
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Automatic
Product Name Recognition

from
Short Product Descriptions

Elnaz Pazhouhi
M.Sc. Thesis
March 2018

Supervisors:
Dr. Mariët Theune, HMI Group, University of Twente

Dr. ir. Dolf Trieschnigg, Mydatafactory
Dr. ir. Djoerd Hiemstra, Database Group, University of Twente

Human Media Interaction Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Acknowledgments

After passing all the ups and downs, now I am taking my last steps to finish this the-
sis. For me it was an exciting journey in the field of information extraction, full of new
challenges and interesting problems. Now everything looks neat and clear but it was
not like this at the beginning. It took sometime to define the problem and research
questions clearly in a context that can be beneficial not only for academic purposes
but also for practical industrial applications. Next I spent some more time to investi-
gate different approaches and techniques, select a subset of the most effective ones
and put them together and form a solution space. The implementation of the solu-
tions was also an interesting part of the work where I developed a machine learning
framework that helped me to automate the main steps of my investigations.

Mariët and Dolf, I am grateful to both of you for all your support and all your
constructive feedback and comments throughout this work. You helped me to stay
focused on the main research questions, also to define and present the concepts
and results in a clear, understandable, and concise way. I would like also to thank
Djoerd Hiemstra for his comments and his willingness to read and approve this the-
sis.

.

iii

IV ACKNOWLEDGMENTS

Abstract

This thesis studies the problem of product name recognition from short product de-
scriptions. This is an important problem especially with the increasing use of ERP
(Enterprise Resource Planning) software at the core of modern business manage-
ment systems, where the information of business transactions is stored in unstruc-
tured data stores. A solution to the problem of product name recognition is espe-
cially useful for the intermediate businesses as they are interested in finding poten-
tial matches between the items in product catalogs (produced by manufacturers or
another intermediate business) and items in the product requests (given by the end
user or another intermediate business).

In this context the problem of product name recognition is specifically challenging
because product descriptions are typically short, ungrammatical, incomplete, abbre-
viated and multilingual. In this thesis we investigate the application of supervised
machine-learning techniques and gazetteer-based techniques to our problem. To
approach the problem, we define it as a classification problem where the tokens of
product descriptions are classified into I, O and B classes according to the standard
IOB tagging scheme. Next we investigate and compare the performance of a set of
hybrid solutions that combine machine learning and gazetteer-based approaches.

We study a solution space that uses four learning models: linear and non-linear
SVC, Random Forest, and AdaBoost. For each solution, we use the same set of fea-
tures. We divide the features into four categories: token-level features, document-
level features, gazetteer-based features and frequency-based features. Moreover,
we use automatic feature selection to reduce the dimensionality of data; that conse-
quently improves the training efficiency and avoids over-fitting.

To be able to evaluate the solutions, we develop a machine learning framework
that takes as its inputs a list of predefined solutions (i.e. our solution space) and
a preprocessed labeled dataset (i.e. a feature vector X, and a corresponding class
label vector Y). It automatically selects the optimal number of most relevant features,
optimizes the hyper-parameters of the learning models, trains the learning models,
and evaluates the solution set. We believe that our automated machine learning
framework can effectively be used as an AutoML framework that automates most
of the decisions that have to be made in the design process of a machine learning

v

VI ABSTRACT

solution for a particular domain (e.g. for product name recognition).
Moreover, we conduct a set of experiments and based on the results, we answer

the research questions of this thesis. In particular, we determine (1) which learning
models are more effective for our task, (2) which feature groups contain the most rel-
evant features, (3) what is the contribution of different feature groups to the overall
performance of the induced model, (4) how gazetteer-based features are incorpo-
rated into the machine learning solutions, (5) how effective gazetteer-based features
are, (6) what the role of hyper-parameter optimization is and (7) which models are
more sensitive to the hyper-parameter optimization.

According to our results, the solutions with maximum and minimum performance
are non-linear SVC with an F1 measure of 65% and AdaBoost with an F1 measure
of 59% respectively. This reveals that the choice of the learning algorithm does
not have a large impact on the final performance of the induced model, at least ac-
cording to the studied dataset. Additionally, our results show that the most effective
feature group is the document-level features with 14.8% contribution to the overall
performance (i.e. F1 measure). In the second position, there is the group of token-
level features, with 6.8% contribution. The other two groups, the gazetteer-based
features and frequency-based features have small contributions of 1% and 0.5%
respectively. However more investigations relate the poor performance of gazetteer-
based features to the low coverage of the used gazetteer (i.e. ETIM).

Our experiments also show that all learning models over-fit the training data when
a large number of features is used; thus the use of feature selection techniques is
essential to the robustness of the proposed solutions. Among the studied learning
models, the performance of non-linear SVC and AdaBoost models strongly depends
on the used hyper-parameters. Therefore for those models the computational cost
of the hyper-parameter tuning is justifiable.

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Research Objective . 3
1.4 Research Questions . 3
1.5 Contributions . 4
1.6 Outline . 4

2 Background 5
2.1 Named Entity Recognition . 5

2.1.1 Rule-based Approach . 6
2.1.2 Machine Learning Approach 7

2.2 Concepts of Machine Learning . 9
2.2.1 Feature Engineering . 9
2.2.2 Learning Models . 12
2.2.3 Cross-Validation . 14
2.2.4 AutoML . 15

2.3 Summary . 15

3 Methodology 17
3.1 Dataset . 17
3.2 Data Analysis . 19
3.3 Preprocessing . 19

3.3.1 IOB tagging . 19
3.4 Feature Construction . 20

3.4.1 Token-Level Features . 20
3.4.2 Document-level Features . 21

vii

VIII CONTENTS

3.4.3 Gazetteer-based Features . 23
3.4.4 Frequency-based Features . 24
3.4.5 Hypotheses on Features . 26

3.5 Feature Selection . 26
3.6 Learning Models . 28

3.6.1 Hyper-parameter Optimization 28
3.7 Automatic Machine Learning Framework 29

3.7.1 The Skeleton of the Framework 29
3.7.2 Dataset Preparations . 30
3.7.3 The Steps of the Evaluation Algorithm 31
3.7.4 GridSearch . 33
3.7.5 Solution Space . 33

3.8 Evaluation Method . 35
3.8.1 Post-processing . 38

4 Results 41
4.1 Evaluation of Solutions . 41
4.2 Determining the Optimal Number of Features 42
4.3 The Effect of Hyper-parameter Optimization 44
4.4 Feature Analysis . 47

5 Conclusions and Future Work 53
5.1 Conclusions . 53
5.2 Future Work . 55

References 57

Chapter 1

Introduction

Named Entity Recognition (NER) is a relatively new domain in the field of information
extraction. Named entity recognition has been developed as one of the sub-tasks
of information extraction where the named entities in the text are classified in pre-
defined categories. Person, location, organization and time are some examples of
general named entities, while music, game, and book are some examples of domain-
specific named entities [1]. NER also is used for the recognition of product named
entities (e.g. product name, brand, size). This is so-called Product Named Entity
Recognition (PNER) [2,3] that is one of the domain-specific subcategories of NER.

This thesis investigates different approaches in product named entity recognition.
Our work is especially motivated by the company Mydatafactory [4]. The company is
interested in tagging product names in the short product descriptions collected from
ERIKS [5], a Dutch company that is active as a technical wholesaler and manufac-
turer. It is the supplier of large companies such as Shell. Their dataset is multilingual
and they are interested in techniques that are able to automatically recognize prod-
uct names in the product descriptions.

1.1 Motivation

We are living in an information age, the era that information technology influences
almost all aspects of our life. The organization of modern business activities is one of
those aspects. Nowadays Enterprise Resource Planning (ERP) systems are an in-
separable part of modern business management systems. They are used to collect,
store, manage and interpret data from many different business activities running in
an organization. ERP systems track business resources, raw materials, production
processes, orders and purchases. This is where the data from different departments
(e.g. manufacturing, purchasing, sales, accounting, etc.) are collected in a central-
ized manner to be able to monitor and track the core activities of businesses.

1

2 CHAPTER 1. INTRODUCTION

One part of the data stored in ERP systems, is business exchange transactions.
These are the transactions between the main producer, intermediate businesses
and end users. Products1 are the subject of these transactions. They are provided
by a supplier and are sold to a customer. These transactions can happen between
a business and the end user of the product, known as B2C (Business to Customer)
transactions, or between two businesses, known as B2B (Business to Business)
transactions. In both cases one side of the transaction describes its needs in the
form of a product description. This is typically a short description that specifies the
important features of the requested product. The other side of the transaction also
has a set of product descriptions stored in the form of product catalogs describing
the products that the supplier sells. The product descriptions are written in natural
language. A match between the customer and supplier product descriptions is a
potential business transaction. As a result, tools that are able to dig into the data
stored in ERP systems and relate product descriptions are useful for enterprises.
This is specially very interesting for the wholesalers and intermediate businesses.
The main goal in these businesses is to find the best matches between the cus-
tomers’ requests and the product catalogs that they receive from the customers and
the suppliers respectively.

The problem of matching product descriptions is not trivial. There is no inter-
business standard for representing product descriptions. They are sometimes out-
dated, incomplete, company-specific, and abbreviated because of technical con-
straints. As a result two seemingly different product descriptions which do not share
any syntactic similarity may refer to the same product. So the relation between terms
in two different product descriptions is in many cases a semantical relation. For ex-
ample two terms in two different product descriptions may be synonyms that refer
to the same actual product. However, one term is commonly used in one business
domain while the other one is common in another business domain.

One approach to tackle this problem is to use the dataset of the previously
matched product descriptions to extract the semantical relations between the named
entities in them. The fact that two product descriptions are matched implies that
there is a relation between their named entities. One of the most important named
entities in the domain of product descriptions is the product name. This means that
one critical step in the above-mentioned approach is to develop a technique to au-
tomatically recognize product names in the product descriptions. This leads us to
the field of named entity recognition and its domain-specific subcategory, product
named entity recognition.

1In the context of this thesis we use the term products to refer to both the physical products and
also the services.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

This thesis addresses the problem of automatic recognition of product names from
unstructured short product descriptions stored in ERP databases. We elaborate
this problem using the following example. The example shows one of the product
descriptions of our dataset.

“CARROSSERIERONDEL M6 X 30 DIN440R”

We are interested in recognizing the product names “CARROSSERIERONDEL” and
“DIN440R” in the product description. This is especially a challenging task, because
product descriptions are multilingual, short and ungrammatical (i.e. they do not
follow standard grammatical rules or writing conventions such as capitalization) and
they contain minimal linguistic context.

1.3 Research Objective

The aim of this thesis is to investigate the state-of-the-art NER techniques for language-
independent product name recognition. Specifically we look into machine learn-
ing and gazetteer-based approaches. We design a solution space that contains
machine-learning based NER solutions with different configurations. The solutions
use ensemble learning models such as AdaBoost, Random Forest, linear and non-
linear support vector classifier (SVC). Then we develop a machine learning frame-
work that enables us to evaluate the proposed solutions and study different aspects
of each solution. We are interested in the relative performance of different learning
models, analyzing the usefulness of different feature groups used to train the predic-
tive model and the role of hyper-parameter tuning. Moreover, we study how product
name gazetteers can be integrated into learning models and how effective they are
when they are used for product name recognition.

1.4 Research Questions

The main research question of this thesis is:
How can existing named entity recognition techniques be used for product name

recognition?
To be able to answer this research question, we divide it into smaller sub-questions:

• RQ1: What are the main discriminating features representing a predictive
model for product names in our dataset?

4 CHAPTER 1. INTRODUCTION

• RQ2: Among the learning models chosen for this study (i.e. linear SVC, non-
linear SVC, RF and AdaBoost), which one induces a better predictive model?

• RQ3: How can gazetteers be incorporated into the predictive model? And to
what extent can this improve the performance of product name recognition?

• RQ4: Tuning the hyper-parameters of the models is an optimization problem
that may strongly affect the induced model but it imposes high computational
cost. The question is whether in the context of our PNER problem, the compu-
tational cost imposed by the hyper-parameters tuning justifies the performance
gain that can be obtained from it? Does the answer to this question depend on
the used learning model?

1.5 Contributions

The contributions of this thesis include:

• Designing a set of hybrid NER solutions that combines gazetteer-based and
machine learning based approaches in NER.

• Developing an automatic machine learning framework that enables us to auto-
matically optimize the hyper-parameters of the solutions and then study vari-
ous aspects of the designed solution space.

• Using the developed machine learning framework to answer the proposed re-
search questions (see Section 1.4)

1.6 Outline

This thesis is organized in five chapters. After the introduction, Chapter 2 gives an
overview of existing NER techniques and important machine learning concepts used
in this research. In Chapter 3 we focus on our methodology, we present our feature
set, solution space, machine learning framework, the pre- and postprocessing steps
and our evaluation method. In Chapter 4, we present the results of our experiment
and based on the result we answer the proposed research questions. Finally we
conclude the thesis in Chapter 5 and discuss some promising future directions.

Chapter 2

Background

Named Entity Recognition (NER) is one of the sub-tasks of information extraction.
The objective of NER is to annotate the phrases of a given text with some predefined
categories [1]. The categories in NER are divided into general and domain specific
categories. Person, organization, time, and location are examples of the famous
general named entities [6, 7]. In addition to general named entities, each domain
of expertise has its own domain specific categories such as genes, protein names,
cell, RNA, and DNA in the domain of biology [8–10], singer name, band name, song
name in the domain of musicology [11] and product name, brand name, and product
type in e-commerce and business domain [2,3,12].

This thesis studies the topic of product named entity recognition. From typical
product named entity categories (e.g. brand name, product name, product size and
product series [13,14]), we specifically focus on the recognition of product names in
short product descriptions. To support the required background for the rest of this
thesis, in this chapter we give an overview on the main approaches in Named Entity
Recognition and we explain the important machine learning concepts that are used
in this thesis.

2.1 Named Entity Recognition

Research on named entity recognition is still at its early stages. The main NER ap-
proaches are: (1) rule-based techniques, (2) machine learning techniques, and (3)
gazetteer-based techniques. Machine learning techniques assume the existence
of an annotated corpus and use machine learning algorithms to learn a predictive
model to recognize and classify named entities. Rule-based techniques rely on
handcrafted linguistic patterns and recognize named entities by pattern matching.
Gazetteer-based techniques, also known as dictionary-based techniques, rely on
the use of gazetteers (i.e. dictionaries) that contain a list of predefined named enti-

5

6 CHAPTER 2. BACKGROUND

ties. These lists are used to recognize and classify named entities.

2.1.1 Rule-based Approach

Rule-based approaches use handcrafted linguistic patterns and recognize named
entities by applying pattern-matching. The problem is that good rules need signif-
icant effort of domain experts, and are not easily adaptable to new domains. Bick
et al. [15] used a constraint grammar-based parser to recognize named entities in
Danish texts. Their technique is based on a set of predefined rules and is able to
recognize different named entities that also includes product names. The approach
highly depends on the performance of a Danish parser; thus it is not portable to
other problems, specially to multilingual problems.

In [16] the authors use a set of parser-based rules to automatically generate an
annotated corpus which later is used to train a Hidden Markov Model (HMM) named
entity classifier. Some of their proposed rules are used for the recognition of product
named entities. For example the following rule:

Has AMod(handheld)⇒ PRO

is one instance of a Has AMod(X) ⇒ PRO rule family which states that the name
which is modified by the ”handheld” is most likely to be a product named entity PRO.
The following rules are other instances of this rule family:

Has AMod(fuel-efficient)⇒ PRO
Has AMod(well-sell)⇒ PRO
Has AMod(valueadd)⇒ PRO

As another family of rules, they propose that the object of some verbs have higher
chance to be a product named entity. From this rule family the following rules can
be derived:

Object Of(refuel)⇒ PRO
Object Of(vend)⇒ PRO

A similar idea is used to create more rule families such as:
Has Predicate(accelerate)⇒ PRO
Has Predicate(collide)⇒ PRO
Possess(patch)⇒ PRO
Possess(rollout)⇒ PRO

In general rule-based approaches have two main drawbacks: (1) they need a
list of hand-crafted linguistic rules and (2) they are language dependent. Therefore,
they are not suitable for the multilingual named entity recognition (i.e. the problem
of this thesis).

2.1. NAMED ENTITY RECOGNITION 7

2.1.2 Machine Learning Approach

One approach to tackle the named entity recognition problem is to formulate it as
a classification problem that can be effectively solved by applying a wide range of
machine learning techniques. This section explains the main groups of machine
learning techniques that have been used for Named Entity Recognition.

Supervised methods

Supervised machine learning methods are a class of algorithms that learn a pre-
dictive model by looking at an annotated training set. The main learning algorithms
are: Decision Trees [17], Neural Networks [18], Ensemble learning methods such
as Random Forest [19] and AdaBoost [20], Support Vector Classifiers (SVC) [21],
Maximum Entropy Models (ME), Hidden Markov Models (HMM) [22] and Condi-
tional Random Fields (CRF) [23]. The performance of these techniques is widely
studied in NER for general named entity categories such as person, location, and
so on [17–23]. Although they can reach near-human performance for general name
entity recognition, their major drawback is that these techniques require a sufficiently
large annotated dataset in order to induce an accurate predictive model. In the rest
of this section, we discuss some of the researches that use supervised learning
specifically for the task of PNER. For the applications of supervised learning tech-
niques in the domain of NER, we refer to references [17,18,21–23].

Pierre [24] developed an English named entity recognition system and used it
to recognize product named entities in a large collection of product reviews for au-
dio equipments (e.g. Speakers). They specifically used Naive Bayes and Boolean
classifiers for knowledge discovery on automatically generated metadata. They de-
fined four metadata facets: category (including 11 product categories), subcategory
(including 49 product subcategories), products, rating (including “Good” and ”Bad”
ratings). They trained a Naive Bayes classifier for each facet. Then they use these
classifiers to automatically generate metadata for product reviews. Their corpus
contained 47923 individual product reviews. They used half of the corpus as their
training set and the other half as the testing set.

Luo et al. [25] develop a PNER technique based on introducing domain ontology
features to the CRF models. As an example they consider Notebook products. First
they construct a domain ontology for these products. Then to construct features
of the CRF model, they define three feature groups: word context features, part of
speech features, and ontology features. According to their evaluations, the latter
outperforms the other feature groups (specifically much better results in terms of
recall measure).

8 CHAPTER 2. BACKGROUND

Semi-supervised machine learning

To overcome the cost of providing a large annotated training set, semi-supervised
or weakly supervised learning approaches have been developed. These techniques
are focused on the automatic construction of annotated corpus. They begin with a
small annotated corpus and extend it using the co-training [26–29] and bootstrap-
ping [30] techniques.

The central idea of co-training is to separate features into multiple orthogonal
views. For example in the task of NER, one view utilizes the context evidence and
the other view relies on the dictionary evidence. The classifiers corresponding to
different views learn from each other iteratively. Blum et al. [26] shows that co-
training can be very efficient such that in the extreme case only one labeled data
sample is needed to learn the classifier. Compared to bootstrapping techniques, co-
training suffers from error propagation which is the result of iterative learning used
in this technique [31].

Niu et al. [16] used a bootstrapping approach in named entity classification. They
first learn some parsing-based named entity rules from a small annotated corpus,
then these rules are applied on a large unannotated corpus to automatically gener-
ate a large annotated corpus which later is fed into a Hidden Markov Model named
entity learner. In this sense their approach is the combination of machine learn-
ing and rule-based approaches. They also apply their named entity classifier to a
dataset with 2000 product named entities. Their classifier is able to reach 63.7%
precision and 72.5% recall with F1 score of 69.8%. However, their technique has
two main drawbacks: (1) it highly depends on the performance of English grammar
parser and (2) it is difficult to extract parser-based name entity rules for the coverage
of different product named entities.

Gazetteer-based Approach

To the best of our knowledge the use and the effectiveness of gazetteers for the
task of PNER has not been studied yet. However, there are some works that use
gazetteers to improve the performance of NER [32,33]. Generally, gazetteer-based
techniques assume the existence of a domain specific dictionary which can be used
to identify specific types named entities. Therefore, the main challenge lays in the
construction of a comprehensive dictionary for a particular domain. In this direction,
in [9] the authors propose a learning approach with minimal supervision to construct
dictionaries for different named entity types (in particular for biomedical named entity
types such as viruses and diseases).

2.2. CONCEPTS OF MACHINE LEARNING 9

2.2 Concepts of Machine Learning

This section gives a short introduction to the main machine learning concepts that
are used in this thesis. This covers feature engineering including feature construc-
tion and different techniques for feature selection, learning models that are used in
this thesis (i.e. linear and non-linear SVC, Random Forest, and Adaboost), cross-
validation and the over-fitting problem, and automated machine learning frame-
works.

2.2.1 Feature Engineering

Feature engineering is a set of techniques that includes the process of constructing
the set of candidate predictive variables for the model (i.e. feature construction) and
reducing the constructed candidate variables to a subset of most relevant variables
(i.e. feature selection) [34,35]. We dedicate the rest of this section to briefly discuss
these two steps.

Feature Construction

The goal of feature construction is to create a strong set of predictive variables,
so-called features. This is a vital step in the machine-learning-based solutions, no
matter which learning algorithm they use. In fact, much of the success of machine
learning algorithms depends on the quality of the constructed features. Features
are sometimes obvious and sometimes they are not so trivial. In general feature
construction is difficult and creative process in which under-specified, ill-formed raw
data should be shaped into a set of predictive variables.

Feature Selection

In some applications the size of feature set may grow dramatically. This may result in
a number of problems such as over-fitting, dramatical increase in the computational
overhead, and performance loss. To tackle these problems several feature selec-
tion methods have been proposed. This section first explains why feature selection
methods are needed specially in this thesis and then discusses the main feature
selection techniques.

The Need for Feature Selection

In classification problems that deal with text data (e.g. the problem of this thesis) the
number of features tends to increase dramatically. This is because of the existence

10 CHAPTER 2. BACKGROUND

of features with type string that are typical in this category of problems.
The string features can be divided into two main categories: categorical features

(also called nominal features) and ordinal features. The value of a categorical fea-
ture belongs to a finite set of predefined categories. For example the part-of-speech
of the current token is a categorical feature. Similarly an ordinal feature may take
a value from a predefined set of categories; however, this time there is an intrinsic
ordering among the predefined categories. For example assume the token length
as a feature where instead of an integer we only care if a token is long, medium
or short. This defines an ordinal feature, because there is an ordering between the
three categories: short is smaller than medium and medium is smaller than large.

When we work with text data, many features that are constructed have the type
of string. The problem is that the learning algorithms only accept binary features (i.e.
features with only True or False value) or numerical features (either integer or floating
point features). Thus the string features should be encoded into binary or numerical
features. In case of ordinal features, due to their intrinsic ordering, it is possible to
encode them into numerical values. However, for categorical features this encoding
does not work. Because they have no natural ordering, numerical encoding would
mislead the learning algorithm. For example in our part-of-speech example, we
cannot encode pronouns into 1, nouns into 2 and verbs into 3, because in that
encoding the average of a verb and a pronoun is noun which does not make any
sense. Therefore the categorical features should be encoded into binary features.
This is technically called binarization. Binarization suddenly increases the size of
the feature set as one single string feature is encoded into hundreds or thousands
of binary features.

Working with large feature sets results in two important drawbacks: (1) it dramat-
ically increases the training time, and (2) it degrades the robustness and accuracy of
the predictive model on the unseen data due to over-fitting. In practice only a subset
of features significantly contributes to the performance of the predictive model [36].

Main Feature Selection Techniques

Feature selection is the process to automatically select a subset of features that
correlates the best with the data [37]. Feature selection methods can be used as a
filter that removes irrelevant and redundant features from the feature set. The irrel-
evant features are the ones that have no or very small contribution to the prediction
accuracy. Redundant features also known as dependent features are features that
have the same influence on the prediction accuracy. Irrelevant and redundant fea-
tures make the model more complex, impose unnecessary computations and con-
sequently increase the training time, and reduce the interpretability of the feature

2.2. CONCEPTS OF MACHINE LEARNING 11

set. They also increase the chance of over-fitting (see Section 2.2.3).
There are three groups of feature selection methods: filters, wrappers, and em-

bedded methods. All these methods automatically select the most relevant subset
of features. Each method includes a group of techniques that choose the same
strategy for feature selection [36,38–40].

Filter Methods. In filter methods features are chosen based on the characteristics
of data without using any classifier in the process of feature selection. Filter methods
are composed of two steps: first the features are ranked according to certain criteria;
then in the second step, the features with the highest rankings are selected to induce
the predictive model. Fisher Score (or F-test) [41], ReliefF [42], and methods based
on mutual information [43] are the most representative filter-based feature selection
algorithms. Among them Fisher score is one of the most widely used criteria due to
its good performance [44]. In this thesis we use Fisher score for feature selection.

Fisher score. Filter-based algorithms based on Fisher score are univariate eval-
uation features. This means that features are selected, ranked and evaluated inde-
pendently. Thus this method neglects the usefulness of combinations of features
(i.e. evaluating two or more than two features together) and therefore it cannot dis-
tinguish between redundant and non-redundant features. The central idea in this
method is: features with high quality should assign similar values to instances in the
same class and different values to instances from different classes. According to
this, the score for the ith feature Si is calculated as:

Si =
ΣK

j=1nj(µij − µi)
2

ΣK
j=1njρ2ij

(2.1)

where µij and ρij are the mean and the variance of the ith feature in the jth class
respectively, nj is the number of instances in jth class, and µi is the mean of the ith

feature [36].

Wrapper Methods. In practice features are not independent of each other; the
effect of one feature may differ when it is used in combination with other features:
”a variable useless by itself can be useful together with others” [38, 44]. This is
the main motivation behind the wrapper methods. They focus on finding the best
combination of features (i.e. multivariate evaluation). Wrappers utilize the learning
algorithm of interest as a black box to score the subsets of the features based on
their predictive power. This method comes in three important strategies: backward
feature elimination, forward feature selection, and recursive feature elimination [38].
The drawback of these methods is that they are computationally expensive and it

12 CHAPTER 2. BACKGROUND

is not clear if the gained predictive power justifies the imposed computational load
for a certain application (for example product named entity recognition). Wrapper
methods use a learning model, as a black box, to select the best combination of
features. This is regardless of the chosen predictive model; therefore the training
of the predictive model based on the selected features should be done after the
feature selection step. This imposes even more computational load to the method.
To address this issue embedded methods have been evolved to fill the gap between
filter and wrapper methods.

Embedded Methods. Embedded methods embed feature selection with classifier
construction. These methods bridge the gap between filter and wrapper methods.
They first use statistical measures, similar to filter methods, to select subsets of
candidate features with predefined cardinality. Second they use these candidate
feature sets to induce learning models; the candidate feature set with the highest
accuracy is chosen and there is no need to use it to train the predictive model as
it is already done in the second step of the method. In this way, the embedded
methods obtain results that are comparable with those of wrapper methods in terms
of accuracy while they are more computationally efficient than the wrapper methods
[45,46].

2.2.2 Learning Models

This section briefly introduces the learning models that are used in this thesis. We
give an intuitive explanation for each learning model. Our objective is to give an idea
on how the learning algorithm works in general. We also give references to more
detailed explanations of each algorithm for further reading.

Random Forest

Random forest [47] is one of the ensemble learning methods [48, 49]. This is a
category of learning algorithms in which a set of weak learners are combined to
construct a single powerful learner. Random forests aggregate the result of many
decision trees where each tree is trained with a randomly chosen subset of fea-
tures over a subspace of the training set. Random forest is a powerful and popular
classifier that is successfully applied to different applications [50]. The main reason
behind the success of this classification method is not clear from the mathematical
point-of-view [51, 52]. However, Breiman [47] relates this success to the out-of-bag
strategy: based on that strategy the samples that are not used for training the cur-
rent tree, are used to estimate the prediction error and then to evaluate the feature

2.2. CONCEPTS OF MACHINE LEARNING 13

importance. The number of and the depth of trees are free variables that can be
tuned as the hyper-parameter of the classifier. Recently random forests have been
also used successfully as a feature selector [53].

Support Vector Classifier (SVC)

The SVC is a discriminative classifier that mathematically works based on finding op-
timal hyperplanes. The hyperplanes separate different classes of data. The method
is originally designed for binary and linear classification. However it is shown that
the linear core of the classifier can be extended for classifying non-linear problems
by a technique that is called kernel trick. The kernel trick uses kernel functions to
map the data to a new space on which the data is linearly separable. This additional
dimension is calculated by a kernel function. The main kernel functions are: Ra-
dial Basis Function (also known as Gaussian), exponential, polynomial, hybrid and
sigmoidal. To enable to use SVC for multi-class classification, a number of binary
support vector classifiers are combined.

The linear variant of the method has different hyper-parameters. The parameter
C (also known as soft-margin) is the most influential hyper-parameter of the model.
The soft-margin parameter enables more flexibility in choosing the hyperplanes of
the classifier. It is a generalization of hard-margin where the optimal hyperplane is
the one that is exactly in the middle of support vectors. Support vectors are the
vectors that determine the boundaries of the samples of each class. By setting soft-
margin, the user of the model can determine where between the support vectors,
the hyperplanes should be placed.

Adaptive Boost (AdaBoost)

AdaBoost, the abbreviated name of Adaptive Boost, is one of the earliest boost-
ing algorithms that belongs to the category of ensemble learning models. In this
technique an increasingly complex predictor is constructed by combining weak pre-
dictors. As a result boosting enables us to create a powerful predictive model out of
many weak learners (e.g. decision trees).

The algorithm starts by assigning equal weights to each data point (i.e. each
token in NER applications). Then it iterates for a certain number of times. In each
iteration it trains a decision tree (i.e. the weak learner) on a specific number of
features. After training the decision tree, an error is calculated for each data-point
based on that the weight of the data points are updated such that the data points
that are mis-classified get a higher weight; so they can hopefully have more chance
to be trained in the next iteration. We also calculate a weight for our weak learner.
This weight is calculated based on the classification error and indicates how much

14 CHAPTER 2. BACKGROUND

we trust this weak learner. In the next iteration we choose another set of features
(randomly) and train another weak learner over that. This time we use the weighted
data points that are biased towards the data-points that were missed by the previous
learner. The new weights for each data point and a new weight (coefficient) for
the weak learner are calculated. This is repeated until some predefined number
of iterations. The number of iterations is equal to the number of weak learners
which is one of the hyper-parameters of the algorithm. At the end, we have trained
n weaker learners and for each one we calculated a separate weight that indicates
how much we are confident on the classification of that specific weak learner. Finally
the complex predictor is constructed by linear combination of the weak learners and
their weights as follows:

y = Sign(ΣN
i=1wi ∗ fi(x)) (2.2)

where y is the classification of data point x, N is the number of weak learners, fi is
the ith weak learner and wi is its weight.

2.2.3 Cross-Validation

One of the main concerns in using machine learning techniques is whether the pre-
dictive model that has been trained over a limited dataset can work with almost
the same performance on the future unseen data. To resolve this issue, in ma-
chine learning methodology, the dataset is divided into: train set, validation set and
test set. These sets are typically chosen randomly from the dataset. The training
set is used to train the predictive model using the learning algorithm with certain
hyper-parameters, The validation set is used to fine-tune the hyper-parameters of
the model, and the testing set models the future unseen data and is used to evalu-
ate the actual performance of the predictive model. The performance of the model
on the testing set is assumed to be an approximation of the performance of the
model on the future unseen data.

The performance metrics measured in the above-mentioned methodology are
not robust in practice as the performance of the predictive model depends on how
data samples are divided into the testing, validation and training sets. This is espe-
cially a critical issue when the number of features grows compared to the size of the
training set (which is a typically the case in text categorization problems). In these
cases, the model fits too well to the training set, so-called over-fits the training data.
In this situation, the random selection of the training set does not resolve the over-
fitting problem, as the performance metrics may differ from one randomly chosen
training set to another. Increasing the size of train set mitigates the problem but it is
expensive and may not be feasible in many applications.

2.3. SUMMARY 15

Cross-validation is a commonly used approach to check how well the model
generalizes to new data. Moreover, cross-validation enables the use of the whole
dataset for training and testing; this is in contrast to explicitly assigning one part of
the data to training and the other parts to validation and testing. In cross-validation,
the dataset is divided into a number of folds. That is the reason this method is also
known as K-fold cross validation. In each iteration one fold is taken as the testing
set and the others are taken as the training set. This is so called leave-one-out
cross-validation (LOOC) [54]. The predictive model is trained and the performance
metrics are computed. This process repeats for all folds. The final performance
metric is the average of performance metrics over all iterations. The number of folds
is a hyper-parameter of the technique that can be tuned based on the application.

2.2.4 AutoML

In general to design a machine learning solution, one has to solve several deci-
sion problems such as which learning model and which feature selection technique
should be used? What is the optimal number of features? And what are the opti-
mal hyper-parameters for the chosen learning model? Automatic Machine Learn-
ing (AutoML) Frameworks (e.g. AUTO-SKLEARN [55], HYPEROT-SKLEARN [56]
and AUTO-WEKA [57]) are tools that are able to automatically solve the above-
mentioned decision problems. AutoML problems are also defined in the context of
the CASH (Combined Algorithm Selection and Hyper-parameter optimization) prob-
lem [57]. AutoML algorithms exploit different machine learning techniques to con-
struct more automated, robust and efficient machine learning frameworks. Feurer et
al. present a precise definition for the AutoML problem in [55].

2.3 Summary

This chapter presents the main approaches to NER: (1) machine learning tech-
niques, (2) rule-based techniques and (3) gazetteer-based techniques. Because of
the ungrammatical and multilingual nature of our dataset, in this work we focus on
the machine learning and gazetteer-based techniques. More specifically we inves-
tigate a set of hybrid solutions that combine machine learning and gazetteer-based
techniques. This chapter also gives an introduction to the main steps and concepts
used in developing machine learning solutions. We start with the most influential
step, the feature engineering step (including both feature construction and feature
selection) and continue with discussing main feature selection techniques and learn-
ing models. We explain three main approaches in feature selection: (1) filter meth-
ods (2) wrapper methods (3) embedded methods. In this work we employ filter

16 CHAPTER 2. BACKGROUND

methods and embedded methods in our proposed solutions. However, because of
the high computational cost of the embedded methods, our experiments is only lim-
ited to the solutions that use filter methods for feature selection. This chapter also
discusses a set of learning models: linear and non-linear SVC, random forest, and
AdaBoost. Later in this thesis we use these models to induce required predictive
models for the task of product name recognition.

Chapter 3

Methodology

This chapter discusses our methodology. Throughout this chapter we create differ-
ent parts of a machine learning framework that enables us to investigate different
aspects of machine learning-based solutions for the task of product name recogni-
tion. We begin with introducing our dataset and the format of product name anno-
tations. We continue with data preparation steps and constructing a set of relevant
features. Then we discuss how automatic feature selection methods are employed to
reduce the dimensionality of data. We also present the configuration of the machine-
learning solutions that are investigated in this work. Each solution is composed of
a feature selection method, a learning algorithm and a set of hyper-parameters.
Our framework automatically selects the most effective subset of features, and op-
timizes the hyper-parameters of the solution. Thus, in addition to its application for
experimenting machine-learning techniques, our framework is sufficiently generic to
be used as an automatic machine learning framework. The important advantage
of automatic machine learning frameworks is their ability to simplify the process of
designing machine-learning solutions by automating most of the required confronta-
tional decisions (e.g. the choice of learning model, feature selection method, optimal
number of features and model hyper-parameters)

3.1 Dataset

This section discusses our dataset and the format and structure of product name
annotations. The dataset is a set of short product descriptions from ERIKS [5]. It
contains 155427 product descriptions among which, for 2091 product descriptions
the product names are manually annotated. The manual annotations are provided
by the company Mydatafactory [4]. Each product description in the dataset may
contain one or several product names and each product name may be composed of
one or multiple adjacent terms.

17

18 CHAPTER 3. METHODOLOGY

Product Description CILINDERSCHR. MET ZAAGGLEUF M5 X 20 DIN84
Product Name Offsets [’1:14’, ’1:28’, ’37:42’]
Product Names PN1= CILINDERSCHR.

PN2= CILINDERSCHR. MET ZAAGGLEUF
PN3= DIN84

Product Names after
Tagging

[(’CILINDERSCHR.’, ’B’), (’MET’, ’I’), (’ZAAGGLEUF’, ’I’),
(’M5’, ’O’), (’X’, ’O’), (’20’, ’O’), (’DIN84’, ’B’)]”

Table 3.1: An example of tagging product name tokens when there are overlapping
product names in the product description

Annotation Format

Given that a product description is a list of terms, the objective of annotation is to
determine which sequence of adjacent terms in the product description is a product
name. The annotation of product names has been done by adding a list of offset
pairs. Each offset pair marks one product name in the product description. The pair
contains two indices indicating the index of the starting character and the index of
the ending character of the annotated product name. We assume that a product
description is the string S of characters (including white spaces) such that the first
character has index 1 and the last character has the index len(S). The following ex-
ample shows how the product names are annotated in the given product description:

CILINDERSCHR. MET ZAAGGLEUF M5 X 20 DIN84,
T1 Productname 1 14 CILINDERSCHR.,
T2 Productname 1 28 CILINDERSCHR. MET ZAAGGLEUF,
T3 Productname 37 42 DIN84

where the first line is the given product description and the rest of the lines repre-
sent the annotated product names. For example the second line indicates that the
first product name starts from the index 1 and ends at the index 14 in the product
description string.

Overlapping Product Names

Sometimes when there are multiple product names in a product description, the
offset range of one product name may completely cover the offset range of another
one. In this case, we take the larger product name and drop the smaller one. The
reason for this decision is that the larger product name is assumed to be more
informative than the smaller one. Table 3.1 gives an example of this case, where the
product name PN1 is fully covered by the product name PN2.

3.2. DATA ANALYSIS 19

3.2 Data Analysis

The main objective of data analysis is to collect statistical information about the
product names in our dataset. According to the analysis, 70.97% of the product
names appear at the beginning of the product description. This means that the first
term of the product name coincides with the first term of the product description in
which it appears. Moreover, 51.5% product names are unigram, 34.2% are bi-gram,
and 10.6% are trigram, and 3.7% more than tri-gram. In total 96.3% of the product
names are less than trigram. Furthermore, 4.48% of the product names appear at
the end of the product description (i.e. the last term of the product name coincides
with the last term of the product description).

3.3 Preprocessing

Our preprocessing phase is done in three main steps: (1) punctuation replacement
(2) tokenization and (3) IOB tagging. In the punctuation replacement, we replace
the following set of punctuation marks with whitespace:

punctuations = {’,’ , ’.’ , ’:’ , ’-’ , ’+’ , ’(’ , ’)’ , ’=’ , ’ ’ , ’/’ , ’\’ , ’*’ ,’[’ , ’]’ }

The decision about the set of punctuation marks that has to be replaced with
whitespace, depends on the dataset and the application. Thus in general it is an
input to our machine learning framework. In the context of our dataset and appli-
cation in this work, the punctuation replacement is useful because it normalizes the
morphological structure of product names. Based on our manual inspections on the
data, punctuations marks are irrelevant features for product names. This means
that in many cases the dataset contains both the whitespace form and punctuated
form of a product name (e.g. ”o-ring” and ”o ring” product names). For these cases
punctuation replacement, yields a more normalized dataset.

In the second step we tokenize each product description using a whitespace
tokenizer that yields a list of tokens as its output. In the rest of this work we use the
term token to refer to each term or word in product descriptions.

3.3.1 IOB tagging

Each product description may contain multiple product names. The product names
of a product description often are related (i.e. they are synonym of each other or one
is the hypernym of the other one). The raw dataset has to be processed before being
fed into as the input into the learning algorithms. For this purpose, we transform our
raw dataset into a processed dataset in the form of (token, tag) pairs. To tag the

20 CHAPTER 3. METHODOLOGY

tokens of a given product description, we use an In/Out/Begin (IOB) representation
[33, 58]. In this format unigram product names are tagged by the label ’B’ while
in multi-gram product names, the first token is tagged with the label ’B’ and the
rest of the tokens are tagged with the label ’I’. The tokens which are not part of a
product name are tagged with the label ’O’. Therefore, a product name in our new
representation always starts with the label ’B’ followed by zero or multiple tokens
with the label ’I’. Table 3.2 shows our tagging strategy. The ’B’ label is specifically
needed to distinguish between product names that appear adjacently in the product
description (i.e. there is no non-product-name token with label ’O’ between them).

Product Desc. CARROSSERIERONDEL M6 X 30 DIN440R
Product Names Product Name 1 (PN1) = CARROSSERIERONDEL

Product Name 2 (PN2) = DIN440R
Tagged Pro. Desc. (CARROSSERIERONDEL, ’B’), (M6,O), (X,O), (30,O), (DIN440R,B)

Table 3.2: An example showing how the tokens of a product description are tagged
according to the IOB method.

3.4 Feature Construction

To construct our feature set, we follow a structural approach. We first take four
classes of features: token-level features, document-level features, gazetteers-based
features, frequency-based features as the basis of our feature construction step.
These classes are introduced by [59] as the main feature classes for the task of
NER. Next, for each class we identify a list of features that are relevant to our product
name recognition task. In the rest of this section we elaborate on each feature class.
In the next chapter we study the impact and usefulness of different features in our
feature set when they are used to train the predictive models of our solution space.

3.4.1 Token-Level Features

Token-level features are related to the character composition of tokens [59]. Token
case (i.e. upper or lower-case), numerical and special characters and different mor-
phological features such as prefixes, suffixes are considered as main token-level
features. Among them morphological features are specifically interesting for the
task of product name recognition, as many product names share the same set of
characters as their prefixes or suffixes.

Some of the features mentioned above may not be as discriminative as they
are in other NER applications. For example the case of the token, is useful mostly

3.4. FEATURE CONSTRUCTION 21

in the applications that follow grammatical rules while this is not the case for the
product descriptions in our dataset. Product descriptions are typically ungrammat-
ical and short. Thus we expect, for our dataset, the orthographic features such as
capitalization to be very noisy; and so they do not contain considerable discrimina-
tive information. A similar hypothesis has been studied and confirmed in [60] for a
dataset of queries. We evaluate this hypothesis with respect to our data in the next
chapter.

Although we might not benefit from the features that require some levels of gram-
matical regularity, other groups of features such as morphological features, digit pat-
terns, token length, and the token itself are considered as potentially useful features.

Table 3.3 shows the list of all features used by our predictive model. The first
three rows, are variants of the case features. The next row is the token itself which
is taken as a feature. Next to that there are numeric features that check if the token
is a number or if it contains a numeric part. After these we have the token length as a
feature. The rest of the rows in the table are the variants of the morphological feature
group. They address different sub-sets of the token. The infix features are taking
a sub-part of the token as a feature. We denote the sub-parts by the sequence of
token letters liljlk where li is the ith letter of the token.

3.4.2 Document-level Features

This class considers the features that appear at the document-level (i.e. in the level
of product description) where each product description is considered as a separate
document according to our definition. Our analysis of the training set reveals that the
position of the product names in the product descriptions follows a specific spatial
distribution. According to that observation, we define the document-level feature,
token position as the index of the token t in the token-list V . V is the list of terms
that is the outcome of the tokenization of the product description such that the first
token in the list, is the first term in the product description. For more details about
our tokenization method, we refer to Section 3.3. Note that we consider the fea-
ture ”token position” as a document-level feature because its evaluation requires
document-level information (i.e. it needs the position of the token in the token list).

In addition to the token position, we also consider the previous and the next
tokens of the current token as additional document-level features. For this purpose
we use a windowing scheme with windows size of five that centers at the current
token. This creates four new features: the second previous token, previous token,
next token, and the second next token.

22 CHAPTER 3. METHODOLOGY

Features Description
is-capitalized it is true if the first letter of the token is capital.
is-all-caps it is true if all letters of the token is capital.
is-all-lower it is true if all letters of the token is lower-case.
token The token itself as a feature
token-numeric it is true if the token is an integer number
token-digit It is true if the token contains one or more than one digits
length The length of the token
prefix1 the first letter of the token.
prefix2 the first two letters of the token.
prefix3 the first three letter of the token.
prefix4 the first four letter of the token.
suffix1 the last letter of the token.
suffix2 the last two letters of the token.
suffix3 the last three letters of the token.
suffix4 the last four letters of the token.
trimmed1 all the letters of the token except the last one.
trimmed2 all the letters of the token except the last two one.
trimmed3 all the letters of the token except the last three one.
trimmed4 all the letters of the token except the last four one.
infix2-1 ln−2ln−1 where n is the token length
infix3-1 ln−3ln−2ln−1 where n is the token length
infix4-1 ln−4ln−3ln−2ln−1 where n is the token length
infix2-2 ln−3ln−2 where n is the token length
infix3-2 ln−4ln−3ln−2 where n is the token length
infix4-2 ln−5ln−4ln−3ln−2 where n is the token length
infix2-3 ln−4ln−3 where n is the token length
infix3-3 ln−5ln−4ln−3 where n is the token length
infix4-3 ln−6ln−5ln−4ln−3 where n is the token length

Table 3.3: Token-level features

The window size is a hyper-parameter and its value may differ from one appli-
cation to another. In our problem, we choose the windows size based on the initial
statistical analysis on the distribution of product names sizes in terms of number of
tokens (see Section 3.2). Table 3.4 summarizes the list of document-level features
that are present in our feature set.

3.4. FEATURE CONSTRUCTION 23

3.4.3 Gazetteer-based Features

This section, presents how product name gazetteers (e.g. ETIM) are incorporated
with machine learning models. This answers the first part of the research question
RQ3 (see Section 1.4).

The gazetteers-based approach is one of the main NER approaches. Sometimes
when gazetteers are sufficiently complete, they are used as a stand-alone named
entity recognizer. However, some researches present hybrid NER approaches where
the gazetteers are used in combination with machine-learning techniques [11, 33]
to construct more powerful named entity recognizers. In these hybrid solutions,
gazetteers are involved as a feature of predictive model. We also follow the same
approach. However we extend it, by applying a windowing-scheme to gazetteer-
feature. To the best of our knowledge, this work is the first work that studies the use
of a product name gazetteer as a feature for the task of PNER.

Gazetteer-based features for an arbitrary term t are defined as the result of the
lookup function Gaz(t). The function takes a token as its input and returns true if
the token matches with at least one of the tokens in one of the entries of the used
gazetteer (i.e. ETIM). Same as document-level features, we use a similar windowing
scheme for gazetteer-based features. This enables us to exploit the potential rela-
tionship between the neighboring terms. The window size is five and it is centered
at the current token. So the window covers two tokens before and after the current
token. For each token tn, the following lookup functions are evaluated: Gaz(tn−2),
Gaz(tn−1), Gaz(tn), Gaz(tn+1), and Gaz(tn+2) where Gaz is the gazetteer lookup
function. Table 3.5 summarizes our gazetteer-based features.

To be able to effectively use the gazetteer-based features, gazetteer entities have
to pass the same punctuation replacement step as the product descriptions. More-
over, the case of the tokens in the product descriptions and the gazetteer entities
should be uniformed before matching (i.e. all to upper-case or all to lower-case).

Note that for each product description there are marginal tokens for which the
window has some missing tokens. If the windows size is 5, the token tn is marginal
for n < 2 and n > |D|−2 where |D| is the number of tokens in the product description
where the first token is t0. Some features of the marginal tokens are always evalu-
ated as false because there is no previous or next token or tokens. For example for
the token t1, the feature G(tn−2) is always false for all product descriptions.

24 CHAPTER 3. METHODOLOGY

Features Descriptions

token position
The index of the token t in the token-list V .
This indicates the position of the token in the
product description according to our tokenization method

token-position = end
It is true if the current token is
the last token of the product description

token-position = pre-end
It is true if the current token is the first previous
token of the last token of the product description

token-position = second-pre-end
It is true if the current token is the second previous
token of the last token of the product description

pre-token The previous token
second-pre-token The second previous token
next-token The next token
second-next-token The second next token
pre-token-numeric The previous token is numeric.
second-pre-token-numeric The second previous token is numeric.
next-token-numeric The next token is numeric
second-next-token-numeric The second next token is numeric.
pre-token-digit The previous token contains a digit.
second-pre-token-digit The second previous token contains a digit.
next-token-digit The next token contains a digit.
second-next-token-digit The second next token contains a digit.
pre-token-length The length of the previous token
second-pre-token-length The length of the previous token
next-token-length The length of the next token
second-next-token-length The length of the next token

Table 3.4: Document-level features

3.4.4 Frequency-based Features

Frequency-based features are a class of features that use the frequency of terms
in the document as a predictive variable. Our hypothesis is that frequency-level
features such as term-frequency and inverse-document-frequency are informative
features that can be used to distinguish the tokens that are part of a product name
(i.e. tagged with ’B’ or ’I’) from non-product-name terms (i.e. tagged with ’O’). More
precisely we study if there is a correlation between the frequency of tokens and their
tags (i.e. ’I’, ’B’, or ’O’). Note that we do not specifically claim that product name
tokens are the most frequent tokens in the dataset. The important advantage of this

3.4. FEATURE CONSTRUCTION 25

feature class is that these features potentially enable us to exploit an unannotated
dataset (if it exists). In our case, we have a larger unannotated dataset that we use
to construct frequency-based features.

Features Descriptions

current token in gazetteer
is true if the current token exists in the
gazetteers otherwise it is false

previous token in gazetteer
is true if the previous token w.r.t. the current
token exists in the gazetteer otherwise
it is false

second previous token in gazetteer
is true if the second previous token w.r.t. the
current token exist in the gazetteer otherwise
it is false

next token in gazetteer
is true if the next token w.r.t. the current token
exists in the gazetteer otherwise it is false

second next token in gazetteer
is true if the second next token w.r.t. the current
token exists in the gazetteer otherwise it is false

Table 3.5: Gazetteer-based features

We define the Term-Frequency (TF) feature for the token t as the frequency of
the token in our unannotated dataset. The numerical value of the term-frequency
feature tf for the token t is calculated by the following formula:

tf(t) =
C(t)

|T |
(3.1)

where C(t) is the number of occurrences of the token t in the unannotated dataset,
T is the set of all tokens, and |T | is its cardinality.

The Inverse-Document-Frequency (IDF) feature uses the same principle, how-
ever, instead of term frequency, the inverse document frequency [61, 62] is used.
Unlike the term-frequency feature, now we consider each product description as a
separate document. The numerical value of the inverse document frequency feature
idf for the token t is calculated from the following formula:

idf(t) = ln
|D|+ 1

df(t) + 1
(3.2)

where df(t) is the number of documents (i.e. product descriptions) containing the
term t in the unannotated, D is the set of all documents, and |D| is its cardinality.

Table 3.6 summarizes our frequency-based features.In the next chapter we study
the usefulness of these features and based on our experimental results, we evaluate
the hypotheses that are posed in this section.

26 CHAPTER 3. METHODOLOGY

3.4.5 Hypotheses on Features

This section presents a list of hypotheses on the effectiveness of some of the fea-
tures. We evaluate these hypotheses based on our experimental results in the next
chapter. The hypotheses are:

1. Capitalization features have low discriminative power and are not effective fea-
tures for the task of product name recognition (discussed in Section 3.4.1).

2. Position matters: there is a significant correlation between the position (i.e.
the index) of a token and being part of a product name (discussed in Section
3.4.1).

3. Features that are constructed based on the windowing scheme are effective
features (discussed in Section 3.4).

4. Tokens appearing as a part of the product names have a statistical distribution
in terms of “term frequency” (tf) or “inverse document frequency” (idf). This
can be used as a discriminative feature for product name tagging (discussed
in Section 3.4.4).

5. Gazetteer-based features are among the effective features in our feature set
(discussed in Section 3.4.3).

In the next chapter, we evaluate these hypotheses.

3.5 Feature Selection

The number of features specifically in case of text data, as well as our problem,
tends to increase rapidly to thousands or ten thousands features. In our problem,
the number of features grows to 66400 binary features that is almost six times larger
than our training samples. This is because we work with text and the features (e.g.
the feature ”token” in Table 3.3) need to be binarized (see Section 2.2.1). This large
number of features leads to over-fitting. In practice, it turns out that many of these
features are noisy features that do not really correlate with our target classes. These
noisy features sometimes degrade the performance of our learning model; so having
many features sometimes ends up in less efficient and less robust predictive model.
This is confirmed by our experimental results discussed in the next chapter. Accord-
ing to the literature, feature selection is one of the effective methods to deal with this
problem [36–40]. In this section we explain how feature selection techniques are
used in our machine learning solutions.

3.5. FEATURE SELECTION 27

As discussed in Section 2.2.1, feature selection is a well-known technique to re-
duce the dimensionality of data (i.e. the size of the feature set). There are three
main classes of feature selection techniques: filter methods, wrapper methods and
embedded methods. Among those feature selection methods, in this work we specif-
ically focus on the filter and embedded methods. Filter methods are computationally
efficient; however they are less accurate as they only consider the importance of the
one feature, independent of the other features. The wrapper and embedded meth-
ods select the best combination of the features; so they potentially result in a better
feature set compared to the filter methods but they are computationally intensive.
Between embedded and wrapper methods, embedded methods are more efficient
with almost the same feature quality. So between embedded and wrapper methods
we choose to investigate embedded methods.

The design of our solution space is based on incorporating both embedded and
filter methods; however, our initial experiments reveal that the computational cost of
embedded methods is so high that is not feasible for us to generate sufficient ex-
perimental results. For completeness, we present our methodology for both feature
selection methods (i.e. embedded and filter methods); however, the next chapter,
where the experimental results are discussed, only covers the solutions that use
filter methods as their feature selection technique.

From the different feature selection techniques in the group of filter methods, we
use F-test in this work. F-test is a statistical test based on variance analysis. It is also
the most popular feature selection technique in filter methods [44]. This test enables
us to determine the features that correlate the best with the target classes. The test
assigns a score to each feature (known as Fisher score) based on which a certain
subset of important features (i.e. the features with higher scores) are selected. For
more background on this topic we refer to Section 2.2.1.

Embedded methods combine filter and wrapper methods. Our embedded feature
selector is a combination of F-test and a learning model (i.e. linear or non-linear
SVC or Random Forest or AdaBoost). In this feature selection method, filtering of
features is done in two steps. We first select a subset of relevant features using a
given filter method (i.e. F-test in this work). This reduces the size of feature set.
Second for all the possible subsets of the features with a given cardinality that are
taken from the already reduced feature set, we train a learning model (e.g. Random
Forest or linear SVC, or etc.). At the end the subset with the best performance is
chosen as the selected feature set. As the model has already been trained for the
best feature set, there is no need to repeat the training step again, and the already
trained model is directly used as the predictive model.

Table 3.8 shows our solution space where feature selectors and learning models
are combined to construct a solution. The solutions in the rows 2, 4, 6 and 8 use

28 CHAPTER 3. METHODOLOGY

embedded feature selection while the other rows use filter feature selection method
(namely F-test).

3.6 Learning Models

Apart from the quality of the features, the learning models that are used to train
the predictive model also play an important role in the overall performance of a
machine learning solution. This work investigates the impact of different learning
models on the final performance of the product name recognition task. We specif-
ically study: linear and non-linear support vector classification [63, 64], ensemble
methods with bagging strategy such as random forests [47,53] and ensemble meth-
ods with boosting strategy such as AdaBoost [65,66]. We also investigate the effect
of hyper-parameter optimization on the performance of the learning model.

As discussed in Section 2.2.2, SVC is a binary classification algorithm. However,
it can be extended to be used as a multi-class classifier by using for example the
crammer-singer scheme [67]1. As our problem is a multi-class classification prob-
lem, throughout this work we only use multi-class SVC models. To learn more about
the different approaches to multi-class SVC, we refer to [68].

3.6.1 Hyper-parameter Optimization

Tuning hyper-parameters of the learning models might be challenging as they may
vary in a wide range and they may have influence on each other. The common
method, so-called GridSearch, is to choose a set of candidate values for each hyper-
parameter based on the intuitive understanding of the hyper-parameter’s role on the
learning power of the model; then exhaustively search for the combination of the
hyper-parameters with the best performance [69].

To compare different combinations of hyper-parameters, a cross-validated scor-
ing function is used. This means that we use cross-validation methodology to split
the training set into a certain number of folds. Then we take one fold as the (new)
testing set 2 and the rest as the (new) training set. The model is trained using the first
set of the hyper-parameters on the new training set. Then the model is evaluated
on the new testing set. This is repeated for each fold. At the end, the average of the
scores in all folds are taken as the final score for that hyper-parameter combination.

1In the sklearn library, this can be done by setting the multi-class parameter of the algorithm to
”crammer-singer” in case of a linear kernel or by setting the decision-function-shape parameter to
”ovo” (one-vs-one) in the case of non-linear kernels.

2This is the part of our original training data that is used as a testing set for hyper-parameter
tuning.

3.7. AUTOMATIC MACHINE LEARNING FRAMEWORK 29

Using the procedure above, we can assign to each hyper-parameter combination a
cross-validated score. Finally we sort all the hyper-parameter combinations based
on their score and choose the best combination.

3.7 Automatic Machine Learning Framework

This section discusses the machine learning framework developed in this work. We
use this framework to study the effectiveness of various features, feature selection
techniques, classifiers, and fine-tuning hyper-parameters and number of features.
However, in addition to the experimental purposes, the framework is applicable to
automatic development of machine learning solutions. This addresses the problem
that is known as the AutoML problem [55]. The rest of this section explains our
machine learning framework. The core steps of the framework are presented in the
form of pseudo code in Listing 1 and 3. Listing 2 shows how the framework is used.

3.7.1 The Skeleton of the Framework

The pseudo code in Listing 1 presents the skeleton of the framework. As input,
the AutoML algorithm receives a processed dataset, a list of solutions and an over-
fitting threshold. The framework ranges over a given list of solutions and selects the
solution with the best performance. The framework uses GridSearch (see Section
3.7.4) and EvaluateSol (see Section 3.7.3) algorithms to optimize hyper-parameters
of the solutions.

We explain this process with more details. For each solution, the algorithm iter-
ates over a range of feature percentages starting from 0.5 percent to 100 percent
of the features (line 8). This range can be adapted by the user of the algorithm to
make it computationally feasible for a specific hardware platform that is used for the
experiment. In our experiments, due to limitations in the computational power, we
use a smaller range of feature percentages with unequal step sizes. We start with
smaller step sizes at the beginning and we increase the step size as the feature
percentage grows. This is the range of feature percentages that we use in our ex-
periments: {0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.8, 0.9, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5,
14, 14.5, 15, 15.5, 17, 20, 25, 40, 60, 70, 80, 90, 100}. Note that the loop over
the features, breaks as soon as the over-fitting condition at line 12 is satisfied. This
provides some speed ups, as in many cases the learning models over-fit the training
set when the dimensionality of data grows (i.e. in large feature sets). Moreover,
the iterations of the both loops in the algorithm are independent making them very
suitable for parallel execution.

30 CHAPTER 3. METHODOLOGY

For each feature percentage the GridSearch algorithm searches for the optimal
hyper-parameters (see Section 3.7.4, to learn more about GridSearch). The out-
come of GridSearch are the optimal hyper-parameters that are stored in the hyper-
parameter variable of the current solution (i.e. S[i].CHP). Given the percentage of
features and tuned hyper-parameters, the algorithm evaluates the solution S[i] with
optimal hyper-parameters and given percentage of features (line 11). Next when the
difference between the training and testing errors exceeds the user-defined over-
fitting threshold, the algorithm exits the feature loop (lines 8-13) and the optimized
hyper-parameters and the last percentage of features are taken as the best hyper-
parameter for the ith solution. After repeating this process for all solutions in the list,
at the end the algorithm selects the solution with minimum F1 error as the best solu-
tion and returns it as its output while the tuned hyper-parameter and optimal number
of features have been stored in the returned object. For brevity, we use constant
values for step size and maximum percentage of features (line 11), however, in a
more generic framework, these parameters are taken as the inputs of the algorithm.

3.7.2 Dataset Preparations

In order to use the AutoML algorithm, some application-specific preparation steps
have to be performed on the input raw dataset. These steps are not part of the
generic AutoML framework as they vary from one application to another. For ex-
ample the format of raw data, how it can be tokenized, how the data samples are
going to be represented by features strongly depend on the application. This section
explains how the inputs of the AutoML algorithm are prepared in our PNER applica-
tion. The preparation steps include: preprocessing of raw input dataset and feature
construction. These steps are presented in Listing 2.

The preprocessing step (line 4) transforms the raw data into the processed data
to be used in the AutoML algorithm. In the raw data, product descriptions are strings
attached by a list of integer intervals, each one indicating the start and end index
of the product names in the product description string. The preprocessing step
transforms these raw annotated product descriptions into a vector of tagged tokens
(called processed dataset here-forth). More details are explained in Section 3.3.

The outcome of preprocessing step is the matrix product description X1×t×|D|

and the matrix of class labels Y1×t×|D| where t is the number of tokens per product
description and |D| is the number of product descriptions in the dataset. As the
number of tokens per product description may vary from one product description to
another, we set t to be the maximum number of tokens per product description in our
dataset. Product descriptions with less tokens assumed to be padded with dummy
tokens and tags. Note that this is only for sake of simplifying the presentation of the
algorithm; the real implementation is done based on token lists with unequal sizes.

3.7. AUTOMATIC MACHINE LEARNING FRAMEWORK 31

1 Algorithm: AutoML
2 Input: Dataset, //preprocessed dataset
3 S(classifiers , CHP, feature−selector, EHP, folds), //solution list
4 Threshold //over-fitting threshold
5 Output: Solution
6

7 For i ∈ [1.. |S|]: //ranges over the solutions
8 For f∈ [0.5..100] steps 0.5: //ranges over the percentage of features f
9 S [i]. EHP = f

10 S [i]. CHP = GridSearch(S[i]. classifier , f , Dataset)
11 Metrics = EvaluateSol(Dataset, S[i])
12 if (Metrics.F1TestErr − Metrics.F1TrainErr) > Threshold:
13 break
14 indx = FindMinErrIndx

|S|
j=1 (Metrics[j]. F1TestErr)

15 return S [indx]

Listing 1: Proposed Automatic Machine Learning (AutoML) Framework

The feature construction step (line 5) builds up a feature vector for each token.
The tags of the tokens are not relevant to this step; so we only pass the token vectors
to the function Feature Construction (line 5). The categories of features used to
construct the feature vector are discussed in detail in Section 3.4. The outcome
of this step significantly increases the dimensionality of the data (see Section 3.4).
Therefore for X1×t×|D| as input, the step generates X ′

f1×t×|D| where f1 is the number
of binary features generated for each token. It can increase up to thousands of
features.

Then we construct a solution space and store it in the solution vector S (line 6).
Each element of S is a solution configuration that includes: a classifier (e.g. Linear
SVC), the hyper-parameters of the classifier, a feature selector (e.g. F-test), the
hyper-parameters of the feature selector, and the number of cross-validation folds.
The solution space and the hyper-parameters used in this work is defined in Table
3.8 and Table 3.7 respectively. However, among the solutions presented in Table
3.8, due to limited computational power, our experiments only cover those solutions
that use non-embedded (i.e. F-test) feature selection method.

3.7.3 The Steps of the Evaluation Algorithm

The algorithm presented in Listing 3 is used to evaluate the machine learning so-
lutions. The algorithm is composed of five main steps: feature selection, training,

32 CHAPTER 3. METHODOLOGY

prediction, post-processing, and evaluation. We briefly explain the function of each
step and the notation we use in the algorithm and refer to the related section for
more details.

The algorithm implements a cross-validation methodology (lines 10-23). The
processed dataset is split into F folds where in each iteration one fold is used for
testing and the rest is used for training the model. So in iteration i, if the test fold
is X(i), then the training set is X −X(i) (i.e. the whole dataset except the test set).
The number of folds is an input parameter that can be determined by the user of
the algorithm. However, the most common number of folds is ten; meaning that in
each cross-validation iteration, nine folds are taken as the training set and one fold
is taken as the testing set. In our experiments in the next chapter, we set the number
of folds to ten. For more information about cross-validation we refer to Section 2.2.3.

The feature selection step (lines 13-17) finds the best subset of features to be
trained. For filter feature selection methods, we need to determine an estimator that
in our case is F-test. In the case of embedded feature selection, the given classifier
is used for both feature selection and training the model. So the estimator would be
irrelevant. The outcome of this step is X ′′

f2×t×|D| where f2 (f2 << f1) is the number of
the selected features. The estimator of the feature selection step is trained over the
training set of each fold. Training and prediction are done in lines 18-20 that finally
yield a list of predicted classes Y

′

1×t× |D|
F

. After Post-processing (see Section 3.8.1)

in line 21, the performance metrics of the current fold are computed in line 22. At
the end, the average performance of the learning model in all folds is returned as
the outcome of the algorithm (line 24).

1 Input: Raw Dataset, Threshold
2 Output: A classifier with optimized hyper−parameter
3

4 X1×t×|D| , Y1×t×|D| = Preprocessing(Raw Dataset)
5 X

′
f1×t×|D| = Feature Construction(X1×t×|D|)

6 S = Solution Space Construction()
7 Dataset = (X′

f1×t×|D| ,Y1×t×|D|) //preprocessed dataset
8 return AutoML(Dataset, S, Threshold)

Listing 2: Preparation steps for AutoML Framework

3.7. AUTOMATIC MACHINE LEARNING FRAMEWORK 33

3.7.4 GridSearch

We use GridSearch to optimize the hyper-parameters of the learning model in our
solution space. In this method, we exhaustively search a range of predefined values
for each hyper-parameter. The goal is to find the optimal combination of hyper-
parameters with which the predictive model has its best performance. Table 3.7
shows the predefined ranges for each hyper-parameter. The details of the algorithm
is standard and we do not discuss it any further. For more details we refer to [70].

3.7.5 Solution Space

This section presents our solution space. Each solution is a combination of feature
selection methods and learning models. Our goal is to study which solution con-
figuration obtains the best performance. For each configuration, there is a set of
hyper-parameters that have to be tuned before running the algorithm. The set of
solution configurations that we study in this work is presented in Table 3.8.

Learning model Hyper-parameter Space

L-SVC

C= 0.0001,0.001,0.01,0.1,1,10,100,1000,10000
class− weight = {balanced, w(O)=1,w(B)=1,w(I)=1} where
balanced = adjust weights inversely proportional
to class frequencies in the input data

NL-SVC

C= 0.0001,0.001,0.01,0.1,1,10,100,1000,10000
class− weight = {balanced, w(O)=1,w(B)=1,w(I)=1} where
balanced = adjust weights inversely proportional
to class frequencies in the input data
γ = 0.01,0.1,1,10,100,1/f
f = number of features
kernel = RBF (Gaussian), sigmoid

Random Forests

d= 10,25,50, 100,150,200
ntree = (5,300), step=10
max− features = sqrt(f), log2(f),(f /3)
f = number of features

AdaBoost
d= 10,25,50,100,150
ntree = 15,25,50,75,100,150,200

Table 3.7: The search space of hyper-parameters for different learning models in
our solution space

34 CHAPTER 3. METHODOLOGY

1 Algorithm: EvaluateSol
2 Input: Dataset, // processed dataset
3 Solution Configuration (classifier ,
4 CHP , //tuned classifier hyper− parameters
5 f−selector, // feature selector
6 EHP , //feature selector hyper−parameters
7 F //number of folds)
8 Output: Performance Metrics
9

10 X
′

f1×t×|D| = {X
′(1)

f1×t× |D|
F

, . . . ,X
′(F)

f1×t× |D|
F

}=Split (X′

f1×t×|D| ,F)

11 Y1×t×|D| = {Y(1)

1×t× |D|
F

, . . . ,Y
(F)

1×t× |D|
F

}=Split (Y1×t×|D| ,F)

12 For i ∈ [1.. F]:
13 X

′′

f2×t×|D|= Feature Selection(X′

f1×t×|D|,

14 Y1×t×|D| ,
15 f−selector(X′

f1×t×|D| − X
′(i)

f1×t× |D|
F

,

16 Y1×t×|D| − Y
(i)

1×t× |D|
F

) ,

17 EHP)
18 LM = Learning Model(classifier, CHP)
19 LM.Train(X′′

f2×t×|D| − X
′′(i)

f2×t× |D|
F

,Y1×t×|D| − Y
(i)

1×t× |D|
F

)

20 Y
′

1×t× |D|
F

= LM.Test(X
′′(i)

f2×t× |D|
F

)

21 Y
′′

1×t× |D|
F

= Post Processing(Y′

1×t× |D|
F

)

22 Metrics[i] = Evaluate(Y′′

1×t× |D|
F

, Y
(i)

1×t× |D|
F

)

23

24 Metrics = AvgFi=1 (Metrics[i])

Listing 3: Algorithm used for evaluation of solutions

Our solution space includes eight solutions. Table 3.8 shows these solutions
where each row represents the configuration of each solution. Each configuration
determines which feature selection and which learning model are used in the so-
lution. As discussed in Section 3.5, we investigate filter and embedded feature
selection methods. In filter methods we use the statistical F-test technique. F-test
has only one hyper-parameter that is the number of features that should be selected
by the statistical test. This is denoted by f1. Embedded feature selectors first apply
the statistical F-test to select an initial set of features with size f1; then they use
a learning model to select a subset of features with size f2 where f2 < f1. The

3.8. EVALUATION METHOD 35

same learning model (with the same set of hyper-parameters) is used to train the
predictive model. Hence, the set of hyper-parameters is the same as the hyper-
parameters of the learning algorithm. Note that in embedded methods the learning
model that is used for feature selection is also used to train the predictive model.
The hyper-parameters of the learning algorithms are discussed in detail in Section
2.2.2. For the SVC model with linear kernel we tune the hyper-parameters C, while
in the SVC model with non-linear Gaussian kernel both C and γ are optimized. For
the tree-based ensemble learning models (i.e. Random Forests and AdaBoost) the
hyper-parameters are ntree determining the number of trees (also known as number
of estimators), d determining the maximum depth of the trees.

Solutions Configurations

L-SVC1
FS: F-test
LM: LinearSVC

L-SVC2 (embedded)
FS: F-test and linearSVC
LM: linearSVC

NL-SVC1
FS: F-test
LM: Non-linearSVC

NL-SVC2 (embedded)
FS: F-test and Non-linearSVC
LM: Non-linearSVC

RF1
FS: F-test
LM: Random Forests (RF)

RF2 (embedded)
FS: F-test and Random Forests (RF)
LM: Random Forests

AB1
FS: F-test
LM: AdaBoost (AB)

AB2 (embedded)
FS: F-test and AdaBoost (AB)
LM: AdaBoost (AB)

Table 3.8: Candidate Solution Space

3.8 Evaluation Method

This section discusses our evaluation method. Generally we stick to the standard
performance metrics such as precision, recall, and combined metrics such as F1

score. However, in NER context, these measures are defined at two different levels:
(1) phrase-level measure and (2) token-level measure [71]. The first measure is sen-
sitive to the correct detection of the boundaries of the named entities, in our case to
the boundaries of product names, while the second measures relaxes this require-

36 CHAPTER 3. METHODOLOGY

ment. Thus the predictions are counted in the token-level and not in the phrase-level
(or product-name-level in our case). We discuss these measures further in this sec-
tion, but before that we first need to discuss the reasons why we exclude the ’O’
class from our calculations.

Excluding the ’O’ class from Evaluation. The main objective of our classifier is
to recognize product names (i.e. the correct tagging of the tokens in classes ’B’
and ’I’). Therefore correctly classified tokens in class ’O’ should not be counted in
the performance of the classifier. To make it clearer, assume that there is product
description with 50 tokens, containing only one product name with two tokens (i.e.
there is only one token with tag ’B’ and one token with tag ’I’ in the product descrip-
tion and the rest of the tokens are in class ’O’). If a classifier predicts that all 50
tokens are in class ’O’, its precision is 96% while we cannot consider it as a good
classifier, because it obviously missed the only product name in the product descrip-
tion and the fact that it was able to correctly tag all the tokens in class ’O’ does not
add any value to this classifier as a product name recognizer. This gets more im-
portant when the number of tokens in class ’O’ are many more than the other two
classes, which is indeed the case in our annotated dataset. To address this issue,
we customize the standard metrics such that only the ’B’ and ’I’ classes are taken
into account.

Token-level Measurement. For each product description, we calculate true posi-
tives, false positives, and false negatives, only for the tokens tagged with either ’B’
or ’I’. Based on those values the precision and recall for each product description pd

are calculated using the following equations:

Precisionpd =
Σi∈{B,I}TPi

Σi∈{B,I}TPi + Σi∈{B,I}FPi
(3.3)

Recallpd =
Σi∈{B,I}TPi

Σi∈{B,I}TPi + Σi∈{B,I}FNi
(3.4)

where the set {B, I} is the set of classes (i.e. token tags), TPi, FPi, FNi are the
number of true positives, false positives and false negatives computed for the class
i respectively.

At the end, when precision and recall for each product description are calculated,
the final precision and recall for a solution is computed as the average of the preci-
sion and recall of all product descriptions in the testing set respectively. This can be
calculated using the following equations:

Recall =
Σ

Npd

t=0Recallt
Npd

(3.5)

3.8. EVALUATION METHOD 37

Precision =
Σ

Npd

t=0Precisiont
Npd

(3.6)

where Npd is the total number of product descriptions in the testing set.

Phrase-level Measurement. Phrase-level measurement evaluates how success-
ful the classifier is in tagging full product names. Thus, a prediction is correct only
if all tokens of the product name are predicted correctly. To calculate phrase-level
measures, we develop our own algorithm that checks the sequence of tags and
matches them with the corresponding sequence in the ground truth. More specifi-
cally the algorithm finds the sequence of tags starting with a ’B’ tag followed by zero
or multiple ’I’ tags in the predicted data and matches it against the ground truth.
Only if the whole sequence matches completely, it is counted as one successful
prediction.

We explain how these two measures (i.e. token-level and phrase-level measures)
are calculated by bringing an example in Table 3.9. The first row of the table in
the example shows the tagging of an example product description taken from the
testing set (ground truth). The product description is shown as a list of (token,tag)
pairs where t1 is the first token of the product description and t12 is the last token.
The second row shows the same product description assumed to be tagged by one
of our solutions. The third row shows the precision and recall calculated based on
token-level and the fourth row shows the same metrics calculated based on phrase-
level different computation methods.

In our evaluations we use both token-level and phrase-level metrics. We be-
lieve that each of them evaluates the performance of the predictive model from its
own specific perspective. The phrase-level metrics shows how good a solution is in
tagging a complete product name while the token-level is more relaxed and gives
an insight into the performance of a classifier in the partial tagging of the product
names.

Ground-truth
(t1,B),(t2,I)(t3,I)(t4,O),(t5,O),(t6,O)
(t7,B),(t8,I)(t9,O),(t10,O),(t11,O),(t12,O)

Prediction
(t1,B),(t2,I)(t3,I)(t4,O),(t5,O),(t6,O)
(t7,B),(t8,O)(t9,O),(t10,O),(t11,O),(t12,O)

token-level
Precision =(2+2)/((2+0)+(2+0)=4/4=1
Recall= (2+2)/((2+0)+(2+1))=4/5=0.8

phrase-level
Precision = 1/(1+0)=1
Recall=1/(1+1)=1/2

Table 3.9: Example of Evaluation Methods

38 CHAPTER 3. METHODOLOGY

3.8.1 Post-processing

The post-processing is the final step before performance evaluation. This steps
takes the prediction result produced by the solution and improves the quality of clas-
sification by applying a set of predefined rules. Our post-processing step uses only
one rule that stems from the fact that in IOB tagging system, it is meaningless to
have a product name prediction that starts with a token tagged by the label ’I’. The
question is how this can be repaired. Multiple options can be considered: (1) flip
the token label to ’B’, (2) flip label of the previous token (that has already been la-
beled with ’O’) to ’B’ and keep the label of the current token intact. The rationales
behind the rules are different. in the first case, we assume the current token has
been the initial token that is wrongly tagged as ’I’. So the predicting model has failed
to distinguish between the ’I and ’B’ classes. In the second rule, we assume that the
predictive model correctly tagged the current token as ’I’ but it failed to tag the pre-
vious token correctly, so the failure is to distinguish between the ’B’ and ’O’ classes.
According to our experiments and visual inspections of the results, the second rule
yields a better performance.

3.8. EVALUATION METHOD 39

Features Descriptions

token-tf-range[0-0.2)
It is true if the term frequency for the
current token is in the range of 0 to 0.2.

token-tf-range[0.2-0.4)
It is true if the term frequency for the
current token is in the range of 0.2-0.4.

token-tf-range[0.4-0.6)
It is true if the term frequency for the
current token is in the range of 0.4-0.6.

token-tf-range[0.6-0.8)
It is true if the term frequency for the
current token is in the range of 0.6-0.8.

token-tf-range[0.8-1.1]
It is true if the term frequency for the
current token is in the range of 0.8-1.1.

token-tf-range-greater-1.1
It is true if the term frequency for the
current token is greater than 1.1.

token-idf-range-less-3.8
It is true if the inverse-document-frequency
for the current token is less than 3.8

token-idf-range[3.8-4.8)
It is true if the inverse-document-frequency
for the current token is in the range of 3.8-4.8.

token-idf-range[4.8-5.8)
It is true if the inverse-document-frequency
for the current token is in the range of 4.8-5.8.

token-idf-range[5.8-6.8)
It is true if the inverse-document-frequency
for the current token is in the range of 5.8-6.8.

token-idf-range[6.8-7.8)
It is true if the inverse-document-frequency
for the current token is in the range of 6.8-7.8.

token-idf-range[7.8-8.8)
It is true if the inverse-document-frequency
for the current token is in the range of 7.8-8.8.

token-idf-range[8.8-9.8)
It is true if the inverse-document-frequency
for the current token is in the range of 8.8-9.8.

token-idf-range[9.8-10.8)
It is true if the inverse-document-frequency
for the current token is in the range of 9.8-10.8.

token-idf-range[10.8-11.8)
It is true if the inverse-document-frequency
for the current token is in the range of 10.8-11.8.

token-idf-range[11.8-13]
It is true if the inverse-document-frequency
for the current token is in the range of 11.8-13.

token-idf-range-greater-13
It is true if the inverse-document-frequency
for the current token is greater than 13

Table 3.6: Frequency-based features

40 CHAPTER 3. METHODOLOGY

Chapter 4

Results

This chapter discusses our experimental results. We compare the performance of
the machine learning solutions presented in Table 3.8). However, due to limited
computational power, we only address the solutions that use non-embedded feature
selectors. Then we explain how the optimal number of features is selected and
what is the effect of hyper-parameter optimization on the performance of predictive
models. We also analyze the effectiveness of different feature groups introduced
in the previous chapter and evaluate the hypotheses presented on the feature set.
Throughout this chapter we answer the research questions of this research (see
Section 1.4).

4.1 Evaluation of Solutions

This section compares the performance of the studied solutions (i.e. the solutions
with non-embedded feature selectors in Table 3.8). Table 4.1 show token-level and
phrase-level F1 score of each solution. We refer to Table 3.8 for more details on
the configuration of the studied solutions. The table 4.1 also shows the optimal
hyper-parameter values for each solution. The table also lists the optimal number
of features as one of the solution hyper-parameters. In the next section we discuss,
how the optimal number of features are selected for each solution.

Based on the results, the NL-SVC1 solution achieves the best performance both
in terms of token-level and phase-level measures. The results also reveal that the
difference between maximum and minimum scores is 6%. This implies that role of
learning models does not create a considerable performance difference at least on
the studied dataset.

Discussion. Our expectation was that the complex learning models such as NL-
SVC, RF and AB may induce more powerful learning models, however, the results

41

42 CHAPTER 4. RESULTS

reveal that this is not really the case and in fact the less complex L-SVC model
works as good as the other learning models. When we analyze the training errors of
the four learning models, we see that the RF and AB models are able to effectively
learn the patterns of the training data. So they achieve training errors of almost 1
percent for AB and 7 percent for RF. However for these models the testing error
remains relatively high and does not decrease proportionally with the training error.
We relate these results to three factors: (1) insufficient training samples, (2) weak
feature set, and (3) non-optimal hyper-parameters. The third factor is less likely
to play an important role. The reason is that the hyper-parameters of the learning
models are tuned over a decent range of values. We believe that the second item
also does not have a major effect. The reason is that we use a large feature set
that addresses a wide range of features. Moreover, the constructed feature set is
sufficiently strong that the learning models are able to effectively learn the pattern
of training data. Therefore, we conclude that among the listed factors, the first factor
(i.e. insufficient training samples) has the largest influence on the performance of
the learning models.

Note that in tuning continuous values, there is no guarantee to find the global
optimum by only searching over discrete values. However, searching a broad range
of hyper-parameter values, one can more or less ensure that the selected hyper-
parameters are very close to the optimal values.

In the next sections, we discuss that although the models are relatively similar in
terms of performance, they are not equal in terms of robustness to the changes in
the number of features and also the choice of non-optimal hyper-parameters.

Linearly separable dataset. The high dimensionality of our data does not allow
us to have a visualization of dataset samples in the feature space. However, based
on the performance result of L-SVC and NL-SVC we can conclude that the training
samples of our dataset are linearly separable in the constructed feature space. The
rationale behind this is the fact the L-SVC and NL-SVC have almost equal perfor-
mances.

4.2 Determining the Optimal Number of Features

Section 2.2.3 discusses how we determine the optimal number of features for each
solution. A number of features is optimal if the model generated based on that is
neither over-fitted nor under-fitted the training data. It is difficult to determine the
optimal number of features precisely. However, the analysis of training and testing
errors gives a good approximation. In this section, we perform this analysis for each

4.2. DETERMINING THE OPTIMAL NUMBER OF FEATURES 43

Solutions
Token-level
F1-score

Phrase-level
F1-score

Optimal Hyper-Parameters

L-SVC1 0.77 0.64
f= 8% of total features
C = 0.1
Kernel = linear

NL-SVC1 0.78 0.65
f= 4.5% of total features,
C = 1000, γ =1/4000
Kernel = RBF (Gaussian)

RF1 0.76 0.62
f = 2% of total features,
ntree =25, d =50,
nfeature = f /3

AB1 0.73 0.59
f = 4% of total features,
ntree =25, d =50,
base− estimator =DecisionTree

Table 4.1: Performance comparison of studied solutions in terms of F1 score

solution and determine the optimal number of features for each solution. We also
demonstrate the over-fitting problem for the studied solutions.

Figure 4.1 (a-d) shows the testing and training errors for the solutions L-SVC1,
NL-SVC1, RF1, and AB1 respectively. For all solutions, the statistical F-test is used
as the feature selector and the tuned hyper-parameters in Table 4.1 are used. Each
graph in the figure, shows the training and testing error in terms of token-level and
phrase-level measures where the X-axis is the percentage of features used to train
the learning model; and Y-axis is the prediction error that is computed from the
following equation E = 1 − F1. For more details on how the F1 is computed for
phrase-level and token-level measures, we refer to Section 3.8.

In graph 4.1 (a), L-SVC1 for both measures, the training and testing errors de-
crease by the number of features; however, not with the same rate. The training
error decreases dramatically by the number of features while the testing error, after
its initial reduction, remains constant. Large differences between the training and
testing error are an indication of over-fitting. The graph shows that the model over-
fits the train data at large feature numbers, especially for the full feature set (i.e.
100% of features). This supports the ”rule of thumb” that states that the learning
models over-fit the training data when the number of features is significantly larger
than the number of training samples.

It is difficult to determine an exact point where the model starts to over-fit the
training data. However, according to the graph, choosing 8% of the feature set gives
a good approximation for the optimal number of features for the solution L-SVC1.

44 CHAPTER 4. RESULTS

This is the minimum number of features at which the predictive model reaches its
best performance on the unseen data. As the size of feature set is relatively small
with respect to the training sample, and the difference between training and testing
error is in an acceptable margin, we can safely ensure that the model is not over-
fitted at that point. With this number of features, our predictive model is sufficiently
complex to be trained effectively over the training data, and at the same time it is not
too complex to over-fit the details of the training data.

Graph (b) in Figure 4.1 shows how the training and testing errors change with
the number of features for the solution NL-SVC1. The solution has the same con-
figuration as the solution L-SVC1 except that it uses a non-linear SVC model with
RBF (Gaussian) kernel. Based on the error analysis, we select 4.5% as the optimal
number of features for the solution NL-SVC1.

Graph (c) in Figure 4.1 shows the training and testing errors for solution RF1.
Compared to SVC models, Random Forest fits much better and with fewer features
to the training data, however, the performance of the model on the unseen test data
is not better than linear and non-linear SVC models. In fact the RF model quickly
over-fits the training data, when only about 2% of the features is used. This makes
the SVC models preferable over the Random Forest model in our application, as
they are less vulnerable to over-fitting compared to the Random Forest model.

Graph (d) in Figure 4.1 shows the training and testing errors for solution AB1. The
behavior of the model in different number of features is very similar to the Random
Forest model. However, AdaBoost has a bit weaker performance compared to the
Random Forest model.

4.3 The Effect of Hyper-parameter Optimization

Each learning model in our solution space has a set of hyper-parameters. The
hyper-parameters are tuned for our dataset to improve the performance of the pre-
dictive model on unseen data. Hyper-parameters play an influential role on the
performance of learning models [72]. However, tuning of hyper-parameters is a
computational-intensive task, so the question is that how much we can gain from it?
This section answers this question in the context of our PNER application, by analyz-
ing the performance of linear and non-linear SVC, Random Forests, and AdaBoost
classifiers with or without hyper-parameter tuning.

We first evaluate the performance of the solutions L-SVC1, NL-SVC1, RF1 and
AB1 with default hyper-parameters.The default values of the hyper-parameters for
each learning model are taken from sklearn library [73] (i.e. we use the default
values used by sklearn). Next, we repeat the evaluation for the same set of solutions,
however, this time we use the optimal values for hyper-parameters. By comparing

4.3. THE EFFECT OF HYPER-PARAMETER OPTIMIZATION 45

(a) L-SVC1 (b) NL-SVC1

(c) RF1 (d) AB1

Figure 4.1: Training and testing error analysis for solutions L-SVC1, NL-SVC1, RF1,
AB1 (feature selector: F-test, learning model). The graphs show how
the training and testing error change when the percentage of features
increases.

these evaluations, we can conclude how much each solution can benefit from hyper-
parameter tuning. For more details on our method for hyper-parameter optimization,
we refer to Section 3.7.

Table 4.3 shows the results of the experiment. The results are generated for the
optimal number of features for each learning model as presented in Table 4.1. The
default and tuned hyper-parameters for each solution are presented in Table 4.2.

According to the table, as expected, all models have better performance when
they are trained with the tuned hyper-parameters. However, the effect of tuning is
not the same for different learning models. Some models, namely nonlinear SVC
and AdaBoost, benefit more from the hyper-parameter tuning than the others. In
fact these two models under-fit the training data when they are trained with default
hyper-parameters. This means that they fail to learn the patterns in the data (i.e. the
relation between the features and the tag labels). So they cannot even be trained

46 CHAPTER 4. RESULTS

Solution Tuned-HP Default-HP

L-SVC1
C = 0.1
class− weight = w(O)=w(I)=w(B)=1

C = 1.0
class− weight = w(O)=w(I)=w(B)=1

NL-SVC1
C = 1000, γ=1/4000
class− weight = w(O)=w(I)=w(B)=1

C = 1.0, γ=1/f ,
f is the number of features
class− weight = w(O)=w(I)=w(B)=1

RF1

ntree =25, d =50,
random− state =42,
max− nfeature = (f /3),
f is the number of features

ntree =10, d =None,
random− state =None,
max− nfeature = sqrt(f),
f is the number of features

AB1
ntree = 25, d = 50,
base− estimator = DecisionTree

ntree = 50, d =None,
base− estimator = DecisionTree

Table 4.2: Default and tuned hyper-parameters

Solution Tuned-HP Default-HP
L-SVC1 0.64 0.63

NL-SVC1 0.65 0.54
RF1 0.62 0.61
AB1 0.59 0.53

Table 4.3: Comparison of solutions with default and tuned hyper-parameters in
terms of F1 measure

effectively (i.e. very high train error even with very large feature set (see Figure 4.2)).

Moreover, one observation that can be made based on the Figure 4.2 is the
relationship between the robustness of the learning models against the changes in
the number of features and the hyper-parameters of the model. For example, the
non-linear SVC model (NL-SVC1) with tuned hyper-parameters is robust against the
changes in the number of features while the performance of the same model trained
with default hyper-parameters highly depends on the used number of features. This
behavior is illustrated in graph (b) in Figure 4.2. Another important factor is the
learning model itself. For example, as it is shown in graph (a) in Figure 4.2, the
linear SVC model (L-SVC1) is robust against the changes in the number of features;
no matter if it is trained with the default or tuned hyper-parameters.

One conclusion of this experiment is that tuning hyper-parameters for the solu-
tions AB1 and NL-SVC1 is necessary as they under-fit the training data (i.e. they
fail to effectively learn the patterns in the training data) when they are trained with
the default hyper-parameters. For the solutions L-SVC1 and RF1, hyper-parameter
optimization provides a better performance, however it can be ignored in case of

4.4. FEATURE ANALYSIS 47

(a) L-SVC1 (b) NL-SVC1

(c) RF1 (d) AB1

Figure 4.2: The behaviour of learning models when they are trained with tuned and
default hyper-parameters

strict limitations on the computational power. Another conclusion of this experiment
is that, when learning models are trained with optimal hyper-parameters, they are
more robust against the changes in dimensionality of data (i.e. number of features).
These conclusions are only valid in the context of this study. However, the developed
framework is sufficiently general that can be used to draw more general conclusions
if it is supported with more annotated datasets.

4.4 Feature Analysis

The previous chapter presented a set of features that were used to construct a
predictive model for product name recognition. Features were organized in four main
groups: token-level features, document-level features, frequency-based features,
and gazetteer-based features. To achieve a better understanding about our feature
set, in this section we systematically analyze the effectiveness of different feature

48 CHAPTER 4. RESULTS

groups and we evaluate the hypotheses presented in Section 3.4.5.
In this experiment, for each candidate feature group we compare the perfor-

mance of the solution NL-SVC1 (the best predictive model in our feature space),
with two feature sets: (1) the feature set that includes all feature groups and (2) the
feature set excluding the candidate feature group. In this way we measure the effec-
tiveness of one feature group (i.e. the candidate feature group) in comparison with
other features. This method to analyze the effectiveness of features is used also
in other researches such as [74]. Additionally, we add another perspective to this
experiment by presenting the top 50 most effective features ranked based on the
Fisher score1 [44] in Table 4.5. We also present 50 selected features among the top
200 most effective features in the same ranking in Table 4.6. Later in this section we
use these tables to compare the effectiveness of different feature groups and also to
evaluate the hypotheses proposed in Section 3.4.5.

Table 4.4 shows the contribution of each feature group to the overall performance
of the solution NL-SVC1 in terms of precision, recall and F1 score. According to the
table, document-level features are the most effective feature groups with a contribu-
tion of 14.8%. Token-level features are in the second position with 6.8% contribution.
The contribution of frequency-based and gazetteer-based features is 0.5% and 1%
and is negligible compared to other feature groups.

The reason behind the significant contribution of document-level features is due
to the features that are related to the position of the tokens. This is confirmed by
our complementary experiment (i.e. feature ranking using Fisher score) where the
features related to ”token positions” appear at the positions, 1, 9, 44, 97, 98, 105,
109, 112, 114, 178 in table 4.6. The contribution of the token-level features is mostly
from: (1) the morphological features such as the use of ”DIN”, ”RING” and ”VIS” as
the prefix or suffix (at the positions 10, 25, 33, 35, 95, 152, 160, 173, 194 in table
4.6) and (2) numeric features at the positions 6, 8 and 24.

To understand better the reason behind the poor performance of gazetteer-based
features, we analyze the product name coverage of ETIM to measure the complete-
ness of the used gazetteer with respect to our dataset. According to our measure-
ment 16% of the annotated product names in our dataset are mentioned in ETIM
dictionary. This means that ETIM dictionary is relatively incomplete with respect to
our dataset. We believe the low coverage of ETIM dictionary is the main reason be-
hind the poor contribution of gazetteer-based features to the overall performance of
the predictive model. The question how the contribution of gazetteer-based features
to the performance of machine-learning-based solutions improves by the complete-
ness of gazetteers is an interesting open question that can be seen as one of the
possible future work of this thesis.

1For more details about Fisher score see Section 2.2.1.

4.4. FEATURE ANALYSIS 49

Solution precision recall F1 score contribution to F1 score
NL-SVC1-AF 0.666 0.644 0.646 -

NL-SVC1-ExTok 0.578 0.594 0.578 6.8%

NL-SVC1-ExDoc 0.572 0.492 0.498 14.8%

NL-SVC1-ExFreq 0.661 0.638 0.641 0.5%

NL-SVC1-ExGaz 0.659 0.631 0.636 1%

Table 4.4: The effectiveness of different feature groups

It is important to notice that features work in combination with each other. Some-
times their contributions to the overall performance of the model overlap and some-
times add up. Thus, it is incorrect to conclude that gazetteer-based features or
frequency-based features have small discriminative power. In fact our complemen-
tary experiment (i.e. feature ranking using Fisher score) reveals that some of the fea-
tures from frequency-based feature and gazetteer-based feature groups are present
in the top 200 features ranked based on Fisher score. These are the features at the
positions 26, 47, and 103 for gazetteer-based features, and at the positions 84, 87,
106, and 126 for frequency-based features in Table 4.6. This means that some of
the features in these two groups have relatively good discriminative power.

At the end of this section we validate the list of hypotheses on the relevance and
effectiveness of some families of features presented in Section 3.4.5.

Hypothesis: capitalization features are not effective features for the task of prod-
uct name recognition.

Evaluation: this hypothesis is not correct. Despite the fact that product de-
scriptions in our dataset are ungrammatical, ”is-all-lowercase” and ”is-capitalized”
features are present at the positions 27 and 196.

Hypothesis: position matters; there is a significant correlation between the po-
sition (i.e. the index) of a token and being part of a product name.

Evaluation: this hypothesis is correct. Based on Table 4.6, features related to
the position of tokens are in the ranks: 1, 9, 44, 97, 98, 105, 109, 112, 114, 178.
This shows that the position of features is a useful discriminative features.

Hypothesis: features that are constructed based on the windowing scheme are
amongst the effective features.

Evaluation: this hypothesis is correct. According to Table 4.6, the features cre-
ated based on the windowing scheme, are present in the ranks: 6, 7, 8, 12, 13, 26,
40, 72, 76, 119, 145, 152, 160, 183, 186 and 188. Therefore we conclude that this
family of features contains effective features and windowing scheme, as expected,
is useful extension to the features in other feature groups (i.e. token-level features
or gazetteer-based features). Thus, the hypothesis is strongly confirmed by our

50 CHAPTER 4. RESULTS

observations.
Hypothesis: tokens appearing as a part of the product names have a statistical

distribution in terms of ”term frequency” (TF) or ”inverse document frequency” (IDF)
that can be used as a discriminative feature.

Evaluation: this hypothesis is correct. Table 4.6 shows that for the tokens that
appear in the product names, the IDF values in the range of 4.5-5.8, 5.8-6.8, 10.8-
11.8 and 9.8-10.8 appear at the positions 84, 87, 106, 126 respectively.

Hypothesis: gazetteer-based features are effective features.
Evaluation: this hypothesis is correct. Three features from the group of gazetteer-

based features are present in the ranking at the positions: 26, 47, and 103.
Another observation is that the feature selection method was able to select in-

teresting morphological patterns among all the possible permutations of characters.
For example the feature ”prefix3=DIN” with rank 10, has been automatically selected
by the F-test among all the possible permutations of a three-character prefix.

4.4. FEATURE ANALYSIS 51

Feature Rank Feature Rank
token-position=0 1 second pre token in gazetteer 26

pre-token=” 2 is-all-lower 27

pre-token-length=” 3 second-next-token-length=” 28

second-pre-token-length=” 4 second-next-token=” 29

second-pre-token=” 5 length=2 30

pre-token-numeric 6 token-numeric 31

pre-token-digit 7 suffix4=DIN 32

second-pre-token-numeric 8 token=DIN 33

token-position=1 9 prefix4=DIN 34

prefix3=DIN 10 suffix3=DIN 35

trimmed4=” 11 trimmed2=D 36

previous token in gazetteer 12 infix2-2=D 37

second-pre-token-digit 13 infix4-2=D 38

prefix1=D 14 infix3-2=D 39

infix2-3=” 15 second-next-token-numeric 40

trimmed3=” 16 infix3-1=DI 41

infix3-3=” 17 infix4-1=DI 42

infix4-3=” 18 suffix2=IN 43

prefix2=DI 19 token-position=end 44

infix4-2=” 20 next-token-length=” 45

infix2-2=” 21 next-token=” 46

trimmed2=” 22 infix2-1=DI 47

infix3-2=” 23 next-token-numeric 48

token-digit 24 suffix2=NG 49

pre-token=DIN 25 infix2-1=IN 50

Table 4.5: List of the top 50 most effective features ranked based on Fisher score

52 CHAPTER 4. RESULTS

Feature Rank Feature Rank
token-position=0 1 token-position=2 97

pre-token-numeric 6 token-position=5 98

pre-token-digit 7 length=7 104

second-pre-token-numeric 8 token-position=pre-end 105

token-position=1 9 token-idf-range(9.8-10.8) 106

prefix3=DIN 10 length=9 108

previous token in gazetteer 12 token-position=4 109

second-pre-token-digit 13 token-position=3 112

token-digit 24 token-position=6 114

pre-token=DIN 25 pre-token=Zeskant 119

second previous token in gazetteer 26 prefix3=933 123

is-all-lower 27 token-idf-range(5.8-6.8) 126

length=2 30 length=14 136

token-numeric 31 current token in gazetteer 143

token=DIN 33 second next token in gazetteer 145

suffix3=DIN 35 token=tapbout 151

second-next-token-numeric 40 pre-token=din 152

token-position=end 44 pre-token=VIS 160

next-token-numeric 48 token=VIS 173

next-token-digit 56 token-position=7 178

pre-token-length=2 72 second-next-token-digit 183

pre-token-length-3 76 pre-token=staal 186

token-idf-range(4.8-5.8) 84 next-token=933 188

token-idf-range(10.8-11.8) 87 prefix3-VIS 194

suffix4=RING 95 is-capitalized 196

Table 4.6: List of the selected 50 feature among the top 200 most effective features
ranked by Fisher score (used for the evaluation of feature hypotheses)

Chapter 5

Conclusions and Future Work

This chapter presents a summary of the main contributions of this thesis and ends
with discussing future research directions.

5.1 Conclusions

Hybrid NER Solutions. The first contribution of this thesis is to design a set of
hybrid solutions where both machine learning and gazetteer-based approaches are
combined. For this purpose, product name gazetteers such as ETIM are incorpo-
rated into the predictive model in the form of a set of gazetteer-based features. This
answers the first part of the research question RQ3 (i.e. how can gazetteers be
incorporated into the predictive model?). We specifically use AdaBoost, Random
Forest, linear and non-linear SVC as the learning algorithms. Moreover, to answer
the second research question RQ2 (i.e. among the learning models chosen for
this study which one induces a better predictive model?), we investigate and com-
pare the performance of different solutions to understand the role of the learning
algorithms. According to the experimental results, the performance of the solutions
varies between 59% for the solution that uses AdaBoost and 65% for the solution
that uses non-linear SVC in terms of F1 score. This shows that in the context of our
experiments, the choice of the learning algorithm does not have a large impact on
the final performance of the induced model.

AutoML Framework. To be able to investigate different aspects of the proposed
solution space, we developed a machine learning framework. The framework is
used to automatically determine the optimal number of features based on a user-
defined over-fitting threshold, optimize the model hyper-parameters and evaluate
the performance of different solutions for a given (processed) annotated dataset.
By optimizing the hyper-parameters of each solution, we make sure that they are

53

54 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

all compared in their optimal settings. We use our framework to investigate and
compare the performance of solutions, however, the framework is sufficiently generic
to be used as an automatic machine learning (AutoML) framework. In this way most
of the required decisions in the process of designing a machine-learning solution are
automated. Thus making machine learning-based solutions for a new application is
reduced to pre-processing the raw input data and constructing an effective feature
set. The AutoML framework is able to automatically select the optimal feature set,
optimize the hyper-parameters and select the best learning algorithm for a given
processed dataset.

Effectiveness of Different Feature Groups. We use a structural approach in con-
structing our feature set. Accordingly the features are organized in four groups:
token-level features, document-level features, gazetteer-based features, and frequency-
based features. In our experiment, we measure the contribution of each feature
group to the overall performance of the non-linear SVC solution (i.e. the solution
with the best performance). According to our results, the most effective feature
groups are the document-level features with 14.8% contribution to the F1 score and
token-level features with 6.8% contribution. The gazetteer-based features with 1%
contribution and frequency-based features with 0.5% contribution are the less ef-
fective feature groups. These measurements answer research question RQ1 (i.e.
what are the main discriminating features representing a predictive model for prod-
uct names in our dataset?) and the second part of the research question RQ3 (i.e.
to what extent can this improve the performance of product name recognition?).

Additionally, we dig into the reasons behind the relatively poor performance of
gazetteer-based features. For this purpose, we measure the product name cover-
age of the used gazetteer, ETIM, with respect to our dataset. The result reveals a
product name coverage of 16% (i.e. only 16% of product names in the annotated
dataset are mentioned in ETIM). This explains why the performance of gazetteer-
based features is not so considerable compared to other feature groups. To com-
plete these analyses, we rank all the selected features based on the Fisher score.
This adds another perspective to the effectiveness of features where some of the
gazetteer-based and frequency-based features appear in first 50 top most features
in the ranking. From this we can conclude that these features have good discrimina-
tive power but they overlap with some other features, thus their contributions to the
performance of the predictive models are not significant when they are compared
with other feature groups

The Effect of Hyper-parameter Tuning. Optimization of hyper-parameters is a
computationally intensive task. However, it is not clear when hyper-parameters

5.2. FUTURE WORK 55

optimization causes significant improvement on the performance of the predictive
model. In general this depends on the dataset and learning algorithm. According to
our experiments, the performance of all learning models used in this study improves
when they are trained with the tuned hyper-parameters. However, the effect of tun-
ing is not the same for different learning models. Some models, such as non-linear
SVC and AdaBoost, benefit more from the optimization of their hyper-parameters.
In fact these two models under-fit the training data when they are trained with their
default hyper-parameters. This answers the research question RQ4 (i.e. what is the
role of hyper-parameter optimization?).

Suggestions for Mydatafactory. As explained before, this work is motivated by
the company Mydatafactory. The company is interested in product name recogni-
tion especially from short and multilingual product descriptions. In this work, we
use a dataset of product descriptions that is provided and partly annotated by the
company. Therefore, the result of this research is more useful for the company com-
pared to similar researches that have used different datasets. Specifically, this thesis
suggests a hybrid product named entity solution that combines the gazetteer-based
and machine learning approaches. The performance of the hybrid solution can be
improved in two ways: first by expanding the training set, and second by enriching
the used gazetteers. Moreover, the research questions of this work address some of
the important decisions that have to be made in the process of designing a product
name recognition system. The answers presented in this work, provide useful hints
and directions that can be useful for the company to have better design choices.

5.2 Future Work

This section summarizes some promising future research directions.

Relation Extraction. Assume that there are two or multiple datasets where some
relations between the product descriptions have already been identified. Then one
may use our product name recognition system to tag the product names in the prod-
uct descriptions and then investigate how the relationship between the product de-
scriptions may imply a relationship between the recognized product names. For
example from the fact that a product description, that describes a request for a prod-
uct, matches with a product description in a supplier catalog, we may infer that the
product names recognized in those product descriptions are synonym (i.e. they re-
fer to the same physical product or service). Similarly other types of relations such
as hypernym or part-of (i.e. a product is part-of another product) can also be ex-

56 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

tracted. As an additional step, the relations between product names extracted in this
way, may be used to construct a Word-Net or an ontology for the domain of product
names, or may be employed to enrich current product name gazetteers.

Extensions to the Machine Learning Framework. The proposed machine learn-
ing framework is able to compare the performance of a given set of machine learning
solutions. This can be extended such that instead of comparing different machine
learning solutions, the framework constructs an ensemble out of the given solutions.
Then it automatically combines the predictions of different solutions using a voting
mechanism. In this way the predictions of different learning models complement
each other; that may result in a stronger predictive model.

Gazetteers Extracted from Wikipedia. One can study the effectiveness of a mul-
tilingual gazetteer extracted from Wikipedia, for the task of product name recogni-
tion. As an initial idea, it can be considered if a token in the product description
is linkable in Wikipedia. For this purpose, different wikification [75] tools such as
TAGME [76–78] or Dexter [79] can be utilized. However, based on our initial inves-
tigations both tools are still limited in the range of the languages that they support.
TAGME supports English, Italian, German and Dexter works only with an English
dump of Wikipedia.

Bibliography

[1] M. Levene, An Introduction to Search Engines and Web Navigation, 2nd ed.
Wiley Publishing, 2010.

[2] F. Liu, J. Zhao, B. Lv, B. Xu, and H. Yu, “Product named entity recognition based
on hierarchical hidden markov model,” in Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, 2005.

[3] Y. Yao and A. Sun, “Product name recognition and normalization in internet
forums,” SIGIR Symposium on IR in Practice (SIGIR Industry Track), 2014.

[4] “mydatafactory co.” [Online]. Available: https://www.mydatafactory.com/

[5] “Eriks co.” [Online]. Available: https://www.eriks.co.uk/

[6] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel, “Nymble: a high-
performance learning name-finder,” in Proceedings of the fifth conference on
Applied natural language processing. Association for Computational Linguis-
tics, 1997, pp. 194–201.

[7] “Information extraction course at stanford university.” [Online]. Available:
http://web.stanford.edu/∼jurafsky/li15/lec6.induce.pptx,AccessedonOct.2017.

[8] B. Settles, “Biomedical named entity recognition using conditional random
fields and rich feature sets,” in Proceedings of the International Joint Workshop
on Natural Language Processing in Biomedicine and its Applications. Associ-
ation for Computational Linguistics, 2004, pp. 104–107.

[9] R. Bunescu, R. Ge, and R. J. Mooney, “Extracting gene and protein names
from biomedical abstracts,” Unpublished Technical Note, 2002. [Online].
Available: Availablefromhttp://www.cs.utexas.edu/users/ml/publication/ie.html

[10] K. Humphreys, G. Demetriou, and R. Gaizauskas, “Two applications of infor-
mation extraction to biological science journal articles: Enzyme interactions
and protein structures,” in Pac symp biocomput, vol. 5, no. 505-516, 2000.

57

https://www.mydatafactory.com/
https://www.eriks.co.uk/
http://web.stanford.edu/~jurafsky/li15/lec6.induce.pptx, Accessed on Oct. 2017.
Available from http://www.cs.utexas.edu/users/ml/publication/ie.html

58 BIBLIOGRAPHY

[11] S. Liljeqvist, “Named entity recognition for search queries in the music domain,”
KTH Thesis, 2016. [Online]. Available: http://www.divaportal.se/smash/get/
diva2:1010104/FULLTEXT01.pdf

[12] F. Luo, H. Xiao, and W. Chang, “Product named entity recognition using con-
ditional random fields,” in Business Intelligence and Financial Engineering
(BIFE), 2011 Fourth International Conference on. IEEE, 2011, pp. 86–89.

[13] F. Liu, J. Zhao, B. Lv, B. Xu, and H. Yu, “Product named entity recognition
based on hierarchical hidden markov model,” in Proceedings of the 4thSIGHAN
Workshop on Chinese Language Processing, 2005.

[14] D. P. Putthividhya and J. Hu, “Bootstrapped named entity recognition for product
attribute extraction,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics,
2011, pp. 1557–1567.

[15] E. Bick, “A named entity recognizer for danish.” in LREC, 2004.

[16] C. Niu, W. Li, J. Ding, and R. K. Srihari, “A bootstrapping approach to named
entity classification using successive learners,” in Proceedings of the 41st An-
nual Meeting on Association for Computational Linguistics-Volume 1. Associ-
ation for Computational Linguistics, 2003, pp. 335–342.

[17] S. Sekine, “Nyu: Description of the japanese ne system used for met-2,” in
Proc. of the Seventh Message Understanding Conference (MUC-7, 1998.

[18] F. Dernoncourt, J. Y. Lee, and P. Szolovits, “Neuroner: an easy-to-use pro-
gram for named-entity recognition based on neural networks,” arXiv preprint
arXiv:1705.05487, 2017.

[19] R. Speck and A.-C. N. Ngomo, “Ensemble learning for named entity recogni-
tion,” in International semantic web conference. Springer, 2014, pp. 519–534.

[20] X. Carreras, L. Marquez, and L. Padró, “Named entity extraction using ad-
aboost,” in proceedings of the 6th conference on Natural language learning-
Volume 20. Association for Computational Linguistics, 2002, pp. 1–4.

[21] R. Sasano and S. Kurohashi, “Japanese named entity recognition using struc-
tural natural language processing,” in Proceedings of the Third International
Joint Conference on Natural Language Processing: Volume-II, 2008.

[22] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel, “Nymble: a high-
performance learning name-finder,” in Proceedings of the fifth conference on

http://www.divaportal.se/smash/get/diva2:1010104/FULLTEXT01.pdf
http://www.divaportal.se/smash/get/diva2:1010104/FULLTEXT01.pdf

BIBLIOGRAPHY 59

Applied natural language processing. Association for Computational Linguis-
tics, 1997, pp. 194–201.

[23] A. McCallum and W. Li, “Early results for named entity recognition with condi-
tional random fields, feature induction and web-enhanced lexicons,” in Proceed-
ings of the seventh conference on Natural language learning at HLT-NAACL
2003-Volume 4. Association for Computational Linguistics, 2003, pp. 188–
191.

[24] J. M. Pierre, “Mining knowledge from text collections using automatically gen-
erated metadata,” in PAKM, vol. 2. Springer, 2002, pp. 537–548.

[25] F. Luo, H. Xiao, and W. Chang, “Product named entity recognition using con-
ditional random fields,” in Business Intelligence and Financial Engineering
(BIFE), 2011 Fourth International Conference on. IEEE, 2011, pp. 86–89.

[26] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proceedings of the eleventh annual conference on Computational
learning theory. ACM, 1998, pp. 92–100.

[27] M. Collins and Y. Singer, “Unsupervised models for named entity classification,”
in 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, 1999.

[28] D. Pierce and C. Cardie, “Limitations of co-training for natural language learn-
ing from large datasets,” in Proceedings of the 2001 Conference on Empirical
Methods in Natural Language Processing, 2001.

[29] D. Yarowsky, “Unsupervised word sense disambiguation rivaling supervised
methods,” in Proceedings of the 33rd annual meeting on Association for Com-
putational Linguistics. Association for Computational Linguistics, 1995, pp.
189–196.

[30] P. K. Mallapragada, R. Jin, A. K. Jain, and Y. Liu, “Semiboost: Boosting for
semi-supervised learning,” IEEE transactions on pattern analysis and machine
intelligence, vol. 31, no. 11, pp. 2000–2014, 2009.

[31] R. Sousa and J. Gama, “Comparison Between Co-training and Self-training for
Single-target Regression in Data Streams using AMRules,” in IOTSTREAM-
ING@PKDD/ECML, 2017.

[32] W. W. Cohen and S. Sarawagi, “Exploiting dictionaries in named entity extrac-
tion: combining semi-markov extraction processes and data integration meth-

60 BIBLIOGRAPHY

ods,” in Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 89–98.

[33] J. Kazama and K. Torisawa, “Inducing gazetteers for named entity recogni-
tion by large-scale clustering of dependency relations,” Proceedings of ACL-08:
HLT, pp. 407–415, 2008.

[34] I. Guyon and A. Elisseeff, “An introduction to feature extraction,” Feature ex-
traction, pp. 1–25, 2006.

[35] H. Liu and H. Motoda, Feature extraction, construction and selection: A data
mining perspective. Springer Science & Business Media, 1998, vol. 453.

[36] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A review,”
Data Classification: Algorithms and Applications, p. 37, 2014.

[37] M. A. Hall, “Feature selection for discrete and numeric class machine learning,”
in Proc. 17th Int’l Conference. Machine Learning, 2000, pp. 359–366.

[38] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,”
Journal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[39] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text
categorization,” in ICML, vol. 97, 1997, pp. 412–420.

[40] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proceedings of the Seventeenth International
Conference on Machine Learning, ser. ICML ’00. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, pp. 359–366. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645529.657793

[41] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition).
Wiley-Interscience, 2000.

[42] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of
relieff and rrelieff,” Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[43] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp.
1226–1238, 2005.

[44] Q. Gu, Z. Li, and J. Han, “Generalized Fisher Score for Feature Selection,”
in Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, ser. UAI’11. Arlington, Virginia, United States: AUAI Press, 2011,

http://dl.acm.org/citation.cfm?id=645529.657793

BIBLIOGRAPHY 61

pp. 266–273. [Online]. Available: http://dl.acm.org/citation.cfm?id=3020548.
3020580

[45] H. Liu and L. Yu, “Toward integrating feature selection algorithms for classifi-
cation and clustering,” IEEE Transactions on knowledge and data engineering,
vol. 17, no. 4, pp. 491–502, 2005.

[46] S. Ma and J. Huang, “Penalized feature selection and classification in bioinfor-
matics,” Briefings in bioinformatics, vol. 9, no. 5, pp. 392–403, 2008.

[47] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct
2001. [Online]. Available: https://doi.org/10.1023/A:1010933404324

[48] T. G. Dietterich et al., “Ensemble methods in machine learning,” in Multiple
Classifier Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp.
1–15.

[49] T. G. Dietterich, “An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization,” Machine
learning, vol. 40, no. 2, pp. 139–157, 2000.

[50] K. Moorthy and M. S. Mohamad, “Random forest for gene selection and mi-
croarray data classification,” Bioinformation, vol. 7, no. 3, p. 142, 2011.

[51] G. Biau, L. Devroye, and G. Lugosi, “Consistency of random forests and other
averaging classifiers,” Journal of Machine Learning Research, vol. 9, no. Sep,
pp. 2015–2033, 2008.

[52] P. Büchlmann and B. Yu, “Analyzing bagging,” Annals of Statistics, pp. 927–961,
2002.

[53] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random
forests,” Pattern Recognition Letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[54] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation
and model selection,” in Proceedings of the 14th International Joint Conference
on Artificial Intelligence - Volume 2, ser. IJCAI’95. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995, pp. 1137–1143. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1643031.1643047

[55] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hut-
ter, “Efficient and robust automated machine learning,” in Advances in Neural
Information Processing Systems, 2015, pp. 2962–2970.

http://dl.acm.org/citation.cfm?id=3020548.3020580
http://dl.acm.org/citation.cfm?id=3020548.3020580
https://doi.org/10.1023/A:1010933404324
http://dl.acm.org/citation.cfm?id=1643031.1643047

62 BIBLIOGRAPHY

[56] B. Komer, J. Bergstra, and C. Eliasmith, “Eliasmith c. hyperopt-sklearn: au-
tomatic hyperparameter configuration for scikit-learn,” in In: Proceedings of
SciPy, 2014.

[57] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Com-
bined selection and hyperparameter optimization of classification algorithms,”
in Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2013, pp. 847–855.

[58] E. F. T. K. Sang and J. Veenstra, “Representing text chunks,” in Proceedings
of the Ninth Conference on European Chapter of the Association for
Computational Linguistics, ser. EACL ’99. Stroudsburg, PA, USA: Association
for Computational Linguistics, 1999, pp. 173–179. [Online]. Available:
https://doi.org/10.3115/977035.977059

[59] D. Nadeau and S. Sekine, “A survey of named entity recognition and classifica-
tion,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[60] S. Rüd, M. Ciaramita, J. Müller, and H. Schütze, “Piggyback: Using search en-
gines for robust cross-domain named entity recognition,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 965–975.

[61] K. Sparck Jones, “A statistical interpretation of term specificity and its applica-
tion in retrieval,” Journal of documentation, vol. 28, no. 1, pp. 11–21, 1972.

[62] H. P. Luhn, “A statistical approach to mechanized encoding and searching of
literary information,” IBM Journal of research and development, vol. 1, no. 4,
pp. 309–317, 1957.

[63] N. Cristianini, J. Shawe-Taylor, and H. Lodhi, “Latent semantic kernels,” Journal
of Intelligent Information Systems, vol. 18, no. 2, pp. 127–152, 2002.

[64] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press, 2000.

[65] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,” Statistics and
its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[66] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line
learning and an application to boosting,” in European conference on computa-
tional learning theory. Springer, 1995, pp. 23–37.

https://doi.org/10.3115/977035.977059

BIBLIOGRAPHY 63

[67] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass
kernel-based vector machines,” Journal of machine learning research, vol. 2,
no. Dec, pp. 265–292, 2001.

[68] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector
machines,” IEEE transactions on Neural Networks, vol. 13, no. 2, pp. 415–425,
2002.

[69] I. Braga, L. P. Carmo, C. C. Benatti, and M. C. Monard, “A note on
parameter selection for support vector machines,” in Proceedings of the
12th Mexican International Conference on Advances in Soft Computing and
Its Applications - Volume 8266, ser. MICAI 2013. New York, NY, USA:
Springer-Verlag New York, Inc., 2013, pp. 233–244. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-45111-9 21

[70] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
Journal of Machine Learning Research, vol. 13, no. Feb, pp. 281–305, 2012.

[71] L. Ratinov and D. Roth, “Design challenges and misconceptions in named entity
recognition,” in Proceedings of the Thirteenth Conference on Computational
Natural Language Learning. Association for Computational Linguistics, 2009,
pp. 147–155.

[72] T. Horváth, R. G. Mantovani, and A. C. P. L. F. de Carvalho, “Effects of random
sampling on svm hyper-parameter tuning,” in Intelligent Systems Design and
Applications, A. M. Madureira, A. Abraham, D. Gamboa, and P. Novais, Eds.
Cham: Springer International Publishing, 2017, pp. 268–278.

[73] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-
ulae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,
B. Holt, and G. Varoquaux, “API design for machine learning software: experi-
ences from the scikit-learn project,” in ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, 2013, pp. 108–122.

[74] M. Hasan, A. Kotov, A. I. Carcone, M. Dong, S. Naar, and K. B. Hartlieb,
“A study of the effectiveness of machine learning methods for classification
of clinical interview fragments into a large number of categories,” Journal
of Biomedical Informatics, vol. 62, pp. 21 – 31, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S153204641630034X

[75] J. Tang, “Wikification: Entity annotation with wikipedia.” [Online]. Available:
https://cs224d.stanford.edu/reports/Tang.pdf

http://dx.doi.org/10.1007/978-3-642-45111-9_21
http://www.sciencedirect.com/science/article/pii/S153204641630034X
https://cs224d.stanford.edu/reports/Tang.pdf

64 BIBLIOGRAPHY

[76] “TagMe Tool.” [Online]. Available: https://tagme.d4science.org/tagme/

[77] “TagMe Documentations.” [Online]. Available: https://services.d4science.org/
web/tagme/documentation

[78] “TagMe Tool.” [Online]. Available: http://acube.di.unipi.it/tagme

[79] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani,
“Dexter: an open source framework for entity linking,” in ESAIR’13,
Proceedings of the Sixth International Workshop on Exploiting Semantic
Annotations in Information Retrieval, co-located with CIKM 2013, San
Francisco, CA, USA, October 28, 2013, 2013, pp. 17–20. [Online]. Available:
http://doi.acm.org/10.1145/2513204.2513212

https://tagme.d4science.org/tagme/
https://services.d4science.org/web/tagme/documentation
https://services.d4science.org/web/tagme/documentation
http://acube.di.unipi.it/tagme
http://doi.acm.org/10.1145/2513204.2513212

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Problem Statement
	Research Objective
	Research Questions
	Contributions
	Outline

	Background
	Named Entity Recognition
	Rule-based Approach
	Machine Learning Approach

	Concepts of Machine Learning
	Feature Engineering
	Learning Models
	Cross-Validation
	AutoML

	Summary

	Methodology
	Dataset
	Data Analysis
	Preprocessing
	IOB tagging

	Feature Construction
	Token-Level Features
	Document-level Features
	Gazetteer-based Features
	Frequency-based Features
	Hypotheses on Features

	Feature Selection
	Learning Models
	Hyper-parameter Optimization

	Automatic Machine Learning Framework
	The Skeleton of the Framework
	Dataset Preparations
	The Steps of the Evaluation Algorithm
	GridSearch
	Solution Space

	Evaluation Method
	Post-processing

	Results
	Evaluation of Solutions
	Determining the Optimal Number of Features
	The Effect of Hyper-parameter Optimization
	Feature Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	References

