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Abstract  

Background: Research strives for the development of an optimised laparoscopic training 

process to help trainees acquire all skills necessary for surgery. Laparoscopic simulator tasks 

pose a promising alternative to training procedures. Yet the repetitive nature of practice using 

such tasks runs the risk of exercising only motor sequence learning (MSL); that is, the 

automation of a specific sequence of movements (Verwey, 1996). Sufficient task variability 

needs to be ensured, to allow acquisition of holistic, generalizable skills. 

Methods: Our research attempted to shed light into the role of MSL on performance, to better 

understand its implications to skill acquisition, if it were promoted in laparoscopic tasks. We 

thus introduced the varied-fixed learning (VFL) paradigm, consisting of dexterity tasks with a 

varied and a fixed part, the former allowing participants to practice holistic skill acquisition 

blocking the practice of MSL, while the latter allowing them to practice MSL. Both parts were 

modelled on a two-part exponential learning curve, assessing the learning parameters 

amplitude, rate, and asymptote for both parts. This paradigm enabled us to capture the 

proportion of MSL to the general motor learning process involved in mastering a new complex 

procedure, which was estimated from the difference between the two amplitudes.  

Results: Findings suggested little involvement of MSL to general motor learning. The 

proportion of MSL was not very pronounced in neither of the two tasks (mirror-drawing = 0.10, 

95% CI [0.04; 0.22]; clips-and-string = 0.05, 95% CI [0.00; 0.55]), and uncertainty was high in 

both. However, MSL’s proportion should not be overlooked, since this was only a pilot study 

with highly uncertain results, implying the possibility of a more pronounced proportion of MSL. 

Conclusions: Findings suggest that MSL has a small, but still detectable role in improving 

performance on complex motor procedures. This underlines the importance of variability in 

simulator tasks, to ensure surgeons master transferable skills in training. Our research affirmed 

the feasibility of the VFL paradigm and learning curve model to investigate learning, which 

offers a promising alternative to research in applied settings such as laparoscopy. Having 

ensured its usefulness, more exhaustive investigation is needed to reach final conclusions on 

the MSL/general motor learning ratio.  

Keywords: laparoscopy, motor sequence learning, learning curves, dexterity tasks.  
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1. Introduction 

Laparoscopic skill acquisition has received great attention within the field of medical education. 

However, there is still considerable ambiguity regarding the processes involved in learning and 

mastering new skills required for this type of surgery, while training conditions for optimised 

skill acquisition remain unknown (Cook et al., 2012). Advances in technology have enabled the 

development of laparoscopic simulators with immense possibilities, since they enable trainees 

to surpass the classical learning routines of watching procedures, attending lectures, and 

practicing on actual patients (Nácul, Cavazzola, & Melo, 2015), into performing simulated 

surgery without risking human lives. Yet, such simulators are currently not incorporated in 

training procedures. There are still great individual differences observed amongst learning 

using laparoscopic simulators, with some individuals even failing to acquire all skills necessary 

for surgery (Grantcharov & Fuch-Jensen, 2009). The medical education society thus faces the 

challenge of understanding the process of acquiring the complex skills required for laparoscopic 

surgery. Only then can one develop an optimal way of assessing and adequately training 

surgeons. Establishing an optimised training process requires the development of effective 

simulator tasks, whose complexity and variability would foster learning. Thus, this is paper 

aims to examine the concept and processes comprising learning and how these can be affected 

by task nature, in an attempt to inform the development of optimised laparoscopic tasks.  

In the following sections we first introduce the reader to the resemblance spectrum, which 

depicts the shared similarities of simulator tasks to low-fidelity, complex motor tasks. This 

forms the groundwork for understanding the importance of researching learning under 

conditions that closely resemble a real learning environment. We then propose a new 

framework for learning, derived from observations made during the execution of such tasks. 

Based on this framework, a novel experimental paradigm and a model for the analysis of 

learning curves are constructed, both used in our pilot study, aiming to understand learning and 

encourage experts to move towards research that is more suitable for applied settings.  

1.1. The resemblance spectrum 

The resemblance spectrum highlights the importance for creation of more realistic experimental 

conditions when conducting psychological research for applied settings. It places possible test 

suites on a continuum with two extremes ranging from not resembling laparoscopy, to complete 
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resemblance (see figure 1). Those that are further away from complete resemblance lack 

features essential to real surgery, and are thus not as predictive of actual laparoscopic 

performance. For example, early psychometric studies developed surgeon selection tests similar 

to those used in other skilled professions (Gallagher & Smith, 2003), to assess certain innate 

abilities considered related to laparoscopic performance, such as visuo-spatial, perceptual, and 

psychomotor abilities. However, these abilities did not always succeed in predicting 

performance (Groenier et al., 2014; Huijser, 2015). Examination of the resemblance spectrum 

explains these findings by suggesting that innate abilities lack the complexity that exists in 

laparoscopic surgery, and are thus not predictive of performance. On the other hand, low-

fidelity dexterity tasks pose a closer resemblance to real laparoscopic surgery since they inter-

combine cognitive and psychomotor demands along with manual dexterity abilities, all of 

whom are entailed in real surgery. Unlike simplified experimental conditions that represent just 

a building block of all skills required for task execution, learning complex motor procedures 

needed for the execution of low-fidelity dexterity tasks, permits all properties associated to the 

complex use of cognitive and other abilities to be captured.  

Figure 1. The resemblance spectrum. Test suites placed on a continuum of ascending order (left to right), 

based on their resemblance to real laparoscopic surgery. The validity of the links between suites that are 

placed next to each other is stronger than those placed further apart. For example, dexterity tasks have 

a more valid link to resembling basic tasks than resembling a whole laparoscopic procedure.  

Research on the investigation of learning curves for dexterity tasks has made an important 

observation regarding correlations in learning curves, which can be proven vital to the 

understanding of the underlying process involved in mastering such tasks. More specifically, 

studies at the University of Twente investigated participants while performing repeated trials 

of the same dexterity task, until reaching their maximum performance for that task (Arendt, 
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2017; Kaschub, 2016). While a strong correlation was initially found in participants’ learning 

curves across tasks (r = 0.73, Kaschub, 2016), this correlation weakened greatly when the 

repetitive pattern of the same motor sequence required for task execution was eliminated across 

trials, by introducing greater demand for movement variability (r = 0.33, Arendt, 2017). This 

significant drop in learning curve correlation revealed that memorisation of a specific motor 

sequence, a process known as motor sequence learning (MSL; Verwey, 1996; Willingham, 

2001), could be a main reason for individual differences in task learning. This suggests that 

MSL may be part of one’s general motor learning process, with some tasks promoting its 

contribution more than others, through being less varied or complex.  

The extent to which MSL is involved in learning motor procedures, is a question that needs 

further investigation for more elaborative answers, since memorisation of the same sequence 

of movements would offer little assistance during real laparoscopic surgery. While the learning 

process involved in acquiring a new skill definitely requires some kind of motor automation, it 

is more complicated than simply memorising a sequence of movements. Simulator tasks that 

promote MSL would not be successful in training surgeons, since learning how to perform 

laparoscopic surgery involves not only being able to acquire a demanding set of skills, but also 

to utilise it across many different settings (Mylopoulos & Woods, 2017). In fact, since patients 

are different, and their anatomy diverges, it is rarely, if not ever, the case that a surgeon would 

find oneself performing the exact same procedure, following the exact same steps. Surgeries on 

different patients would require, at least to some extent, the adaptation of one’s technique to 

the demands of the situation, even if the type of surgery is the same (Moulton, Regehr, Lingard, 

Merritt, & MacRae, 2010). Understanding the extent to which MSL is involved in learning is 

important to determine the degree to which simulator tasks should vary, so that simulators 

would promote a holistic skill acquisition, with minimal focus on MSL. Before going into 

details on how our study aims to explore the proportion of MSL to general motor learning, it is 

important to discuss what entails learning, and explore the difference between holistic skill 

acquisition and MSL. Only then can our reader fully understand why practicing MSL would 

not be beneficial in laparoscopic training.   
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1.2. Exploring learning 

Different authors use different terminologies for terms surrounding skill acquisition and 

learning, which are mostly abstract and therefore make it difficult to distinguish between them. 

We thus go on to explore such terms and provide an unambiguous distinction between them. 

1.2.1. General motor Learning  

According to Fitts and Posner (1967)’s theory, one of the most cited theories around learning, 

three main stages are involved in learning: namely a cognitive, an associative, and an 

autonomous stage. The cognitive stage includes identification and decoding of information at 

hand, the associative involves formation of links between tied aspects of information, and the 

autonomous entails task execution with minimal input of conscious processing. Within these 

stages, a set of internal cognitive, perceptual, motor, and perceptual-motor processes that are 

related to practice and experience, enable an individual to move through the three stages and 

achieve skilful performance (Schmidt, 1975). Schmidt’s theory of motor learning states that 

formation of different representations in memory regarding the relations between the situation 

at hand, one’s performance and sensations involved, as well as the results obtained, assist in the 

achievement of skill acquisition. While the above establish a fundamental and prominent 

picture of how motor learning occurs and what it entails, no answer is provided into what 

comprises a successful learning process from this description alone. 

1.2.2. Holistic skill acquisition 

We define successful learning using the term holistic skill acquisition, which entails acquiring 

a new skill that, not only enables successful task performance, but is also transferable; that is, 

it enables an individual to adapt one’s performance according to the imminent situation 

(Mylopoulos & Regehr, 2011). As in the general process of motor learning, an individual has 

to pass through the three main stages, as those are defined in Fitts and Posner (1967), by making 

use of the cognitive, perceptual, motor, and perceptual-motor processes introduced by Schmidt 

(1975). Those help in the construction of representations in memory that are largely based on 

context. Thus, exposure to varying settings while practicing is critical to create additional, 

flexible, and adjustable representations. 
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The importance of variability in training is also prominent in other theories such as the Closed 

Loop Theory (Adams, 1976), which introduces a feedback loop as central to one’s learning. 

More specifically, facing diverge situations, enable one’s nerve system to learn how to handle 

discrepancies between actual and expected outcome from one’s actions, and correct movements 

accordingly. Adam’s theory (1976) can be depicted in applied settings of skill acquisition, such 

as sports performance. Close investigations of observations in performance have concluded that 

a set of plateaus, dips, and leaps are required for holistic skill acquisition. The above 

respectively refer to spurious limits (plateaus), development and implementation of new 

methods in one’s technique (dips), and subsequent advances in performance (leaps). These 

finally lead to an individual’s real performance limits; namely one’s performance asymptote 

(Gray & Lindstedt, 2015). These ‘milestones’ keep the learner active and motivated through 

the exploration, development, and the implementation of new ways to perform tasks. 

Exploration and development of different dips in performance are particularly necessary, since 

they enable the individual to evolve, and become more flexible in discovery and 

implementation of new techniques, according to the demands of the situation. This active search 

for ideal methods and approaches is directly related to improvements in performance (Gray & 

Lindstedt, 2015).  

In consideration of the above, Rasmussen (1983) affirmed that a training procedure can only be 

considered as holistically effective if it includes three behaviour types, referring to skill-, rule-

. and knowledge-based behaviour. These behaviour types respectively refer to performing 

highly automated motor actions without conscious control (skill-based), executing a task based 

on stored rules or procedures (rule-based), and performing explicitly formulated actions based 

on general knowledge when faced with abstract or unknown situations (knowledge-based).  

1.2.2. Motor sequence learning 

The aforementioned exploration of holistic skill acquisition emphasizes the necessity for task 

variability during practice. We now introduce motor sequence learning (MSL), to make 

comprehensible why, while MSL can fall within the scope of ‘general motor learning’, it does 

not entail a holistic acquisition of skill. Rather, it is atypical of performance in varied situations 

such as those involved in laparoscopy, and should thus not be practiced in training. MSL refers 

to the acquisition of the skill to accurately produce a specific sequence of movements with as 
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little effort and attentional monitoring as possible (Abrahamse, Ruitenberg, de Kleine, & 

Verwey, 2013). MSL is believed to involve a combination of cognitive and motor processing 

that optimizes performance by creating links between a small number of movements and 

merging them into subunits, called ‘motor chunks’ (Abrahamse et al., 2013; Verwey, 1996; 

Miller, 1956). Such chunks can even be achieved with the pure use of kinaesthetic feedback 

when simple motor sequences are involved, and are determinant of an individual’s performance 

(Pinzon, Vega, Sanchez, & Zheng, 2016). 

More specifically, MSL functions within the framework of the dual processor model (DPM), 

which is comprised of the cognitive processor and the motor processor (Abrahamse et al., 2013; 

Verwey, 2001). During initial performance of a novel sequential task, information is processed 

in the cognitive processor, which translates every stimulus into a relevant response through the 

use of higher cognitive functions. The cognitive processor passes individual responses on to the 

motor buffer, which is integrated into working memory, and then triggers the motor processor 

to execute the relevant movements according to the information loaded in the motor buffer.  

With repetitive practice, a sequence skill is formed, where the aforementioned ‘motor chunks’ 

are created, and loaded to the motor buffer as single processing steps, leading to improved, 

more rapid performance. Initially, the cognitive processor remains active in selecting which 

motor chunk is passed on to the motor buffer, but practice leads to automation of motor chunks 

involved in a sequence of movements, with the first motor chunk triggering the loading of 

subsequent chunks; thus engagement of the cognitive processor is minimized (Verwey et al., 

2010, 2013). At this point, explicit recognition of the underlying knowledge and abstract rules 

governing one’s improved performance is less needed or even difficult to access consciously 

(Maxwell, Masters, & Williams, 2012). 

At first glance, the process of holistic skill acquisition seems somewhat similar to MSL. A 

cognitive, associative, and autonomous is also involved in MSL, through the use of the 

cognitive processor (cognitive stage), the creation of motor-chunks (associative stage), and the 

eventual independent functioning of the motor buffer (autonomous stage). However, there are 

some great differences between the two processes. Even though an individual may acquire a 

new motor skill while repeatedly performing the exact same sequence of movements, one has 
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only explored, developed and implemented a method that is ideal for this specific condition, 

and is thus very context-dependent. Studies have shown that performance of tasks involving 

MSL is affected by context-dependent information, with impairment of performance when new, 

conflicting information was introduced while executing the task (Ruitenberg, de Kleine, van 

der Lubbe, & Verwey, 2012). Moreover, repeating the same sequence of movements mainly 

achieves great automation of the spatial configuration involved in the execution of a specific 

task, which may not be challenging enough to provoke higher cognitive processes such as active 

searching and problem-solving. Through the repetition of the same sequence, individuals do 

not form diverse representations in memory required for holistic skill acquisition (Schmidt, 

1975), but rather involve storing specific patterns of movement. Skill acquisition in MSL is 

thus rather contextualised, and non-transferable.   

1.2.3. A framework for general motor learning 

We now develop a model for the process of general motor learning to connect all 

aforementioned notions under a concise framework. The model comprises two components: 

holistic skill acquisition and MSL. The former entails strategies that are developed and 

employed for the execution of a task, and makes great use of the cognitive processor, while the 

latter depends on the spatial configuration that is acquired through the repetition of the same 

sequence, and works almost independently of the cognitive processor (Verwey et al., 2010, 

2013). Depending on the extent to which a task includes repetition of the same sequence of 

movements, learning process has a relatively high or low proportion of MSL and holistic skill 

acquisition. For example, if a task involves the pure repetition of sequences, then MSL 

comprises most of the learning process with little practice of holistic acquisition of skills.  

1.4. Aim of the study  

1.4.1. Proportion of MSL to general motor learning 

From the above, one can understand that if training task involves practicing MSL, then the 

learning process lacks a holistic acquisition of skills that would stimulate automation and 

successful transfer to real surgery. Thus, a task that promotes MSL could lead to improved 

performance in training, that would, however, not be representative of an individual’s actual 
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capabilities under the varied and demanding conditions of real surgery. The exact role of MSL 

in task performance is not known, and therefore our aim is to explore and estimate the 

proportion of MSL to the general motor learning process involved in mastering a new task.  

No experimental paradigm so far allows the computation of such a proportion while the learner 

is actively practicing a novel complex task. In this paper, we propose a paradigm for such an 

analysis, which we name varied-fixed learning paradigm1 (VFL), and is  based on the 

aforementioned notion that a task can promote either holistic skill acquisition or MSL, 

depending on its variability. The paradigm entails the manipulation of a task’s requirement for 

either a varied or a repetitive set of movements for its execution, thus allowing us to capture 

the learning component that comprises each part: holistic skill acquisition and MSL. It thus 

enables the computation of MSL’s proportion and unveils its role on task performance. The 

paradigm is modelled on individual learning curves for analysis. Details of the statistical model 

used are introduced in paragraph 2.4. Data analysis of the Method section. 

To test our paradigm, we use low-fidelity dexterity tasks that initially include a varied, and then 

a fixed part with respect to the set of movements required for execution. Dexterity tasks were 

chosen because they involve practicing complex fine motor procedures and thus provide a 

promising framework for exploring the proportion of MSL to general motor learning while an 

individual executes the complex task. Also, by assessing such tasks, one can capture the entire 

time it takes for that task to be mastered, which is vital since learning is a continuous time-

invested procedure, and the learning process of laparoscopic surgery should be investigated as 

such. 

1.4.2. Dexterity tasks as psychometric tools 

Even though this is not our main goal, and as long as our study allows us to, we also attempt to 

provide some insights on the possibility that such tasks could be used as psychometric tools for 

the assessment of laparoscopic surgeons, since their nature allows the exploration of the 

                                                 
1 The name varied-fixed learning paradigm derives from the paradigm’s nature, which consists of two parts. The 

first part includes a set of trials, with each trial requiring a varied set of movements for execution, while the second 

includes a fixed set of trials, all requiring the same repetitive movements for execution.   
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continuous learning time, instead of focusing on a specific time period as done with cognitive 

abilities (Groenier et al., 2014). A decomposition of one’s cognitive aptitude into sub-

categories, as done so far when testing cognitive aptitude, may not capture the emerging 

abilities that couple their combined use. Since cognitive aptitude tests have not always been 

successful in predicting performance (Groenier et al., 2014; Huijser, 2015), dexterity tasks 

could be determined as a better psychometric tool. 

2. Methods 

2.1. Participants 

A sample of 21 participants, with a mean age of 23.6, (SD=2.73, range 20 to 29) were recruited. 

Of them, 11 were male and 10 female. Handedness differed, with 18 being right handed and 3 

left handed. All participants were university students of various degrees (Degree specialisation: 

2 architecture, 4 engineering, 7 social sciences, 8 other). 

2.2. Materials 

Two tasks were devised for the current study, as described below. Both tasks were made to 

address fine motor skills, such as pinch prehension and finger flexion, as well as cognitive and 

visual-perceptual skills, such as alternating and sustained attention, spatial awareness and 

orientation, and hand-eye coordination. Laparoscopic challenges such as the fulcrum effect2 

were taken into account for the construction of the tasks. 

2.2.1. Mirror-drawing task 

An asymmetrical frame outline extracted from Arendt’s (2017) ‘mirror-drawing’ task, (p. 21) 

was printed on an A4 piece of paper. The outline of each frame was black, and consisted of two 

lines with 5mm distance between them. Its mirrored outline was also printed on another Α4 

                                                 
2
 The fulcrum effect refers to the direction of motion, which is depicted on the monitor through which a surgeon 

views the operating environment, as being opposite to the surgeon’s horizontal and vertical hand movement 

(Gallagher, McClure, McGuigan, Ritchie, & Sheehy, 1998). For example, a left-side movement in a true operating 

environment is projected as a right-side one on the screen. This may cause dissonance between what the surgeon 

does and what he or she sees, and thus require counter-intuitive movements, making hand-eye coordination more 

challenging and complex. 
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piece of paper. One paper was placed on a tabletop, and reflected on a 30x30 cm mirror that 

arranged to stand right opposite the chair where the participant would sit. A white surface 

standing 10 cm higher than the paper was used to block the direct vertical view of the paper 

from the participant, while allowing the hand to draw on the paper, and the reflected image on 

the mirror to be visible to the participant.  For an illustration see figure 2. 

 

Figure 2. Illustration of the mirror-drawing task. A4 paper with printed frame outline on table. Sheet 

covering direct view. Mirror opposite participant, reflecting the outline.  

 

2.2.2. Clips-and-string task 

29 cable clips were nailed onto a cardboard base of dimensions 26x26cm. Their positioning 

formed two paths (of 19 clips each) with 7 changes of direction each, and a distance of 3 cm 

from one clip to its neighbour clips. The paths overlapped but mirrored the other, with one 

being outlined using a blue, and one using a red marker. 2 cubed boxes (dimensions 6x6x10cm 

and 7x7x7cm) were made to be placed on two positions on the cardboard. These boxes 

constituted obstacles that forced the participant to use different hand movements to reach each 

clip. A string of 50cm length was also provided. The tip of the string was burnt and glued to 
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create a strong tip that would be passed through the clips more easily. For an illustration see 

figure 3.  

 

Figure 3. Clips-and-string task. Clips nailed on a cardboard paper, with two differently-coloured paths 

outlined. Boxes act as obstacles to respective paths. Tweezers and string provided next to apparatus.  

 

2.2.4. Measures and other materials 

An informed consent was created to be signed by the participants, stating the conditions of the 

study and the participant's rights (see Appendix A). Two different set of instructions were 

written, one for each task (see Appendix B). Also, an excel file was used as an observational 

form for the experimenter to note the results of the study, as well as any observations 

throughout, such as motivation level, questions asked, major errors noted, and disruptions. 

Other materials included a stopwatch.  
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2.3. Design 

A repeated measures design was used for the study, in which all participants carried out all 

tasks. Each task was developed to accommodate two separate set of trials, in accordance to the 

VFL paradigm. More specifically, the first set included a variation in the sequence of 

movements the participant had to execute, which was achieved through the rotation of the 

apparatus after the completion of each trial. The varied movements prohibited MSL from 

playing a role in the learning process, and therefore the part was assumed to capture the process 

of holistic skill acquisition. The second part of the tasks included the repetition of the same 

sequence of movements, now entailing MSL. This part captured the learning process that 

contained both the skill mastered though holistic skill acquisition, and MSL. Thus, the 

subtraction of the holistic skill acquisition component from the learning process that entail MSL 

would produce the pure effect of MSL. 

 

2.4. Procedure 

One participant was brought in and sat in front of a table. The experimenter handed the consent 

form, and read out the instructions of first task that the participant was going to complete. Every 

participant had to undergo the two tasks the one after the other, but the sequence in which they 

were completed differed across participants, to ensure there were no order effects. Every task 

began after any questions were answered and the participant stated that he or she was ready to 

begin. The two tasks consisted of 26 trials, and each trial was timed (starting the moment the 

experimented said “go” and stopping as soon as the participant said “done”). The time was 

noted on the observational form by the experimenter after each trial, along with other 

observations. A reminder on the trials left was announced by the experimenter halfway through 

the task, and then again two trials before the final one, to maintain participant motivation. 

2.3.1. Mirror-drawing 

Using a pencil, the participant had to trace the outline provided, by drawing in-between its two 

lines, while looking at the mirror instead of looking directly at the paper. This was done to 

capture the fulcrum effect of laparoscopy, along with other cognitive and ergonomic demands. 
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The task consisted of two parts, the first one having 16 trials and the second 10. In the first part, 

the experimenter placed one frame outline on the table, which was rotated 45o before the 

beginning of every new trial, until the frame completed a rotation of 360o. Then its mirrored 

frame was presented and rotated again 45o before the beginning of every new trial, until a 360o 

was again completed. The sequence the frames were presented differed between participants to 

control for order effects. Once the first part was completed, the last frame rotation was kept on 

the table, and a vertical line was noted on one part of the frame. This line was used as the start 

line, and the participant had to continuously trace the same frame for 10 more trials to complete 

the second part. The experimenter had to pay attention on when the participant passed the start 

line, to split the seconds in the stopwatch accordingly.     

2.3.2. Clips-and-string  

In this task, which was also composed of two parts, the participant was instructed to pass the 

string through the clips using two tweezers (one in each hand). In the first part, the participant 

had follow one path till the end. After the completion of each trial, the experimenter removed 

the string from the clips, and rotated the cardboard 45o. The positioning of the boxes was 

changed to their respective mirrored positions, and the participant was instructed to follow the 

other path. The same procedure followed, with the experimenter rotating the cardboard 45o, 

until 16 trials were completed. For the second part, the cardboard was kept in the same position, 

and the participant had to pass the string through the clips for another 10 trials, following the 

same path every time. 

2.4. Data analysis 

A non-linear mixed effects model with an exponential two-part learning curve as a likelihood 

function was used to run the regression analysis and estimate each individual learning curve. 

The exponential model of learning, which we called ARARY3, formed a two-part learning 

curve that models the two experimental phases of the tasks: holistic skill acquisition, and 

general motor learning (for illustration, see figure 4). The first part of the learning curve models 

                                                 
3
 The term ARARY derives from the initials of all five parameters captured in the model, those being amplitude 

(A), rate (R), and asymptote (Y). Deconstruction of the model, and explanation of each parameter are provided in 

paragraph 2.4.1. Statistical model for analysis 
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Time-on-Task (ToT) when the task’s trials varied, while the second part models the one where 

the trials were repetitive, thus initially capturing the holistic skill acquisition process isolated 

from MSL, and the combined processes later on. The random component was captured using 

the Gamma distribution, since the distribution of learning curves is left-skewed and variance 

decreases as approaching the asymptote, thus the use of a normal distribution would produce a 

strong bias. 

2.4.1. Statistical Model and analysis 

Our model considered three aspects of learning: amount of learning within the study (amplitude, 

δ), learning speed (rate, ρ), and maximum learning capacity (asymptote, ω). These aspects make 

up a exponential function for learning curves that is preferred to power functions frequently 

used in the past (Heathcote, Brown, & Mewhort, 2000). Since it was a two-part model, the 

overall structure consisted of five parameters based on these learning aspects, that determined 

each individual two-part learning curve: δS, δM, ρS, ρM, ω. The number of trial repetition per 

component tS and tM is also modeled. Thus, the performance over trials (ToT) is represented in 

the following formula: 

performance = 𝜔 + 𝛿𝑆𝑒
−𝜌𝑆𝑡𝑆 + 𝛿𝑀𝑒

−𝜌𝑀𝑡𝑀 

 

Regression analysis was performed using the package brsm 2.1 (Brunckner, 2017), and the 

non-linear functions were built using the dedicated library from the package asymptote 

(Schmettow, 2017). Population-level effects were estimated for analysis. 

Our analysis focused on the two amplitudes within each task, assuming that any difference in 

the ratio δS to δM would reflect the pure effect of MSL. Population-level parameters were drawn 

from the posterior distribution of the model, and prediction intervals were estimated. Then we 

created an ARARY model whose parameters were linearized, running on a log-scale ranging 

from -∞ to +∞, in order to successfully capture random effects, revealing the variance caused 

due to individual differences. Those were extracted from the random component of the posterior 

using the bayr 0.8.5 package (Schmettow, 2017), thus enabling the investigation of 

participant-level variation. Intercept random effects were used to capture the general variation 

in MSL proportion between participants, while the coefficients of slope random effects were 
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used to assess the generalisability of this proportion. Strong dispersion in effects would reveal 

stronger variation in the proportion of each individual’s MSL, making the average MSL 

proportion less generalizable.  

Then, pairwise correlations between task learning curves, along with their estimated 95% 

credibility intervals were calculated, to examine the internal consistency of such tasks, and 

explore the possibility of their use as psychometric tests. 

 

 

Figure 4. Exponential two-part learning curve model (ARARY). Trials and mapped on the x-axis and 

ToT is mapped on the y-axis. The two-part learning curve models holistic skill acquisition on the first 

part, and general motor learning on the second, considering amplitude δS and δM, rate ρS and ρM, and 

asymptote ω. 

 

3. Results 

The results of the analysis performed are presented below, in three sub-sections. The first one 

focuses on a within-task analysis, presenting the population-level effects for the learning 

parameters of each task, while the second focuses on an across-task analysis, where pairwise 

correlations between the learning curves of each participant for the two tasks were computed. 

In the final section we criticise our model to determine the robustness of the results. 
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3.1. Population-level effects within tasks 

Population-level effects for the five parameters were drawn from the posterior distribution. All 

four parameters and their 95% credibility limits are reported in Table 1. The exact proportion 

of MSL to general motor learning, even though not a parameter in itself on our model, was 

created on the posterior and also presented on the table, at the respective row (labelled MSL) 

for each task. As seen on the table, the proportion of MSL in the mirror-drawing task was almost 

twice as large (0.10; 95% CI [0.04; 0.22]) as the proportion in the clips-and-string task (0.05; 

95% CI [0.00; 0.55]), but uncertainty was high in both. While there is large uncertainty, it is 

fair to suggest that MSL comprises a small proportion of the general motor learning process.  

This is also evident by inspecting the δM to δS  ratio from the amplitude values of each task, as 

presented at the respective rows in table 1. In the mirror-drawing task, the amplitude in the first 

part of the learning curve is approximately eight times larger (δS = 1.81; 95% CI [1.35; 2.39]) 

than this of the second part (δM = 0.21; 95% CI [0.07; 0.46]), with both values being highly 

uncertain. For the clips-and-string task, the difference between the two amplitudes is more than 

twice as large as that of the mirror-drawing, thus yielding a smaller δM to δS ratio. Specifically, 

the amplitude for the holistic skill acquisition part is almost fourteen times larger (δS = 0.95; 

95% CI [0.72; 1.21]) than the general motor learning amplitude (δM = 0.95; 95% CI [0.72; 

1.21]). Large uncertainty seems to exist, with credibility limits deviating more than 0.2. 

Table 1. Population-level effects for amplitudes and rates per task 

Task Parameter centre lower upper 

Mirror-drawing MSL 0.10 0.04 0.22 

 δS 1.81 1.35 2.39 

  δM 0.21 0.07 0.46 

  ρS 0.47 0.35 0.62 

  ρM 0.06 0.02 0.17 

  ω 0.20 0 0.32 

clips-and-string MSL  0.05 0 0.55 

 δS 0.95 0.72 1.21 

  δM 0.05 0 1.17 

  ρS 0.24 0.15 0.42 

  ρM 0.34 0 17.37 

  ω 1.09 0 1.23 

Estimates with 95% credibility limits 
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While the proportion of MSL is based on the two amplitudes within each task, some 

observations on the rates are also worth noting. More specifically, and especially for the mirror-

drawing task, the rate of learning seems to be faster in the first part of the learning curve (ρS = 

0.47; 95% CI [0.35; 0.62]), than the second (ρM = 0.06; 95% CI [0.02; 0.17]), with notable, but 

lower uncertainty than the one observed in amplitudes. This suggests that more trials were 

needed in the second part to reach maximum performance, since improvement in learning was 

rather slow compared to the first part. 

3.2. Participant-level effects within tasks 

3.2.1. Individual learning curves 

All learning curves generated from both tasks are presented in Figures 3, with the x-axis 

displaying the trials, while the y-axis displaying the time-on-task (ToT). Overall, the shape of 

each learning curve seems to differ, stressing the importance to examine individual learning 

curves rather than an average computed from all of them. A visual inspection of the learning 

curves for the two tasks follows. 

In the mirror-drawing task, not much dissemination of data is observed on an individual level. 

For the clips-and-string task, there is higher dissemination of data points within each participant 

learning curve. This might suggest a flaw in the task computed, possibly causing random errors 

in execution.  It should also be noted that there is not visible stabilization to the ToT on the 

second part of the curves, suggesting that the asymptote was not reached. This is an important 

observation, since the amplitude of each learning curve is largely dependent on its asymptote. 

Hence, if the asymptote is not reached, the estimation of the amplitude is rather uncertain. Due 

to the little repetition of trials, it is likely the case that the true asymptote of each learning curve 

was not reached for every individual, which suggests more trials are required to reach maximum 

performance. This suggestion is also supported by the differences in the two rates noted on the 

population-level, reported on table 1. 
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Figure 3. Participant learning Curves (Time-on-Task as a function to task trials) for mirror-drawing (A) 

and clips-and-string task (B). 

 

The difference in rate between the two tasks on a population-level analysis presented in table 

1, is also evident through the visual comparison of the individual curves for the two tasks in 

figure 3. One can see that the learning rate seems to be lower for the mirror-drawing task, 

reflecting a more gradual learning process for the clips-and-string task. This difference in rate 

is in line with the respective calculated population-level effect for rate (see table 1). The 

difference between the first and second component of the model is minimally, to not-at-all 

visible in the individual learning curves.  
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3.2.2. Individual MSL proportions 

Having discussed the population mean of the MSL proportion in paragraph 3.1., we go on to 

investigate whether this mean was representative of all individuals. To capture random effects, 

an ARARY model was created, in which parameters were linearized to run on the same log-

scale ranging from -∞ to +∞, and random effects were extracted from the posterior. A caterpillar 

plot devised using ggplot2 package, plotted participant random effects on the x-axis, ordered 

according to the magnitude of the effect, depicted on the y-axis. The credibility limits were 

displayed using lines for every effect, with larger lines reflecting higher uncertainty on the MSL 

proportion within each individual learning curve.  As can be seen, there is large variation in the 

magnitude of each individual’s MSL proportion with regards to the population mean, which is 

also highly uncertain, especially in the mirror drawing task,. This variation from the population 

mean brings about questionable conclusions concerning the generalizability of MSL 

proportion. Also, the high uncertainty of the random effects highlights the need for more 

exhaustive research, since current results are too uncertain to suggest final conclusions. 

   

Figure 4. Participant-level random effects for MSL proportion of all participants in mirror-drawing (A) 

and clips-and-string task (B), plotted according to magnitude of effect, from lowest to highest effect 

size. Reference line (popul_avegage) is the population mean MSL for each task.  
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3.2. Correlation of learning parameters across tasks 

An across-task analysis was computed using pairwise correlations to estimate population-level 

effects for the two amplitudes (δS, δM) and rates (ρS, ρM). Results are reported in Table 2. A 

weak positive correlation was found between the asymptotes of the two tasks (r = 0.32), but 

even this has high uncertainty (95% CI [-0.84; 0.97]). This correlation can only suggest the 

possibility that dexterity tasks could be used as psychometric tests, but no further conclusion 

can be drawn.    

Table 2. Pairwise correlations of population-level parameters 

Task  Clips-and-string 

Mirror-drawing δS -0.03 [-0.53; 0.49] 

 δM  0.13 [-0.93; 0.91] 

 ρS -0.06 [-0.76; 0.69] 

 ρM -0.02 [-0.95; 0.95] 

 ω  0.32 [-0.84; 0.97] 

Estimates with 95% credibility limits  

3.3. Model criticism 

After checking the prediction intervals (25%, 50% and 75% quartiles) to ensure the certainty 

of the posterior prediction, it seems that most observations fall within the predicted range. 

However, it is worth mentioning that there are certain outliers observed, particularly with 

regards to those falling below our predicted range, that could reflect the effects of difficulty in 

task variation. Residual plots show large variation, which is expected since the learning curve 

of each participant had a different shape.  

The prediction intervals and residual plots can be found in appendix C, for further examination.   

 

4. Discussion 

The aim of the current paper was to investigate the extent to which MSL is involved in the 

general motor learning process of dexterity tasks. For the investigation, an innovative paradigm 

was employed, named varied-fixed learning (VFL) paradigm, and modelled using a novel 

approach to the analysis of learning curves. Findings suggested that the proportion of MSL to 
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general motor learning is present but not very pronounced, while estimates were highly 

uncertain. The presence of MSL, even though small, implies that variability in laparoscopic 

training tasks is essential, since promotion of MSL through repetitive tasks might lead to better 

performance that is however not representative of transferable skills. Variability will ensure 

that skills mastered in training are transferable to real settings. However, the large uncertainty 

in the proportion of MSL calls for further, more exhaustive investigation to attain more certain 

results and derive to conclusive arguments with regards to the extent of variation needed. After 

an initial scan through our findings, our discussion focuses on the limitations of the current 

study, in an attempt to investigate the possible reasons behind the uncertain findings. Based on 

these limitations, we proceed to the provision of guidelines for adjustments that need to take 

place so that future research can move towards an optimised way of exploring MSL and its role 

when mastering a new complex procedure. Finally, we discuss the feasibility and implications 

of the proposed paradigm and approach to analysis in the field of applied research.  

4.1. Exploration of current findings 

The component of MSL was rather low, since its addition to holistic skill acquisition offered 

minimal extra advance in performance. However, since this research constituted only a pilot 

exploratory investigation regarding the feasibility of this novel way to analysis and, as 

mentioned, findings were uncertain, it would be naive to make decisive conclusions on the exact 

proportion of MSL from this research alone. Before the examination of experimental 

weaknesses that might have caused uncertainty in the results, we first focus on some 

observations of the current findings that are rather noteworthy and could inform future research. 

4.1.1. Difference in MSL proportion across tasks  

An interesting remark is the difference in MSL proportion between the two tasks. More 

specifically, when comparing MSL across tasks, one can see that its proportion, while small in 

both, was almost twice as large on the mirror-drawing compared to the clips-and-string task. 

This implies dependency of MSL on the nature of the task, either in terms of complexity, or 

cognitive versus motor effort required for task execution. For example, the mirror-drawing task 

required much more perceptual effort, due to the fulcrum effect created from the reflection of 

the participant’s movements on the mirror. However, other than the advanced need for effortful 
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hand-eye coordination due to the perceived inversion of movement, motor requirements on that 

task were not as demanding, since participants knew how to operate a pencil. On the other hand, 

the clips-and-string task required much more motor effort, since participants had to learn how 

to handle the tweezers and carefully pass the string through small clips. Cognitive effort was 

not as demanding as in the mirror-drawing task, since no recreation of the environment was 

needed.  

Trying to further inspect the dependence of MSL on task nature, a more elaborate glance on 

majority of paradigms used in previous MSL studies provide further insights. For example, 

types of apparatus used in such studies, such as the discrete sequence production task (DSP; 

Abrahamse et al., 2013), the m x n task (Hikosaka, Rand, Miyachi, & Miyashita, 1995) or the 

serial reaction time task (SRT; Nissen & Bullemer, 1978), include small repetitive sequences 

of movements, that are timed closely to each other and do not diverge in movement required 

for execution. Moreover, authors like Sakai, Hikosaka, and Nakamura (2004), have stressed 

that not only the serial order of a sequence, but also the timing of movement, referred to as 

rhythm, is determinant of a sequential performance, and this rhythm reflects the underlying 

chunking process.  

Bridging these remarks to our findings, the mirror drawing task favoured continuity much more 

that the clips-and-string task, since in the latter, movement was occasionally interrupted by 

confounding obstacles.  For example, it was a frequent observation throughout the experiment 

that the string tangled to clips, and participants had to stop to untangle the string and then 

continue carrying out the task. This might have impeded the potential for motor chunking of 

sequences, since conflicting stimuli interrupted the sequence at varying points, preventing the 

sequence to acquire a patterned serial order or timing.  

This suggests that the context-dependency of MSL largely lies on the continuous nature with 

regards to the flow of movements required for their execution, that should also be in close 

temporal proximity to promote sequential chunking. Such an observation is important in 

informing future simulator tasks, in terms of how continuous and complex they should be.  
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4.1.2. Difference in MSL proportion across participants 

Another insight is provided from differences in MSL proportions across participants. 

Examination of random effects suggested that there is dispersion of this proportion across 

individuals, meaning that the population mean of MSL is not as generalizable to everyone, with 

many individuals diverging from the mean. Specifically, while MSL is promoted via the 

repetition of the same movements, the extent to which individuals acquire learning of specific 

motor sequences it is not only task-dependent, but also depends on individual differences.  

This assertion warns researchers to proceed with caution in future simulator tasks design, since 

there is a chance of biased performance depending on the variability of individuals’ competence 

in acquiring MSL. For example, if a laparoscopic task were to be highly repetitive, then a biased 

increase in performance would be present in individuals with high MSL, that would, however, 

not reflect their true potential for general motor learning. In other words, individuals with high 

proportion of MSL would show better performance in repetitive simulator tasks than under 

realistic, diverse conditions. The chance of such an optimistic bias in learning during training 

needs to be minimized.  

Our estimations of random effects were highly uncertain, but the important insights they 

provide deem necessary a more exhaustive investigation of random effects in future replications 

of the study, to get more certain estimates. The root of the current uncertainty, and necessary 

steps for acquisition of more certain results are explored in paragraph 4.2. Study limitations and 

amendments for future replications of the discussion section. Given that future replications 

yield certain random effects that still reveal a great variation in participant-level MSL 

proportion, researchers could dive into exploring the possible, more theoretically-based 

explanations to such a variation.   

4.1.3. Task correlation 

Concerning findings on the psychometric use of dexterity tasks, weak links for internal 

consistency were found in participants’ maximum performance, which were also highly 

uncertain, suggesting poor reliability between low-fidelity dexterity tasks. This low correlation 

between the two tasks could be attributed to the earlier discussed differences in task-nature and 

cognitive-motor demands between the two tasks. More research is required for more certain 
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findings, though their potential for psychometric testing is increasingly doubted, since past 

research has also found highly uncertain weak links (Arendt, 2017; Kaschub, 2016).  

4.2. Study limitations and amendments for future replications 

Having examined our findings, we now inspect in more detail the experimental paradigm used 

and the flaws of our pilot study, which possibly account for the high uncertainty in findings. 

Weaknesses discussed form the basis of our guidelines for better study replications in future 

research. 

The thorough investigation of individual learning curves reported in the results section, showed 

that the rate of learning from the varied part of our experimental paradigm was almost seven 

times as fast as that of the fixed part on the mirror-drawing task. This implies that MSL could 

possibly bring further advance in performance than those noted in our study, but this was not 

detected within the limited number of trials since maximum performance was possibly not 

reached. Also, some dissemination on the time taken to complete each trial was noted, 

especially in the clips-and-string task. One can conclude, then, that the parameters of each 

learning curve are rather uncertain. For example, inability to reach maximum performance 

(parameter asymptote) could have led to uncertainty in the amplitude and rate parameters as 

well, since those are highly interconnected within our model. Large dissemination could also 

lead to less accurate rate estimation, which would in turn affect the amplitude parameter’s 

certainty. It is thus important that data collection enables a recording of time-on-task that is as 

accurate as possible. Below are some key alterations that are believed to bring about 

improvements to the results’ robustness.     

4.2.1. Increased number of trials 

To estimate the MSL proportion with sufficient certainty, it is important that researchers in 

future replications record a longer series of fixed trials in both experimental conditions. 

Increased number of trials will ensure a stable asymptote to one’s learning curve, that in turn 

affects the certainty of amplitude and rate parameters, and will therefore yield greater certainty 

in the results. Considering that the rate of the second part of the mirror-drawing task was almost 

seven times slower than that of the first part, one would need to include approximately seven 
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times as much trials in the second part of the task. However, such an excessive number of trials 

would most likely generate participant fatigue, depriving them of further advance in 

performance. Given that the rate estimates are uncertain, and thus the difference between the 

two rates could be smaller, we suggest a number of trials that would lay to approximately 20 

trials for the first and 30 trials for the second part, to prohibit fatigue and ensure some stability 

in the asymptote. In case researchers wish to include more trials, introduction of spaced-practice 

is a possibility, which has also been correlated to advanced motor skill acquisition (Kwon, 

Kwon, & Lee, 2015; Schreuder, Wolswijk, Zweemer, Schijven, & Verheijen 2011). 

Researchers could also consider including a second set of fixed trials in each task. In this way, 

one can also derive correlations between the rate patterns of learning within the learning curve 

of each participant, and get more robust results with regards to this learning parameter.  

4.2.2. Configuration difficulty as a random effect 

Researchers should also pay great attention to the configurations of the dexterity tasks 

employed. In the mirror-drawing task, noise in data was minimal, reflecting a similar difficulty 

level across varied trials.  However, there was high noise in the data generated from the clips-

and-string task, which might suggest that some configurations of the apparatus were more 

challenging, while other were easier to execute. This is also supported by certain data outliers 

in some learning curves with regards to the Time on Task (ToT), where some trials of highly 

increased performance lied in-between normal-performance trials. An observation attributed to 

the fact that certain configurations favoured performance. Therefore, experimenters in future 

replications should have a defined set of configurations with varied difficulty. Having them 

identified in the data set would allow configurations to be considered a non-human population 

that could also be extracted as a random effect from the random component of the posterior 

analysis, and provide one with more robust results, by factoring out variance due to difficulty 

in configuration.   

4.2.3. Continuous flow of movement, and smaller movement sequences in tasks 

As discussed earlier, the clips-and-string task did not favour continuity, since obstacles 

frequency interrupted movement. Knowing that movement rhythm, formed by the repetitive 

serial order and tied timing of moves (Sakai, Hikosaka, & Nakamura, 2004), promotes MSL, 
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future replications could create an alternative to this task. Promotion of MSL would be more 

certain in a task that enables the uninterrupted execution of motor sequences. For example, 

instead of passing a string through clips, nails with heads could be used, to allow participants 

to pass the string by nails instead of through them. Also, a smaller, less scrambled path would 

ensure the non-tangling on the string. 

4.2.4. Smaller movement sequences  

Related to the above, tasks used should also ensure that movement sequences are small enough 

to allow chunking. Since chunking is directly related to working memory (Seidler, Bo, & 

Anguera, 2012), which is known for its limited capacity ranging somewhere between five to 

seven items (Miller, 1956; Cowan, 2001), movement sequences should not be very demanding. 

The study of Pinzon et al (2016), whose apparatus closely resemblance our tasks in term of the 

flow of movement required, found that continuous sequences larger than seven turns in 

reactions (thus with more than seven items to be processed in working memory), were not as 

successful in following replications. A future apparatus could form a smaller path, or a path 

whose rhythm is clearly divided in parts.  

 

4.3. Model feasibility and implications 

Due to the exploratory nature of the study, findings might not have attained a more concrete 

answer on the exact proportion of MSL to the general motor learning process, they did however 

pave the way towards a novel approach to the investigation of learning processes, such as MSL, 

under a more naturalistic experimental paradigm. Unlike the research that has been conducted 

so far on MSL, which has been focusing on standardized key-pressing tasks that involve 

minimal exposure to novel skills (e.g. Abrahamse et al., 2013; Hikosaka et al., 1995; Nissen & 

Bullemer, 1978), our varied-fixed learning (VFL) paradigm offers researchers the opportunity 

to investigate MSL throughout the observation of an individual's entire learning process of 

mastering a complex motor procedure. As seen in the resemblance spectrum, this holistic 

investigation of learning offers the opportunity to conduct research that moves beyond the 

laboratory, into applied settings, and generates more representative outcomes than other, 

simplified test suites.   
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While the study conducted here focused on a within-subject analysis using a repeated measures 

design, our paradigm and model of analysis enables comparisons across-subjects as well, that 

can be used for research in other applied disciplines. For example, our model could be used to 

investigate age differences in MSL proportion. The increasing number of elderly people have 

turned recent research towards the investigations of elderly’s ability to acquire new motor skills 

that are necessary for their independent living. Studies have already found differences in 

chunking between younger and older adults (e.g. Barnhoorn, van Asseldonk, & Verwey, 2017), 

yet those are still conducted using simplified laboratory conditions like the DSP task. Having 

identified the advantages of tasks that are closer to real life activities, researchers could use the 

VFP paradigm to compare aging differences in MSL proportion, while executing a dexterity 

task like tying one’s shoelaces. The comparison could be performed in the age group of young 

adults (20 to 30 years old) where cognitive abilities peak, and older adults, ranging from 60 to 

70 years of age, since 65 is considered the mean age for cognitive abilities decline, especially 

in situations where cognition interacts with motor control (see Li & Lindenberger, 2002 for a 

review).  

We also encourage researchers to follow our proposed analysis of learning curves, since it is an 

exponential model that does not depend on averages across individuals. Other authors have 

already discussed the limitations of learning curves using power functions (Heathcote, et al., 

2000), mainly concerning the great variability that exists across the learning parameters of each 

individual, favouring against conclusions based on averages. Our exponential model enables 

one to investigate learning curves at a population level but also at an individual one, offering 

greater insights into everyone’s learning process, and enabling researchers to make suggestions 

for improved designs that also consider individual differences. For example, individual learning 

curves could inform personalised training procedures, which have been suggested as a time-

efficient and cost-effective approach to training (Ahmed, Abid, & Bhatti, 2016), by assessing 

individual trainee needs and enabling an individual-tailored training process. 

The ARARY model should also be preferred over other statistical models for investigation of 

learning curves, since it can be adjusted to include more parameters, and be used in other 

research around learning, besides MSL. For example, it can be expanded to a three-part 

ARARARY learning curve, to assess the different behaviours of learning as defined by 

Rasmussen (1983). A proposition for future research could be to assess participants during 
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performance on a complex simulator task, and investigate individual differences that would 

offer more insights on the need for proper surgeon assessment. Such a task would need to 

include three different phases. The first one should require referral to instructions for the 

participant to carry out the task, including enough trials to automate the action and stop referring 

to instructions. This part would capture rule-based behaviour. The task could later go on to be 

repeated, capturing the skill-based behaviour, until an unexpected situation would be presented. 

The participant would then need to use abstract knowledge to complete the task, exercising 

knowledge-based behaviour. The learning parameters amplitude, rate, and asymptote would be 

captured in every part of the simulator task, for assessment of individual differences in learning 

curves using our model. Large individual difference could imply the necessity for good surgeon 

assessment or more adaptive training.  

As can be understood, the analysis of learning proposed in the present paper offers a promising 

alternative to research in applied settings. The proposed amendments should be viewed as 

guidelines, so that future replications could move towards more certain results, that could be 

generalised to laparoscopic and other fields.  

 

5. Conclusions 

Findings and observations of the current research suggest that MSL plays a small, yet important 

role in learning, since improvements in performance are noted after the promotion of specific 

movement sequence automation. MSL seems to be rather contextualised, meaning that certain 

aspects regarding movement order and rhythm need to be present for a task to promote sequence 

learning. Therefore, experts should proceed with caution in developing sufficiently varied 

simulator tasks, that can ensure a holistic skill acquisition. Some remarks of the current research 

also suggest the possibility for individual differences with regards to one’s ability in acquiring 

MSL, which however needs further investigation. It would be hasty to make more explicit 

suggestions for laparoscopic task variation or individual differences based solely on this 

research, yet the guidelines suggested in the discussion could generate more precise estimates.  

The present research has made some important breakthroughs in research around learning. The 

introduction of a different approach to investigation of learning poses a development that could 

revolutionise research in applied domains. Specifically, implementation of the VFL paradigm 
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enabled research around motor learning to be conducted in more naturalistic settings, while 

individuals practice complex motor procedures, instead of limiting investigations to simplified 

laboratory tasks. Further, our research supported the feasibility of investigating learning curves 

using the ARARY model, which shows great potential for future assessment procedures 

regarding learning parameters involved in simulator training. It also allows the consideration 

of individual variations in the parameters comprising learning, thus enabling more thorough 

investigation of individual differences. Finally, the introduced concise conceptual framework 

of how MSL can be involved in general motor learning depending on task nature, and how it 

differs from holistic skill acquisition, offers sound groundwork for future developments in 

learning research.  
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Appendix A  

Consent Form  

This study is part of the Master thesis of Lida Z. David, student at the University of Twente. 

The study consists of two dexterity tasks (= fine motor activities that require good finger and 

hand to coordination), of 26 brief trials each.  

The goal of the study is to explore the extent to which motor sequence learning is involved in 

learning a task. Simply put, we are trying to see if, after you learn how to perform a task, 

repeating the same sequences of movement will increase your performance further. This study 

is a piece of the puzzle that will help make training for laparoscopic surgery better. 

(Laparoscopic surgery is a type of surgery done through one or more small incisions, using 

small surgical instruments to operate. A tiny camera is inserted from one of the incisions and 

projects the area of interest to a flat screen).  

The data recorded will be anonymous, so nobody will know your performance. You have the 

right to withdraw at any moment during the study. By signing below you agree that: 

You are 18+  

You understand the privacy of your data 

You understand you have the right to withdraw  

 

Before signing, please state the details asked below (these will be used only for demographic 

reasons and will not be crossed with your data scores): 

 

Name: ……………………………………. 

Age: …………. 

Handedness (left-handed/right handed/ambidextrous): …………………………… 

Occupation: …………………………………. 

 

Signature: 
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Appendix B 

Instructions for each task 

1. Mirror-drawing Instructions  

The task you are about to perform is called “Mirror-drawing”. It consists of 2 parts, the first 

consisting of 16 trials, and the second 10. The goal is to to trace the frame presented to you in 

the box (point at frame), by looking at the mirror’s reflection instead of the paper. You have to 

use the pen provided (point at pencil), and draw in between the two black lines of the frame. 

You have to be as quick and as cautious as possible. Your performance will be timed. As soon 

as you are done, you have to state “done!”, so I can stop the timer and note your time. For the 

first part, I will change the positioning of the paper. I will remind you how many trials are left 

on the 10th and 14th trial. In the second part you’ll have to do the exact same thing for another 

10 trials, only this time I will keep the same frame in front of you. You will start from this point 

(show point) and trace the outline continuously for all ten trials. Don’t worry for shouting done, 

I will watch you and keep count. I will again remind you how many trials are left on the 6th. If 

you have any questions, ask me now or in-between the trials, during the moments you are not 

being timed. Do you have any questions? (answer questions). Please tell what you have to do, 

so we make sure you understand.  

 

Are you ready to begin? 

 

Go. 
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2. Clips-and-string Instructions 

This task is called “clips-and-string”. It consists of two parts, 16 trials each. The goal is to pass 

this string (point at string) through the clips (point at clips) of either the red or blue path,  using 

these two tweezers (point at tweezers). I will tell you each time which path you have to follow. 

You have make your way around the boxes, and have to be as quick and as cautious as possible. 

Your performance will be timed. As soon as you are done, you have to state “done!”, so I can 

stop the timer and note your time. Then, I will change the position of the cardboard the same 

procedure will be repeated, until you complete the task 16 times. I will remind you how many 

trials are left on the 10th and 14th trial. This will be part 1. For part 2, you will have to do 

exactly the same for another 10 trials, only this time the the cardboard will remain still, and you 

will have to follow the same path for all 10 trails.. I will again remind you how many trials are 

left on the 6th trial. If you have any questions, ask me now or in-between the trials, during the 

moments you are not being timed. Do you have any questions? (answer questions). Please tell 

what you have to do, so we make sure you understand.  

 

Are you ready to begin? 

 

Go. 
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Appendix C 

Syntax used in R  

Data analysis protocol Lida David 
Martin Schmettow 
1 March 2018 

 

Reading in data 

LD_18 <- 
  readxl::read_excel("Data Thesis.xlsx") %>%  
  mutate(trial = as.integer(trial -1)) %>%  
  rename(trialS = trial) %>%  
  mutate(Condition = ifelse(Condition == 1, "varied", "fixed"), 
         trialM = ifelse(Condition == "fixed", trialS - 16, 0), 
         Part = as.factor(Part)) %>%  
  gather(key = Task, value = ToT, Clips, Drawing) %>%  
  mutate(Obs = row_number()) %>%  
  select(Obs, Part, Task, Condition, trialS, trialM, ToT) 
   
   
ToT <-  
  str_split_fixed(LD_18$ToT, "\\:", 3) %>%  
  as_data_frame() %>%  
  mutate(minutes = as.numeric(V2) + as.numeric(V3)/60) 
 
LD_18$ToT <- ToT$minutes   
 
LD_18 
 
save(LD_18, file = "LD_18.Rda") 

Exploratory data analysis 

LD_18 %>%  
  ggplot(aes(x = ToT)) + 
  geom_histogram() 

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. 
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LD_18 %>%  
  ggplot(aes(x = trialS, y = ToT)) + 
  geom_smooth(se = F) + 
  geom_vline(xintercept = 16, linetype = 2, col = "red") + 
  facet_wrap(Task ~ Part, scales = "free_y") 

## `geom_smooth()` using method = 'loess' 
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Regression 

We estimate a two-component learning curve in asym-rate-ampl parametrization. 
Performance is composed of two components, that have their own learning trajectory. 
The skill component (SC) contains general coordination and strategy at the task, which 
is independent of spatial configuration. The motor component (MC) depends on the 
spatial configuration and is acquired by repeating the exact same sequence. 

With the number of trials per component, 𝑡𝑆 and 𝑡𝑀, and the learning parameters 
asymptote (maximum performance) 𝜔, rate 𝜌𝑆, 𝜌𝑀 and amplitude 𝛿𝑆, 𝛿𝑀, performance 
(ToT) takes the following form: 

performance = 𝜔 + 𝛿𝑆𝑒
−𝜌𝑆𝑡𝑆 + 𝛿𝑀𝑒

−𝜌𝑀𝑡𝑀 

The following model specifies a separate learning curves per task-by-participants. 
Correlations across tasks are included. The amplitude - rate - asymptote 
parametrization is used, like in the example below: 

set.seed(42) 
 
n_S = 15 
n_M = 20 
n = n_S + n_M 
asym = 0.5 
rateS = 0.4 
amplS = 1.5 
rateM = 0.2 
amplM = 0.5 
 
 
 
Part_1 <- 
  data_frame(asym = rep(asym, n),  
             rateS = rep(rateS, n),  
             amplS = rep(amplS, n), 
             rateM = rep(rateM, n), 
             amplM = rep(amplM, n), 
             trialS = 1:n, 
             trialM = c(rep(0, n_S),(1:n_M))) %>%  
  mutate(mu = asymptote::arary(amplS, rateS, amplM, rateM, asym, trialS, t
rialM)) 
 
Part_1  %>% 
  ggplot(aes(x = trialS, y = mu)) + 
  geom_line() 
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The following formulas are used for regression, the nonlinear function is from package 
asymptote. 

lazyeval::f_lhs(ARARY) <- quote(ToT) 
ARARY 

## ToT ~ asym + amplS * exp(-rateS * trialS) + amplM * exp(-rateM *  
##     trialM) 
## <environment: namespace:asymptote> 

F_ef_arary <- list( 
  formula(asym ~ 0 + Task + (0 + Task|corr1|Part)), 
  formula(rateS ~ 0 + Task + (0 + Task|corr2|Part)), 
  formula(amplS ~ 0 + Task + (0 + Task|corr3|Part)), 
  formula(rateM ~ 0 + Task + (0 + Task|corr4|Part)), 
  formula(amplM ~ 0 + Task + (0 + Task|corr5|Part))) 
 
 
 
# measurement scale 
F_pr_arary <- c(set_prior("lognormal(1, 2)", nlpar = "asym", lb = 0), 
                 set_prior("lognormal(1.5, 1)", nlpar = "amplS", lb = 0), 
                 set_prior("beta(1.2, 1.2)", nlpar = "rateS", lb = 0, ub = 
1), 
                 set_prior("lognormal(1.5, 1)", nlpar = "amplM", lb = 0), 
                 set_prior("beta(1.2, 1.2)", nlpar = "rateM", lb = 0, ub = 
1)) 
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F_pr_arary_2 <- c(set_prior("normal(0.5, 10)", nlpar = "asym", lb = 0), 
                 set_prior("normal(1, 10)", nlpar = "amplS", lb = 0), 
                 set_prior("normal(0.5, 10)", nlpar = "rateS", lb = 0), 
                 set_prior("normal(1.5, 10)", nlpar = "amplM", lb = 0), 
                 set_prior("normal(0.5, 10)", nlpar = "rateM", lb = 0)) 
 
 
F_pr_arary_gam <- c(set_prior("lognormal(1, 2)", nlpar = "asym", lb = 0), 
                 set_prior("lognormal(1.5, 1)", nlpar = "amplS", lb = 0), 
                 set_prior("beta(1.2, 1.2)", nlpar = "rateS", lb = 0, ub = 
1), 
                 set_prior("lognormal(1.5, 1)", nlpar = "amplM", lb = 0), 
                 set_prior("beta(1.2, 1.2)", nlpar = "rateM", lb = 0, ub = 
1), 
                 set_prior("cauchy(0, 5)", class = "shape")) 

M_5: ARARY with Gamma random component 

Here we build the model and compile it with just a few chains. 

M_5 <-  
  brm(bf(ARARY,  
         flist = F_ef_arary, nl = TRUE), 
      prior = F_pr_arary_2, 
      family = Gamma(link = identity), 
      data = LD_18, 
      iter = 150, warmup = 120, 
      init = "0") 

Using the compiled model above to run the full chains 

M_5 <-  
    brm(fit = M_5, 
      data = LD_18, 
      iter = 5000, warmup = 3000, 
      init = "0", 
      control = list(adapt_delta = .95)) 
 
M_5 
 
 
P_5 <- posterior(M_5) 
PP_5 <- post_pred(M_5) 
LD_18$M_5 <- predict(M_5)$center 
LD_18$M_5_resid <- LD_18$ToT - LD_18$M_5 
 
save(M_5, P_5, PP_5, file = "M_5.Rda") 
save(LD_18, file = "LD_18.Rda") 
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Results 

load("M_5.Rda") 

T_fixef <- 
  P_5 %>% fixef() 
 
T_fixef 

Estimates with 95% credibility limits 

nonlin fixef center lower upper 

asym TaskClips 1.1577182 1.0291061 1.2638820 

asym TaskDrawing 0.2612140 0.1180004 0.3269353 

rateS TaskClips 0.3220994 0.2141153 0.5059187 

rateS TaskDrawing 0.5377853 0.3907563 0.7115918 

amplS TaskClips 1.0286249 0.7859518 1.3076140 

amplS TaskDrawing 2.0981479 1.5331471 2.6884107 

rateM TaskClips 10.1972400 0.4392050 26.3571275 

rateM TaskDrawing 0.1020007 0.0407116 0.1833435 

amplM TaskClips 0.1054591 0.0395542 0.1794875 

amplM TaskDrawing 0.1866054 0.0900881 0.3412478 

Individual learning curves 

LD_18 %>%  
  filter(Task == "Clips") %>%  
  ggplot(aes(x = trialS, y = ToT)) + 
  geom_point(alpha = .5) + 
  geom_line(aes(y = M_5, color = "M_5")) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_vline(xintercept = 16, linetype = 2, col = "red") + 
  facet_wrap(~ Part, nrow = 7) + 
  ggtitle(list(title = "Predicted values (ARARY/Gamma)", 
               subtitle = "Clips task")) 
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LD_18 %>%  
  filter(Task == "Drawing") %>%  
  ggplot(aes(x = trialS, y = ToT)) + 
  geom_point(alpha = .5) + 
  geom_line(aes(y = M_5, color = "M_5")) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_vline(xintercept = 16, linetype = 2, col = "red") + 
  facet_wrap(~ Part, nrow = 7) + 
  ggtitle(list(title = "Predicted values (ARARY/Gamma)", 
               subtitle = "Drawing task")) 
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Correlation of learning parameters across tasks 

## Extracting correlations from the posterior 
 
P_cor <-  
  P_5 %>%  
  filter(type == "cor") 
 
P_cor_names <-  
  P_cor %>%  
  distinct(parameter) %>%  
  separate(parameter, c("cor", "re_factor", "nonlin", "Task", "nonlin_2", 
"task_2"), remove = F) %>%  
  select(parameter, nonlin) 
 
T_cor <- 
  P_cor %>%  
  select(-nonlin) %>%  
  left_join(P_cor_names, by = "parameter") %>%  
  select(nonlin, value) %>%  
  group_by(nonlin) %>%  
  summarize(center = median(value),  
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) 
 
T_cor %>% kable(digits = 4)  

nonlin center lower upper 

amplM -0.1113 -0.9249 0.8896 

amplS -0.0669 -0.5544 0.4857 

asym 0.4362 -0.3350 0.9278 

rateM -0.0122 -0.9475 0.9527 

rateS -0.0585 -0.8218 0.7646 

Individual-level analysis 

The research question (amount of motor learning) has previously been answered on the 
population level. Due to the multi-level structure of the model, it can also be examined 
on individual level. However, the participant level random effects are differences 
towards the population mean. We compute absolute scores per participant on the 
posterior and summarize them. 

P_5_fixef <-  
  posterior(M_5, type = "fixef") #%>%  
  #filter(nonlin %in% c("amplS", "amplM")) %>%  
  # posterior() 
   
P_5_ranef <-  
  posterior(M_5, type = "ranef")# %>%  
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  #filter(nonlin == "asym") %>%  
  #posterior() 
 
P_5_scores <-  
  left_join(P_5_ranef, P_5_fixef,  
            by = c("model", "chain", "iter", "fixef", "nonlin"),  
            suffix = c("", "_fixef")) 
 
P_5_scores$value = P_5_scores$value + P_5_scores$value_fixef 
 
P_5_scores %>%  
  group_by(fixef, nonlin, re_entity) %>%  
  summarize(center = median(value), 
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) %>%  
  select(Task = fixef, nonlin, Part = re_entity, center, lower,upper) %>%  
  ungroup() %>%  
  sample_n(10) %>%  
  kable() 

Task nonlin Part center lower upper 

TaskDrawing rateS 12 0.9490302 0.6945260 1.2807423 

TaskDrawing rateS 15 0.4238480 0.3215025 0.5753750 

TaskClips asym 6 1.0849301 0.9587774 1.1946560 

TaskDrawing rateM 12 0.0616261 -0.0264168 0.1988777 

TaskDrawing amplS 15 3.8373221 2.9942492 4.9751266 

TaskDrawing amplM 10 0.0128850 -0.1452042 0.1857661 

TaskDrawing asym 12 0.2942147 0.0964226 0.4350132 

TaskClips amplS 15 1.0893530 0.6094646 1.6894599 

TaskDrawing rateS 5 0.5335334 0.3712991 0.7589465 

TaskDrawing amplS 4 1.4910178 1.0897490 2.0628405 

Model criticism 

Predicted values analysis 

We check whether the prediction intervals (25%, 50% and 75% quantiles) cover the 
observations. 

T_PP_5  <- 
  PP_5 %>%  
  group_by(Obs) %>%  
  summarize(lower = quantile(value, .25), 
            center = quantile(value, .50), 
            upper = quantile(value, .75)) %>%  
  right_join(LD_18, by = "Obs") 
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Task: Clips 

T_PP_5 %>%  
  filter(Task == "Clips") %>%  
  ggplot(aes(x = trialS)) + 
  geom_line(aes(y = center)) + 
  geom_ribbon(aes(ymin = lower, ymax = upper), alpha = .3) + 
  geom_point(aes(y = ToT)) + 
  facet_wrap(~ Part, nrow = 7, scales = "free_y") 
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Task: Drawing 
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T_PP_5 %>%  
  filter(Task == "Drawing") %>%  
  ggplot(aes(x = trialS)) + 
  geom_line(aes(y = center)) + 
  geom_ribbon(aes(ymin = lower, ymax = upper), alpha = .3) + 
  geom_point(aes(y = ToT)) + 
  facet_wrap(~ Part, nrow = 7, scales = "free_y") 
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Residuals analysis 

LD_18 %>%  
  filter(Task == "Clips") %>%  
  ggplot() + 
  geom_quantile(aes(x = M_5, y = M_5_resid, col = "M_5"), formula = y ~ x) 
+ 
  facet_wrap(~ Part, scales = "free_y") + 
  ggtitle(list(title = "Residuals by predicted values", 
               subtitle = "Clips task")) 

## Loading required package: SparseM 

##  
## Attaching package: 'SparseM' 

## The following object is masked from 'package:base': 
##  
##     backsolve 
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LD_18 %>%  
  filter(Task == "Drawing") %>%  
  ggplot() + 
  geom_quantile(aes(x = M_5, y = M_5_resid, col = "M_5"), formula = y ~ x) 
+ 
  facet_wrap(~ Part, scales = "free_y") + 
  ggtitle(list(title = "Residuals by predicted values", 
               subtitle = "Drawing task")) 

 

M_6: LARARY/Gamma with linear scaled LC parameters 

The following model is an ARARY model, except that parameters have been linearized 
(L) inside the nonlinear function (exp) to have a range −∞,∞, i.e. all parameters are on a 
log scale. Estimates on scale measurement are obtained by the mean function exp. 

LARARY <- formula( 
  ToT ~ exp(amplS - exp(rateS) * trialS) + exp(amplM - exp(rateM) * trialM
) + exp(asym) 
  ) 
 
F_pr_larary_gam <- c(set_prior("normal(-1, 5)", nlpar = "asym"), 
                 set_prior("normal(0, 10)", nlpar = "amplS"), 
                 set_prior("normal(-1, 2)", nlpar = "rateS"), 
                 set_prior("normal(0, 10)", nlpar = "amplM"), 
                 set_prior("normal(-1, 2)", nlpar = "rateM")) 
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M_6 <-  
  brm(bf(LARARY,  
         flist = F_ef_arary, nl = TRUE), 
      prior = F_pr_larary_gam, 
      family = Gamma(link = identity), 
      data = LD_18, 
      iter = 200, 
      inits = "0") 
 
M_6 <- 
  brm(fit = M_6, 
      iter = 6000, warmup = 4000, 
      control = list(adapt_delta = .95,  
                     max_treedepth = 15), 
      inits = "0") 
 
 
#M_6 
 
 
P_6 <- posterior(M_6) 
PP_6 <- post_pred(M_6) 
LD_18$M_6 <- predict(M_6)$center 
LD_18$M_6_resid <- LD_18$ToT - LD_18$M_6 
 
save(M_6, P_6, PP_6, file = "M_6.Rda") 
save(LD_18, file = "LD_18.Rda") 

Results 

#load("M_6.Rda") 
 
P_6_fixef <-  posterior(M_6, type = "fixef") 
P_6_ranef <-  posterior(M_6, type = "ranef") 

The following estimates are on a log scale. 

fixef(P_6) 

Estimates with 95% credibility limits 

nonlin fixef center lower upper 

asym TaskClips 0.0903742 -6.0264817 0.2038210 

asym TaskDrawing -1.6057879 -11.3528430 -1.1510160 

rateS TaskClips -1.4435217 -1.9117564 -0.8622703 

rateS TaskDrawing -0.7634813 -1.0602916 -0.4811777 

amplS TaskClips -0.0523939 -0.3331043 0.1943617 

amplS TaskDrawing 0.5920581 0.2967064 0.8696491 

rateM TaskClips -1.0785965 -4.8280385 2.8546129 
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rateM TaskDrawing -2.7952877 -3.9099986 -1.7869940 

amplM TaskClips -3.0740102 -21.7739050 0.1576592 

amplM TaskDrawing -1.5666336 -2.6576229 -0.7744704 

Here are the estimates on scale of measurement: 

fixef(P_6, mean.func = exp) 

Estimates with 95% credibility limits 

nonlin fixef center lower upper 

asym TaskClips 1.0945838 0.0024140 1.2260787 

asym TaskDrawing 0.2007313 0.0000117 0.3163152 

rateS TaskClips 0.2360948 0.1478205 0.4222025 

rateS TaskDrawing 0.4660412 0.3463548 0.6180551 

amplS TaskClips 0.9489550 0.7166955 1.2145355 

amplS TaskDrawing 1.8077051 1.3454203 2.3860734 

rateM TaskClips 0.3400725 0.0080022 17.3677221 

rateM TaskDrawing 0.0610973 0.0200405 0.1674628 

amplM TaskClips 0.0462354 0.0000000 1.1707671 

amplM TaskDrawing 0.2087467 0.0701147 0.4609479 

The ratio of amplitudes directly answers the question of what relative impact motor 
sequence learning has. The proportion of MSL on overall learning is not directly 
represented in the model, but can be created on the posterior. 

T_6_prop_fixef <- 
  P_6_fixef %>%  
  select(chain, iter, fixef, nonlin, value) %>%  
  filter(nonlin %in% c("amplS", "amplM")) %>%  
  mutate(value = exp(value)) %>%  
  spread(nonlin, value) %>%  
  mutate(propM = amplM/(amplS + amplM)) %>%  
  group_by(fixef) %>%  
  summarize(center = median(propM), 
            lower = quantile(propM, .025), 
            upper = quantile(propM, .975)) 
  
kable(T_6_prop_fixef, digits = 4) 

fixef center lower upper 

TaskClips 0.0461 0.0000 0.5529 

TaskDrawing 0.1048 0.0361 0.2200 
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Individual-level anaysis 

LD_18 %>%  
  filter(Task == "Clips") %>%  
  ggplot(aes(x = trialS, y = ToT)) + 
  geom_point(alpha = .5) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_vline(xintercept = 16, linetype = 2, col = "red") + 
  facet_wrap(~ Part, nrow = 7) + 
  ggtitle(list(title = "Predicted values (LARARY/Gamma)", 
               subtitle = "Clips task")) 
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LD_18 %>%  
  filter(Task == "Drawing") %>%  
  ggplot(aes(x = trialS, y = ToT)) + 
  geom_point(alpha = .5) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_line(aes(y = M_6, color = "M_6")) + 
  geom_vline(xintercept = 16, linetype = 2, col = "red") + 
  facet_wrap(~ Part, nrow = 7) + 
  ggtitle(list(title = "Predicted values (LARARY/Gamma)", 
               subtitle = "Drawing task")) 
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The research question (amount of motor learning) has previously been answered on the 
population level. Due to the multi-level structure of the model, it can also be examined 
on individual level. However, the participant level random effects are differences 
towards the population mean. We compute absolute scores per participant on the 
posterior and summarize them. 

P_6_scores <-  
  left_join(P_6_ranef, P_6_fixef,  
            by = c("model", "chain", "iter", "fixef", "nonlin"),  
            suffix = c("", "_fixef")) 
 
P_6_scores$value = exp(P_6_scores$value + P_6_scores$value_fixef) 
 
 
T_6_scores <- 
  P_6_scores %>%  
  group_by(fixef, nonlin, re_entity) %>%  
  summarize(center = median(value), 
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) %>%  
  select(Task = fixef, nonlin, Part = re_entity, center, lower,upper) %>%  
  ungroup() 
 
 
T_6_scores  %>% 
  sample_n(10) %>%  
  kable() 

Task nonlin Part center lower upper 

TaskClips rateS 20 0.2406953 0.0823091 1.3439111 

TaskDrawing asym 12 0.2251756 0.0000040 0.4001455 

TaskDrawing rateS 14 1.3330630 0.7133088 2.3221068 

TaskClips asym 19 0.8377900 0.0018241 0.9372280 

TaskClips rateS 2 0.1817135 0.0794867 0.3746833 

TaskDrawing rateS 12 0.9900177 0.6901883 1.3914052 

TaskDrawing rateS 19 0.3299586 0.2519067 0.4350551 

TaskClips amplS 11 1.3617665 0.8826241 2.1773698 

TaskDrawing rateS 5 0.5043384 0.3616376 0.7169677 

TaskDrawing amplM 16 0.1226252 0.0278308 0.2841341 

Like above, we compute the relative amount of MSL on participant level: 

T_6_prop_ranef <- 
  P_6_scores %>%  
  select(chain, iter, fixef, nonlin, re_entity, value) %>%  
  filter(nonlin %in% c("amplS", "amplM")) %>%  
  spread(nonlin, value) %>%  
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  mutate(propM = amplM/(amplS + amplM)) %>%  
  group_by(fixef, re_entity) %>%  
  summarize(center = median(propM), 
            lower = quantile(propM, .025), 
            upper = quantile(propM, .975)) %>%  
  ungroup() 
 
 
 T_6_prop_ranef %>%  
  sample_n(10) %>%  
  kable() 

fixef re_entity center lower upper 

TaskDrawing 5 0.0863199 0.0146132 0.2074805 

TaskClips 14 0.0714128 0.0000000 0.6375967 

TaskDrawing 7 0.0863594 0.0330473 0.1559368 

TaskDrawing 4 0.1194728 0.0321097 0.2353048 

TaskClips 12 0.0393289 0.0000000 0.5608916 

TaskClips 8 0.0637771 0.0000000 0.6272537 

TaskClips 3 0.0676844 0.0000000 0.6887665 

TaskDrawing 19 0.0788545 0.0110844 0.1821584 

TaskClips 4 0.0359640 0.0000000 0.4821311 

TaskDrawing 15 0.0925961 0.0211989 0.1602233 
T_6_prop_ranef %>% 
  group_by(fixef) %>%  
  mutate(Part_ordered = min_rank(center)) %>%  
  ggplot(aes(x = Part_ordered, y = center, ymin = lower, ymax = upper)) + 
  facet_grid(~fixef) + 
  geom_point(size = 2) + 
  geom_errorbar() + 
  geom_hline(aes(yintercept = center),  
             color = "red", linetype   = 2, 
             data = T_6_prop_fixef) + 
  geom_text(aes(y = center, x = 0), label   = "popul. average", 
            color = "red", vjust = 0, hjust = 0, 
             data = T_6_prop_fixef) 
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Correlation of learning parameters across tasks 

Note that the correlations are computed on the linear predictor level. 

## Extracting correlations from the posterior 
 
P_cor <-  
  P_6 %>%  
  filter(type == "cor") 
 
P_cor_names <-  
  P_cor %>%  
  distinct(parameter) %>%  
  separate(parameter, c("cor", "re_factor", "nonlin", "Task", "nonlin_2", 
"task_2"), remove = F) %>%  
  select(parameter, nonlin) 
 
T_cor <- 
  P_cor %>%  
  select(-nonlin) %>%  
  left_join(P_cor_names, by = "parameter") %>%  
  select(nonlin, value) %>%  
  group_by(nonlin) %>%  
  summarize(center = median(value),  
            lower = quantile(value, .025), 
            upper = quantile(value, .975)) 
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T_cor %>% kable(digits = 4)  

nonlin center lower upper 

amplM 0.1305 -0.9264 0.9085 

amplS -0.0342 -0.5311 0.4874 

asym 0.3180 -0.8440 0.9466 

rateM -0.0163 -0.9478 0.9469 

rateS -0.0551 -0.7593 0.6940 

Model criticism 

Predicted values analysis 

We check whether the prediction intervals (25%, 50% and 75% quantiles) cover the 
observations. 

T_PP_6  <- 
  PP_6 %>%  
  group_by(Obs) %>%  
  summarize(lower = quantile(value, .25), 
            center = quantile(value, .50), 
            upper = quantile(value, .75)) %>%  
  right_join(LD_18, by = "Obs") 

Task: Clips 

T_PP_6 %>%  
  filter(Task == "Clips") %>%  
  ggplot(aes(x = trialS)) + 
  facet_wrap(~ Part, nrow = 7, scales = "free_y") + 
  geom_line(aes(y = center)) + 
  geom_ribbon(aes(ymin = lower, ymax = upper), alpha = .3) + 
  geom_point(aes(y = ToT)) + 
  expand_limits(y = 0) 
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Task: Drawing 
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T_PP_6 %>%  
  filter(Task == "Drawing") %>%  
  ggplot(aes(x = trialS)) + 
  geom_line(aes(y = center)) + 
  geom_ribbon(aes(ymin = lower, ymax = upper), alpha = .3) + 
  geom_point(aes(y = ToT)) + 
  facet_wrap(~ Part, nrow = 7, scales = "free_y") 
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Residuals analysis 

LD_18 %>%  
  filter(Task == "Clips") %>%  
  ggplot() + 
  geom_quantile(aes(x = M_6, y = M_6_resid, col = "M_6"), formula = y ~ x) 
+ 
  facet_wrap(~ Part, scales = "free_y") + 
  ggtitle(list(title = "Residuals by predicted values", 
               subtitle = "Clips task")) 
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LD_18 %>%  
  filter(Task == "Drawing") %>%  
  ggplot() + 
  geom_quantile(aes(x = M_6, y = M_6_resid, col = "M_6"), formula = y ~ x) 
+ 
  facet_wrap(~ Part, scales = "free_y") + 
  ggtitle(list(title = "Residuals by predicted values", 
               subtitle = "Drawing task")) 

 

Model comparison 

Do the two models differ in point estimates? Most estimates are close. Only rateM-
TaskClips is extremely high at M_5. Such a strong rate is virtually a one-step learning. As 
this is very unlikely for MSL, the ARARY model seems to fail and we prefer M_6. 

bind_rows( 
  fixef(P_5), 
  fixef(P_6, mean.func = exp) 
) 

##  
##  
## Table: Estimates with % credibility limits 
##  
## model   nonlin   fixef              center       lower        upper 
## ------  -------  ------------  -----------  ----------  ----------- 
## M_5     asym     TaskClips       1.1577182   1.0291061    1.2638820 
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## M_5     asym     TaskDrawing     0.2612140   0.1180004    0.3269353 
## M_5     rateS    TaskClips       0.3220994   0.2141153    0.5059187 
## M_5     rateS    TaskDrawing     0.5377853   0.3907563    0.7115918 
## M_5     amplS    TaskClips       1.0286249   0.7859518    1.3076140 
## M_5     amplS    TaskDrawing     2.0981479   1.5331471    2.6884107 
## M_5     rateM    TaskClips      10.1972400   0.4392050   26.3571275 
## M_5     rateM    TaskDrawing     0.1020007   0.0407116    0.1833435 
## M_5     amplM    TaskClips       0.1054591   0.0395542    0.1794875 
## M_5     amplM    TaskDrawing     0.1866054   0.0900881    0.3412478 
## M_6     asym     TaskClips       1.0945838   0.0024140    1.2260787 
## M_6     asym     TaskDrawing     0.2007313   0.0000117    0.3163152 
## M_6     rateS    TaskClips       0.2360948   0.1478205    0.4222025 
## M_6     rateS    TaskDrawing     0.4660412   0.3463548    0.6180551 
## M_6     amplS    TaskClips       0.9489550   0.7166955    1.2145355 
## M_6     amplS    TaskDrawing     1.8077051   1.3454203    2.3860734 
## M_6     rateM    TaskClips       0.3400725   0.0080022   17.3677221 
## M_6     rateM    TaskDrawing     0.0610973   0.0200405    0.1674628 
## M_6     amplM    TaskClips       0.0462354   0.0000000    1.1707671 
## M_6     amplM    TaskDrawing     0.2087467   0.0701147    0.4609479 

 


