards are denoted. For this
transition ¢ has to be even (i%2 == 0) and as the relation the assignment to i
in the state stays the same.
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i'==i +1
true
i'==i+1
iis even i is uneven or
even
[ J i % 2 ==
i'==i
true
i'==i+2

Figure 2.1: STS to keep track if number i is even or not.
Guards are above the line, relations below the line for transitions

Definition of STS

While we define the ’ symbol later in this section, we do already need the function
VaTyert before we are able to give our definition of a STS. Briefly, var,c,: gives
all variables followed by the ’ symbol.

Definition 9. Given a set of constraints ¢ € C, the function var,eq.:(C) returns
the set of all variables used in C which are followed by a’ symbol.

With everything so far we give our definition for a ST'S.

Definition 10. A symbolic transition system or STS is
defined by (N,(V,Tv), Tstart: Ty Nfinal):

e A set of nodes N.

o A set of variables V also known as the state variables with a function Ty
which maps each variable v € V to a type.

o A set of starting transitions Tsiqrt where each starting transition tgiqr: €
Tstare is defined as (di,,,.,,Ct.,...) With a destination node d € N and
constraint Cy,, , for which var(Cy,,, ,) CV.

o A set of directed transitions T where a transition t € T is defined as
(01, dy, CIm4 Crelation (Y, Ty, )) where:
— 04 € N 1is the originating node
— dy € N is the destination node
— 9" s the guard constraint for which var(CJ“™) C V UV,

— Qrelation s the relation constraint for which varyeq:(CFEom) = VA
Uar(ctrelation) CVUV

— V; is the set of transition variables for which V; NV = 0 with a
function Ty, which maps each variable v, € V; to a type.

o A set of accepting nodes Nyinai 50 Npinat € N.
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symbol

When the transition relation constraint for a transition is defined, we would
like to refer to both the state variables of the states of the origin node and
the destination node. The constraints of the guard and transition relation may
reference the state variables of the state of the origin node while the transition
relation may also reference variables of the state in the destination node.

To overcome this scoping issue, we introduce the ' symbol. Any variables
followed by ’, reference the state variables of the state in the destination node of
the transition. Any variables not proceeded by ’, reference values of the states
variables of the state in the origin node of the destination.

The constraints of the start transitions may only reference the state variables
of the state of the destination node, so start transitions do not have this scoping
issue. Therefore, we do not introduce the ' symbol for constraints of the start
transitions.

Path

Paths may be taken through the STS by first choosing a start transition ts¢q,¢
and then choosing a number of transitions. After the start transition, any
transition ¢ may be chosen so that o; = d;,,,,. In words, any transition which
originates in the destination of the start transition may be taken. Analogously,
after any transition t;, any transition ¢5 may be chosen so that o, = d,.

Definition 11. A path II through some STS is formed by the finite sequence
tstart,t1,to ., tn where n > 0, torart € Tstart and t; € T. If n>1d;,,,.,
should hold for the pair (tstart, t1) with destination node dy,,,., and origin node
oy, . For any pair (t;,tiy1) dy, = 0y, should hold. We also define:

= Otl

ds s the starting node of I1.

dy, 1is the last node of 1I.

tstare 1S the starting transition of II.

ty is the last transition of II.

A path 11 to node n € N is a path where the last node is n.

A node n is contained in I1 if for any t; either o, =n or di, = n.

Within this document we shall express paths from one node ngsq,; to another
node Ngestination. Lhese paths do not contain a start transition but start with
a transition originating from ngset. The last transition in the path should have
Ngestination &S destination node.

Definition 12. A path I17stert through some STS from Ngiart 10 Ngestination

Ndestination
is formed by the finite sequence ti,ta...,t, where n > 1, t; € T, 04, = Nstart ,
di, = Ndestination and for any pair (t;,ti+1) di, = o4, , should hold. We also
define:

i+1

Nstart 1S the starting node of TI'start

Ndestination

Ndestination S the last node of 17 start

Ndestination

ty is the first transition of II7start

Ndestination

t, is the last transition of I1]'start

Ndestination

A node n is contained in 1) start if for any t; either oy, =n ord;,, =n

Ndestination

The empty sequence of transitions from a node n is also considered a path where
N = Ngtart, M = Ndestination and there are no first and last transitions.
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State

We have noted that a state is an assignment for the state variables for some
node in the STS. Therefore, a state is an assignment for the state variables and
contains a node n € N. We shall use the notation ¢ for a state while we keep
the notation o for some assignment for a first-order logic formula.

Definition 13. A state is an assignment ¢, for all variables v € V' for some
noden € N.

States may become (part of) a model for start transitions or transitions. A
state may be a model for the constraint of a start transition. States in origin
and destination node of some transition may together be a model of the guard
and transition relation of some transition between the origin and destination
node. A state is then reachable in some node n if there is a path to n and we
can find states in each node so they are models for the transitions in between.
We note again that the state ¢, for the origin node assigns values to the variables
not followed by the ’ symbol while the state ¢4 for the destination node assigns
values to the variables followed by the ’ symbol. This is formalised in definition

ra

Definition 14. Given some STS with start transitions Tsiart, we say a state g
is reachable in node d when considering some path II to node d if either:

e there is a start transition tgare € Tstart Where C({ij = Ctstn,rt{
o there exists a S, S0 So,5q = Fvy € Vi, [CLUTC A Cretetion] for the last
transition tiqs¢ of II where o = oy,,., and d = dy,,,, and s, is reachable in

0.

Transition variables

With our definition of a STS we note that the guard and transition relation may
contain variables which are in the set of transition variables. These variables
are used to show relations between state variables using variables which do not
need to be remembered across nodes. As an example, the variable amount in
figure is a transition variable as the state variables only contain the variables
balance and status.

2.5 Strongly Connected Components

Within graph theory strongly connected components [17] is a fundamental con-
cept. A strongly connected component (SCC) within a graph is a set of nodes
where each pair of nodes in the SCC are mutually reachable.

Definition 15. Given some STS with nodes N and transitions T, a strongly
connected component SCC' C N is defined as for all n € SCC there exists a
path 117, from n to all nodes n’ € SCC.

The theoretical value of SCCs is to find the partitions where all nodes which
are mutually reachable are in the same partition. Figure 2.2shows the SCCs for
some graph to show this characteristic visually. Each of the light blue areas are
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a partition of nodes. The light blue arrows show which partition is reachable
from another.

4 )

|

[
(

- -®

Figure 2.2: Overview of strongly connected components for some graph.
Shows the transitions between SCCs.

To find all SCCs for some graph structure, Gabow [17] has created his path-
based strong component algorithm. While we shall use this algorithm with our
approach, we shall not elaborate the procedure within this thesis.

When contracting all nodes of a strongly connected component to a single
node, the result is again a graph. We shall not define a graph formally. It
consists of nodes and transitions between the nodes. There are no guards,
transition relations or starting transitions. The resulting graph is acyclic and
is called the condensation (or quotient graph in some works) of the strongly
connected components [17]. An example of a condensation is the blue graph of

figure

Definition 16. Given some STS with nodes N and transitions T and strongly
connected components SCC', the condensation Qgsrs is a graph with a set of
nodes Ng and a set of transitions Ty. Also:

e for each scc € SCC there is a node ng.c € Ng and there is a function §
which maps any node n € N to a condensation node Nse.. S0 N € scc

o for any transition t € T between nodes o, and d; where §(oy) # §(d;) there
is a transition tgggi; € Ty with origin node 6(oy) and destination node

6(de)

Corollary 1. The condensation Qgrs with nodes Ng 1is acyclic: there is no
path from a node ng.c € Ng to node ng.. except for the empty path.
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2.6 Conclusion

With this chapter we have introduced the basic concepts to prepare the reader
for the following chapters. In chapter [2.I] we have introduced the basic con-
cepts of first-order logic. We have introduced a specific type of first-order logic
formulas as constraints in chapter 2.2] where the domain is set to a number of
known domains such as integer numbers and strings. We have also introduced
SMT solvers in chapters which are able to find models for first-order logic
formulas and constraints. We have used constraints to define symbolic transi-
tion systems (STSs) in chapter Finally we have also introduced strongly
connected components (SCCs) in chapter where we have also defined the
condensation of a STS and cited an algorithm to find the SCCs for a STS.
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Chapter 3

Related Techniques & Tools

In this chapter we will detail related work on the verification of STSs. In chapter
we will explain mathematical induction and how it is used by Donaldson
et. al. [15] to substitute cycles for a single property in control flow graphs;
effectively summarizing the result of any number of cycle iterations into a single
step. In chapter we will show the tool nuXmv [11] which is able to verify
safety properties for the class of infinite state systems using an algorithm named
IC3 [11]. In chapter we will show the tool Z3 which is a SMT-solver but
also a model checker for infinite state systems implementing a synonymous 1C3
strategy as nuXmv named the PDR strategy [19]. In chapter we shall show
the model checker MCMT [4] which is able to verify safety properties for the
class of array-based infinite state systems. We shall also show that it is not
possible to specify arbitrary STSs in the input language of MCMT. Finally, in
chapter we shall show an algorithm which summarizes all reachable states
as one property which is used to verify if some state is reachable.

We shall evaluate for nuXmv, Z3 and MCMT if it is possible to specify arbi-
trary STSs in their input language. We check if the domains for our definition
of constraints (chapter may be used and if the STS structure may be spec-
ified in the input language. We shall see that this isn’t possible for MCMT in
general while it will be possible for nuXmv and Z3. For nuXmv and Z3 we shall
show how it is possible with an example of specifying the bank account example
(figure in the input language of the tools. For MCMT we shall also give
the example of the bank account example specified in MCMT input language
but also detail why it isn’t possible in general.

3.1 Mathematical induction

Mathematical induction is a proof technique with which you can prove properties
inductively by showing a property holds for some base case and showing that
the property is preserved for succeeding cases. Formally the prove obligation is
as follows:

Say we take a range L from [ to co with [ is some integer number and we want
to prove property P(o) holds for any o € L.

e Base case: Prove P(l)
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e Inductive step: For all i € L, show P(i) — P(i+ 1) is valid.

Mathematical induction is sound as we know the base case P(l) holds and
each subsequent use of the statement based on I e.g. P(I+ 1), P(l + 2)... also
holds. More concrete example: Say the base case is 0. We know it holds for 0
and for ¢+ 1. Therefore it must hold for 1 as 041 = 1. Therefore, we also know
it works for 2, 3....

3.1.1 Removing Cycles with Inductive properties

Donaldson et. al. [15] show how induction may be used to prove that some
property holds for any number of cycle iterations for some cycle in control flow
graphs. If a property is proven to be preserved before and after a cycle iteration,
Donaldson et. al. show how the control flow graph may be altered to remove
the cycle while preserving the semantics. To explain we use figure where
we use a STS instead of a control flow graph. This STS contains a single cycle
which is the self loop on node i >= 0

j<=i&&j>0

==

i>=0 > i==

Figure 3.1: STS where i eventually becomes 0. Inductively one can prove
1 >= 0 within and after the cycle.

Guards are above the line, relations below the line for transitions

For the cycle to be removed, we need some property P which will hold before
and after any cycle iterations for node i >= 0. Due to our use of cycle iterations,
range L is L : 0..00 or L = N. The proof obligation using induction over cycle
iterations then changes to:

Given node n exists within a cycle and some integer o € N, we want to prove

property P(o) holds in n for o cycle iterations starting and ending in n. Also

take an integer k where k > 0. T'(0) are the constraints introduced by the oth
cycle iteration.

e Base cases: Show T'(0) — P(0) is valid
e Inductive step: For all o € N, show [P(0) AT(0+ 1)] = P(o+ 1) is valid.
T(0) coincides with the initial state. The initial state are the constraints

valid before any cycle iterations.
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Now, in figure [3.1| we can take i > 0 for property P. To show P holds in
node ¢ >= 0, we use induction over the cycle iterations from and to node i >=
0. First we have to show P holds for the base case P(0) which means P holds
before any cycle iterations. The proof obligation is then:

Base case: Show i == 50 — ¢ > 0 is valid

For our example it is trivial to see the base case holds as ¢ == 50 — ¢ > 0
or 50 > 0 which is always valid.

Now we also have to show P holds for any number of cycle iterations. There-
fore we have to show P(o+ 1) holds given P(0) holds. To show this, we need
some scoping as variable i is referenced before and after the transition. We shall
use a cycle iteration number to identify the variable. i, means variable ¢ in the
oth cycle iteration. Now we have to show:

Inductive case: For all o € N show
[io 2 0N jGo <o Njo>0ANigr1 ==15 — jo|] = totr1 > 0 is valid

Again this statement is valid. The proof is as follows: i, > 0, j, > 0,

Jo <'ip and i,41 == i, — j, must hold or else there is no proof obligation due
to the implication. If i,41 > 0 was not true, we know i, — j, < 0 must hold
as io41 == Ip — Jo. This would mean i, < j,. However, we know j, < i,.

Therefore 7,41 > 0 must hold and the statement is valid.

Using induction over the number of cycle iterations we have now shown that
P is always true in node ¢ >= 0.

Donaldson et. al. show in their work that the cycle may be substituted by a
structure which represents the proof obligations which show P is valid in node 1
>= (. As we do not use the replacement structure as introduced by Donaldson
et. al, we shall not show this structure.

3.1.2 Completeness

Not all possible loop invariants may be proven through induction. For example,
take for the initial state T'(0) : ¢ > 0, the transition T(0) : ¢/ == i * igps A
abs(i.iqps) where abs(i,iqps) is the absolute relation that i.ps is the absolute
number of ¢ and for P : i > —10. Our proof obligations become:

e Base case: Show i > 0 — ¢ > —10 is valid

e Inductive step: For all o € N, show [i, > —10 Adpp1 == o * gbs,0 A
abs(io, iabs,0)] = tor1 > —10 is valid.

The base case is valid as 0 > —10. The inductive step, however, is not valid.
A counterexample is i, == —9, iqps,0 == 9 and 7,41 == —81 as the inductive
step then instantiates to:

o [-9>—10A—81 == —9%9 A abs(—9,9)] — —81 > —10

o [true A true A true] — false

true — false

false
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An inductive property for this example is ¢ > 0 (we leave the proof to the
reader). ¢ > 0 implies ¢ > —10 and therefore the property ¢ > —10 holds but is
not inductive.

3.1.3 k-Induction

k-Induction is an extension to mathematical induction. Instead of solving for
a single base case, with k-induction you prove k base cases. For the inductive
step you may then assume k cases hold and show that the property still holds
after k+ 1 steps. We shall reference this extension but not further explain it. k-
induction may prove more properties than traditional mathematical induction.
An example is shown by Wahl [27].

3.1.4 Relation to our Work

We could use mathematical induction for our approach. It allows us to (over-
approximately) summarize cycles as a single property for unbounded variables
and verify if that invariant is indeed correct. There are, however, a number of
considerations:

e Mathematical induction needs a property P for each cycle in the STS.

e Only inductive properties may be proven with this technique. There exist
properties which cannot be proven with mathematical induction.

We shall show in chapter [4 how we will manage these considerations with
our approach.

3.2 nuXmv

nuXmv [11] is a symbolic model checker based on the popular NuSMV [10]. The
name of the tool and the input language used is similar as with NuSMV but the
techniques used by nuXmv are significantly different from any of the techniques
employed by NuSMV. NuSMV can only check specifications with a finite state
space while nuXmv is able to also check an infinite state space with unbounded
variables. The reason nuXmv is able to check an infinite state space is due to
the procedures employed and the use of a SMT solver over a SAT solver.

3.2.1 1IC3

nuXmv contains a suite of techniques to check safety properties or LTL specifi-
cations. The latest is a technique based on IC3 [11]. The goal of IC3 is to show
that a property, called the goal property, is invariant or valid within the system.
We also refer to this goal property as the safety property. If the goal property
is not valid within the system, IC3 finds a counterexample. IC3 is an algorithm
which uses symbolic over-approximations of each set of states reachable by a
number of steps in the specification represented by a first-order logic formula.
IC3 uses one formula to express the state reachable after all paths of a certain
length n and this formula is called the frame for n steps. The idea is to find
all frames and to show the frames imply the goal property. If two frames are

29



identical they are merged and considered a fixpoint which do not need further
analysis. The relation between two subsequent frames is implication as a frame
implies the next frame given all possible transitions.

IC3 also has two refinement steps. With the first refinement step, the al-
gorithm refines all frames with information about the (negation of the) goal
property while still preserving the soundness of the frame. If this strengthening
succeeds, the negation of the goal property is included in the frames making
counterexamples of the goal property impossible.

The second refinement step is done when a counterexample is found. There
is a frame which results in the counterexample after one transition. The frames
leading up to this frame are strengthened, if possible, with information about the
(negation of the) counterexample to make the counterexample unreachable. The
strengthening is again checked if the new frame is still a sound approximation
of the set of the states.

IC3 terminates when a correct counterexample of the goal property is found
or when there is no new frame possible and all of the frames imply the goal

property.

3.2.2 (Symbolic) Bounded Model Checking

nuXmv also has a bounded model checking 9] strategy using various algorithms
including an interpolation-based algorithm [21]. The idea of bounded model
checking is to find all reachable states within a bounded maximum path length.
Any properties to be verified are verified using this partial state space. A prop-
erty is said to hold if the property is valid for all states in the partial state space.
While it is not exhaustive, in practice it is used to find most bugs [9].

The symbolic bounded model checking strategy [9] is a technique where
sets of possible states are represented using (approximated) first-order logic
formulas and transitions are modelled between these symbolic representations.
IC3 is such a symbolic model checking strategy. In some cases, such as IC3, the
procedure is exhaustive.

Unfortunately we have not been able to find publications of the exact
bounded model checking strategies employed by nuXmv except for IC3. We
approached the authors of nuXmv for any publications but unfortunately they
haven’t given us any references.

3.2.3 Induction over Paths

nuXmv also has a model checking method which uses mathematical induction
over the length of the paths. The goal of this technique is to prove or disprove
that a goal property is invariant or valid within the system. It checks for each
transition if it reaches a state where the goal property may be false assuming
the goal property is valid before the transition.

3.2.4 nuXmv Input language

An example of the input language for nuXmv may be seen in listing Any
specification must start with the definition of the module name. Next all vari-
ables must be defined. In our example, we included the VARiables for the current
state, actions, current deposit/withdrawal amount and the account balance.
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The starting transitions are specified with the keyword INIT. Leaving transi-
tions for a single node are specified with a single transition formula with the
TRANS keyword. Finally, safety properties to be verified may be defined with
the INVARSPEC keyword.

Listing 3.1: Example of nuXmv specification for a simple bankaccount which
can open/close/freeze and deposit/withdraw money.

MODULE main

VAR node : { open,frozen };

VAR balance : real;

VAR status : { OPEN,CLOSED,FROZEN };
VAR amount_withdrawal_t : real;

VAR amount_deposit_t : real;

INIT ((node = open) & ((balance = 50) & (status = OPEN)));

-- Transitions withdrawal, deposit and freeze
TRANS (node = open —> ((
-- Withdraw transition
(amount_withdrawal_t > 0) & (amount_withdrawal_t <= balance)
& (next(balance) = (balance - amount_withdrawal_t)
& (next(status) = OPEN)) & (next(node) = open))
-- Deposit transition
| (amount_deposit_t > 0) & ((next(balance) = (amount_deposit_t + balance)
& (next(status) = OPEN)) & (next(node) = open))
-—- Freeze transition
| (status = OPEN) & ((next(balance) = balance) & (next(status) = FROZEN)
& (next(node) = frozen))));

-— Transitions unfreeze
TRANS (node = frozen -> ((
-— Freeze transition
(status = FROZEN) & ((next(balance) = balance)
& (next(status) = OPEN)) & (next(node) = open))));

INVARSPEC (balance < 10000);

3.2.5 Specifying STSs in nuXmv

It is possible to specify arbitrary STSs in nuXmv. With this subsection we shall
show one method of how to use specify an arbitrary STS in the input language
of nuXmv. Listing shows the complete template with pseudo code on how
to specify a STS in nuXmv. The following paragraphs explain the complete
template part by part.

On lines 3 to 6 (listing we define a variable node which is an enumeration
and the values are the labels of each node in order to specify the nodes of the
STS.
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VAR node : { [foreach node]
node.label [node isNotLast] , [end isNotLast]
[end foreachl]

};

Listing 3.2: Pseudo code on how to specify the nodes of an STS in nuXmv
input language.

On lines 8 to 10 (listing we define all state variables as VAR.

[foreach state variable as var]
VAR var.label : var.type;
[end foreachl]

Listing 3.3: Pseudo code on how to specify the state variables of an STS in
nuXmv input language.

On lines 12 to 14 (listing[3.4) we also define all transition variables as VAR and
the label is the combination of the transition variable label and the transition
label. nuXmv only has global variables similar to STS state variables. Therefore,
transition variables have to be declared as a VAR.

[foreach transition variable as var]
VAR var.label_var.transition.label_t : var.type;
[end foreachl]

Listing 3.4: Pseudo code on how to specify the transition variables of an STS
in nuXmv input language.

On lines 16 to 20 (listing we define all start transitions as a single INIT.
When multiple INIT properties are defined, they are combined as a conjuction.
For a STS with multiple start transitions, one start transition may be chosen as
the starting point. Therefore, we combine all start transitions as a disjunction
for a single INIT. We also include the destination node of the start transition
as a conjunction to each start transition.

INIT [foreach start transition as trans]
( (node = trans.destination)
& trans.relation
) [trans isNotLast] | [end isNotLast]
[end foreach];

Listing 3.5: Pseudo code on how to specify the start transitions of an STS in
nuXmv input language.

On lines 22 to 28 (listing we define a TRANS for all transitions leaving
some node. We imply the current state is from that origin node and one of the
transitions leaving that node must be true. Therefore, we combine the guards
and the relations of each leaving transition as a disjunction.
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[foreach node as n]
TRANS (node = n.label -> (
[foreach n.leaving_transitions as trans]
(trans.guard) & (trans.relation) |
[end foreach]
));

[end foreachl]

Listing 3.6: Pseudo code on how to specify the transitions of an STS in
nuXmv input language.

Finally, on lines 31 to 33 (listing we define the safety property as a
INVARSPEC which is a property to be checked globally for all reachable states.

[foreach safety property as prop]
INVARSPEC (prop);
[end foreach]

Listing 3.7: Pseudo code on how to specify the safety property for an STS in
nuXmv input language.

The complete listing of the previous paragraphs is shown in listing of
appendix [D]

nuXmv uses the next (<var name>) function to reference the value of the
next state. For the relation of the transitions, we map each variable referencing
the state in the destination node to use this next function with the variable
label as the argument.

3.2.6 Instrumenting nuXmv

Instrumenting nuXmv is not straightforward as the tool allows for a great deal
of techniques and checks. We have instrumented nuXmv with the commands
in listings and First we start the nuXmv program. Then we call
go_msat to parse the specification. Finally the respective call to start some
algorithm is done.

Listing 3.8: Instrumenting nuXmv to check safety property of specification
using IC3

nuxmv -int Account.smv
go_msat
check_invar_ic3 -i

Listing 3.9: Instrumenting nuXmv to check safety property of specification
using mathematical induction

nuxmv -int Account.smv
go_msat
msat_check_invar_bmc -a classic
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Listing 3.10: Instrumenting nuXmv to check safety property of specification
using interpolant bounded model checking

nuxmv -int Account.smv
go_msat
msat_check_invar_bmc -a interpolants

3.2.7 Verifying Cycles with IC3

nuXmv may use IC3 to discover the state space and find counterexamples or
it proves that safety properties are (in)valid. In our example listing we
have included a safety property that the balance has to remain below 100000
while we are only able to deposit a maximum of 50 per deposit. Trying to
check this safety property is difficult for nuXmv due to the nature of the safety
property and the deposit cycle. Every iteration of the deposit cycle leads to a
new state and this cycle can only be unwinded until a counterexample is found
or a property is found which holds before and after any cycle iteration. 1C3
tries to discover new states incrementally and the counterexample can only be
found by unwinding the cycle until a balance greater than 100000 is found. As
we limited the deposit to a maximum of 50 per deposit, it will take a minimum
of 2000 cycle iterations. These types of safety properties forcing the cycles to
unwind are important for ING and should be solved in reasonable time.

3.2.8 Verifying Cycles with Mathematical Induction

nuXmv may use mathematical induction to verify a safety property for some
cycle. With mathematical induction, it may be necessary that the safety prop-
erty is strong enough to show any relations between variables. As an exam-
ple, we take the nuXmv specification of listing [3.11] The specification de-
scribes a single node system with a single self loop where variable i is incre-
mented by variable 0 < j < 50. The safety property i >= 0 is true, but
with mathematical induction nuXmv is not able to verify this property. When
mathematical induction tries to verify this safety property, it assumes i >= 0
before the transition. Now variable j is unbounded and the counterexample
i=0&j=-1&mnext(i) = -1 & next(j) = 1 is given. The safety prop-
erty describes nothing about variable j and as such, mathematical induction
has to assume j is unbounded which leads to the spurious counterexample.

This is also an example that it is hard to reason if a counterexample given
by mathematical induction is an actual counterexample or just the failing of
mathematical induction to prove some property. The given counterexample
by nuXmv is a spurious counterexample as know the state with j «+ —1 is
impossible to reach as j > 0 is globally valid. We can therefore not trust any
counterexamples given by mathematical induction as a correct counterexample
as we first have to verify if the counterexample is reachable.

Listing 3.11: Example of nuXmv specification where the safety property is not
strong enough to prove or disprove it.
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MODULE main

VAR i : integer;

VAR j integer;
INIT i = O;
INIT j = 50;
TRANS
case
TRUE : next(i) = i + j & next(j) > 0 & next(j) < 50;
esac;

INVARSPEC i >= 0;

3.2.9 Feasibility of verifying STS with nuXmyv

nuXmv is able to check safety properties of a STS. However, there are a couple
of issues:

3.3

Support and development for nuXmv seems to be minimal. We sought
contact with the authors and creators of nuXmv and they noted a new
version of nuXmv is planned but they have no timeline on when they will
create or release it.

nuXmv uses the definition of an infinite state system with a single transi-
tion function losing the structure of the STS in the process. This makes
it hard to reason about cycles in specifications. This leads to performance
issues when discovering this structure such as the difficulty in proving the
invariant of listing [3.1] with IC3. We confirmed this with an experiment
which we detail in chapter 5.5

nuXmv currently does not support non-linear arithmetic constraints [11].

The results from nuXmv found with the bounded model checking strategy
may not be exhaustive.

nuXmv may use mathematical induction but we need extra verification
to check if a counterexample is spurious. Also, mathematical induction
depends on the properties it needs to verify to understand the relations
between variables. The proof technique may fail with spurious counterex-
amples when the properties are not strong enough or when the proof
technique is not strong enough to prove the property.

nuXmv does not allow variables of the string domain

73

73 is a multi-purpose formal methods tool developed by Microsoft [14]. We have

descri

bed in chapter already how Z3 may be used as a SMT-solver. In this
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chapter we shall describe the Property-Directed Reachability (PDR) engine of
Z3 created by Hoder and Bjorner [19]. PDR may be used to check if some
state is reachable within the class of infinite state systems. PDR is a synonym
for the algorithm IC3 [19] which is also implemented in nuXmv (chapter
although the input language used by Z3 is different. With this chapter we shall
show the Z3 PDR input language, how to instrument Z3 and any considerations
when using Z3 with the PDR engine to verify properties of arbritary STSs. A
more detailed look at IC3/PDR is in chapter While nuXmv with IC3
has not implemented non-linear arithmetic, Hoder and Bjorner have included
non-linear arithmetic operators |19].

3.3.1 Z3 PDR Input Language

The input language for the PDR engine of Z3 is extended SMT-LIB. As with
the Z3 SMT input language it uses prefix notation although the function and
keywords are different. An example of a simple bank account STS is shown
as listing [3.12] where we check if some safety property is violated. The main
concept behind the input language is relational: we define relations and show
which members are contained in the relations using rules to define assertions
which constrain which members are in the relations. Relations in this context
are the relations from relational logic.

We defined the enumeration status as a non-algebraic datatype on line 1.
We have also defined the possible nodes as a non-algebraic datatype on line 3.

We defined the relations consisting of all reachable states and all reachable
states violating our safety property as respectively the relation states and
faulty_states on lines 6 and 8. In the specification we will define rules to
show which values (of the state variables) are in the relations.

We defined the state and transition variables between lines 10 to 17 with the
declare-var keyword. For each state variable we define a variable representing
the current value and a variable representing the next value. Each transition
variable is given a label starting with the variable name, the transition label
and the postfix _t to know it is a transition variable.

With our example we are verifying if there is a state reachable which falsi-
fies the safety property defined lines 75 to 78. Constraints such as the safety
property may be defined as functions with some property using the keyword
define-func. The function returns a boolean depending on if the property
may be evaluated to true or false.

All transitions are also defined as functions with the keyword define-func.
We joined a check if the current node is the origin node, the guard, the transition
relation and the next node as the destination node as a conjunction. These
properties show the relation between the states of each node.

The start transition is single function with the disjunctive combination of all
start transition relations. We have defined the start transition for our example
on lines 19 to 23 as the initial function.

Finally we also have to show which members are contained by the states
and faulty_states relations. This is defined with rules 80 to 105. We add
a rule that shows all states from the start transitions should be in the states
relation on line 81. The rule on lines 85 to 92 shows the rule that for any state
in states and any next state which satisfies some transition, the next state
should also be in states. These two rules together are similar to the recursive
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definition [14] of reachable state in chapter As we are checking for a safety
property, we also have to check for each reachable states in states if it falsifies
the safety property. This is done with the rule on lines 97 to 105 and any states
which violate the safety property should be in faulty_states.

With this definition we can query Z3 for all members of faulty_states
This is done on line 109. If the relation is empty, the specification does not
violate the safety property. Otherwise, the relation contains counterexamples
for the safety property.

Listing 3.12: Example of Z3 PDR specification for a simple bank account
which can open/close/freeze and deposit/withdraw money.

(declare-datatypes () ((status OPEN CLOSED FROZEN)))
(declare-datatypes () ((Node open frozen)))

; The collection of reachable, faulty states
(declare-rel faulty_states (Node Real status))
; The collection of reachable states
(declare-rel states (Node Real status))

(declare-var next_node (Node))
(declare-var node (Node))

(declare-var balance (Real))
(declare-var next_balance (Real))
(declare-var status (status))
(declare-var next_status (status))
(declare-var amount_withdrawal_t (Real))
(declare-var amount_deposit_t (Real))

(define-fun initial () Bool
(or
(and (= node open) (and (= balance 50) (= status OPEN)))
)

; unfreeze transition
(define-fun unfreeze () Bool
(and
(= node frozen)
(= next_node open)
(= status FROZEN)
(and (= next_balance balance) (= next_status OPEN))

; freeze transition
(define-fun freeze () Bool
(and
(= node open)
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(= next_node frozen)
(= status OPEN)
(and (= next_balance balance) (= next_status FROZEN))

; deposit transition
(define-fun deposit () Bool
(and
(= node open)
(= next_node open)
(> amount_deposit_t 0)
(and (= next_balance (+ amount_deposit_t balance)) (= next_status OPEN))

)

; withdrawal transition
(define-fun withdrawal () Bool
(and
(= node open)
(= next_node open)
(and (> amount_withdrawal_t 0) (<= amount_withdrawal_t balance))
(and (= next_balance (- balance amount_withdrawal_t)) (= next_status OPEN))

; Any of the following transitions
(define-fun transition () Bool
(or
withdrawal
deposit
freeze
unfreeze

; safety property
(define-fun invariant () Bool
(< balance 10000)

; Any state satisfying the initial function is a reachable state
(rule (=> initial (states node balance status)))

; For any origin state in reachable states, any destination state
; that satisfies any transition is in reachable states
(rule
(=>
(and
(states node balance status)
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transition

)

(states next_node next_balance next_status)

; Any reachable state that counters the safety property
; is a faulty state
(rule
(=>
(and
(states node balance status)
(not invariant)
)

(faulty_states node balance status)

)

; Ask for all faulty states
; Should be empty if safety property is preserved
(query faulty_states)

3.3.2 Specifying STSs in Z3 PDR

It is possible to specify arbitrary STSs in Z3 with the PDR strategy. With this
subsection we shall show one method of how to use specify an arbitrary STS in
the input language of Z3 PDR. Listing [D.2] shows the complete template with
pseudo code on how to specify a STS in Z3. The following paragraphs explain
the complete template part by part.

On lines 1 to 5 (listing we define an enumeration Node where the values
are the labels of the nodes in the STS.

(declare-datatypes () ((Node
[foreach node as node]
node.label
[end foreachl]

)

Listing 3.13: Pseudo code on how to specify the nodes of an STS in Z3 PDR
input language.

On lines 7 to 9 (listing [3.14) we define the possible enumerations and the
values of the enumeration as a separate type.

[foreach enumeration as enum]
(declare-datatypes () ((enum.label enum.values)))
[end foreach]

Listing 3.14: Pseudo code on how to specify the enumerations of an STS in Z3
PDR input language.

39



11

12

13

14

16

17

18

19

20

21

22

24

25

27

28

29

30

33

34

35

On lines 11 to 22 (listing we declare the states and faulty_states
relations and the types of the state variables as their arguments. These relations
now contain members of the type tuple and each of the members of the tuple
coincide with the type of a state variable. We use these relations to respectively
represent the reachable state and the reachable state which violates the safety
property.

; The collection of reachable, faulty states

(declare-rel faulty_states (Node

[foreach state variable as var]
var.type

[end foreachl]

)

; The collection of reachable states

(declare-rel states (Node

[foreach state variable as varl]
var.type

[end foreach]

))

Listing 3.15: Pseudo code on how to specify the reachable and faulty states of
an STS in Z3 PDR input language.

On lines 24 and 25 (listing [3.16)) we define the variables node and next_node
which represent the origin and destination node of the transition being taken.

(declare-var node (Node))
(declare-var next_node (Node))

Listing 3.16: Pseudo code on how to specify the variables containing the
current and next node of an STS in Z3 PDR input language.

On lines 27 to 30 (listing[3.17)) we define for each state variable two variables;
a variable representing the current value of the state and a variable representing
the next value of the state.

[foreach state variable as var]
(declare-var var.label (var.type))
(declare-var next_var.label (var.type))

[end foreach]

Listing 3.17: Pseudo code on how to specify the state variables of an STS in
73 PDR input language.

On lines 33 and 35 (listing [3.18)) we define each transition variable also as a
global variable. The name of this variable is the combination of the transition
variable label and the transition label.

[foreach transition variable as var]
(declare-var var.label_var.transition.label_t (var.type))
[end foreach
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Listing 3.18: Pseudo code on how to specify the transition variables of an STS
in Z3 PDR input language.

On lines 38 to 44 (listing[3.19)) we define the initial function which is a dis-
junction of the relations of all start transitions. We also include the destination
node as a conjunction with each of the relations.

(define-fun initial () Bool
(or
[foreach start transition as trans]
(and (= node trans.destination) (trans.relation))
[end foreachl]

Listing 3.19: Pseudo code on how to specify the start transitions of an STS in
Z3 PDR input language.

On lines 46 to 55 (listing [3.20) we define each transition. We combine the
destination node, guard, relation and destination node as a conjunction.

[foreach transition as trans]
(define-fun trans.label () Bool
(and
(= node trans.origin)
(= next_node trans.destination)
(trans.guard)
(trans.relation)

)

[end foreachl]

Listing 3.20: Pseudo code on how to specify the transitions of an STS in Z3
PDR input language.

On lines 58 to 64 (listing[3.21]) we define a function transition which is the
disjunction of all transition functions.

(define-fun transition () Bool
(or
[foreach transition as trans]
trans.label
[end foreachl]

Listing 3.21: Pseudo code on how to specify a function containing all
transitions of an STS in Z3 PDR input language.

On lines 66 to 72 (listing [3.22)) we define the safety_property function as
the conjunction of all safety properties.
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(define-fun safety_property () Bool
(and
[foreach safety property as prop]
prop
[end foreach]

Listing 3.22: Pseudo code on how to specify a the safety property for an STS
in Z3 PDR input language.

On lines 75 to 79 (listing[3.23]) we define a rule stating that each state which
evaluates the initial function as true, should be in the states relation.

(rule (=> initial (states node

[foreach state variable as varl
var.label

[end foreachl]

)

Listing 3.23: Pseudo code on how to specify what states are reachable states
due to a start transition in Z3 PDR input language.

On lines 83 to 99 (listing|3.24) we define a rule stating that for each state in
states and some next state which evaluates at least one transition function as
true that the next state should also be in states.

(rule
(=>
(and
(states node
[foreach state variable as var]
var.label
[end foreachl]
)
transition
)
(states next_node
[foreach state variable as var]
next_var.label
[end foreach]

Listing 3.24: Pseudo code on how to specify what states are reachable states
due to a path to that state in Z3 PDR input language.

On lines 103 to 119 (listing [3.25]) we define that each state in states which
falsifies the safety_property must also be in faulty_states.
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(rule
(=>
(and
(states node
[foreach state variable as var]
var.label
[end foreachl]
)
(not safety_property)
)
(faulty_states node
[foreach state variable as var]
var.label
[end foreach]

Listing 3.25: Pseudo code on how to specify what reachable states are faulty
in Z3 PDR input language.

Finally on line 123 (listing[3.26)) we query the members of the faulty_states
relation. This relation contains counterexamples for the safety property which
are reachable.

(query faulty_states)

Listing 3.26: Pseudo code on how to query the faulty states in Z3 PDR input
language.

The complete listing of the previous paragraphs is shown in listing of
appendix [D]

3.3.3 Instrumenting Z3

Instrumenting Z3 as a SMT-solver or using the PDR strategy is straightforward.
After defining the SMT or PDR specification, one may just call Z3 with the
specification as in listing [3.27] Z3 figures out which strategy to use based on
the specification used.

Listing 3.27: Instrumenting Z3 to check a safety property for the bank account
specification using the PDR strategy

z3 BankAccount.smt2

3.3.4 Feasibility of Verifying STS with Z3

73 with PDR uses the same algorithm as nuXmv and therefore shares the same
considerations. The input language, however, is fundamentally different and 73
has support for non-linear arithmetic. With our example in listing [3.12 we have
shown how to check for safety properties. Considerations:
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e 73 uses the definition of an infinite state system with a number of rules
losing the structure of the STS in the process. This leads to performance
issues when discovering this structure such as the difficulty in proving the
safety property of [3.12] with PDR. We confirmed this with an experiment
which we detail in chapter [5.5]

e Any members of the faulty_states relation only show the direct values
which violate the safety property. We are unable to show a path from
some starting transition to the violating reachable state.

3.4 Model Checker Modulo Theories (MCMT)

Model Checker Modulo Theories (MCMT) [4] |18] is a symbolic model checker [9]
for array-based infinite state systems. The core of the checker uses array logic
theories to solve first-order logic formulas involving arrays. The state systems
which are checked are a variation of our definition of STS. The main difference is
that the state vector is represented as a vector of (in)finite arrays. An example
of our simple account specification written in the MCMT input language can
be seen in listing [3.28

3.4.1 MCMT language

The MCMT input language is low-level. For instance, it does not implement
subtraction directly. The scalar —1 together with the addition operator must
be used to for subtraction. Any variables have to be declared using
:local name type or :global name type which respectively means an array
name where each element is of type type and an array where each element has
the same value. The :global array is used when you need a variable with a
single value such as a real or integer. In our example listing, we only used
:global arrays as we only needed variables with single values and no arrays.
The initial state is given as a single property as the block starting with
the :initial keyword. Some safety property may be specified as a property
starting with the :unsafe keyword. Transitions are blocks starting with the
:transition keyword. For each transition there is a guard property. If the
guard evaluates to true, then the :val statements are evalated. These state-
ments may be read as next(v;) = some value; in other words, they are direct
value assignments for the variables of the next state. The :val statements refer-
ence the variables in the order in which they are defined. The first : val updates
the value of the first variable defined and so on.

Listing 3.28: Example of MCMT specification for a bank account which can
open/close/freeze and deposit/withdraw money.

:comment current state. l=open 2=frozen
:global node int

:comment balance of the account
:global balance real

:comment amount of next deposit
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:global amount_deposit real

:initial
ivar x
:cnj (= balance 50) (= node 1) (> amount_deposit 0) (> amount_withdrawal 0)

:unsafe
rvar x
:cnj (> balance 10000)

:comment 1 deposit
:transition

:var j

:guard (= node 1) (> amount_deposit 0) (< amount_deposit 51)
:numcases 1

:case

:val 1

:val (+ balance amount_deposit)
:val 1

:val 1

:comment 2 withdraw
:transition

rvar j

:guard (= node 1) (<= amount_withdrawal balance) (< amount_withdrawal 51)
:numcases 1
:case

tval 1

:val (+ balance (* -1 amount_withdrawal))
:val 1
:val 1

:comment 3 freeze
:transition

ivar j

:guard (= node 1)
:numcases 1

:case

:val 2

:val balance

:val 1

:val 1

:comment 4 unfreeze
:transition

:var j

:guard (= node 2)

:comment amount of next withdrawal
:global amount_withdrawal real
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:numcases 1
:case
:val 1
:val balance
:val 1
tval 1

3.4.2 Backwards reachability

MCMT [4] uses backwards reachability analysis in a bounded model checking
manner with inductive invariant generation as its core algorithm. Backwards
reachability [9] is a technique used in bounded model checking. The procedure
starts at the error state and tries to exhaustively find a path to a state which
is reachable by the state system. If such a path is found it is an example that
the error state may be reached. If such a path cannot be found, the system
is deemed safe. In infinite state systems this exhaustive approach might not
terminate as possible paths might be infinite. One way MCMT tries to solve
this non-termination issue is to check for fix points. If the new state is the same
as the previous state using a certain transition, there is no reason to search
further as the next state for this transition is again the same.

Another way to solve the non-termination issue is to find a proof that the
system is safe. MCMT employs the use of complex algorithms [4] called lazy
abstraction, acceleration and term abstraction to calculate properties which
symbolically represent (part of) the state space. These properties might be
over-approximations. The algorithms were too complex to study in detail within
the time limit of our project. Using the symbolic over-approximations, MCMT
checks if they imply that the system is safe. If a counterexample is found, it is
checked if this counterexample is a possible path within the state system. If it
is not a correct counterexample, this information is used to refine the symbolic
properties.

Finding a reachable path from the error state to the reachable state or finding
a set of properties which describe the state system is bounded. MCMT stops
execution when a path reaches a configurable maximum length or a property
with a set maximum length.

3.4.3 Instrumenting MCMT

We have tried to use MCMT to verify the example in listing with the
specified unsafe property. The commands we have tried:

e mcmt Account.memt
e mcmt -AN Account.mecmt

mecmt -CN Account.mecmt

memt -Z Account.memt

mecmt -CN -Z Account.memt
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The AN, CN, Z respectively enable lazy abstraction and refinement, another
variant of lazy abstract and refinement and acceleration. In all cases the execu-
tion was prematurely ended due to bounds reached. The system in our example
should be deemed safe.

3.4.4 Yices & SAFARI

MCMT depends on the SMT solver Yices 1.0 [16]. Yices 1.0 does not work
for non-linear integer or real arithmetic with multiple variables. We are unable
to say if MCMT will function for non-linear arithmetic if Yices 1.0 is swapped
for another SMT solver which does support non-linear arithmetic; this would
require MCMT to be modified.

MCMT is reimplemented as the SAFARI [3] model checker although one of
the authors (F. Alberti) has made clear all changes have also been integrated
in MCMT which makes them practically equal. Alberti made this statement
after a request for an executable for SAFARI as the website for SAFARI does
not host an executable to be downloaded.

3.4.5 Feasibility of verifying STS

For this checker it is not possible to specify arbritary STSs. The input language
has two limitations which we would need in order to specify a STS:

e [t is not possible to reference the value of state variable before and after
the transition. It is only possible to reference the value of the current
variable.

e Specifying the value of a variable after the transition is with direct assign-
ment; some computation that results in a value for the type of the variable
such as 4 4+ 5 which would return an integer.

Due to these limitations, it is impossible to directly map STS transitions to
transitions in the MCMT input language. For instance, within the context of our
example of listing [3.28]it is impossible to specify the relation amount_deposit’ >
0 as a direct direct assignment. We had to set the next value of amount_deposit
as some value (in this case we set it to 1).

To conclude, we also note these other issues:

e Support and development for MCMT and SAFARI appears minimal with
the last publication in 2014 and the last release on the 2nd of February
2017.

e Bounded model checking is not definitive or exhaustive in practice.
MCMT is unable to prove our example safe.

e MCMT does not allow non-linear arithmetic.

e Variables in MCMT may not have the string type.
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3.5 Reachability Analysis of STS

Bakker [6] shows a method of analysing all reachable states for a STS specifi-
cation by joining the constraints on each transition as a conjunction for some
path. This creates a single property (similar to our reachable state constraint
from chapter 4)) which symbolizes all reachable states for the destination node
resultant from the path.

Then, for each property, Bakker’s algorithm uses a proprietary constraint
language called Dumont to manipulate and solve constraints to see if a model
exists so a state in the destination node is reachable. To solve constraints the
constraint program is translated to a Prolog program and executed with a Prolog
interpreter. This is also called Constraint Logic Programming or CLP [6].

As this is a method to show if some state is reachable, Bakker uses it to find
counterexamples for some safety property. If the method doesn’t find a coun-
terexample, the system is deemed to not violate the safety property. Bakker
exhaustively explores the state space to find all states reachable after an (op-
tional) maximum path length; similar to bounded model checking. However,
Bakker does not seem to deal with infinite cycles which could cause an infinite
execution. From this point of view, Bakker’s method is theoretically exhaustive
if there is no maximum path length but in practice the tool might have a long
execution time with specifications such as the example of chapter [3.2.7]

3.6 Conclusion

For our related work we looked at a number of existing verification techniques
and tools to see how suitable they are for our case. We found that:

e Mathematical Induction - Mathematical induction is a proof technique
which may be used to show some property holds for a node in a cycle. We
could use mathematical induction as part of our approach considering that
mathematical induction is not complete and we will have to propose the
property to be proven.

e nuXmv - nuXmv shows promise as it is an existing tool to verify safety
properties for STS specifications using various strategies. However, the
tool does not accept non-linear arithmetic constraints. Also, the IC3
strategy theoretically might exhibit long execution times when proving
properties in STSs containing cycles, the backwards reachability strategy
isn’t exhaustive and the mathematical induction strategy is difficult to use
as we may need to supply properties stronger than the ones we want to
verify.

e 7Z3 - Z3 with the PDR strategy is very promising. We have shown an
example of how to verify safety properties for arbritary STS specifications.
The PDR strategy is the same as the IC3 strategy from nuXmv. As with
IC3, PDR may exhibit long execution times when proving properties in
STSs containing cycles. Z3 has already support for non-linear arithmetic
with its PDR strategy.

e MCMT - MCMT is an existing tool designed for specifications with arrays
but can be leveraged for symbolic transition systems. Unfortunately it
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isn’t possible to specify arbitrary STSs in MCMT input language and
MCMT does not support non-linear arithmetic.

Reachability analysis of STS - Bakker’s work gives a way to reason
about the reachability within a STS. It reasons if there exists a path upto
some maximum length which reaches some state. We have shown that a
STS may contain an infinite path. Therefore, when no maximum length
is supplied, the algorithm may execute infinitely. If a maximum length is
supplied it will terminate inevitably but is non-exhaustive.
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Chapter 4

Goose

With this chapter we introduce our approach to verifying properties for a Sym-
bolic Transition System (STS) specification. We named this verification pro-
cedure Goose. Chapter [41] gives an overview of the procedure. We will use
constraints called reachable state constraints (RSC) to symbolically summarize
which states are reachable per node. The procedure consists of three parts in
two phases. The first phase consists of the parts to generate and verify the RSCs
and is described in chapter The second phase and final part is described
in chapter [£.3] and introduces which verification properties we shall verify with
our approach and how we may verify them using the RSCs.

We will show in chapter how we rename the variable names of any
constraints within a STS to avoid variable name clashes so the Goose verification
procedure may be performed. In the rest of this chapter we shall assume the first
scoping strategy has already been performed which distinguishes any variables
in constraints to the state variables of the node it is referencing. Any variable
name in a RSC, guard or relation is replaced by the variable name joined with
the node or transition label it is referencing. This will allow us to combine
RSCs, guards and relations into new RSCs without any naming issues.

4.1 Overview Verification Procedure

We propose a verification procedure for STS specifications which consists of two
phases:

1. Find all reachable states for all nodes (chapter .
2. Prove or disprove any verification properties (chapter

The first phase will consist of generating missing RSCs for each node and
verifying the RSCs per strongly connected component (SCC). We will propose
one way to generate missing RSCs in chapter based on the deduction rule
(introduced in chapter . We shall see that this rule is not complete in the
sense it is unable to find a RSC in every situation. Therefore, we will allow
the user to supply RSCs for nodes in the specification of the STS to help the
procedure to generate and verify all RSCs. We will propose one way to verify
RSCs in chapter based on the triple verification rule (introduced in chapter
4.2.2)).
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A simple overview of the algorithm may be seen in figure Again, it
consists of the two main phases: 1) To generate and verify reachable state
constraints for each node and 2) To check any of the verification properties.

To successfully finish phase 1 the user may need to specify additional reach-
able state constraints as our generation rule set is not complete. In this case,
the algorithm will ask the user to add a reachable state constraint for a specific
node to the specification and the tool may be run again.

Phase
Generate & verify
reachable state
invariants

Find strongly
connected
components

Generate and

verify reachable N
state invariants

Phase
Verification
Properties

A Verification

Counterexample
i v l \

™ Request user to add
Property Property Property reachable
Prrn:gine:jrtz Prln:ginEJtZ Find Find Verify state constraint
unsatisfiable unsatisfiable verification to specification

dead transitions sinkholes start transitionsJ post-conditions invariant

L { J J

Y

Report findings

Figure 4.1: Simple overview of different phases and individual steps of the
algorithm.

Given phase 1 has successfully completed, Goose adds no restrictions to the
termination of phase 2. Phase 2 may still not terminate if the SMT does not
terminate for some query.

With phase 2 each of the individual properties are checked. They do not
have a dependency on each other. Finally, the results are collected and reported.

A more detailed overview of the algorithm is shown in figure The first
step again consists of finding the sets of nodes which make up the strongly
connected components in the STS. This result is used for the first phase of
generating and verifying the RSCs for each node. The STS used in this first
phase may contain RSCs specified by the user. Generation for missing RSCs
and verification of RSCs is done per SCC and at any point we may find that
the procedure is unable to generate a RSC for some node or a counterexample
is found for some RSC. We follow the condensation graph of the STS to decide
which SCC is processed when. The condensation graph shows the dependency
between SCCs and is acyclic so it gives an order of work which is always finite
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and we know which SCCs are dependent on which. When each node has a
verified RSC, the second phase begins of proving or disproving the verification
properties. Finally, the procedure reports if each of the verification properties
hold or gives counterexamples for the respective verification properties.

4.1.1 counterexamples

By first finding the reachable states, we gain an intermediate representation
which represents all reachable states for each node. This information may be
used to verify all verification properties in phase 2 and to give concrete coun-
terexamples for any of the verification properties. With nuXmv’s induction
approach(described in chapter it is unclear if any counterexamples are a
failing of the inductive approach or if it is a concrete counterexample. With the
information of all reachable states we are able to give concrete counterexamples
in phase 2.

We do, however, have the same issue with potentially, spurious counterex-
amples in phase 1. Our verification rule is also based on induction and may
produce counterexamples which are spurious and are a result of the induction
proving method failing.

4.1.2 Reachable State Constraint

We shall represent reachable states as a property specified for a certain node.
This property should be true for all reachable states for that node; in other
words, the property summarizes all states reachable in that node. Therefore,
we name these properties reachable state constraints (RSC).

Definition 17. A reachable state constraint RSC,, for n is a constraint so that
for any reachable state s, s, = RSC,.

Lemma 1. A reachable state constraint RSC,, for some node n may be an
over-approxzimation of all reachable states for n: There may exist some variable
assignment o so o |= RSC,, but o is not a reachable state for node n.

Lemmal[I]states that a reachable state constraint may be an over-approximation;
it may model states as reachable which are not reachable. Our definition does
not state that a reachable state constraint must be false or true for any states
which are not reachable in a node. They may be true and therefore also un-
reachable states may be represented by a reachable state constraint.

The motivation to allow over-approximations is to allow verification for STSs
where a node may contain a set of reachable state which may not or is diffi-
cult to be represented with a strict reachable state constraint. An example
of the fibonacci sequence for the specification of listing of appendix [C} A
strict reachable state constraint does not exist although an over-approximated
reachable state constraint is given.
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4.1.3 Scoping

With the procedure described in this chapter we will combine constraints. If
done without care, variables of reachable state constraints, transition guards and
relations referencing different state variables may overlap erroneously. We shall
therefore define two scoping tactics to keep variables distinct through alpha-
conversion. We shall always combine the same four building blocks into new
constraints or queries: the origin RSC, transition guard, transition relation
and the destination RSC. Considering a RSC for some node, we are always
interested in the (free) variables representing the state variables for that node.
Considering the transition guard and relation, we are always interested in the
(free) variables representing the state variables of the origin and destination
node and the transition variables. Also, we shall create RSCs by combining
the RSCs of previous nodes and transition guards and relations. These RSCs
may contain (free) variables referencing the state variables for other nodes and
transition variables. This may be shown visually in figure

Origin - Destination
predecessors Trar_1$|t|on predecessors
state v?ﬁa/bles/vfr'ables state variables
RSC . RSC
origin guard relation destination

Origin Destination
state state
variables variables

Figure 4.3: The four constraints to be used as buildings blocks (origin RSC,
transition guard, transition relation and destination RSC) which we will use to
create new properties. The arrows show which variable sets may be
encountered in which of the constraints.

Scoping of Variables with Generating RSCs (Strategy 1)

With the definition of a STS (definition there exist no RSCs for nodes
and each of the transitions have guard and relations constraints which contain
transition and state variables with and without the ' symbol. Our first scoping
strategy is a naming strategy so all these variables have a label referencing the
state variable of a specific node or a transition. This scoping strategy may be
used when generating RSCs.

We assume a STS from definition We change the names for the vari-
ables in the guards and relations of each transition. Any variable name in a
guard which is a state variable label is joined with the label of the origin node.
Any variable name in a guard which is not a state variable label is assumed a
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transition variable. This variable label is joined with the label of the transition.
The renaming of names for the relation is the same as the guard with the
addition that any variable label that ends with the ’ symbol is replaced with the
variable label without the ’ symbol and joined with the label of the destination
node.
In the rest of this chapter we will assume this first scoping phase has already
been performed.

Scoping of Variables with Verification Queries (Strategy 2)

The second scoping strategy is used when verifying RSCs and checking if a
verification property holds. We assume the first scoping strategy has already
been done so it is clear with any variable label which node or transition it
references. As seen in figure we will use RSCs from at most two nodes
which may contain state variables referencing the same (predecessor) node. This
overlap is erroneous so we shall discuss a naming strategy to separate all variable
sets from figure [4.3]

The variable names in the origin RSC, guard, relation or destination RSC
may be divided in a number of sets: ’origin predecessors state variables’, ’origin
state variables’, ’transition variables’, ’destination predecessors state variables’
and ’destination state variables’. How to divide each of the variable names into
any of the sets is rather straightforward.

The variable names in any of the sets are joined with a postfix referencing
to which set this variable belongs. These are respectively: prev_prev, prev, t,
next_prev and next. This naming strategy still allows transition variables in the
RSC of the origin and destination to overlap. We shall see that for our queries
this is not the case.

4.2 Finding Reachable State Constraints for STS

Our goal is to find reachable state constraints for all nodes in an arbitrary STS.
We shall use an iterative approach where we continuously search for reachable
state constraints and verify if they are valid. We are done when we are un-
able to verify a reachable state constraint, unable to generate a reachable state
constraint for some node or when all nodes have a verified reachable state con-
straint. Reachable state constraints will be represented by a single constraint
as shown with definition [I7] in chapter [£:1.2}

With our approach we shall not only generate reachable state constraints au-
tomatically, we might also inquire the user to supply a reachable state constraint
for some node. In the last case, we also have to verify if the given reachable state
constraint is valid. Therefore, when considering the reachable state constraint
for a node, it may be absent, unverified or verified. This leads to two different
rule sets: 1) A rule set to generate reachable state constraints and 2) A rule set
to verify unverified reachable state constraints.

Chapter details how reachable state constraints may be deduced from
previous reachable state constraints and chapter details how reachable
state constraints may be verified using mathematical induction over paths.
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4.2.1 Generate Reachable State Constraints

Reachable state constraints represent the reachable state for some node. In
order to reach some state for a node n, it depends on all previous nodes and
their reachable state. From the recursive definition of reachable state (definition
114), we may see that the reachable state for some node n depends fully on the
reachable state of all direct predecessor nodes N,,¢q and the transitions between
n and Npq. We also specify this in lemma

Lemma 2. The reachable state for some node depends only on the incoming
transitions and the reachable state of the previous node.

Deduction Rule

With lemma [2] we see how one may deduce a number of reachable state con-
straints. Figure [£.4] shows a diamond of nodes. The reachable state of nl
depends fully on just the start transition. Therefore, the strongest RSC for n1
is i1 == 0. Using the RSC for n1, we are able to deduce a RSC for n2 and n3;
we know the RSC for the origin nodes of all incoming transitions for both nodes
n2 and nd. Therefore, continuing our intuitive approach, the RSC for n2 is the
RSC of n1 ’sequenced’ with the transition between n1 and n2. With sequenced,
we mean to join the RSC of n! with the guard and relation of the transition as
a conjunction. We should use conjunction as both the RSC of n1 and the guard
must hold before the transition (otherwise the transition may not be taken) and
the relation must hold in n2 after the transition. Using this intuitive approach,
we reach the RSC for n2: i,; == OAtrueAi,o == i,1+2. Analogously, the RSC
for n8 is i,1 == OAtrueAi,3 > 3. Finally, we can extend our deduction to n4 as
the disjunction of the deductions for both transitions to n4 as either one transi-
tion may be used to reach n4: [i,1 == 0Atrue Aiys == ip1 +2Atrue Niyy ==
ing] V [an == 0Atrue N ipg > 3 Ning < 100 A dpy == t,3 — 100]

n2 rue

ni n4

i<100

i "==i-100

Figure 4.4: STS to show reachable state for some node depends fully on
reachable state of previous nodes.

Guards are above the line, relations below the line for transitions

With this example we have shown a deduction rule to generate a RSC for
some node depending fully on the RSCs of the direct predecessors and the
transitions between the nodes. We may formalise this rule in definition

56



Definition 18. Deduction rule. Given a STS with nodes N and some node
n € N where n is not in a cycle, all entering (scoped) transitions Tenteringn
and (scoped) start transitions Tsiqr,n with n as destination:

RSCn = [\/teT RSCtO,\igm A tguard A trelatz’on] \ [\/teTStaMm trelation]

entering,n
Theorem 1. The deduction rule is sound.

Proof. The deduction rule is a reformulation of the definition of reachable
state (definition as a property. We take n as the destination node for any
start transition ts 4.+ and m as the origin node and n as the destination node
for any transition t. RSC, is the reachable state constraint for node n. We
have to show that any ¢, should ¢, = RSC,. We know from definition
that for any reachable state ¢, either there is a ¢, for transition ¢ so ¢, s, |
Ju, € V;[CFU*™ A Crelation] or there is a start transition teap 50 6n = Ch,oy-
We assume RSC,, is known and therefore ¢,, = RSC;,. Combining the state-
ments before leads to ,,s, | [Fu: € Vt[Cfuard A Crelation] A RSC,,] for any
transitions to n. Again either a start transition or transition may lead to n and
therefore [\yeq,  Gppginson B € G[CTTIACTE M ARSC,,, L NV
Vierunren Sn F Croarn]. If we leave the variable assigned with ¢, ¢, ;, and v

rtering [T T ENCEA N NRSCy IV Vo, Ctiner]
which evaluates to true for some variables assignments for ¢, , .. and v; € V;
and any reachable state ¢,. Therefore if RSC, = [\/teTemmng,n RSCs,,p0n N
tguard N trelation] V [\/teTmm,” trelation] then for any reachable state ¢, we know
Sn ': RSCn-

If n is in a cycle, we know the definition of RSC,, is recursive without end
and therefore invalid. However, we assume n is not in a cycle. Due to these
conclusions, this theorem must be valid.

free, we reach [\,

Lemma 3. The deduction rule is incomplete.

Proof. n may be in a cycle and definition does not define what the
reachable state constraint RSC,, is for n when n is in a cycle. Therefore, this
lemma is valid.

Optimization

Resulting constraint properties from our deduction rule may be optimized /
flattened in some cases. The reachable state constraint for node n2 introduces
a term in the conjunction of just true. Any true in a conjunction may just be
removed as (true A P) <> P (tautology). There is also the case where, from
example the variable i,3 in the reachable state constraint for node nd has
no dependency on variable i,;. In this case, the reachable state constraint for
node n8 may be reduced to just i,3 > 3 as variable i,3 has no relation to
variable i, and we are interested in defining the reachable state for variable
in3. These optimizations are not further explored and left to future work.

Strongest property relation

The deduction rule respects the strongest property relation. With the strongest
property relation we mean that a reachable state constraint is as strong or
strict as possible; only reachable states are represented by the reachable state
constraint.
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Definition 19. A reachable state constraint RSC,, for some node n is strongest
when for any reachable state g, it holds that ¢, = RSC,, and for any unreachable
state Sunreachable,n it holds that Sunreachable,n ': ﬂ}E‘S’C'n

The RSCs we deduced for figure[d.4] are the strongest. Node n! only depends
on the start transition. Therefore the strongest reachable state is represented
by just the start transition. By deducing the RSC for n2, we actually also
obtain a strongest RSC for n2. Any reachable state in n1 may be transitioned
to n2 if it satisfies the guard and the new reachable state for n2 is constrained
by the relation. Our deduction rule is just the sequence of the RSC for the
previous node, the guard and relation to represent all reachable states after the
transition. Therefore it must respect the strongest property relation.

Lemma 4. Our deduction rule respects the strongest property.

Proof. Say we want to apply the deduction rule to some node n and we
have all direct predecessor nodes Ny cvious- We have to show that the deduction
rule respects the strongest property for both transitions and start transitions.
Given that the RSCs for all nprevious € Nprevious are the strongest RSC, the
disjunction of all RSCs sequenced with the transition to n must be a strongest
reachable state constraint RSC,, for n. Otherwise, there is a ¢, so ¢, = RSC,
and _‘[gn ): RSCnpmmous /\tguard /\trelation] for some node Nprevious S Nprem'ous~
This is not possible by definition of the deduction rule as RSC,, contains ... V
[RSCh,.cvions Ntguard Ntretation] V -... Analogously, there exists no ¢, and start

transition tgar SO 6 = RSC), but not ¢, = trelation,start @8 RSC,, contains
... Virelation,start V ... Therefore, the deduction rule must respect the strongest

property.

Incomplete

While we have shown that the deduction rule is sound and it respects the
strongest property relation, we have also shown it is not complete (lemma for
any STS with a cycle we will not be able to deduce a RSC. This is because the
RSC for the node starting the cycle is dependent on itself. As an example, look
at figure [4.5] which contains a self loop on node nl. Our deduction rule states
that we need to know the RSC for node n! to deduce the RSC for node nl as
there is a transition from n1 to ni. Therefore, we will not know the RSC for
all direct predecessors of nl until we know the RSC for n1. This is recursion
without end and it is the reason we cannot deduce a RSC for STSs with a cycle
using the deduction rule.

We shall show in chapter how we involve the user to find a RSC for
(some) nodes in a cycle.

58



10

11

12

13

14

16

17

18

19

20

true

i'==i+1

Figure 4.5: STS with a cycle.

Guards are above the line, relations below the line for transitions

Mechanize Deduction Rule

We can mechanize the deduction rule with the scala-like code of listing It
assumes:

e All variables of all reachable state constraints and transitions are scoped
using scoping strategy 1.

e RSCs for nodes with a transition to node are known.

The result is that the RSC for node is deduced and set. It is correct and
verified by design.

Listing 4.1: Scala-like code for mechanizing deduction rule

function deduce(Node node, STS sts) {
ingoingSequences = node.entering.map(
(t) => And(t.guard, t.relation, t.origin.rsc)
)
startTransitions = sts.startTransitions.filter(
(s) => s.destination.equals(node)
)

ingoingSequences ++= startTransitions.map((s) => s.relation)

newReachableStateConstraint = ingoingSequences.size match {
case 0 => error // Should not happen. Disconnected node
case 1 => ingoingSequences.head
case _ => ingoingSequences.drop(1l).foldLeft(
ingoingSequences.head,
(result, el) => Or(result, el)

node.rsc = newReachableStateConstraint
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4.2.2 Verify Reachable State Constraints

In some cases, a RSC will be proposed and we need some mechanism to verify if
the property represents at least all reachable states for that node. We propose
an incremental verification rule which is based on the triple of each originating
node, transition and destination node for each transition. This coincides with a
single path segment. We shall show that it is enough to verify a RSC for some
node by verifying all triples of origin nodes and transitions to this node. In
order to verify a RSC for some node, we have to show that the states after all
paths to this node are models of the RSC.

Verification Rule

Corollary [2| shows that after any path to some node, the reachable state con-
straint (RSC) for that node holds. A proof is not necessary as this corollary is
a reformulation of the definition of reachable state constraint (definition [I7).

Corollary 2. Given a reachable state constraint RSC,, for some node n, a state
Sn S0 G = RSC,, is the result of all possible paths 11 to n.

The theoretical value of this corollary may be explained using figure[d.6] Say
we are interested in verifying a reachable state constraint RSC,3 for node n3.
There are a number of nodes Nprevious Which have a transition to n8 including
nodes n! and n2 and assume we know a (unverified) reachable state constraint
for those nodes. Any path to n8 surely contains a node from Ny eyious @s the
node just before the transition to n3. Now, corollary [2] allows us to summarize
the resultant state ¢,,,.,..... of all possible paths to a predecessor nyrevious €
Nprevious of n8 as the reachable state constraints for that node. Now to check if
RSC\3 is valid for all reachable states ¢,3, we only have to check if the RSCyp3
is implied after the last transition from a direct predecessor; in other words
[RSCnprekus A tguard,npreuwus,'rﬁ A trelation,npmmous,nS} — RSCnS This shows
that to verify the reachable state constraint for some node n3, we have to show
that the reachable state constraints of all previous nodes sequenced with the
transition maintains the reachable state constraint to verify.

Definition 20. Triple verification rule. To verify a property RSC, is a
reachable state constraint for some node n, we must show for all previous nodes
Nprevious € Nprevious and any transition t from Nprevious t0 1 with guard tgyqrd
and relation treiation that [RSCy, . ... Nguard Nretation] = RSCy. Also show

that for any start transitions tsiare,n € Tstart to 1 that treiation,start,n — RSCh,.
Also show that RSC is a reachable state constraint for node Nprevious-

Nprevious

Theorem 2. The triple verification rule is sound

proof. We have to prove that when our theorem holds, any path to a node
results in a state which is a model of the reachable state constraint for that
node. We shall use proof by mathematical induction over the path. Therefore
we need to provide the base case proof and the induction step proof.

e Base case: There is no path so we start at a start transition tgq,¢ with
destination n. For the reachable state constraint RSC,, it should hold
that ¢, = RSC, for any state ¢, for which ¢, = C_,,,,. This is checked
directly by the theorem. Therefore the base case holds.
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e Induction step: Assume we are in a node n;_; with a transition ¢ to
node n; and a path P;_; to node n;_; with a resultant state ¢,, , which
Sni_y | RSC,_,. With the transition for any state g,,, and some reachable
state ,, , it should hold that <, ,,n, | [RSCh, | ACI"*" A Crelation]
We are proving that for any reachable state g,, it holds that ¢,, E
RSC,,. Therefore, we know this is true if there is an assignment ¢,, ,
so [RSC,,,_, A CI"r® p Crelation] _y RGCr . This is checked by the triple
verification rule. Therefore, the induction step holds.

We have shown that our theorem holds as the base case and induction step
of our mathematical induction over path proof holds.

ni n2

1 t2

n3

Figure 4.6: Figure to show a number of nodes (including ni and n2) have a
transition to node n3 as a part of some STS.

Strongly Connected Components

The verification of reachable state constraints for STS nodes in general is de-
pendent on the previous nodes as is stated by lemma [2 When cycles exist in
a STS this causes cyclic dependencies to verify the RSCs of the nodes in the
cycle as with the triple verification rule we know a RSC is only verified to be
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correct when the previous RSCs are verified to be correct; similar to the cyclic
dependencies due to which we cannot use the deduction rule for nodes in a cycle.
To resolve this, we propose to verify the reachable state constraints per strongly
connected component (SCC) instead of verifying it per individual nodes. A
SCC contains all nodes which are reachable from each other or in other words,
the RSC of one node in the SCC may depend on the RSC of another node in
the SCC. Any nodes outside of a SCC is only reachable one-way and there is
no bidirectional dependency on the reachable state. The condensation graph
of the STS shows which SCCs are dependent on each other. The condensation
graph is acyclic and it shows an ordering of verifying the RCSs of the nodes
in the SCCs. If we follow the condensation graph and only verify the nodes in
the SCC when the RCSs of the nodes of the previous SCCs are verified, we will
know that all RCSs of previous nodes are verified for correctness as assumed by
the triple verification rule. This is formalised in lemma

Lemma 5. Verification of reachable state constraints for nodes in a STS must
be done per strongly connected component.

Incomplete & Spurious Counterexamples

While the triple verification rule may serve as a basis to verify reachable state
constraints, it is not complete. The verification rule is based on mathematical
induction; it assumes the correctness of previous reachable state constraints to
prove the next one. An example where more information is needed is given
by Wahl [27]. Wahl shows that a property for the fibonacci sequence may be
proven using k-induction [15]. k-induction is an iterative proof form where
we assume previous results respect some property and we have to show that
subsequent results still respect the property. The k is the amount of previous
answers which are used to proof the property. Wahl used the property a >
n as an example where a is the n’th fibonacci number (only when n > 5).
Wahl used this example to show 2-induction is needed and 1l-induction is not
enough to verify the property. We can model the fibonacci sequence into a STS
with the appropriate start state and use the property a > n as the reachable
state constraint. The triple verification rule would not be enough to verify this
reachable state constraint.

When a SMT-solver is used to check this property with the triple verifica-
tion rule, a counterexample is produced. This counterexample is a spurious
counterexample due to the mathematical induction proof failing. We know it is
spurious as the property is proven by Wahl. This shows that we do not know
if a counterexample given by the triple verification rule is actually reachable
by the STS or it is because mathematical induction is not enough to proof the
reachable state constraint.

Depending on the SMT-solver, it is also possible for a SMT-solver to return
unknown as we have described in chapter In this case, we are unable to say
what went wrong.

Mechanize Triple Verification Rule

We use lemmal[5] to mechanize the triple verification rule with the scala-like code
of listing [4:2] It assumes:
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e Fach of the direct predecessor nodes in the SCC have a RSC.
e Fach of the nodes in the SCC have a RSC.

e The condensation of the strongly connected components is known and
used as the order to verify each strongly connected component.

In order for our query to not have any erroneous variable overlap we have
to scope the variables of the origin RSC, guard, relation and destination RSC
accordingly using scoping strategy 2. This is done on lines 18 to 23. The result
of the algorithm is that all reachable state constraints for the nodes in the SCC
are verified or a (spurious) counterexample is given.

Listing 4.2: Scala-like code for mechanizing triple verification rule

function verify(StronglyConnectedComponent scc, STS sts) {
for(node <- scc.nodes) {
counterexamples: Set[Counterexample] = Set()
startTransitions = sts.startTransitions.filter(
(s) => s.destination.equals(node)

)

// Check each start transition
for(trans <- startTransitions) {
counterexample = SMTSolver.isUnsat(
trans.relation,
Not (start.destination.rsc)

counterexamples += counterexample

}

// Check each transition to this mode
for (trans <- node.entering) {
from = trans.origin
counterexample = SMTSolver.isUnsat(
scopeFromRSC(from.rsc),
scopeGuard (trans.guard),
scopeRelation(trans.relation),
ForAll( to.rsc.predecessorVariables ++ to.rsc.transitionVariables
, Not(to.rsc)
)

counterexamples += counterexample

}

if (counterexamples.nonEmpty) {
throw new CounterexampleException(node, counterexamples)

}
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for(node <- scc.nodes) {
node.rsc.get.status = Verified

3

4.2.3 Combining Generating and Verifying Reachable State
Constraints

So far we have created the deduction and triple verification rule to generate and
verify reachable state constraints for nodes in an arbitrary STS. We have proven
their soundness and seen that they are both incomplete. We shall show how to
combine them into one algorithm.

Due to lemma[2] we have seen that both generation and verification of reach-
able state constraints depend solely on the RSCs of predecessor nodes. For
verification we therefore have to verify RSCs for nodes per strongly connected
component (SCC) and not per individual node in order to guarantee that a RSC
is verified in general. We propose to use the condensation of the SCCs for a
STS be the order for which nodes we generate and of which nodes we verify the
RSC. A correct ordering would be all nodes per SCC when doing a breadth-first
search (BFS) |12] on the condensation graph.

This results in the scala-like code of listing [£.3] It assumes:

e All guards and relations of transitions are scoped using scoping strategy
1.

The listing shows the BFS over the condensation graph of the STS from line
7. We keep a queue pending which are the strongly connected components to
be processed. We choose to process the SCCs in FIFO-ordering by choosing the
first SCC in the queue on line 8. We also remove this SCC from the pending
queue on line 9.

For the chosen SCC we first generate all missing RSCs for the nodes of the
SCC on lines 12 through 29. We find a node for which all predecessor nodes
have a RSC on line 13. If such a node exists, we deduce the RSC on line 16. If
no such node exists but there are nodes without a RSC, we know there exists
at least one node which does not have a RSC and where there are predecessors
also missing a RSC. These nodes are found on lines 21 to 25 and an exception
is thrown on line 27 to ask the user to provide a RSC for one or more of the
nodes for which no RSC could be generated.

Assuming each node in the SCC has a RSC, we continue to lines 31 to 41.
On line 32 we use the triple verification rule to verify all RSCs on the current
SCC. We then add the SCC to the processed SCCs on line 34. Finally, we add
all SCCs for which all predecessor SCCs are all processed to pending on lines
37 to 41.

Listing 4.3: Scala-like code for mechanizing generation and verification of
reachable state constraints.

function generateAndVerify(STS sts) {
sccCondensation = SCCCondensation.findSCCCondensation(sts)
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pending = sccCondensation.findIndependentSCCs()
processed = Set()

// BFS over condensation

while(pending.nonEmpty) {
currentSCC = pending.head
pending -= currentSCC

// Generate
while(currentSCC.nodes.exists((n) => n.rsc.isEmpty)) {
val nodeToGenerate = DeductionRule.findNext (currentSCC)

if (nodeToGenerate.nonEmpty) {
DeductionRule.deduce(nodeToGenerate.get, sts)
} else {
// Find nodes which does not have a RSC and for which atleast
// one previous node has RSC or a start transition
nodesForUserInput = scc.nodes.filter(
(n) =>
n.rsc.isEmpty &&
(n.entering.map((t) => t.origin).exists((n_) => n_.rsc.nonEmpty) ||
sts.startTransitions.map((s) => s.destination).contains(n)

)
)
throw new UserInputException(nodesForUserInput)
3
3
// Verify

TripleVerificationRule.verify(currentSCC, sts)
processed += currentSCC

// Find next SCC to add to pending

for(scc <- currentSCC.next) {
if (scc.previous.forall((prev) => processed.contains(prev))) {

pending += scc

}

}

}
}

This algorithm assumes that all variables on transitions and user-given reach-
able state constraints are scoped using scoping strategy 1. The result is either
a (spurious) counterexample for some RSC, a request for the user to provide a
RSC for some node(s) or a STS where each node contains a verified RSC.
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Introducing New Rules

So far we have implemented the deduction and triple verification rule which are
not complete. Other generation and verification rules may be added to allow
for more RSCs to be automatically generated and more RSCs to be verified.
For example, Wahl [27] has shown that k-induction is a more powerful proving-
technique than mathematical induction and we have shown that Wahl’s example
may be encoded in a STS for which our triple verification rule will have a
spurious counterexample. We might create a verification rule using k-induction
to prove RSCs for nodes in a cycle.

These new generation and verification rules may be freely added to our
algorithm in listing We have shown which assumptions and considerations
have to be taken into account when creating and adding new rules in respectively

chapters and

Multithreading

We might alter the algorithm of listingto add multithreading. The pending
set on line 3 contains all SCCs which may be processed. This set may grow
to more than one SCC. Each SCC may be a job for some thread pool so each
SCC is processed in parallel. This is allowed as the condensation of the SCCs
shows the dependency between SCCs as is given by lemma [2| For all SCCs in
pending, all previous SCCs are already processed and therefore we may process
these independently. We leave this research to future work.

Soundness

The algorithm of listing is sound. It is based on the deduction and triple
verification which we already have deemed sound. We use an ordering of gen-
eration and verification of RSCs for nodes per SCC. While this changes the
order of evaluation per node, this does not effect soundness. What does effect
soundness is if the necessary assumptions for each rule are fulfilled.

Proof. What we need to prove is if the combination of the deduction and
verification rule to the algorithm listed in listing [£.3]is sound. In order to prove
this algorithm sound, we have to show that each of the assumptions of each rule
are fulfilled. Therefore:

e Deduction rule assumptions

— All variables of all RSCs and transitions are scoped using
strategy 1: This is also an assumption of the combined algorithm
and is therefore fulfilled.

— RSCs for direct predecessor nodes must be known: A node is
chosen where for each predecessor node a RSC is known on line 13.
This chosen node is used directly by the deduction rule and therefore
this assumption is fulfilled.

e Triple verification rule assumptions

— Each of the nodes in the SCC have a RSC: We know this
assumption is fulfilled as we generate RSCs for empty nodes until
every node in the SCC has a RSC (line 12).
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— Each of the direct predecessor nodes in the SCC have a
RSC: A direct predecessor of a node in the SCC is either in the SCC
or a predecessor SCC. If the predecessor node is in the SCC, see the
previous assumption as it is fulfilled. We know that the RSCs of
the nodes in the predecessor SCCs have been generated and verified.
Therefore, if the predecessor node is in a predecessor SCC we know
it also has a RSC. Therefore, this assumption is also fulfilled.

— Verification of RSC per node must be done per SCC: The
SCCs the condensation graph is found on line 2. The RSCs of the
nodes are generated and verified per SCC. The order of each SCC is
chosen using BFS where we only add a SCC to pending if we know
each of the direct predecessor SCCs have been processed (lines 37
to 40). Therefore, we know each of the predecessor SCCs have been
processed and we follow the dependencies of the condensation graph.
Therefore this assumption is fulfilled.

Each of the assumptions of the used algorithms are fulfilled. Therefore, we
know the combined algorithm is also sound.

Completeness

The combined algorithm is able to generate and verify RSCs for nodes in a STS.
It is not able to generate a RSC or verify a RSC in general as we have shown in
chapters [£.2.1) and [£.2.2] However, we are able to use this combined algorithm
for a STS with an arbitrary graph structure.

Proof. We have to proof that the combined algorithm of listing may
be used on a arbitrary graph structure and will always have an answer. The
algorithm combines the deduction rule, triple verification rule, Gabow’s path-
based SCC finding algorithm and BFS. Neither the deduction or triple verifica-
tion rules have a restriction on the graph structure of the STS and will always
some answer. Finding the condensation graph of a STS as well as BFS is com-
plete [17] [12]. There are no other features of the algorithm. Therefore, we may
conclude that the combined algorithm always returns an answer regardless of
the graph structure of a STS and it is therefore complete in this regard.

Termination

The combined algorithm may not terminate in general. We know our ordering
through the condensation graph is finite as the condensation graph is acyclic.
We also know the deduction rule and verification terminate when considering
the algorithms of listings [£.1] and [£.2] They contain iterators only over finite
collections and must therefore terminate. However, our algorithm accepts non-
linear arithmetic and is dependent on a SMT-solver. Depending on this SMT-
solver the algorithm will either terminate in general or not. For our prototype
we have chosen the SMT-solver Z3 and we know it does not terminate in all
cases when accepting non-linear arithmetic [14].
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4.3 Verifying Verification Properties

Part of our task is to find useful properties to verify based on a ST'S specification.
Safety guarantees (something that will never happen) and liveness guarantees
(something that will (eventually) happen) are two of the main types of properties
which are found throughout the literature [5]. While we recognize many different
properties are useful to verify, we have chosen to focus on five for this research:

1. Safety properties To verify states violating a safety property are not
reachable (see definition in the specification (Safety guarantee).

2. Dead transitions To verify there exists a reachable state in the origin
node of every transition which satisfies the guard of that transition. A
transition that can never be taken will be referred to as a dead transition.
(Reachability guarantee)

3. Sinkholes To verify there for every reachable state for some node there is
is at least one transition which may be taken if a leaving transition exists.
A state reachable in a node for which no transitions may be taken will be
referred to as a sinkhole. (Liveness guarantee)

4. Unsatisfiable Start Transitions To verify if there exists a state for the
relation of each start transition. If the relation is unsatisfiable the start
transition may never be taken. (Reachability guarantee)

5. Unsatisfiable Relation To verify that for each reachable state that satis-
fies the guard of a leaving transition there is at least one reachable state in
the destination node which together satisfy the relation of that transition.
If there is not such a reachable state then there exists a reachable state
for which a transition may be taken but there is no reachable state related
to in the destination node. This is erroneous and should not happen.
(Liveness guarantee)

These five properties together allow a specification to be proven to never
violate certain properties (safety property), to show all transitions may be used
(no unsatisfiable start transitions and dead transitions) and to show that it is
possible to always make progress (no sinkholes and no unsatisfiable relations).

We will formalise the five verification properties in the context of STSs in
first-order logic and show how they may be checked using a SMT-solver. In order
to describe the translation from the formal specification of the properties to a
SMT query, we first assume that the first part of our approach was successful;
we know the reachable state constraint for each node in the STS.

The reachable state constraint might be an over-approximation and this has
consequences for the validity of the answer when checking the five verification
properties. In some cases this might result into false negatives (an issue exists
but is not found) or false positives (an issue is found which is not an issue). We
shall show these consequences to the soundness of our checks.

Throughout this chapter we shall use the STS in figure [4.7] as an example.
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Figure 4.7: STS where RSCs are included in the labels. Used as a running
example to explain the verification properties.
Guards are above the line, relations below the line for transitions

4.3.1 Safety Property

A safety property is a property modelling states which should not be reachable.
A safety property for the bank account example in figure would be to check
if the balance is above zero. This safety property should hold for all reachable
states in all nodes of the specification. If there is a state reachable in some node
which violates/falsifies the property then we have found a counterexample.

Definition 21. For a STS with state variables V a safety property Psqfe with
free variables Vsqre €V holds if for all reachable states <, 6, = Psqfe-

Checking a Safety Property as a SMT Query

Proving there exists no reachable state which violates a safety property is to
show a safety property holds. As we have a set of RSCs for each node which
describe all reachable states, we can use the RSCs to show none of them vio-
late any safety properties. In other words, each RSC should imply the safety
property. This is formalised in corollary

Corollary 3. For some STS a safety property Psqre holds if for each reachable
state constraints RSC of a node in the STS RSC — Psqye is valid.

We have shown in chapter that to prove the validity of some formula
with a SMT-solver we have to show the abscence of falsifying models. Therefore,
we have to check the negation of the formula in corollary [3| and to see if this
formula is unsatisfiable. We rewrite the negation of the formula in corollary [3]
such that:

S[RSC — Psaye]

S[~RSCV Psqpe]  (Rewrite implication)
—~—RSC A =Psape (De Morgan)

RSC A =Py e (Double negative)

Now we are able to write the definitive SMT query as corollary [4]
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Corollary 4. For some STS a safety property Psqfe holds if for all reachable
state constraints RSC RSC A —Pyqye is unsatisfiable.

Say we want to prove the safety property i == 0Vi == 2 as a safety property
for the STS in figure [£7] For the example, the RSCs are given as the label of
the nodes. Our example has 4 nodes. We would send the SMT-solver 4 queries:

1. Node ni: ~(i==0VvVi==2
2. Node n2: =(i==0Vvi==2

3. Node n3: =(i==0Vi== i>3)

4. Node n4: (i ==0Vi== (97T <iNi<0)Vi==2)

In this case, the safety property does not hold. While the queries for nodes
nl and n2 are unsatisfiable, the queries for nodes n3 and n4 both have coun-
terexamples. Examples of counterexamples are respectively: ¢,3[4 < ] and
§n4[—1 — 7,}

Soundness with over-approximated RSCs

We have defined the concept of a safety property and have shown how to check
a safety property using the RSCs of each node and a SMT-solver. The RSCs
may be over-approximations and this has consequences for the soundness of our
method.

That a RSC RSC,, is an over-approximation means there may exist a state
Sn 80 6, = RSC,, but g, is not reachable. We check if RSC' A—Psqfe is unsatisfi-
able for some safety property Psqf.. However, there may be a state faisepositive
SO Sfalsepositive ': RSC but Sfalsepositive ': ﬁPsafe and Sfalsepositive is unreach-
able. In other words, there may exist a state which is not reachable but is a
counterexample for the safety property and is a state modelled by the RSC.
This is considered a false positive and may happen when the RSC may be an
over-approximation.

In chapter [4.2.T) we have shown that the deduction rule respects the strongest
property. Therefore, we know that for any STS where only the deduction rule
is used to find all RSCs that none of the RSCs are over-approximations. In this
case, there may be no false positives and any counterexample is valid.

While a RSC may be an over-approximation, it may not be an under-
approximation. Therefore, at least all reachable states are checked if they violate
the safety property and no false negatives are reported.

4.3.2 Dead Transitions

Dead transitions are transitions which may never be taken. There exists no
reachable state in the origin node which satisfies the guard. Dead transitions
are indications that there exists a part of the specification which may have some
semantic meaning but there is no reachable state to take the transition there.

Definition 22. Given a STS with transitions T and some transitiont € T then
t is a dead transition if for all reachable state G, .. i node torigin Stopigim =

ﬁz‘;guard-
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Checking for Dead Transitions as a SMT Query

Proving there is a dead transition is to show that for each reachable state for
the origin node of the transition it does not satisfy the guard. We have a set of
RSCs per node which model all reachable states. With the RSC of the origin
node of a transition we can check if there is a reachable state which satisfies the
guard. In other words, we are checking if there exists a state which satisfies the
RSC of the origin node and the guard of the transition.

Definition 23. Given a transition t with guard tgyqrq and the reachable state
constraint RSC’tmgm for the origin node torigin, t is considered a dead transition
if RSC, A tguard is unsatisfiable.

We can use a SMT-solver to directly check this query if it is unsatisfiable.

In the case of figure [£.7] we have 4 outgoing transitions. We will focus on
the transition from n! to n2. We would send the SMT-solver a query checking
is that transition is a dead transition:

origin

1. 1 == 0 Atrue

The answer to our query would be satisfiable (namely [0 < 4]). This would
make this specific transition not a dead transition as the reachable state ¢, [0 +
i] would allow the transition to be taken.

Soundness with over-approximated RSCs

We have defined the concept of dead transitions and how to check if a given
transition is a dead transition. However, as with the other verification properties
there are consequences for the fact that a RSC may be an over-approximation.
There may be a state Sunreachable SO Sunreachable ): RSC7 Sunreachable ': tguard
and Sunreachable 18 unreachable. In other words, there may exist a state which
is not reachable but is a state satisfying the guard and the RSC of a given
origin node and outgoing transition. This is considered a false negative and
may happen when the RSC is an over-approximation.

As with chapter [£.3.1] we note that the deduction rule respects the strongest
relation and if only the deduction rule is used to find all RSCs then all RSCs
are not over-approximations. In this case there can be no false negatives.

A RSC may not be an under-approximation and therefore there can be no
false positives. There can be no transition checked as a dead transition which
is not a dead transition because there are no reachable states missing in the
RSC so all reachable states included in the RSC do not satisfy the guard of the
transition. In this case the missing reachable states would satisfy the guard of
the transition which shows it is not a dead transition. However, the RSC may
not be an under-approximation so there may exist no false positives with the
check of dead transitions.

4.3.3 Sinkholes

Sinkholes are reachable states in a node which do not satisfy the guard of any
of the outgoing transitions. Effectively, when you reach this state you are stuck
when there are outgoing transitions. A sinkhole is an indication that there
is a state reachable you cannot leave and might indicate an issue with the
specification.
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Definition 24. Given some noden € N for a STS with nodes N and transitions
T and transitions T, C T where Vt € Ty, .torigin = 1 then some reachable state
Sn 18 a sinkhole if <, | /\tETn Vvt,1,¢,2... 7t guara] where vy, are the transition
variables for tgyuard-

Checking for Sinkholes as a SMT Query

Proving there is a sinkhole is to show that there is a reachable state for which
no transitions may be taken. We have a set of RSCs per node which model
all reachable states for some node. We can check with the RSCs if there is a
reachable state so the property in definition [24] holds.

Definition 25. Given some node n € N with RSC RSC,, for a STS with nodes
N and transitions T and transitions T,, € T where ¥t € T}, .torigin = n then
there exists a sinkhole if RSC), N /\teTn [VUi1,Vt,2...tguard) 5 satisfiable where
vy are the transition variables for tguard.

An SMT-solver is able to check the query in definition directly if it
is satisfiable. If it is satisfiable, the SMT-solver will show an example of a
model/reachable state which is a sinkhole as the SMT-solver existentially closes
the query which are the state variables of the RSC. If it is unsatisfiable, we
know there is no sinkhole in that node.

As an example, we shall use figure and check if node n3 has a sinkhole.
For this node the RSC is ¢ > 3. There is a single outgoing transition from n3
to n4 with the guard ¢ < 100. We would then query the SMT solver:

1. i >3 A= < 100]

This query has a model which is the reachable state ¢,3[100 < ¢]. This
reachable state is therefore a sinkhole.

Soundness with over-approximated RSCs

We have defined the concept of sinkholes and how to check if some node has
a reachable state which is a sinkhole. However, as with the other verification
properties there are consequences when a RSC is an over-approximation.

There may be a state Sunreachable SO Sunreachable ': R507 Sunreachable ':
/\teTn Vvt 1, 0¢,2... 7t guard] and Supreachable is unreachable. In other words, there
may exist a state which is not reachable but is a state which never satisfies a
guard of any outgoing transition but does satisfy the RSC. This is considered a
false positive and may happen when the RSC is an over-approximation.

As with chapter we note that the deduction rule respects the strongest
relation and if only the deduction rule is used to find all RSCs then all RSCs
are not over-approximations. In this case there can be no false positives.

A RSC may not be an under-approximation and therefore there can be no
false negatives. A false negative would be a reachable state which is a sinkhole
but is not found by our sinkhole check. This is only possible when the RSC is
a under-approximation and the SMT-solver is not able to verify if the missing
reachable state is a sinkhole or not. As the RSC is not an under-approximation,
we know that this is impossible.
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4.3.4 Unsatisfiable Start Transitions

Unsatisfiable Start Transitions are the relations of start transitions which are
unsatisfiable. There is not a state which satisfies the relation of a unsatisfiable
start transition. This is an indication of a erroneous specified start transition
as it doesn’t add anything to the specification semantically.

Definition 26. A start transition tsere S o unsatisfiable start transition if
trelation,start S unsatisfiable

Checking for Unsatisfiable Start Transitions as a SMT Query

Proving a start transition is an unsatisfiable start transition is straightforward.
Definition 26] may be used without further rewriting with an SMT-solver as a
SMT-solver is able to check if the relation is unsatisfiable or not.

As an example, we shall use figure There is a single start transition with
the relation i == 0. We would then query the SMT solver:

1. i==0

This query has the model/reachable state ¢,1[0 < ¢] and is therefore satisfi-
able. This start transition is therefore not a unsatisfiable start transition.

Soundness with over-approximated RSCs

The check for unsatisfiable start transitions does not use the RSCs of any nodes.
Therefore, the approach is sound even if the RSCs are over-approximations.

4.3.5 Unsatisfiable Relations

Unsatisfiable relations are transition relations where, for certain reachable states
from the origin node, there are no related reachable states in the destination
node. In other words, there are no destination reachable states that, together
with the origin reachable state which satisfies the guard, satisfy the transition
relation. This is erroneous and should not happen.

Definition 27. A transition t has a unsatisfiable relation if there exists a
reachable state G, ... 50 Gt ... = tguara but there exists no reachable state
Stgestination SO Storigin A Staestination ': tguard A trelation

Checking for Unsatisfiable Relations as a SMT Query

Proving the relation of a transition may be unsatisfiable is to find a reachable
state in the origin node which satisfies the guard but the relation is unsatisfiable
so there is no reachable state in the destination node related. In order to check
this with an SMT-solver, we want the SMT-solver to find a reachable state
based on the RSC of the origin node which satisfies the guard but falsifies the
relation in all cases. With in all cases we mean we also have to properly use the
transition and states variables of the transition and the destination node.
With an unsatisfiable relation, we are interested in a state of the origin RSC
and some assignment of the transition variables so the guard is satisfied. The
assignment of the transition variables also have to be applied to the relation part

73



of the query. Therefore, we let the SMT-solver existentially close the transition
variables. The relation contains the state variables for the destination node and
we have to show that for all possible destination states it falsifies the relation.
Therefore, we have to quantify the state variables of the destination node using
a universal quantifier. All in all we reach the SMT query of definition 28

Definition 28. A transition t has a unsatisfiable relation if there exists an
assignment of state variables for node torigin and transition variables of t so
RSCy,,; i N tguard N V041,042 trelation Where vg; are the state variables for
the node tdestination-

If a model exists for the query in definition [28| then ¢ has an unsatisfiable
relation and the model shows for which reachable state in the origin node and as-
signment of transition variables. If no model exists for the query then transition
t does not have an unsatisfiable relation.

In order to perform this query, we use scoping strategy 2 as opposed to the
other verification properties.

For an example we shall use figure We shall check if the transition from
nl to n2 has an unsatisfiable relation. Node n! has RSC i_nl_prev == 0 and
the transition has the guard true and the relation i_n2_next == i_nl_prev+ 2.
The query to the SMT-solver becomes:

1. i_ni_prev == 0 A true A Vi-n2_next.—[i_n2_next == i_nl_prev + 2]

The query returns unsatisfiable although the reasoning why is not straight-
forward. There is only one reachable state for node nl namely ¢,1[0 < ¢]. This
satisfies the RSC of n! and the guard. However, there is a reachable state
for node n2 so the relation is satisfied, namely ¢,2[2 < 4]. This means in the
query there is an assignment S0 —t,¢jqtion does not hold. Therefore the universal
quantifier evaluates to false and we deem the relation satisfiable for all reach-
able states in the origin node and all assignments for the transition variables.
Therefore, this transition does not have an unsatisfiable relation.

Soundness with over-approximated RSCs

We have defined the concept of unsatisfiable relations and how to check if some
transition has an unsatisfiable relation. However, as with the other verification
properties there are consequences when a RSC is an over-approximation.

There may be a state unreachabie SO Sunreachable ': RSO/\tguardy Sunreachable ':
YV4.1, V4,2 "trelation aNd Synreachable 1S unreachable. In other words, there may
exist a state which is not reachable, satisfies the guard but there is not a reach-
able state in the destination node so the relation is satisfied. This is considered
a false positive and may happen when the RSC is an over-approximation.

As with chapter [£.3.1] we note that the deduction rule respects the strongest
relation and if only the deduction rule is used to find all RSCs then all RSCs
are not over-approximations. In this case there can be no false positives.

A RSC may not be an under-approximation and therefore there can be no
false negatives. A false negative in this case would be a reachable state in the
origin node which satisfies the query but does not satisfy the RSC of origin node.
In this case, the RSC would be an under-approximation as reachable states are
not modelled by the RSC. However, this is not possible as the RSC must not
be an under-approximation.
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Table 4.1: Overview of soundness and completeness for the different steps of

Step

the verification procedure

Sound

Complete

Generation & verification of reachable
state constraints

If a safety property holds

If a dead transition exists

If a sinkhole exists

If a start transition is unsatisfiable
If a transition relation is unsatisfiable

Generation of RSCs is sound. When
verifying if RSCs are valid, triple ver-
ification rule may give spurious coun-
terexamples.
False positives
approximation.
False negatives when RSC is over-
approximation.
False positives
approximation.
Sound.

False positives
approximation.

when RSC is

over-

when RSC is

over-

when RSC is

over-

4.4 Completeness & Soundness

Complete for STS graph structure. In-
complete for generation and verification
of arbitary RSCs. Depends if SMT-
solver is complete.

Complete if SMT-solver is complete.

Complete if SMT-solver is complete.
Complete if SMT-solver is complete.

Complete if SMT-solver is complete.
Complete if SMT-solver is complete.

In this chapter we have defined and shown a verification procedure to check if a
safety property holds, dead transitions or sinkholes exist and if there are unsat-
isfiable start transitions or relations. This verification procedure is a two-step
algorithm where in step one we deduce and verify reachable state constraints
and in step two check for any of the verification properties using the reachable
state constraints. We have shown that for each of these steps and properties
if they are sound and/or complete but we have yet to discuss if the overall
approach is sound and/or complete.

The culmination of the two steps of the verification procedure do not add
any new elements. The dependency between the steps are the reachable state

constraints for the nodes.

Therefore the culmination will not change if the

overall approach is sound and/or complete other than the individual steps. We
have shown that the generation and verification of reachable state constraints
is sound. It is not complete as it is not able to generate and verify arbitrary
reachable state constraints, but the procedure is complete that it may be used on
a STS with an arbitrary graph structure. The verification properties are sound
depending on if the reachable state constraint may be over-approximations or
not. The verification properties are, however, complete in the sense that they
may be used on arbitrary STSs with arbitrary RSCs.

In both steps we have to check if certain formulae are satisfiable or unsatisfi-
able by using a SMT-solver. Depending on whether the SMT-solver is complete

this will also change if any of the steps are complete.

Currently we accept

non-linear arithmetic constraints for all aspects of the procedure. It is known
that any procedure for the models of non-linear arithmetic constraints cannot
be complete [13] and therefore no decision procedure exists. Even though this is
proven, the dependency of completeness may depend solely on the SMT-solver
used. We note this dependency.

To conclude this section, we show table which gives an overview of the
separate steps and if they are sound and/or complete.
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4.5 Limitations

With this chapter we have introduced a verification procedure which we have
shown may or may not be sound and complete. In chapter [£.:4]we have described
in which cases we cannot guarantee soundness and /or completeness. Other than
soundness and completeness, in this section we also note a number of practical
limitations.

1. No trace counterexamples - When the triple verification rule or a verifi-
cation property has a counterexample, we are unable to give a trace from
some start transition to the reachable state which is the counterexample.
Creating such a trace may be possible but is left to future work.

2. No quantifiers in transition guards, relations or RSCs - Currently we limit
the constraints to not include quantifiers. While we use quantifiers for
some of our SMT-solver queries, we do not accept them as transition
guards, relations or RSCs. This limitation may be resolved with future
work.

4.6 Conclusion

This chapter has been dedicated to explain the verification procedure Goose.
Goose is a verification procedure for STS specifications and is able to check if
a safety property holds, if dead transitions or sinkholes exist and if there are
unsatisfiable start transitions or relations. In order to verify these verification
properties, Goose first generate and verifies reachable state constraints. These
reachable state constraints are properties summarizing the reachable states for
a certain node. Using the reachable state constraints, Goose is able to verify if
any of the verification properties are violated.

We have shown that Goose is sound when the RCSs are generated by just
the deduction rule and verified by the triple verification rule. In this case the
RCSs are not an over- or under-approximation of the reachable states. In some
cases Goose is not able to generate or verify a RCS. Users may give a RCS for
a specific node which may then be verified by Goose. This RCS is possibly an
over-approximation. Goose may then present false positives and negatives for
the various verification properties.

We have also shown that Goose is possibly never complete. The verification
procedure depends on a SMT-solver to query if certain formulae are satisfiable
or unsatisfiable. It is known that there will never exist a complete decision pro-
cedure for non-linear arithmetic; which we also accept for the transition guards
and relations and RCSs. The triple verification rule is also not complete. There
may exist other verification rules which may make Goose (more) complete when
it comes to verifying RCSs. Generation of RCS is done with the deduction rule
and is incomplete when considering cycles. There may exist other techniques
which may make Goose (more) complete when it comes to verifying RCSs.

Finally, we have also discussed the practical limitations and complexity of
Goose. Currently there is no mechanism to find a trace when a counterexample
is found on how to reach the counterexample. Also, currently we do not accept
constraints with quantifiers. Future work may solve both limitations.
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Chapter 5

Evaluation

To compare Goose with Z3 and nuXmv we have done a number of experiments
to look at the execution times and solvability. We have done the following
experiments:

1. Can Goose, Z3 and nuXmv prove a valid safety property for a survey of
eight ING specifications and how fast? (Chapter

2. Can Goose, Z3 and nuXmv find a valid counterexample for an invalid
safety property for a survey of eight ING specifications and how fast?

(Chapter

3. Given the simple bankaccount example (figure and an invalid safety
property to check if the balance is below some maximum, how fast can
Goose, Z3 and nuXmv find a valid counterexample? (Chapter [5.5)

4. Can Goose, Z3 and nuXmv prove that some number is not a fibonacci
number and how fast? (Chapter

5. How fast is the algorithm part of the prototype for all verification prop-
erties for the ING survey? (Chapter

6. How does Goose scale when the number of nodes are increased linearly?

(Chapter

In order to perform these experiments, we have developed a prototype im-
plementing the algorithms from chapter [l We shall discuss the prototype in
chapter The environment of our experiment is detailed in chapter We
shall conclude this chapter with a summary of our findings in chapter [5.9]

5.1 Prototype

The prototype implements the algorithms of chapter This prototype has
served as the basis for any experiments and as a reference implementation.
The prototype has been written in the programming language Scala [1].
This is an object-oriented programming language with functional programming
influences. It generates to Java Virtual Machine (JVM) bytecode which is a
multi-platform object-oriented assembly-like language which is interpreted by
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the Java Virtual Machine. We have chosen to use Scala as ING prefers JVM-
based languages. After this research, the prototype may be used or further
researched by ING and they will be familiar with the programming language
the prototype is written in.

The Goose algorithm relies on an SMT-solver. We have chosen to use Z3.
Not only does it have the PDR engine as explained in chapter but it is also
an SMT-solver as explained in chapter [2.3.1] We have chosen for Z3 as it is
being maintained by Microsoft Research and we expect it to be updated with
the latest theories in the future. Also, Z3 offers a programmatic API for Java.

We have checked if the prototype performs as expected using unit and inte-
gration tests. Our test suite has 84.41% statement coverage and 83.78% branch
coverage including the core Goose algorithm code but excluding any command-
line user-interface code or generator code to generate Z3 and nuXmv specifica-
tions from Goose specifications. We have chosen to exclude the generator code
from the test coverage check because the focus of our testsuite is to see if Goose
functions correctly. The Z3 and nuXmv specifications generated with the code
generators have been checked for correctness.

5.2 Experimental Setup

In order to perform our experiments we used the same machine for all exper-
iments. The details of the machine and software used is detailed in chapter
We have chosen to use an average workstation to allow us to answer the
research question if the procedure is fast enough to be used while developing
specifications on an average workstation.

With our experiments we evaluate the execution times and the solvability of
Goose, Z3 with PDR strategy and nuXmv with IC3 strategy. As all three tools
accept different input languages, we need some way to express the STS specifica-
tion directly in Z3 and nuXmv. We have already discussed this in chapters|3.3.2
and We have created code generators to map the STS specifications from
the Goose input language to the other languages. Any specifications mapped
to another language have been checked to see if they are correct.

5.2.1 ING survey

In collaboration with ING we have created 8 STS specifications which we deem
representable of the overall verification needs of ING. We call these specifications
the ING survey and they are included in appendix [A] We have designed these 8
specifications to match the overall complexity found in ING’s verification needs.
We matched the complexity in the amount and structure of cycles, complexity
of constraints and amount of nodes and transitions from least complex to most
complex.

5.2.2 Warm-up

73 and nuXmv are implemented in C++ and Goose is implemented in Scala.
C++ is compiled directly to machine code while Scala is compiled to Java Vir-
tual Machine (JVM) bytecode. The JVM is an execution engine available for
Windows, various Linux distributions and macOS and allows the same JVM
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compiled program to be executed across all operating systems. The JVM in-
terprets the JVM bytecode and compiles it to machine code on the fly. This
is called Just-In-Time (JIT) compilation and has various optimizations such as
optimizing a piece of JVM code which is executed more often than other parts
of the program. This leads to issues when evaluating the execution time of a
program which is executed repeatedly within the same JVM instance as the first
execution may be considerably slower than the second one. This is countered
with a warm-up where the program is executed multiple times without register-
ing the execution time before executing the same program again multiple times
and registering the execution time. We have used this warm-up technique for
the experiments of chapters |5.7] and With these experiments we are inter-
ested in the results of the execution time for just the algorithm without any
interference of the JIT compiler. With the other experiments we are interested
in the execution for the situation as if we would have used the tool ourselves.
In this situation, we would not warm-up the program for a best case execution
time and therefore the warm-up technique is not used.

5.2.3 Testing Environment

The experiments were performed within the same testing environment. This
environment consisted of:

e OS: Fedora 27 with kernel 4.14.8-300

e CPU: i7-6700HQ @ 2.60GHz

e RAM: 2x8GB DDR4 2133Mhz

e Storage: 256Gb NVMe SSD.

The following software versions were used:
e Java: 1.8.0 update 144 Oracle

e Scala: 2.12.4

e 73: 45.0

nuXmv: 1.1.1

MCMT: 2.5.2

5.3 ING specifications with Valid Safety Prop-
erty

The goal of this experiment is to show if Goose is suitable to be used with
ING specifications and if it can be used during development. We have used the
specifications of the ING survey (chapter. We have included a valid safety
property and queried the tools to prove this property. An graphical overview of
the specifications and the safety properties tested may be seen in appendix [A]
We are interested in the total execution time of the programs as if we would have
used the tools ourselves. Therefore, we have not used the warm-up technique.

79



Analysis

The results are shown in table Some queries returned the result 'unknown’
for Z3 and nuXmv and we are unable to say why they returned unknown. We
do note the following:

e 73 & nuXmv are ~ 100 times faster than Goose.

e Differences in time of execution between specifications are near negligible
for all tools.

e 73 & nuXmv cannot prove the safety property for the specifications con-
taining non-linear arithmetic.

e Goose is able to prove the safety property for the specifications containing
non-linear arithmetic.

The small difference in time of execution between specifications is expected:
The specifications contain a similar amount of nodes and transitions and none
of the cycles are forced to be unfolded by the safety property.

While the execution time of Goose is between 0.887 and 1.062 seconds, we
see that Z3 and nuXmv are between 0.015 and 0.047 seconds. Z3 and nuXmv
are very fast compared to Goose for these specifications. The reason seems to
be the overhead of Goose starting the JVM and compiling the specification that
Goose is almost ~ 100 times slower than Z3 and nuXmv as may be seen in table
(chapter where we do not take these parts of the program into account
while timing the execution time of the two phases of the algorithm. Goose’s
total execution time is than between 0.025 and 0.070 seconds. Still Goose is
slower.

73 & nuXmv cannot prove the safety property for specifications containing
non-linear arithmetic. For Z3 this is unexpected. Hoder et. al. [19] have shown
how they extended the PDR algorithm with non-linear arithmetic. However,
they have not shown that their approach is able to reason over specifications
with arbitrary non-linear arithmetic constraints. We think the (lack of) result
for the specifications containing non-linear arithmetic are examples to show that
their current approach is not complete. For nuXmv this is expected. Cimatti et.
al. [11] state in the conclusion that they will look at non-linear arithmetic in the
future stating indirectly that nuXmv currently does not work with non-linear
arithmetic.

The goal of this experiment was to see if Goose returns results fast enough
to be used while writing these specifications. In chapter [I.1]we have defined the
bounds as execution time within a few seconds on an average workstation. Our
test environment may be considered an average workstation and the execution
time was always around a second for this prototype. We may therefore conclude
that Goose may be used during the development of specifications to prove valid
safety properties.

5.4 ING specifications with Invalid Safety Prop-
erty

The goal of this experiment is again to show if Goose returns results fast enough
to be used with ING specifications and if it can be used during development.
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Table 5.1: Results for ING specifications with valid safety property. Average in
seconds after 100 runs or unknown if tool could not prove the safety property.

Specification Contains Contains Goose | Z3 nuXmv
non-linear cycle
arithmetic
Account Holder - - 1.046 0.023 0.015
Bank Account - Yes 1.000 0.022 0.016
Bank Account with Interest | Yes Yes 1.018 Unknown | Unknown
Linear Loan Yes Yes 1.062 Unknown | Unknown
Money Movement - Yes 0.887 0.029 0.014
Non-Interest Loan Yes Yes 1.002 Unknown | Unknown
Transfer - - 0.911 0.022 0.014
TriangleOfNodes - Yes 0.973 0.047 0.023

The experiment is similar to the previous experiment of chapter We have
included an invalid safety property and queried the tools to find a counterexam-
ple for this property. A graphical overview of the specifications and the invalid
safety property used may be seen in appendix [A]

Analysis

The results are shown in table Again some queries returned the result
‘unknown’ for Z3 and nuXmv. In this case we are also unable to say why they
returned unknown. We note the following:

e 73 & nuXmv are ~ 100 times faster than Goose

e Differences in time of execution between specifications are near negligible
for all tools

e nuXmv cannot find counterexamples for any safety property for the spec-
ifications containing non-linear arithmetic

e 73 cannot find a counterexample for one specification

The difference in time of execution between specifications is expected: The
specifications contain a similar amount of nodes and transitions and none of the
cycles are forced to be unfolded by the safety property.

Again we see that Z3 & nuXmv are ~ 100 faster than Goose. As we explained
in the previous section, this seems to be due to start-up overhead of starting
the JVM and compiling the specification. However, we have not ran a similar
benchmark as for the previous section taking only the algorithm execution time
into account so we are unable to say definitively if it is the same reason although
it seems likely.

As explained in the previous section, Z3 should be able to reason (partially)
about non-linear arithmetic while nuXmv is not able to reason about non-linear
arithmetic. This is reflected in the results as Z3 is able to find counterexamples
for 2 of the specifications containing non-linear arithmetic while nuXmv isn’t
able to find any counterexample for the 3 specifications containing non-linear
arithmetic.
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Table 5.2: Results for ING specifications with invalid safety property. Average

in seconds after 100 runs or unknown if tool could not disprove the safety

property.

Specification Contains Contains Goose | Z3 nuXmv

non-linear cycle

arithmetic
Account Holder - - 1.041 0.016 0.017
Bank Account - Yes 1.009 0.015 0.016
Bank Account with Interest* | Yes Yes 1.036 0.015 Unknown
Linear Loan* Yes Yes 1.057 Unknown | Unknown
Money Movement - Yes 0.894 0.014 0.015
Non-Interest Loan* Yes Yes 0.998 0.092 Unknown
Transfer - - 0.956 0.014 0.016
TriangleOfNodes - Yes 0.980 0.020 0.017

As explained in the previous and current experiment, the goal of these ex-
periments is to find if Goose is suitable to be used during the development of
specifications on an average workstation. The results for invalid safety proper-
ties are again within the bounds of a few seconds as the execution time is around
a second. We may therefore conclude that Goose is not only suitable to prove
valid safety properties but also to disprove invalid safety properties during the
development of specifications.

5.5 Forced Cycle Unfolding

The goal of this experiment is to show that the proposed approach nicknamed
Goose does not require more resources exponentially due to forced cycle un-
folding and to see if Z3 and nuXmv indeed show this problem in practice. We
have explained this phenomenon in chapter We have used a variation
of the bank account specification from the previous section where we not only
limit the amount you are able to deposit and withdraw to 50 but also set the
initial balance to 50. We then query the tools if the balance of the bank account
ever exceeds a set maximum. This forces the IC3/PDR algorithm to unfold the
cycle until a balance higher than the maximum is reached. This maximum is
the variable we change throughout the experiment. A graphical representation
of this specification may be seen in appendix

Analysis
The results are shown in table[5.3] and in figure 5.1} We note the following:
e Goose has a near constant execution time

e 73 increases exponentially in execution time as the maximum balance is
increased

e nuXmv increases exponentially in execution time as the maximum balance
is increased
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Table 5.3: Results for limited bank account specification with invalid safety
property. Average in seconds after 100 runs.

Maximum balance | Goose | Z3 nuXmv
100 1.016 0.020 0.020
1000 1.004 0.069 0.576
2000 1.003 0.128 4.582
3000 0.997 0.198 17.284
4000 1.002 0.275 42.685
10000 0.998 0.846 -

20000 1.061 2.391 -

30000 0.998 4.825 -

100000 1.006 55.795 | -

e nuXmv increases exponentially in execution time more rapidly than Z3 as
the maximum balance is increased

It is expected for Goose to remain constant in execution time as the amount
of work does not change. First all reachable state constraints are deduced and
verified and then it is checked if all reachable state constraints imply the safety
constraint; the value for the maximum balance does not change this amount
of work. As we only change the maximum of the balance and not the safety
constraint itself it solely depends on the SMT-solver when the counterexample
is found. Our results show that the execution time does not significantly change
as we change the maximum balance so it seems the SMT-solver is able to find
the counterexample at roughly the same amount of time for each value of the
maximum balance.

We expected both Z3 and nuXmv to rapidly increase in execution time when
we change the value for maximum balance. The results reflect our hypothesis.
What we did not expect is that nuXmv rapidly increases in execution time for
a lower value for maximum balance then Z3. This might be explained by some
implementation difference between the IC3 and PDR engines of nuXmv and 73
but further research into the internals of Z3 and nuXmv is necessary to say for
certain.
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5.6 Fibonacci Numbers

The goal of this experiment is to show that Goose is unable to verify the safety
property a! = NUM where a is a variable fibonacci number and NUM is a
constant number that should not be a fibonacci number. The specification used
is included in appendix [C| Goose is unable to (dis)prove the safety property as
the query to verify the user-given RSC using the triple verification rule cannot
be proven. The triple verification rule is not strong enough as Goose returns a
spurious counterexample.

It is interesting to see that Z3 and nuXmv are able to (dis)prove the safety
property. We have included the results in table

Table 5.4: Results for fibonacci specification with invalid safety property.
Average in seconds after 100 runs.

NUM Goose 73 nuXmyv
10 Spurious counterexample | 0.027 0.021
100 Spurious counterexample | 0.154 0.072
1000 Spurious counterexample | 0.587 0.203
10000 Spurious counterexample | 2.196 | 0.402
100000 Spurious counterexample | 5.777 0.781
1000000 Spurious counterexample | 11.78 1.413
10000000 Spurious counterexample | 29.61 2.348
1000000000 | Spurious counterexample | 37.012 | 5.07

Analysis
The results are shown in table We note the following:

e Goose is unable to (dis)prove the safety property as it is unable to verify
the user-given RSC for the node in the specification.

e The execution time of Z3 & nuXmv increase as NUM increases.

e The execution time of Z3 increases more rapidly than the execution time
of nuXmv when NUM increases.

It is expected that Goose is unable to (dis)prove the safety property. As
we have noted before in chapter mathematical induction is unable to prove
properties for the fibonacci sequence as k-induction with k& >= 2 is necessary.
The triple verification rule is based on mathematical induction and is therefore
not strong enough to prove the user-given RSC for the node in the specification.

It is also expected that the execution time increases for Z3 and nuXmv when
NUM increases as we are forcing the cycle to unfold again.

It was not expected to see a large difference in the execution times between
73 and nuXmv for the same value of NUM. We are unable to give a reason.
It might have to do with the implementation differences between the tools and
the way the counterexample information is used to refine the frames with the
1C3 algorithm.
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5.7 ING Specifications with all Verification Prop-
erties

The goal of this experiment is to show the execution times of the Goose algo-
rithm for all verification properties specified in chapter [£.3]for the specifications
of the ING survey of appendix [A] To reiterate, we are interested if and how
fast Goose is able to prove the valid safety properties, prove there are no sink-
holes, prove there are no dead transitions, prove there are no unsatisfiable start
transitions and to prove there are unsatisfiable relations.

We are interested in the execution time of just the algorithm so the compiling
and setup phases of the prototype are not taken into account. We also use a
warm-up to let the JVM optimize the JVM bytecode. We are also interested how
the execution time is divided across the two phases of the verification procedure
so we note the execution time of the two phases and the percentage of the total
execution time of the two phases combined.

Analysis
The results are shown in tables and We note the following:

e Goose has a false positive in the Linear Loan specification when checking
for sinkholes and unsatisfiable relations.

e Goose presents an SMT query to Z3 which Z3 is unable to solve in the
Non-Interest Loan specification when checking for dead transitions, unsat-
isfiable relations and unsatisfiable start transitions and returns unknown.

e The maximum time taken in the generation & verification phase is 0.046
seconds.

e The maximum time taken in the verification properties phase is 0.041
seconds.

We have noted that SMT solvers may return unknown in some cases. In
the results we see that Z3 returns unknown when checking for dead transitions,
unsatisfiable relations and unsatisfiable start transitions for the Non-Interest
Loan specification. Upon further analysis, we see that this has to do with non-
linear arithmetic and in all three cases it is a query with the same term that
fails. In the query is the same term consisting of three real variables with an
equality and multiplication.

The maximum time taken in the two phases is 0.046 and 0.041 seconds. This
is unrealistic in a regular use-case as we have optimized the JVM byte code by
warming up the JVM. However, we do note that the algorithm (without setup
and compiler parts of the program) is below 100ms and therefore satisfies the re-
quirement that the useful verification properties should be verified in reasonable
time.
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5.8 Scaling of Goose, Z3 PDR and nuXmyv

The goal of this experiment is to show how Goose, Z3 and nuXmv scale when
increasing the number of nodes and transitions. As not all of the tools support
non-linear arithmetic, we have generated specifications with linear arithmetic.
We have generated two types of specifications: 1) STS with a single integer
state variable which is given a new value after each transition with no relation
to the previous value (see figure and 2) STS with a single integer state
variable which adds some number to the current value after each transition
(see figure . The maximum number set/accumulated on each transition (j;
through j,,—1 in the figures) is between 1 and 10 and therefore ¢ is not higher
than 10 * (m — 1) where m is the number of nodes in the specification.

ni — n2 > ... > nm

Figure 5.2: STS where the amount of nodes and transitions are scaled.
Variable ¢ is set a new value between 1 and 10 after each transition.

Guards are above the line, relations below the line for transitions

true true true
i'==i+j1 i'==i+j2 i'==1i+jm-1
ni _— > n2 > ... > nm

Figure 5.3: STS where the amount of nodes and transitions are scaled.
Variable i is added a new value between 1 and 10 after each transition.

Guards are above the line, relations below the line for transitions

The check we will perform is proving a valid safety property valid. We will
check 1) if 4 >= 0 holds for the state variable i and 2) if i <= 10000 holds for the
state variable i. We have chosen these two safety properties as we hypothesize
that the IC3 algorithms will not have an issue with the first safety property but
will perform poorly when trying to verify the second safety property when the
i is accumulated throughout the specification. This hypothesis is based on the
fact that IC3 will probably use ¢ >= 0 as a frame for all reachable states while
the second safety property forces the creation of a significant number of frames
as there is no abstraction for the safety property. We shall use the results to
confirm or deny this hypothesis.
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Analysis
The results are shown in tables [5.10] [5.11] [f.12] and [5.13] We note the following:

e The execution time for Z3 and nuXmv rise quickly for the STS where i is
accumulated where safety property 2 i <= 10000 is checked. (table [5.13])

e The execution time of Goose rises more quickly for the STSs where i is
accumulated than the STSs where ¢ is set a new value after each transi-
tions.

e The execution time of Z3 rises more slowly than the execution time of
nuXmv for the results of tables [5.10} [5.11] and [5.12]

e The execution time of nuXmv rises more slowly than the execution time

of nuXmv for the results of table [5.13]

e The execution time of Goose rises more-than-linearly as the number of
nodes rises linearly.

The first analysis point confirms our theory. Z3 and nuXmv do indeed
perform poorly when i is accumulated and the safety property i <= 10000 is
checked.

The second analysis point is unexpected. When ¢ is accumulated, a long
RSC is accumulated with many variables which have to be assigned. When i is
set a new value after each transition, the SMT solver should only look at the
term with the state variable for that node to determine if it implies the safety
property. Further analysis is needed to determine the cause for this and is left
to future work.

The third and fourth analysis points are interesting. Z3 performs better for
the result sets with a low execution time while nuXmv performs better for the
result set where the execution time quickly rises.

The fifth and final analysis point is interesting and is the goal of this ex-
periment. Goose seems to scale more-than-linearly when the amount of nodes
increases. Further analysis is needed to determine if this is due to the longer
RSCs and the execution time of the SMT solver or due to the added complexity
of the verification procedure. This is left to future work.
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5.9 Conclusion

With this chapter we have presented a number of experiments and analysed
the results. The goal of these experiments were to find how Goose performs in
terms of solveability and execution time as compared to Z3 and nuXmv. We
have found that:

e The execution time of Goose scales more-than-linearly with the number
of nodes and transitions as is shown by the experiments of chapter

e The execution time of Goose remains constant with safety properties that
force cycle unfolding with IC3/PDR algorithms as is shown by arguments
made and the experiment of chapter [5.5

e Goose has a higher solveability for specifications containing non-linear
arithmetic as is shown by the experiments of chapter [5.3| and chapter [5.4

e Goose is usable during development of specifications by ING as is shown

by the experiments of chapters and

e Goose is unable to verify safety property for the fibonacci specification
while Z3 and nuXmv are able to verify the safety property as is shown by
the experiments of chapter

e The overall execution time is higher than the execution time of Z3 and
nuXmv except when we force a significant number of frames for the IC3
algorithm as is confirmed by the experiments in chapters and

We have discussed if the current results for Goose satisfy the requirements
for ING and they have confirmed that Goose will fit in their use-case.
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Chapter 6

Future Work

Throughout this thesis we have left certain questions to future work. This
chapter serves as an overview of the different tasks which may be researched in
the future.

1. Reduce reachable state constraints when possible - We have shown
in chapter that the generated RSC in some cases may be reduced
when certain parts of the RCS are not necessary to model all the reachable
states. With future work we may look at techniques and tools to optimize
these constraints to simple constraints while preserving the states mod-
elled by the RCS.

2. k-induction & other proving techniques - We have shown in chapter
[4:2.2) that we use the triple verification rule to verify RSCs. This proving-
technique is based on mathematical induction over paths. Stronger proving-
techniques exist such as k-induction. Future work may research which
proving-techniques or rules may be added to the verification procedure to
allow for more RCSs to be verified.

3. Parallelisation of algorithm - We have shown in chapter [£.2.3| that the
order of work for the verification procedure is per strongly connected com-
ponent (SCC) using the condensation graph. We have also shown that it
is possible to verify multiple SCCs concurrently while preserving sound-
ness. Future research may improve the algorithm to leverage concurrency
to speed up the algorithm.

4. Z3 PDR and verification properties - In chapter [3.3] we have shown
how Z3 with the PDR strategy may be used to verify safety properties of
STSs. Opposed to nuXmv, with Z3 and PDR it is possible to reference
all reachable states for some node. Future research may be done to create
a mapping from the verification properties to a Z3 PDR specification and
evaluate how well Z3 with PDR is able to verify the same properties Goose
is able to verify.

5. References between specifications - With Goose in its current form
we are able to verify STS specifications without referencing other STS
specifications. This may be used to put the different symbolic transitions
systems in parallel for some transitions. NuSMV [10] and nuXmv [11] are
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8.

able to express relations between multiple specifications using modules.
Future work may look into how the verification procedure and properties
may be modified to allow for references between specifications.

Quantifiers in language - Currently we allow users to specify constraints
for guards, transition relations and RSCs without quantifier. We have not
researched if any of the procedure steps have to change when allowing
quantifiers. Future research may look into allowing quantifiers in the input
language and what consequences this has.

Trace for counterexamples - Currently counterexamples for verifying a
RCS and the verification property may be given. This entails a reachable
state for some node. We have not yet provided a mechanism to find a
path from a starting transition to this counterexample. Future research
may look into creating such a mechanism.

Further analysis of complexity Goose - We have seen in chapter
that Goose scales exponentially when the amount of nodes increases
linearly. We are interested in why it increases exponentially.

Reachable state constraint generation for cycles - We have seen in
chapter that the deduction rule is unable to generate RSCs for nodes
in a cycle. There exist invariant generation techniques which may help to
generate RSCs for nodes in cycles in some cases.
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Chapter 7

Conclusion

This research has started with the goal to define useful verification properties
to verify for STSs which is the formalism used in the domain specific language
Rebel. Also a technique, existing or new, had to be found/designed to verify
these useful verification properties; preferably one that ran in reasonable time
(a few seconds) on an average workstation so it could be just when developing
the Rebel specifications. This has led to the a number of research questions in
chapter

We have defined five useful verification properties: safety properties, exis-
tence of sinkholes, existence of dead transitions, existence of unsatisfiable rela-
tions and existence of unsatisfiable start transitions. These verification proper-
ties have been defined in chapter 4.3

In order to solve the research questions, a literature study has been con-
ducted on existing techniques to solve one or more of the useful verification
properties we have defined. In chapter [3] we have described the tools MCMT,
nuXmv and Z3. We have shown that MCMT may not be used for arbitrary STSs
while nuXmv and Z3 both implement a variant of the IC3 algorithm to verify
safety properties for arbitrary STSs. We have shown in chapter that the
amount of work done by IC3 may blow up when considering STSs with cycles
and specific safety properties which force the algorithm to unfold the cycle for
a large number of iterations. We have also confirmed this with the experiment
of chapter [5.5] This has led to the development of a new approach as these
existing technique did not fit the requirements of ING.

This new approach is nicknamed Goose. As shown in chapter [} this ap-
proach uses properties called reachable state constraints (RSC) to summarize
all reachable states for a node. The approach uses the deduction rule to deduce
the RSC for nodes of a STS when the node is not in a cycle and otherwise
requests a RSC from the user. Any unverified RSC is verified with the triple
verification rule.

We have also evaluated Goose with Z3 and nuXmv in terms of solveability
and execution time in chapter [} We have shown that Goose is able to solve
more specifications containing non-linear arithmetic and it scales more-than-
linearly when increasing the number of nodes linearly. Z3 and nuXmv are able
to solve certain safety properties which Goose is unable to solve as is shown with
the evaluation of the fibonacci specification (chapter . The reverse is also
true as is shown with the non-linear arithmetic specifications of the ING survey
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(chapters and . Finally, we have also shown that Goose is usable for the
ING use case by checking the solveability and execution time for a survey of
ING specifications.

The motivation for this research started at ING. They wanted some way
to verify properties for symbolic transition systems. We have presented our
findings in the form of a presentation and discussed if the research in this thesis
solves the main research questions for them and if the prototype is usable in
their work.

ING has answered that they find that the research is relevant for their work
and solves many of the research questions they had. As we currently do not
allow references between specifications in Goose, the research is not yet ready
to be used for every specification ING is currently working on. We do, however,
have integrated the Goose prototype in ING’s work and have shown that the
prototype is able to solve their verification needs for specifications containing
no references to other specifications. They consider the research a success.

All in all, we may answer the research questions as follows:

1. What useful properties may be verified for a STS? (chapter

e We have defined the verification properties: safety property and the
existence of sinkholes, dead transitions, unsatisfiable relations and
unsatisfiable start transitions.

2. What verification techniques & tools exist which may help to verify prop-
erties about a STS? (chapter [3))

e We have found the existing techniques Z3 and nuXmv and have de-
fined the new approach Goose.

3. What approach may be taken to decrease the resources needed and to
increase the solvability to verify the chosen useful properties for a STS
over existing techniques? (chapter |4)

e So far we have only shown that Goose is able to verify all verification
properties we have defined. We have also noted in chapter [f] that
73 may be able to verify other verification properties. This is to be
researched in future work.

4. Is this approach sound, complete, does it always terminate and what are
the practical limitations? (chapter

e Goose is sound when none of the RSCs are over-approximations.
When a user supplies a RSC this may be an over-approximation and
some dead transitions may not be reported (false negatives) while
some reachable states may be reported to violate a safety property or
Goose reports that certain sinkholes or unsatisfiable relations exist
(false positives). Goose is not complete as in some cases we have
to ask the user to supply RSCs and not all RSCs may be verified
to be correct. Goose always terminates although the SMT solver,
which is used by Goose, may not terminate in all cases. Finally, it is
also not able to give a trace to the violating reachable state when a
counterexample for some verification property or RSC is found.
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5. Using a suite of Rebel specifications commonly used by ING, how do the
selected tools perform in terms of solvability and execution time to verify
on an average workstation and is the execution time within the practical
limit of a few seconds? (chapter

e As we have shown with the various experiments of chapter [5, Goose
is able to verify all verification properties within reasonable time for
the ING survey.

e We have shown that Goose is able to solve more specifications with
non-linear arithmetic of the ING survey while Z3 and nuXmv are able
to verify the safety property for the fibonacci specification of chapter
(.6l Z3 and nuXmv are usually a lot faster than Goose except when
we force Z3 and nuXmv to create a significant number of frames.
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Appendix A

ING Specifications

A graphical representation of the ING specifications used in the evaluation.
Results for valid safety properties are shown in chapter and result for invalid
safety properties are show in chapter

Table shows which valid safety property we have proved and which
invalid safety property has been refuted for each of the specifications. Table
shows which (if any) reachable state constraints have been added to verify
the specification with Goose.
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Table A.1: Name and reference of each specification in graphical form with the
valid and invalid safety property evaluated in chapter

Specification Reference | Valid safety property Invalid safety property
archivedAt == —1V )

Account Holder Al archivedAt —= 100000 archivedAt == 2

Bank Account A.2 balance > 0 balance < 1000

Bank Account with | [A.3 balance > 0 balance < 1000

Interest

Linear Loan A4 outstandingAmount > 0 A (outstandingAmount == 0) —

remaining Terms > 0

(remainingTerms > 0)

Money Movement A5

balancel 4+ balance2 == 400 A
balancel > 0N
balance2 > 0

balancel == 401

Non-Interest Loan A .6

(outstandingAmount == 0 —
remaining Terms == 0) A
(remainingTerms == 0 —

outstandingAmount == 0) A

remaining Terms > 0 A
outstandingAmount > 0

(outstandingAmount == 0) —
(remainingTerms > 0)

Transfer AT

balanceFrom > 0 A
balanceTo > 0

balanceFrom < 100000

Triangle of Nodes A8

1> 0A
1< 3

1> 0A
1< 2

Table A.2: Name and reference of each specification in graphical form with the
reachable state constraints needed to verify the specification with Goose.

Specification

Reference

Node

Reachable State Constraint

Bank Account

A.2

balance > 0 A

Open

status == OPEN

Bank Account with
Interest

A.3

Open

balance > 0 A
status == OPEN

Linear Loan

A4

Indezxation

outstandingAmount > 0 A
repayment < outstandingAmount N\
repayment > 0 A
remaining Terms > 0N\
interestRate > 0.05 A
interestRate < 1.0

Money Movement

A5

Drafted

balancel > 0 A
balance2 >= 0 A
balancel + balance2 == 400

Non-Interest Loan

A.6

Agreement

(outstanding Amount ==
remainingTerms * repayment) A
outstanding Amount > 0 A
remainingl'erms > 0

Triangle of Nodes

A.8

115 1

118 2

1==1

1T ==
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Appendix B

Limited Bank Account

A graphical representation of the bank account specification (see figure [B.1)) of
the experiment explained in chapter The experiment uses the invalid safety
property balance < MAXIMUM where MAXIMUM is the variable changed in
the experiment to some integer MAXIMUM > 0. We have added the reachable
state constraint balance > 0 A status == OPFEN to node Open in order to
verify the specification with Goose.
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Appendix C

Fibonacci

A graphical representation of the fibonacci specification (see figure of the
experiment explained in chapter The experiment uses the invalid safety
property a # NUM where NUM is some constant number which should not
be a fibonacci number. We have added the reachable state constraint a ==
i1 +i2Aa > 5 ANip > 3ANiy > 2 to the node in order to try to verify the
specification with Goose.
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Appendix D

Specifying STS in nuXmv

& 7.3

How to specify an arbitrary STS in nuXmv is shown in listing

Listing D.1: Pseudo code on how to specify an arbitrary STS in nuXmv input

MODULE main

VAR : { [foreach node]

language.

node.label [node isNotLast] , [end isNotLast]

[end foreachl]

};

[foreach state variable as var]

VAR var. : var.type;
[end foreach]

[foreach transition variable

as var]

VAR var.label_var.transition. . var.type;

[end foreachl]

INIT [foreach start transition as trans]
( (node = trans.destination)

& trans.relation
) [trans isNotLast] |
[end foreach];

[foreach node as n]
TRANS (node = n.label —> (

[end isNotLast]

[foreach n.leaving_transitions as trans]

(trans.guard) & (trans.

[end foreachl]
));

[end foreachl]

relation) |
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38

[foreach safety property as prop]
INVARSPEC (prop);
[end foreach]

How to specify an arbitrary STS in Z3 with the PDR strategy is shown in
listing

Listing D.2: Pseudo code on how to specify an arbritary STS in Z3 PDR input
language.

(declare-datatypes () ((Node
[foreach node as node]
node.label
[end foreachl]

)

[foreach enumeration as enum]
(declare-datatypes () ((enum.label enum.values)))
[end foreachl]

; The collection of reachable, faulty states

(declare-rel faulty_states (Node

[foreach state variable as varl
var.type

[end foreachl]

))

; The collection of reachable states

(declare-rel states (Node

[foreach state variable as var]
var.type

[end foreachl]

))

(declare-var node (Node))
(declare-var next_node (Node))

[foreach state variable as var]
(declare-var var.label (var.type))
(declare-var next_var.label (var.type))

[end foreach]

[foreach transition variable as var]
(declare-var var.label_var.transition.label_t (var.type))
[end foreach

(define-fun initial () Bool
(or
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89

[foreach start transition as trans]
(and (= node trans.destination) (trans.relation))
[end foreachl]

[foreach transition as trans]
(define-fun trans.label () Bool
(and
(= node trans.origin)
(= next_node trans.destination)
(trans.guard)
(trans.relation)

)

[end foreachl]

; Any of the following transitions
(define-fun transition () Bool
(or
[foreach transition as trans]
trans.label
[end foreachl]

)
)
(define-fun safety_property () Bool
(and
[foreach safety property as prop]
prop

[end foreachl]

; Any state satisfying the initial function is a reachable state
(rule (=> initial (states node
[foreach state variable as var]

var.label
[end foreachl]
)))

; For any origin state in reachable states, any destination state
; that satisfies any transition is in reachable states
(rule
(=>
(and
(states node
[foreach state variable as var]
var.label
[end foreach]
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90 )

91 transition

02 )

03 (states next_node

04 [foreach state variable as var]
95 next_var.label

96 [end foreach]

o7 )

98 )

99 )

100

101 ; Any reachable state that counters the safety property
102 ; is a faulty state

s (rule

104 (=>

105 (and

106 (states node

107 [foreach state variable as var]
108 var.label

109 [end foreachl]

110 )

111 (not safety_property)

112 )

113 (faulty_states node

114 [foreach state variable as var]
115 var.label

116 [end foreachl]

117 )

118 )

119 )

121 ; Ask for all faulty states
122 ; Should be empty if safety property is preserved
123 (query faulty_states)
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