
1

Air Temperature

Visualization of Public

Spaces in Enschede

Yoann M.E. Latzer

B.Sc. Thesis (March 2018)

Supervisor: Ir.Ing. R.G.A. Bults

Critical Observer: Ir. J. Scholten

(Hans)

Creative Technology

Faculty of Electrical Engineering,

Mathematics and Computer Science

University of Twente, P.O. Box 217

7500 AE Enschede, Nederlands

2

Abstract

Municipalities are and will be confronted with many ecological challenges. Temperature

monitoring through the use of Internet of Things sensor networks can provide precise

information about the past, current and eventually future environmental situation. The

unequal repartition of heat is particularly significant in cities’ center, causing an urban heat

island effect which can cause infrastructural damages as well as aggravated risks for

human’s health. The goal of this project is to develop a monitoring solution for a network of

temperature sensors scattered throughout the city of Enschede. A complete solution

including a web server and web page visualizations were developed to allow the municipality

to monitor the intensity of the urban heat island effect in real time. The concept was

developed according to the requirements of the different stakeholders using an explorative

approach through several idea generation methods. The municipality was enthusiastic about

the final prototype and believed that the visualizations could help analyzing and sharing the

information gathered.

Acknowledgment

I would like to thank my supervisor Mr. Bults for his crucial help and guidance and my critical

observer Mr. Scholten for his helpful feedback during the entire project. I would also like to

thank Mr. Teekens and Mr. Meijer from the municipality of Enschede for their cooperation

and feedback.

Additionally I would like to thank my partner, Tom Onderwater, for his help and overall

professionalism. The final prototype could not be operational without our close

collaboration.

During these three years I encountered some of the most motivating teachers and staff

members, and I would also like to thank all of them for building the Creative Technology

Bachelor every day. Finally I would like to thank my parents for believing in me and for their

support during my entire Bachelor.

3

Table of content

Abstract ... 2

Acknowledgment .. 2

1. Introduction ... 7

1.1 Client and context ... 7

1.2 Challenges ... 7

1.3 Research questions .. 8

2. State of the Art on Air Temperature Visualization .. 9

2.1 The effects of high temperature .. 9

2.2 The advantages of visualizing data ... 10

2.3 Advantages of internet of things systems for smart cities.. 11

2.4 Case study: Detecting Forest Fires using Wireless Sensor Networks 12

2.5 Additional examples ... 14

2.6 Conclusion ... 16

3. Ideation Phase ... 18

3.1 Stakeholders Identification .. 18

3.1.1 Internal use ... 18

3.1.2 External use .. 19

3.2 User Requirements .. 19

3.2.2 Functional requirements .. 19

3.2.1 Non-functional Requirements ... 20

3.3 Idea Generation ... 21

3.3.1 Visual Idea Generation ... 21

3.3.2 Conceptual Idea Generation .. 23

3.4 Final Idea ... 24

4. Specification Phase .. 26

4.1 User Experience Specification ... 26

4.1.1 Use Scenario: Consulting Data .. 26

4.1.2 Use Scenario: Exporting Data .. 27

4.2 Project Requirements ... 28

4.3 Functional Specifications ... 29

4.3.1 Data Gathering .. 30

4.3.2 Data Delivering ... 30

4.3.3 Data Visualization .. 30

4.3.4 Data Selection and Export ... 32

4

4.3.5 Formatting Data for the Visualization ... 32

4.3.5 Overall System Architecture .. 34

5. Realization Phase .. 36

5.1 Server Hardware .. 36

5.1.1 Raspberry Pi.. 36

5.2 Back-end Technology ... 37

5.2.1 Django Channels .. 38

5.2.2 Database structure and functioning ... 38

5.2.3 Delivering the final web page .. 39

5.3 Front-end Technology ... 41

5.3.1 Bootstrap .. 41

5.3.2 Leaflet ... 41

5.3.3 CanvasJs .. 42

5.3.3 Additional Graphical Elements .. 43

5.4 Final Prototype Software Architecture .. 44

5.4.1 Web Page Request ... 45

5.4.2 Data Gathering .. 46

6. Evaluation Phase ... 48

6.1 Goal(s) ... 48

6.1.1 Performance evaluation .. 48

6.1.2 User based evaluation ... 48

6.2 Methods ... 48

6.2.1 Performance evaluation .. 48

6.2.2 User based evaluation ... 50

6.3 Results ... 50

6.3.1 Performance evaluation .. 50

6.3.2 User based evaluation ... 56

7. Conclusion ... 61

7.1 Key findings ... 61

7.1.1 How to format and visualize air temperature measurements of public space in the

city of Enschede for administrative and public use? .. 61

7.1.2 What are the possible use cases of air temperature measurements for the

identified stakeholders? .. 61

7.1.3 How to provide an overview and useful insights of the measured air temperatures

to the different stakeholders?... 62

7.2 Further Recommendations ... 62

7.2.1 Technical recommendations ... 62

5

7.2.2 Visualization recommendations ... 62

7.2.3 City-wide temperature projection .. 63

Appendices .. 65

List of figures:

Figure 1: Sketch of a simplified system overview .. 8

Figure 2: Graphical representation of the urban heat island effect ... 9

Figure 3: Overview of DIMAP-FactorLink’s solution network ... 13

Figure 4: DIMAP-FactorLink’s solution final user interface .. 14

Figure 5: Screenshots of Ekobus’ monitoring interface .. 15

Figure 6: Screenshot of a map representing “green roofs” on the Chicago data portal website

 .. 16

Figure 7: Two different proposal for a bar chart visualization ... 21

Figure 8: Circles, road lines, zones and 3D zones proposal for representing heat on a map .. 22

Figure 9: First mockup introduced to the municipality ... 22

Figure 10: Full system overview ... 24

Figure 11: Four different arrangement propositions for the final interface 25

Figure 12: Project Requirements MoSCoW Table .. 28

Figure 13: Overview of the data formatting to fit the visualizations ... 33

Figure 14: Overall system architecture .. 35

Figure 15: List of most used web frameworks from builtwith.com .. 37

Figure 16: Overview of a request within the server ... 40

Figure 17: Map representing the sensor’s location and latest measurement 42

Figure 18: Final prototype technology overview ... 43

Figure 19: Legend placed under the map and bar chart on the final prototype 43

Figure 20: Logo present on the final interface, including a temperature/map indicator icon . 44

Figure 21: Mockup made using a screenshot of the front-end final prototype, a full

screenshot can be seen in appendix 5 .. 44

Figure 22: Software overview for a page request ... 45

Figure 23: Software overview for data gathering .. 46

Figure 24: Results of the two ping tests, with Google’s DNS server IP (8.8.8.8) first and our

server (130.89.93.97) .. 51

Figure 25: Mockup of the webpage loaded on three devices, made using screenshots 52

Figure 26: Python script displaying values from TTN above the web browser's console

printing recevied values from the server ... 53

Figure 27: Wireshark IO graph showing the captured packets .. 53

Figure 28: First packets sent between the client and the server ... 54

Figure 29: Page used for the uninformed test, all indications are hidden 56

Figure 30: Results of the first question about the type of data ... 57

Figure 31: Results of the second question about the color palette signification 57

Figure 32: Results of the last question from the uninformed test, evaluating clarity of the line

chart with the other visualizations ... 58

Figure 33: Result of the second question, 1 was labelled as 'confusing and 5 'useful' 59

Figure 34: Result of the last question, 1 was labelled 'Confusing and 5 'Very clear' 59

6

Appendices

Appendix 1. Physical sensors built by Tom Onderwater (final prototype version)………………….65

Appendix 2. Selected result from the visual ideas generation phase………………………………………..66

Appendix 3. Raspberry Pi 3 model B specifications…………………...……………………………………………….67

Appendix 4. mqttGet.py, the main data gathering script……………………………………………………………..68

Appendix 5. Full screenshot of the final web page design………………………………………………………….70

Appendix 6. Front-end user based evaluation questionnaire.…………………………………………………….71

Appendix 7. Front-end user based evaluation result……………………………………...……………………………74

Appendix 8. Consent form used for the front-end user based evaluation………………………………..79

Appendix 9. Consent forms signed by the participants……………………………………………………………….80

Appendix 10. Temperature poster mockup idea…………………………………………………………………………..82

7

1. Introduction

The smart city vision defined by Zanella et al. aims at using the latest information and

communication technology to support added-value services for the city administration and

its citizens[1]. In accordance with this vision, the municipality of Enschede is looking for

innovative solutions to monitor and visualize the air temperature levels in the city. This

project is conducted by Tom Onderwater and Yoann M.E. Latzer, respectively responsible for

the hardware conception along with its deployment and the end-user user software, including

data collection and distribution through an online server.

1.1 Client and context

Enschede is a city and a municipality located in the eastern point of the Netherlands in the

province of Overijssel and in the Twente region. It features an oceanic climate like most of

the country, and is composed of various landscapes ranging from residential urban areas to

rural farmlands. According to the KMNI (Koninklijk Nederlands Meteorologisch Instituut) the

city recorded temperatures as high as 36.1 °C during the summer between 1981 and 2010[2].

In this context the goal of this graduation project is to build an internet of things network

consisting of air temperature monitoring systems which will communicate their

measurements to an online interface.

1.2 Challenges

The municipality of Enschede, like most cities, faces a heat buildup in its most urban areas

(e.g.: commercial zones in the city center, urban residential areas) when the temperatures

are particularly high. This is caused by several parameters, mostly architectural ones, and

known as the urban heat island effect. Therefore certain parts of the city might be exposed

to higher health risks which already exists when experiencing high temperatures.

This effect is very hard to avoid entirely, mainly because it would imply long term

architectural changes, but it can be measured in order to understand its intensity and

eventually take preventive actions (e.g.: dehydration warning for citizens living in zones that

are greatly affected). Such measurements can be performed using air temperature sensors

placed strategically in different areas of the city.

But gathering such data to monitor the intensity of the urban heat island effect is not enough.

A graphical interface must be provided to assure that the municipality can easily monitor the

entire system and analyze its data. Because such a system can be useful for the municipality

to make data-driven decision, it must provide an overview of the current situation but also

allow for in depth analysis. A simple representation of this system is introduced on figure 1.

8

Figure 1: Sketch of a simplified system overview

1.3 Research questions

In order to solve the air temperature visualization challenges and produce an adequate

solution to the municipality the following research question and sub-questions were

proposed:

How to format and visualize air temperature measurements of public space in the city of

Enschede for administrative and public use?

What are the possible use cases of air temperature measurements for the identified

stakeholders?

How to provide an overview and useful insights of the measured air temperatures to

the different stakeholders?

These questions are focusing on the efficiency and relevance of the final interface. By

emphasizing on this aspect the current project aims at determining which specific issues

data visualization could help fixing, who could benefit from using an interface providing such

data and which technical and graphical rules must be used to do so.

9

2. State of the Art on Air Temperature Visualization

There are very few academic literature focusing specifically on visualizing air temperature,

therefore in order to gain insights of the state of the art this chapter is divided in four parts.

Firstly the effects of high temperatures will be briefly introduced in order to understand what

our final system may have to help preventing or detecting. Then the general advantages of

representing data through a visual medium are discussed, along with preferred type of

environmental data visualization. Thirdly the advantages of gathering data through an

internet of things network will be presented to emphasize on the potential administrative

decisions our interface may help to influence. Finally this chapter will introduce several

existing solutions, which includes air temperature measurements, in order to understand how

and why such systems are implemented.

2.1 The effects of high temperature

This section will briefly describe the urban island effect before listing common effects of

high temperature on health.

Figure 2: Graphical representation of the urban heat island effect

The distribution of heat in urban areas differ from rural areas with the most apparent effect

in temperature distribution being called an urban heat island [3], as represented above on

figure 2. The main cause for this effect are architectural parameters (typically the use of

bricks, concrete, asphalt and similar material which absorb more short-wave solar radiation)

as well as pollution level parameters caused by the city’s activity. The conditions for such an

10

effect are defined by William D. Solecki et al. [4] as “heightened air and surface temperatures

in urban areas relative to surrounding suburban and exurban areas” and it is noted that while

the effect can occurs throughout the year it becomes a public policy concern in the summer

because of its co-incidence with heat waves.

As reported by H.L. Macintyre et al. [3] commons effects of high temperatures on health

includes heat exhaustion, heatstroke and emergency hospitalizations, which can all lead to

death in the most extreme cases. These effects are amplified by different parameters such

as the types of housings or the age of individual citizens. While deeply understanding how to

prevent such negatives effects is out of the scope of this literature review, it is important to

note that our solution may provide the municipality crucial insights than can be

communicated to health services.

When temperature levels are raising the heat is distributed differently in urban areas. Such

amplified heat levels can become a serious threat for health in the most affected areas.

2.2 The advantages of visualizing data

The following section will explore how humans tend to process, understand and remember

visual information better than other forms of data representation. Additionally, we will see

that in the context of analyzing environmental data, maps are powerful tools to gain insights

about the evolution over time and space of such parameters.

The idea that “a picture is worth a thousand words” is not new and relies on the fact that

humans are visual-oriented species. It seems that humans values images because they carry

a story which allows for faster information processing. We do not only understand

information faster but it also stays longer in our memory [5]. This is the reason for

Siricharoen et al. [5] to suggest that visual communication is an efficient tool to ease the

distribution of information through social medias. Wei Lu et al. [6] goes further and indicates

that the visual data representation also allows for deeper insights when analyzing vast

amounts of measurements. This is partly due to the fact that it can help noticing spatio-

temporal patterns when made dynamic. While agreeing on the processing efficiency and

impact related advantages, Waralak V. Siricharoen et al. [7] suggest that there are some

limitations to infographic representations. First of all data can be skewed or have a large

margin of error making it irrelevant when it is visually presented. Secondly displaying too

much information might also cancel the benefits of visualization, even though this problem

can be solved with interactive infographics which allow to focus on a smaller portions of

large datasets [7].

11

When looking at temperature visualization related literature, spatial-based representation of

data seems to be a particularly useful tool to analyze such environmental data. Jan Hjort et

al. [8] notes that maps can be used for efficient analysis and prediction of air temperature

measurements when combined with data processed according to the statistical generalized

additive model. Bin Shao et al. [9] indicates that in the context of visualizing heat island

effects the three dimension based models are more authentic than the two dimensional

representation. Furthermore, Brooke Fisher Liu et al. [10] states that presenting information

in a map increases the understanding and potential compliance with recommended actions

in warnings. Both acknowledge that representation data using a map is preferred when

extracting and presenting information from datasets in their respective field of research.

Giving a visual output has many advantages but also certain limitations. It can be useful for

both communicating information to a large audience and helping experts to analyze certain

datasets. In the context of environmental measurements, maps are preferred when analyzing

the evolution of different parameters (e.g.: air temperature, air quality) over time and space.

2.3 Advantages of internet of things systems for smart cities

In this section the advantages of internet of things systems are introduced in order to

anticipate the type of data that will need to be processed for this project. These systems are

commonly called “smart cities” when a municipality is using the most advanced information

and communication technology in order to make its traditional networks and services more

flexible, efficient and sustainable [11].

An important aspect of smart cities is the possibility to make data driven decisions for

“higher resource utilization, reduced capital and operational cost structure, risk identification

and management, and sustainability” [12]. This is made possible with sensors connected in

an internet of things network, making automatic measurements in real time without the need

for human operators to intervene. Such networks can provide live measurements (e.g.: of air

temperature or humidity) which can be used to build a database of building’s structural

integrity over time, allowing targeted and proactive maintenance at a lower cost [1].

These solutions can also help monitoring other environmental parameters such as the air

quality but also the overall energy needs of different services (e.g.: public lightning or

transportation). It provides the municipality a clear and detailed overview of these

parameters [1]. These technological and organizational improvements are recognized in

research as key factors to improve sustainability in general terms [13], with empirical results

12

proving that the reduction of CO2 emissions are achieved “once a threshold level of ICT

development has been achieved” [14].

In order to fully exploit the advantages of an internet of things network it is important to aim

for helping the municipality to make data driven decisions. Therefore in the context of this

project it means that making all the information gathered by the network of temperature

monitoring systems easily available for decision making is crucial. However the range and

nature of such decision is dependent on the specific demands from the client, which will be

determined in chapter 3.

2.4 Case study: Detecting Forest Fires using Wireless Sensor Networks

The following section will present a complete system which was implemented in the past.

While it does not focus on the repercussions of air temperature level, it does use such

measurements to help preventing forest fires.

DIMAP-FactorLink is a Spanish company specialized in various technical solutions but more

specifically involved in internet of things systems implementation. In 2010 they released a

report on a fire detection system built for SISVIA Vigilancia y Seguimiento Ambiental,

covering 210 hectares of forest using wireless sensors [15].

The network of sensors was built using 90 Waspmotes microcontrollers [15], measuring four

parameters (air temperature, relative humidity, carbon monoxide and carbon dioxide) and

sharing data every five minutes. The choice for this specific hardware was motivated by its

energy consumption efficiency as the report notes that each sensor power level is adjustable

with most of them set in a sleeping mode to accentuate that efficiency. The overall system

can be seen on figure 3.

13

Figure 3: Overview of DIMAP-FactorLink’s solution network

The end product includes a live monitoring interface which represents the location and

measurements of the sensors on a map (figure 4). This interface also includes other

visualization tools such as a panel which represent the location of the sensors along with a

table that provides raw data (e.g.: status or last measurement value) for each of them. The

system can also include alert managements which can deliver early warning alarms when the

measured parameters go above a configured threshold.

Overall this system provides a complete monitoring tool which allows for an overview of the

area’s environmental parameters as well as detailed information which can be used for

further investigation (e.g.: comparison over large period of time). The alarm system also

shows the automation possibilities as it can detect abnormal activities by itself.

14

Figure 4: DIMAP-FactorLink’s solution final user interface

This system is a one of the few complete solutions which uses air temperature

measurements as one of its most important parameters. It is a good example of a solution

that provides an overview of a large dataset with constant live updates. It is important to

note the use of a map which allows to quickly visualize the current overall situation. A map is

also used to easily access a specific sensor and get more detailed information. This is a

concrete example of the accessibility of such data representation as we can notice that there

is something urgent on figure 4, without the need to understand the entire context.

2.5 Additional examples

Because there are not many examples of fully documented solutions for air temperature level

monitoring, partially related projects are briefly discussed in the following section.

Ekobus Project by Belgrade and Pancevo (Serbia) with Ericsson

In 2012 the Serbian cities of Belgrade and Pancevo deployed a system in collaboration with

Ericson to monitor several environmental parameters across their municipalities [16].

Waspmotes microcontrollers were attached to the roof of the municipalities’ busses to

provide live dynamic measurements of 6 parameters: air temperature, relative humidity,

carbon monoxide (CO), carbon Dioxide (CO2), nitrogen Dioxide (NO2) and GPS location.

15

Figure 5: Screenshots of Ekobus’ monitoring interface

As seen on figure 5 the monitoring interface displays the collected data and allows for a

complete overview of the system as well as detailed insights about each sensor node.

Furthermore the data produced by the two municipalities can be stored and analyzed in order

to evaluate the impact of certain policies on air pollution for example. This project shows the

advantages of an interface powered by an internet of things network: it makes it possible to

quickly analyze the overall current situation and to follow the developments of certain

parameters over time.

As seen in this project, the use of maps is preferred to give an instant feedback, notably

about the current location of the sensor nodes since they are moving in this case. The left

screenshot featured on figure 5 shows some interactivity with a tooltip being displayed after

clicking one of the nodes. This allows the user to intuitively lookup the current situation of a

certain location without any extensive search through a database to locate the right sensor

node.

Chicago Array of Things

In 2016 the city of Chicago, in partnership with University of Chicago and Argonne National

Laboratory, deployed a city-wide network (currently 50 devices across the city with an aim for

500 units by the end of 2018) in order to measure several parameters [17]. It is meant as a

“fitness tracker” for the city and gives live information about the air quality, climate and the

traffic among other parameters.

The particularity of this project is the initiative of publically sharing the data produced. The

municipality is planning to offer a complete online monitoring tool along with free access to

16

the database for the public in order to stimulate data analysis initiatives through the city of

Chicago data portal.

While the project does not necessarily emphasize on data visualization, it is meant to provide

tools to make it easy for different members of the community to produce an overview of

certain issues in the entire city as well as insights about them. The Chicago data portal

already publicly shares several datasets about the municipality (see figure 6) and the Array of

Things project will add even more detailed datasets to it.

Figure 6: Screenshot of a map representing “green roofs” on the Chicago data portal website

This project shows that a city of the size of Chicago, which is assumed to have quite large

administrative and academic staff dedicated to exploiting such datasets, is still trying to

reach for its citizens in order to get a different perspective on issues affecting the city. In this

context the use of online tools to display large datasets seems to be a way to make complex

data analysis available to everyday citizens, where visualization can have a crucial role to

raise awareness about issues the administration or academics may have overlooked.

2.6 Conclusion

This chapter reports on the state of the art research performed in an attempt to cover the

entire scope of the research questions established for this air temperature visualization

project. The effects of high temperature on urban environments as well as on human health

were briefly described in order to understand the context from which the data will need to be

processed and visualized. The main challenges are detecting the temperature propagation

patterns due to the heat island effect as well as determining to which extend the end-user

17

interface could provide interesting information for the municipality to have an impact on its

citizen’s health.

After noting that visually representing data is an efficient communication tool, we underlined

the potential advantages of maps for environmental measurements. While there are many

advantages when providing visual information, it can also be a source of error or additional

confusion: these elements must be taken into account when selecting a certain scale of type

of representation.

Finally the advantages of smart cities powered by internet of things networks were

discussed. While visualization can be a tool for fast comprehension, it can also help making

data driven decisions when combined with such a network. This implies that the final

interface will need to take advantage of both the immediacy of data (e.g.: to provide

emergency alerts) as well as its large measurements volume (e.g.: to provide an overview to

discover patterns). As seen in the three existing solutions described in the last part, such

goals are already partially achieved and proved their relevance for different municipalities.

This state of art research has shown that there are no studies specifically focusing or

exploring the different visualization possibilities of an air temperature sensor network. It was

found that the established research questions could not be entirely answered by existing

literature even though the papers discussed above proves the relevance of such questions.

This is partly due to the fact that the focus this project vastly depends on Enschede

municipality’s specific goals, which are still to be determined at this stage. Hence the need to

investigate further the different requirements and stakeholders in order to determine which

data and which information we aim to retrieve from the dataset before determining optimal

representation methods. This will be addressed the following chapter.

18

3. Ideation Phase

In order to set solid foundations up to achieve a functional solution that can be later

evaluated it is important to summarize the requirements of the project before entering the

idea generation phase which will lead to a final idea. This way we can assure that the

selected idea will go in the desired direction by settling down on an idea which should be as

concise as possible while still describing important details.

3.1 Stakeholders Identification

To provide the municipality with a solution that fits their requirements, the content of this

final interface as well as its usability must be regularly discussed and tested with the

municipality. Additionally the different stakeholders must be identified in order to produce

useful and relevant data analysis and visualization. This is to assure that the final solution

will indeed help to gain interesting information for the administration as well as the citizens.

The final interface must include a graphical representation of the measured data and take

into consideration two categories of stakeholders: the municipality administration (internal

use) and Enschede inhabitants (external use).

3.1.1 Internal use

In this first use case our stakeholders are members of the municipality of Enschede

administration. Therefore if they encounter the final interface it is expected that they already

have a certain understanding of the context of the project. Furthermore these employees

have experience with graphical user interface in order to perform daily office tasks. These

two elements indicates that regardless of the personal background of the employees, they

will have a certain comfort using our final interface, at least to simply consult it without too

much interaction.

But out final interface might involve performing advanced tasks such as exporting a dataset

in a certain format or select a certain portion of the dataset. As far as we can tell at this point

of the project there is no employee dedicated to exploring the data generated by this project

therefore it is important to keep in mind that our interface cannot require hours of learning to

be operated. Hence the need for a simple, straight forward interface that can be used quickly

and that can also be easily shared among colleagues. The ‘sharing aspect’ is essential to

benefit from the data generated by our internet of things prototype, as described in the

previous chapter.

19

3.1.2 External use

Through the very first meetings it was clear that the municipality of Enschede has no

intention, at least on the short term, to make the interface available to the public. However it

is important to keep in mind future developments and to anticipate a potential public release.

In this case virtually every citizen of Enschede becomes a stakeholder, from the youngest to

the oldest. This implies people with both none and advanced experience with computer

interface. While this category is too broad to make specific stakeholder requirements, there

are still two points that must be taken into account. On one hand the interface must be self-

explanatory which means that it must contain enough information for anyone to understand

(e.g.: short text to introduce the project, easily readable labels). On the other hand the final

prototype should not be able to alter the data set or the interface, or in other words it should

not be possible to customize the interface. This is due to public aspect which must imply a

certain protection from malicious usages that could compromise the project (e.g.: editing the

database with random data), intentionally or not.

3.2 User Requirements

The user requirements can be divided in two aspects: the functional and non-functional

requirements. On one hand it is important to produce a technically feasible idea but it is also

crucial to keep in mind the final usage scenarios.

3.2.2 Functional requirements

Considering the scope of the project and the usability requirements defined in the previous

section, there are several functional requirements involved. Because of the digital nature of

the temperature measurements, it is assumed that the final prototype must be a software

solution.

First of all, the software prototype must be accessible from a distance since there might be

several final users accessing the visualization interface from different machines.

Furthermore since we want to visually represent the data, the prototype must be able to both

write and read from a database that keeps track of all the measurements made. Finally

making requests from this database should be automatic and/or fairly simple on the final

interface.

To summarize, our final software prototype must make it possible to easily visualize and

manipulate data from a database on a remote computer.

20

3.2.1 Non-functional Requirements

In order to approach this usability aspect of the final prototype, it is important to elaborate a

simple persona of the typical final user and a list of the tasks that he or she will need to

perform.

As stated in section 3.1, the final user can be an employee of the municipality or just any

citizen. However the final prototype might only be available after a certain amount of

experimentation time by the municipality. Therefore our end user will most likely be an

employee of Enschede’s municipality. We assumed that the end user is fairly used to perform

office work related tasks on a computer. This implies that, for example, it could be

problematic to assume that the end user is comfortable with console input in order to

operate the final prototype. However, interacting with a graphical user interface should be

fairly affordable.

The meetings held with the municipality provided a relatively precise list of the tasks the end

user will perform:

- Select a node and read its temperature measurements on a visualization

- Adjust the time period that can be seen on the visualization

- Export/download an image of the visualization

- Inspect the measurements present in the database on a table

- Export/download a complete table of the measurements database (e.g.: to perform

analysis using an external software)

This list implies that the final prototype provides clear visualizations which can be clicked to

display additional information. It should also be easy to change the time period and save the

generated visualization in an image. This is crucial to facilitate data sharing as a specific day

of measurements could be saved into one simple image.

Furthermore the end user must be able to perform advanced analysis. This means that it

should be possible to explore the raw measurements in a table in order to inspect the

behavior of a certain node at a certain time. Finally the database should also be available for

download in a format that could be loaded on another software for analysis (e.g.: comma

separated values, .csv, format).

21

3.3 Idea Generation

In order to explore and evaluate as much ideas as possible, two methods of idea generation

were performed. In each of these the challenges and problems from the first chapter as well

as the state of the art and existing systems were taken into account to form a base to

generate ideas from.

3.3.1 Visual Idea Generation

The first type of idea generation is purely visual and tries to directly represent, with the use of

fast doodles, the final interface. Based on the idea of temperature measurements across the

city of Enschede, several types of visualization are tested. This allows for direct, fast

feedback which will later serve in the realization while also providing precise ideas for the

specification phase. The main results of this phase were drawn on a single A3 sheet which

can be seen in the appendix 2.

Figure 7: Two different proposal for a bar chart visualization

In the end several representation of the geo-localized measurements were proposed, as well

as multiple suggestions for graphical representation (bar charts, bubble charts, etc.). From

this first idea generation session it clearly appears that representing the temperature

measurements on a map is a must-have since it is both attractive (next to other charts) and

very clearly shows the nature of the project. Different ideas were formulated for the

temperature representation on the map, as seen on figure 8.

22

Figure 8: Circles, road lines, zones and 3D zones proposal for representing heat on a map

Some of the ideas generated during this phase were used to build a simple mockup which

was presented to the municipality of Enschede. While it is not functional (since we cannot

get much information from it), it was an occasion to experience with colors and to

contextualize our work for the client. This mockup can be seen on figure 9 and received a

positive feedback as its simplicity was appreciated.

Figure 9: First mockup introduced to the municipality

23

3.3.2 Conceptual Idea Generation

In this second type of idea generation the goal is to detach from the visualization aspect to

focus on the different types of application our interface could possibly have. The result is a

list of potential requirement the final prototype building could take into account. Afterwards,

a first attempt to classify them using the MoSCoW (Must have, Should have, Could have, and

Won't have) method was performed.

- M: Provide a full overview and give insights via “time traveling”: the idea is to be able

to select a starting and ending time to visualize the portion of the database.

- M: Built-in sharing capabilities: the final user can share a part of the dataset or a

visualization of it directly on the interface (e.g.: via email or social network account

for example).

- S: Database export functionalities: either visualized or raw data is available to

download in order to exploit the dataset outside of the interface (e.g.: during a

meeting for the visualization of with specialists for the raw data)

- S: Mobile compatibility: the final interface can also be consulted on a mobile device,

possibly with additional functionalities such as consulting the closest node

depending on users’ location.

- C: Display city-wide temperature levels: from a defined amount of sensors, the

interface is capable of computing the level of temperature in the entire city.

- C: Alert setup system: in order to schedule automatic messages, the final user

should be able to define certain rules (e.g.: temperature limit) on the interface.

- C: Export complex visualizations such as posters that can be directly used on the

city’s billboards to inform citizens.

- C: Contribute to the database: in this case the, mostly advanced, user is able to

record his own measuring device on the interface in order to contribute to the

temperature data collection.

- W: Style customization: certain elements of the visualization are determined directly

by the user, for example the color or size of certain elements can be freely edited.

While certain ideas listed here are clearly part of the defined requirements, other such as the

last item would require a complete different scope for the project. However the collaborative

aspect is indeed in the scope of the smart city vision, which makes it a possible candidate for

24

future recommendations. These propositions will be reformulated and classified in chapter 4

with the addition of justification for their classification.

3.4 Final Idea

A final idea was derived from the idea generation process described above. The final solution

must be a web application which can both record and serve measurements in/from a

database, providing an easily accessible interface which includes visualizations. An overview

of such a system can be seen on figure 10.

Figure 10: Full system overview

While it can be made responsive to fit different screen sizes, mobile compatibility is not a

priority. The web nature of the prototype is chosen in order to provide remote access of the

database. The back-end server will gather the measurements and serve them to a front-end

which will allow raw or visualized data exports.

The visualization will include a map which will provide an easy overview of the sensor’s

location along with its latest measurement. The second part of the visualization will include

two charts, chosen for their clarity: a bar chart which will represent the heat island effect and

a line graph which will represent an overview over time of a selected sensor. Both of these

graphs must be easily editable to display the desired part of the database (e.g.: last month’s

temperature for sensor number 2). Propositions for the arrangement of the selected

visualizations were generated during the visual idea generation and can be seen on figure 11.

Finally a part of the interface will make it possible to export a certain part of the database in

several formats, such a pdf or csv.

25

Figure 11: Four different arrangement propositions for the final interface

26

4. Specification Phase

During the specification phase the idea formulated in the previous chapter and the usage

scenario of the final prototype idea are described with more details. The goal of this chapter

is to provide precise directions for the realization phase by sorting out the different

functionalities depending on their importance, in order to identify crucial characteristics and

optional ones.

4.1 User Experience Specification

The goal of this section is to define a precise user experience in order to underline all the

functionalities of the final prototype starting from the final user point of view. Providing

details on the concrete utilization will allow us to precisely determine the characteristics our

prototype should or should not include.

4.1.1 Use Scenario: Consulting Data

Considering the data gathering and delivering aspect of our final idea, the first action that

can be taken into account is the consultation of data. The final user will be able to browse

through the temperature measurements with two different approaches: consult the latest

data available or consult previously recorded data.

In the first case the user interaction can be described with the following ordered list:

1. Connect to/access the interface via a web browser

2. Immediately see on the map the current location and latest measurements of

the sensors

3. Consult additional charts for a quick overview over time of the latest

measurements

4. Scroll down to seek the raw data tables in order to inspect a specific node and

its measurements history

In order to consult previously recorded data, the user scenario slightly differ from the one

described above in this section. In can be described with the following ordered list:

1. Connect to/access the interface via a web browser

2. Focus on the desired visualization (or raw data table) and identify a time

selection tool

3. Input the desired time period (starting and ending date)

4. Select all nodes or a specific set of nodes (or a single one)

5. Apply the time selection by clicking a button

27

6. Consult the temperature measurements for a certain period of time

In both cases the user is simply reading information displayed on the screen in order to either

make sure that the system is still properly operating (e.g.: verify that all the nodes produced

data recently) or to inspect temperature measurements at a given period of time. This can be

useful for quick verifications but in order to exploit (share or present) the dataset we need to

take into account data export in a second use scenario.

4.1.2 Use Scenario: Exporting Data

As seen in the first chapter, the municipality of Enschede is seeking for an innovative solution

which implies that this temperature measurement system can be seen as an

experimentation. This implies that the result of such experiment must be made easy to

share, in order to provoke constructive feedback for future developments. In our use scenario

this is represented by exporting the database (or a part of it).

While exporting data will give a different result with visualization or row tables, the user

interaction will stay relatively similar. The data is then downloaded as the appropriate format

(e.g.: png for images and csv for data tables).

This scenario is similar to the second one described in section 4.1.1. The only difference is

that the final user clicks a button labeled “export” after selecting a certain amount of nodes

and a time period. This button can be either next to a visualization to export an image, or next

to a table to export raw data.

28

4.2 Project Requirements

In this section the specification will be ordered and sorted using the MoSCoW method which

will determine the must-have, should-have, could-have and won’t-have features. These

functionalities are presented in the following table before discussing the choice for sure

qualification.

Must-have Should-have Could-have Won’t-have

M1. Gather and

store data

measured by the

sensor

S1. Gather data

without

interruption

C1. Display

temperature for

entire city zones

W1. Possibility for

users to contribute

to the dataset

M2. Display a map

with measurement

points

S2. Select a

certain number of

sensor(s) to

display

C2. Responsive

design (tablet and

mobile

compatibility)

W2. Ability to edit

the style of the

visualizations

M3. Represent the

heat island effect

on a chart

S3. Export raw

data tables

C3. Display a quick

overview of the

measurement on a

chart

M4. Select a

certain time period

to display

S4. Include a

secured login

function

M5. Export images

of the visualization

Figure 12: Project Requirements MoSCoW Table

The very first requirement is M1, which is at the core of my collaboration with Tom

Onderwater, represents the storage of measured data which is crucial to make it available for

the visualizations. M2 and M3 are the main functionalities of the interface, with two different

goals. M2 will provide a quick overview which is very useful for the final user to picture what

the full system looks like on the ground, while M3 will take into account the position of the

sensors in order to provide information on the heat island effect, which was introduced in

section 2.1. Finally, M4 and M5 are crucial in order to make the data exploitable for the

municipality of Enschede, as described in the previous section of this chapter.

29

In the should-have column, elements that would preferably be delivered to the municipality

are listed, even though their absence would not compromise the final goal of this project. S1

is classified in this category because if the data gathering system fails to collect information

for a short amount of time, the database will still be relevant. However it is preferable to

avoid any interruption even though the system cannot be constantly online when being

developed. S2 is also not crucial to exploit the data, but it could provide the final user a

useful option when searching for insights in the dataset. S3 would be very useful for data

analysis but as stated above the municipality does not specifically seek for such an

advanced use of the data, which makes it a should-have functionality. The absence S4 would

again not compromise the entire project but it would assure the municipality that their

project is safe from public attention which can be useful to create an experimentation

mindset.

After should-haves come the could-haves which describe elements that would make the

overall experience more comfortable or interesting for the final user but are not crucial in any

way. C1 is the most ambitious one, as it implies that the final interface is capable of

projecting temperatures levels in a certain area around the sensor. This implies complex

computation which could possibly fall outside of the scope of this project. While the final

interface should be readable on most desktop computers, C2 suggest that it would also

possible to consult and use the final prototype on a mobile device, which could be

comfortable or useful for certain final users. Finally C3 represents an additional chart idea

which would help providing an overview of the system over time without any user input.

To conclude the requirements section, two elements are listed which lies outside of the

scope of this project. W1 suggest that the user could contribute to the database, with its own

sensor setup for example. This would require a platform which can accept new devices and

verify that the data sent is accurate. Additionally W2 suggests that users could change the

style of the visualization as they wish, which would require to build an entire selection of

color palettes, in order to avoid unreadable charts output. While such functionalities could be

implemented in the future, it cannot fit with the time constrains of this project.

4.3 Functional Specifications

In order to conclude the specification phase this section will describe the functional

specifications for each of the elements of our final prototype, taking into account the

information previously stated in this chapter. The final interface idea will be separated into

four sections which represent four main functionalities: gathering data, delivering data,

visualizing data and selecting data to consult or export.

30

4.3.1 Data Gathering

As described in the previous section, collecting temperature measurements is a crucial

element to build the final visualization prototype. As specified during the ideation phase,

such measurements are digital and must be available at any time from different locations.

These two elements make the choice of a web server obvious, in order to be able to collect

the temperature measurements pushed to the internet by the sensors in a database and to

make it available at any time.

The web server will ideally be constantly online in order to avoid missing any measurements

and to make them available at any time. This last step is described in the following section.

4.3.2 Data Delivering

As the data is gathered in an online database, the next logical step is to deliver such data to

the final user. This is the second task of the web server: deliver, on client demand, the

database for the final user to consult.

In order to assure a comfortable experience the delivery of the web page must not take too

much time, which considering the average modern web browsing experience cannot be more

than a minute at the very maximum. Ideally the data delivering takes less than a few seconds

in order to make this step almost invisible for the final user to focus on the operations

described in the following section.

Finally the data delivering should assure that the integrity of the database is delivered, which

means that all the different final users can access the exact same database.

4.3.3 Data Visualization

In this section the specification for the main tasks that the final user will perform are

described. The two previous sections are describing crucial elements for the interface to

function, however they will be completely invisible for the final user. Once the database is

delivered from the web server to a web page, it needs to be represented in a visual form in

order to make its consultation easy. However it is also interesting to include raw data (e.g.: in

a table) under the visualization to allow detailed inspections. Therefore four different

visualization methods will be delivered: a map, a heat-island effect chart, a history of the

latest measurement chart and a raw data table.

31

4.3.3.1 Color palette

Before detailing the visualizations and their functionalities, it is important to note that

specific direction was taken when choosing the color palette. In most interfaces (e.g.: the

DIMAP-FactorLink’s solution final interface shown on figure 4) the color represents the level

of temperature. For example red is high and blue is low.

Because the main goal of this project is not to evaluate if the air temperature outside is warm

or not, this ‘color = heat level’ rule was broken. This decision was made to put the emphasis

on the comparison of levels of temperature based on the location type of the sensor.

Therefore warm color were chosen to represent highly active zones (e.g.: red for the city

center, orange for sub urban area) and green colors were chosen for rural areas.

This will allow for a clear distinction of the sensors based on their location rather than their

current temperature level. To avoid any confusion this color palette will be used across all

the visualizations. The chosen colors are displayed in chapter 5.

4.3.3.2 Map Visualization

The map will simply show the latest position of the sensors along with their respective latest

measurements. This map should by default fit all the different sensors in order to provide a

quick overview of the system, but the user should also be able to freely move it in order to

facilitate orientation (e.g.: if the position is not clear, the user will be able to browse the

surroundings and eventually identify a place he/she knows). Finally, the final user must be

able to click on different nodes represented on the map to display their latest measurements.

4.3.3.3 Heat-island Effect Chart Visualization

In order to clearly identify a potential heat-island effect in the city, the system will include

sensors placed at strategic points in the city. This chart must represent the nature of these

placements (e.g.: is the sensor in an urban area or in a park?) and try to visually display the

differences in temperatures in these different zones. This will allow the final user to quickly

identify the amplitude of the heat-island effect: in other words it will be easy to see if there

are large differences between the different zones of the city or not.

4.3.3.4 Measurements History Visualization

This simple line chart will display the evolution of temperature in the arbitrarily chosen time

window. With time on the X-axis and temperature level on the Y-axis it will be easy to

visualize the evolution of temperature in the past.

32

4.3.3.5 Raw Data Table Representation

While a simple table cannot be considered as a data “visualization”, it is still listed here since

it will be visually present on the final interface. This table should simply show the entire

database and should not take too much space on the final interface. This is because this

element will only be used in very specific, advanced operations (e.g.: find what a sensor

measured on a specific date).

4.3.4 Data Selection and Export

The last step required to make sure that the municipality can experiment with the final

interface and take actions based on this experiment is the data selection and export

functions.

Data selection implies that the final user will be able to select a certain proportion of the final

database. There a two aspects that can be selected in the context of our temperature

measurements database: the time period and the amount of nodes. As stated in section 4.2

the ability to select a certain time period is more important that the ability to select which

nodes to include. However, this last functionality is still classified as a “should-have” since it

would make database browsing fully customable.

In order to share the experimentations and discoveries made with the final interface, it is

crucial for the final user to be able to share them. This is made possible with a “export”

function, which as seen in section 4.2 must include the possibility to download pictures but

should also make the raw data available. This functionality must take into account the

dataset selection as described above and it must be straight forward (e.g.: a clearly visible

button labelled “export” or “download as an image”).

4.3.5 Formatting Data for the Visualization

In this section a simple chart is introduced, which represents how data is formatted in order

to be used by the different visualization methods. Figure 13 represents how the data is put in

different arrays (represented with a red background) which contains several variables for

each of the sensor nodes or each of the measurements.

The first one, labelled ‘last_measurements’, contains six different arrays which contains the

information needed to make both the map and the bar chart. Since it always contains the

latest measurement available for a specific node, there is no need to include a timestamp.

33

The second one, ‘past_50_measurements’ was given an arbitrary value of fifty, which means

that it contains the last fifty recorded measurements. This value can be adjusted later,

especially when including an option to select a certain time period. It does not contain

location information as these are not needed to represent the evolution of temperature over

time.

Finally ‘all_measurements’ contains the entire database, with all the information available. It

is used to fill a table in order to display raw information for the user to explore.

Figure 13: Overview of the data formatting to fit the visualizations

34

4.3.5 Overall System Architecture

The main functionalities are put together in an overall system architecture which will show

the interaction between the main functions of the server. This overview of the full system will

be used as a base for the realization phase.

35

Figure 14: Overall system architecture

The four main functionalities defined in this overview of the server software are labelled on

figure 14, which represents the main server in the middle:

1. This part of the system handles the request made from a web browser, at a

certain URL. The server must know which information to deliver depending on the

request (in our case there is only one main page which contains the

visualizations).

2. The server must run a script which connects to the internet, where the sensors will

push their measurement. It must run constantly in the background to assure that

no measurement is missed.

3. This script should handles two scenarios. First of all it will record every new

measurement detected by functionality number 2 in a database. Additionally it

must deal with data request from the server.

4. Finally this last part of the system return several elements, according to the

request handled by functionality 1. This means that it must send both the web

page files and the data from the database to the client.

36

5. Realization Phase

The goal of the realization phase is to build a prototype according to the requirements

specified in the previous chapters. In this section the different tools used to build the final

prototype are introduced in three different categories: the hardware, the back-end software

and the front-end software. Each category is linked to the other ones and a final section will

focus on explaining how they interact in order to deliver a working prototype to the client.

5.1 Server Hardware

As our final prototype is a web application, there are several ways to make it available on the

internet: it can be either hosted on a distant server (e.g.: using services such as Amazon Web

Services or Heroku) or a local server (e.g.: a computer running from the University of

Twente). The second solution was chosen in order to keep a complete overview of the

system. While remote services have their advantages, they can also represent a certain long

term cost and eventually do not allow the use of certain technology or methods.

5.1.1 Raspberry Pi

The Raspberry Pi platform was chosen since it is relatively affordable, powerful and has a lot

of documentation available. The exact model used for this project is a Raspberry Pi 3 Model

B, the latest version available which should be powerful enough to host our application but

also to run a GNU/Linux distribution which can be used as a comfortable development

platform like any other computer (see the full specifications in appendix 3). The Raspberry Pi

is running Ubuntu MATE (Ubuntu 16.04.3 LTS with the MATE Desktop Environment 1.16.2)

using a 16GB micro-SD card. It is powered with a 5V (2.1A) power supply and is connected to

the University of Twente network through the integrated Wi-Fi interface.

Ubuntu was arbitrarily chosen instead of Raspbian (the official distribution available from the

Raspberry Pi Foundation) since the first prototype was developed using a Ubuntu live disk on

a laptop. While there should not be any compatibility problem between the two GNU/Linux

distributions, the comfort of using the same environment was helpful to stay focused on the

server software instead of spending time on troubleshooting the operating system.

After installing Ubuntu MATE using “Win32 Disk Imager” (as recommended in the official

documentation), a virtual environment was setup on the machine using “virtualenv”. This tool

allows to create virtual space in the computer where we can install libraries without affecting

the entire operating system: it is useful for development but also to allow several projects to

be developed on the same machine in the future.

37

Once set up, the hardware is ready to run the server software which consist of two main

components:

- The back-end which records temperature measurements in a database and handles

requests from web browsers.

- The front-end which defines the structure and look of the web pages delivered by the back-

end.

5.2 Back-end Technology

There is a growing list of frameworks that can be used to build full stack (back + front-end)

web applications, but the choice was restrained since Python was chosen as the

programming language due to its compatibility with the Raspberry platform. Python itself had

different web framework libraries and Django was chosen to develop our prototype. While

different solutions are available (e.g.: FLASK or Pyramid), Django is among the most popular

Python web frameworks even though it is relatively old (it was first released in 2005) as we

can see on figure 15.

Figure 15: List of most used web frameworks from builtwith.com

38

5.2.1 Django Channels

Another reason to choose Django was its official library called Channels, which allows

asynchronous tasks and long running connections though WebSockets. The first one is

required to be able to run a script which constantly seeks for sensor data updates

asynchronously (without blocking the server from delivering web pages) and the second one

is necessary in order to update our web page (with new measurements or when the client is

requesting older data) in real time without requiring a reload from the client.

The use of ‘consumers’ is the core concept of Channels: certain part of the code is reacting

upon certain events to spread information across the application. For our prototype it will be

triggered when we receive new measurements from the sensors: after recording the data in

our database a signal is sent to the client connected via the web page to receive the latest

measurement.

In other words Channels replaces the original request/response cycle from Django with

messages that are sent across channels. In order to use this library two other servers are

running on top of our Django server: Redis (to handle the message exchanging across

channels) and Daphne (to handle HTTP/WebSockets connections with the outside world). A

full overview of the system can be found on figure 16, at the end of this section.

5.2.2 Database structure and functioning

Before presenting the, rather simplistic, database structure we need to mention where the

data we want to catch is available. In order to push the data gathered by the temperature

sensors on the internet, my partner Tom Onderwater used The Thing Network (TTN), an open

source network built for low powered devices with the LoRaWAN protocol. Using this

technology several sensors can push online data to a single endpoint: an online TTN

application.

However the TTN application does not save the data: therefore we need to talk with the

application using the MQTT protocol (which is designed for devices with a limited network

bandwidth). In order to do so a Python script was written (which can be consulted in

appendix 4) with the use of the paho-mqtt library and the TTN application’s access key.

This script will run in the background, detect when there is a new data available and push it

into a table called “Measurement”. It contains the following fields:

39

- measurement_type: this is manually set to ‘Temperature’ since this is the only data

we will record in our project. However there might be other types of measurements in

the future.

- device_id: the identification number of the device, provided by the metadata from

TTN

- value: the actual measured temperature value, provided by the metadata from TTN

- latitude: geographic information provided by the device, provided by the metadata

from TTN

- longitude: same as the previous entry

- day: time information provided by the server since certain sensor do not include this

information in the metadata provided

- month: same as above

- year: same as above

- hour: same as above

- minute: same as above

This is our main table and it contains all the information required to perform data

visualization. A second table is also present which simply consist of a list of nodes (six in

total in our final prototype). While the first table is used for all the crucial operation, the

second one is simply here to easily (and dynamically) return a list of sensors to format the

data.

5.2.3 Delivering the final web page

Before describing the technology used to bring the data visualization together on a web page,

an overview of the entire back-end process is presented on figure 16. When using the Django

Channels library, Daphne and Redis are required to exchange messages within the server, as

mentioned in section 5.2.1. This technology will later allow for live updates of the front-end

(as described in section 5.4.2).

40

Figure 16: Overview of a request within the server

1. A request is sent from a web browser (a URL which points to our Raspberry Pi IP

address is entered in the address bar)

2. Daphne server, which is listening to requests made toward our IP (on a specific port),

catches up the request and pass it to our Django server application using Redis

server.

3. Django retrieves the data from our database and renders the requested page (in our

case there is only one page, or one ‘view’: the main page containing our visualization)

4. The web files (the main .html file along with all the front-end technology) are sent

back to Daphne through Redis

5. Finally our Daphne server send the files to the web browser, answering the request

made during step 1

41

5.3 Front-end Technology

As mentioned in the previous section, the application is almost ready since it can both record

data and deliver it to a web browser. However the web framework, Django, can only provide

certain data formatting (such as making for-loops in HTML documents). In order to perform

the visualizations, additional front-end technology must be loaded with the page. This

section will explain in details which technology is used and how.

5.3.1 Bootstrap

This framework consist of a CSS file a Javascript file which provides several cosmetic

functionalities. The most popular and powerful one is a grid system which allows to build the

sections of a web page by declaring a main container and a new column for each element.

The advantage of using a technology such as Bootstrap is its compatibility across different

browsers: the grid system is meant to make responsive designs, which means that it can

adapt to any size of screen on different devices (e.g.: and iPad and an Android phone have

different browsers, resolutions, screen sizes, …).

Bootstrap provides many other functionalities but along with the grid system this project only

uses the standard font sizes and the table styling. The table are simply filled with the for-loop

functionality of Django, as mentioned above.

5.3.2 Leaflet

Now that we have declared our columns, it is time to fill them in. The first visualization is the

interactive map: it must display each sensors’ position along with its latest measurement.

Leaflet is a Javascript library which provides a complete world map with only a few lines of

code.

Once we have chosen a style for the map, we can simply declare its display size and an initial

location. In our case the starting point is above the city of Enschede with a slight zoom out in

order to fit the sensors located on the University of Twente campus and around the city

center.

The last step is to add our sensors on the map. First of all a list of the last measurements is

passed on the web page and then retrieve in a Javascript array (as illustrated on figure 13).

Small icons are also passed on (which represents the zone color) which will be used as a

marker on the map. Leaflet provides a simple way to declare new markers, which form a

small object that can be added to the map with a simple “addTo(map_name)” function. The

sensor’s data is therefore used to provide a latitude and longitude along with the sensor’s

42

name and its measurement. Automatically, Leaflet will add the marker at the correct location

and display the name and measurement value in a pop-up when the marker is clicked.

This simplicity was the reason why this technology was chosen to display a map, it is open-

source and natively works with OpenStreetMap, a free editable map of the world. The result

can be seen on figure 17.

Figure 17: Map representing the sensor’s location and latest measurement

5.3.3 CanvasJs

In order to build our bar and line charts, the CanvasJs library was chosen for its simplicity. In

the same way Leaflet offers a visualization with only a few lines of code, CanvasJs allows to

easily build very lightweight charts.

For both the line and bar charts, the data passed on by Django on page load is formatted it in

a Javascript array. The bar chart is using the same object as the Leaflet map which contains

the latest measurements. However the line chart is using another object which contains the

last fifty measurement recorded in the database in order to provide an overview over time.

The advantage of this library is that it can automatically deal with problems such as scales

differences (e.g.: the scale of the Y-axis will adapt if a new value is significantly bigger and

smaller). Therefore the scale of our bar chart is automatically refreshed with new

measurements. Its main disadvantage is that it is not open source and only allows free users

to display charts with a link to their company at the bottom.

43

Figure 18: Final prototype technology overview

5.3.3 Additional Graphical Elements

Once the front-end technology was up and running, several graphical elements were added.

First of all a legend is provided in order to clearly indicate the meaning of the color palette.

This is crucial to our visualization since this choice was made even though it can be counter-

intuitive, as mentioned in section 4.3.3.1.

Figure 19: Legend placed under the map and bar chart on the final prototype

While the legend is helpful for the final user experience, two following elements were only

added to polish the final interface and to give it a certain uniqueness. A subtle background

pattern was added to give some texture to the page and a logo was made in order to make

the interface easily recognizable.

44

Figure 20: Logo present on the final interface, including a temperature/map indicator icon

Figure 21: Mockup made using a screenshot of the front-end final prototype, a full screenshot can be seen in
appendix 5

5.4 Final Prototype Software Architecture

In this final section the complete architecture of the final software prototype is described in

details. In order to cover all the existing functionalities this section is divided in two sub

sections. The first sub section will describe the server’s behavior when a page is requested

by a client while the second section will describe how the server is gathering data from TTN.

45

5.4.1 Web Page Request

Figure 22: Software overview for a page request

The server’s software behavior and architecture on page request is shown on figure 22. The

entire process is labelled chronologically, and described in this section.

1. A request from the client is made to the server

2. The behavior to follow depends on the request and is defined in urls.py. In our

case there is only one index page and its components are defined in views.py

3. To prepare to return the web page, views.py will make a call to the database to

retrieve certain elements (e.g.: the latest measurements for each sensor node)

4. views.py also defines which HTML file to use. In our case it is index.html, which

will also load all the associated files (the local Javascript files as shown above,

but also CSS files and external Javascript library files)

5. The web page along with the data is then returned, as requested by urls.py

46

6. Finally the client’s request is answered with a full web page, containing both the

HTML, its CSS, the Javascript files along with data from the database.

5.4.2 Data Gathering

Figure 23: Software overview for data gathering

On top answering requests, our server must constantly gather data pushed by the sensors on

TTN. The entire process can be seen on figure 23, and its chronological labels are described

in this section.

1. On startup consummers.py will call mqttGet.py which contains the main functions

to communicate with TTN.

2. The script will maintain a constant connection to the TTN application, detecting

any new information pushed online by the sensors.

3. Following the database model defined in models.py, mqttGet.py will create an

object which contain all the measurement information (as described in 5.2.2) and

store it in the database. This happens with every detected response from TTN.

4. Finally, mqttGet.py send a message to all connected clients containing the

measurement that was just received. This will naturally not happen if no clients

are connected.

47

As we can see above the mqttGet.py file handles most of the interaction with both TTN, the

database and even the client when it is connected. The full commented file can be consulted

in the appendix 4.

48

6. Evaluation Phase

The evaluation phase will consist of two different type of tests: on one hand the

performances of the server will be tested (e.g.: how fast can it deliver a web page?) and on

the other hand a user based evaluation will be performed with the final interface.

6.1 Goal(s)

6.1.1 Performance evaluation

The goal of this first evaluation is to determine the efficiency of our back and front-end

solution. Several aspect will be tested such as the response time in different scenarios and

the compatibility of the interface with several machines.

The first test will measure the response time from a client on the internet to the Raspberry Pi

in order to measure raw network performances. The second test will consist of loading our

web page on different machines in order to evaluate both the full page loading duration and

the compatibility of the front-end with different operating system and web browsers. The

third test will determine how fast the server is updating the web page when new

measurements are being pushed on The Things Network. Finally a network packet analyzer

software (Wireshark), will be used to determine the overall performances while loading a

page and to inspect potential issues if the previous results are not satisfying.

6.1.2 User based evaluation

Our second test will determine if the design choices made for the final prototype are clear

and affordable for the final user to understand. The user based evaluation will consist of two

phases: one without any indication about the nature of the project and one with background

information. For each phase participants will answer a short questionnaire consisting of both

multiple choices questions and open questions. Each participant is asked to read and sign a

consent form before starting the test.

The result, positive or negative, will be processed in order to provide further

recommendations via analyzing the motivations for such feedback.

6.2 Methods

6.2.1 Performance evaluation

6.2.1.1 Ping test

The very first performance test will consist of a simple software utility called “ping”, which is

used to measure the round trip time from a host to another, using the Internet Protocol (IP).

49

This test will be performed from the University of Twente network and two addresses will be

tested in order to compare the result: Google’s public DNS server address and our Raspberry

Pi’s IP address. Comparing the two results will simply provide a rough estimation of the

server’s rough performance when accessed via the internet.

6.2.1.2 Responsiveness test

The interface webpage will be loaded on three different machines, which will allow to

evaluate another aspect than pure response time: the cross platform compatibility.

The website will be loaded on a smartphone running Android using Google Chrome (in

portrait mode, with a 1080x1920 resolution), on a tablet running iOS using Safari (in

landscape mode, with a 1024x768 resolution) and finally on a laptop running Windows 7

using Firefox (with a 1600x900 resolution). Finally a screenshot comparison will allow for a

responsiveness evaluation in order to determine if all the elements of the page are properly

displayed on the devices.

6.2.1.3 Live update test

As described in the previous chapter, our web application can send live data updates to the

web browser without requiring a page reload from the client. In this test two windows are

setup side by side: on one hand a small Python script will be running which connects to the

TTN application and prints our new measurements as soon as they are pushed on the

network. On the other hand a web browser with the web page already loaded.

The performance will be evaluated by starting a timer when the information has been printed

on the Python console and stopping it when the web page effectively displayed the new

measurement.

6.2.1.4 Wireshark inspection

In order to obtain insights on the interaction between our client and server, Wireshark will be

used while loading the web page. This will not only measure the overall performances, it will

also give us a precise record of the packets exchanged between the client and the server.

This final performance test will provide additional information, which will be useful to

diagnose unexpected results or to detect abnormal behaviors from both the client and the

server.

50

6.2.2 User based evaluation

6.2.2.1 Uninformed test

During this first phase the participants will have the web page interface presented to them

without any further explanations. Certain elements are hidden on the page in order to make

sure that there is no information available apart from the visualizations. The page logo and

title, sensors pop-up on the map, color labels, charts titles, chart axis labels and table title are

hidden.

Participants will be free to interact with the page before answering a questionnaire. The

questions, which can be found in appendix 6, were chosen to determine the clarity of the

interface. To provide participants with enough time to explore the interface, the

questionnaire is filled by the observer on a separate machine.

This first test will determine how easy it is to understand the nature of the data displayed on

the page and also the level of confusion the chosen design may trigger.

6.2.2.2 Informed test

Once the first phase is finished, a similar web page will be introduced to the participants

which contains all the previously hidden information. A short brief of the entire project is also

given by the observer to explain the project’s context. Any questions about the questions will

also be answered by the observer at this point.

This second phase will focus on gathering participant’s opinions on the interface, given the

nature of the project. The questions will therefore focus on the appeal participants may or

may not have with the final interface: are the size, colors and disposition of the elements

useful or confusing? Finally an open question will allow suggestions for improvement.

In order to minimize the observer’s influence on the answers, participants will be invited to fill

in this part of the questionnaire themselves.

6.3 Results

6.3.1 Performance evaluation

6.3.1.1 Ping test

The ‘ping’ tool shipped with Windows 7 was used for this test and this section will briefly

discuss one particular value: the average round trip time. As we can see on figure 24, the

round trip time is longer for our server than for Google’s server. The difference is rather small

51

(6 milliseconds) however it is noted that the average round trip time is more than doubled for

our server.

This first test gives us very little information but it provides the evidence that if there is any

slow response time detected in the future it will be because of the software solution

implemented rather than the Raspberry Pi and the network from which it accesses the

internet.

Figure 24: Results of the two ping tests, with Google’s DNS server IP (8.8.8.8) first and our server (130.89.93.97)

6.3.1.2 Responsiveness test

The results of this test are straightforward: the website could load without any issues on all

the three platform and browsers. As mentioned in chapter 5, Bootstrap’s grid system is

taking care of resizing all the elements depending on the device’s resolution.

Therefore the design is consistent on every device which is both a positive and slightly

negative result: while performing the test it was obvious that the mobile interface is a bit too

small and therefore does not allow for a perfect navigation. Screenshots were taking and

integrated in a mockup on figure 25 to make it easier to directly compare the three types of

display.

52

Figure 25: Mockup of the webpage loaded on three devices, made using screenshots

6.3.1.3 Live update test

The result from this test was quite hard to measure since the webpage almost immediately

pick up the information recorded in the database. A stop watch gave a result of 580

milliseconds, but this may mostly include the time taken to actually press ‘start’ and ‘stop’. A

screenshot of the setup used to perform this test can be found on figure 26.

The result is satisfying: the delay is almost non-existent which means that the interface can

display new values as soon as a sensors node pushed it on The Things Network platform.

53

Figure 26: Python script displaying values from TTN above the web browser's console printing recevied values from

the server

6.3.1.4 Wireshark inspection

This last test was the most important since it will measure the actual loading page of our

web page. Overall the results are highly disappointing since our web page took almost two

minutes to completely load. Such performances greatly affect the final user experience as

the website appears to be timed out until the server actually send the page’s information.

Figure 27: Wireshark IO graph showing the captured packets

As seen on figure 27, there is almost no information exchanged between the server and

client for more than 90 seconds. The peak that can be seen afterwards represents the

moment where our server finally sends all the information (HTML, CSS and Javascript files

54

along with data from the database). The positive aspect is that this step does not take more

than a few dozens of seconds, but there is a very long idling period before. This graph also

shows small peaks after the page is loaded, which represent our WebSocket updates sent by

the server.

Figure 28: First packets sent between the client and the server

In order to see what is actually happening, Wireshark allows to see in details which packets

are being exchanged between the server and the client. As we can see on figure 28 there is a

rather long exchange of ‘TCP Keep-alive’ packets (shown with a black background). This

means that while our server acknowledge the request from the client, it is taking too much

time to answer therefore the client is starting this ‘keep-alive’ sequence in order to maintain

the connection alive while waiting for an answer from the server. In other words the server is

busy and cannot immediately answer the client’s request.

The reason behind such a behavior is not clear, different approaches were taken in order to

resolve it:

- Killing the Raspberry Pi’s Ubuntu desktop environment to significantly reduce CPU

usage

- Commenting our the part of the server’s code which looks up for updates from TTN

to remove all background processes

- Stop passing database information to the front-end in order to remove any database

call

None of these approaches improved the server’s reaction time.

6.3.1.5 Performance evaluation conclusion

There is one major performance issue with the implemented solution: the web page takes up

to two minutes to load on a device due the timeout described in the previous section. While

55

this a serious issue there are still some positive aspects that can be taken into account: the

interface displays properly on any kind of modern devices and once the web page is loaded it

provides live updates with very little delay.

Finally this performance test allows to conclude that the issue is due to the server’s software

implementation rather than the Raspberry Pi’s network performances. There is bottleneck

somewhere in the implementation which causes the delay described in the previous section.

Several recommendations will be addressed in the conclusion in order to suggest a solution

to this major performance issue.

56

6.3.2 User based evaluation

Six different people, randomly found on the campus of the University of Twente, were asked

to participate in the user based evaluation. The mean age of our sample is 30 years old and

the median age is about 22 years old. This sample is rather small but should be enough to

have a rough estimation of the clarity and the visual appeal of the interface.

The full questionnaire along with the results can be respectively found in appendices 6 and 7.

Additionally the consent form can be found in appendix 8 and well as the same form filled by

the participants in appendix 9.

6.3.2.1 Uninformed test

As described earlier participants had no information about the nature of the project at this

stage. The page used to perform this first test can be seen on figure 29.

Figure 29: Page used for the uninformed test, all indications are hidden

57

Few participants understood without any further information that the data display was about

temperature and that the color palette was based on location, as seen of figure 30 and 31.

Only two out of six participants were correct, which indicates that it is rather hard to

determine the nature of the visualization without any indication.

Figure 30: Results of the first question about the type of data

Figure 31: Results of the second question about the color palette signification

However every participant answered the two following questions correctly. These were about

the relation between the map and bar chart, therefore the result indicates that the

consistency between the two visualizations is working: participants were able to see that the

bar chart provides information about the point on the map and that is was used to compare

data from different locations.

58

The last question was meant to evaluate if the relation between the line chart and the rest of

the visualization was clear. As seen on figure 32 more than half of the participants did

understand that the data was the same, plotted over time. This indicates that the line chart’s

design is not clearly related to the other visualizations.

Figure 32: Results of the last question from the uninformed test, evaluating clarity of the line chart with the other

visualizations

This result of the first user based evaluation phase gave mitigated results. On one hand it

was difficult for the participants to understand the nature of the data but on another hand the

relation between the charts appear to be rather clear. This indicates that the chosen design

for the different visualizations is consistent.

6.3.2.2 Informed test

Before answering the question of this second phase, participants were provided with a

complete overview of the project’s nature and goal. Most of the questions are answered

using a scale from one to five, one being negative and five positive. Finally an open question

was used to gather further opinions and recommendations from the participants.

The first question was about the overall opinion about the design: is it appealing or not? The

results are slightly positive with a mean of 3.5 which indicates that participants did not reject

the design choices. No participant gave it the lowest score but none graded it with the

maximum score either.

59

Figure 33: Result of the second question, 1 was labelled as 'confusing and 5 'useful'

The result of the following question (as seen on figure 33) about the clarity of the color

palette also gave mostly positive result with a mean of 3.3 which indicated that while is it not

completely confusing it could be clearer. This goes along with the result shown on figure 31

which indicates that most of the participant naturally relate color with intensity rather than

location.

The most positive results were achieved with two question about the ability to get an

overview of the data as well as insights about it. The mean for the first aspect was 3.8 and

the mean for the second was 3.6 which indicates that all most of the participants

acknowledge that the interface can be used to get both an overview and insights about the

situation. However these results also indicates that there is room for improvements.

Figure 34: Result of the last question, 1 was labelled 'Confusing and 5 'Very clear'

60

The following question (as seen on figure 34) echoed the first one from the informed test via

asking if the choices of visualization were confusing or clear. With a mean of 3 we can

conclude that it is rather similar to the question about the appeal of the design. We note that

one participant rated the choices of visualization as ‘Confusing’ which means again that

there is room for improvement.

The final open question gave useful insights on the participants’ opinions. One comment

came back from two different person and reinforced the idea that the color palette should be

about temperature intensity rather than location, which confirm results discussed above.

Once participant also noted that this color palette would not work for color blind people.

Among other comments about the design there is one complain about the ‘bulkiness’ of the

interface which indicates that it may display too much information at once.

6.3.2.3 User based evaluation conclusion

This small scale user based evaluation gave rather satisfying results overall even though it is

clear that there is room for improvement. The choices made for the color palette is

controversial since it did trigger several under average results and negative comments.

However the choices of visualization seems to be both appealing and useful, especially when

asked if it could provide both an overview and insights about the data.

61

7. Conclusion

After the completion of the project based on state of the art analysis, ideation and

specification, a final prototype was delivered to the municipality of Enschede. It was

implemented according to the description made in the realization phase before being

evaluated. This final chapter will discuss the key findings and list suggestions for

improvements and future developments.

7.1 Key findings

In this section the key findings will be discussed according to the research questions

established in the first chapter. The completion of the project includes answering these

questions as accurately as possible.

7.1.1 How to format and visualize air temperature measurements of public space in

the city of Enschede for administrative and public use?

Based on the research discussed in the second chapter, a graphical representation of the

gathered data is preferred to allow for fast analyzing and easy sharing of information. More

precisely if is found that special based representations are particularly useful when analyzing

environmental data. Hence the choice of a map in our final prototype to easily understand

that this project relies on physical sensors scattered across the city of Enschede.

Furthermore the ideation phase revealed that simple, clearly separated, charts were the most

performant way to provide both information overtime (line chart with temperature on the Y-

axis and time on the X-axis) and a clear comparison of the latest measurements to analyze

the urban heat island effect level (bar chart with temperature on the Y-axis and nodes on the

X-axis). This choices were again made according to the findings discussed in the state of the

art since such representation also allows for easy understanding and fast spreading of the

information.

Finally simple tables containing raw data were added in order to allow for a detailed

investigation of the data gathered over time.

7.1.2 What are the possible use cases of air temperature measurements for the

identified stakeholders?

According to the interaction performed with the municipality of Enschede’s employees along

the project, it was clear that the concrete application of the final prototype would be rather

experimental. There was no mention of a public release of the interface, at least on the short

term. Therefore the main user case was to monitor the current urban heat island effect level

62

via comparing relevant parts of the city. The final visualizations can be used to raise

awareness about the potential of such a solution for data driven decision making. This was

the main motivation for including a simple export function to the charts in order to make

them easy to share among the different municipality’s services.

7.1.3 How to provide an overview and useful insights of the measured air

temperatures to the different stakeholders?

The use of simple visualization updated in real time seems to be the most performant to

provide a realistic overview of the situation as well as insights. However the line chart was

added in order to also include a clear overview of the situation in the last hours. Concrete

solutions to allow for flexible (e.g.: choosing freely the time constrain of the visualization)

were not implemented due to technical issues that lied outside of the scope of this project.

The following section will discuss possible improvement to fully answer this question.

7.2 Further Recommendations

This section will list all the different recommendation that could be made after reflecting on

the results of this project.

7.2.1 Technical recommendations

First of all the previous chapter underlined a major issue with unsatisfactory loading times.

There are many different approaches to figure out exactly what is wrong with the

implemented solution and the preferred one would be to deploy the Django server on an

online platform in order to confirm that the problem is purely related with the way the code is

written and not due to a wrong network configuration (e.g.: the University of Twente’s

network may not allow certain behavior, which causes the slow down).

Furthermore an API approach to collect the information from the database would both

improve the performances and the scalability (e.g.: getting the latest measurements from a

URL such as ‘ensketemp.nl/last50measurements’ instead of passing them to the front view

every time the index is server to a client). This would also allow for external application to

connect with the server in order to perform other types of visualization for example.

7.2.2 Visualization recommendations

In chapter 6 it was confirmed that the color palette used on the final prototype was

controversial, which lead to two potential different solutions: either entirely change it

to reflect the temperature level or replace the warm colors used for urban zones by

63

gray tones to emphasis even more on the green (parks, rural) versus urban (city

center, urban residential, sub-urban residential) locations.

In the end the visualizations proposed with the final prototype were rather simplistic

due to the fact that most of the time was spent on setting up a full web framework

and deploying it on the selected hardware. More sophisticated visualizations can be

envisaged such as a 3D map representing the urban heat island effect as mentioned

in the state of the art.

Additionally the data gathered with the web server could be used to make more

‘traditional’ communication material such as posters which could inform citizens

about the best place to go in Enschede to avoid the urban heat island effect. An

example of such a poster was made during the visual idea generation phase and can

be seen in appendix 10.

7.2.3 City-wide temperature projection

A final recommendation concern a method that was briefly explored in order to build a city-

wide temperature projection. RIVM (Rijksinstituut voor Volksgezondheid en Milieu) created a

map representing the expected heat level in the Netherlands. It is rather precise and can be

used along with sensor measurements to show the urban heat island effect level in the entire

city. A simple example would be to take measurements in a park and project it to all the

parks in the city, according to the expected heat level variation represented on RIVM’s map.

This could effectively provide a complete overview of the urban heat island effect in

Enschede using a limited amount of sensors.

[1] a Zanella, N. Bui, a Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for
Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, 2014.

[2] Koninklijk Nederlands Meteorologisch Instituut, “Twenthe, langjarige gemiddelden,
tijdvak 1981-2010,” 2010.

[3] H. L. Macintyre et al., “Assessing urban population vulnerability and environmental
risks across an urban area during heatwaves – Implications for health protection,” Sci.
Total Environ., vol. 610–611, pp. 678–690, 2018.

[4] W. D. Solecki et al., “Mitigation of the heat island effect in urban New Jersey,” Environ.
Hazards, vol. 6, no. 1, pp. 39–49, 2005.

64

[5] W. V. Siricharoen and N. Siricharoen, “Infographic Utility in Accelerating Better Health
Communication,” Mob. Networks Appl., 2017.

[6] W. Lu, “An Interactive Web Mapping Visualization of Urban Air Quality Monitoring Data
of China,” 2017.

[7] W. V Siricharoen and P. Cong, “Question matrix method according to divided
dimensions of infographics evaluation,” Pers. Ubiquitous Comput., vol. 21, no. 2, pp.
219–233, 2017.

[8] J. Hjort, J. Suomi, and J. Käyhkö, “Extreme urban–rural temperatures in the coastal
city of Turku, Finland: Quantification and visualization based on a generalized additive
model,” Sci. Total Environ., vol. 569–570, no. June, pp. 507–517, 2016.

[9] B. Shao, M. Zhang, Q. Mi, and N. Xiang, “Prediction and visualization for urban heat
island simulation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), vol. 6758, pp. 1–11, 2011.

[10] B. F. Liu et al., “Is a picture worth a thousand words? The effects of maps and warning
messages on how publics respond to disaster information,” Public Relat. Rev., vol. 43,
no. 3, pp. 493–506, 2017.

[11] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about
smart cities: The Internet of things is the backbone,” IEEE Consum. Electron. Mag., vol.
5, no. 3, pp. 60–70, 2016.

[12] S. P. Mohanty, “Everything You Wanted to Know About Smart Cities,” IEEE Consum.
Electron. Mag., vol. 5, no. 3, pp. 60–70, 2016.

[13] I. Beretta, “The social effects of eco-innovations in Italian smart cities,” Cities, vol. 72,
no. July 2017, pp. 115–121, 2018.

[14] D. Añón Higón, R. Gholami, and F. Shirazi, “ICT and environmental sustainability: A
global perspective,” Telemat. Informatics, vol. 34, no. 4, pp. 85–95, 2017.

[15] Libelium.com. (2010). Detecting Forest Fires using Wireless Sensor Networks with

Waspmote. [online] Available at:

http://www.libelium.com/wireless_sensor_networks_to_detec_forest_fires/

[16] Libelium.com. (2012). Libelium - Smart City project in Serbia to monitor Environmental

Parameters by Public Transportation with Waspmote | Libelium. [online] Available at:

http://www.libelium.com/smart_city_environmental_parameters_public_transportation_wasp

mote/

[17] UChicago News. (2016). Chicago becomes first city to launch Array of Things. [online]

Available at: https://news.uchicago.edu/article/2016/08/29/chicago-becomes-first-city-

launch-array-things

65

Appendices

Appendix 1. Physical sensors built by Tom Onderwater (final prototype version)

66

Appendix 2. Selected result from the visual ideas generation phase

67

Appendix 3. Raspberry Pi 3 model B specifications

(Screenshot taken from raspberrypi.org/products/raspberry-pi-3-model-b/)

68

Appendix 4. mqttGet.py, the main data gathering script

1. # Module required: paho-mqtt (pip install paho-mqtt)
2. import paho.mqtt.client as mqtt
3. import json
4. import base64
5. import datetime
6. import re
7. from channels import Group
8. from .models import Measurement
9.
10. # Boolean variable to prevent multiple instances of the consumer
11. loopStarted = False
12.
13. # TTN identification variables
14. APPEUI = '(not shown for security reasons)'
15. APPID = 'enschede_temp'
16. ACCESSKEY = '(not shown for security reasons)'
17.
18. # Print the connection status
19. def on_connect(client, userdata, flag, rc):
20. print("Connected with result code "+str(rc))
21. client.subscribe('+/devices/+/up'.format(APPEUI))
22.
23. # Run when a new measurement is received from TTN
24. # The json data is split into several variables before being recorded in the databas

e according to 'Measurement' in models.py
25. def on_message(client, userdata, msg):
26. # Decode the payload into utf-8
27. j_msg = json.loads(msg.payload.decode('utf-8'))
28. dev_id = j_msg['dev_id']
29. # Make a time array (only to be printed since it is sometimes missing from the s

ensor)
30. time = j_msg['metadata']['gateways'][0]['time']
31. time_array = re.split('-|T|:', time)
32. # Decode the binary string and store it in an array using utf-8
33. payload = base64.b64decode(j_msg['payload_raw'])
34. info = payload.decode("utf-8")
35. info_array = re.split('t|L|l',info)
36.
37. # Print received data in Django's console
38. print('---')
39. print('---')
40. print('metadata: ', j_msg)
41. print('---')
42. print('time_array: ', time_array)
43. print('info_array: ', info_array)
44. print('device_id: ', dev_id)
45.
46. # Store the curent time
47. i = datetime.datetime.now()
48. # Store the received data in a temporary variable before saving it
49. temp = Measurement(measurement_type='temperature', device_id= dev_id, value=info

_array[1], latitude=info_array[2], longitude=info_array[3], day=i.day, month=i.month
, year=i.year, hour=i.hour, minute=i.minute)

50. temp.save()
51.
52. # Print recorded data in Django's console
53. print('---')
54. print('Recorded in the database: ', temp)
55. print('---')
56.
57. # Make a temporary object to send to the front-end
58. temp_string = str(temp.id) + ' '+ str(temp)
59. # Send a message to the 'sensor_data' group to be received by the front-end
60. Group("sensor_data").send({'text' : temp_string})

69

61.
62. # Run the connection functions from paho-mqtt to connect to TTN
63. client = mqtt.Client()
64. client.on_connect = on_connect
65. client.on_message = on_message
66. client.username_pw_set(APPID, ACCESSKEY)
67. client.connect("eu.thethings.network", 1883, 60)

70

Appendix 5. Full screenshot of the final web page design

71

Appendix 6. Front-end user based evaluation questionnaire

72

73

74

Appendix 7. Front-end user based evaluation results

75

76

77

78

79

Appendix 8. Consent form used for the front-end user based evaluation

80

Appendix 9. Consent forms signed by the participants

81

82

Appendix 10. Temperature poster mockup idea

