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Management Summary 

De Vrije Energie Producent (DVEP) is an energy supplier and Balance Responsible Party (BRP) in the 

Dutch energy market. A BRP is responsible for buying and selling energy in advance on behalf of the 

customers in its portfolio. Each day DVEP is responsible for forecasting the energy production and 

usage of its entire portfolio for each hour of the next day. The forecast at 9:00 in the morning is used, 

so the forecast horizon is 15-38 hours ahead. Due to the volatile intraday market, an inaccurate day 

ahead forecast can be very costly. A large part of the portfolio of DVEP consists of wind power 

producers. Currently, DVEP buys the day ahead wind power forecast from Company X. This forecast is 

believed to be inaccurate, which is very costly. Therefore, the research goal is to develop a day ahead 

forecasting model for the power production of wind turbines of DVEP producers that is more accurate 

than Company X. The main research question is: 

“How to develop a model that is able to translate day ahead weather forecasts 

into power production forecasts for wind turbines of DVEP producers with 

higher accuracy than Company X?”  

Literature suggests that weather forecasts are essential for our forecast horizon. According to our 

literature review, we should use causal models such as regression to describe the relationship between 

historical weather forecasts and historical production data for each producer separately. Day ahead 

weather forecasts provide values for average wind speed, average wind direction and average 

temperature per hour. However, historical day ahead weather forecasts (hindcasts) are only available 

for the second half of 2017. Therefore, we describe the relationship between historical weather 

measurements and historical production data using regression models. 

For each producer, we have data for the total production of all its wind turbines for each hour. 

Historical weather data are not available at the wind turbine site, so data from KNMI weather stations 

are used. For each weather station we have historical data of average wind speed, average wind 

direction and average temperature for each hour. A selection of 10 producers is included in the study 

based on location and total rated power. The aggregated rated power of all 10 producers is 45.65 MW. 

The average distance of producers to the closest KNMI weather station is 8.6 km. We use historical 

weather measurements and hindcasts from the KNMI stations of Vlissingen, Hupsel and Lelystad. We 

found statistical evidence that wind speed, wind direction and temperature forecasts are biased in 

Vlissingen, Hupsel and Lelystad. Therefore, we adjust the day ahead weather forecast for the bias, 

before we insert it into the regression models. The parameters of the regression models are estimated 

using historical weather measurements. 

Based on literature review and data analysis, we develop 21 regression models using 3 different sets 

of predictors. We start by using only wind speed as predictor; after this we add temperature and lastly, 

we add wind direction. Each predictor set has 7 regression models; we illustrate the regression models 

with all three predictors in Table 1. 
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Table 1: Regression models using wind speed, temperature, and wind direction as predictors. 

We select a top 3 regression models based on the accuracy using historical weather data. The 4th 

degree Polynomial, 5th degree Polynomial and the Logistic 4 model are the most accurate models. All 

three models are most accurate using wind speed, temperature and wind direction as predictors. Out 

of these three models, the 4th degree Polynomial model has the best day ahead forecast accuracy. 

Model Standard Error 
of Regression 
(S) in kW 

Root Mean 
Squared Error 
(RMSE) in kW 

Mean 
Absolute Error 
(MAE) in kW 

Normalized 
Mean 
Absolute 
Percentage 
Error (NMAPE) 

Company X 3,338 3,335 2,407 5.3% 

4th degree Polynomial 4,166 4,162 3,092 6.8% 

Table 2: Aggregated day ahead forecast error for Company X and our best model for the second half of 2017.  

The Root Mean Squared Error (RMSE) of the day ahead forecast of Company X is smaller than the RMSE 

of the 4th degree Polynomial model for all 10 producers. This indicates that Company X is more accurate 

for each producer individually. Table 2 illustrates that Company X is more accurate for the aggregated 

day ahead forecast of all 10 producers as well. All four performance indicators have smaller errors for 

Company X than for the 4th degree Polynomial model. The aggregated day ahead forecast of Company 

X is 685 kW more accurate per hour on average; this is equal to 1.5% of the aggregated rated power. 

We conclude that Company X has a more accurate day ahead forecast than the newly developed 4th 

degree Polynomial model for all producers included in the study. The aggregated day ahead forecast 

of Company X is also more accurate than the aggregated forecast of the 4th degree Polynomial model. 

Therefore, we recommend DVEP to keep outsourcing the day ahead forecast to Company X for the 

time being.  
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1. Introduction 

In the first chapter we provide a brief description of De Vrije Energie Producent. Secondly, we describe 

the research context in Section 1.2. After this, we provide a problem description in Section 1.3. In 

Section 1.4, we formulate the research objective and research questions. Lastly, we discuss the 

research scope and report outline in Sections 1.5 and 1.6. 

1.1 Introduction to DVEP 
De Vrije Energie Producent (DVEP) from Hengelo is one of the fastest growing energy suppliers in the 

Netherlands. DVEP offers a wide variety of services in the energy industry, among which the supply 

and resupply of energy. In 2003, the organization was founded as a one-man company, after growing 

steadily for 14 years the company had approximately 70 employees in August 2017. In September 2017 

the company was bought by UGI corporation, which is an LPG distribution company headquartered in 

USA with extensive operations in Europe (DVEP Energie, 2017). With approximately 13,000 employees, 

UGI is big international player in the LPG industry. UGI bought DVEP to have a foothold in the Dutch 

energy market. 

DVEP trades on Dutch and German energy markets and wants expand to other countries in Europe. In 

addition, it also trades on energy related markets like gas. DVEP is a Balance Responsible Party (BRP), 

which means one of its main responsibilities is managing the usage and production of energy for 

energy suppliers and customers in its portfolio. DVEP is responsible for buying and selling energy on 

the markets on behalf of these suppliers and customers. This can involve long term deals, which usually 

have a fixed price per hour over a timespan of months or years, or short term (intraday) deals over a 

timespan of an hour or a couple of hours. Long term deals involve buying energy for a period of at least 

a month, long in advance for a fixed price. This is mostly done for customers with a high energy usage 

like municipalities or organizations, since they want to limit risk of price fluctuations. A large part of 

the expected energy usage is bought in advance to reduce the risk of adverse price movements. Short 

term deals involve eliminating energy imbalance during the day. Besides energy, DVEP is also BRP in 

terms of gas for some customers. However, energy is its core business. 

DVEP has a wide variety of customers in its portfolio, ranging from municipalities to football stadiums. 

DVEP is an energy supplier and BRP for other energy suppliers. Most customers consume energy; DVEP 

has to estimate how much energy is consumed on an hourly basis. Besides energy users, the company 

has many energy producers in its portfolio as well. Most producers focus on sustainable energy like 

solar power, wind power, biomass, cogeneration and hydropower. Just like DVEP has to estimate the 

energy consumption of its portfolio, it has to estimate the energy production on an hourly basis as 

well. 

1.2 Research context 
For each day, DVEP has to hand in an estimate of the energy usage and production per hour for the 

following day in the form of an auction. As input for the auction, forecasts are used to estimate the 

hourly energy usage and production of its entire portfolio. After all BRPs have handed in their auctions, 

the spot market operator, APX, determines the market price for each hour of the next day based on 

demand and supply.  

The day ahead market prices, called APX prices, are based on expected demand and supply. However, 

during the next day the actual demand and supply can be extremely different. TenneT, the Dutch grid 

operator, has to maintain the grid stability of 50 Hz. This means TenneT monitors the grid intensively 

to maintain the balance. This energy imbalance is regulated using imbalance prices. Each minute of the 
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day, TenneT releases the predicted imbalance prices in real-time, Figure 1.1 shows the imbalance 

prices in €/MWh up to 10:00 for a random day. 

 

Figure 1.1: Imbalance prices up to 10:00 and APX prices (€/MWh) for a random day. 

The red line indicates the APX price, which is determined day ahead. The blue line indicates the 

predicted imbalance prices, these are determined by demand and supply each minute. Figure 1.1 

shows that the energy imbalance market can be very volatile, with predicted prices ranging from €-

150 to €140 per megawatt-hour (MWh) within one hour. The actual imbalance prices are determined 

per 15 minutes after the hour has passed.  

The position taken by DVEP each hour is mainly determined by the day ahead auction. Figure 1.2 

illustrates a buy scenario for Hour Y and a sell scenario for Hour X at the auction.  

 

Figure 1.2: Overview of buy and sell scenario on the day ahead auction. 

Each auction contains all hours for the next day. During each hour an energy usage forecast (red) and 

an energy production forecast (blue) are used. The energy usage forecast determines the expected 

usage of all customers in the portfolio. DVEP has hedged a large amount of the usage with long term 

deals (green) to limit the risk of price fluctuations. The energy production forecast determines the 
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expected production of all producers in the portfolio of DVEP. Together with the long term deals, this 

determines the expected amount of energy DVEP has during an hour. Depending on the energy usage 

and production forecasts per hour, energy is bought or sold on the auction.  

The day ahead auction mainly determines the position you take for each hour of the day. During the 

next day, this position can be altered up until 5 minutes before the hour starts. On the intraday market, 

traders can buy or sell energy for upcoming hours. Some parties have excess energy based on intraday 

forecasts, while other parties have shortages. By selling energy to each other, they can alter their 

position before the hour starts. This can lower risk, because the amount that is bought/sold is not 

traded using imbalance prices, but the price agreed upon by both parties. As can be seen in Figure 1.1, 

imbalance prices can be very volatile. 

According to DVEP, energy usage forecasts are quite accurate and do not form a problem. Production 

forecasts however, do form a problem since DVEP believes these are inaccurate. DVEP has many types 

of producers in its portfolio, among which solar power and wind power. Especially the wind power 

production forecasts are important for DVEP, since it has a lot of wind power in its portfolio.  

1.3 Problem description 
Currently DVEP buys a wind production forecast from a third party. We call this party ‘Company X’ out 

of confidentiality. The forecast from Company X shows the energy production in kilowatt-hour per 

hour of the day. While making the auction for the day ahead, the forecast at 9:00 is used, since the 

input for the auction has to be delivered before 12:00. Ideally, DVEP would like to use the forecast 

from 11:00. However, a time buffer for technological issues is necessary, so the 9:00 forecast is the 

most recent forecast that can be used. Normally, DVEP uses the exact production forecast from 9:00 

of Company X in the auction. This can be seen in Figure 1.3. 

 

Figure 1.3: Day ahead aggregated energy production forecast for wind turbines at 9:00. 

The aggregated day ahead forecast at 9:00 is illustrated by the yellow line in Figure 1.3. The aggregated 

wind production is illustrated by the blue line, this is used in the auction that DVEP has placed before 

12:00.  Usually this coincides with the day ahead forecast, since DVEP uses the forecast. Therefore, the 

blue line is hard to see in Figure 1.3. 

DVEP is not satisfied with the day ahead wind production forecast of Company X. At this moment, the 

company has no idea how accurate the day ahead forecast of Company X is in comparison to 
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competitors.  However, DVEP thinks it can be improved and wants to develop an in-house forecast 

model to improve forecast accuracy and lower costs. The desired output of the model is a graph that 

shows the expected energy production (kilowatt-hour) for each hour of the next day (see Figure 1.3).  

In addition to the day ahead forecast, DVEP also uses intraday forecasts so their traders have up-to-

date information about the expected energy production for the upcoming hours. Since weather 

forecasts change during the day, the expected energy production of wind turbines changes also.  

 

Figure 1.4: Intraday aggregated energy production forecast for wind turbines at 9:00. 

Figure 1.4 shows the intraday forecast at 9:00, this forecast is based on more recent weather data. 

While comparing the day ahead graph in Figure 1.3 and the intraday graph in Figure 1.4, we see a 

difference in expected energy production (yellow line), while the auction (blue line) remains the same. 

To minimize the difference between the auction and the actual production, DVEP wants a more 

accurate day ahead forecast. Therefore, DVEP would like to develop a forecasting model that is more 

accurate than the current one. This model should be able to translate weather forecasts into expected 

wind production for DVEP wind turbines.  

The core problem for this project is that the current day ahead forecast for power production of wind 

turbines is believed to be inaccurate. DVEP currently buys this forecast from Company X, which is 

costly. DVEP thinks that a forecasting model can be developed that is more accurate than Company X. 

DVEP is especially interested in the time horizon between 15-38 hours ahead, since this is the time 

horizon that is used for the day ahead auction. 

1.4 Research objective and questions 
The research goal is to develop a day ahead forecasting model for the power production of wind 

turbines of DVEP producers. This model should be more accurate than the model that is currently used. 

After development of the model a comparison should provide insight into which model is most 

accurate. 

To assist DVEP with the accuracy of day ahead wind power production forecasts, we answer the 

following research question: 
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“How to develop a model that is able to translate day ahead weather forecasts 

into power production forecasts for wind turbines of DVEP producers with 

higher accuracy than Company X?”  

To answer this research question, the following sub-questions are addressed during the project: 

1. Which factors influence the power production of wind turbines according to the 

literature? 

(a) Which weather conditions influence the power production of wind turbines? 

(b) Which turbine characteristics influence the power production of wind turbines? 

(c) Which site-related factors influence the power production of wind turbines? 

To determine which factors influence energy production of wind turbines, we conduct 3 literature 

reviews. First, we look into which weather conditions have an impact on the power production. After 

this, we look into wind turbine design to determine which turbine characteristics influence power 

performance. Lastly, we look into site-related factors. 

2. What is known in literature on day ahead forecasting power production for wind 

turbines? 

(a) Which methods are used in literature for forecasting power production for wind turbines? 

(b) How can forecast accuracy be measured and the forecast model be validated? 

We conduct 2 literature reviews to see which forecasting methods are used in literature for the energy 

production of wind turbines. We assess which forecasting method is most appropriate for the time 

horizon we wish to forecast. Also, we look at how to validate forecast models and how to measure 

forecast accuracy. 

3. What is the current situation at DVEP with respect to data? 

(a) Which data are available and how are these measured? 

(b) Which producers should be selected for model testing? 

(c) What are the characteristics of the available data? 

Here, we look at the available data and describe how this data was measured. We make a selection of 

producers that are included in the project scope. We select KNMI stations throughout the Netherlands 

located near producers of DVEP.  We analyze production and weather data and describe how we clean 

the data. Also, we check whether there is a bias in the weather forecasts. 

4. Which forecasting approach should result in the most accurate day ahead forecast 

according to the data patterns and literature review? 

In Chapter 4 we describe our solution design. We introduce the forecasting approach, which is based 

on the reviews of existing literature and the data that is available. We present the forecasting models 

that we test and how we expand these to include more predictors. We describe which performance 

indicator we use to select the most accurate model. Also, we discuss which algorithm we use to solve 

the minimization problems at hand.  
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5. Which day ahead forecasting model is most accurate in production forecasts and how 

accurate is this model in comparison to Company X? 

In Chapter 5 we select the 3 most accurate regression models based on historical weather and 

production data. After this, we use historical weather forecasts for all 10 producers to see which model 

has the most accurate production forecast using day ahead weather forecasts as input. We do this for 

each producer separately, as well as for the aggregated selection of 10 producers. This enables us to 

compare the day ahead forecast accuracy of Company X and the models developed in this project. This 

leads to conclusions and recommendations in the final chapter. 

1.5 Research scope 
For every research project, a scope should be defined. When investigating problems, other problems 

may come to the surface.  It is very tempting to investigate these problems as well. However, we should 

stick to the problem at hand. Furthermore, we are dependent on the data that are available. Therefore, 

we have to draw a line; we do this by defining the research scope: 

 The forecast horizon is 15-38 hours ahead, using weather forecasts from 9:00 in the morning 

as input to forecast power production for each hour of the next day.  

 The forecasting model focuses on accuracy in terms of production. The goal is to minimize the 

financial risk by being as accurate to the realized production as possible. We do not look into 

the financial implications of the forecasting model.  

 The selection of producers should cover at least 10% of the total rated power of DVEP. 

 We assume every turbine has storm detection and ice detection. 

 We focus on 3 KNMI weather stations to obtain weather data. 

 We exclude producers with multiple sources of production (e.g. solar AND wind power), since 

we cannot distinguish the production of multiple sources under the same EAN (unique 

connection code). 

 We only include producers that have a contract between 01-01-2015 and 01-01-2019. 

 We exclude producers with long term downtime between 01-01-2015 and 01-01-2019.  

The most important choices regarding the scope of this project are listed above. Throughout the 

project, the scope is further defined. 

1.6 Report outline 
In Chapter 2, we conduct a review of the existing literature to answer Sub-questions 1 and 2. First, we 

look at which factors influence power production of wind turbines. Secondly, we look at what is known 

about power production forecasting for wind turbines in the literature and how accuracy is to be 

measured. In Chapter 3, the current situation at DVEP is described. We describe what data are available 

and how the data was measured. A producer selection is made that is used for data analysis. 

Production and weather data are analyzed and data are cleaned. Next, in Chapter 4 we discuss our 

general approach and we introduce the forecast models that are used. We describe how we select the 

best model that is compared to the model of Company X. Also, we discuss which optimization 

algorithm is used for parameter estimation. In Chapter 5, we conduct an analysis of the results. First, 

we look at the effect of adding predictors to the forecasting models. Secondly, we determine which 

forecasting models are most accurate using historical data. Lastly, we look at the day ahead accuracy 

of the top 3 models in Chapter 5 using day ahead weather forecasts. Finally, we finish this project with 

a conclusion and recommendations in Chapter 6. Here, we also give some suggestions for further 

research and discuss the limitations of the research.   
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2.  Review of Literature 

In this chapter, we conduct a literature review to obtain the information that is necessary to develop 

a forecasting model for the energy production of wind turbines. We answer Sub-question 1 in Sections 

2.1, 2.2, and 2.3. Firstly, the wind resource is researched in Section 2.1, since this is the driving power 

behind the energy production of wind turbines. Secondly, in Section 2.2 we look into the types of wind 

turbines that are used in practice. After this, we look into the effect of turbine characteristics and site-

related factors on the energy production of wind turbines in Section 2.3. Next, we answer Sub-question 

2 in Section 2.4 up until Section 2.7. In Section 2.4 we review existing literature to see what forecasting 

methods are used in the literature. In Section 2.5, we discuss wind turbine power curve modeling 

techniques that are most promising. Afterwards, in Section 2.6 we show how these models can be 

expanded with the help of regression analysis. Lastly, in Section 2.7 we discuss how forecasting 

performance can be measured.  

2.1 Wind resource 
The winds of the world are unpredictable, intermittent, fickle in speed and direction, and are 

occasionally extremely strong. This poses a challenge to predict the effectivity of wind energy systems. 

To do so, we need to understand the wind’s behavior.  

2.1.1 Wind speed variability during different timescales 
The wind speed variability can have a big impact on energy production of a wind energy application. 

When considering variations in wind speed in time, conventional practices use four time categories 

(Lynn, 2012; Manwell, McGowan & Rogers, 2009): 

 Inter-annual. 

 Annual. 

 Diurnal (time of day). 

 Short-term. 

We briefly discuss each category and its implications for wind turbines. 

Inter-annual 

The wind resource at a particular site differs from year to year. For example, a coastal site in the 

Western Europe may experience a series of strong ‘autumn gales’ one year, but not during the next 

(Lynn, 2012). So a single year’s wind speed measurement, although widely used to assess a site’s 

potential, may not always give an accurate picture. Inter-annual variations of up to 5% in average wind 

speed are pretty common. These variations in wind speed lead to even bigger variations in power 

output, as we demonstrate later on. The ability to estimate the inter-annual variability at a site is 

almost as important as estimating the long-term mean wind at the site. Manwell et al. (2009) state 

that it takes meteorologists approximately 30 years of data to determine long-term values of weather 

or climate, and that it takes at least five years to arrive at reliable average annual wind speed at a given 

location. Lynn (2012) adds that climate change can have an influence in the future as well. Who can 

tell what will happen to the world’s wind patterns over the coming decades? 

Annual  

Most locations experience substantial variations in wind speed during the year. In Figure 2.1, average 

monthly values for a UK site are presented. The dots represent average values for a single year, the 

vertical red bars show the range of values recorded over a 10-year period (Lynn, 2012). Figure 2.1 

indicates a substantial inter-annual as well as seasonal variation in wind speed at the UK site.  We see 
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that the autumn and winter months tend to be most windy, summer months are the calmest. These 

annual variations are important when it comes to assessing wind energy production in relation to 

seasonal energy demand.  

 

Figure 2.1: Average monthly wind speed and variation at a UK site (Lynn, 2012). 

Diurnal (time of day) 

In temperate latitudes, large wind variations can occur on a diurnal or daily time scale. This type of 

wind speed variation is due to differential heating of the earth’s surface during the daily radiation cycle 

(Manwell et al., 2009). A typical diurnal variation is an increase in wind speed during the day with 

lowest wind speeds during the hours between midnight and sunrise (Lynn, 2012). Daily variations in 

solar radiation are responsible for diurnal wind variations in temperate latitudes over flat land areas. 

According to Manwell et al. (2009), the largest diurnal changes occur in spring and summer, and the 

smallest in winter. Diurnal variation may also vary with location and altitude. At mountainous areas 

the diurnal variation may be very different than at flat areas. This variation can be explained by the 

mixing or transfer of momentum from the upper air to the lower air (Manwell et al., 2009). 

Short-term 

Short-term wind speed variations include turbulence and gusts. These variations are usually measured 

over time intervals of ten minutes or less. Ten-minute averages are typically determined using a sample 

each second.  Figure 2.2 shows a typical plot of wind speed during a short period of time. It is generally 

accepted that variations in wind speed with periods from a second to ten minutes have a stochastic 

character and are considered to represent turbulence (Manwell et al., 2009). Turbulence can be 

thought of as random wind speed fluctuations imposed on the mean wind speed, this is discussed later 

in this chapter. Besides turbulence, gusts also contribute to short-term wind speed variations. A gust 

is a discrete event within a turbulent wind field, gusts can be characterized by their amplitude, rise 

time, maximum variation and lapse time. 
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Figure 2.2: Typical plot of wind speed for a short period of time (Manwell et al., 2009). 

When considering wind energy applications for a given location, all these time categories have to be 

taken into account. From long-term wind speed prediction to maximum load calculations due to gusts 

or turbulence, a wide variety of implications of wind speed variations need to be considered over time. 

For wind energy applications, knowledge of wind behavior is of particular importance to successfully 

utilize the kinetic wind energy. While short-term behavior of wind is of significance with regard to the 

structural strength and control function of a wind turbine, the long-term characteristics of the wind 

have relevance with regard to the energy yield (Hau, 2013). The long-term characteristics of the wind 

can only be determined by using statistical surveys over many years.  

2.1.2 Wind speed probability distribution 
While year-to-year variation in annual mean wind speeds is hard to predict, wind speed variations 

during the year can be well characterized in terms of a probability distribution. In the literature it is 

widely found that the Weibull distribution gives a good representation of the variation in hourly mean 

wind speed over a year at many typical sites (Burton et al., 2001).  

 

Figure 2.3: Weibull Probability density function of wind speed using different shape parameter values (Burton et al., 2001). 
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The shape parameter k determines the shape of the distribution. A special case of the Weibull 

distribution is the Rayleigh distribution with k=2, this is a fairly typical value for many locations (Burton 

et al., 2001). On real sites the shape parameter k varies from about 1.5 to 2.5. A value of 1.5 is typical 

for offshore sites, over land the factor reaches values up to 2.5 or somewhat above (Hau, 2013). 

Offshore locations typically have a longer tail, because there is less surface friction offshore. The 

Weibull distribution can be used to estimate annual production, the Danish manufacturer Vestas uses 

a shape parameter of k=2 to estimate annual production of its turbines (Vestas, 2017). For short term 

production estimates, the Weibull distribution is not very useful. 

2.1.3 Wind speed at different altitudes 
One of the most important factors with respect to the utilization of wind energy is the increase in wind 

speed with altitude. The moving air masses have less friction against the earth’s surface as the altitude 

increases. The range up to where the wind is undisturbed is between 600 and 2000 m above ground, 

depending on the time of day and atmospheric conditions (Hau, 2013). This is called the atmospheric 

boundary layer. The area of the boundary layer closest to the ground is called the Prandtl layer, where 

flow conditions are dominated by the friction with the earth’s surface. In meteorology the area above 

the Prandtl layer is called the Ekmann layer. The influence of friction is less dominant in this layer, 

while wind direction is influenced by Coriolis forces due to the earth’s spin. Above the Ekmann layer, 

geostrophic winds flourish since there is no surface friction, and there are large influences by Coriolis 

forces. 

 

Figure 2.4: Atmospheric boundary layer with Prandtl layer and Ekman layer (Hau, 2013). 

The height of Prandtl layer varies with the meteorological conditions. During the night, it is only 20 to 

50 m thick, whereas during the day it is between 50 and 150 m thick. A rotor hub height of 60 m is in 

the Prandtl layer for approximately 30% of the annual hours whereas a hub height of 100 m this is only 

about 7%. Therefore, the wind conditions of large turbines are extensively influenced by the 

characteristics of the Ekman layer (Hau, 2013). 

2.1.4 Turbulence and gusts  
Turbulence is characterized by chaotic changes in wind speed and pressure on a relatively fast time-

scale, typically less than ten minutes. Turbulence is mainly generated by two causes, namely friction 
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with the earth’s surface and thermal effects (Burton et al., 2001). Friction with the earth’s surface can 

be thought of as flow disturbances caused by hills and mountains or man-made structures. Thermal 

effects cause air masses to move vertically due to differences in temperature and density of the air. 

These two effects are often interconnected. Turbulence is a complex process, in order to describe it, it 

is necessary to take into account the temperature, pressure, density and humidity as well as the motion 

of the air itself in three dimensions (Burton et al., 2001).  

Wind gusts are big, short-term fluctuations in wind speed. Whereas the long-term fluctuations in wind 

speed are significant to the power output and energy yield of a wind turbine, the loads are marked by 

short-term fluctuations in wind speed (Hau, 2013). The extreme wind speeds must be taken into 

consideration for the fatigue strength and loads, although they may occur rarely. Wind gusts and 

turbulence are especially interesting for fatigue and maximum load calculations, not for power output 

and energy yield because of their short-term nature (Hau, 2013). 

2.2 Wind turbine design 
Mankind has been trying to use the wind to its advantage for a long time. The oldest windmill in 

recorded history is the so-called Persian windmill. It was first described around 900 AD and is a drag-

driven windmill with a vertical axis of rotation (Schaffarczyk, 2014). Drag-driven means the windmill 

generates its power by using drag force, which has the same direction as the wind. Later, in 1279 the 

Dutch windmill appeared which represented a milestone in technological development. The axis of 

rotation changed from vertical to horizontal. From an aerodynamic point of view, the Dutch concept 

began a movement toward lift-driven wind turbines instead of drag-driven (Schaffarczyk, 2014). Lift 

force refers to forces perpendicular to the wind direction. Today, a wide variety of wind turbines are 

used. Wind turbines can either rotate about a horizontal or vertical axis, therefore wind turbines are 

classified as Horizontal Axis Wind Turbines (HAWTs) or Vertical Axis Wind Turbines (VAWTs). HAWTs 

are the dominant design principle in wind energy technology today, since this design has a higher 

power output (Hau, 2013). Therefore, we take a closer look at HAWTs. 

2.2.1 Horizontal axis wind turbine 
Within the HAWT classification, there are a lot of variations. These variations include the number of 

blades, arrangement of rotor, variable/constant speed, blade pitch control and yawing options. 

According to Schaffarczyk (2014), standard HAWTs have the following properties: 

 Horizontal axis of rotation. 

 Three bladed. 

 Driving forces mainly from lift. 

 Upwind arrangement of rotor; tower downwind. 

 Variable speed/Tip-speed ratio (TSR) control. 

 Blade pitch control after rated power is reached. 

Figure 2.5 shows a schematic arrangement of a HAWT. The components and their configuration are 

typical for a standard HAWT (Hau, 2013).  
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Figure 2.5: Schematic arrangement of a typical HAWT (Hau, 2013). 

Most turbines have a hub height between 40 and 120 m, in extreme cases the height can go up to 180 

m. Rotor blades range in length from 20 to 80 m and most turbines have 3 rotor blades. Turbines are 

built with a rated power of up to 8 MW today. Offshore wind turbines are usually larger than onshore 

ones; this typically leads to a higher rated power. Today’s onshore turbines range up to 120 m normally 

and rarely exceed 3 MW. 

If a turbine wants to capture the full power of the wind, it has to be oriented to the wind direction 

correctly. Wind direction is constantly measured and the yaw system makes sure the horizontal axis of 

rotation is perpendicular to the wind direction. There are three different yawing methods (Hau, 2013): 

 Yawing by aerodynamic means (wind vanes or fan-tail wheels). 

 Active yawing with the help of a motorized yaw drive. 

 Free yawing of rotors located downwind. 

Most modern wind turbines use a motorized yaw drive since wind vanes or fan-tail wheels are not able 

to move massive tower heads of big turbines and locating rotors downwind leads to a big power loss 

due to disturbed airflow (Hau, 2013). Locating rotors downwind means the tower is facing the wind 

direction instead of the rotors, this ‘backward’ configuration leads to a disturbance in airflow at the 

rotor blades which leads to power loss. Therefore, most rotors are located upwind of the tower. 

Tip-speed ratio (TSR) control makes sure the turbine can operate at variable speeds. TSR is the ratio 

between the tip speed of the blade and the wind speed, TSR is related to efficiency, the optimum varies 

with blade design (Hau, 2013). TSR control is used to ensure the ratio between the speed of the tip of 
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the blade and the wind speed is kept at a constant, optimal rate. This is done to achieve maximum 

efficiency.  

The last property which we discuss is power control, in case of strong winds it is necessary to waste 

part of the excess energy to avoid damaging the wind turbine in high wind speeds. All wind turbines 

are therefore designed with some sort of power control. There are two different ways of doing this 

safely on modern wind turbines:  

 Blade pitch control. 

 Stall control. 

The most effective way of adjusting the aerodynamic angle of attack, and thus the input power, is by 

mechanically changing the rotor blade pitch angle (Hau, 2013). The rotor blade is turned about its 

longitudinal axis with the aid of actively controlled actuators with this method. This is not only done 

for safety measures, but also to maintain maximum output after rated power is reached. 

When a turbine does not have blade pitch control, rotor blades have a fixed angle which is called stall 

control. Stall controlled wind turbines have blade designs that create turbulence on the side of the 

blade not facing the wind when the wind speed increases. As the actual wind speed increases, at some 

point the rotor blade starts to stall, which prevents it from reaching dangerously high speeds. 

2.3 Power output of wind turbines 
A wind turbine has to capture as much of the wind’s power as possible and convert it efficiently into 

electricity. This is done by converting kinetic energy of the wind into electrical energy. The 

performance of a wind turbine depends crucially on the conditions at a particular site including the 

wind’s average speed and variability (Lynn, 2012). To see what factors influence the power output of 

wind turbines, (Lynn, 2012) starts by considering a well-known equation of fluid mechanics: 

𝑃 =
1

2
𝜌𝐴𝑣3           (2.1) 

where: 

P  = power in W 

𝜌  = air density in kg/m3  

A  = area of the intercepted airstream in m2 (swept area of rotor blades) 

v  = wind velocity in m/s  

Equation 2.1 is used to calculate the available kinetic wind power. We see that the available wind 

power increases with the air density, the area of the intercepted airstream and the wind velocity. 

Especially the wind velocity has a big impact due to its cubic relationship with power. To illustrate its 

impact, a doubling in wind velocity leads to an eight times higher available wind power. Air density and 

the swept area of the rotor blades have an influence as well. 

In Equation 2.1, the available wind power can be calculated. However, the power that is extracted by 

wind turbines is smaller. There are fundamental limitations to rotor efficiency that prevent wind 

turbines from converting 100% of the available wind power. Therefore, Burton et al. (2001) added a 

power coefficient to the equation, resulting in Equation 2.2: 

𝑃 =
1

2
𝜌𝐶𝑝𝐴𝑣

3           (2.2) 

where: 
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𝐶𝑝    = power coefficient (fraction of the available wind power that may be converted by the turbine 

into mechanical work) 

The power coefficient has a theoretical maximum value of 59.3% (Betz limit) due to the principles of 

conservation of mass and momentum of the air stream, though in practice lower peak values are 

reached (Burton et al., 2001). Incremental improvement in the power coefficient are constantly sought 

by detailed design changes in wind turbines. However, these changes only lead to a modest increase 

in power output. Major increases in power output can only be achieved by increasing the swept area 

of the rotor or by locating the wind turbines on sites with higher wind speeds (Burton et al., 2001).  

2.3.1 Turbine characteristics and power output 
A cause of reduced output is rotor yawing with the wind direction. Yawing is the process of aligning 

the rotor with the wind direction. This is done to use the wind to its highest potential. Even with 

sensitive yawing a certain loss is unavoidable. Various investigations have shown a loss of about 2 to 

3% in energy yield of the turbine with a correctly operating yawing mechanism (Hau, 2013). Losses 

increase when there are frequent wind direction changes on site. 

Another cause of reduced output can be explained with the 𝐶𝑝– λ performance curve. Here, 𝐶𝑝 is the 

power coefficient and λ, the tip-speed ratio (TSR). The TSR is the ratio between the speed of the tip of 

the rotor blade and the wind speed.  

 

Figure 2.6: Cp – λ performance curve for a modern three-bladed turbine showing losses (Burton et al., 2001). 

The first thing to note is that the maximum value of 𝐶𝑝 is only 0.47, which is smaller than the Betz limit, 

achieved at a TSR of 7 (Burton et al., 2001). To have maximum efficiency, it is crucial that the TSR is 

kept at this constant rate. The fact that this value is considerable smaller than the Betz limit is due to 

stall, tip and drag losses among other losses. 

To limit the power loss, most modern turbines operate at variable speed, this is done by TSR control. 

TSR control monitors the speed of the rotor so it can be continuously adjusted such that the TSR 

remains constant at the level which gives the maximum 𝐶𝑝. This significantly increases the efficiency 

of the turbine and leads to a higher output than turbines operating on constant speed (Burton et al., 

2001).  
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An option that also affects the power output is blade pitch control. A change in angle of attack can 

have a big impact on the power output. Blade pitch control is also used to regulate the TSR, thus is 

connected with TSR control. Active pitch control is necessary to maintain a constant, optimal TSR after 

rated wind speed is reached (Burton et al., 2001).  

 

Figure 2.7: Power curve of blade pitch control versus stall control (Hau, 2013). 

The pitch angle should continuously be adjusted after rated power is reached to maintain the highest 

efficiency. This is where blade pitch control distinguishes itself from stall control. After rated power is 

reached blade pitch control is able to maintain optimal TSR so rated power is achieved at a wider wind 

range than using stall control. Figure 2.7 illustrates that stall controlled turbines are less efficient at 

high wind speeds. 

Obviously, wind speed affects the power output of the turbine. However, wind can reach tremendous 

speeds, leading to dangerous situations. To prevent turbine damage, the blades can be feathered and 

the turbine is turned off, this happens when cut-out speed is reached. This means only a certain range 

in the wind speed domain can be utilized (Lynn, 2012).  

 

Figure 2.8: Theoretical power curve for a standard 2 MW turbine (Lynn, 2012). 

Besides the range in wind speed above the cut-out speed, the lowest wind speeds can also not be 

utilized. This is due to the fact that the consumption of the turbine is higher than the energy output, 

which results in a negative yield. Therefore, turbines only start operating after a certain cut-in speed 

has been reached. After the cut-in speed, the power output rises until the rated power is reached 
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where it ideally will remain until the blades are feathered, and the turbine is shut off. Cut-in and cut-

out speeds can vary depending on design type and environmental factors (Lynn, 2012). The newest 

turbine designs from the German manufacturer Enercon have cut-out speeds between 28-34 m/s 

(Enercon, 2015). However, older turbines have lower cut-out speeds. 

2.3.2 Site-related influences on power output 
The density of the air has an influence on power output and varies with both elevation and 

temperature. Cold air at sea level is considerably denser than warm air at high upland sites (Hau, 2013). 

This is illustrated in figure 2.9: 

 

Figure 2.9: Air density as a function of the geographic altitude and temperature (Hau, 2013). 

Air density decreases when temperatures increases from 0 °C. The density is largest at mean sea level 

(MSL), the decrease in air density is already noticeable at a few hundred meters, as well as the change 

in the temperature range between summer and winter, so that its influence on turbine performance 

cannot be neglected (Hau, 2013). This is supported by Lynn (2012), who states that a turbine produces 

more power during winter than midsummer, in winds of the same speed. Large manufacturers such as 

Enercon and Vestas assume a standard air density of 1.225 kg/m3 in their power curves (Enercon, 2015; 

Vestas, 2017). 

As a turbine extracts energy from the wind, it leaves behind a wake with reduced wind speeds and 

increased levels of turbulence (Burton et al., 2001). Another turbine operating in this wake or deep 

inside a wind farm will suffer and produce less energy. This is especially the case for offshore turbines, 

where other turbines are the only obstacles. For onshore turbines, buildings, trees or other objects in 

the vicinity of the turbine can have a large influence on the power output.  
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Figure 2.10: Wind speed, power and turbulence effects downstream of a building (Manwell et al., 2009). 

In Figure 2.10 the change in available power and turbulence is illustrated in the wake of a sloped-roof 

building. At a distance of 5 times the height of the building (5 hs), the wind power is decreased by 43% 

mainly due to an increase in turbulence and a decrease in wind speed. At larger distances the 

turbulence reduces and wind speeds increase again which results in a smaller loss in wind power 

(Manwell et al., 2009). Besides buildings and other manmade objects, wooded inland regions and 

mountainous areas have an impact on the annual energy yield as well (Hau, 2013). It is difficult to 

estimate flow conditions in complex terrain in detail. The flow field is affected by topographic shapes 

such as slopes or depressions. Depending on wind direction, wooded inland areas cause variable 

vertical wind shears (Hau, 2013). Seasonal changes need to be accounted for also, during summer the 

trees have a larger collection of leaves in comparison to the winter, which affects wind flow differently. 

Each location has its own specific air flow conditions, which have to be examined carefully when 

estimating annual energy yield. However, from the point of view of the practical operation of the wind 

turbine, the influence of turbulence on the energy yield is, as a rule, not severe (Hau, 2013).   

Apart from the turbulence of the wind, other weather-related factors can influence the power output 

of wind turbines also. Primarily, icing of the rotor blades at temperatures below zero can alter the 

aerodynamic profile of the blades significantly (Hau, 2013). However, due to safety reasons the turbine 

has to be turned off so there is no sense in taking its influence on the power curve into consideration. 

The influence of snowfall or long-lasting rain can have a more practical significance. According to Hau 

(2013), recent studies have shown that the surface roughness of the rotor blades changes due to the 

rain, which can result in power losses.  

Another factor that influences the surface roughness of the rotor blades is soiling. After a certain 

operating period, rotor blades exhibit soiling phenomena (Hau, 2013). The dirt on the surface of the 

blades is produced after long periods of dryness and high temperatures in summer. During this time 

there are more dust and insects in the air, which can stick to the blades. Soiling is not only dependent 

on the weather, but also on the site. Extreme conditions are observed in desert-like conditions. A 

prolonged operation with badly soiled rotor blades leads to a great loss in energy yield (Hau, 2013). 

2.4 Forecasting wind power production 
In this section we look into which forecasting method is best suited for this project. We discuss some 

promising wind power forecasting approaches used in literature and what type of input data are 
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used for these approaches. We focus on day ahead wind power forecasting, since that is the 

forecasting horizon that we use in this research.   

2.4.1 Forecasting approaches for wind power production 
When considering forecasting methods for power production of wind turbines, a classification of 

forecasting horizon needs to be made. Forecasting serves different purposes for different time-scales, 

for 8 hours-ahead the main purpose is real-time grid operations, while multiple-days-ahead one of the 

main purposes is maintenance planning (Wang et al., 2011). Table 2.1 shows the classification of wind 

power forecasting and its applications: 

Time-scale Forecast horizon Applications 

Immediate-short-term 8 hours-ahead - Real-time grid 
operations 

- Regulation actions 

Short-term 
 

48 hours-ahead - Economic load dispatch 
planning 

- Load reasonable 
decisions 

- Operational security in 
spot market 

Long-term Multiple-days-ahead - Maintenance planning 
- Operation management 
- Optimal operating cost 

Table 2.1: Classification of wind power forecasting and its applications (Wang et al., 2011). 

In this research, we use wind power forecasting for operational security in the spot market. Besides 

classification based on the prediction horizon, wind power forecasts can also be classified based on 

their methodology. Here, the physical approach, statistical approach or a combination (hybrid 

approach) can be taken. 

Short term wind power forecasting requires predictions of meteorological variables from Numerical 

Weather Prediction (NWP) models as input. The physical and statistical approaches differ in how they 

translate meteorological predictions into power production forecasts.  

The physical approach focuses on the description of air flow around the turbine and uses the 

manufacturer’s power curve for estimating power production. The core idea of the physical approach 

is to refine the NWPs by using physical considerations about the terrain such as roughness, orography 

and obstacles (Wang et al., 2011). The manufacturer’s power curve is used to translate the refined 

NWP data into power production forecasts.  

The statistical approach is based on a vast amount of historical data to capture the relation between 

meteorological forecasts or historical meteorological measurements and historical power production. 

It does not use physical considerations at the turbine site (Wang et al., 2011). The hybrid approach 

combines the physical and statistical methods and tries to use the advantages of both methods. 

According to Giebel (2003) and Landberg et al. (2003), the various forecasting approaches can be 

classified according to the type of input. This is illustrated in Figure 2.11 and Table 2.2: 
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Figure 2.11: Input sources for forecasting wind power production (Giebel, 2003). 

The various forecasting approaches can be classified according to the type of input that is used. All 

models involving Meteo Forecasts have a horizon that is limited by the NWP model (usually 48 hours). 

Models that use online production data use Supervisory Control and Data Acquisition (SCADA) systems. 

Models that use terrain specific data use information about terrain complexity, obstacles, orography 

and turbine specifications to enhance the forecast accuracy. 

Input Approach Horizon 

1 Statistical  < 6 hours 

2 Physical/statistical > 3 hours 

2 + 3 Physical > 3 hours 

1 + 2 Statistical - 

1 + 2 + 3 Combined - 

Table 2.2: Forecasting approach with different input data (Giebel, 2003). 

Table 2.2 illustrates that different approaches should be taken for different input data from Figure 

2.11. The horizon at which good results can be achieved also differs for each approach and input 

combination. The approach should be chosen according to the data that are available and the horizon 

to be forecast (Giebel, 2003). 

Statistical approach 

Statistical prediction methods include linear and non-linear regression models, but also autoregressive 

and black-box type models. Black-box type models include most Artificial Intelligence (AI) based 

models like Artificial Neural-Networks (ANN) and Support Vector Machines (SVM) (Foley et al., 2012). 

These are called black-box models, because not even the designers can analyze what is happening 

inside the model. The linear and non-linear regression models involve estimating parameters based on 

historical data, it is essential to choose the right meteorological variables and use suitable models. 

Lastly, some statistical methods include an autoregressive part. Methods such as Auto-Regressive 

Integrated Moving Average Model (ARIMA), the Box-Jenkins methodology and Kalman filters are used 

(Wang et al., 2011). However, this requires the use of online data from SCADA systems. The use of 

online data with autoregressive methods improves the forecasts up to 6 hours ahead (Giebel, 2003). 

However, in the short-term horizon (up to 48 hours) wind speed forecasts, the influence of 

meteorological predictions becomes more important and the use of NWP models becomes essential 

(Foley et al., 2012). 
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Physical approach 

Physical models tailor the predictions from NWP models to the turbine site by using a detailed 

description of the terrain. The use of 3D Computational Fluid Dynamics (CFD) models allows physical 

models to accurate compute the air flow at the turbine site (Lange & Focken, 2006). Along with the 

manufacturer’s power curve, this leads to power production forecasts. Most physical models use 

Model Output Statistics (MOS) to avoid systematic forecasting errors and to correct the predicted 

power output of the manufacturer’s power curve (Foley et al., 2012; Giebel, 2003). MOS can be used 

to avoid systematic forecasting errors in production forecasts. It involves the use of historical weather 

predictions and historical power production to adjust the manufacturer’s power curve. 

According to Giebel (2003), sub-models for orography and surface roughness were not always able to 

improve the results. However, the use of MOS was deemed useful. A large influence regarding the 

power curve was found. The theoretical power curve given by the manufacturer and the power curve 

found from the data proved to be rather different in many cases. Even the power curve estimated from 

different years showed strong differences. Nevertheless, the largest influence on the forecast error 

originated from the NWP model itself (Giebel, 2003).  

2.5 Power curve modelling techniques 
Power curve modelling techniques are used to model the relationship between wind speed and wind 

power production. This is a form of simple regression, since only one predictor is used. Wind speed 

conversion to wind power through Wind Turbine Power Curve (WTPC) modelling is a key pillar of any 

wind power prediction model (Marciukaitis et al., 2017). The easiest way to do this is to use theoretical 

(manufacturer’s) wind power curve. However, in most cases this leads to additional errors due to 

differences in theoretical and real-life wind power measurement data. Many different mathematical 

modeling techniques for WTPC are available. Literature classifies these techniques into parametric 

techniques and non-parametric techniques (Lydia et al., 2014).  

 

Figure 2.12: WTPC modelling techniques (Lydia et al.,  2014). 

Each turbine has a different power curve depending on model type and environmental factors like 

orography, site turbulence and complexity of terrain. Therefore, accurately modelling the power curve 

for power output prediction is essential (Marciukaitis et al., 2017). Figure 2.11 shows an overview of 

techniques, these are not all techniques that are available in the literature. We highlight some 
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techniques that show promising results according to the literature. Parametric techniques are mostly 

used in the physical approach, while non-parametric techniques are often used in statistical 

approaches. First, we focus on the parametric modeling techniques, after this we discuss the non-

parametric techniques.  

2.5.1 Parametric techniques 
Parametric techniques are based on solving mathematical expressions. These techniques are often 

used in the statistical approach to estimate the power curve. Some techniques are only able to 

calculate a part of the power curve, which is shown in Equation 2.3. The actual power output, P(v), can 

be expressed as given below (Carrillo et al., 2013): 

𝑃(𝑣) = {

         0,                                 𝑣 < 𝑣𝑐𝑖, 𝑣 > 𝑣𝑐𝑜
𝑞(𝑣),                            𝑣𝑐𝑖 ≤ 𝑣 ≤ 𝑣𝑟
𝑃𝑟,                                  𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑐𝑜

      (2.3) 

where: 

𝑣 = wind speed in m/s 

𝑣𝑐𝑖 = cut-in wind speed in m/s 

𝑣𝑐𝑜 = cut-out wind speed in m/s 

𝑣𝑟 = rated wind speed 

𝑃𝑟 = rated power 

Here, q(v) is the variable region between the cut-in speed and the rated speed at which rated power 

is reached. This distinction has to be made, since some techniques focus on approximating this part of 

the power curve instead of the entire curve. The most typical mathematical equations for representing 

q(v) are the polynomial power curve, exponential power curve and approximate cubic power curve 

(Carrillo et al., 2013). All of the equations listed in this subsection, except for the approximate cubic 

power curve, are used for curve fitting, which means the parameters have no physical meaning. 

Approximate cubic power curve 

The cubic power curve is estimated by assuming the power coefficient (Cp) is equal to the maximum 

value of the effective power coefficient (Cp,max) of the turbine type. The term effective means that 

electrical and mechanical losses are included in this coefficient. The resulting equation is: 

𝑞(𝑣) =
1

2
𝜌𝐴𝐶𝑝,𝑚𝑎𝑥𝑣

3          (2.4) 

This equation is similar to Equation 2.2. To be able to calculate the resulting power output, the air 

density, area of the swept rotor and the maximum power coefficient have to be known. Of course, the 

entire power curve can also be calculated using this equation, whether or not this impacts the results 

negatively is not certain. The approximate cubic power curve showed the best results according to 

Carrillo et al. (2013) and Lydia et al. (2014). However, Thapar et al. (2011) argue that models based on 

Equation 2.2 are cumbersome and are not suitable for accurately calculating hourly energy production. 

Polynomial power curve 

Polynomial functions can be used to approximate both the non-linear part of the power curve as well 

as the entire curve. Which part of the curve is estimated depends on the degree of the polynomial, the 

polynomial function is expressed as follows: 
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𝑃(𝑣) = 𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3 +⋯+ 𝑎𝑛𝑣
𝑛         (2.5) 

Here, n is the order of the polynomial and 𝑎𝑛 are the parameters of the polynomial function to be 

estimated. Among the polynomial functions, the quadratic (n=2) power curve showed the worst results 

when estimating 𝑞(𝑣) (Carrillo et al., 2013). The ninth-order polynomial showed the most promising 

results when estimating the entire curve 𝑃(𝑣) (Lydia et al., 2014).  

Exponential power curve 

Exponential functions are used in literature to estimate the power curve. A lot of adaptations of these 

kinds of functions are used. Recently, Marciukaitis et al. (2017) used the following function to estimate 

the entire curve: 

𝑃(𝑣) = 𝑃𝑟 (1 + (
𝛽

𝑣
)
𝛼
)
−𝑦

,            𝛼, 𝛽, 𝑦 > 0       (2.6) 

Here, 𝛽, 𝛼, and 𝑘 are positive parameters which have to be estimated. A lot of different other 

exponential functions have been used in literature, this function yielded the best results after cross-

validation according to Marciukaitis et al. (2017). They claimed that this model outperforms the 

polynomial and approximate cubic power curve functions. 

Logistic power curve 

The shape of the power curve can be approximated by using a logistic expression with varying 

parameters. Lydia et al. (2013) experimented with four and five parameter logistic expressions 

successfully. The four parameter logistic function is expressed as follows:  

𝑃(𝑣) = 𝛼 (
1+𝑚𝑒

−
𝑣
𝜏

1+𝑛𝑒
−
𝑣
𝜏

)          (2.7) 

Parameters 𝛼, 𝑚, 𝑛, and 𝜏 have specific ranges giving the function favorable results. The five parameter 

logistic function is expressed as follows: 

𝑃(𝑣) = 𝑑 + (
𝑎−𝑑

(1+(
𝑣

𝑓
)
𝑏
)
𝑔) ,               𝑓, 𝑔 > 0        (2.8) 

The five parameter logistic function showed the best results of the parametric functions (Lydia et al., 

2013). However, this method was not compared to the exponential, polynomial or approximate cubic 

power curve. It did outperform some non-parametric techniques like neural networks, fuzzy logic and 

data mining algorithms. 

2.5.2 Non-parametric techniques 
Several non-parametric techniques are used to find the relationship between the input wind speed 

data and output power. We highlight the techniques that are most widely used in the literature and 

show the most promising results. Most of these techniques are used in the statistical approach. These 

techniques are far more complex than their parametric counterparts, therefore we only give a short 

description of each. 

Artificial neural networks 

An Artificial Neural Network (ANN) is an information-processing model simulating the biological 

nervous system (Lydia et al., 2014). It has the capacity to derive meaning from complicated and 

imprecise data and extracts patterns and trends that are too complex to be identified by humans. Lydia 
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et al. (2014) mentioned three ANNs that were widely used, Generalized Mapping Regressor (GMR), 

feed forward Multi-Layer Perceptron (MLP) and a General Regression Neural Network (GRNN). 

Fuzzy methods 

Fuzzy logic is a multi-valued logic which deals with approximate reasoning. Lydia et al. (2014), who 

made a comprehensive review on WTPC modeling techniques, distinguishes three types of fuzzy 

methods, fuzzy cluster center method, fuzzy c-means clustering and subtractive clustering. Fuzzy 

cluster center method clusters data using a clustering algorithm, the accuracy of the model increases 

with the number of clusters. The performance of the fuzzy cluster center method is the best out of the 

fuzzy methods.  

Data mining algorithms 

Data mining is the process of analyzing data present in huge databases and extracting valuable 

information and patterns. For most wind farms, huge volumes of data are available which presents 

opportunities for the application of data mining algorithms (Lydia et al., 2014). Non-parametric models 

of a WTPC have been obtained using five data mining algorithms,  random forest, Multi-Layer 

Perceptron (MLP), M5P tree, boosting algorithm and k-Nearest Neighbor (k-NN). The last algorithm 

mentioned yielded the best results. 

2.5.3 Summary of WTPC modeling techniques 
Models based on the basic concept of power available in the wind, like the approximate cubic power 

model do not give accurate results. Models based on the historic wind speed-power data of a wind 

turbine using curve-fitting techniques perform better. These models include the polynomial, 

exponential and logistic power curve models. Out of the polynomial functions, the ninth-degree 

polynomial had the most accurate results. The non-parametric models give accurate results as well; 

however, these are not desirable because they are complex to implement due to their underlying 

algorithms. Lydia et al. (2013) used four optimization algorithms for parameter estimation with logistic 

parametric models. These algorithms included a genetic algorithm (GA), evolutionary programming 

(EP), particle swarm optimization (PSO) and differential evolution (DE). The five parameter logistic 

function got the best results when using the DE algorithm. According to Lydia et al. (2013), the five 

parameter logistic function using the DE algorithm outperforms the non-parametric techniques. It is 

not clear whether or not the logistic power curve techniques outperform the polynomial or 

exponential models. 

2.6 Regression models 
In Section 2.5, we discussed a variety of WTPC models, the parametric models are a form of simple 

regression. Regression models are causal models that assume the variable to be forecast (dependent 

variable) is somehow related to other variables (independent variables or predictors). These 

relationships take the form of a mathematical model, which can be used to predict future values of 

the dependent variable. Depending on the nature of the relationship, the forecaster may develop a 

linear or a nonlinear mathematical model (Hoshmand, 2009). In this section, we discuss several 

regression models: simple linear regression, multiple linear regression and nonlinear regression. 

2.6.1 Simple linear regression 
In case of simple linear regression, we are interested in the relationship between one predictor (X) and 

the dependent variable (Y). The value of the predictor is used to predict the value of the dependent 

variable, this is called a bivariate relationship (Hoshmand, 2009). For example, an economist might be 

interested in the effect of personal income (independent, X) on customer expenditure (dependent, Y). 

The simplest model to describe the relationship between variable X and Y is a straight line, which is 
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called a linear relationship. The linear relationship between the two variables X and Y can be expressed 

with a simple linear equation: 

𝑌 = 𝑎 + 𝑏𝑋 +  𝜀          (2.9) 

where: 

Y  = dependent variable 

X  = independent variable 

𝑎 = regression constant  

𝑏 = regression coefficient  

𝜀 = error term  

An error term is added, because most observations will not be on the regression line. The error term 

captures the difference between the observed value of Y and the predicted value of Y. The parameters 

𝑎 and 𝑏 are estimated so the average error term is zero. To calculate the parameters used in the 

regression model, the least squares method can be used. This is a standard method in regression 

analysis called least squares regression. The objective of the least squares method is to minimize the 

Sum of Squared Errors (SSE). This can be done by minimizing the following objective function: 

𝑆𝑆𝐸 = ∑ (𝑌𝑒(𝑖) − 𝑌𝑎(𝑖))
2𝑁

𝑖=1          (2.10) 

In Equation 2.10, 𝑌𝑎(𝑖) is equal to the actual value of Y for observation i, 𝑌𝑒(𝑖) is the predicted value 

of Y for observation i of the used model. The advantage of this method of parametrization is its 

simplicity. Most statistical packages use optimization algorithms to calculate the parameters that 

minimize the loss function shown in Equation 2.10. To evaluate how well the regression model fits the 

observed data, the coefficient of determination (R²) can be used. This is a statistical measure that 

indicates the percentage of the total variance that can be explained by the model (Hoshmand, 2009). 

However, we should exercise caution with the interpretation of the coefficient of determination. The 

simple linear regression model cannot always be used. The model is based on assumptions that must 

be met before we can properly interpret the R² statistic. For simple linear regression the following 

assumptions must be met: 

- Normality of errors. 

- Linearity. 

- Homoscedasticity. 

- Independence of errors. 

Normality requires the errors to be normally distributed with a mean of zero. Linearity means that the 

relationship between the dependent and independent variable is linear. Also, the regression equation 

should be linear in the parameters. The assumption of homoscedasticity requires that the variation 

around the line of regression is constant for all values of X. This can be checked by plotting the residuals 

(errors) against all values of X. Lastly, the independence of errors assumption requires that in the 

population, the residuals should be independent for each value of X (i.e. the residuals may not show 

autocorrelation). Violations of independence especially arise in time-series regression models. The 

residuals can be plotted against time to check whether this assumption is valid, if this is not conclusive, 

a Durbin-Watson test can be conducted. 
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2.6.2 Multiple linear regression 
In the previous section, we looked at regression using a single predictor. However, in practice a lot of 

dependent variables can be explained using multiple predictors. This can be done by expanding the 

simple linear regression model into multiple linear regression. Multiple linear regression allows us to 

include more information in the model (Hoshmand, 2009). However, this does not necessarily make 

the regression model more accurate. The regression equation is quite similar to that of simple linear 

regression: 

𝑌 = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 +⋯+ 𝑏𝑛𝑋𝑛 +  𝜀      (2.11) 

where: 

Y   = dependent variable 

𝑋1, … , 𝑋𝑛  = independent variables 

𝑎, 𝑏1, … , 𝑏𝑛 = regression coefficients 

𝜀  = error term  

The method for parameter calculation is the same as for simple linear regression. Least squares can be 

used to calculate the regression coefficients. The R² statistic is interpreted similarly as with simple 

linear regression, but now tells us about the amount of variance that is explained by several predictors 

instead of one. However, one should exercise caution with the interpretation of this statistic since 

several assumptions must be met. Violations of these assumptions may present difficulties when using 

a regression model for forecasting purposes (Hoshmand, 2009). Multiple linear regression has one 

more assumption than simple linear regression, because we are dealing with multiple predictors. The 

extra assumption states that there should be no multicollinearity between the predictors. The 

predictors should not be correlated to each other. The other assumptions of normality of errors, 

linearity, homoscedasticity and independence of errors should also be met when using multiple linear 

regression. 

2.6.3 Nonlinear regression 
Nonlinear regression extends linear regression for use with a much larger and more general class of 

functions. Almost any function that can be written in closed form can be incorporated in a nonlinear 

regression model. Unlike linear regression, there are very few limitations to the way parameters can 

be used in the functional part of a nonlinear regression model (Bates & Watts, 2008). In practice, a lot 

of relationships between dependent and independent variables cannot be described properly with a 

function that is linear in the parameters. A nonlinear model is any model of the basic form: 

𝑌 = 𝑓(𝑋𝑖; 𝑏𝑖) +  𝜀          (2.12) 

where: 

Y   = dependent variable 

𝑋1, … , 𝑋𝑛  = independent variables 

𝑏1, … , 𝑏𝑛 =  regression coefficients 

𝜀  = error term  

𝑓(𝑋𝑖; 𝑏𝑖) = nonlinear function with predictors 𝑋𝑖  and parameters 𝑏𝑖 
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Equations 2.8, 2.9 and 2.10 are examples of functions that are nonlinear in both the variables and the 

parameters. Therefore, the linearity assumption of linear regression is not met and we should not use 

the R² statistic to assess the goodness of fit. Polynomial functions shown in Equation 2.5 are linear in 

the parameters. Therefore, we can use linear regression as long the assumptions for linear regression 

are met. If this is not the case, we should be cautious with the interpretation of the R² statistic. 

When using the method of nonlinear least squares, the way in which the unknown parameters in the 

function are estimated is conceptually the same as it is in linear least squares regression. Parameters 

are calculated so the total SSE is minimized. However, the major cost of moving to nonlinear least 

squares regression is the need to use iterative optimization procedures to compute the parameter 

estimates (Bates & Watts, 2008). With functions that are linear in the parameters, the least squares 

estimates of the parameters can always be obtained analytically, this is not the case for nonlinear 

models. The use of iterative procedures requires the user to provide starting values for the unknown 

parameters before the software can begin the optimization. The starting values must be reasonably 

close to the as yet unknown parameter estimates or the optimization procedure may not converge. 

Bad starting values can also cause software to converge to a local minimum rather than the global 

minimum (Bates & Watts, 2008). In Subsection 2.5.3, we discussed some optimization algorithms that 

were used by Lydia et al. (2013).  

If the nonlinear model can be transformed into a linear model, the user should always try this first and 

use linear regression instead of nonlinear regression (Hoshmand, 2009). When the assumptions for 

linear regression hold true for the transformed model, the R² statistic can be properly interpreted for 

the transformed model. However, transforming the model back to its original state means we cannot 

interpret the R² statistic that belongs to the transformed model (Frost, 2014). This is because the 

underlying assumptions for R² are not true for the original nonlinear model. Frost (2014) advocates the 

use of the Standard Error of Regression (S), also called the standard error of estimate by Hoshmand 

(2009). This statistic can be used for both linear and nonlinear regression models. We discuss this 

statistic in Section 2.7. 

2.7 Measuring forecast accuracy 
The most important criteria for assessing the accuracy of a forecasting model is the model accuracy. 

In this section we provide a list of accuracy metrics that is commonly used by researchers. In this list, 

𝑌𝑎(𝑖) is the actual value of Y of the ith observation, 𝑌𝑒(𝑖) is the expected value of Y forecasted by the 

model,  𝑌𝑎 is the mean value of the actual observations of Y, N is the total number of observations and 

p is the number of parameters. The list consists of the Relative Error (RE), Mean Absolute Error (MAE), 

symmetric Mean Absolute Percentage Error (sMAPE), Normalized Mean Absolute Percentage Error 

(NMAPE), Root Mean Squared Error (RMSE), the Coefficient of Determination (R²) and lastly, the 

Standard Error of Regression (S). 

𝑅𝐸 = |
𝑌𝑒(𝑖)−𝑌𝑎(𝑖)

𝑌𝑎(𝑖)
|  × 100%         (2.13) 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑌𝑒(𝑖) − 𝑌𝑎(𝑖)|
𝑁
𝑖=1          (2.14) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑌𝑒(𝑖)−𝑌𝑎(𝑖)|

𝑌𝑎(𝑖)
𝑁
𝑖=1  × 100%        (2.15) 

𝑠𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑌𝑒(𝑖)−𝑌𝑎(𝑖)|

(|𝑌𝑒(𝑖)|+|𝑌𝑎(𝑖)|)/2
𝑁
𝑖=1  × 100%        (2.16) 

𝑁𝑀𝐴𝑃𝐸 =  
1

𝑁
∑

|𝑌𝑒(𝑖)−𝑌𝑎(𝑖)|

𝑚𝑎𝑥𝑖=1
𝑁 𝑌𝑎(𝑖)

 × 100%𝑁
𝑖=1        (2.17) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑒(𝑖) − 𝑌𝑎(𝑖))

2𝑁
𝑖=1         (2.18) 

𝑅2 = 1 −
∑ (𝑌𝑒(𝑖)−𝑌𝑎(𝑖))

2𝑁
𝑖=1

∑ (𝑌𝑎(𝑖)−𝑌𝑎)
2𝑁

𝑖=1

         (2.19) 

𝑆 =  √
∑ (𝑌𝑒(𝑖)−𝑌𝑎(𝑖))

2𝑁
𝑖=1

𝑁−𝑝−1
          (2.20) 

The first metric in the list show the errors for a single observation, so this is not suited to measure the 

accuracy for a total sample size (Hyndman & Koehler, 2006). MAE is suited for the entire sample size 

and is very easy to interpret. However, this metric is scale-dependent, meaning that the metric will 

have higher outcomes as the scale (maximum power output) increases. RMSE has the same 

disadvantage, since it is scale-dependent as well. RMSE is also more sensitive to outliers than MAE due 

to its squared error, which led some researchers to recommend against the use of RMSE in accuracy 

evaluation (Hyndman & Koehler, 2006).  

Percentage errors like MAPE have the advantage of being scale-independent (Hyndman & Koehler, 

2006). This makes that they are frequently used to compare forecast performances across different 

data sets. However, MAPE has the disadvantage of being undefined if 𝑌𝑎(𝑖) = 0 for any observation 

or being extremely skewed if 𝑌𝑎(𝑖) is close to zero. MAPE also has the disadvantage of putting a heavier 

penalty on positive errors than on negative errors. To avoid this, the sMAPE can be used. However, 

according to Hyndman and Koehler (2006) the sMAPE is not as symmetrical as their name suggests. 

For the same value of 𝑌𝑎(𝑖), sMAPE gives a heavier penalty when forecasts are low compared to when 

forecasts are high. NMAPE has the advantage of showing the mean percentage compared to the 

maximum actual value, this makes the metric desirable since it is simple and easy to interpret 

(Hyndman & Koehler, 2006).  

The coefficient of determination, R², expresses the fraction of variance that can be explained by the 

model. R² is a statistic that gives information about the goodness of fit of a model. For example, in 

regression, R² is used to indicate how well the regression line fits the data, a value of 1 indicates a 

perfect fit, which means that 100% of the variance can be explained by the model. However, we should 

note that R² can only be used with linear regression models. The assumptions of the linear regression 

model should be met, otherwise the interpretation of R² can lead to misleading conclusions. R² should 

not be used for nonlinear regression models (Frost, 2014; Spiess & Neumeyer, 2010). 

Lastly, we discuss the standard error of regression, S, which is also called standard error of estimate 

(Hoshmand, 2009). In contrast to R², S can be used for both linear and nonlinear regression. According 

to Frost (2017), the standard error of regression is superior to the coefficient of determination for both 

linear and nonlinear regression. The S statistic is an absolute measure of the typical distance that the 

data points fall from the regression model. S is measured in the units of the dependent variable. The 

standard error of regression is interpreted like any other standard deviation. It means that if the 

dependent variable is distributed normally around the regression plane, approximately 68% of the 

values of the dependent variable fall within a range of ± S (Hoshmand, 2009). Furthermore, 

approximately 95% of the values fall within ±2S. This means that if the error terms are normally 

distributed with a mean of 0, then the statistic S can be used to calculate a 95% prediction interval 

(Frost, 2017). Frost (2017) prefers the standard error of regression over the coefficient of 

determination, because it is better at evaluating the precision of the predictions. 
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Model validation 

To validate a regression model, the dataset can be split into training data and test data. Training data 

are used to estimate parameters and the test data are used to evaluate the model accuracy. When 

calculating the forecast accuracy, always use test data that were not used when computing the 

forecasts (Hyndman, 2014). If there is a big difference in accuracy between the training data and the 

test data, then we are probably overfitting the model to the training data. 

 

Figure 2.13: A time series divided into training- and test data (Hyndman, 2014). 

The size of the test data is typically 20% of the total sample, although this value depends on the sample 

size and the forecast horizon (Hyndman, 2014). The size of the test set should be at least as large as 

the forecast horizon.  

In case of a small sample size or a short time series, we do not want to split the data since the 

conclusions we draw from the forecast accuracy measures are not very reliable due to the small data 

set. To avoid this problem, cross-validation can be used. A lot of types of cross-validation are available, 

they all have the same underlying idea. The entire dataset is split into training- and test data several 

times. Each time a different part of the dataset is used as training- and test data, cross-validation 

combines the measure of fit to derive a more accurate estimate of model performance. If the sample 

size is large, there is no need to use cross-validation. The dataset can simply be split into training and 

test data. 

2.8 Conclusion 
We conducted a literature review to attain information on how to develop a wind turbine power 

production forecasting model. We thoroughly reviewed literature about the wind resource, wind 

turbine design, power output of wind turbines, forecasting of wind power production and how we 

should measure forecast accuracy. We conclude the following: 

 Wind speed variation is very different depending on the timescale and location.  

 Hourly wind speed variation in winter months is larger than during the summer. This is 

probably due to temperature decreases during winter months. Wind speed variations during 

the year can be characterized with a Weibull distribution, which can be used to estimate total 

annual production for wind turbines. 

 Short-term (10 minutes or less) wind speed variations include turbulence and gusts. Wind 

gusts are of importance when considering peak load calculations. Turbulence is a complex 

process, which is hard to measure or predict. The effect of turbulence on the power 

production is, as a rule, not severe. 

 Most modern horizontal axis wind turbines have three blades, TSR control, blade pitch control 

and have a yawing mechanism.  

 The theoretical power output of a wind turbine is affected by the air density, swept area of 

the rotor, power coefficient and the wind speed at hub height. Air density is governed by the 

air pressure, temperature and altitude at a certain location. The power coefficient is a variable 

that is different depending on wind turbine design and wind speed, wind turbines with TSR 

control typically have a greater power coefficient at high wind speeds. 

 In practice, the power output is affected by site-related influences like surrounding buildings, 

trees or wind turbines. Also, the presence of mountains or hills has an influence on the power 

output. Therefore, wind direction can have a big influence on the power output depending on 
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the site. Maintenance has an influence as well, especially when turbines have been 

operational for many years bad maintenance (e.g. soiled rotor blades) has a negative impact 

on the power output. 

 Each wind turbine has a unique power curve; the theoretical power curve provided by the 

manufacturer is usually not very accurate. 

 The forecasting approach should be chosen according to the forecast horizon and the 

available data. For a forecasting horizon of up to 6 hours, autoregressive approaches with 

online data from SCADA systems are recommended.  

 For a forecasting horizon of up to 48 hours, meteorological predictions become essential and 

weather forecasts from NWP models should be used in combination with causal models such 

as regression or learning approaches such as neural networks. Regression has the advantage 

of being able to use multiple predictors and is desirable due to its simplicity. 

 Parametric WTPC modeling is a form of simple regression, this can either be linear or nonlinear 

regression. WTPC modeling is a key pillar in wind power forecasting, since it models the 

relationship between wind speed and wind power output. More predictors can be added to 

the model, which can improve the accuracy of the prediction. 

 MAE and RMSE are good scale-dependent error indicators; RMSE punishes larger errors more 

severely than MAE. NMAPE can be used as a scale-independent error indicator. The standard 

error of regression is very similar to the RMSE, the difference being a punishment of the 

number of parameters. 

 When interpreting the R² of linear regression models, we should check whether the underlying 

assumptions are met. The standard error of regression can be used for linear and nonlinear 

regression models. Nonlinear regression models do not rely on underlying assumptions. 
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3. Current Situation 

In this chapter we answer Sub-question 3. In Section 3.1 we look at the data that are available. In 

Section 3.2, we select the producers that are placed in the project scope. These producers are used to 

test the accuracy of the forecasting models. After this, we analyze the historical weather data for three 

KNMI weather stations in Section 3.3. The production data are compared with the historical weather 

measurements in Section 3.4. In Section 3.5, we assess the accuracy of the weather forecasts and we 

check whether the forecasts are biased. Lastly, in Section 3.6 we collaborate how and why the data are 

cleaned before ending with a conclusion. 

3.1 Available data 
The data available determines the method to be used. Therefore, we evaluate which data are available 

with regard to weather, turbine characteristics and energy production. This concerns historical 

production data and historical production forecasts from Company X, for weather data we also have 

forecasts and historical forecasts (hindcasts).   

3.1.1 Weather data 
To get historical weather data from the Netherlands, DVEP uses data from 15 weather stations located 

throughout the country. These are Koninklijk Nederlands Meteorologisch Instituut (KNMI) weather 

stations, the following locations are used by DVEP:

 Amsterdam . 

 Beek. 

 Berkhout. 

 De Bilt. 

 De Kooy. 

 Deelen. 

 Ell. 

 Gilze. 

 Groningen. 

 Hoogeveen. 

 Hupsel. 

 Lelystad. 

 Marknesse. 

 Twenthe. 

 Vlissingen.

 

Each location, based on the coordinates given by KNMI, is indicated in Figure 3.1 with a yellow marker 

(KNMI, 2000). For each location the hourly average wind speed (m/s), wind direction (°), temperature 

(°C), sum of rainfall (mm) and sum of radiation (J/cm²) are available. To measure the wind speed, an 

anemometer is used, at each location wind speed is measured at a height of 10 m. Wind speed is 

measured over periods of ten minutes with a sample each second. For wind direction, the last ten 

minutes of each hour are used to calculate the average wind direction. Here 360° represents the north, 

90° the east, 180° the south and 270° represents the west. When the wind speed is zero, there is no 

wind direction, which means there is no value available. The average temperature is measured at a 

height of 1.5 m and calculated the same way as wind speed and direction. For rainfall and radiation 

the hourly sum is used. (KNMI, 2014)  
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Figure 3.1: KNMI weather stations used by DVEP located in the Netherlands (KNMI, 2000). 

For the weather forecasts, a supercomputer is used that calculates hundreds of alternate predictions 

using  four NWP models, combining NWP models results in a forecast that is as reliable as possible. 

However, weather remains unpredictable, especially as the forecast horizon increases. Forecasts are 

available for each hour of the current day and a day ahead. Here predictions for average wind speed, 

direction, temperature and the sum of rainfall and radiation are given for each hour. Atmospheric 

pressure is not available with the forecast. The forecast locations are the KNMI weather stations listed 

above, the NWP models are downscaled to the same height as the historical measurements from the 

stations, which is 10 meters. 

To be able to compare the accuracy of Company X and the new models, we need to use historical 

forecasts (hindcasts). Company X used day ahead weather forecast from 9:00 to predict the energy 

production, we have to use day ahead weather forecasts from 9:00 as well to predict the energy 

production with the new model. For example, if we want to compare the day ahead forecast accuracy 

of Company X on and the new model on 2-7-2017, we have to use historical weather forecasts from 

9:00 on 1-7-2017. Luckily, the weather hindcasts are available for each day at 9:00. This means that for 

each day we know what the forecast was at 9:00 the previous day, we need the hindcasts from 9:00 

because they were used with the auction. Unfortunately, we only have hindcasts for the second half 

of 2017.  
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3.1.2 Wind turbine characteristics 
Each wind turbine or wind farm is connected to a connection point which has a unique EAN code. For 

each connection point we know the number of turbines and the total rated power. Most connections 

only have a single turbine, some have multiple (wind farms). Also the location and hub height are 

known. For most turbines, the brand and model are known as well. We have information about the 

length of the rotor blade and the swept area. However, we do not know whether the turbine is pitch- 

or stall controlled or whether the turbine has tip-speed ratio control. Whether the turbine has a yawing 

system is also not known, however, most modern turbines do. All turbines are HAWTs and have three 

blades. All turbines under DVEPs supervision are located onshore in the Netherlands, the province 

Flevoland hosts most of them. Friesland is second when it comes to the number of turbines and hosts 

a lot as well. The provinces Groningen, Noord-Holland, Zuid-Holland, Zeeland, Drenthe, Gelderland and 

Limburg are the remaining locations. The majority of the sites are located near coastal areas for 

efficiency purposes. 

3.1.3 Production data 
Each connection point that is connected to the electricity grid has a unique code, the EAN code. Wind 

turbines are connected to the grid with an EAN code. All turbines in a wind farm are connected to the 

same EAN. For each EAN, the number of turbines and the summed production in kilowatts per 15 

minutes is known, this can be used to calculate the summed production per hour. If a producer has a 

wind farm, we do not know the production per wind turbine. We only have the summed production 

data per 15 minutes. 

Production data are available from the start of the contract for each producer. Producers are only 

placed in the scope if they have a contract between 1-1-2015 and 1-1-2019. The day ahead predicted 

power production from Company X is available also.  

In Table 3.1 we illustrate an example of what a dataset looks like when we connect historical weather 

measurements and historical production measurements.  

Date Time Average wind 
speed (m/s) 

Average wind 
direction (°) 

Average 
temperature 
(°C) 

Production 

1-1-2015 00:00 – 01:00 … … … … 

1-1-2015 01:00 – 02:00 …  … … … 

… … … … … … 

… … … … … … 

31-12-2016 22:00 – 23:00 … … … … 

31-12-2016 23:00 – 00:00 … … … … 

Table 3.1: Example of dataset with historical weather measurements and historical production measurements. 

There are some problems with the data that should be addressed. Wind turbines have storm detection, 

which means the wind turbine shuts down in case of extreme wind speeds. This results in low 

production values when there is a very strong wind. The same goes for ice detection, at temperatures 

around the freezing point, icing of the rotor can occur. Ice detection shuts down the turbine when icing 

occurs, this leads to low production values. It is hard to see when storm or ice detection kicked in. 

Besides storm and ice detection, wind turbines are also subject to failures and maintenance. In case of 

a failure, the turbine is not operational until it is repaired, which can take days or weeks depending on 

what is broken. Maintenance usually means a turbine is not operational for several hours. Failures and 

maintenance are not logged, so we do not know when or whether they occurred.  We address these 

problems in Section 3.6 by cleaning the data. 
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Another problem with the production data is caused by multiple sources of production. Some 

producers have solar panels and wind turbines. When these are connected to the same EAN, we cannot 

distinguish between solar and wind production. However, this problem can easily be avoided by 

removing these producers from the research scope. 

3.1.4 Overview of available data 
In this subsection we provide an overview of available data. This helps us in choosing our approach in 

Chapter 4.  

Data 2015-2017 Second half of 2017 

Historical weather 
measurements from KNMI 
stations 

X X 

Historical production 
measurements from producer 

X X 

Weather hindcasts  X 

Company X production 
hindcasts 

X X 

Weather hindcasts used by 
Company X 

  

Table 3.2: Overview of available data per period of time. 

Table 3.1 illustrates the historical weather and production measurements are available for each hour. 

The weather hindcasts and production hindcasts from Company X are available for each hour as well. 

However, Table 3.2 illustrates that weather hindcasts are only available for the second half of 2017. 

We do not have data for the weather hindcasts that are used by Company X. 

For each producer we have the following information: 

 Number of turbines. 

 Rated power per turbine. 

 Hub height and location of turbine. 

 Brand and model type. 

 Length of rotor blade. 

 Swept area of rotor. 

3.2 Producer and weather station selection 
DVEP has more than 200 wind power producers. However, for most producers we do not have 

sufficient data, since their contract is either too short or in the wrong period of time. When excluding 

the producers based on their contract period, approximately 50 producers remain. 

Unfortunately, we do not have wind measurements at hub height and at the location of the turbines. 

Therefore, the KNMI stations are used for the historical weather measurements. To make sure the 

historical measurements are as accurate as possible, we sort the producers according to their 

Euclidean distance to the closest KNMI station. Out of locations that are closest to a certain KNMI 

station we make a selection of 10 producers. The selection is based on the rated power and the 

geographical location as well. Ideally, we want producers from KNMI weather stations dispersed 

throughout the country so we can compare several locations.  Also, the sum of the rated power should 

be at least 10% of the total rated power of all producers to make sure the selection is representative. 

Factoring in all these choices, the following selection was made: 
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Producer City Numb
er of 
turbin
es 

Rated 
power 
per 
turbine 
in kW 

Total 
rated 
power 
in kW 

Nearest 
KNMI 
weather 
station 

Distance 
in 
kilomete
rs 

Type 
Turbine 

Swept 
area 
in m² 

1 Nieuw- en 
Sint 
Joosland 

2 900 1800 Vlissingen 6 Vestas 
NM900 

2124 

2 Aalten 8 2000 16000 Hupsel 14 Enercon 
E-82 

5281 

3 Lelystad 2 3000 6000 Lelystad 10 Enercon 
E115 

10515 

4 Lelystad 2 1000 2000 Lelystad 6 NEG 
Micon 
NM1000 

2827 

5 Lelystad 1 900 900 Lelystad 6 NEG 
Micon 
NM52 

2140 

6 Zeewolde 1 900 900 Lelystad 9 NEG 
Micon 
NM900 

2124 

7 Zeewolde 1 1000 1000 Lelystad 8 NEG 
Micon 
NM1000 

2827 

8 Swifterbant 6 1650 9900 Lelystad 14 Vestas 
V66 

3421 

9 Zeewolde 1 850 850 Lelystad 7 Vestas 
V52 

2124 

10 Nieuw- en 
Sint 
Joosland 

7 900 6300 Vlissingen  6 NEG 
Micon 
NM900 

2124 

Table 3.3: Selection of 10 producers used for analysis. 

We focus on three KNMI weather stations, namely those located in Lelystad, Vlissingen and Hupsel. 

The total rated power of this selection is 45.65 MW, which is approximately 12% of the rated power of 

all DVEP producers. A mix of wind farms (multiple turbines) and single wind turbines was chosen so 

these can be compared. All turbines in the selection are located onshore. DVEP feels that this selection 

is representative for the entire portfolio.  

3.3 Weather data 
In this section, we look into the wind speed and wind direction at Lelystad, Vlissingen and Hupsel in 

2015 and 2016. The weather data are gathered from KNMI weather stations and contains average 

hourly values. The values for wind speed are rounded by KNMI to bins of 0.5 m/s (e.g. 0.5, 1, 1.5, 2, 

etc.), the values for wind direction rounded to bins of 5° (e.g. 5°, 10°, 15°, etc.) with a maximum of 

360°.  

3.3.1 Wind speed 
We expect wind speeds to be different at each location. For example, locations near the coast probably 

have a higher average wind speed than inland locations. The wind speed in 2015 and 2016 at the three 

KNMI stations is distributed as follows:  
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Figure 3.2: Wind speed distribution in Hupsel, Lelystad and Vlissingen in 2015-2016. 

The three distributions all resemble a Weibull distribution, which they should according to the 

literature. We are not interested in the values of the shape parameter k for each location, since we do 

not want to estimate the annual production of a producer. We simply look at the relative frequency of 

wind speed at different locations to see whether it meets our expectations. 

The distributions do differ per location, especially at the higher wind speeds. What stands out is that 

Vlissingen’s distribution has that longest tail and is placed more to the right, which indicates a higher 

wind speed more often. Wind speed distribution in Lelystad has a shorter tail than Vlissingen and is 

placed more to the left. However, Hupsel has the shortest tail and is distributed more strongly towards 

the lower wind speeds than the other two locations. When considering the geographic locations of the 

three weather stations, this is logical. Vlissingen is located in Zeeland near the coast, which generally 

has a strong wind. Lelystad is located next to the IJsselmeer, here the wind can prevail as well, although 

to a smaller extent than near the North sea coast. Hupsel is located in Gelderland which is more inland, 

therefore it is only logical that the wind is generally weaker than at the other locations. 

3.3.2 Wind direction 
For the wind direction, KNMI shows average wind direction per hour in degrees from 0° to 360°. Here 

0° and 360° indicates that the wind came from the north, 90° the east, 180° the south and 270° the 

west. The distribution of wind direction for Lelystad, Vlissingen and Hupsel are as follows: 
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Figure 3.3: Wind direction distribution in Hupsel, Lelystad and Vlissingen in 2015-2016. 

When comparing the distribution of wind direction for the three locations, we see the same pattern 

emerging. The biggest peak is between 180° and 250° for all locations. Which means the wind most 

often comes from the southwest. For Vlissingen and Lelystad this was expected, since they are located 

near the North sea and the IJsselmeer. Hupsel on the other hand, is located in the east of the 

Netherlands, but still shows the same pattern. 

3.3.3 Wind speed per direction 
Now that we know the wind the prevailing wind direction for each location, we want to know whether 

there is a particular wind direction that has stronger winds. For this purpose, we look at the average 

wind speed per wind direction at Lelystad, Vlissingen and Hupsel.  

The average wind speed in Vlissingen is highest out of the three locations, which was expected due to 

its location. Hupsel has the lowest average wind speed across all wind directions due to its inland 

location. As far as a pattern goes, we see that the average wind speed is highest where the frequency 

is highest as well. This pattern is clearly visible for Vlissingen and Lelystad, wind is generally stronger 

when it comes from the south-west. For Hupsel the pattern is also present, however, the difference 

with other wind directions is smaller.  

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5 20 35 50 65 80 95 110 125 140 155 170 185 200 215 230 245 260 275 290 305 320 335 350

R
el

at
iv

e 
fr

eq
u

en
cy

Wind direction (°)

Wind direction frequency distribution

Hupsel Lelystad Vlissingen

https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi2pcbDkvvZAhWE_aQKHXQDDrIQjRx6BAgAEAU&url=https://www.nesoindia.org/scholarships/orange-tulip-scholarship-programme/scheme-2018-2019/university-of-twente&psig=AOvVaw3uhbref0UIkGu5x48hqZyY&ust=1521643661638927


 

Page | 38  
 

 

Figure 3.4: Average wind speed per wind direction in Hupsel, Lelystad and Vlissingen in 2015-2016. 

3.4 Production data 
In this section, we examine the production data of 2015 and 2016 for three producers, one close to 

Lelystad, Vlissingen and Hupsel. For each producer, we have production data for each quarter of the 

hour of the day. We choose Producers 1, 2, and 3 from Table 3.3 for the comparison of production 

data. The production data are transformed into hourly production data by adding the production per 

quarter. This enables us to compare the weather data with the production data. First, we analyze the 

production data with respect to wind speed. After this, we look into the production per wind direction. 

Lastly, we examine the relationship between temperature and production. 

3.4.1 Wind speed versus production 
At each location we look at the minimum, maximum and average production as percentage of rated 

power for each wind speed to see if anything stands out in the dataset. Table 3.4 illustrates the 

minimum, average and maximum production as a percentage of the rated power for each wind speed 

of Producer 3. Producer 3 is located 10 km from Lelystad and has two wind turbines of 3000 kW, which 

results in a total rated power of 6 MW. The tables for Producers 1 and 2 show a similar pattern, these 

tables can be found in Appendix B.  
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Wind 
speed 
(m/s) 

Minimum Average Maximum 

0 0% 4% 34% 

0.5 0% 3% 40% 

1 0% 5% 63% 

1.5 0% 10% 92% 

2 0% 15% 100% 

2.5 0% 19% 100% 

3 -1% 24% 101% 

3.5 -1% 28% 102% 

4 -1% 35% 102% 

4.5 -1% 38% 100% 

5 -1% 45% 102% 

5.5 -1% 50% 102% 

6 -1% 56% 102% 

6.5 0% 61% 102% 

7 0% 64% 102% 

7.5 0% 66% 102% 

8 0% 66% 102% 

8.5 0% 72% 102% 

9 0% 72% 102% 

9.5 0% 72% 102% 

10 0% 73% 102% 

10.5 30% 74% 102% 

11 0% 76% 102% 

11.5 0% 67% 102% 

12 -1% 73% 102% 

12.5 0% 76% 102% 

13 45% 76% 102% 

13.5 46% 72% 102% 

14 0% 66% 101% 

14.5 0% 45% 100% 

15 0% 30% 50% 

15.5 0% 41% 100% 

16 0% 40% 51% 

17 0% 33% 99% 

18 96% 96% 96% 

19 95% 95% 95% 

Table 3.4: Minimum, average and maximum production as a percentage of the rated power for Producer 3 using raw data. 

The production is negative sometimes, this happens around the cut-in speed most often. This is due 

to the fact that wind turbines consume power when they are starting up. When the wind speed crosses 

the cut-in speed threshold, but then drops again, the production can be negative during an hour. At 

higher wind speeds the production can be negative as well. This happens when the wind speed is 

higher than the cut-out speed, but temporarily drops so the turbine is activated shortly, which costs 

power.  

Some peculiar values are the large maxima at the wind speeds around 0 m/s. A production of 34% at 

an average wind speed of 0 m/s is impossible. This means there is an error in the data, this is probably 

due to the fact that the average wind speed at hub height was different than at the KNMI weather 

station. This would explain the large maxima at wind speeds 0,5 and 1 m/s as well. The production 

often exceeds the rated power for Producer 3. However, this is not a problem since the rated power is 

just an indication of the production at full capacity. 

At the mid-ranges of wind speed, around 8 m/s, the minima are often 0%. This can have several 

reasons. Firstly, wind turbines are scheduled for maintenance once in a while. This means they are not 

operational and the production is zero. Usually, maintenance only takes a couple of hours. Secondly, 

wind turbines are subject to random failures. Some failures can be fixed quickly and the turbine is 

operational in a couple of hours. However, some failures take weeks to fix. Lastly, when temperatures 

drop below 0 °C, icing of the rotors can occur which forces the turbines to be shut down. Unfortunately, 

we do not have historical data about failures, maintenance or icing. Therefore, we do not know when 

this occurred. Also, at wind farms we do not know how many turbines had failures, maintenance or 

icing at a certain moment. This is due to the fact that multiple wind turbines are connected to one 

EAN. When maintenance is scheduled at a wind farm, usually only one turbine is scheduled at a time. 

Failures and icing have the same problem, we do not know how many turbines are experiencing 

problems at a certain time. For example, 1 turbine has downtime while 3 are operational. 
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At wind speeds of 18 or 19 m/s, the minimum, average and maximum are the same since this only 

happened once during the two years of training data. Some average wind speed values, for example 

16.5, are missing because they never occurred in 2015 and 2016. This is illustrated in a scatterplot in 

Figure 3.5: 

 

Figure 3.5: Scatterplot of production versus wind speed in 2015-2016 for Producer 3 with 2 turbines with 6 MW total rated 
power. 

For wind speed of 10 m/s or higher, the scatterplot is more dense around 3000 kW than at 2000 or 

1000 kW. This is probably because one turbine is operating at full capacity, while the other has 

downtime due to maintenance, failure, icing or windstorms.  

When wind speeds drop below cut-in speed or rise above cut-out speed, turbines shut down. We do 

not know when or whether this happened during an hour. This can also occur several times during an 

hour. When wind speed reaches operational range again, the turbine starts again which costs power. 

The timing of these events is important, when this happens in the last minute of the hour this has little 

impact. However, when a turbine produces during the first 10 minutes and is shut down during the 

rest of the hour, summed production can be very low while the average wind speed during the hour 

was high. 
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Figure 3.6: Scatterplot of production versus wind speed in 2015-2016 for Producer 1 with 2 turbines with 1.8 MW total rated 
power. 

Figure 3.6 shows a different pattern. During wind speeds of 10 m/s or higher, both turbines of Producer 

1 have not been shut down simultaneously for longer than an hour during 2015-2016. This was not the 

case for Producer 3. We can also see that Producer 1 has a more reliable pattern for almost all wind 

speeds, the variance is smaller across the entire wind speed spectrum. This shows that wind turbine 

power curves can be very different depending on factors like location, type and maintenance. We refer 

to Appendix B for the scatterplot of production versus wind speed for Producer 2.   

3.4.2 Wind direction versus production 
For the production per wind direction, we check whether there are some wind directions that have a 

consistently poor performance. We do this by comparing the average wind speed per wind direction 

with the average production per wind direction. If there are no surrounding obstacles that block the 

wind, we would expect to see the same pattern for the production per wind direction as for the wind 

speed per wind direction. We assume that all turbines have a yawing system, so a poor performance 

in a certain wind direction should be caused by obstacles or the wake effect. The wake effect causes 

the air flow to be disturbed for turbines inside a wind farm, which lowers the overall production of the 

wind farm. If turbines of a wind farm are positioned in the form of a line, we should see reduced 

production in opposite directions, for example, 90° and 270°. Unfortunately, we have no information 

about the positioning of the turbines. 
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Figure 3.7: Average production per wind direction in 2015-2016 for Producer 1 with 1.8 MW total rated power. 

When comparing Figure 3.7 with the pattern from Vlissingen from Figure 3.4, we see roughly the same 

pattern occurring. The theoretical cubic relationship between wind speed and production would 

suggest that peaks in average wind speed would result in magnified peaks in production. At wind 

directions around 250° we can see a peak in production and wind speed, the peak for production is 

magnified, which is supported by the theoretical relationship. For Producer 1, there is no reason to 

believe there is an obstacle in the vicinity of the turbines. Around 120°, we see a depression in average 

production. However, this depression is accompanied by a low average wind speed. 

 

Figure 3.8: Average production per wind direction in 2015-2016 for Producer 2 with 16 MW total rated power. 

Figure 3.8 shows a similar pattern as the average wind speed per wind direction for Hupsel in Figure 

3.4. Around the wind direction of 120°, there is a low average production while average wind speed is 

not lower around this direction. Around 300-330°, we see the same decrease in production. This could 

also be due to an obstacle at the site, since this is a wind farm of 8 turbines, the wake effect would be 

a likely cause. The graph for Producer 3 shows a depression in production at a wind direction 160°, a 

little drop in wind speed at this direction would not account for such a big drop in production. However, 

if this drop was caused by an obstacle, the surrounding wind directions 155° and 165° would be 
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affected as well. For all other directions, the wind speed and production patterns show similarities for 

Producer 3, so there is no reason to believe the production of Producer 3 suffers from obstacles. The 

graph for Producer 3 can be found in Appendix C. 

Figures 3.7, 3.8 and C.1 indicate that wind direction can have an effect on the production of wind 

turbines. For each producer this effect is different, because each location is different. Production 

patterns of Producers 1 and 3 show no signs of obstacles reducing production. Producer 2, however, 

does have some wind directions with lower production than would be expected. 

3.4.3 Temperature versus production 
Temperature is related to the air density, this relationship can be expressed using the ideal gas law: 

𝜌 =  
𝑝

𝑅𝑑𝑟𝑦𝑇
            (3.1) 

where: 

𝜌 = air density in kg/m³ 

𝑝 =  atmospheric pressure in Pascal 

𝑇 = absolute temperature in Kelvin 

𝑅𝑑𝑟𝑦 = specific gas constant for dry air in J/(kg·K) (=287,058) 

As the temperature decreases, the air density rises. When air density rises, the production of turbines 

should rise according to the theoretical relationship introduced in Equation 2.1. Unfortunately, we do 

not have data for the atmospheric pressure, so we cannot calculate the air density. However, the 

temperature can be used as a proxy, since it is clearly connected to air density. In Appendix I, the 

correlation matrices for Producers 1 ,2 and 3 are illustrated. For Producers 1 and 2, the correlation 

between temperature and production is -0,139 and -0,104 respectively. Producer 3 has a correlation 

of 0,025, all three correlations are significant at a 95% confidence level. According to the theoretical 

relationship in Equation 3.1, the correlation should be negative, which is the case for Producers 1 and 

2. In addition to correlations, we also look at the average production plotted versus temperature.  

 

Figure 3.9: Average production versus temperature in 2015-2016 for Producer 1 with 1.8 MW total rated power. 
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To see whether temperature has an influence on the production we should see whether there is a 

relationship between temperate and wind speed. Therefore, we look at the graph of average wind 

speed versus temperature. 

 

Figure 3.10: Average wind speed versus temperature in 2015-2016 in Vlissingen. 

The temperatures with the highest average production are also the temperatures with the highest 

average wind speed. At temperatures around or below the freezing point we see a decrease in 

production, the average wind speed is lower at these temperatures as well. However, this would not 

account for such a decrease in production. The most likely cause of this decrease is the combination 

of low wind speeds and icing. During high temperatures, the wind speed decreases a little, while 

production decreases far more. This effect is supported by the theoretical relationship described in 

Equation 3.1. Producers 2 and 3 show the same pattern, these graphs can be found in Appendix D. 

3.5 Weather forecast accuracy 
In this section, we look at the weather hindcast data. Hindcasts are historical forecast, this means they 

are forecasts which were made in the past. We only have hindcast data from the last 6 months of 2017. 

We look at day ahead hindcasts from 9:00 in the morning, these historical forecasts have a forecast 

horizon of 15-38 hours ahead. We use this horizon, since DVEP uses the same forecasts for the auction. 

We want to see whether there is a systematic error (bias) in the weather hindcasts. Therefore, we 

compare the hindcasts with the historical weather measurements. We do this for Vlissingen, Hupsel 

and Lelystad. For each location, we evaluate the forecast error in wind speed, wind direction and 

temperature per hour. These measurements are chosen, because in Section 3.4 we could see they 

affected the production. The forecast error is calculated by subtracting the actual measurement from 

the forecast value, so a negative error means the measurement was greater than the forecast. We use 

statistical tests to see whether the average forecast error is significantly different from zero. We do 

not test the average error for each hour separately, since this would multiply the number of tests by 

24. Although, we do look at the average forecast error for each hour. Lastly, we look at the forecast 

accuracy across the forecast horizon for each location. If a bias is present, we can adjust weather 

forecast values to increase the production forecast accuracy. 

3.5.1 Vlissingen 
In Section 3.3, we saw that the wind speed in Vlissingen is generally higher than at the other locations. 

This should make forecasting wind speed more difficult, the absolute values are higher, which probably 
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results in a larger variance. However, maybe the NWP models that are used in the forecasts are better 

at forecasting coastal sites. We are most interested in the error in wind speed forecasting, since this is 

the key predictor for wind turbine power production. However, we would like to see whether there 

are systematic errors in wind direction and temperature forecasting as well.  

 

Figure 3.11: Scatterplot of wind speed forecast errors in Vlissingen during the last 6 months of 2017. 

Ideally, the forecast errors should have a mean of 0. Looking at Figure 3.11, we can see that the errors 

are more concentrated below the x-axis, indicating the average error is smaller than zero. The T-test 

in Appendix J confirms that at a 95% confidence level, the mean of wind speed forecast error in 

Vlissingen is smaller than 0 (p=0.000). This means there is a negative bias in the wind speed forecasts 

in Vlissingen. The mean wind speed forecast error in Vlissingen is -0.99 m/s, meaning the forecast is 

structurally ± 1 m/s too low. 

 

Figure 3.12: Variance and average of wind speed forecast error in Vlissingen during the last 6 months of 2017. 
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In Figure 3.12, the variance and average forecast error are plotted for the entire forecast horizon. We 

can see that for the entire forecast horizon, the average error is below zero. When looking at the 

variance of wind speed forecast errors, we would expect the variance to increase when the forecast 

horizon increases. The trend line of the variance confirms this. 

Now, we look at the wind direction forecast error in Vlissingen. While evaluating the forecast error for 

wind direction, we have removed observations between 350-360° and between 0-10°. These 

observations give misleading results, since 360° and 0° both represent the same wind direction. For 

example, a forecast of 355° and a measurement of 5° would give a forecast error of 350°, while the 

actual error is only 10°. Removing these misleading values resulted in Figure 3.13. 

 

Figure 3.13: Average wind direction forecast error in Vlissingen during the last 6 months of 2017. 

We do have reason to believe there is a bias in the wind direction forecast, since the entire forecast 

horizon has a positive average forecasting error. There is statistical evidence that the mean wind 

direction forecast error in Vlissingen is greater than 0. At a 95% confidence level, the value of p=0.000, 

which means there is a probability of at least 95% that the wind direction forecast error in Vlissingen 

is greater than 0. The average error is 7.87°, meaning the forecast is systematically too high. We have 

no idea why the wind direction forecast error is smaller as the forecast horizon increases. We would 

expect the error to increase as the horizon increases.  

The average forecast error for temperature in Vlissingen is illustrated in Figure 3.14. 
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Figure 3.14: Average temperature forecast error in Vlissingen during the last 6 months of 2017. 

The average error for temperature does show a systematic pattern. However, the average error is not 

positive or negative over the entire horizon. We have no explanation for the pattern in the 

temperature forecast error in Vlissingen. The forecast error has an average of -0.38. This average is 

significantly smaller than 0 with p=0.000 at a 95% confidence level. 

3.5.2 Hupsel 
Hupsel is located in Gelderland, this is far more inland than Vlissingen. In Section 3.3, we already saw 

that the wind speed pattern was different. Now, we look into the forecast pattern, to see whether 

there is a systematic error. 

 

Figure 3.15: Variance and average of wind speed forecast error in Hupsel during the last 6 months of 2017. 

The average wind speed forecast error is positive for the entire forecast horizon. This could indicate a 

bias. The average forecast error is 1.19 m/s, this average is significantly greater than 0 with p=0.000 

(95% confidence level). 

The variance of wind speed forecast error is smaller than in Vlissingen. This can be expected, since the 

absolute wind speed is higher in Vlissingen. Larger absolute values increases the overall variance, a 
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larger variance means that it is harder to predict. The trend line indicates that the forecast error 

variance increases as the forecast horizon increases. We also saw this in Vlissingen. This is logical, 

because weather forecasts tend to get worse as the forecast horizon increases. Surprisingly, the 

forecast error does not increase as the horizon increases. 

Looking at the forecast error for wind direction in Hupsel, we see the following pattern emerge: 

 

Figure 3.16: Average wind direction forecast error in Hupsel during the last 6 months of 2017. 

Again, we removed the observations between 0-10° and 350-360° to prevent misleading results. In 

Figure 3.16, we can see that the entire forecast horizon contains positive average wind direction 

forecast errors. The suspected bias is confirmed by the T-test in Appendix J. The average wind direction 

forecast error in Hupsel of 16.96° is significantly greater than 0 with p=0.000 (95% confidence level). 

The graph for average temperature forecast error in Hupsel looks roughly the same as in Vlissingen, 

we cannot explain the pattern. The average temperature forecast error in Hupsel of -0.06 °C is 

significantly different from 0 with p=0.002 (95% confidence level). This  means there is a small negative 

bias in the forecast. We refer to Appendix E for the graph. 

3.5.3 Lelystad 
Lelystad is located near the IJsselmeer, which generally has a stronger wind than Hupsel, but not as 

strong as in Vlissingen. We expect this would lead to a smaller variance of forecast errors than in 

Vlissingen, but a larger variance than in Hupsel. 
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Figure 3.17: Variance and average wind speed forecast error in Lelystad during the last 6 months in 2017. 

Figure 3.17 shows that the variance of wind speed forecast errors in Lelystad is approximately the same 

as in Hupsel. The variance does increase as the forecast horizon increases. With respect to a systematic 

error, the average error is concentrated around zero, so there is no reason to believe there is a 

systematic error. The T-test shows that the average wind speed forecast error in Lelystad of 0.12 m/s 

is significantly greater than 0 with p=0.000 (95% confidence level). This indicates there is a small 

positive bias in the wind speed forecast in Lelystad.  

When looking at the wind direction forecast error for Lelystad, we removed observations between 0-

10° and 350-350° again. 

 

Figure 3.18: Average wind direction forecast error in Lelystad during the last 6 months in 2017. 

Like in Vlissingen and Hupsel, the entire forecast horizon has a positive average wind direction error. 

Also, the error decreases near the forecast horizon of 25 hours, just like in Vlissingen, we cannot 

explain this. The average wind direction forecast error in Lelystad is 18.36°, this is significantly different 

from 0 with p=0.000 (95% confidence level). 
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Lastly, we look into the temperature forecast error in Lelystad. This graph can be found in Appendix E. 

The average error is concentrated around zero, just like with the temperature forecast in Vlissingen 

and Hupsel, there is no reason to believe there is a bias in the forecast. However, the T-test shows 

there is a small bias in the temperature forecast in Lelystad. The average of 0.09 °C is significantly 

different from 0 with p=0.000 (95% confidence level). 

3.5.4 Summary of bias analysis 
In this subsection, we provide a summary of the bias analysis of the previous subsections. The values 

displayed in Table 3.5 are obtained with a one-sample T-test using the statistical package SPSS. For 

the output of the T-tests, we refer to Appendix J. 

Day ahead forecast  Average error (Forecast – 
Actual) 

Significantly different than 0? 
(95% confidence level) 

Wind speed in Vlissingen -0.99 m/s Yes 

Wind speed in Hupsel 1.19 m/s Yes 

Wind speed in Lelystad 0.12 m/s Yes 

Wind direction in Vlissingen 7.87° Yes 

Wind direction in Hupsel 16.96° Yes 

Wind direction in Lelystad 18.36° Yes 

Temperature in Vlissingen -0.38 °C Yes 

Temperature in Hupsel -0.06 °C Yes 

Temperature in Lelystad 0.09 °C Yes 

Table 3.5: Summary of forecast biases in Vlissingen, Hupsel and Lelystad. 

All average day ahead forecast errors are significantly different than 0, indicating the forecasts are 

biased. Especially the wind speed bias in Vlissingen and Hupsel can have serious implications for the 

power production forecast of wind turbines near these locations. In Chapter 4, we discuss how we 

use the biases to improve the accuracy of the day ahead power production forecast. 

3.5.5 Wind speed forecast accuracy 
In the previous subsections, we have confirmed there are biases in the weather forecasts in Vlissingen, 

Hupsel and Lelystad. We did this by looking at average forecast errors. Negative and positive errors 

cancel out, which affects the average forecast error. We used this to determine whether the forecasts 

were biased. To measure forecast accuracy however, we should look at absolute or squared errors 

instead of average errors. We would like to assess wind speed forecast accuracy, because this is the 

key predictor for wind power production. To assess the wind speed forecast accuracy, we can use 

RMSE from Equation 2.18 in Section 2.7, because at the three locations we would like to compare, the 

scale (wind speed in m/s) is the same. 

For each location we would expect the RMSE to increase as the forecast horizon increases. Vlissingen 

should have the biggest RMSE, since the wind speed is generally higher there. By this logic, Lelystad 

would have the second biggest RMSE and Hupsel the smallest. 
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Figure 3.19: Root Mean Squared Error (RMSE) for day ahead wind speed forecasts in Vlissingen, Hupsel and Lelystad during 
the last 6 months in 2017. 

In Figure 3.19, we can see that in Lelystad and Vlissingen the RMSE increases slightly as the forecast 

horizon increases. In Hupsel however, RMSE actually decreases a little. Our expectation about 

Vlissingen is confirmed, Vlissingen has the biggest RMSE. To our surprise, Lelystad has the smallest 

RMSE instead of Hupsel. This means the NWP models were better at predicting the wind speed in 

Lelystad than in Hupsel and Vlissingen during the second half of 2017. 

3.6  Cleaning the data 
In Sections 3.1 and 3.4 we discussed some problems with the historical production data that should be 

addressed. Table 3.4 and Figure 3.5 in Section 3.4 illustrate that there is a lot of variation in production 

for each wind speed. This can be due to discrepancies in wind speeds at the turbine hub height and 

the KNMI station or due to disturbing factors like windstorms, icing, maintenance and failures. To 

capture the relationship between historical wind speed and historical production as accurately as 

possible, we should address these problems.  

Some observations should be removed, since they were affected by the disturbing factors that are 

mentioned above. For example, maintenance at a turbine resulted in a production of 0 kW for several 

hours while the average wind speed was 10 m/s during these hours. Due to the maintenance, the 

relationship between wind speed and production was affected. We want to exclude these observations 

so we can accurately capture the relationship between historical wind speed and production. Also, 

producers are obligated to report scheduled maintenance in advance and report expected repair times 

after failures. DVEP can adjust the day ahead production forecast for each producer accordingly. 

Windstorms and icing are indicated by day ahead weather forecasts. DVEP adjusts the day ahead 

production forecast if these weather conditions are predicted. Because DVEP can adjust the day ahead 

production forecast that is used for the auction, DVEP wants a production forecast that excludes 

windstorms, icing, maintenance and failures. Therefore, we try to exclude all these observations. Here 

a distinction between producers with single turbines and multiple turbines (wind farms) has to be 

made. 

3.6.1 Single turbine 
To avoid problems with single turbines shutting down during parts of an hour, we exclude observations 

where the production was smaller than or equal to 0 kW during a quarter in the hour. To clarify, 
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observations are only included if the production was above 0 kW during each quarter of the hour. This 

removes historical data from failures and maintenance completely. Icing usually takes a couple of 

hours or days depending on the weather, so this will be completely removed as well. Downtime around 

cut-in and cut-out speeds will be mostly removed also. The only cases that slip through the cracks is 

when the turbine shuts down and starts up again within a quarter of an hour. This rarely happens and 

does not have a big impact according to DVEP. 

3.6.2 Multiple turbines 
For producers with multiple turbines connected to the same EAN, the data cleaning process is not as 

straightforward. This is because we do not know the number of turbines that are shut down at a certain 

time. When filtering the same way as with single turbines, we are only able to remove simultaneous 

downtime of all turbines. However, in case of maintenance or failures, most often not all turbines have 

simultaneous downtime. Maintenance of a wind park is scheduled one turbine at a time and failures 

rarely happen simultaneously. Each turbine in a wind farm has separate wind speed detection as well, 

which means some turbines can be active while other turbines in the same wind farm are shut down 

due to wind speeds below the cut-in threshold or above the cut-out threshold. The same goes for ice 

detection, this is monitored for each turbine separately as well. 

To circumvent these problems with multiple turbines we conduct an ‘extra round’ of data cleaning. 

The data are cleaned using a lower and upper bound production for each wind speed. For each wind 

speed bin (bin size of 0.5) we calculate the average production per hour. The lower- and upper bound 

are constructed as follows: 

𝐿𝐵𝑣 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑣 − 
1

4
× 𝑅𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟    (3.2) 

𝑈𝐵𝑣 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑣 +
1

4
× 𝑅𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟    (3.3) 

For each wind speed, we count the number of observations, if this is lower than 10, we remove all 

observations for this wind speed. This is done to make sure the average production per wind speed is 

reliable, in order to get the appropriate bandwidth. For constructing the lower and upper bounds, we 

looked at several power curves. We felt that ± 25% would filter out most of the polluted data without 

removing too much clean data. The problem with data cleaning with multiple turbines is that it is 

impossible to distinguish the clean from the polluted data. 

3.6.3 Data after cleaning 
After cleaning the raw data, the polluted data due to downtime should be removed. This would mean 

that at operational wind speeds, the production should not be zero. Since Producer 3 has the most 

variance in its power curve according to Figure 3.5, we look at the power curve of Producer 3 after the 

data has been cleaned. 
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Figure 3.20: Scatterplot of production versus wind speed of Producer 3 with 6 MW total  rated power. 

Producer 3 has two turbines of 3 MW resulting in 6 MW total rated power. Cleaning the data was able 

to remove most of the polluted data. However, we still see some observations around 3 MW at high 

wind speeds. This probably indicates that one turbine was fully operational, while the other had been 

shut down. The cause of one turbine being shut down could be icing, maintenance, failure or a storm. 

This illustrates how difficult it is to clean the data properly, we are able to remove most of the polluted 

data. However, we will never be able to remove 100% without removing a large amount of clean data 

as well. We could lower the bandwidth around the average, this would remove more polluted data. 

However, most additional data that is removed will be clean data.  

The graphs with cleaned data for Producers 1 and 2 can be found in Appendix F. 

3.7 Conclusion 
In this chapter, we evaluated which data are available. We analyzed the data to see if there were 

patterns to be found. We compared weather data in Vlissingen, Hupsel and Lelystad and looked at 

production data for a producer close to each location. This revealed some problems in the datasets, 

which we tried to remove by cleaning the data. We also looked at hindcasts to see how accurate the 

weather forecasts are and to see if the weather forecasts are biased. All of this leads to the following 

main conclusions: 

 For 15 weather stations throughout the Netherlands, we have historical (measured) weather 

data for average hourly wind speed, wind direction, temperature, rainfall and radiation.  

 Historical weather forecasts (hindcasts) are only available for the second half of 2017. 

 For each producer of DVEP we have historical data for the quarter hourly production. 

 A selection of 10 producers is made with a total rated power of 45.65 MW, which is 

approximately 12% of the total portfolio of DVEP.  

 Wind speed distributions in 2015-2016 in Vlissingen, Hupsel and Lelystad are very different. 

Vlissingen generally has higher wind speeds more often than Lelystad and Hupsel, Hupsel has 

the lowest wind speeds according to the wind speed distributions. 

 Wind direction shows the same patterns for all three locations. Southwest winds prevail at all 

locations. Wind speeds are also greater when the direction is southwest.  

 Production data shows that power curves of different producers are very different. The raw 

data are affected by failures, maintenance, icing and windstorms. Cleaning the data makes 
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sure that most effects are mitigated. However, it is hard to distinguish polluted data from clean 

data. 

 For some wind directions, we see a depression in production without a depression in wind 

speed. This could indicate obstacles and suggests that including wind direction could improve 

the forecasting model. 

 All weather hindcasts are biased. Especially wind speed and wind direction forecasts are 

biased. Temperature only has a small bias at each location. In Chapter 4 we discuss how we 

use the bias to improve the weather forecasts. 

 Wind speed forecasts in Vlissingen have the largest RMSE, which means the wind speed 

forecast in Vlissingen is most inaccurate. Lelystad has the most accurate wind speed forecasts. 

The forecast error does not increase as the forecast horizon increases. 
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4. Solution Design 

In this chapter, we answer Sub-question 4: Which forecasting approach should result in the most 

accurate day ahead forecast according to the data patterns and literature review? First, define the 

general forecasting approach in Section 4.1. In Section 4.2 we make adjustments to the models that 

were proposed by the literature. We discuss how we add temperature and wind direction to the 

models, to see if this increases their accuracy. Section 4.3 discusses how we select the top 3 regression 

models that are introduced in Section 4.2. After this, in Section 4.4 we discuss how we select the best 

model and how we compare the accuracy of this model with the accuracy of Company X. Lastly, we 

discuss which optimization algorithm is used to estimate the parameters that optimize each model in 

Section 4.5. 

4.1 General forecasting approach 
In this section we discuss the choices we make with regard to our general forecasting approach. Our 

general forecasting approach describes how we translate day ahead weather forecasts into day ahead 

production forecasts for wind turbines. As mentioned in Chapters 2 and 3, we choose our approach 

based on the available data and the forecast horizon.  

The forecast horizon for this project is 15-38 hours ahead due to the auction. If we recall, the auction 

requires DVEP to deliver a day ahead production forecast before the deadline at 12:00 (noon). Weather 

forecasts from 9:00 are used to create a time buffer of 3 hours for technical issues. The day ahead 

production forecast requires a summed production forecast of all producers in the portfolio of DVEP 

for each hour. The first hour (00:00 – 01:00) of the day ahead forecast is 15 hours ahead; the last hour 

(23:00 – 00:00) is 38 hours ahead, therefore the forecast horizon is 15-38 hours ahead.  

In Chapter 2 we saw that if we want to forecast power production up to 48 hours ahead, it is essential 

to use weather predictions from NWP models. This means we need weather predictions up to 38 hours 

ahead, since this is our maximum forecast horizon. Fortunately, these weather forecasts are available. 

To translate weather forecasts into production forecasts, we distinguished two approaches in Chapter 

2, the physical approach and the statistical approach.  

The physical approach inserts weather forecasts into 3D models with detailed information of the 

turbine site to accurately describe the air flow at the turbine site. The manufacturer’s power curve is 

then used to calculate the predicted power production. The statistical approach uses statistical 

methods like regression models or Artificial Intelligence (AI) approaches to capture the relationship 

between historical meteorological measurements or weather forecasts and historical power 

production as accurately as possible. Since the manufacturer’s power curve is not available and we do 

not have detailed information of the turbine site, we have to use the statistical approach. 

In Chapter 3 we looked at which data are available. In Table 3.2 an overview of the available data 

illustrates that historical production and weather measurements are available for 2015-2017. Weather 

hindcasts are only available for the second half of 2017. Historical weather measurements contain 

hourly average values for wind speed, wind direction and temperature. Weather hindcasts contain 

predicted values for wind speed, wind direction and temperature for each hour.  

In the statistical approach we can use either historical weather measurements or weather hindcasts 

to capture the relationship between production and meteorological variables. Ideally, we would like 

to capture the relationship between weather hindcasts and production, since the weather forecasts 

are used as input to predict power production. However, we believe a period of 6 months is too short 

to accurately capture this relationship. Therefore, we use historical measurements from 2015-2016 to 
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try to capture the relationship between historical weather measurements and historical power 

production as accurately as possible.  

To evaluate which model can most accurately predict day ahead power production, we need to use 

weather hindcasts as input instead of historical weather measurements. To account for the 

discrepancy between the weather measurements and weather hindcasts, we evaluated the weather 

hindcasts in Chapter 3. We found statistical evidence that the weather hindcasts are biased. Especially 

wind speed and wind direction forecasts are biased. We calculated the average forecast error over the 

forecast horizon of 15-38 hours ahead (not for each hour separately). To improve the weather 

hindcasts, we can adjust the value by adding the average forecast error. For example, the wind speed 

forecast per hour in Vlissingen is on average 0.99 m/s too low. Therefore, we add 0.99 m/s to the 

forecasted value. We adjust the weather hindcasts for wind speed and wind direction biases. 

Temperature forecasts only have a very small bias, which is why we do not adjust the temperature 

forecasts.   

In Chapter 2, we saw that we can use several methods to capture the relationship between historical 

weather measurements and power production. These methods include causal models like regression 

models, AI methods like Artificial Neural Networks (ANNs). Regression is the simpler approach and is 

more understandable than AI approaches. Also, regression is able to use multiple predictors. In 

Chapter 3, we saw that this comes in handy, since we want to see the effect of adding temperature 

and wind direction as predictors. Therefore, we use regression models to capture the relationship 

between historical weather measurements and power production.  

Eventually, our general forecasting approach can be summarized in 3 steps: 

Step 1: Estimate the least squares parameters of a regression model using historical weather 

measurements and historical production measurements.   

Step 2: Adjust the weather forecasts for the bias found in Chapter 3. 

Step 3: Insert the bias adjusted day ahead weather forecasts into the regression models (using the 

least squares parameters we estimated with the historical measurements) to translate 

weather forecasts into power production forecasts.  

We use historical weather measurements to estimate the least squares parameters, because we only 

have weather hindcasts from the second half of 2017. We believe this period is too short to accurately 

capture the relationship between weather hindcasts and historical power production. 

4.2 Regression models 
In this section, we introduce the regression models we use to capture the relationship between the 

historical weather measurements and historical production data. In Section 2.5, we introduced several 

WTPC modelling techniques. Parametric WTPC modelling is a form of simple regression using only wind 

speed, this model can be expanded by adding temperature and wind direction, making it multiple 

regression. Parametric WTPC modeling can be linear and nonlinear, nonlinear models have more 

freedom in the functions that can be used. Nonlinear regression also has no underlying assumptions. 

However, nonlinear regression requires the need of an iterative optimization algorithm which can 

converge to a local optimum instead of the global optimum. Linear regression can be solved with a 

Linear Programming (LP) solver and ensures a global optimum is reached. Although, linear regression 

has some assumptions that should be met before it can be used.  
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In Subsection 4.2.1 we start with the parametric WTPC modelling techniques we introduced in Section 

2.5. These models only use wind speed as predictor, in Subsection 4.2.2 we add temperature as 

predictor. Lastly, in Subsection 4.2.3 we add wind direction to the models. 

4.2.1 Predictor: wind speed 
 The WTPC modelling techniques that showed promising results are listed in Table 4.1. 

Model Function 

Approximate cubic 
𝑃 =

1

2
𝜌𝐴𝐶𝑝,𝑚𝑎𝑥𝑣

3 

N-th degree polynomial 𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3 +⋯+ 𝑎𝑛𝑣
𝑛) 

Exponential 
𝑃 = (𝑃𝑟 (1 + (

𝛽

𝑣
)
𝛼

)

−𝑦

) 

Logistic 4 

𝑃 = (𝛼 (
1 +𝑚𝑒−

𝑣
𝜏

1 + 𝑛𝑒−
𝑣
𝜏

)) 

Logistic 5 

𝑃 =

(

  
 
𝑑 +

(

 
 𝑎 − 𝑑

(1 + (
𝑣
𝑓
)
𝑏

)

𝑔

)

 
 

)

  
 

 

Table 4.1: WTPC modelling techniques. 

All models except the approximate cubic model only use wind speed as predictor. The approximate 

cubic model uses air density (𝜌) as well. However, we have no data about the air density. Also, we 

have no data about the power coefficient (𝐶𝑝,𝑚𝑎𝑥). To be able to use the approximate cubic we should 

make some adjustments. Air density should be removed, since we do not have sufficient data about 

this. We replace the power coefficient with parameter α. This parameter also captures the swept rotor 

area and the 
1

2
 in the equation. These parts can be kept in the equation, however, this would only make 

α greater by a factor of 
1

2
𝐴. According to the literature, models based on the cubic relationship 

between wind speed and power are cumbersome. Therefore, we introduce parameter 𝛽. The 

theoretical relationship between wind speed and power would suggest the value of 𝛽 is close to 3. All 

these changes lead to Equation 4.1.  

𝑃 = 𝛼𝑣𝛽           (4.1) 

We can use a log transformation on this equation to make it linear in the parameters so we can use 

linear regression. The advantage of linear regression is that we do not need an iterative optimization 

algorithm and we are sure that we can find the global optimum. However, we should check whether 

the assumptions of linear regression are met for the transformed model. The log transformation of 

Equation 4.1 results in Equation 4.2. 

log𝑃 = log𝛼 + β log 𝑣          (4.2) 

After the parameters have been calculated, log𝑃 can be transformed back using Euler’s number, e, 

which results in predicted values for the power production. We shall call the log transformation of the 

adapted approximate cubic model the ‘log model’. 

The polynomial model can be used for linear regression as well. We can simply calculate the values for 

𝑣, 𝑣2, 𝑣3, etc. and insert these as an independent variable. For the polynomial models we only use the 
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3rd, 4th and 5th degree polynomial models, because we believe that a higher degree polynomial would 

use too many parameters, keeping in mind that we want to add temperature and wind direction as 

well. 

The exponential, logistic 4 and logistic 5 models cannot be used for linear regression, which means we 

need an iterative optimization algorithm. In Section 4.5 we discuss which algorithm we use for 

nonlinear regression.  

The adjustments we make lead to the following regression models using only wind speed as predictor. 

Model Function 

Log  log 𝑃 = log𝛼 + β log 𝑣 

3rd degree polynomial 𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3) 

4th degree polynomial 𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3 + 𝑎4𝑣
4) 

5th degree polynomial 𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3 + 𝑎4𝑣
4 + 𝑎5𝑣

5) 

Exponential 
𝑃 = (𝑃𝑟 (1 + (

𝛽

𝑣
)
𝛼

)

−𝑦

) 

Logistic 4 

𝑃 = (𝛼 (
1 +𝑚𝑒−

𝑣
𝜏

1 + 𝑛𝑒−
𝑣
𝜏

)) 

Logistic 5 

𝑃 =

(

  
 
𝑑 +

(

 
 𝑎 − 𝑑

(1 + (
𝑣
𝑓
)
𝑏

)

𝑔

)

 
 

)

  
 

 

Table 4.2: Regression models using wind speed as predictor. 

4.2.2 Predictors: wind speed and temperature 
To include more information in the regression models, we add temperature as a predictor. In Chapters 

2 and 3 we saw that temperature is related to air density. Unfortunately, we do not have historical 

data or forecasts for air density, so we add temperature as a proxy. The theoretical relationship 

between air density and production suggests we should add temperature multiplicatively to the 

models. In Equation 3.1, we described the theoretical relationship between air density and 

temperature. Following this relationship, we add temperature to the nonlinear models in the following 

fashion:   

𝑃 = 𝑓(𝑣) ×
𝑘

𝑇
           (4.3) 

where: 

𝑃 = power in W 

𝑓(𝑣) = function with wind speed 𝑣 as variable 

𝑇 = temperature in K 

𝑘 = parameter for temperature 
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In Equation 4.3, 𝑓(𝑣) represents the functions in Table 4.2 except for the log model. We expect the 

value of 
𝑘

𝑇
 to be around 1.225 at 15 °C, since this is the standard air density at mean sea level for 15 °C. 

This means the value of 𝑘 should be approximately 350. For the log model, we should add temperature 

differently, because adding temperature like this is not possible in linear regression. In the log model, 

we add temperature additively: 

log𝑃 = log𝛼 + β log 𝑣 + 𝑘 log𝑇        (4.4) 

We do not use log
1

𝑇
, because using temperature in Kelvin leads to small values for 

1

𝑇
. The log of small 

barely changes, therefore we use log 𝑇. Using temperature in Celsius in not an option, because the log 

of a negative number does not exist, which means we would have to remove all observations with 

subzero temperatures.  

Adding temperature additively has the disadvantage that the effect of temperature is the same for all 

wind speeds. Whether the wind speed is 0 m/s or 20 m/s, the effect of temperature remains the same. 

This is not the case according to the theoretical relationship between air density (by extent 

temperature) and production. Therefore, we do not add temperature to the polynomial models 

additively. Adding temperature like this for the log model enables us to use linear regression, so we 

will find a global optimum. Whether this optimum is better than the optima of the nonlinear models 

is to be seen.   

The adjustments we make lead to the following regression models using wind speed and temperature 

as predictors. 

Model Function 

Log  log 𝑃 = log𝛼 + β log 𝑣 + 𝑘 log𝑇 

3rd degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3) ×

𝑘

𝑇
 

4th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4) ×
𝑘

𝑇
 

5th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4 + 𝑎5𝑣
5) ×

𝑘

𝑇
 

Exponential 
𝑃 = (𝑃𝑟 (1 + (

𝛽

𝑣
)
𝛼

)

−𝑦

) ×
𝑘

𝑇
 

Logistic 4 

𝑃 = (𝛼 (
1 +𝑚𝑒−

𝑣
𝜏

1 + 𝑛𝑒−
𝑣
𝜏

))×
𝑘

𝑇
 

Logistic 5 

𝑃 =

(

  
 
𝑑 +

(

 
 𝑎 − 𝑑

(1 + (
𝑣
𝑓
)
𝑏

)

𝑔

)

 
 

)

  
 
×
𝑘

𝑇
 

Table 4.3: Regression models using wind speed and temperature as predictors. 

4.2.3 Predictors: wind speed, temperature, and wind direction 
Adding wind direction is not as straightforward as temperature. This is due to the fact that wind 

direction has a different scale than temperature. Wind direction is measured between 0° and 360°, 

here 0° and 360° represent the same point, which complicates things. Also, the relationship between 

wind direction and production is different than the relationship between temperature and production. 
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A higher temperature should theoretically mean a lower production. For wind direction, this is more 

dynamic. There is little to no information available on wind direction modelling, so we have to be 

innovative.  

Some wind turbines have a wind sector at which they generally have a high production, this peak is 

usually accompanied by depressions on both sides next to it. Figures 3.7 and 3.8 illustrate this. 

Especially for wind farms, like Producer 2, where the wake effect can negatively affect the production, 

including wind direction could improve the accuracy. For Producer 2, we saw signs that the wake effect 

negatively impacts the production in opposing wind directions (180° difference in wind direction). The 

production peak (‘optimal’ wind direction) was located in between these wind directions. Meaning we 

have a peak with depressions on both sides next to it. To model a production peak, and depressions 

on both sides next to the peak, we can use a periodic function. The sine and cosine function come to 

mind. 

 

Figure 4.1: Sine and cosine functions between -2π and 2π. 

The cosine function has the advantage that cos(0) = 1. This is useful for modeling a peak, therefore we 

use the cosine function to incorporate the wind direction in the model. We add wind direction 

multiplicatively just like temperature. This results in Equation 4.2: 

𝑃 = 𝑓(𝑣) ×
𝑘

𝑇
× (𝜆 cos

𝜃−𝛿

𝑐
)         (4.2) 

where: 

𝜆 = parameter for wind direction 

𝜃 = wind direction in radians 

𝛿 = parameter that indicates ‘optimal’ wind direction in radians (0 < 𝛿 < 2𝜋) 

𝑐 = parameter that determines the range of the cosine function (𝑐 > 0) 

The parameter for the optimal wind direction, 𝛿, should be between 0 and 2π, because 2π in radians 

is equal to 360°. This means the optimal wind direction should be between 0° and 360°, which is logical. 

We let the model choose the optimal wind direction for each producer, it should choose the wind 

direction with the highest average production. The parameter 𝑐 is used to limit the range of the cosine 

function, we only want to utilize the cosine function between −
1

2
𝜋 and  

1

2
𝜋, since we do not want 

values smaller than 0. We illustrate this in Figures 4.2 and 4.3. 
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Figure 4.2: Value of cosine function for all wind directions using example of c=3 and δ=π. 

In Figures 4.2 and 4.3 the optimal wind direction chosen by the model is 180° (π in radians), meaning 

the value of the cosine function is equal to 1 at 180°. When c=3, the value of the cosine function is 0.5 

at 0° and 360°. In Figure 4.3, we change the value of c to 10. This results in values of 0.92 at 0° and 

360°.  

 

Figure 4.3: Value of cosine function for all wind directions using example of c=10 and δ=π. 

In the example illustrated in Figures 4.2 and 4.3 we see that increasing the value of c reduces the effect 

of wind direction on the predicted production. For values of c > 20 the effect of wind direction is 

practically eliminated, since the value of the cosine function is between 0.99 and 1 for all wind 

directions. We use c as a parameter, which means the model ‘chooses’ to what extent wind direction 

is used as predictor. If wind direction does not influence the production for a certain producer, the 

value of c should increase so the effect of wind direction is eliminated. 

For the Log model, we add wind direction differently to be able to use linear regression: 

log𝑃 = log𝛼 + β log 𝑣 + 𝑘 log𝑇 + 𝜆 log cos(
𝜃−𝛿∗

𝑐∗
)      (4.3) 

We cannot use 𝛿 and 𝑐 as parameters. The equation should be linear in the parameters, which means 

the parameters inside the cosine function should be replaced. We can do this by simply using trial and 
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error to find the ‘optimal’ direction ,𝛿∗, instead of using parameter 𝛿. The same can be done for the 

parameter 𝑐. We simply fill in values for 𝛿∗ and 𝑐∗ and look at which values result in the best outcome. 

The parameter 𝜆 is used to determine how much the optimal wind direction should be rewarded. The 

production of the Log model can be calculated by reversing the log transformation using the irrational 

number 𝑒, this results in the following equation: 

𝑃 = 𝛼𝑣𝛽 × 𝑇𝑘 × cos(
𝜃−𝛿∗

𝑐∗
)𝜆         (4.4) 

The adjustments we make lead to the following regression models using wind speed, temperature, 

and wind direction as predictors. 

Model Function 

Log  
log 𝑃 = log𝛼 + β log 𝑣 + 𝑘 log𝑇 + 𝜆 log cos(

𝜃 − 𝛿∗

𝑐∗
) 

3rd degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3) ×

𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

4th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4) ×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

5th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4 + 𝑎5𝑣
5) ×

𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Exponential 
𝑃 = (𝑃𝑟 (1 + (

𝛽

𝑣
)
𝛼

)

−𝑦

) ×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Logistic 4 

𝑃 = (𝛼 (
1 +𝑚𝑒−

𝑣
𝜏

1 + 𝑛𝑒−
𝑣
𝜏

))×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Logistic 5 

𝑃 =

(

  
 
𝑑 +

(

 
 𝑎 − 𝑑

(1 + (
𝑣
𝑓
)
𝑏

)

𝑔

)

 
 

)

  
 
×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Table 4.4: Regression models using wind speed, temperature, and wind direction as predictors. 

In Chapter 5 we evaluate the 21 regression models introduced in this section. We want to know which 

model using which predictors can most accurately predict the historical production. In Section 4.3 we 

describe how we select the most accurate regression models. The most accurate models are used for 

day ahead forecast accuracy evaluation, we describe this process in Section 4.4. 

4.3 Selecting the top 3 regression models 
In Chapter 5 we estimate the parameters of the regression models from the previous section using 

clean data from 2015-2016, for each model we use three sets of predictors. First, we only use wind 

speed, then we expand the model by adding temperature. Finally, we use wind speed, temperature, 

and wind direction as predictors. We illustrate the process of parameter estimation in Figure 4.4. 
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Figure 4.4: Parameter estimation process for Producers 1, 2, and 3. 

We estimate the parameters for all regression models for Producers 1, 2, and 3, because doing this for 

all 10 producers would be too time consuming. For each producer we estimate parameters for 21 

regression models, resulting in 63 models for Producers 1, 2, and 3 combined.  

Producer 1 is located near Vlissingen, Producer 2 near Hupsel and Producer 3 near Lelystad. To narrow 

down the number of regression models, we select a top 3 which we use for all 10 producers. To prevent 

overfitting the models to the training data, we select the 3 most accurate models based on test data 

from the first half of 2017. As selection criterion we use the standard error of regression (S), because 

we use linear and nonlinear regression models. The Root Mean Squared Error (RMSE) and S are very 

similar, we choose S because it slightly punishes the number of parameters.  For each regression 

model, we calculate the S for the training and test data. After we select the 3 models that are most 

accurate for Producers 1, 2, and 3, we estimate the parameters for these models for the remaining 7 

producers. 

4.4 Evaluating day ahead forecast accuracy 
At this point in Chapter 5, we should know which 3 regression models, using which predictors, can 

most accurately capture the relationship between historical weather measurements and historical 

power production. However, we want to know which model can most accurately predict power 

production based on day ahead weather forecasts. So our next step is to insert the historical day ahead 

weather forecasts (hindcasts) into the top 3 regression models. In Figure 4.5 we illustrate the 

evaluation process for day ahead accuracy.  
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Figure 4.5: Day ahead accuracy evaluation process for Producers 1-10.  

To evaluate the day ahead forecast accuracy for the second half of 2017, we use weather hindcasts as 

input and adjust the hindcast based on the average forecast errors in Table 3.5. We clean the 

production data by removing observations with production smaller than or equal to 0 for a quarter 

during an hour, just like we did for the training data of 2015-2016. We want to know the accuracy on 

clean data, since DVEP adjusts the day ahead forecast for maintenance, failures, icing and windstorms. 

So, we want to know which model is most accurate when these disturbing factors are removed.  

After cleaning the data, the adjusted hindcasts are used in combination with the historical production 

data to evaluate the day ahead forecast accuracy for the cleaned data from the second half of 2017. 

We use the adjusted hindcasts to predict the production per hour. In Table 4.5 we illustrate an example 

of what our dataset looks like. 

Date Time Hours 
ahead 

Adjusted 
wind speed 
hindcast 
(m/s) 

Adjusted 
wind 
direction 
hindcast (°) 

Temperature 
hindcast (°C) 

Production 

1-7-2017 00:00 – 01:00 15 … … … … 

1-7-2017 01:00 – 02:00 16 …  … … … 

… …  … … … … 

… …  … … … … 

31-12-2017 22:00 – 23:00 37 … … … … 

31-12-2017 23:00 – 00:00 38 … … … … 

Table 4.5: Example of dataset with weather hindcasts adjusted for bias. 

We insert the adjusted weather hindcasts into the regression models to compute the production 

forecasts. For the top 3 models, we calculate the average standard error of regression over all hours 

(not for each hour separately) of the second half of 2017 for 10 producers. We select the best model 

based on the accuracy for Producers 1-10. To compare the best model with Company X, we use 

production hindcasts of Company X for the second half of 2017. We calculate the average RMSE over 

all hours of the second half of 2017 for Company X for Producers 1-10. We use RMSE as performance 

indicator instead of S, because we do not know the number of parameters for the model of Company 
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X. For all 10 producers, we compare the day ahead forecast accuracy of the best model and Company 

X for the second half of 2017.  

Finally, in Chapter 5 we look at the aggregated day ahead forecast accuracy. The aggregated forecast 

is the sum of the production forecasts for Producers 1-10. We compare the accuracy of Company X 

and our best model by looking at the average RMSE and MAE for all hours. We also compare the RMSE 

and MAE for each hour in the forecast horizon separately (15 hours ahead, 16 hours ahead, etc.). We 

would expect the errors to increase as the forecast horizon increases for both models. 

4.5 Optimization algorithm 
In Section 2.6, we discussed the difference between linear and nonlinear least squares regression. Both 

type of regression models are optimization problems, since they involve a minimization of the SSE. 

However, solving this problem is easier for linear regression, an LP solver is able to find the global 

minimum for a linear regression model. We use the linear regression option in the statistical software 

package SPSS to estimate the parameters of the linear regression models. 

For nonlinear regression, we need an iterative optimization approach. The reason that we need an 

iterative approach is that nonlinear optimization problems have local optimal solutions. The 

optimization algorithm can get stuck in a local optimum, while there are better solutions available.  

 

Figure 4.6: Global versus local optima in a simplified 3D representation. 

Figure 4.6 illustrates the difference between a local and global optimum in a simplified 3D 

representation with only 2 parameters. We are looking to solve the optimization problem to 

optimality, however, the optimization algorithm is not able to distinguish whether a solution is a global 

optimum or a local optimum. The example in Figure 4.6 has only 2 parameters, which is fairly simple. 

When the number of parameters increases, the problem because more difficult very fast and the 

number of local optima increases. The user has to provide the algorithm with initial parameter values, 

providing good starting values can improve the solution that is found.  

In Chapter 2, we saw that Lydia et al. (2013) used 4 optimization algorithms, namely a Genetic 

Algorithm (GA), Evolutionary Programming (EP), Particle Swarm Optimization (PSO) and Differential 

Evolution (DE). They found that DE had the best results. Unfortunately, we only have EP to our disposal. 

EP is a good algorithm, but it is relatively slow. Therefore, we have to find alternatives. Barati (2013) 

used a combination of Generalized Reduced Gradient (GRG) algorithm and Evolutionary Programming 

(EP). They found that combining these approaches increased the efficiency of the parameter 

estimation. We can use GRG to find a good initial solution and use EP to try and improve it. Both these 
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algorithms are part of the Excel Solver package. GRG has a multistart option, which allows it to use a 

population of random start values. This increases the chance of finding a good initial solution (Frontline 

Solvers, 2018). GRG also allows us to set a lower and upper bound for the parameters, this confines 

the search area to a limited space, which reduces the search time. 

The GRG algorithm is a gradient based method, which uses derivatives to find a local optimum. The 

algorithm starts at the initial values and makes adjustments to these values. By looking at the objective 

function, the algorithm knows whether it is moving in the right direction. The derivative values tell the 

algorithm whether a local optimum is reached. When using the multistart option, the algorithm starts 

again at random initial values and repeats this process. If the objective function is improved, the 

parameter values are saved as the current solution. The algorithm does not know when to stop, since 

it cannot determine whether a solution is a global optimum. Therefore, we can provide stopping 

conditions. We can adjust the population size, which determines how often the algorithm starts at 

random values. We can also use a convergence value, which tells the algorithm to stop when the 

objective function has not improved by a specific amount in the last 5 iterations (Frontline Solvers, 

2018). 

After finding a solution with the GRG algorithm, we use an evolutionary algorithm to try to improve 

the solution. Evolutionary algorithms apply the principles of evolution found in nature to solve the 

optimization problem. It relies on random sampling to find a population of solutions. Only one of these 

solutions is best. However, the candidate solutions are sample points in other regions of the search 

space. Now, the algorithm makes random changes (mutations) in members of the population, yielding 

new solutions which may be better or worse. The algorithm also performs cross-overs; this means it 

attempts to combine elements of existing solutions in order to create a new solution. Eventually, the 

algorithm performs a selection process in which the ‘most fit’ members of the population survive, and 

the ‘least fit’ members are eliminated. The selection process is the step that guides the evolutionary 

algorithm towards ever-better solutions (Frontline Solvers, 2018). Just like the GRG algorithm, the 

evolutionary algorithm does not know when to stop so we have to give some stopping conditions. We 

can adjust the population size, convergence value and we can set a maximum time without 

improvement. 

The cost of estimating parameters using the GRG and evolutionary algorithms is that these methods 

do not provide parameter uncertainties. We only know which parameters minimize the objective 

function; we do not know the probable ranges these parameters take. Hu et al. (2015) used Monte 

Carlo simulation and a bootstrap method to estimate the parameter uncertainty. This is useful if we 

want to know the estimated parameter value that is most likely to be close to the unknown ‘real’ 

parameter value. However, in most of our models the parameters have no physical meaning. 

Therefore, the uncertainty of the parameters is of less importance. This is also due to the fact that in 

most equations the parameters influence each other. In most cases, a change in one parameter 

requires changes in other parameters to get diserable results. Especially when the model becomes 

more complex and the number of parameters increases, the uncertainty of a parameter tends to rise 

(Benke, Lowell & Hamilton, 2008). Since we use curve fitting equations which are fairly complex, we 

do not use Monte Carlo simulation or a bootstrap approach, like Hu et al. (2015). This means that 

parameter uncertainty is out of the scope of this project. 

4.6 Conclusion 
In this chapter, we defined our general forecasting approach. We introduced the regression models 

we use in Chapter 5. To include more information into the models, we made some model adjustments 

by adding temperature and wind direction as predictors. We also adjusted the approximate cubic 

model to be able to use a log transformation, which enables us to use linear regression. Furthermore, 
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we illustrated how we select the best regression models in Chapter 5 based on the accuracy for 

Producers 1, 2, and 3. After this, we discussed how we evaluate the accuracy of the day ahead 

production forecast in Chapter 5. Lastly, we discussed the optimization algorithms that are used. All of 

this leads to the following conclusions: 

 Our general forecasting approach can be summarized in 3 steps. In step 1 we estimate the 

least squares parameters of a regression model using historical weather measurements and 

historical production measurements. In step 2 we adjust the weather hindcast for the bias we 

found in Chapter 3. In step 3 we insert the adjusted weather hindcast into the regression 

models (using the least squares parameters we estimated in step 1) to translate weather 

hindcasts into production hindcasts. 

 We use linear regression if possible, because linear regression ensures a global minimum is 

found and we do not need an iterative optimization algorithm. We use the linear regression 

option in the statistical package SPSS. 

 We start with 7 regression models using only wind speed as predictor. 

 Temperature is added as predictor to the 7 regression models as follows: × 
𝑘

𝑇
. 𝑘 Resembles a 

parameter for temperature and 𝑇 is the temperature in Kelvin. We divided 𝑘 by the 

temperature, because as the temperature rises, the power output should decrease according 

to the theoretical relationship.  

 Wind direction is added as predictor to the 7 regression models as follows: × (𝜆 cos
𝜃−𝛿

𝑐
). We 

chose the cosine function, because it is a periodic function with a value of 1 at the peak. The 

parameter 𝛿 resembles the ‘optimal’ wind direction and dividing by the parameter 𝑐 helps us 

confine the function to a specific region. 

 We use 21 regression models in total, 7 using only wind speed as predictor, 7 using wind speed 

and temperature and 7 using wind speed, temperature, and wind direction as predictors. We 

use 6 linear models; the remaining 15 models are nonlinear. 

 We estimate the least squares parameters for Producers 1, 2, and 3 for the 21 regression 

models using the clean training data from 2015-2016. The clean test data from the first half of 

2017 are used to select the top 3 models. We estimate the least squares parameters for the 

top 3 models for the remaining 7 producers. 

 The standard error of regression (S) is used as performance indicator for selecting the top 3 

regression models. For the day ahead forecast accuracy we also use RMSE, MAE and NMAPE 

as performance indicators. 

 We compare the day ahead forecast accuracy of the top 3 models. The accuracy of the best 

model is compared with the accuracy of Company X for each producer separately. We also 

compare the accuracy for the aggregated forecast of all 10 producers. 

 We use the Generalized Reduced Gradient (GRG) algorithm in combination with the 

evolutionary algorithm to estimate the parameters that minimize the sum of squared errors. 

These methods do not provide parameter uncertainties. 
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5. Analysis of Results 

In this chapter, we answer Sub-question 5: Which day ahead forecasting model is most accurate in 

production forecasts and how accurate is this model in comparison to Company X? First, we test the 

assumptions of the linear regression models in Section 5.1. In Section 5.2, we evaluate which 

regression model using which predictors can most accurately describe the relationship between 

historical weather measurements and historical production data. Section 5.3 discusses the effect of 

adding the predictors temperature and wind direction to the models. Also, we choose a top 3 

regression models in Section 5.3. In Section 5.4, we evaluate the day ahead production forecast 

accuracy of the top 3 models after adjusting the weather forecasts for the bias found in Chapter 3. 

After this, we compare the accuracy of the best model with Company X’s day ahead forecast for all 10 

producers separately in Section 5.5. Next, we evaluate the day ahead forecast accuracy for the 

aggregated forecast in Section 5.6. Lastly, we end this chapter with a conclusion in Section 5.7. 

5.1 Linear regression assumption testing 
Before interpreting the results of the linear regression models by looking at the SPSS output, we should 

check whether the underlying assumptions of linear regression have been met. For each producer we 

have 6 linear regression models, so for Producers 1, 2, and 3 we have 18 linear regression models in 

total. We use the clean training data from 2015-2016, which has a sample size of 13,729, 15,003 and 

11,702 for Producers 1, 2, and 3 respectively. 

If we recall Chapter 2, simple linear regression has the following assumptions: 

- Normality of errors. 

- Linearity. 

- Homoscedasticity. 

- Independence of errors. 

We test each assumption in this section. 

Normality of errors 

The normality of errors assumption requires the errors of the linear regression model to be normally 

distributed. Since we have a large sample size for each model (N>2000), we should use the Jarque-

Bera test to test the normality of errors instead of the Shapiro-Wilk or Kolmogorov-Smirnov test 

(Thadewald & Buning, 2007). The Jarque-Bera (JB) test checks whether the sample data have the 

skewness and kurtosis matching a normal distribution. The Chi-square test with 2 degrees of freedom 

(𝑋2
2) can be used to test if the sample data are normality distributed at a confidence level of 1-α 

(Jarque & Bera, 1987). We use a confidence level of 95%. The JB test statistic should be close to 0 in 

case of normality. For more information on the JB test we refer to Appendix K. 
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Model Predictor(s) N JB statistic 𝑿𝟐
𝟐 

(α=0.05) 

Normality? 

Log Wind speed 13729 1199.28 5.99 No 

3rd degree 
Polynomial 

Wind speed 13729 276.56 5.99 No 

4th degree 
Polynomial 

Wind speed 13729 204.97 5.99 No 

5th degree 
Polynomial 

Wind speed 13729 331.77 5.99 No 

Log Wind speed + 
Temperature 

13729 1512.08 5.99 No 

Log Wind speed + 
temperature + 
wind direction 

13729 1535.77 5.99 No 

Table 5.1: Jarque-Bera test for normality of errors of linear regression models for Producer 1. 

In Table 5.1 the normality of errors for all linear regression models for Producer 1 are tested. Since the 

JB statistics is greater than the critical point of the 𝑋2 test at a 95% confidence level for all models, we 

have statistical evidence that the errors of all linear regression models for Producer 1 are not normally 

distributed. In Appendix K, we can see that the errors for all linear regression models of Producers 1, 

2 and 3 are not normally distributed. This means the normality of errors assumptions for all linear 

regression models are violated.  

Homoscedasticity 

An underlying problem such as heteroscedasticity could result in errors not being normally distributed. 

We could check this by simply looking at a scatterplot of the dependent variable (production) and our 

key predictor (wind speed). We use Producer 1 as an example. 

 

Figure 5.1: Scatterplot of production versus wind speed for Producer 1. 

The assumption of homoscedasticity requires the variance in the dependent variable (production) to 

be more or less equal for all values of the predictor (wind speed). Figure 5.1 indicates that this is not 

the case for Producer 1. At wind speeds lower than 5 m/s, and higher than 15 m/s, the vertical spread 

of production is smaller than for the wind speeds in between. This could point to heteroscedasticity in 

the regression models. We check this for the 3rd degree Polynomial model of Producer 1 using only 
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wind speed as predictor by looking at a scatterplot of the standardized predicted values versus the 

standardized residuals. 

 

Figure 5.2: Scatterplot indicating heteroscedasticity for the 3rd degree Polynomial linear regression model of Producer 1using 
wind speed as predictor. 

Figure 5.2 indicates heteroscedasticity since the standardized residuals are not equally spread out for 

all predicted values. For the standardized predicted values around -1 and 3 the variance in standardized 

residuals is much smaller than in the middle.  

We have looked at scatterplots like Figure 5.2 for all linear regression models of Producers 1, 2, and 3. 

All models show signs of heteroscedasticity. We believe this is due to a difference in production 

variance for different wind speeds. The scatterplots of production versus wind speed for Producers 1, 

2, and 3 all show smaller variances for low wind speeds and high wind speeds. Therefore, we conclude 

that for all linear regression models the homoscedasticity assumption is violated. 

Linearity  

The linearity assumption means the relationship between the dependent variable and the predictors 

should be linear. Also, the regression equation should be linear in the parameters. We made sure the 

regression equations are linear in the parameters. In Appendix I we illustrate the Pearson correlation 

matrices for Producers 1, 2, and 3. The linear correlation between wind speed and production is 

greater than 0.8 for each producer, meaning a strong linear relationship exists. Therefore, we believe 

the linearity assumption is met for all linear regression models.   

Independence of errors 

The assumption of independence of errors means the errors should not have serial correlation. We 

can use the Durbin-Watson test statistic to test for first order autocorrelation. We should make sure 

the data is sorted by time though. Again, we use the example of the 3rd degree Polynomial model for 

Producer 1 using only wind speed as predictor. We use SPSS to compute the Durbin-Watson (DW) 

statistic. 
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Table 5.2: SPSS model summary including Durbin-Watson statistic for 3rd degree Polynomial linear regression model for 
Producer 1 using only wind speed as predictor. 

The value of the Durbin-Watson statistic is 0.638 for the 3rd degree Polynomial linear regression model 

of Producer 1. In case of no serial autocorrelation, the DW statistic will have a value of 2. Rule of thumb 

for the Durbin-Watson statistic is that a value of smaller than 1 indicates that successive error terms 

are definitely positively correlated (King, 1983).When running all the linear regression models for each 

producer in SPSS, we included the DW statistic option. All values are smaller than 1, meaning the errors 

are positively correlated for all linear regression models of Producers 1, 2, and 3. Therefore, we assume 

the assumption of independence of errors is violated for all linear regression models. 

Multicollinearity 

Multiple linear regression has an additional assumption, which states that there should be no 

multicollinearity. This means that the predictors of the regression model should have no strong linear 

correlation. In Appendix I the correlation matrices for Producers 1, 2, and 3 are illustrated. We use 

wind speed, wind direction and temperature. In Chapter 3, we did see that wind speed and wind 

direction are definitely correlated. The matrices in Appendix I illustrate that the linear correlation 

between wind direction and wind speed is 0.167, 0.149, and 0.206 for Producers 1, 2, and 3 

respectively. These correlations are statistically significant, but are too weak to cause serious problems 

with multicollinearity. The correlations between the other predictors are weak as well, so we conclude 

the multicollinearity assumption of multiple linear regression is met for all models. 

When testing the assumptions of linear regression, some problems arise. None of linear regression 

models have normally distributed errors. Also, we suspect that all models are subject to 

heteroscedasticity and serial autocorrelation. Therefore, we should not use linear regression because 

some of the underlying assumptions are violated. 

5.2 Accuracy using measured weather data 
In this section, we look at which model is most accurate based on measured weather data. We want 

to know which regression model using which predictors can most accurately describe the relationship 

between historical weather data and production per hour. We do this by estimating the least squares 

parameters for each model using the cleaned training data from 2015-2016. We test the accuracy on 

a separate test dataset using clean data from the first 6 months of 2017. The standard error of 

regression is used as performance indicator. The standard error of regression is defined as: 

𝑆 =  √
∑ (𝑌𝑒(𝑖)−𝑌𝑎(𝑖))

2𝑁
𝑖=1

𝑁−𝑝−1
          (5.1) 

where: 

𝑌𝑒(𝑖) = predicted value of production for observation i 

𝑌𝑎(𝑖) = actual value of production for observation i 

𝑁 = number of observations 

𝑝 = number of parameters 
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We calculate the standard error of regression for the entire clean training dataset from 2015-2016 and 

the entire clean test dataset from the first half of 2017. We do so for each combination of model and 

set of predictors. Each observation contains hourly average values. The training data contains more 

than 10,000 observations for each producer. 

To prevent overfitting the model to the training dataset, we compute the standard error of regression 

for the test dataset as well. Normally, the performance of the models on the test data is worse than 

on the training data. If the performance is significantly worse, this indicates that we are overfitting the 

model to the training data. 

For Producers 1, 2 and 3 we compare the standard error of regression on training and test data for 

each model using different predictors. The most accurate model has the smallest standard error of 

regression. In Tables 5.3, 5.4, and 5.5, the linear regression models are highlighted in red. We do not 

use these because the underlying assumptions are violated. All other models use nonlinear least 

squares regression. For each set of predictors, the most accurate model based on test data is 

highlighted in green.  

5.2.1 Producer 1 
The results for Producer 1 are illustrated in Table 5.3, Producer 1 has a combined rated power of 1.8 

MW. 

Predictors Wind speed Wind speed + 
Temperature 

Wind speed + 
Temperature + Wind 

direction 

Model Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Log 254.00 210.31 248.74 205.07 255.32 209.02 

3rd Polynomial 157.77 161.31 155.00 158.85 155.01 159.00 

4th Polynomial 157.02 161.09 154.87 158.62 154.19 158.98 

5th Polynomial 155.75 160.01 153.18 157.22 152.87 157.29 

Exponential 156.52 160.71 199.54 181.07 153.30 157.84 

Logistic 4 155.74 160.07 152.85 157.45 152.86 157.64 

Logistic 5 155.57 159.92 152.68 157.32 152.82 157.57 

Table 5.3: Standard error of regression (S) for Producer 1 using different predictors. 

When comparing the results of training and test data, we do not see a big difference in the accuracy 

for all models. For the best models per predictor configuration, which are colored green, the average 

decrease in S for the test data is only 2.7%. This indicates that we are not overfitting the models to the 

training data. The 5th degree Polynomial model using wind speed and temperature is most accurate. 

However, adding wind direction leads to practically the same accuracy (only a slight decrease).  

For Producer 1, the nonlinear models clearly outperform the linear models. We should definitely 

include temperature as a predictor, since it improves 6 out of 7 models. Adding wind direction slightly 

decreases the accuracy for most models. However, the difference is negligible. This can be explained 

by a value of 200 for parameter 𝑐 for the 5th degree Polynomial model using all 3 predictors (Table G.2 

in Appendix G). A value of 200 means the cosine function is equal to 1 for all wind directions, so the 

effect of wind direction is eliminated.  
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Figure 5.3: Power curve of 5th degree Polynomial model using all 3 predictors for Producer 1 with 1.8 MW rated power using 
test data. 

Figure 5.3 illustrates the effect of temperature and wind direction is little for this model. The spread 

per wind speed (vertical spread) is small for the 5th degree Polynomial model.  

5.2.2 Producer 2 
The results for Producer 2 are illustrated in Table 5.4, Producer 2 has 8 turbines with a total rated 

power of 16 MW. 

Predictors Wind speed Wind speed + 
Temperature 

Wind speed + 
Temperature + Wind 

direction 

Model Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Log 2194.95 1716.12 2088.62 1745.06 1949.01 1710.72 

3rd Polynomial 1742.66 1867.04 1724.25 1858.85 1625.76 1718.22 

4th Polynomial 1731.65 1846.19 1713.29 1837.21 1619.42 1704.63 

5th Polynomial 1710.86 1869.69 1692.97 1859.88 1600.12 1719.59 

Exponential 1774.36 1901.88 1754.25 1897.71 1654.21 1750.26 

Logistic 4 1710.98 1874.17 1693.19 1864.38 1601.09 1722.67 

Logistic 5 1712.99 1877.23 1695.29 1867.45 1603.22 1724.92 

Table 5.4: Standard error of regression (S) for Producer 2 using different predictors. 

The most accurate model for Producer 2 is the 4th degree Polynomial using all 3 predictors. For this 

model, the value of S increases with 5.3% on the test data. This is within acceptable range, which means 

we are not overfitting. Although we do not use the log model (assumptions violated), it is the second 

most accurate model based on the test data when using all 3 predictors. 

In Figure 5.4, the power curve for the 4th degree Polynomial for Producer 2 using 3 predictors for shows 

a wide vertical spread. This indicates that the effect of temperature and wind direction is large. This 

can also be concluded when looking at the parameter values in Appendix G. The value of c is 

approximately 3 for the 4th degree Polynomial model with an ‘optimal’ direction of 181°. A low value 

of c indicates the effect of wind direction is big.   
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Figure 5.4: Power curve of 4th degree Polynomial model using all 3 predictors for Producer 2 with 16 MW rated power using 
test data. 

Figure 5.4 illustrates that wind speeds do not exceed 9.5 m/s for the test data. This explains why the 

log model has a good performance for this producer. As wind speeds rise above 12 m/s, the accuracy 

of the Log model tends to decrease rapidly.  

For Producer 2, we should definitely include temperature and wind direction in the regression model. 

Especially adding wind direction improves the accuracy for all models of Producer 2. 

5.2.3 Producer 3 
The results for Producer 3 are illustrated in Table 5.5, Producer 3 has 2 turbines with a combined rated 

power of 6 MW. 

Predictors Wind speed Wind speed + 
Temperature 

Wind speed + 
Temperature + Wind 

direction 

Model Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Training 
data (S) 

Test data 
(S) 

Log 951.85 984.64 981.82 932.02 977.48 895.62 

3rd Polynomial 809.35 819.51 807.94 804.73 808.05 805.27 

4th Polynomial 808.47 820.07 806.95 805.21 804.35 806.52 

5th Polynomial 807.70 818.60 806.13 803.66 803.65 804.83 

Exponential 819.22 828.13 838.99 846.44 806.51 808.99 

Logistic 4 811.54 829.36 809.95 814.71 807.33 816.26 

Logistic 5 811.42 828.25 809.61 813.40 807.15 815.41 

Table 5.5: Standard error of regression (S) for Producer 3 using different predictors. 

For Producer 3, the difference between the training and test data is minimal, which indicates we are 

not overfitting. For some models, for example the 3rd degree Polynomial, the test data yield better 

results than the training data. The 5th degree Polynomial model using wind speed and temperature as 

predictors is the most accurate model based on the test data for Producer 3. 

Adding temperature improved the accuracy on the test data for 6 out of 7 models. So we should 

definitely use temperature as a predictor for Producer 3. The addition of wind direction is less 

successful for Producer 3. For all models except the Exponential model, adding wind direction as 

predictor slightly decreases the accuracy on the test data.  Looking at the parameter values of 𝛿 and 𝑐 
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in Table G.2 we see that the effect of wind direction is not eliminated. The optimal wind direction for 

the 5th degree Polynomial is 168° with 𝑐=6.76. This value of 𝑐 means the cosine function gives values 

between 0.9 and 1.  

5.3 Top 3 models using measured weather data 
In the previous section, we compared the accuracy on training and test data for 21 models for 

Producers 1, 2 and 3. For almost all models, the accuracy on test data was not much worse than on the 

training data. For some models, it was even better. This indicates that we should not be worried about 

overfitting the models to the training data. 

5.3.1 Effect of adding predictors temperature and wind direction 
If we evaluate the effect of adding predictors, we observe that adding temperature improves the 

accuracy for 86% of the models. This suggests that we should definitely use temperature as a predictor. 

Adding wind direction improved only 48% of the models. However, all models for Producer 2 improved 

when adding wind direction. Models for Producers 1 and 3 practically have the same accuracy when 

adding wind direction, the accuracy decreases only slightly. To illustrate the effect of wind direction in 

the regression models, we compute the values of the cosine functions for the best model of each 

producer using wind direction. We insert the least squares parameter values in the cosine function for 

the 4th degree polynomial model for Producer 2 and the 5th degree Polynomial model for Producers 1 

and 3. If we recall, the cosine function is defined as: 

cos
𝜃−𝛿

𝑐
            (5.2) 

where:  

𝜃 = wind direction in radians 

𝛿 = parameter that indicates ‘optimal’ wind direction in radians (0 < 𝛿 < 2𝜋) 

𝑐 = parameter that determines the range of the cosine function (𝑐 > 0) 

In Figure 5.5 we illustrate the values of 𝛿 in degrees (°), because this is easier to interpret. 

 

Figure 5.5: Effect of wind direction for the best regression model for Producers 1, 2, and 3. 
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In Figure 5.5 we can see the effect of wind direction is eliminated for Producer 1. For all wind directions 

the cosine function returns a value of 1. The optimal wind direction is located at 0°, due to the high 

value of c=200 we do not see a peak at this wind direction. Producer 3 has an optimal wind direction 

of 168°, this means wind directions near 360° are punished more heavily than wind directions near 0°. 

However, due to the reasonably high value of c=6.76 the value for the cosine function at 360° only 

decreases to 0.88, while the value at 0° is 0.9. This indicates the predicted production value is punished 

by wind direction with 12% (multiply by 0.88) at the most for Producer 3. The effect of wind direction 

on production is the greatest for Producer 2. A low value of c=2.99 and an optimal wind direction at 

181° lead to a 50% punishment at wind directions 0° and 360°. In Chapter 3 we saw that Producer 2 

experiences production losses at wind directions around 120° and around 300°. We would have 

expected the optimal wind direction to be at 210°, however this would punish the wind directions 

between 0-120° severely. A disadvantage of our method of wind direction modelling, is that the outer 

wind directions are most heavily punished. We cannot target a small wind sector without punishing 

neighboring wind sectors. 

5.3.2 Selecting the top 3 regression models 
To narrow the 21 models down to the best 3 models, which are used for all 10 producers, we have to 

choose models that are accurate on the test data for each producer. First, we have to decide which 

predictors to use. As described above, adding wind direction can be very lucrative and it does not really 

hurt the performance for any producer since the value of 𝑐 acts as a ‘defense mechanism’. Adding 

temperature definitely improves the accuracy of the model.  Therefore, we use wind speed, 

temperature and wind direction as predictors. This narrows it down to 7 models. The 5th degree 

Polynomial model has the best performance in terms of accuracy for Producers 1 and 3, so we 

definitely include this model in the top 3. For Producer 2, the 4th degree Polynomial model is most 

accurate. This model also yields good results for the other producers, so the 4th degree Polynomial is 

also placed in the top 3. The Log model only performs well for Producer 2, but is the worst model by 

far for the other producers. Also, the linear regression assumptions for the Log model are violated. The 

Exponential model is the worst model for Producer 2, but performs well for Producers 1 and 3. The 

Logistic models perform well for all producers, which makes them desirable. Logistic 4 and Logistic 5 

are quite similar in terms of accuracy for all 3 producers. The values of S are inconclusive in this case; 

therefore, we choose the model that has the fewest parameters, which is the Logistic model with 4 

parameters. This completes our top 3 models: 

Top 3 Models Function 

4th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4) ×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

5th degree polynomial 
𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣

2 + 𝑎3𝑣
3 + 𝑎4𝑣

4 + 𝑎5𝑣
5) ×

𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Logistic 4 

𝑃 = (𝛼 (
1 +𝑚𝑒−

𝑣
𝜏

1 + 𝑛𝑒−
𝑣
𝜏

))×
𝑘

𝑇
× (𝜆 cos

𝜃 − 𝛿

𝑐
) 

Table 5.6: Top 3 models based on test data from Producers 1, 2 and 3. 

5.4 Day ahead accuracy top 3 models 
In the previous section, we selected the 3 most accurate regression models. These are all nonlinear 

regression models, which means we used the GRG and evolutionary algorithms to estimate the least 

squares parameters. We established that we should not be worried about overfitting, since the 

performance on test data was quite similar to the performance on training data for most models. Now 
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that the top 3 models are selected, we know the regression models that most accurately describe the 

relationship between historical weather measurements and historical production data. We want to 

remind the reader that we are looking for a model that can translate day ahead weather forecasts into 

power production forecasts. Therefore, we should insert historical day ahead weather forecasts 

(hindcasts) into the regression models. This enables the regression models to translate day ahead 

weather forecasts into day ahead production forecasts. However, before we insert the hindcasts we 

should adjust the hindcasts for the bias we found in Chapter 3. In Chapter 3 we found statistical 

evidence that the weather hindcasts at each location (Vlissingen, Hupsel and Lelystad) are biased. 

Day ahead forecast  Average error (Forecast – 
Actual) 

Significantly different than 0? 
(95% confidence level) 

Wind speed in Vlissingen -0.99 m/s Yes 

Wind speed in Hupsel 1.19 m/s Yes 

Wind speed in Lelystad 0.12 m/s Yes 

Wind direction in Vlissingen 7.87° Yes 

Wind direction in Hupsel 16.96° Yes 

Wind direction in Lelystad 18.36° Yes 

Temperature in Vlissingen -0.38 °C Yes 

Temperature in Hupsel -0.06 °C Yes 

Temperature in Lelystad 0.09 °C Yes 

Table 5.7: Bias in historical weather forecast data for the locations Vlissingen, Hupsel and Lelystad. 

We adjust the weather hindcasts by simply adding the bias to the forecasted value for each hour. For 

example, the forecasted value of wind speed is 7 m/s in Vlissingen for a particular hour. To adjust for 

the bias, we add 0.99 m/s since the forecast is structurally 0.99 m/s too low. This means the adjusted 

forecast value is 7.99 m/s. We apply this logic for wind speed and wind direction in all three locations. 

We do not adjust the forecasts for the temperature bias, since the temperature is only slightly biased 

at all three locations. Considering we use temperature in Kelvin in the regression models, the 

difference of adjusting the temperature can be neglected. 

Now that we have adjusted the hindcasts, we insert the adjusted hindcasts into the top 3 regression 

models. We estimate the least squares parameters for the top 3 regression models for Producers 4-10 

and insert the adjusted hindcasts. The hindcast data (see Table 4.5 for example) contains forecasted 

values of wind speed, wind direction and temperature for each hour (N=4418) of the second half of 

2017.  

To be able to select the most accurate day ahead forecast model, we calculate the standard error of 

regression over the entire hindcast dataset (N=4418). The forecast time horizon is 15-38 hours ahead, 

we do not calculate the standard error of regression for each hour since this would reduce our sample 

size to 
4418

24
= 184 per hour. In Table 5.8 the standard error of regression for the adjusted hindcasts 

are illustrated. 
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Producer 4th degree Polynomial 
(S) 

5th degree Polynomial 
(S) 

Logistic 4 (S) 

1 230.07 230.87 230.56 

2 1751.10 1762.73 1768.91 

3 1113.49 1102.92 1102.30 

4 222.25 221.06 221.53 

5 98.67 96.85 97.51 

6 102.41 108.15 107.29 

7 113.90 114.16 114.33 

8 1256.13 1269.01 1268.54 

9 109.54 112.28 112.86 

10 621.34 620.83 621.56 

Table 5.8: Standard error of regression (S) for adjusted hindcasts of the second half of 2017. 

Using hindcasts instead of actual measured data introduces an error, which increases the value of S. 

For Producers 1, 2 and 3 we can see this increase. The values of S increased with 46%, 3% and 37% for 

Producer 1, 2 and 3 respectively. This shows that the error introduced by the weather forecast can be 

very different for each location. 

For each producer, the model with the smallest standard error of regression is highlighted in green. 

Cleary, the 4th degree Polynomial had the best performance, since it is the best model for 6 out of 10 

producers. Also, for the other 4 producers, the 4th degree Polynomial has a similar accuracy as the 

model with the highest accuracy. Therefore, the 4th degree Polynomial is our best model for the day 

ahead forecast.  

The power curves for the 4th degree Polynomial model of Producers 1, 2, and 3 are illustrated in 

Appendix H. The power curve for Producer 3 is illustrated below as well. 

 

Figure 5.6: Power curve using bias adjusted hindcast data for Producer 3 with 6 MW rated power. 

The power curve for Producer 3 is interesting, since the production decreases after rated power is 

reached. In Figure 2.7, we saw that stall controlled turbines have this property. Therefore, it is likely 

that Producer 3 has stall controlled turbines.  
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The standard error of regression for Producer 2 is much larger than for Producer 1. However, Producer 

1 has a total rated power of 1.8 MW, while Producer 2 has a rated power of 16 MW. Therefore, we 

should use a scale-independent metric like Normalized Mean Absolute Percentage Error (NMAPE). If 

we recall, the NMAPE indicates the mean absolute error as percentage of the total rated power. The 

4th degree Polynomial has NMAPE values ranging from 6.8% for Producer 10 to 15.4% for Producer 3.  

5.5 Day ahead forecast accuracy of Company X per producer 
Now that we know the day ahead accuracy of our regression models, we compare the accuracy of our 

best model with the accuracy of Company X. We clean the production data by removing observations 

with production values equal to or smaller than 0. We do this because we want to remove observations 

that are affected by maintenance, failures, icing and windstorms. In Table 5.9, we compare the 

accuracy of Company X with the accuracy of the 4th degree Polynomial model. To be able to compute 

the standard error of regression (S) for Company X, we need to know the number of parameters this 

model uses. We do not know this; therefore we use the RMSE as performance indicator instead S. The 

RMSE and S are very similar, the difference being a punishment of number of parameters for S. 

However, due to the large sample sizes (N>3000 for all producers) the values for RMSE and S barely 

differ. 

Producer RMSE of Company X using bias 
adjusted hindcast data 

RMSE of 4th degree 
Polynomial using bias 
adjusted hindcast data  

1 193.78 229.82 

2 1423.62 1749.12 

3 824.91 1112.23 

4 174.20 221.99 

5 82.58 98.56 

6 94.75 102.29 

7 90.22 113.77 

8 1042.57 1254.71 

9 89.09 109.41 

10 527.03 620.65 

Table 5.9: Root Mean Squared Error (RMSE) for Company X versus the 4th degree Polynomial model using bias adjusted 
hindcast data. 

The most important result from Table 5.9 is that for all producers, Company X is more accurate than 

the 4th degree Polynomial model. For some producers, the 4th degree Polynomial was almost as 

accurate as Company X. However, it was not able to beat Company X. For Company X the NMAPE 

ranges from 5.4% for Producer 10 to 9.4% for Producer 3. For the 4th degree Polynomial model, 

Producer 10 had the smallest percentage and Producer 3 had the largest percentage as well. This 

indicates both models struggle with accuracy for Producer 3. Producer 3 has the largest turbines by 

far, with a hub height of 138.5 m. The 4th degree Polynomial does not include hub height in the forecast 

model, we are not sure if Company X does so. The discrepancy between wind speed forecasts at 

heights of 10 m and 138.5 m could be a reason why the 4th degree polynomial is struggling for Producer 

3. Since Company X struggles with Producer 3 as well, it is likely that Company X also does not use wind 

speed forecasts at hub height. 

In Section 3.4, we saw that the variance of production is smaller for low wind speeds. This means that 

production should be easier to predict for low wind speeds. The NMAPE illustrates the average 

absolute error as a percentage of the rated power in Figure 5.7.   
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Figure 5.7: Normalized Mean Absolute Percentage Error versus wind speed for Company X for Producers 1, 2 and 3 in the 
second half of 2017. 

For all 3 producers we see that the forecast error is generally smaller when wind speeds are low. As 

wind speeds increase, the NMAPE increases as well. The maximum NMAPE for Company X are reached 

at wind speeds of 14 m/s, 9.5 m/s and 12.5 m/s for Producers 1, 2 and 3 respectively. For all producers, 

NMAPE for Company X tends to decrease when maximum wind speeds are reached. In Chapter 3 we 

saw that the variance of production is generally smaller for low and high wind speeds, than for 

moderate wind speeds. This explains the elevated forecast error at moderate wind speeds for 

Company X. 

 

Figure 5.8: Normalized Mean Absolute Percentage Error versus temperature for Company X for Producers 1, 2 and 3 in the 
second half of 2017. 

Company X has the largest NMAPE at temperatures around 0 °C for Producers 1, 2, and 3. Although 

we cleaned the data, we are not able to remove all instances of icing. Producers 1, 2 and 3 have 2, 8 

and 2 turbines respectively. It is possible that one turbine experiences icing, while other another 

turbine of the same producer is operational. This could explain the NMAPE peak around 0 °C. 
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Furthermore, as temperatures increase, the NMAPE of Company X for all 3 producers decreases. In 

Appendix D and Figure 3.10, we saw that wind speeds tend to be lower when temperatures are below 

5 °C. For these temperatures, Company X has a larger NMAPE, while wind speeds are generally lower 

at these temperatures. However, in Figure 5.7 we see that Company X has a smaller NMAPE for low 

wind speeds. So at low temperatures, the error of Company X is greater, while the wind speed is 

generally smaller. This should result in a smaller error instead of a larger error. Because this is not the 

case, it is likely that Company X does not include temperature in the forecast. 

5.6 Aggregated day ahead forecast accuracy 
In the previous section, we saw that for each producer Company X had a more accurate forecast than 

our best model. However, during the daily auction DVEP uses aggregated forecasts for their entire 

portfolio. The advantage of using aggregated forecasts is that negative and positive errors cancel each 

other out. Therefore, it is important to see how accurate both Company X and the 4th degree 

Polynomial are when aggregating the forecasts. In this section, we evaluate the day ahead accuracy by 

aggregating the production and day ahead forecasts of all 10 producers for each hour. The total rated 

power for the 10 producers is 45.65 MW. First, we evaluate the average forecast errors for the entire 

second half of 2017. After this, we evaluate the forecast error per hour of the forecast horizon. Lastly, 

we look at the forecast error per month. 

The results for both models for the aggregation of 10 producers with a total rated power of 45.65 MW 

are illustrated in Table 5.10.  

Model Standard Error 
of Regression 
(S) in kW 

Root Mean 
Squared Error 
(RMSE) in kW 

Mean 
Absolute Error 
(MAE) in kW 

Normalized 
Mean 
Absolute 
Percentage 
Error (NMAPE) 

Company X 3,338 3,335 2,407 5.3% 

4th degree Polynomial 4,166 4,162 3,092 6.8% 

Table 5.10: Aggregated day ahead forecast errors with a total rated power of 45.65 MW in the second half of 2017. 

For all 4 performance indicators, the model from Company X is more accurate, since the errors are 

smaller. The values of S and RMSE are almost the same, this is due to the large sample size. RMSE and 

S are greater than MAE, this can be expected because RMSE and S use squared errors, which punish 

large errors more severely. On average, Company X has an absolute error of 2,407 kW while the 4th 

degree Polynomial model has an absolute error of 3,092 kW on average. This means Company X is 685 

kW per hour more accurate on average, the MAE is 22.2% smaller than the 4th degree Polynomial 

model. The RMSE of Company X is 19.8% smaller than the 4th degree Polynomial for the aggregated 

day ahead forecast. The NMAPE over the period of 6 months for Company X is 1.5% smaller than for 

the 4th degree Polynomial model. 

Company X has a NMAPE of 5.3% and the 4th degree Polynomial has 6.8% for the aggregated forecast. 

In Section 5.4, we saw the percentages for Producers 1-10 for Company X ranged between 5.4% and 

9.4%. For the 4th degree Polynomial the percentages ranged between 6.8% and 15.4%. For both 

models, the error decreased for the aggregated forecast , which is due to negative and positive errors 

canceling out.  
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Figure 5.9: Aggregated day ahead mean absolute error per hour with a total rated power of 45.65 MW in the second half of 
2017. 

In Figure 5.9, we plot the MAE for both models for each hour in the forecast horizon. As the forecast 

horizon increases, the forecast error increases as well. This is supported by our findings in Section 3.5, 

which indicated a larger variance of the wind speed forecast error as the time horizon increased. 

Greater errors in wind speed forecasts lead to larger production forecast errors. Company X is more 

accurate than the 4th degree Polynomial model for the entire forecast horizon. Both forecast models 

seem to struggle between the forecast horizon of 25-33 hours ahead, the 4th degree Polynomial more 

so than Company X.  

 

Figure 5.10: Aggregated day ahead mean absolute error per month for a total rated power of 45.65 MW in the second half 
of 2017. 

If we look at the forecast error per month in Figure 5.10, we see that both models show the same 

pattern. Month 7 and especially month 12, have the largest error for both models. Month 12 usually 

has lower temperatures, in Figure 5.8 we saw this could explain the increased error for Company X. In 

month 12, the absolute error per hour for Company X was on average approximately 1 MW larger than 
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in month 9 or 10. However, we must add that the 4th degree Polynomial model had difficulties the 

same months as Company X.  

5.7 Conclusion 
In this chapter, we analyzed the results of the research. First, we tested the assumptions of the linear 

regressions models. After this, we looked at which regression models using which predictors could 

most accurately describe the relationship between historical weather measurements and historical 

production data. For the 7 models selected in Chapter 4, we evaluated accuracy on training and test 

data using 3 predictor configurations per model. This resulted in 21 different model configurations, 

from which a top 3 was selected based on test data accuracy. For the top 3 models, we evaluated the 

day ahead forecast accuracy on all 10 producers using bias adjusted weather forecasts. The most 

accurate day ahead production forecast model was compared with Company X. We compared the 

accuracy of our best model and Company X for all 10 producers separately and aggregated. Chapter 5 

leads to the following conclusions: 

 The linear regression assumption of normality of errors is violated for all linear regression 

models of Producers 1, 2, and 3. Assumptions of homoscedasticity and autocorrelation are 

violated as well; this leads to inaccurate linear regression models we should not use. 

 Adding temperature as a predictor improved the performance for 18 of the 21 models, which 

is 86%. Therefore, we use temperature as a predictor in our regression model. 

 Adding wind direction is more producer-dependent. All models for Producer 2 improve when 

adding wind direction. Models for Producers 1 and 3 practically have the same accuracy when 

adding wind direction. Therefore, we use wind direction as a predictor in our regression model. 

 The top 3 regression models based on historical weather and production data are the 4th 

degree Polynomial, 5th degree Polynomial and the Logistic 4 model. All 3 models use wind 

speed, temperature and wind direction as predictors. 

 The most accurate day ahead forecasting model using bias adjusted day ahead weather 

forecasts is the 4th degree Polynomial model.  

 The day ahead production forecasts of Company X are more accurate than the 4th degree 

Polynomial model. For all 10 producers the standard error of regression is smaller for Company 

X.  

 For Company X the NMAPE per producer ranges from 5.4% to 9.4%. For the 4th degree 

Polynomial model these percentages are between 6.8% and 15.4%. For both models, Producer 

10 has the smallest NMAPE and Producer 3 the largest. 

 Company X has the smallest day ahead forecast error for Producers 1, 2 and 3 when wind 

speeds are low. 

 Company X has the largest day ahead forecast error for Producers 1, 2 and 3 when 

temperatures are around the freezing point. Day ahead forecast errors for Company X 

decrease as the temperature increases. 

 The aggregated day ahead forecast for all 10 producers of Company X is more accurate than 

the 4th degree Polynomial. During the last 6 months of 2017, Company X has a MAE of 2,407 

kW per hour while the 4th degree Polynomial model has a MAE of 3,092 kW. This means that 

the average absolute error per hour of Company X is 685 kW smaller, which is 1.5% of the total 

rated power of 45.65 MW. 

 Company X is more accurate for all hours in the 15-38 hours ahead forecast horizon.  

We conclude that Company X is more accurate at day ahead power production forecasting than our 

4th degree Polynomial model. 
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6. Conclusion and Recommendations 

This final chapter concludes this research and answers the research question in Section 6.1. In Section 

6.2 we discuss the limitations of our research. We propose several recommendations to DVEP in 

Section 6.3 and some suggestions for further research are given in Section 6.4. 

6.1 Conclusion 
The core problem for this project is that the current day ahead forecast for power production of wind 

turbines is believed to be inaccurate. DVEP currently buys this forecast from Company X, which is 

costly. DVEP thinks that a forecasting model can be developed that is more accurate than Company X. 

DVEP is especially interested in the time horizon between 15-38 hours ahead, since this is the time 

horizon that is used for the day ahead auction. The research goal is to develop a day ahead forecasting 

model for the power production of wind turbines of DVEP producers. This model should be more 

accurate than the model that is currently used. The research question we want to answer in this 

research is: 

“How to develop a model that is able to translate day ahead weather forecasts 

into power production forecasts for wind turbines of DVEP producers with 

higher accuracy than Company X?”  

We conclude that the newly developed model using nonlinear least squares regression does not have 

a higher accuracy than the current model from Company X. The model from Company X has a higher 

day ahead forecast accuracy for all producers included in our research. Also, the aggregated day ahead 

forecast of Company X is more accurate for all hours in the 15-38 hours ahead forecast horizon.  

The top 3 forecast models using historical weather and historical production data are the 4th degree 

Polynomial, 5th degree Polynomial and the Logistic 4 model. All 3 models use nonlinear regression with 

wind speed, temperature and wind direction as predictors. Wind speed is the most important predictor 

by far. Adding temperature multiplicatively as a predictor to the forecasting models improved the 

accuracy for 86% of the models. Adding wind direction multiplicatively as a predictor improved the 

accuracy for only 48% of the models. However, it is very producer-dependent. For Producer 2, adding 

wind direction as a predictor improves the accuracy, while the accuracy for Producers 1 and 3 is 

practically identical.  

The forecast model that has the highest day ahead forecast accuracy is the 4th degree Polynomial 

model. For 60% of producers the 4th degree Polynomial model has the smallest standard error of 

regression (S). For the other 40% of producers the 4th degree Polynomial model has practically the 

same accuracy as the best performing model. The day ahead forecast of the 4th degree Polynomial is 

less accurate than Company X’s forecast for all producers included in this research. Company X has 

Normalized Mean Absolute Percentage Errors (NMAPEs) per producer between 5.4% and 9.4%, while 

these percentages are between 6.8% and 15.4% for the 4th degree Polynomial. Producer 10 has the 

smallest NMAPE for both models, while Producer 3 has the largest NMAPE for both models. 

Nevertheless, Company X has a smaller NMAPE and Root Mean Squared Error (RMSE) for all producers.  

The aggregate day ahead forecasts of Company X are more accurate. Company X has an NMAPE of 

5.3%, while the 4th degree Polynomial has an NMAPE of 6.8%. The aggregated day ahead forecast from 

Company X has a Mean Absolute Error (MAE) that was 22.2% smaller than the 4th degree Polynomial. 

The RMSE of the aggregated day ahead forecast is 19.8% smaller for Company X.  
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The evaluation of the day ahead forecast error of Company X for Producers 1, 2 and 3 reveals that 

Company X is more accurate when wind speeds are low. This can be expected, due to low production 

values for low wind speeds. The evaluation of the forecast error versus temperature reveals that the 

forecast error increases as temperature decreases. For low temperatures, the wind speed is generally 

lower, which should result in smaller forecast errors. However, the forecast error increases as 

temperature decreases. This suggests that the forecast of Company X could be improved for low 

temperatures.  

6.2 Limitations of our research 
During our research several problems with the data arose, which indicates that this research has some 

limitations. These limitations are due to the lack of data or due to inaccurate data. Lacking data forces 

us to look for alternatives, like using temperature instead of air density as a predictor. Inaccurate data 

introduces noise to the input data, which hurts the accuracy of the forecast. 

The first limitation concerns the historical weather data. The weather data are measured at KNMI 

weather stations located 8.6 km from the turbine site on average. This introduces errors in the weather 

data. Wind speed, wind direction and temperature could have been very different at the turbine site 

at the time of measurement. Wind speed and direction are measured at a height of 10 m. The hub 

height of wind turbines ranges from 36 to 138.5 m in this research. We did not adjust for hub height 

in our models, since the weather forecasts give wind speed and direction forecasts at 10 m height as 

well. The temperature was measured at 1.5 m and also forecast at this height. Temperatures at hub 

height are generally lower.  

The second limitation of our research is related to the weather forecasts. Forecasts of air density or air 

pressure are not available. Literature suggests that the power production of wind turbines is connected 

to the air density. Air density is governed by air pressure, temperature and altitude. Unfortunately, we 

were not able to use air density as a predictor; we had to settle for temperature as a predictor.  

We found statistical evidence that the weather forecasts used in this research are biased. Wind speed, 

wind direction and temperature forecasts for all 3 locations included in this research are biased. We 

adjusted the forecasts for the bias we found. A negative bias (systematic low forecast) was adjusted 

by increasing the forecast, a positive bias by decreasing the forecast. However, the fact that the 

weather forecast contains a bias is troubling.  

Another limitation of this study is related to the cleaning of the data. By cleaning the data, we hoped 

to remove the effects of downtime due to icing, failures, maintenance and windstorms. Since a lot of 

producers have multiple turbines connected to one grid connection, we cannot distinguish the number 

of turbines that were operational during an hour. We tried to clean the data by removing outliers per 

wind speed bin. We believe this removed most of the disturbing factors mentioned above, but it also 

removed some data that were not affected by these factors. It is impossible to distinguish whether the 

data were affected by these factors or not, especially because average wind speed was measured at 

8.6 km distance on average. 

Thanks to the critical points of Maarten Vinke from DVEP, we found some unnecessary parameters in 

the nonlinear regression models. He pointed out that the parameter 𝜆 could have been left out and 

that the parameter 𝑘 could have been fixed at 352.98375 so  
𝑘

𝑇
 equals the standard air density (1.225 

kg/m3 at 15 °C) at mean sea level. If we use the 3rd degree Polynomial model as example, these changes 

would lead to the following equation: 

𝑃 = (𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 + 𝑎3𝑣

3) ×
352.98375

𝑇
× (cos

𝜃−𝛿

𝑐
)     (6.1) 
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We have calculated the parameters for this nonlinear regression model for producers 1, 2 and 3. The 

parameter values for 𝛿 and 𝑐 did not change, values for 𝑎0, 𝑎1, 𝑎2 and 𝑎3 did change. For all models, 

the value of standard error of regression changed only very slightly and would have not lead to 

different decisions. However, the unnecessary parameters are troubling and should be removed in all 

models. Unfortunately, we only found this error at the end stages of this project. 

Lastly, the parameters of the regression models were estimated using measured weather data instead 

of weather forecasts. This choice was made because we only have historical weather forecasts for the 

second half of 2017. We believe that this period is too short to accurately capture the relationship 

between the weather forecasts and production.  

6.3 Recommendations 
Based on the conclusion and limitations of the research discussed in Section 6.1 and 6.2, we give some 

recommendations to DVEP. 

We recommend DVEP to keep outsourcing the production forecast for wind turbines to Company X for 

the time being. The current data infrastructure does not allow for an accurate forecast to be developed 

by DVEP. In order to develop an accurate forecast model in-house, weather data would have to be 

collected at the wind turbine sites at hub height. Also, weather forecasts should be specified to the 

wind turbine location, which means the weather forecast models should have to be used with 

(preferably) a small grid size. Weather forecasts should be adjusted to hub height and should include 

wind speed, air density and wind direction. However, since DVEP is interested in the aggregated 

forecast for the entire portfolio, this forecasting approach is not practical. Installing the equipment for 

all producers is time-consuming and very costly. After the equipment has been installed, additional 

set-up time is necessary because data needs to be collected. Because of the portfolio size of DVEP, 

developing a forecast model in-house would be impractical. Also, to what extent this improves the 

current forecasting method is uncertain. Therefore, we recommend that DVEP keeps outsourcing the 

production forecast for all wind turbines in its portfolio to Company X for the time being.   

Unfortunately, we were not able to develop a more accurate day ahead forecast model than the model 

of Company X. However, when evaluating the day ahead forecast performance of Company X, we did 

see some room for improvement. The day ahead forecast performance of Company X could be 

improved for low temperatures. Generally, wind speeds are lower for low temperatures, which should 

be accompanied by smaller forecast errors. However, for Company X the forecast errors are larger as 

temperatures decrease. Therefore, we believe that Company X could improve its forecast performance 

for low temperatures. Literature suggests that using air density as predictor should improve the 

forecast performance.  Furthermore, we encourage DVEP to inquire about the input of Company X’s 

forecast model. Knowing the input variables enables DVEP to adjust the forecast more accurately.  

We recommend DVEP to use the Root Mean Squared Error (RMSE) as the scale dependent 

performance indicator. The Mean Absolute Error (MAE) can be used additionally, because it is easy to 

interpret. The Normalized Mean Absolute Percentage Error (NMAPE) should be used as scale-

independent performance indicator. When evaluating forecast performance, DVEP should inquire 

about the forecast horizon. Third parties tend to give forecast errors for their models without 

specifying the forecast horizon. 

Lastly, we discourage DVEP to use the weather forecasts that were used in this research. Wind speed, 

wind direction and temperature forecasts are biased for all 3 locations used in the research. To prevent 

systematic forecast errors, we recommend that DVEP does not use the weather forecasts that were 

used in the research.  
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6.4 Suggestions for further research 
In this research, we used measured weather data as training data. Another approach for further 

research would be to use hindcasts as training data. Unfortunately, we did not have enough hindcast 

data for a proper sample size. 

The goal of this research was to develop an accurate forecast model to limit the energy imbalance. The 

financial aspect of the forecast was not included in the research. In some situations it can be lucrative 

to have imbalance, because market prices are favorable. Further research should be done to 

investigate when these situations occur and how this can be incorporated into a forecast model.  

We proposed a new method of modeling wind direction in regression analysis. This yielded an 

improvement for one producer, while the accuracy of other producers practically remained the same. 

In Section 6.2 we pointed out that we used an unnecessary parameter with the wind direction 

modeling. Further research is needed into wind direction modeling in regression analysis to determine 

the best way to incorporate wind direction into forecast models. 

Due to a lack of data, temperature was used in the forecast model instead of air density. According to 

the literature, air density should be used to predict power production of wind turbines. Therefore, we 

would have preferred to use air density as a predictor. In Section 6.2 we pointed out that we could 

have used a fixed value for the parameter 𝑘 to insert the standard air density at mean sea level. Further 

research should be conducted to study the effect of using air density as a predictor and how to 

incorporate air density in a regression model. 

Lastly, we suggest that further research is done with respect to intraday power production forecasts 

for wind turbines. We focused on a forecast horizon of 15-38 hours. The forecast horizon of 0-15 hours 

is not included. Further research can provide insight into how accurate these production forecasts are 

and which models should be used for this forecast horizon. 
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Appendix A: KNMI weather stations in the Netherlands 

 

Figure A.1: Map of KNMI weather stations in the Netherlands. 
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Appendix B: Raw production data for Producers 1 and 2 

Wind 
speed 

Minimum Average Maximum 

0 0% 2% 16% 

0,5 0% 2% 29% 

1 0% 5% 40% 

1,5 0% 7% 59% 

2 0% 11% 58% 

2,5 0% 13% 56% 

3 0% 17% 75% 

3,5 0% 19% 83% 

4 2% 24% 84% 

4,5 3% 31% 91% 

5 4% 38% 93% 

5,5 3% 46% 95% 

6 9% 55% 100% 

6,5 22% 65% 100% 

7 19% 70% 100% 

7,5 29% 73% 99% 

8 18% 76% 100% 

8,5 47% 81% 100% 

9 44% 85% 100% 

9,5 56% 90% 100% 

10 74% 95% 100% 

10,5 85% 96% 100% 

11 93% 99% 100% 

11,5 91% 97% 100% 

12 88% 98% 101% 

12,5 93% 97% 100% 

13 89% 96% 100% 

13,5 97% 99% 100% 

14 98% 98% 98% 

Table B.1: Minimum, average and maximum production per wind speed for Producer 2. 
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Figure B.1: Scatterplot of production per wind speed in 2015-2016 for Producer 2 with 16 MW combined rated power. 

 

Wind 
speed 

Minimum Average Maximum 

0,5 0% 0% 0% 

1 0% 0% 3% 

1,5 0% 0% 6% 

2 -1% 0% 22% 

2,5 0% 1% 11% 

3 0% 2% 16% 

3,5 0% 3% 17% 

4 -1% 4% 26% 

4,5 0% 6% 39% 

5 0% 8% 44% 

5,5 0% 10% 45% 

6 0% 13% 52% 

6,5 0% 17% 75% 

7 2% 22% 64% 

7,5 0% 28% 78% 

8 3% 32% 73% 

8,5 8% 39% 81% 

9 6% 42% 88% 

9,5 10% 48% 91% 

10 12% 53% 86% 

10,5 23% 60% 90% 

11 22% 64% 93% 

11,5 17% 70% 96% 

12 29% 72% 94% 
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13 43% 80% 99% 
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13,5 43% 84% 100% 

14 40% 86% 101% 

14,5 44% 87% 100% 

15 79% 92% 100% 

15,5 48% 91% 101% 

16 80% 93% 101% 

16,5 55% 88% 99% 

17 84% 92% 98% 

17,5 50% 89% 96% 

18 87% 93% 99% 

18,5 91% 93% 97% 

19 87% 92% 96% 

19,5 86% 90% 98% 

20 50% 86% 93% 

20,5 79% 88% 95% 

21 23% 80% 90% 

21,5 84% 87% 90% 

22 76% 82% 87% 

22,5 56% 71% 86% 

23 68% 74% 81% 

Table B.2: Minimum, average and maximum production per wind speed for Producer 1. 
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Appendix C: Production versus wind direction 

 

Figure C.1: Average production per wind direction in 2015-2016 for Producer 3 with 16 MW combined rated power. 
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Appendix D: Production and wind speed versus 

temperature 

 

Figure D.1: Average production versus temperature in 2015-2016 for Producer 2 with 16 MW combined rated power. 

 

 

Figure D.2: Average wind speed versus temperature in 2015-2016 in Hupsel. 
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Figure D.3: Average production versus temperature in 2015-2016 for Producer 3 with 6 MW combined rated power. 

 

 

Figure D.4: Average wind speed versus temperature in 2015-2016 in Lelystad. 
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Appendix E: Weather forecast error 

 

Figure E.1: Average and variance of temperature forecast error in Hupsel during the last 6 months of 2017. 

 

 

Figure E.2: Average and variance of temperature forecast error in Lelystad during the last 6 months of 2017. 
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Appendix F: Clean data power curves 

 

Figure F.1: Scatter plot of production versus wind speed for Producer 1 with 1.8 MW total rated power. 

 

 

Figure F.2: Scatterplot of production versus wind speed for Producer 2 with 16 MW total rated power. 
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Appendix G: Regression parameter values 

 

Produ
cer 

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒌 𝝀 𝜹 𝒄 

1 598,48 -333,08 61,02 -2,95 0,04 76,07 4,34 0,10 33,12 

2 -9514,43 1615,67 -897,05 -295,00 26,70 -6,09 7,00 3,16 2,99 

3 584,84 -342,39 243,97 -21,18 0,47 128,69 2,31 2,95 6,67 

4 1012,47 -400,56 61,09 17,74 -1,23 427,02 0,12 1,78 15,87 

5 1422,51 -460,85 11,16 36,12 -2,12 211,94 0,07 0,00 66,46 

6 4,87 3,69 -2,35 1,06 -0,06 269,69 2,33 2,96 4,33 

7 397,87 -149,07 20,89 7,81 -0,52 183,50 0,34 0,00 18,69 

8 222,67 244,13 -91,89 27,48 -1,42 334,51 1,01 6,28 10,12 

9 732,13 -450,09 96,64 -2,56 -0,11 255,81 0,35 3,49 4,03 

10 3411,67 -1976,93 383,63 -16,44 0,16 209,13 0,66 0,00 9,05 

Table G.1: Parameter values for the 4th degree Polynomial model. 

Produ
cer 

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒌 𝝀 𝜹 𝒄 

1 4810,10 6120,8 -3948,67 859,80 -56,21 1,16 4,27 0,76 0 200 

2 -751,51 2633,4 -1471,50 391,16 -39,88 1,38 521,20 0,92 3,17 3,02 

3 4973,99 1230,8 790,68 280,38 -45,52 1,62 7,66 2,37 2,93 6,76 

Table G.2: Parameter values for the 5th degree Polynomial model. 

Producer 𝒂 𝒎 𝒏 𝝉 𝒌 𝝀 𝜹 𝒄 
1 1391,27 0,48 149,36 1,88 345,37 1,00 0 46,36 

2 3909,59 6,91 98,76 1,23 729,02 1,60 3,17 3,02 

3 1288,37 0,49 24,46 1,56 546,98 2,16 2,93 6,67 

Table G.3: Parameter values for the Logistic 4 model. 
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Appendix H: 4th degree Polynomial power curves for day 

ahead weather forecasts 

 

 

Figure H.1: Power curve using day ahead weather forecast for Producer 1 with 1.8 MW rated power. 

 

Figure H.2: Power curve using day ahead weather forecast for Producer 2 with 16 MW rated power. 
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Figure H.3: Power curve using day ahead weather forecast for Producer 3 with 6 MW rated power. 
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Appendix I: Correlation matrices 

In Figures I.1, I.2, and I.3 we use temperature in Kelvin and wind direction in radians. The correlation 

matrices show Pearson correlations obtained with the statistical software package SPSS. 

 

Figure I.1: Correlation matrix for Producer 1. 

 

 

Figure I.2: Correlation matrix for Producer 2. 
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Figure I.3: Correlation matrix for Producer 3. 
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Appendix J: T-tests of weather forecast errors 

To see if there is statistical evidence of a bias in the weather forecasts, we conduct statistical tests. We 

are interested in whether the mean of a forecast error is significantly different from 0. The student’s 

T-distribution and the normal distribution can be used for significance testing. Rule of thumb is to use 

the T-distribution if the variance of the population is not known (Liese & Miescke, 2008). We can 

calculate the variance of the sample size, but we do not know the true variance of the population. 

Therefore, we can use a one-sample T-test to test whether the mean is significantly different from 0 

(Allua & Thompson, 2009). The hypotheses for the one-sample T-test are: 

- H0: Sample mean = 0 

 

- H1: Sample mean ≠ 0 

In this case our sample is the forecast error. First, we compute the forecast error: 

𝜀𝑖 = 𝐹𝑖 − 𝐴𝑖           (J.1) 

where: 

𝜀𝑖  = forecast error for observation i 

𝐹𝑖 = forecast value for observation i 

𝐴𝑖  = actual measurement for observation i 

We use SPSS to calculate the sample means and the conduct the T-tests. We test the means at a 95% 

confidence level, which means that if the p-value is significant, we are 95% certain that the mean is 

different than 0. A statistically significant mean greater than zero indicates the forecast has a positive 

bias (forecasts are too high). A negative bias is indicated by a statistically significant mean smaller than 

0. 

 

Figure J.1: SPSS output of One-Sample T-Test for means of weather forecast errors. 
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The forecast error of wind speed in Vlissingen has a mean of -0.9933. Figure J.1 shows that the p-value 

is 0.000 at a 95% confidence level. This means we can reject H0 and assume that the mean is 

significantly smaller than 0. We can conclude that the wind speed forecast is negatively biased, 

meaning the forecast is systematically 0.99 m/s too low. 

Figure J.1 illustrates that all p-values are smaller than α = 0.05/2 =0.025. This means that at a 

confidence level of 95%, all forecasts are biased. 
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Appendix K: Jarque-Bera test for normality 

To test the assumption of normality or errors for the linear regression models we use the Jarque-Bera 

(JB) test. This test checks whether the sample data have the skewness and kurtosis matching a normal 

distribution (Jarque & Bera, 1987). The JB test is more reliable than the Shapiro-Wilk test and the 

Kolmogorov-Smirnov test for large sample sizes greater than 2000 (Thadewald & Buning, 2007). The 

Chi-square test with 2 degrees of freedom (𝑋2
2) can be used to test if the sample data are normality 

distributed (Jarque & Bera, 1987). The JB test statistic is defined by:  

𝐽𝐵 =  
𝑁−𝑘

6
(𝑆2 +

(𝐶−3)2

4
)         (K.1) 

where: 

𝑁 = number of observations 

𝑘 = number of predictors 

𝑆 = sample skewness 

𝐶 = sample kurtosis 

A normal distribution has a skewness of 0 and kurtosis of 3. The closer the sample skewness and sample 

kurtosis are to these values; the closer the JB test statistic is to 0. We can use the 𝑋2-test with 2 degrees 

of freedom to test whether the sample data are normally distributed with the JB statistic. The 

hypotheses for the Jarque-Bera test are: 

- H0: Sample data are normally distributed 

 

- H1: Sample data are not normally distributed  

In this case our sample is the forecast error. First, we compute the forecast error: 

𝜀𝑖 = 𝐹𝑖 − 𝐴𝑖           (K.2) 

where: 

𝜀𝑖  = forecast error for observation i 

𝐹𝑖 = forecast value for observation i 

𝐴𝑖  = actual measurement for observation i 

If the JB statistic is greater than the critical point of 𝑋2
2 with α=0.05 (95% confidence level), we reject 

H0 and assume that the sample is not normally distributed. For the log model, we test whether the 

errors of the log transformation are normally distributed. We test for normality of errors for all linear 

regression models for Producers 1, 2, and 3. The clean training data from 2015-2016 is used for each 

producer. 
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Model Predictor(s) N JB statistic 𝑿𝟐
𝟐 

(α=0.05) 

Normality? 

Log Wind speed 13729 1199.28 5.99 No 

3rd degree 
Polynomial 

Wind speed 13729 276.56 5.99 No 

4th degree 
Polynomial 

Wind speed 13729 204.97 5.99 No 

5th degree 
Polynomial 

Wind speed 13729 331.77 5.99 No 

Log Wind speed + 
Temperature 

13729 1512.08 5.99 No 

Log Wind speed + 
temperature + 
wind direction 

13729 1535.77 5.99 No 

Table K.1: Jarque-Bera test for normality of errors of linear regression models for Producer 1. 

Model Predictor(s) N JB statistic 𝑿𝟐
𝟐 

(α=0.05) 

Normality? 

Log Wind speed 15003 2643.33 5.99 No 

3rd degree 
Polynomial 

Wind speed 15003 398.94 5.99 No 

4th degree 
Polynomial 

Wind speed 15003 425.35 5.99 No 

5th degree 
Polynomial 

Wind speed 15003 416.79 5.99 No 

Log Wind speed + 
Temperature 

15003 2335.40 5.99 No 

Log Wind speed + 
temperature + 
wind direction 

15003 2961.55 5.99 No 

Table K.2: Jarque-Bera test for normality of errors of linear regression models for Producer 2. 

Model Predictor(s) N JB statistic 𝑿𝟐
𝟐 

(α=0.05) 

Normality? 

Log Wind speed 11702 4131.80 5.99 No 

3rd degree 
Polynomial 

Wind speed 11702 134.65 5.99 No 

4th degree 
Polynomial 

Wind speed 11702 183.02 5.99 No 

5th degree 
Polynomial 

Wind speed 11702 206.51 5.99 No 

Log Wind speed + 
Temperature 

11702 3922.26 5.99 No 

Log Wind speed + 
temperature + 
wind direction 

11702 3984.78 5.99 No 

Table K.3: Jarque-Bera test for normality of errors of linear regression models for Producer 3. 

We reject H0 for all linear regression models of Producer 1, 2, and 3. This means we have statistical 

evidence that the errors for all linear regression models are not normally distributed. 
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