[1] Meijer, W. T., Hoes, A. W., Rutgers, D., Bots, M. L., Hofman, A., & Grobbee, D. E. (1998). Peripheral arterial disease in the elderly: The Rotterdam Study. Arteriosclerosis, thrombosis, and vascular biology, 18(2), 185-92. [2] Criqui, M. H. & Aboyans, V. (2015). Epidemiology of Peripheral Artery Disease. Circulation Research, 116, 1509-1526. [3] Hardman, R. L., Jazaeri, O., Yi, J., Smith, M., & Gupta, R. (2014). Overview of classification systems in peripheral artery disease. Seminars in Interventional Radiology, 31(4), 378-388. [4] Norgren, L., Hiatt, W., Dormandy, J., Nehler, M., Harris, K., Fowkes, F., et al. (2007). InterSociety Consensus for the Management of Peripheral Arterial Disease (TASC II). Journal of Vascular Surgery, 45(1), S5-S67. [5] Abdulhannan, P., Russell, D. A., & Homer-Vanniasinkam, S. (2012). Peripheral arterial disease: A literature review. British Medical Bulletin, 104(1), 21-39. [6] Olin, J. W., White, C. J., Armstrong, E. J., Kadian-Dodov, D., & Hiatt, W. R. (2016). Peripheral Artery Disease. Journal of the American College of Cardiology, 67(11), 1338-1357. [7] Hiatt, W. R., Armstrong, E. J., Larson, C. J., & Brass, E. P. (2015). Pathogenesis of the Limb Manifestations and Exercise Limitations in Peripheral Artery Disease. Circulation Research, 116(9), 1527-1539. [8] Jaff, M. R., White, C. J., Hiatt, W. R., Fowkes, G. R., Dormandy, J., Razavi, M., Reekers, J., & Norgren, L. (2015). An Update on Methods for Revascularization and Expansion of the TASC Lesion Classification to Include Below-the-Knee Arteries: A Supplement to the InterSociety Consensus for the Management of Peripheral Arterial Disease (TASC II). Journal of Endovascular Therapy, 22(5), 663-677. [9] Garcia, L. A., Rosenfield, K. R., Metzger, C. D., Zidar, F., Pershad, A., Popma, J. J., Zaugg, M., Jaff, M. R., Lei, L., Liu, Y., Hadley, G. L., & Arch, V. S. (2017). SUPERB final 3-year outcomes using interwoven nitinol biomimetic supera stent. Catheterization and Cardiovascular Interventions, 89(7), 1259-1267. [10] Dake, M. D., Ansel, G. M., Jaff, M. R., Ohki, T., Saxon, R. R., Smouse, H. B., Machan, L. S., Snyder, S. A., O'Leary, E. E., Ragheb, A. O., & Zeller, T. (2016). Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal arteryclinical perspective. Circulation, 133(15), 1472-1483. [11] Saxon, R. R., Chervu, A., Jones, P. A., Bajwa, T. K., Gable, D. R., Soukas, P. A., Begg, R. J., Adams, J. G., Ansel, G. M., Schneider, D. B., Eichler, C. M., & Rush, M. J. (2013). Heparinbonded, expanded polytetrafluoroethylene-lined stent graft in the treatment of femoropopliteal artery disease: 1-year results of the VIPER (Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstru. Journal of Vascular and Interventional Radiology, 24(2), 165-173. [12] Al-Hakim, R., Lee, E. W., Kee, S. T., Seals, K., Varghese, B., Chien, A., Quirk, M., & McWilliams, J. (2017). Hemodynamic analysis of edge stenosis in peripheral artery stent grafts. Diagnostic and Interventional Imaging, 98(10), 729-735. [13] Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317-325. [14] DeBakey, M. E., Lawrie, G. M., & Glaeser, D. H. (1985). Patterns of atherosclerosis and their surgical significance. Ann Surg, 201(2), 115-131. [15] Ku, D. N. & Giddens, D. P. (1983). Pulsatile flow in a model carotid bifurcation. Arterioscler Thromb Vasc Biol, 3, 31-39. [16] Chiu, J.-J. & Chien, S. (2014). Effects of disturbed flow on vascular endothelium: Pathophysiological Basis and Clinical Perspectives. Physiologic Reviews, 91(1). [17] Frangos, S. G., Gahtan, V., & Bauer, S. (1999). Localization of Atherosclerosis. Arch Surg, 134, 1142-1149. [18] Himburg, H. A., Grzybowski, D. M., Hazel, A. L., LaMack, J. A., Li, X. M., & Friedman, M. H. (2004). Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol, 286(5), H1916-22. [19] Glagov, S., Zarins, C., Giddens, D. P., & Ku, D. N. (1988). Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology and Laboratory Medicine, 112(10), 1018-1031. [20] Gimbrone, M. A. & García-Cardeña, G. (2013). Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovascular Pathology, 22(1), 9-15. [21] Peiffer, V., Sherwin, S. J., & Weinberg, P. D. (2013). Computation in the rabbit aorta of a new metric - the transverse wall shear stress - to quantify the multidirectional character of disturbed blood flow. Journal of Biomechanics, 46(15), 2651-2658. [22] Holenstein, R. & Ku, D. N. (1988). Reverse flow in the major infrarenal vessels-a capacitive phenomenon. Biorheology, 25(6), 835-42. [23] Blair, J., Glagov, S., & Zarins, C. K. (1990). Mechanism of superficial femoral artery adductor canal stenosis. Surgical forum, 41, 359-360. [24] Chi, J., Chiu, B., Cao, Y., Liu, X., Wang, J., Balu, N., Yuan, C., & Xu, J. (2013). Assessment of femoral artery atherosclerosis at the adductor canal using 3D black-blood MRI. Clinical Radiology, 68(4), 213-221. [25] Wood, N. B., Zhao, S. Z., Zambanini, A., Jackson, M., Gedroyc, W., Thom, S. A., Hughes, A. D., & Xu, X. Y. (2006). Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. Journal of Applied Physiology, (pp. 1412- 1418). [26] Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399-434. [27] Eckhardt, B., Schneider, T. M., Hof, B., & Westerweel, J. (2007). Turbulence Transition in Pipe Flow. Annual Review of Fluid Mechanics, 39(1), 447-468. [28] Varghese, S. S., Frankel, S. H., & Fischer, P. F. (2007). Direct numerical simulation of stenotic flows, Part 2: Pulsatile flow. Journal of Fluid Mechanics, 582, 281. [29] Sabbah, H. N. & Stein, P. D. (1976). Turbulent Blood Flow in Humans. Circulation Research, 38(6), 513-525. [30] Rosenfeld, M. (1995). A numerical study of pulsating flow behind a constriction. Journal of Fluid Mechanics, 301(-1), 203. [31] Sheu, T. W. & Hsu, M. C. (2009). Finite-element simulation of incompressible viscous flows in moving meshes. Numerical Heat Transfer, Part B: Fundamentals, 56(1), 38-57. [32] Lyne, W. H. (1971). Unsteady viscous flow in a curved pipe. Journal of Fluid Mechanics, 45(01), 13. [33] Berger, S. A. & Jou, L.-d. (2000). Flows in Stenotic Vessels. Annual Review of Fluid Mechanics, 32, 347-382. [34] Morris, P. D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D. A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N. W., Lawford, P. V., Hose, D. R., & Gunn, J. P. (2016). Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102(1), 18-28. [35] Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: Scientific basis. Journal of the American College of Cardiology, 61(22), 2233-2241. [36] Hirsch, C. (2007). Numerical Computation of Internal and External Flows. Chichester: John Wiley and Sons, 2nd edition. [37] Zienkiewicz, O., Taylor, R., & Nithiarasu, P. (2014). The Finite Element Method for Fluid Dynamics. Elsevier Academic Press, 6th edition. [38] Versteeg, H. K. & Malalaserkera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Education Limited, 2nd edition. [39] Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., & Steinman, D. A. (2008). An image-based modeling framework for patient-specific computational hemodynamics. Medical and Biological Engineering and Computing, 46(11), 1097-1112. [40] De Santis, G., Mortier, P., De Beule, M., Segers, P., Verdonck, P., & Verhegghe, B. (2010). Patient-specific Computational Fluid Dynamics: Structured mesh generation from coronary angiography. Medical and Biological Engineering and Computing, 48(4), 371-380. [41] Lesage, D., Angelini, E. D., Bloch, I., & Funka-Lea, G. (2009). A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis, 13(6), 819-845. [42] Updegrove, A., Wilson, N. M., Merkow, J., Lan, H., Marsden, A. L., & Shadden, S. C. (2017). SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Annals of Biomedical Engineering, 45(3), 525-541. [43] Campbell, I. C., Ries, J., Dhawan, S. C., Quyyumi, A. A., Taylor, W. R., & Oshinski, J. N. (2012). Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation. Journal of Biomechanical Engineering, 134(5). [44] Vignon-Clementel, I. E., Figueroa, C. A., Jansen, K. E., & Taylor, C. A. (2010). Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Computer methods in biomechanics and biomedical engineering, 13(5), 625-640. [45] Javadzadegan, A., Lotfi, A., Simmons, A., & Barber, T. (2015). Haemodynamic analysis of femoral artery bifurcation models under different physiological flow waveforms. Computer Methods in Biomechanics and Biomedical Engineering, 19(11), 1143-53. [46] Appanaboyina, S., Mut, F., Löhner, R., Putman, C., & Cebral, J. (2009). Simulation of intracranial aneurysm stenting: Techniques and challenges. Computer Methods in Applied Mechanics and Engineering, 198(45-46), 3567-3582. [47] Morbiducci, U., Gallo, D., Massai, D., Consolo, F., Ponzini, R., Antiga, L., Bignardi, C., Deriu, M. a., & Redaelli, A. (2010). Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. Journal of biomechanical engineering, 132(9), 091005. [48] Kruse, R. R., Doomernik, D. E., Maltha, K. V., Kooloos, J. G., Kozicz, T. L., & Reijnen, M. M. (2017). Collateral artery pathways of the femoral and popliteal artery. Journal of Surgical Research, 211, 45-52. [49] Westerhof, N., Bosman, F., De Vries, C. J., & Noordergraaf, A. (1969). Analog studies of the human systemic arterial tree. Journal of biomechanics, 2(2), 121-143. [50] Gill, R. (1979). Pulsed Doppler with B-mode imaging for quantitative blood flow measurement. Ultrasound in Medicine & Biology, 5(3), 223-235. [51] Willink, R. & Evans, D. H. (1995). Volumetric blood flow calculation using a narrow ultrasound beam. Ultrasound in Medicine and Biology, 21(2), 203-216. [52] Womersley, J. R. (1955). Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries when the Pressure Gradient is known. Journal of Physiology, 127, 553-563. [53] McGah, P. M., Nerva, J. D., Morton, R. P., Barbour, M. C., Levitt, M. R., Mourad, P. D., Kim, L. J., & Aliseda, A. (2015). In vitro validation of endovascular Doppler-derived flow rates in models of the cerebral circulation. Physiological Measurement, 36(11), 2301-2316. [54] Hussain, S. T., Wood, R. F. M., & Bland, M. (1996). Observer variability in volumetric blood flow measurements in leg arteries using duplex ultrasound. Ultrasound in Medicine & Biology, 22(3), 287-291. [55] Morlacchi, S., Chiastra, C., Gastaldi, D., Pennati, G., Dubini, G., & Migliavacca, F. (2011). Sequential Structural and Fluid Dynamic Numerical Simulations of a Stented Bifurcated Coronary Artery. Journal of Biomechanical Engineering, 133(12), 121010. [56] Yilmaz, F. & Gundogdu, M. Y. (2008). A critical review on blood flow in large arteries; relevance to blood rheology, viscoisty models and physiologic conditions. Kore-Australia Rheology Journal, 20(4), 197-211. [57] Lee, S.-W. & Steinman, D. A. (2007). On the Relative Importance of Rheology for ImageBased CFD Models of the Carotid Bifurcation. Journal of Biomechanical Engineering, 129(2), 273. [58] Morbiducci, U., Gallo, D., Massai, D., Ponzini, R., Deriu, M. A., Antiga, L., Redaelli, A., & Montevecchi, F. M. (2011). On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. Journal of Biomechanics, 44(13), 2427-2438. [59] Gharahi, H., Zambrano, B. A., Zhu, D. C., DeMarco, J. K., & Seungik Baek, P. (2013). Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and blood flow velocity measured with magnetic resonance imaging. International Journal of Advances in Engineering Sciences and Applied Mathematics Computationa, 8(1), 1-9. [60] Kenner, T. (1989). The measurement of blood density and its meaning. Basic Research in Cardiology, 84(2), 111-124. [61] Zingg, W., Sulev, J. C., & Morgan, C. D. (1970). Relationship between viscosity and hematocrit in blood of normal persons and burn patients. Canadian journal of physiology and pharmacology, 48(3), 202-205. [62] Randles, A., Frakes, D. H., & Leopold, J. A. (2017). Computational Fluid Dynamics and Additive Manufacturing to Diagnose and Treat Cardiovascular Disease. Trends in Biotechnology, 35(11), 1049-1061. [63] Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2015). A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Computer Methods in Applied Mechanics and Engineering, 286, 40-62. [64] Whiting, C. H. & Jansen, K. E. (2001). A stabilized finite element method for the incompressible Navier - Stokes equations using a hierarchical basis. International Journal for Numerical Methods in Fluids, 35(February 2000), 93-116. [65] Esmaily Moghadam, M., Bazilevs, Y., Hsia, T. Y., Vignon-Clementel, I. E., & Marsden, A. L. (2011). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computational Mechanics, 48(3), 277-291. [66] Marsden, A. L. & Esmaily-Moghadam, M. (2015). Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support. Applied Mechanics Reviews, 67(3), 030804. [67] Figueroa, C. A., Vignon-Clementel, I. E., Jansen, K. E., Hughes, T. J. R., & Taylor, C. A. (2006). A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering, 195(41-43), 5685-5706. [68] Kung, E. O., Les, A. S., Figueroa, C. A., Medina, F., Arcaute, K., Wicker, R. B., McConnell, M. V., & Taylor, C. A. (2011). In vitro validation of finite element analysis of blood flow in deformable models. Annals of Biomedical Engineering, 39(7), 1947-1960. [69] Bertolotti, C., Qin, Z., Lamontagne, B., Durand, L.-G., Soulez, G., & Cloutier, G. (2006). Influence of multiple stenoses on echo-Doppler functional diagnosis of peripheral arterial disease: a numerical and experimental study. Annals of biomedical engineering, 34(4), 564- 74. [70] Varghese, S. S., Frankel, S. H., & Fischer, P. F. (2008). Modeling Transition to Turbulence in Eccentric Stenotic Flows. Journal of Biomechanical Engineering, 130(1), 014503. [71] Pal, A., Anupindi, K., Delorme, Y., Ghaisas, N., Shetty, D. A., & Frankel, S. H. (2014). Large Eddy Simulation of Transitional Flow in an Idealized Stenotic Blood Vessel: Evaluation of Subgrid Scale Models. Journal of Biomechanical Engineering, 136(7), 071009. [72] Tan, F. P. P. (2011). Comparison of LES of Steady Transitional Flow in an Idealized Stenosed Axisymmetric Artery Model With a RANS Transitional Model. Journal of Biomechanical Engineering, 133(5), 051001. [73] Guess, W. P., Reddy, B. D., McBride, A., Spottiswoode, B., Downs, J., & Franz, T. (2017). Fluid-structure interaction modelling and stabilisation of a patient-specific arteriovenous access fistula. ArXiv e-prints. [74] Esmaily-Moghadam, M., Bazilevs, Y., & Marsden, A. L. (2013). A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Computational Mechanics, 52(5), 1141-1152. [75] Lysenko, D. A., Ertesvåg, I. S., & Rian, K. E. (2013). Modeling of turbulent separated flows using openfoam. Computers and Fluids, 80(1), 408-422. [76] Zhou, M., Sahni, O., Kim, H. J., Figueroa, C. A., Taylor, C. A., Shephard, M. S., & Jansen, K. E. (2010). Cardiovascular flow simulation at extreme scale. Computational Mechanics, 46(1), 71-72. [77] Chen, Q., Smith, C. Y., Bailey, K. R., Wennberg, P. W., & Kullo, I. J. (2013). Disease location is associated with survival in patients with peripheral arterial disease. Journal of the American Heart Association, 2(5), 12-14. [78] Frydrychowicz, A., Winterer, J. T., Zaitsev, M., Jung, B., Hennig, J., Langer, M., & Markl, M. (2007). Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. Journal of Magnetic Resonance Imaging, 25(5), 1085-1092. [79] Barber, T. J. & Simmons, A. (2011). Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile. Artificial Organs, 35(7), 155-160. [80] Boersen, J. T., Groot Jebbink, E., Van de Velde, L., Versluis, M., Lajoinie, G., Slump, C. H., de Vries, J.-P. P. M., & Reijnen, M. M. P. J. (2017). The Influence of Positioning of the Nellix Endovascular Aneurysm Sealing System on Suprarenal and Renal Flow: An In Vitro Study. Journal of Endovascular Therapy, 24(5), 677-687. [81] Thielicke, W. & Stamhuis, E. J. (2014). PIVlab - Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2(1), e30. [82] Paliwal, N., Damiano, R., Varble, N., Tutino, V., Dou, Z., Siddiqui, A., & Meng, H. (2017). Methodology for CFD Validation for Medical Use: Application to Intracranial Aneurysm. Journal of Biomechanical Engineering, 139. [83] de Boer, S. W., Heinen, S. G., van den Heuvel, D. A., van de Vosse, F. N., & de Vries, J. P. (2017). How to define the hemodynamic significance of an equivocal iliofemoral artery stenosis: Review of literature and outcomes of an international questionnaire. V ascular, 25(6), 598-608. [84] Young, D. (1979). Fluid mechanics of arterial stenosis. Journal of Biomechanical Engineering, 101, 157-175. [85] Dodds, S. R. (2002). The haemodynamics of asymmetric stenoses. European Journal of Vascular and Endovascular Surgery, 24(4), 332-337. [86] Novakova, L., Kolinsky, J., Adamec, J., Kudlicka, J., & Malik, J. (2016). Vascular stenosis asymmetry influences considerably pressure gradient and flow volume. Physiological Research, 65(1), 63-69. [87] Reekers, J. A., Kromhout, J. G., & Jacobs, M. J. H. M. (1994). Percutaneous intentional extraluminal recanalisation of the femoropopliteal artery. European Journal of Vascular Surgery, 8(6), 723-728. [88] Golchehr, B., Kruse, R., Van Walraven, L. A., Lensvelt, M. M., Zeebregts, C. J., & Reijnen, M. M. (2015). Three-year outcome of the heparin-bonded Viabahn for superficial femoral artery occlusive disease. Journal of Vascular Surgery, 62(4), 984-989. [89] Lammer, J., Zeller, T., Hausegger, K. A., Schaefer, P. J., Gschwendtner, M., MuellerHuelsbeck, S., Rand, T., Funovics, M., Wolf, F., Rastan, A., Gschwandtner, M., Puchner, S., Beschorner, U., Ristl, R., & Schoder, M. (2015). Sustained Benefit at 2-Years for Covered Stents Versus Bare-Metal Stents in Long SFA Lesions: The VIASTAR Trial. CardioV ascular and Interventional Radiology, 38(1), 25-32. [90] Weinstock, B. S. (2014). Covered stents in the treatment of superficial femoral artery disease. Vascular Disease Management, 11(4 PG - E76-E86), E76-E86. [91] Marsden, A. L. (2014). Optimization in Cardiovascular Modeling. Annual Review of Fluid Mechanics, 46(1), 519-546. [92] Hathcock, J. J. (2006). Flow effects on coagulation and thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(8), 1729-1737. [93] Treiman, G. S., Ashrafi, A., & Lawrence, P. F. (2000). Incidentally detected stenoses proximal to grafts originating below the common femoral artery: Do they affect graft patency or warrant repair in asymptomatic patients? Journal of Vascular Surgery, 32(6), 1180-1189. [94] Wyttenbach, R., Gallino, A., Alerci, M., Mahler, F., Cozzi, L., Di Valentino, M., Badimon, J. J., Fuster, V., & Corti, R. (2004). Effects of percutaneous transluminal angioplasty and endovascular brachytherapy on vascular remodeling of human femoropopliteal artery by noninvasive magnetic resonance imaging. Circulation, 110(9), 1156-1161. [95] Votta, E., Le, T. B., Stevanella, M., Fusini, L., Caiani, E. G., Redaelli, A., & Sotiropoulos, F. (2013). Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions. Journal of Biomechanics, 46(2), 217-228. [96] Grbic, S., Mansi, T., Ionasec, R., Voigt, I., Houle, H., John, M., Schoebinger, M., Navab, N., & Comaniciu, D. (2013). Image-based computational models for TAVI planning: From CT images to implant deployment. In Lecture Notes in Computer Science (pp. 395-402). [97] De Jaegere, P., De Santis, G., Rodriguez-Olivares, R., Bosmans, J., Bruining, N., Dezutter, T., Rahhab, Z., El Faquir, N., Collas, V., Bosmans, B., Verhegghe, B., Ren, C., Geleinse, M., Schultz, C., Van Mieghem, N., De Beule, M., & Mortier, P. (2016). Patient-Specific Computer Modeling to Predict Aortic Regurgitation after Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 9(5), 508-512. [98] De Santis, G., Trachet, B., Conti, M., De Beule, M., Morbiducci, U., Mortier, P., Segers, P., Verdonck, P., & Verhegghe, B. (2013). A computational study of the hemodynamic impact of openVersus closed-Cell stent design in carotid artery stenting. Artificial Organs, 37(7). [99] Auricchio, F., Conti, M., De Beule, M., De Santis, G., & Verhegghe, B. (2011). Carotid artery stenting simulation: From patient-specific images to finite element analysis. Medical Engineering and Physics, 33(3), 281-289. [100] Gundert, T. J., Marsden, A. L., Yang, W., & LaDisa, J. F. (2012). Optimization of Cardiovascular Stent Design Using Computational Fluid Dynamics. Journal of Biomechanical Engineering, 134(1), 011002. [101] De Bock, S., Iannaccone, F., De Santis, G., De Beule, M., Van Loo, D., Devos, D., Vermassen, F., Segers, P., & Verhegghe, B. (2012). Virtual evaluation of stent graft deployment: A validated modeling and simulation study. Journal of the Mechanical Behavior of Biomedical Materials, 13, 129-139. [102] Perrin, D., Badel, P., Orgeas, L., Geindreau, C., rolland du Roscoat, S., Albertini, J. N., & Avril, S. (2016). Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. Journal of the Mechanical Behavior of Biomedical Materials, 63, 86-99. [103] Sawicki, P. T., Kaiser, S., Heinemann, L., Frenzel, H., & Berger, M. (1991). Prevalence of renal artery stenosis in diabetes mellitus-an autopsy study. Journal of internal medicine, 229(6), 489-92. [104] Textor, S. C., Misra, S., & Oderich, G. S. (2013). Percutaneous revascularization for ischemic nephropathy: The past, present, and future. Kidney International, 83(1), 28-40. [105] Bommart, S., Cliche, A., Therasse, E., Giroux, M. F., Vidal, V., Oliva, V. L., & Soulez, G. (2010). Renal artery revascularization: Predictive value of kidney length and volume weighted by resistive index. American Journal of Roentgenology, 194(5), 1365-1372. [106] Bruno, R. M., Daghini, E., Versari, D., Sgrò, M., Sanna, M., Venturini, L., Romanini, C., Di Paco, I., Sudano, I., Cioni, R., Lerman, L. O., Ghiadoni, L., Taddei, S., & Pinto, S. (2014). Predictive role of renal resistive index for clinical outcome after revascularization in hypertensive patients with atherosclerotic renal artery stenosis: A monocentric observational study. Cardiovascular Ultrasound, 12(1). [107] van Brussel, P. M., van de Hoef, T. P., de Winter, R. J., Vogt, L., & van den Born, B.-J. (2017). Hemodynamic Measurements for the Selection of Patients With Renal Artery Stenosis. JACC: Cardiovascular Interventions, 10(10), 973-985. [108] Udoff, E., Barth, K., Harrington, D., Kaufman, S., & White, R. (1979). Hemodynamic Significance of Iliac Artery Stenosis: Pressure Measurements During Angiography. Radiology, 132, 289-293. [109] Murata, N., Aihara, H., Soga, Y., Tomoi, Y., Hiramori, S., Kobayashi, Y., Ichihashi, K., & Tanaka, N. (2015). Validation of pressure gradient and peripheral fractional flow reserve measured by a pressure wire for diagnosis of iliofemoral artery disease with intermediate stenosis. Medical Devices: Evidence and Research, 8, 467-472. [110] Leach, J. R., Rayz, V. L., Soares, B., Wintermark, M., Mofrad, M. R., & Saloner, D. (2010). Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Annals of Biomedical Engineering, 38(8), 2748-2765. [111] Teng, Z., Canton, G., Yuan, C., Ferguson, M., Yang, C., Huang, X., & Zheng, J. (2010). 3D Critical Plaque Wall Stress Is a Better Predictor of Carotid Plaque Rupture Sites Than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study. Journal of Biomechanical Engineering, 132(3), 031007. [112] Huang, X., Yang, C., Zheng, J., Bach, R., Muccigrosso, D., Woodard, P. K., & Tang, D. (2014). Higher critical plaque wall stress in patients who died of coronary artery disease compared with those who died of other causes: A 3D FSI study based on ex vivo MRI of coronary plaques. Journal of Biomechanics, 47(2), 432-437. [113] Groot Jebbink, E., Goverde, P. C. J. M., van Oostayen, J. A., Reijnen, M. M. P. J., & Slump, C. H. (2014). Innovation in aortoiliac stenting: an in vitro comparison. Journal of Medical Imaging, 9036, 90361X. [114] Mills, J. L., Wixon, C. L., James, D. C., Devine, J., Westerband, A., & Hughes, J. D. (2001). The natural history of intermediate and critical vein graft stenosis: Recommendations for continued surveillance or repair. Journal of Vascular Surgery, 33(2), 273-280. [115] Van Oostenbrugge, T. J., De Vries, J. P. P., Berger, P., Vos, J. A., Vonken, E. P., Moll, F. L., & De Borst, G. J. (2014). Outcome of endovascular reintervention for significant stenosis at infrainguinal bypass anastomoses. Journal of Vascular Surgery, 60(3), 696-701. [116] Allon, M., Robbin, M. L., Young, C. J., Deierhoi, M. H., Goodman, J., Hanaway, M., Lockhart, M. E., & Litovsky, S. (2013). Preoperative venous intimal hyperplasia, postoperative arteriovenous fistula stenosis, and clinical fistula outcomes. Clinical Journal of the American Society of Nephrology, 8(10), 1750-1755. [117] Grechy, L., Iori, F., Corbett, R. W., Gedroyc, W., Duncan, N., Caro, C. G., & Vincent, P. E. (2017). The Effect of Arterial Curvature on Blood Flow in Arterio-Venous Fistulae: Realistic Geometries and Pulsatile Flow. Cardiovascular Engineering and Technology, 8(3), 313-329. [118] Dawson, P. (2002). Contrast agents in patients on dialysis. Seminars in Dialysis, 15(4), 232- 236. [119] Chandra, S., Raut, S. S., Jana, A., Biederman, R. W., Doyle, M., Muluk, S. C., & Finol, E. A. (2013). Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling. Journal of Biomechanical Engineering, 135(8), 081001. [120] Indrakusuma, R., Jalalzadeh, H., Planken, R. N., Marquering, H. A., Legemate, D. A., Koelemay, M. J., & Balm, R. (2016). Biomechanical Imaging Markers as Predictors of Abdominal Aortic Aneurysm Growth or Rupture: A Systematic Review. European Journal of Vascular and Endovascular Surgery, 52(4), 475-486. [121] Aggarwal, S., Qamar, A., Sharma, V., & Sharma, A. (2011). Abdominal aortic aneurysm: A comprehensive review. Experimental and Clinical Cardiology, 16(1), 11-15. [122] Griffin, C. L., Scali, S. T., Feezor, R. J., Chang, C. K., Giles, K. A., Fatima, J., Huber, T. S., & Beck, A. W. (2015). Fate of aneurysmal common iliac artery landing zones used for endovascular aneurysm repair. Journal of Endovascular Therapy, 22(5), 748-759. [123] Jones, J. E., Atkins, M. D., Brewster, D. C., Chung, T. K., Kwolek, C. J., LaMuraglia, G. M., Hodgman, T. M., & Cambria, R. P. (2007). Persistent type 2 endoleak after endovascular repair of abdominal aortic aneurysm is associated with adverse late outcomes. Journal of Vascular Surgery, 46(1), 1-8. [124] Kruse, R. R., Vinke, E. J., Poelmann, F. B., Rohof, D., Holewijn, S., Slump, C. H., & Reijnen, M. (2016). Computation of blood flow through collateral circulation of the superficial femoral artery. Vascular, 24(2), 126-133.