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Abstract

We consider the class of affine, symmetric, k-affine congestion games and cal-

culate the maximum Price of Anarchy for large number of players. The Price

of Anarchy is defined as the ratio between the total cost of a stable equilibrium

(Nash Equilbrium) and the total cost of the system’s optimum. The Nash Equi-

librium is defined as a solution where no player can deviate and thereby lower

his individual total cost, while the system’s optimum is defined as a solution

where the social cost is minimized.

Recent work has shown that the maximum Price of Anarchy for affine, sym-

metric, k-uniform congestion games lies between 7−4
√

2 ≈ 1.343 and 28
13 ≈ 2.15.

In this thesis we will improve the upper and lower bound to a constant of

≈ 1.35188.

We do this by calculating both an upper bound via an alternating paths

based approach that examines the difference between the equilibrium and the

optimal solution, and a lower bound by way of example. The alternating paths

compare the system’s Nash Equilibrium with the Optimal solution in critical

case games, which is a set of games for which the Price of Anarchy is highest.

We show that for critical case games and when N → ∞, the price of anarchy

can never be higher than ≈ 1.35188. We construct the lower bound by giving

an example of a (near) critical case game with a Price of anarchy of ≈ 1.35188,

thus proving that critical case games have a Price of Anarchy of at least this

value.
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Nomenclature and abbreviations

NE Nash Equilibrium

OPT Optimal Solution

PoA Price of Anarchy

AP Alternating Path

N the number of players

R the set of resources

Si set of strategies of player i

k number of resources chosen by every player

O
(
r ∈ R|dr > d∗r

)
(“Overloaded resources”)

O> the set of resources that appear among ot+1, · · · , o∆

U
(
r ∈ R|dr < d∗r

)
(“Underloaded resources”)

U> the set of resources that appear among u′t+1, · · · , u′∆
B

(
r ∈ R|dr = d∗r

)
(“Balanced resources”)

B1 balanced resources used by alternating paths

B2 balances resources not used by alternating paths

F set of edges not incident to O
I {i ∈ N |io ∈ NE for any o ∈ O>} set of player that has at least one

connection to a resource o ∈ O>

I1 set of expensive non-alternating players

I2 set of expensive alternating players

J {j ∈ N |∃P = (· · · , j, u) ∈ P>} set of last players on path P ∈ P>

J set of cheap players (choosing only balanced resources in NE)

individual cost cost of one player

social cost summation of the cost of all players

M(i) The Action of (or set of resources chosen by) player i
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cr(x) cost of resource r when it is connected to x players

dr degree of resource r, or the number of connections it has to players

dr degree of resource r in a Nash Equilibrium

d∗r degree of resource r in an Optimum

C(M) Social cost of matching M

cmaxo the highest individual cost of all overloaded resources in NE

cr cr(dr), the cost of a resource in NE

c+r cr(dr + 1), the opportunity cost of a resource in NE

C a class of games. We only consider affine, symmetric, k-uniform conges-

tion games in this thesis

P path (o, · · · , u) ∈ P
P set of all paths P

P> the set of paths that correspond to an internal cost increase of ≤ co/2
P>0 set of paths that start in o ∈ O> with internal cost increase ≤ co/2
∆ Number of paths |P|
∆> Number of paths |P>|
∆>

0 Number of paths |P>0 |

x



1 Introduction

Game theory is a branch of mathematics that models conflicting or coinciding

goals between rational parties, often called players. Its application is widebut

in this thesis the focus will be on economic applications, where we compare the

effect of selfish behaviour of individuals with an optimal solution or a best case

scenario. Most models use cost functions that are dependant on the choices of

all players, so one player’s cost can be affected by the choice of another, hence

the conflicting goals. A classic example is traffic congestion, where the travel

time (cost) is heavily dependant on the route choices of other players.

The effect of selfish behavious, when compared to social optima was illus-

trated by the well known example of Pigou [3]. The example shows that equilib-

rium solutions for congestion games with affine (monotonically increasing and

non-negative) cost functions can exceed the system’s optimum by a factor of 4
3 ,

see Section 1.2. In traffic Network games, Wardrop [4] introduced the Wardrop

Equilibrium where no traffic user can decrease his cost (travel time) by unilat-

erally deviating. In Wardrop’s model, players have access to different resources

and demand can be split into arbitrarily small fractions.

An discrete version of the Wardrop equilibrium is the Nash Equilibrium,

introduced by Nash [5]. Later it was named after him by Rosenthal [6] where he

discussed the class of atomic games. The difference with Wardrop’s equilibrium

is that in atomic games demand cannot be split into fractions.

The ratio between the social cost of the most expensive Nash Equilibrium and

the social cost of an optimal solution (a solution with minimal social cost) has

been named the Price of Anarchy by Koutsoupias and Papadimitriou [7].

In Jong [8] and [9] the class of atomic, affine, symmetric, k-uniform conges-

tion games is examined. The corresponding Price of Anarchy for this class of

games is bounded between 1.343 and 2.15, which leaves a large gap. Ideally,

we would want this gap to be zero, as it gives uncertainty in worst case sce-

nario predictions. For instance, in traffic networks, a government body might

want to analyse the worst case congestion scenario during an event of increased

network activity. Before this thesis, a worst case scenario would have to work

with a total travel time interval, instead of a total travel time value. This thesis

will remove this gap by significantly decreasing the upper bound and slightly

increasing the lower bound for instances of large number of players, ending up
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with a Price of Anarchy of ≈ 1.35188 for the class of games described above.

The main results of this thesis can also be found in Kern [10].

1.1 Preliminary Definitions

We start by defining some notions

Definition 1.1. Congestion Game

A congestion game consists of a set of players N , a set of resources R and a

set of strategies Si for each player i ∈ N . For atomic congestion games, a set of

strategies represents all possible sets of resources a player can choose, so each

strategy P ∈ Si is a subset of R. Every resource r ∈ R has a cost functions

cr(xr), with xr representing the number of players that choose this resource.

In this thesis, games are represented as bipartite graphs G = (N,R,E) with

players i ∈ N , and resources r ∈ R as vertices, and actions (when players choose

a set of resources) as edges ir ∈ E. A player’s action is one element chosen from

his set of strategies.

We only consider affine, symmetric, k-uniform congestion games and break

this down as follows:

Definition 1.2. k-uniform Game

A k-uniform game is a game in which each player must choose exactly k

resources. Therefore, every strategy P ∈ Si has size k

Definition 1.3. Symmetric Game

A game that is symmetric has symmetry over the players, so every player

has an identical set of strategies and the cost functions for the resources are the

same for each player. In non-symmettric games cost functions are cir(x) with

i ∈ N .

Definition 1.4. Affine cost functions cr(x)

Finally, affine cost functions are monotonically increasing non-negative func-

tions of the form:

cr(x) = ax+ b a, b ≥ 0. (1)

An affine game is defined as a game with affine cost functions.
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An affine, symmetric, k-uniform congestion game combines the definitions

given above and is the type of game this thesis is focused on.

Definition 1.5. Degree dr

The degree of a resource is the number of players it is connected to. If three

players choose resource r, then dr = 3.

Definition 1.6. k-matching M and Action M(i)

Let M be a set of edges between players and resources, M ⊆ N × R. Let

M(i) = {r|ir ∈M} and M(r) = {i|ir ∈M}, meaning that Action M(i) denotes

the set of resources player i is connected to, and M(r) denotes the set of players

resource r is connected to. M is k-matching if ∀ i ∈ N : |M(i)| = k. In other

words, M is k-matching if every player is connected to exactly k resources.

When we say that one player changes his action unilaterally, we mean that this

player changes his action while all other players do not.

We define an action profile A as a set of actions A = (M(1), · · · ,M(n)), one

for each player.

Let dMr = |M(r)| denote the degree of resource r in matching M .

Definition 1.7. Opportunity Cost cr(x+ 1)

Opportunity Cost is a term used in this thesis for the cost a resource will

have if it is chosen by one extra player. It is useful for comparing optimal and

suboptimal solutions and to determine whether a player would want to change

his action.

Definition 1.8. Nash Equilibrium

Consider a k-matching M and a player i ∈ N . Suppose Ri = R\M(i) is the

set of resources not chosen by player i. A k-matching M is a Nash Equilibrium

(NE) if for all ir ∈M the following holds:

∀ s ∈ Ri cs(ds + 1) ≥ cr(dr) (2)

This means that no player has the option to change his action and thereby re-

duce his individual cost. For all the resources he has not chosen, the opportunity

cost is never lower than the cost of any of his chosen resources.

The degree of resource r ∈ R in a given NE is denoted as dr.

Definition 1.9. Social Cost

3



If the cost of an edge ir ∈ M is C(ir) = cr(d
M
r ), then the social cost is the

summation of the cost of all edges: C(M) =
∑
ir∈M

cr(d
M
r ), or in other terms:

C(M) =
∑
r∈R

dMr cr(d
M
r ).

Note that this summation means some resources are counted multiple times,

this is intended because their costs should be counted as many times as they

are chosen by players.

Definition 1.10. Optimal Solution

We define a k-matching M as an Optimal solution (OPT ) if it has minimal

social cost, e.g. no other k-matching has lower social cost than M . Note that

there can be several different OPT s. Also note that OPT does not need to be

a NE and vice versa, although they might be.

The degree of resource r ∈ R in a given OPT is denoted as d∗r .

Definition 1.11. Price of Anarchy

The Price of Anarchy (PoA) is the ratio between C(NE) and C(OPT ),

where NE has highest cost, in other words, for any game I, the PoA is

PoA(I) = max
MNE∈MNE(I)

C(MNE)

C(MOPT )
(3)

where MNE(I) denotes the set of all NE of game I, C(MNE) is the social cost

of the corresponding MNE and C(MOPT ) is the social cost of any MOPT .

In later chapters, we abbreviate C(NE) = C(MNE) and C(OPT ) = C(MOPT ).

The PoA of a class of games C is defined as

PoA(C) = sup
I∈C

PoA(I) (4)

In the rest of this thesis, when we write PoA, we mean PoA(C), where C is the

class of affine, symmetric, k-uniform congestion games.

1.2 Pigou’s Example

Consider an example of Pigou [3]. Suppose there are two people (players) want-

ing to cross a river as fast as possible. There are two options (resources) available

to them: Option A is to take a bridge which is some distance away, this route

will take either player 20 minutes regardless of the other player’s action. In

other words, this route has a constant costfunction cA(x) = 20.
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Figure 1: Routing game from example 1

Option B is to take a ferry directly across which is being pulled by the ferryman.

As more people take the ferry it becomes heavier and harder to pull to the other

side, making it more time-expensive. If only one player chooses the ferry, it will

take him 10 minutes, but if both choose the ferry, it will take them both 20

minutes. In other words, option B has variable costfunction cB(x) = 10x. See

Figure 1.

Note that this game is atomic since demand cannot be split into fractions,

e.g. players either choose route A or B, it is affine because cost functions are

monotonically increasing and non-negative, it is symmetric because both players

have acces to the same resources and cost functions are the same for both players,

and it is 1-uniform as both players choose exactly one resource.

There are four different scenarios available in which this example can unfold,

as illustrated in Table 1.

Table 1: Action profiles for the example

Action Profile individual cost social cost OPT or NE

(A,A) (20,20) 40 neither

(A,B) (20,10) 30 OPT and NE

(B,A) (10,20) 30 OPT and NE

(B,B) (20,20) 40 NE

First, observe that (A,B) and (B,A) yield the same results because of

symmetry. Let’s consider (A,B) henceforth for simplicity’s sake and disregard
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(B,A). This profile is both OPT and NE. Consider definitions 1.8 and 1.10,

the social cost is minimal and neither player can unilaterally change theiraction

to reduce his individual cost. (B,B) is NE because of the same reasoning,

neither player can reduce his individual cost by changing from B to A, because

the cost of A is always 20.

This example has PoA = C(B,B)
C(A,B) = 4

3 . One might think that PoA = 1 because

the optimum is also a NE. However this is not the case because the PoA always

uses the NE with highest cost.

1.3 Research Question

In this thesis we will answer the following question:

What is the maximum Price of Anarchy for affine, symmetric, k-

uniform congestion games when the number of players is large (N →
∞)?

The point of this question is to find the most extreme cases, where the PoA is

highest, and to show this value is the most extreme value.

1.4 Outline

Page ix contains a Nomenclature and abbreviations for terms used in the thesis

that may prove useful when reading the main body. Definitions and notions are

always explained in the text as they are introduced, but a short description is

given here as well.

The main body of this thesis is split into two parts; bounding the PoA from

above and bounding it from below.

Chapter 2 proves that PoA ≤ 1.35188 · · · for our class of games. This is done

via an alternating paths based approach and by making assumptions for critical

case games.

Chapter 3 gives an example of a game with many players and PoA ≈ 1.35188,

thus proving a lower bound for critical case games.

Chapter 4 concludes with our findings and makes some recommendations for

future research.

Finally, the bibliography follows in the appendix
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2 Constructing the Upper bound for the PoA

It is the goal of this section to provide an upper bound of 1.35188 · · · to the

PoA for the case |N | → ∞.

Theorem 2.1. PoA ≤ 1.35188 · · · for |N | → ∞

Because PoA compares C(NE) with C(OPT ), it would be useful to find

general expressions for both social costs. Unfortunately this is difficult to do,

as we want a PoA for an entire class of games, not just one specific game. So,

in order to prove this theorem, we start by comparing the difference in social

cost between NE and OPT in Section 2.1. We do this by introducing a method

that lets us switch actions so that we move from OPT to NE. We call this

the switching process. We define the difference in social cost between OPT and

NE in two parts, an “internal increase” and an “external increase”. At the end

of this section, we have an expression for C(NE)− C(OPT ).

Section 2.2 shows an upper bound for the external increase in social cost. We

do not use this bound in the expression for C(NE)−C(OPT ), but instead use

it as a part of proof in other sections.

Section 2.3 analyzes properties of games with the highest possible PoA which

we call critical case games. This lets us improve the bound on the difference in

social cost.

Section 2.4 improves the upper bound for the internal increase in social cost,

which in turn improves the bound for C(NE)− C(OPT ).

Section 2.5 introduces the relative social cost increase C(NE)−C(OPT )
C(NE) and con-

structs an upper bound for it, which we eventually use to calculate the PoA in

Section 2.6.

2.1 The Switching Process

The general method of comparing social cost between NE and OPT is by exam-

ining the graph with edges e ∈ NE∪OPT and paths P ∈ P that when followed

transform OPT into NE. To analyze these paths, the following definitions are

helpful:

Definition 2.1. E := NE ∪OPT
O :=

(
r ∈ R|dr > d∗r

)
(“Overloaded resources”)

U :=
(
r ∈ R|dr < d∗r

)
(“Underloaded resources”)

B :=
(
r ∈ R|dr = d∗r

)
(“Balanced resources”)

E is the set of edges that are in either NE, OPT or both. O, U, and B are

sets of resources which have either higher cost in the NE than in OPT, lower

7



Figure 2: Switching from OPT to NE over path P . Full lines represent con-

nections in either OPT or NE, while dotted lines represent a sinle

path P

cost in the NE than in OPT, or equal cost, respectively. Together, they form

the entire set of resources O ∪ U ∪ B = R.

The set NE ⊕OPT = (NE \OPT ) ∪ (OPT \NE) consists of alternating

paths successively, with paths running from resource to player to resource a

number of times, starting at a resource o ∈ O and ending at a resource u ∈ U.

Let P be the corresponding set of paths. Passing from OPT to NE can be

interpreted as switching OPT to NE along each path P = (o, i, · · · , j, u) ∈ P.

See Figure 2 for a graphical representation of switching from OPT to NE

over one path P .

After each switch has been made and we moved from OPT to NE, each

path P ∈ P will have caused both an “internal increase” where his own cost

may have changed and an “external increase” where the cost of other players

may have changed. Resources on paths other than the start and end will have

the same degree as before the switch, so the contribution to the social cost of

these resources remains the same. However, resources on the start and end of

each path have their degree decreased and increased prespectively. After the

switch, the internal increase for each path is equal to the cost of new resource o in

NE minus the cost of old resource u in OPT : co(do)−cu(d∗u). Since d∗u ≥ du+1

for u ∈ U, the internal increase is bounded from above by co(do)− cu(du + 1).

The external increase is counted not per path but per resource o ∈ O. Every

connection io ∈ OPT experiences an increase in cost equal to co(do)−co(d∗o), as

extra players are now connected to the same resource after the switch. There-

fore, every resource o ∈ O will have an increase in cost equal to co(do)− co(d∗o)
times the number of players that were connected to o in OPT , or d∗o.

This results in a difference in social cost equal to d∗o(co(do)−co(d∗o)) for each

8



resource o ∈ O.

Any path that is an alternating cycle C ∈ P that arises during the switching

process may be eliminated by passing from OPT to OPT ′ := OPT ⊕C without

affecting the social cost and constructing a new set of paths from OPT ′ ⊕NE.

We now have an upper bound for the difference in social cost

c(NE)− c(OPT ) ≤
∑

P=(o,··· ,u)∈P

co(do)− cu(du + 1) +
∑
o∈O

d∗o(co(do)− co(d∗o))

(5)

which we will improve in the following sections.

2.2 Bounding the External Increase

In this section we show the upper bound for the external increase in social cost

can be improved. While we do not apply this improvement immediately in

Inequality (5), we still make use of the lemma later in this chapter.

Lemma 2.1. for any o ∈ O, the external increase is bounded by d∗o(do − d∗o) ≤
1
4d

2

o

Consider the function f(x) = x(y−x), its maximum is determined by taking

the derivative f ′(x) = −2x+ y and solving for zero, giving us x = 1
2y. It is easy

to see that this value gives a maximum value for the function. Now we simply

input this into our function: f( 1
2y) = 1

4y
2. �

2.3 Critical Case Games

We define the class of games with maximal PoA as critical case games. Because

the PoA is maximized, these games should have high C(NE) and low C(OPT ).

As we try to find an upper bound for the maximal PoA, we can assume that

any game used in calculating this bound is a critical case game.

The following Lemma is helpful:

Lemma 2.2. For critical case games, cost functions of overloaded resources are

linear, meaning we can substitute

co(x) = cox. (6)

Proof: Suppose the converse is true: ∃ o ∈ O : co(x) non− linear (but still

affine), e.g. co(x) = ax + b, a, b > 0. We will prove that we can replace co(x)

with a linear c̃o(x) without changing C(NE), while reducing C(OPT ).

9



If we replace co(x) by c̃o(x) = co(do)

do
x, indeed, the social cost of NE remains

identical:

c̃o(do) =
co(do)

do
do = co(do). (7)

This result also means that the opportunity cost c̃o(do+1) is higher than co(do+

1), so the alteration will cause no player to change his action in NE. This proves

that C(NE) remains the same.

In order to prove that C(OPT ) is lower when c̃o(x) is used we will show that

c̃o(d
∗
o)− co(d∗o) < 0. First we examine c̃o(d

∗
o) more closely, using c(x) = ax+ b

c̃o(d
∗
o) =

co(do)

do
d∗o =

ado + b

do
d∗o = ad∗o + b

d∗o
do
. (8)

Subtract co(d
∗
o) and we get:

c̃o(d
∗
o)− co(d∗o) = ad∗o + b

d∗o
do
− (ad∗o + b) (9)

= b(
d∗o
do
− 1) < 0 (10)

The last inequality follows from do > d∗o from Def. 2.1 and b > 0.

We have now shown that when we replace co(x) with c̃o we enlarge the PoA.

This contradicts the assumption of a critical case game, thereby proving the

lemma. �

We combine Lemma 2.2 with Inequality (5) for a better upper bound for the

difference in social cost:

c(NE)− c(OPT ) ≤
∑

P=(o,··· ,u)∈P

codo − cu(du + 1) +
∑
o∈O

d∗o(do − d∗o)co. (11)

2.4 Bounding the Internal Increase

In this section, we improve the bound for the internal increase. We show that

paths either contribute co(do)/2 to the internal increase, contribute a maximum

of co(do)/2 when combined with another path, or solely contribute negatively

(in which case we disregard them). To do this, we will distinguish between

four different sets of paths in 2.4.1. The first contributes positively, the second

requires the third to contribute positively and the fourth contributes negatively.

Then we use this to improve the bound on the internal increase in Section 2.4.2.

The following definitions prove helpful.
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Definition 2.2. cmax0 = maxo∈O codo

Definition 2.3. cr = cr(dr) and c+r = cr(dr + 1)

So cr is the cost of resource r ∈ R in NE, and c+r is the opportunity cost of

resource r ∈ R in NE.

Inequality (11) now simplifies to

c(NE)− c(OPT ) ≤
∑

P=(o,··· ,u)∈P

co − c+u +
∑
o∈O

d∗o(do − d∗o)co. (12)

Lemma 2.3. For critical case games, all resources r ∈ R have dr < |N |.

Proof: Suppose the converse is true, ∃ r ∈ R, dr = |N |. Obviously, r /∈ U,

because in NE these are underloaded. So let r ∈ B∪O. Consider each scenario:

If r = b ∈ B, then db = d∗b = |N |. We can remove b from the game and

replace k with k − 1, meaning we remove a resource that all players are always

connected to and all connections to it. This reduces both C(NE) and C(OPT )

with d
2

bcb, so the price of anarchy of this new game equals
C(NE)−d2

bcb

C(OPT )−d2
bcb

which

is greater than C(NE)
C(OPT ) . This contradicts criticality of the original game, so r

cannot be in B.

If r = o ∈ O, then there must be at least one path P = (o, i, · · · , j, u) ∈ P.

If the corresponding internal increase is strictly positive co − c+u > 0, then

jo /∈ NE because of Definition 1.8, contradicting dr = |N |. So we can assume

that for all paths P = (o, · · · , u) ∈ P, the internal increase is co − c+u ≤ 0. Now

we construct k-matching M by following all paths P ∈ P starting in o with

co − c+u ≤ 0, e.g. M = OPT ⊕ P. The difference in social cost between M and

OPT is C(M) − C(OPT ) = co − c+u + d∗o(do − d∗o)co ≤ d∗o(do − d∗o)co ≤ 1
4d

2

oco,

using Lemma 2.1 for the last step. Because we followed every path from o, the

degree of o in M is dMo = d∗o = |N |. Now we remove resource o again from

both NE and M and replace k with k−1, thus creating N̂E and M̂ with social

costs C(N̂E) = C(NE)− d2

oco and C(M̂) = C(M)− d2

oco ≤ C(OPT )− 3
4d

2

oco

respectively. Also, because we are observing critical case games, C(NE) =

PoA C(OPT ), with PoA > 4
3 (see Chapter 3). We conclude by calculating the

11



price of anarchy in the new instance:

ˆPoA =
C(N̂E)

C(M̂)
(13)

≥ C(NE)− d2

oco

C(OPT )− 3
4d

2

oco
(14)

=
PoA C(OPT )− d2

oco

C(OPT )− 3
4d

2

oco
(15)

> PoA
C(OPT )− 3

4d
2

oco

C(OPT )− 3
4d

2

oco
= PoA (16)

meaning the PoA for the new game is strictly greater than the PoA for the

original, contradicting criticality for the original. �

Lemma 2.4. For critical case games, every r ∈ R with dr > 0 satisfies c+r ≥
1
2c
max
o

Proof: Suppose the converse is true, i.e. ∃ r ∈ R with dr > 0 such that

c+r <
1
2c
max
o . Consider the set of resources cheaper than r’s opportunity cost

R− = {r− ∈ R : cr− ≤ c+r }. (17)

Because cr ≤ c+r , r must be in R−, so the size of R− is |R−| ≥ 1. Now, for each

r− ∈ R−, we have

c+r− ≤ 2cr− ≤ 2c+r < cmaxo (18)

where the first inequality follows from the game being affine and the third is the

inverse assumption we try to disprove.

Because c+r− ≤ cmax0 , all players who choose omax also choose all r− ∈ R−,

which means |R−| ≤ k− 1. Now, as all players choose exactly k resources, they

all choose at least one resoure r̃ ∈ R\R−. By definition of R−, cr̃ > c+r . Again,

by Definition 1.8, this implies that all players choose r, so dr = |N |, which

contradicts Lemma 2.3. �

2.4.1 Ordering the Alternating Paths

Consider paths P = (o, · · · , u) ∈ P and let ∆ = |P| the number of alternating

non-cyclic paths. We introduce two ways of ordering the paths.

For 1 ≤ t ≤ ∆, let ot be ordered in cost ascending order: co1 ≤ · · · ≤ co∆

and let Pt = (ot, · · · , ut) be the corresponding path for ot.

12



Figure 3: Possible alternating paths in P+−, P++, P−+ and P−−

For 1 ≤ t ≤ ∆, let u′t be ordered in opportunity cost descending order:

c+u′1
≥ · · · ≥ c+u′∆ and let P ′t = (o′t, · · · , u′t) be the corresponding path for u′t.

Note that because ot are ordered based on paths, an ot might refer to a

resource that is later referred to again by ot+k, with k > 0. The same holds for

ut.

When co∆
≤ c+u′∆

, the most expensive ot is lower in cost than the u′t with

lowest opportunity cost, so every internal increase is negative, co − c+u ≤ c
∆
−

c+u′∆
≤ 0. However, when co∆

> c+u′∆
, there exist paths with co − c+u > 0.

More specifically, suppose t ≥ 0 is the first index for which cot+1
> c+u′t+1

(meaning t is also the last index for which cot ≤ c+u′t). We then let

P+− := {Pt+1, · · · , P∆} ∩ {P ′t+1, · · · , P ′∆} (19)

be the set of paths that begin in o ∈ {ot+1, · · · , o∆} and end in u ∈ {u′t+1, · · · , u′∆}.
The notation P+− is chosen to represent the resources o that have higher cost

than cot (with +) and the resources u with lower cost than c+u′t
(with −).

Each of these paths has internal cost bound of co − c+u > 0, but also, co − c+u ≤
co − cmax0 /2 ≤ co/2.

Similarly, let

P++ := {Pt+1, · · · , P∆} ∩ {P ′1, · · · , P ′t} (20)

P−+ := {P1, · · · , Pt} ∩ {P ′1, · · · , P ′t} (21)

P−− := {P1, · · · , Pt} ∩ {P ′t+1, · · · , P ′∆} (22)

be the three sets of remaining combinations between o and u′. Figure 3 may

be helpful in visualizing what these paths look like. Between (o1, · · · , o∆) and

13



(u′1, · · · , u′∆) are a number of players and resources that are part of the path

but omitted for graphical viewability. Note that every ot is only connected to

one u′t and vice versa by this notation.

To provide some intuition into the deconstruction of the paths, consider the

following lemma.

Lemma 2.5. Every P ∈ P+− has length ≥ 4

Proof: If P ∈ P+− has length 2, P would look like P = (o, i, u) with

io ∈ NE \OPT and iu ∈ OPT \NE, then NE implies that c+u ≥ co. This is a

contradiction of the definition of P+−. �

2.4.2 Improving the Upper Bound on the Internal Increase

In order to improve the upper bound on the internal increase from Inequality

(12), we need the following definitions:

Definition 2.4. O> ⊆ O denotes the set of resources ot+1, · · · , o∆

U< ⊆ U denotes the set of resources u′t+1, · · · , u′∆
P> = P+− ∪ P++

P>o denotes the set of paths in P> that end in a given o ∈ O>

∆>
o = |P>o | is the number of paths that end in o

We try to prove the following lemma by considering the four different sets of

paths constructed in the previous section and their contribution to the internal

increase.

Lemma 2.6.
∑

P=(o,··· ,u)∈P
co − c+u ≤

∑
o∈O>

∆>
o co/2

Proof: The proof is split in three parts, one for paths P ∈ P−+, one for

P ∈ P+−, and one for P ∈ P−− ∪ P++. Each part introduces different os and

us, so one should be careful not to confuse the resources when reading.

We observe P−+ first. These paths connect o ∈ {o1, · · · , ot} to u ∈ {u′1, · · · , u′t}
which are low cost o and high opportunity cost u′. They have internal cost

bounds of co−c+u ≤ cot−c+u′t ≤ 0, because t is the last index for which cot ≤ c+u′t .
The paths P ∈ P+− connect o ∈ {ot+1, · · · , o∆} to u ∈ {u′t+1, · · · , u′∆}

which are high cost o and low opportunity cost u′. We apply Lemma 2.4 to

calculate their internal cost bound co − c+u ≥ co − 1
2c
max
0 ≤ 1

2co.

14



Consider the sets P++ and P−−. We can say that any path P = (o, · · · , u) ∈
P++ has internal cost bound co− c+u ≤ co− c+u′t and any path P = (o′, · · · , u′) ∈
P−− has internal cost bound co′ − c+u′ ≤ cu′t − c

+
u′ ≤ c

+
u′t
− c+u′ .

We can deduce from Fig 3 that |P++| = |P−−|, because for every path

P ∈ P++ that crosses the vertical line, exactly one path from P ∈ P−−

should also cross it. So for any path P ∈ P++ we assign one “matching”

path P ∈ P−−. If we add these paths together we get a combined internal cost

bound of co − c+u + (c+0′ − c
+
u′) ≤ co − c

+
u′t

+ (c+u′t
− c+u′) = co − c+u′ ≤ co/2. In the

last inequality we apply Lemma 2.4 again.

We conclude the proof by adjusting the objective function by splitting the

paths into their subsets and adjusting their internal cost to the new bounds:∑
P∈P

co − c+u ≤
∑

P∈P+−

co − c+u +
∑

P∈P++∪P−−
co − c+u +

∑
P∈P−+

co − c+u (23)

≤
∑

P∈P+−

1

2
co +

∑
P∈P++

1

2
co +

∑
P∈P−+

0. (24)

Observe that every path P ∈ P+− ∪ P++ has an end in o ∈ O>. This means

that we have shown that for every path that ends in o ∈ O> (where needed

combined with a “matching” path ending in o ∈ O \ O>), the internal cost is

bounded by co − c+u ≤ 1
2co. Since there are ∆>

o paths in P>o per o ∈ O>,∑
P∈P+−

1

2
co +

∑
P∈P++

1

2
co =

∑
o∈O>

∆>
o

1

2
co (25)

�

We use Lemma 2.6 to update Inequality (12):

c(NE)− c(OPT ) ≤
∑
o∈O>

∆>
o co/2 +

∑
o∈O

d∗o(do − d∗o)co. (26)

2.5 The Relative Social Cost Increase

We seek an upper bound for the relative social cost increase c(NE)−c(OPT )
c(NE) , so

we need a lower bound for c(NE). We do this by constructing a lower bound

for the number of edges in NE in Section 2.5.1. A lower bound for the social

cost in NE is then calculated in Section 2.5.2, after which we can calculate the

relative social cost increase in Section 2.5.3.
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2.5.1 A lower bound for |NE|

First we split the number of edges in NE as follows:

|NE| ≥
∑
o∈O

do + |F | (27)

≥
∑
o∈O>

do + |F | (28)

so that F is the set of edges not incident to any o ∈ O. What we will prove is

that the cost of each of these edges is bounded by 1
2c
max
0 either by itself or in

combination with some other edge not yet accounted for.

Let I := {i ∈ N |∃ io ∈ NE for any o ∈ O>} be the set of players that has at

least one connection to a resource o ∈ O>, and J := {j ∈ N |∃P = (· · · , j, u) ∈
P>} be the set of first players on paths in P>.

Lemma 2.7. I ∩ J = ∅ = (J×O>) ∩NE

Proof: Suppose that I ∩ J 6= ∅, e.g. there is at least one player in both

I and J. Let i ∈ I ∩ J, then there exists an o ∈ O for which io ∈ NE and an

u ∈ U< for which iu /∈ NE. According to Definition 1.8: c+u ≥ co, which is

in direct contradiction to the definitions of O> and U<. (J × O>) ∩ NE = ∅
follows similarly. �

Lemma 2.8. |F | ≥

∑
o∈O>

do

k−|U<| |U
<|+ k

|U<|
∑
o∈O>

∆>
o

Proof: First we notice that all i ∈ I are connected to all U<. This is

because co > c+u for all o ∈ O> and for all u ∈ U<. So any player that is

connected to an o ∈ O> must also be connected to all u ∈ U<, meaning that

any player i has k − |U<| edges left to connect to O>. We also know that

overloaded resources are only connected to I, so there are
∑
o∈O>

do edges from

O> to I, of which every i can receive at most k − |U<|. This gives us a lower

bound for |I|:

|I| ≥

∑
o∈O>

do

k − |U<|
(29)

Following the same reasoning, there are |∆>| alternating paths, of which each

j ∈ J can only receive |U<|:

|J| ≥

∑
o∈O>

∆>
0

|U<|
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We declared F to be all edges not incident to O. That means that it at least

entails all edges from U< to I and from B to J. Every i ∈ I is connected to all

r ∈ U<, and each j ∈ J is not connected to O>. Therefore we can state

|F | ≥ |I||U<|+ |J|k (30)

≥

∑
o∈O>

do

k − |U<|
|U<|+ k

|U<|
∑
o∈O>

∆>
0 (31)

thus proving the lemma. �

2.5.2 A Lower Bound for the Social Cost in NE

The following lemma is useful when calculating the social cost in a given NE:

Lemma 2.9. For critical case games, if |N | → ∞ then |I| → ∞.

Proof: Suppose
∑
o∈O>

do ≤ ε
∑
r∈R

dr for some small ε > 0, then we deduce

from (26)

C(NE)− C(OPT ) ≤
∑
o∈O>

∆>
o co/2 +

∑
o∈O

d∗o(do − d∗o)co (32)

≤
∑
o∈O>

doco/2 +
∑
o∈O

1

4
d

2

oco (33)

≤ ε
∑
r∈R

drco/2 +
1

4
C(NE) (34)

≤ ε
∑
r∈R

dr2cr +
1

4
C(NE) (35)

so if ε is small enough, C(NE) − C(OPT ) ≤ 1
4C(NE) which corresponds to a

PoA = 4
3 . This contradicts the lower bound generated in Chapter 3, so we may

assume that
∑
o∈O>

do > ε
∑
r∈R

dr. We combine Inequality (29) and
∑
r∈R

dr = k|N |

for

I ≥ ε

∑
r∈R

dr

k − |U<|
(36)

≥ ε k|N |
k − |U<|

(37)

and because N →∞ we can assume that I→∞. �
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A lower bound on the social cost of the edges in F is given by the following

Lemma.

Lemma 2.10. c(F ) ≥ cmax
0

2

∑
o∈O>

do

k−|U<| |U
<|+ cmax

0

2
k
|U<|

∑
o∈O>

∆>
0

Proof: The proof of this Lemma is split in two parts. First, we analyse

the cost of players i ∈ I connected to U<. By combining the affinity of cost

functions, the fact that every i ∈ I is connected to every u ∈ U<, and Lemma

2.4:

cu(du) ≥ du

du + 1
c+r (38)

=
|I|
|I|+ 1

c+r (39)

≥ |I|
|I|+ 1

1

2
cmax0 → 1

2
cmax0 . (40)

For the last step we apply Lemma 2.9.

We know that there are |I||U<| edges with this cost, so we can combine Lemma

2.8 and Inequality (29) with Inequality (40) to get the first part of what we

need to prove:
cmax
0

2

∑
o∈O>

do

k−|U<| |U
<|.

The second part is the cost of players j ∈ J choosing resources b ∈ B. We

will show that we can equate these costs to be no greater than 1
2c
max
0 . For an

arbitrary edge jb ∈ NE, pick any o ∈ O> with co = cmax0 and any i ∈ I with

io ∈ NE. Now observe two scenarios:

If ib /∈ NE, then the opportunity cost of b should be bounded by c+r ≥ cmax0 ,

otherwise player i would have chosen resource b instead of o in NE. Because of

this bound and the fact that functions are affine we get cb ≥ 1
2c
max
0 .

On the other hand, if ib ∈ NE, then db ≥ 2, since both players i and j are

connected. From this we can deduce cb ≥ cmax
0

3 since cb ≥ 2
3c

+
b and Lemma 2.4.

Now, in the calculation of c(NE) we do not count edges from i ∈ I to b ∈ B, so

we can add to the cost of each edge jb ∈ NE a corresponding edge cost from

ib ∈ NE, resulting in an accounted cost of at least 2
3c
max
0 . Our desired equation

requires a lower bound of only 1
2c
max
0 , which we have now reached.

Now each edge cost is lower bounded by 1
2c
max
0 , combined with Lemma 2.8

this concludes the proof. �
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We conclude this section by calculating the lower bound for the social cost

of NE.

Lemma 2.11. c(NE) ≥
∑
o∈O

d
2

oco +

(
U<

k−|U<|
∑
o∈O>

do + k
|U<|

∑
o∈O>

∆>
0

)
cmax
0

2

Proof: The lower bound follows from combining Inequality (28) with Lemma

2.10. �

2.5.3 Constructing a Bound on the Relative Cost Increase

We now use Inequality (26) and combine it with Lemma 2.11 to obtain the

following inequality:

C(NE)− C(OPT )

C(NE)
≤

∑
o∈O>

∆>
o co
2 +

∑
o∈O

d∗o(do − d∗o)co

∑
o∈O

d
2

oco +

(
U<

k−|U<|
∑
o∈O>

do + k
|U<|

∑
o∈O>

∆>
0

)
cmax
0

2

.

(41)

Lemma 2.1 states that d∗o(do − d∗o) ≤ 1
4d

2

o. So for any o ∈ O if we remove

d∗o(do − d∗o)co from the numerator and d
2

oco from the denominator we increase

the fraction as a whole. This means we can remove any o ∈ O \ O> from

Inequality (41) in both sums where they appear. Also, we can replace cmax0 in

the denominator with its smaller co, since it will only increase the fraction as a

whole:

C(NE)− C(OPT )

C(NE)
≤

∑
o∈O>

∆>
o co
2 +

∑
o∈O>

d∗o(do − d∗o)co

∑
o∈O>

d
2

oco +

(
U<

k−|U<|
∑
o∈O>

do
co
2 + k

|U<|
∑
o∈O>

∆>
0
co
2

) .
(42)

The fraction of sums is less than or equal to the maximum of the individual

fractions,
∑
ai∑
bi
≤ max(aibi ). Therefore, we may bound the fraction of sums with

the maximum fraction for o ∈ O>, after which we divide by co:

C(NE)− C(OPT )

C(NE)
≤ max
o∈O>

∆>
o
co
2 + d∗o(do − d∗o)co

d
2

oco +
(

U<

k−|U<|do
co
2 + k

|U<|∆
>
0
co
2

) . (43)

≤ max
o∈O>

∆>
o
do
2 + d∗o(do − d∗o)

d
2

o +
(

U<

k−|U<|
d

2
o

2 + k
|U<|∆

>
0
do
2

) . (44)
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Now we fix any o ∈ O> for which the maximum is obtained. Since Lemma

2.1 suggests that the maximum is obtained when ∆>
o is as large as possible,

we assume ∆>
o = do − d∗o. Below, we also replace do = βd∗o (and thus ∆>

o =

(β − 1)d∗o) and k = α|U<|. Now in a few steps Inequality (44) becomes

C(NE)− C(OPT )

C(NE)
≤

(β − 1)d∗o
βd∗o

2 + d∗o(βd
∗
o − d∗o)

β2d∗2o +
(
|U<|

k−|U<|β
2 d
∗2
o

2 + k
|U<| (β − 1)β

d∗2o

2

) (45)

≤
(β − 1)d∗o

βd∗o
2 + d∗o(βd

∗
o − d∗o)

β2d∗2o +
(

1
α−1β

2 d
∗2
o

2 + α(β − 1)β
d∗2o

2

) (46)

≤
1
2β

2 + 1
2β − 1

β2 +
(

1
α−1β

2 1
2 + α(β − 1)β 1

2

) (47)

where the last inequality is ensured by dividing over d∗2o .

2.6 Results

The right hand side of Inequality (47) is a function with variables α and β,

which we can maximize with wolframalpha for instance, yielding

C(NE)− C(OPT )

C(NE)
≤ 0.260292 · · · (48)

for α ≈ 2.3 and β ≈ 2.5. Now we can easily calculate the required bound for

the PoA:

C(NE)− C(OPT )

C(NE)
≤ 0.260292 · · · (49)

C(NE)

C(OPT )
≤ 1

1− 0.260292 · · ·
= 1.35188 · · · . (50)

This finishes the proof of Theorem 2.1. �
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3 Constructing the Lower Bound for the PoA

In this section we show the method used for constructing a game with maximal

PoA. Then, an example is given to illustrate the result.

Theorem 3.1. PoA ≥ 1.35188

Proof: The proof is given by providing an example with PoA = 1.35118.

After the example, an explanation of its construction follows. In either case, we

need to set a few definitions first. These are similar to the sets from the previous

chapter, but as this is an example and not a class of games, their notation is

slightly different.

The set of players is partitioned into three distinct sets.

• I1 expensive non-alternating players

• I2 expensive alternating players

• J cheap players

The set of resources is partitioned into four distinct sets.

• O overloaded resources, with co(x) = x

• U underloaded resources, with cu(x) = 1
2 |U |

• B1 balanced resources used by alternating paths, with cb(x) = 1
2 |U |x

• B2 balances resources not used by alternating paths, with cb(x) = 1
2 |U |x

Each player, regardless of type chooses k resources because of uniformity.

Each balanced resource is ever only chosen by one player, which means that

because of its cost function cb(x) = 1
2 |U |x with x = 1, the cost of these resources

are lowest in the game. Thus, given the rules described above, cheap players

have the lowest possible cost per player (in NE).

Expensive players are separated in two subcategories: alternating and non-

alternating expensive players. The non-alternating players do not change their

action when moving from OPT to NE, while the alternating players do. Both

types of expensive players choose overloaded and underloaded resources in the

NE. When moving from OPT to NE, the alternating expensive players change

their resources so that they only have underloaded and balanced resources.

21



Resources are split into three categories, overloaded resources O, under-

loaded resources U and balanced resources B.

The overloaded resources are chosen by more players in the NE than in the

OPT . Their cost is equal to the number of players that chose the resource.

The underloaded resources are chosen by less players in the NE than in the

OPT . Their costfunction is constant.

The balanced resources are split into two subcategories themselves, those that

are used by Alternating Paths (APs), and those that are not. In NE there is no

visible difference, but in OPT some balanced resources (B1) are now connected

to different players. The others (B2) are still connected to the same player as

in NE. Both have variable resources and are only ever chosen by one player in

any given situation.

The goal is to construct a game with high social cost in NE but a low social

cost in OPT . The following section describe an example of such a game.

3.1 Example of a (near) critical Game

Consider a game with I = 50 expensive players and J = 39 cheap players. Set

the number of resources as follows: |U | = 50 underloaded resources with cost-

function cu(x) = 25, |O| = 65 overloaded resources with costfunction co(x) = x,

|B1| = 1950 balanced resources used by APs with costfunction cb(x) = 25x and

|B2| = 2535 balanced resources not used by APs with cost function cb(x) = 25x.

Each player chooses k = 115 resources.

We try to find a situation in which social costs are as high as possible and no

player can reduce his own cost by unilaterally changing his action.

3.1.1 Examining a Nash Equilibrium

First, consider the cheap players. They choose only balanced resources B1 and

B2. Every balanced resource is only chosen by one cheap player. We distribute

it so that every cheap player chooses exactly 50 resources from B1 and 65 from

B2. All balanced resources are now chosen by exactly one player.

There are two types of expensive players, but in NE they behave the same.

Each expensive player chooses all resources from U and O.

Consider the cost cr(x) and opprotunity cost cr(x+1) of each resource. The

balanced resources all have cost cb(x) = 25 and opportunity cost cb(2) = 50. The

overloaded resources have cost co(50) = 50 and opportunity cost co(51) = 51.
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The underloaded resources have cost and opportunity cost cu(50) = cu(51) = 25.

The Nash condition from Definition 1.8 is true for all cheap players, since

their costs are lowest.

This condition is also true for all expensive players, as their opportunity costs are

cb(2) = 50, while their current cost functions are cu(50) = 25 and co(50) = 50.

So the balanced resources have opportunity cost equal to the current cost of the

overloaded resources, which is not enough to warrant unilateral change.

Therefore we conclude that we are in a NE.

In the current example, social cost is determined by calculating the cost of

each player and summing over all players:

C(NE) = k ∗ cb(1)|J |+ |O| ∗ co(|I|)|I|+ |U | ∗ cu(|I|)|I (51)

= 115 ∗ 25 ∗ 39 + 65 ∗ 50 ∗ 50 + 50 ∗ 25 ∗ 50 (52)

= 337125 (53)

3.1.2 Examining the Optimum

In the OPT we try to achieve the lowest possible social cost. With the parame-

ters as given above, we make the following changes to the situation in the NE:

Each cheap player changes his chosen resources from B1 to U . Their cost will

remain the same but it will make room for expensive players to choose resources

in B1 as their opportunity costs are now lower.

Each cheap player is now connected to each resource in U and to 65 resources

in B2. Each resource in B2 is connected to only one player.

I2 = 30 Expensive alternating players disconnect all from O and connect to

B1. There are 30 players and they each have 65 resourcces to connect to. Still,

each resource in B1 should only be chosen by one player, but the game is con-

structed so that the number of resources needed = 30 ∗ 65 = 1950 is exactly the

number provided.

I1 = 20 Expensive non-alternating players do not change resources, but their in-

dividual cost still changes because of the other expensive players that do change.

Now consider the cost of the described situation. Cheap players still have a

cost of 25 per resource. Expensive alternating players are now in essence cheap

players, since all their costs are 25 as well, while the expensive non-alternating

players are even cheaper than the rest, because the overloaded resources are
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now 20 per resource. The social cost is:

C(OPT ) =|B2| ∗ cb(1) + |B1| ∗ cb(1) + |O| ∗ co(20) ∗ 20 + (54)

|U | ∗ cu (|J |+ |I|) ∗ (|J |+ |I|) (55)

=2535 ∗ 25 + 1950 ∗ 25 + 50 ∗ 25 ∗ 89 + 65 ∗ 20 ∗ 20 (56)

=249375 (57)

3.1.3 Graphical representation

Figure 4 gives a graphical representation. Black dots on the left represent Play-

ers, while similar dots on the right represent resources. A player chooses a

resource if there is a connected line between the two. Full lines represent con-

nections in NE while dotted lines represent connections in OPT . Obviously,

there are many more players and resources than can be shown in any graphical

representation, which is why the players and resources should be extrapolated

along the vertical dotted lines, along with their connections.

As can be seen, all expensive players are connected to all overloaded and under-

loaded resources in NE, with only the alternating expensive players changing

their action from overloaded to balanced, thus participating in APs.

3.2 Results

The PoA can be calculated from Eq. (53) and Eq. (57)

PoA =
c(NE)

c(OPT )
=

337125

249375
≈ 1.35188. (58)

and concludes the proof of Theorem 3.1. �

As we see, this example yields a PoA equal to the upper bound provided

in chapter 2 up to 5 decimal points. As the proof of the upper bound was

beholden to instances where the number of players tended to infinity, there is

still a possibility for a gap between our two bounds. However, both bounds are

close enough to each other to make this gap irrelevant.

Still, instances might occur where the Price of Anarchy is higher than the

upper bound when the number of players is small. We did not find any such

games, but it might be interesting for future research to investigate this matter.

One could either find such instances or (preferably) prove the upper bound for

any number of players.
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Figure 4: graphical representation of the example. Edges in NE have full lines

and edges in OPT have dotted lines
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4 Conclusions

4.1 Theoretical results

This thesis shows that the Price of Anarchy for affine, symmetric, k-uniform

congestion games is 1.35188 · · · in critical cases for a large number of players.

This conclusion was reached in two parts.

Chapter 2 proved a tight upper bound for the Price of Anarchy of 1.35188 · · · .
This result was achieved by assuming the number of players went to infinity.

Chapter 3 provided an example of a game with a Price of Anarchy of ≈ 1.35188,

thus proving a lower bound. The example had 89 players, which is sufficiently

large.

4.2 Recommendations

While writing this thesis, the following recommendations for future research are

made by the author.

4.2.1 Price of Anarchy for any number of players

It would be interesting to find a general expression for the Price of Anarchy

that either depends on the number of players or does not require the number of

players to reach infinity. We set out to write this thesis with that goal in mind

but were unable to come to this expression.

4.2.2 Price of Stability

The sole purpose of this thesis was to examine the Price of Anarchy to analyse

worst case scenarios. An interesting research topic might be to find an expression

for the Price of Stability for the same class of games. While the Price of Anarchy

divides the highest possible NE by the OPT , the Price of Stability divides the

lowest possible NE by the OPT .
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