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Predicting user loyalty in an education support web application based on usage
data

by Karim M. E L A S S A L

Data use in education has been increasing in the last 20 years. School management
and teachers are moving towards a data-driven policy and improvement process due
to the potential benefits. Studies show that data use can increase student achievement
to some extent, and that the use of information systems that facilitate data use has a
positive impact on educational management.

There are many barriers that limit the adoption of data use, one of which is the
teachers and specifically their data (il)literacy and their attitude towards data use.
The proper adoption of data systems by teachers is paramount in this context: with-
out appropriate use of the means, data use can not be effectively utilized. A few
factors that influence the adoption of data systems are data’s availability, reliability,
findability and interpretability.

Knowing users’ opinions on these factors is essential to improving such a data
system. Gathering these opinions, however, is time and resource intensive. That’s
why Reichheld’s Net-Promoter Score (NPS) survey is so popular. It asks the question
"How likely is it that you would recommend our system to a friend or colleague?"
and expects an answer between 0 (extremely unlikely) and 10 (extremely likely).
Users scoring 9 or 10 are called Promoters, users scoring 7 or 8 are Passives and
users scoring between 0 and 6 are Detractors. It is considered a measure of loyalty:
Reichheld argues that users who promote your system put their own reputation on
the line.

This research focuses on predicting a user’s NPS response based on their system
usage data. With this loyalty prediction, system owners can better target their sys-
tem evaluation and improvement efforts. The use case is Somtoday, an exemplary
Dutch high school administration system developed by Topicus Education. The re-
search question is: "How reliably can teachers’ usage data, generated by an education
support data system, be used to predict user loyalty towards that system?"

There are 1085 NPS responses available, consisting of a score and a reason for that
score, with an average of 1408 relevant log entries per NPS response. Additionally,
non-identifying profile data is available, such as a teacher’s school and the education
levels he or she is teaching.

Efforts to determine what behavior might be an influence on the NPS score have
yielded data feature specifications about prevalence of functionality use, repetitive
tasks, clickstreams, encountered downtimes, login frequencies, the amount of system
usage and teacher profile data. Based on the expected impact on the NPS response,
preparation time and generalizability to other systems, data features were selected
about system usage, repetitive tasks and profile data. After applying a range of extrac-
tion, transformation and load (ETL) operations and applying the sequential pattern
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mining algorithm Apriorirep1i we created, numerical or binary values for each data
feature were extracted.

The actual NPS prediction was done using machine learning. A brute force ap-
proach was applied to account for differences in models, model parameters, and
preprocessing methods such as normalization and outlier removal. Additionally, the
data type of the predicted NPS score was treated in three different ways: numerical
(0-10), eleven-value categorical (0-10), and three-value categorical (Promoter, Passive,
Detractor). The best models performed with a mean absolute error (MAE) of 1.727
with numerical prediction, an accuracy of 27.92% with eleven-value categorical pre-
diction, and 54.30% with three-value categorical prediction. If one always predicts
the dominant class or value, i.e. 7 or Passive, the MAE with numerical prediction is
1.733, the accuracy with eleven-value categorical prediction is 27.63%, and the accu-
racy with three-value categorical prediction is 44.07%. Validation was provided by
the utilized brute force approach and by looking at different performance metrics.

The small performance difference between the trained models and always pre-
dicting the dominant class or value shows that there is practically no predictive value
in the dataset. The conclusion of this study is that the researched data features can
not reliably be used with machine learning models to predict NPS scores.

This does not rule out the possibility that user loyalty towards a system can be
predicted based on their behavior. Our main recommendation for Topicus is to focus
on finding predictive value in other usage patterns. The recommendation from a
more scientific perspective is the same, but with a preliminary step: to conduct a
more in-depth feature discovery research project. A full-scale user experience study
with the goal of usage data analysis gives the researcher quantitative and qualitative
data about what users think of different aspects (e.g. navigation and layout) and
functionalities and how their behavior is mapped onto the log entries dataset. Having
better insight leads not only to validated feature selection, it also leads to refined
knowledge about how data features can be measured and what the nuances are.
Choosing this approach, one or multiple directed studies into specific usage patterns
can be set up and the researcher has a better chance of finding predictive value in
user behavior: the researcher is no longer looking in the proverbial dark.
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Chapter 1

Introduction

The improvement of our future relies immensely on the quality of our education.
When we improve our education we not only better our future, but also the future of
generations to come. To make sure that people focus their efforts on actual growth
and not on mere futile attempts and approximations, the right decisions must be
made based not on (gut) feelings, but on accurate data. One way of doing that is by
using education support data systems1. Although there are other reasons that might
hinder data-driven decision making, such as attitude and high workload, an effective
and optimized data system comes a long way in stimulating data use. This study
uses certain usage patterns within such a system to predict users’ loyalty towards
that system based on the NPS metric, so that system improvements can be better
targeted and, in turn, to ultimately advance data use in education, education itself,
and our future.

Data use in education has been increasing in the last 20 years. With the advent
of the internet and the availability of enormous amounts of data, data use in schools
has attained a prominent place in the educational system. School management and
teachers are moving towards a data-driven policy and improvement process due
to the potential benefits [7, 15, 16, 34, 60, 63]. Data use can be defined as “system-
atically analyzing existing data sources within the school, applying outcomes of
analyses to innovate teaching, curricula, and school performance, and, implementing
(e.g. genuine improvement actions) and evaluating these innovations” [52, p.482].
Data include not only assessment data, but anything about the school and students
that might be relevant for decision making. Examples are student background data,
process data (e.g. classroom observations and teacher interviews), school context
data (e.g. information about the building), student assessment data and satisfaction
data [3, 30, 53]. Several studies show that data use can increase student achievement
to some extent [8, 35, 38, 45], for example by setting specific and measurable achieve-
ment goals [17]. Studies have also shown that the use of systems that facilitate data
use1 has a positive impact on educational management. Examples include better
access to information, more efficient administration, higher utilization of school re-
sources, reduction in workload, better time management, and improvement in the
quality of reports [55]. These examples show that data use and the use of data sys-
tems improve several aspects of education, motivating a wider adoption of data use
and its facilitating systems.

1 The terminology in literature for these types of systems is unclear. Several studies use different
terms to denote the same, such as "data use systems", "data management systems", and "information
management systems". This thesis will use "data systems" as a term for systems that facilitate educational
data use in the broadest sense: assessment data, administration data and any other type of data that are
relevant to educational institutions.



2 Chapter 1. Introduction

1.1 Problem

There are, however, many barriers that limit the adoption of data use. One of the
most influential factors is the teachers; specifically their data (il)literacy and their
attitude towards data use [54]. Teachers that see the value in using data as evidence
for the improvement of student achievement on an individual basis, tend to overcome
barriers more easily and are more likely to use data systems [43]. The proper adoption
of these tools by teachers is paramount: without appropriate use of the means, data
use can not be effectively utilized.

Research has shown that a few key factors are important for the adoption of data
systems, besides the adoption of data use as a concept. The most important factors
are the data’s availability, reliability (i.e. data being accurate and up to date) and the
ease with which specific data can be found [6, 11, 17, 27, 52, 64]. Furthermore, teach-
ers report they need functionalities to not only access and organize data, but also
support the interpretation of data [34, 51]. This is necessary for users with limited
data literacy, which can be assumed to be a very large part of all teachers. Function-
alities supporting data interpretation may prevent or at least mitigate the chances of
data misuse and abuse. Data misuse is basically a wrong interpretation of data. An
example of data abuse is when teachers try to improve a class’ test score average by
practically giving up on the ’hopeless’ students [39, 52].

The above mentioned studies have reported on teachers’ opinions, which can ulti-
mately improve the adoption of data use and data systems. Gathering these opinions,
however, is time and resource intensive. One might think of composing focus groups
and organizing constructive conversations with them, or constructing, administering
and processing surveys. Companies developing data systems are very interested in
the opinions of their end users. Yet, they might also have other reasons that make the
method of obtaining feedback impractical. For example, the end users might not be in
the management positions. At Topicus Education, the company of this thesis’ use case
(see section 1.2), they’ve run into a direct consequence of that distinction. They es-
sentially have two paths of communication: one for business-to-business and one for
end-user-to-business. The former is used for business-level subjects and is between
a school’s application manager and one of Topicus’ customer relations employees.
The latter is for gathering points of improvements to the system and consists mainly
of talking to focus groups on a per-school basis, administering periodic surveys and
making a feedback button available within the system (more on this in section 1.4).
The problem is that with the business-to-business communications, an application
manager acts as a spokesperson for the end users of their associated school. Topicus
reports that more often than not, the application manager expresses the customer’s
positive opinion while in reality the end users are dissatisfied with several aspects of
the system.

Like many other companies, Topicus Education uses the Net-Promoter Score
(NPS) survey[49] to measure the performance of their system in terms of user loyalty.
It focuses on asking users the question "how likely is it that you would recommend
our system to a friend or colleague?", where the possible answers are in the discrete
range of 0 to 10, inclusive. It is far too simple to include the nuances inherent to a
user’s opinion. However, for the goal of system improvement it is sufficient: users
that would definitely not recommend the system are worth focusing improvement
efforts on. Gathering responses to this question is less costly than is the case with
extensive satisfaction surveys, but it still is resource intensive. Additionally, it only
results in responses from users who take the little amount of time and effort to re-
spond.
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1.2 Objectives and use case

The above example of the application managers, combined with the general tedious-
ness of feedback aggregation, illustrates the opportunities for improvement in the
process of gathering feedback about a system. This study focuses on predicting user
loyalty in a userbase-wide, non-invasive and fully automated way, i.e. by analyzing
metrics (called features) derived from the usage data. For example, a feature could
be the average amount of login actions per day and a prediction could be "if a user
logs in 10 times per day on average, he is very likely to give a score of 4 on the NPS
survey". With this loyalty prediction, system owners can identify potentially disloyal
users and effectively target their system evaluation and improvement efforts. Addi-
tionally, this study will provide some insight into user behavior that qualifies users
as loyal, neutral or disloyal.

The use case for this study is Somtoday2, an exemplary high school administra-
tion system. It has a web-based user interface and is tailored for school staff, students
and parents. It is owned and developed by Topicus Education3 and has been first
released in September 2006. As of October 2016, it had about 660,000 users [42] and
for a few years now, a share of about 30% of the Dutch market in educational data
systems in the higher education4 segment [40]. In addition to the web-based user
interface, Topicus has released a basic variant in 2015 called Somtoday Docent which
is meant for mobile devices. Although it has less functionalities, it is more useful in
class for administrative tasks such as absentee registration.

1.3 Research questions

The road to reach the goal described in section 1.2 is taken by finding an answer to
the main research question:

How reliably can teachers’ usage data, generated by an education sup-
port data system, be used to predict user loyalty towards that system?

The following questions have been formulated to divide the main problem into
distinct parts. Each question is answered by the respective chapters 3 to 7.

1. What might be an influence on the user loyalty towards the data system?

2. How can the raw data be put into a format usable for research?

3. How can values for each data feature be extracted from the data?

4. What is the predictive value of the dataset?

5. What is the predictive validity of the trained model?

Although an effort is being made in engaging students in utilizing their own
data [31], the scope of this study has been limited by only looking at usage data of
teachers. This is the group of users that is the most influential factor in the adoption
of the system [27] and the most influential in a school’s decision of data system.

2 https://www.som.today/
3 https://topicus.nl/onderwijs/
4 This concerns the Dutch ’voorgezet onderwijs’.

https://www.som.today/
https://topicus.nl/onderwijs/
https://www.som.today/
https://topicus.nl/onderwijs/
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1.4 Available data and technologies

This section describes the data and technologies that are available at Topicus. Some
basic analyses have been made to show the size and distribution of the datasets.

Unfortunately, there are no reliable data available about encountered system bugs.
This is due to a concurrency limitation within Somtoday, which makes it unusable
for this study.

1.4.1 NPS responses

The individual NPS responses are the data points that are used to train the model
in its predictive capabilities. Each day a few dozen users are randomly selected
to receive the NPS survey. There is at least a time period of about three months
between each survey to the same user to be certain that users aren’t bothered too
often. Additionally, the NPS survey is administered after notable client contact, such
as with Topicus’ service desk.

The raw data fields are described in table 1.1. Seeing as this research focuses pri-
marily on teachers, the raw dataset was filtered on the role field: only NPS responses
are considered where the user has the role ’teacher’, ’mentor’ or ’individual mentor’.
Mentors can be assumed to also be teachers. The ’other’ role includes parents and
non-teacher types of school employees such as management and support staff.

TA B L E 1 . 1 : Raw NPS data fields. Note that the actual field names
are slightly different in the actual dataset; either with different capital-

ization, translated, simplified or a combination of those.

Field Description Data format / possible values

date The date and time the user re-
sponded to the NPS survey.

datetime string

INSTUUID The institution (i.e. school) ID
within Somtoday.

alphanumeric string of length 36

institution The school of the user. string

process The process that was the motiva-
tion for administering the NPS
survey.

’Active account Student|Employee|Caretaker’ |
’Accountmanagement’ | ’Servicedesk’ | ’Training
participant’

UUID The user ID within Somtoday. alphanumeric string of length 36

role The role of the user. This is de-
termined based on assignments
within Somtoday. E.g. a user is a
teacher if he is assigned to one or
more classes.

’application manager’ | ’teacher’ | ’mentor’ | ’indi-
vidual mentor’ | ’other’

NPS The actual NPS response. integer between 0 and 10 (inclusive)

root cause 1 The primary root cause for the
NPS response.

any of the available categories, such as ’functionali-
ties’, ’availability’, ’user-friendliness’ and ’service’

root cause 2 The secondary, supplementary
root cause for the NPS response.

any of the available categories, such as specific
functionalities, the layout on specific devices and
the length and frequency of system unavailability

open question Any further clarification for the
given response.

string
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In the available dataset, there are 1085 NPS responses of teachers in the relevant
time frame. Of those, there are 6 users that have two NPS responses. The time be-
tween responses is 4.4 months on average, with a minimum of 2.8 months. One
anomalous case was removed. All NPS responses, including those of users with two
responses, will be treated as separate and independent of each other. The response
histogram is shown in figure 1.1 and the temporal distribution is shown in figure 1.2.

F I G U R E 1 . 1 : Response distribution of teacher NPS responses.

F I G U R E 1 . 2 : Temporal distribution of teacher NPS responses. Note
that the different response values are shown solely to indicate that

there is variation.

1.4.2 Usage data

The usage data is the main subject of this research. It consists of two types of web
usage logs. The first is automatically collected by the framework in which the main
Somtoday web application is developed: Apache Wicket5. This data is copied in a
transformed format to the cluster for future analysis (more on the infrastructure in
section 1.4.6). We’ll call these the non-API log entries. Log entries of the second type
are a result of the Somtoday Docent front-end application that generates API calls to
the back-end and also end up on the same cluster. We’ll call these the API log entries.

5 https://wicket.apache.org/

https://wicket.apache.org/
https://wicket.apache.org/
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The non-API and API logs have some intersecting fields. They are described in
table 1.2.

TA B L E 1 . 2 : Raw usage data fields. Note that this table only contains
fields that are possibly relevant for the rest of this research.

Field
non-
API

API Description Data format / possible values

@timestamp X X The timestamp of the request, accurate
to the millisecond.

timestamp string

duration X X The amount of milliseconds it took the
server to process the request and build
a response.

positive

requestedUrl X X The URL. string
userAgent_* X X Several fields containing data about

the user’s user agent, such as the name,
device type, operating system, browser
and browser version.

integer in the case of versions,
string in any other case

username X The username of the user. string
username X The username of the user, including

the organisation (i.e. school) abbrevi-
ation.

string: ’<organisation-
abbr>/<username>’

remote address X The user’s ip address. IPv4 or IPv6 string
organisation X X The full name of the user’s school. string
range X Element used for pagination. string, e.g. ’items=0-100’
restResource X The URL to the resource, including pa-

rameter templates.
string

method X The method with which the request
was sent.

’GET’ | ’POST’ | ’OPTIONS’ |
’PUT’ | ’DELETE’

category X The category of the resource. string
status X The HTTP status code sent back to the

user.
integer

sessionId X A unique session ID. alphanumeric string of
length 40

session_startDate X The timestamp the session started, ac-
curate to the millisecond.

timestamp string

session_numberOf-
Requests

X The sequential number of the current
request relative to the current session.

positive integer

session_totalTime-
Taken

X The total number of milliseconds the
current session is taking up until the
current request.

(large) positive integer

eventTargetClass X The Java class handling the request. fully qualified Java class name
event_pageClass X The Java page class that triggered the

request.
fully qualified Java class name

componentClass X The Java component (e.g. button) class
that triggered the request.

fully qualified Java class name

componentPath X The path to the component of ’compo-
nentClass’.

CSS selector-like string

behaviorClass X The Java behavior class responding to
the event. Examples are AJAX and
timer events.

fully qualified Java class name

response_pageClass X The Java page class responding to the
request.

fully qualified Java class name

The are about 7 billion non-API log records and 2 billion API log records between
March 1st, 2016 and October 1st, 2017. Not all of these are relevant: only the usage
logs of the users that responded to the NPS survey are interesting. This is discussed in
detail in chapter 4. The temporal distribution of the usage logs is shown in figure 1.3.
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The weekend and holiday dips are clearly visible and the peak in June 2016 and the
absence of entries in September 2017 are explained by irregularities in the process
of log storage. The absence of API log entries before May 2016 is explained by the
introduction of the API logging process around that date. These irregularities do not
impact this research because they lie outside of the time frame of relevant entries, as
chapter 4 also explains.

F I G U R E 1 . 3 : Temporal distribution of usage logs

1.4.3 Profile data

The Somtoday back-end has profile data stored of its users and schools in Oracle
Database6 divided over several servers. This data can be extracted with SQL queries
that can become rather complex due to the normalized format of the relational storage.
Note that the existence of this data does not mean it is used in this research.

Students Personal data (i.e. name, address and date of birth), familial relations, pre-
vious school, current school registration (including date of registration, educa-
tion level7 and education specialization8), internships, absence, study program,
linked groups (i.e. classes), exam results, medical data, class schedule and home-
work (administration).

Employees Personal data (i.e. name, address and date of birth), linked groups (i.e.
classes) and class schedule.

Schools General data (e.g. name, owner and data on all establishments), educational
programs and settings within Somtoday (e.g. security rights, layout settings
and templates).

1.4.4 (Unplanned) downtimes

The periods of unplanned downtime are tracked by the system monitoring company
Uptrends9. They provide a web-based interface that includes the option to export
data into XLSX file format. The available data consist of the moments at which a
specific system has reported a failure or that it’s available again. In the time period

6 http://www.oracle.com/technetwork/database/
7 In Dutch this is the opleidingsniveau, such as HAVO or VWO.
8 In Dutch this is the opleidingsprofiel, such as Natuurkunde en Techniek or Natuurkunde en Gezondheid.
9 https://www.uptrends.nl/

http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/database/
https://www.uptrends.nl/
http://www.oracle.com/technetwork/database/
https://www.uptrends.nl/
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between July 1st, 2016 and June 30th, 2017, Uptrends reports 25 periods of unplanned
downtime of Somtoday. The length of these periods range from mere minutes to half
an hour, with a few exceptions reaching about 90 minutes.

There are no data available about planned downtime. However, this can be ex-
tracted from the logs by looking at periods of time in which the amount of log entries
reaches zero. These maintenance periods are usually about every three weeks on
Fridays between 5 and 6 PM, limiting the search scope considerably.

1.4.5 Auxiliary qualitative data

There are three auxiliary data sources available: the open question included in the
NPS survey, the responses on the feedback button within Somtoday, and the service
desk tickets. These have not been used for data analysis, but primarily to gain new
insights into possibly relevant features. More on this is discussed in chapter 3. Note
that the term auxiliary data is used here not as jargon, but exactly as the definition
specifies it: supportive or supplementary data. This was chosen to distinguish data
that is used for automated analysis and data that is used for manual analysis (i.e.
feature discovery).

The NPS survey includes an open question asking for a reason behind the respon-
dent’s given response. Table 1.1 shows that respondents can classify and subclassify
their main reason. This is supplemented with what the respondent wants to say.
There are an even amount of data points as there are (relevant) NPS responses, al-
though a small part of the open question responses is empty or otherwise useless.

Contact between Somtoday’s end users and Topicus generally doesn’t happen
directly. Topicus handles contact with a school’s application manager. This means
that whenever an end user has a question or complaint, it is passed through the
application manager to Topicus’ service desk. Whenever answering a question takes
more than a few seconds, a ticket is created in the issue tracking system JIRA10. There
were 2314 tickets created between January 2nd, 2014 and April 25th, 2017.

Furthermore, Somtoday has got a feedback button integrated in its layout. This
way, users can send feedback to the developers within a few seconds. These are
meant to be ideas for new features, although users often send complaints, mistaking
the feedback functionality for the service desk. All feedback sent via this button is
collected by Freshdesk11. Topicus received 1953 responses between November 13th,
2015 and June 27th, 2017.

1.4.6 Infrastructure

Topicus Education has an infrastructure in place specifically designed for the anal-
ysis of usage logs. The relevant parts are explained here. All storage, applications
and other processes reside in a cloud environment managed by Previder12. Authen-
tication is not depicted here, but is embedded in the infrastructure and handled by
Topicus’ own Keyhub13 service. Practically all services run in Docker14 instances and
load balancing on the cluster is managed by Kubernetes15.

10 https://www.atlassian.com/software/jira
11 https://freshdesk.com/
12 https://www.previder.com/
13 https://www.topicus-keyhub.com/
14 https://www.docker.com/
15 https://kubernetes.io/

https://www.atlassian.com/software/jira
https://freshdesk.com/
https://www.previder.com/
https://www.topicus-keyhub.com/
https://www.docker.com/
https://kubernetes.io/
https://www.atlassian.com/software/jira
https://freshdesk.com/
https://www.previder.com/
https://www.topicus-keyhub.com/
https://www.docker.com/
https://kubernetes.io/
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F I G U R E 1 . 4 : A UML component diagram that depicts Topicus Ed-
ucation’s infrastructure relevant to data analysis. Note that the dis-
played interpreters and plugins are just practical examples: in reality,

many more are implemented and used in their respective systems.

( A ) The UML activity diagram of the pro-
cess that stores real-time request log data

( B ) The UML activity diagram of the
transfer of log data to long-term storage

F I G U R E 1 . 5

Real-time data collection Logging requests received by Somtoday and Somtoday
Docent is handled in real-time. Figure 1.5a shows the order of operations upon
receiving a new request. Elastic’s Filebeat16 and Logstash17 pipelines handle
several elementary extraction, transformation and loading (ETL) operations. A
buffer handles any issues resulting from slow disk operations. This buffer’s
size is in 100 log entries. When the buffer is full it writes the compressed log
entries to a staging directory on the Hadoop cluster, after which the log entries
are available for analysis. This means this data collection process is nearly, but
not entirely real-time.

Historical data collection Figure 1.5b shows the process that flushes the (near) real-
time data to a data lake on the cluster: long-term storage that holds various
types of data in (semi-)structured format. Each log type is stored in a different

16 https://www.elastic.co/products/beats/filebeat
17 https://www.elastic.co/products/logstash

https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/products/logstash
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/products/logstash
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subdirectory. This happens every 24 hours, at night. After this atomic operation
completes, the real-time data from the staging directory are purged.

Data storage Topicus Education maintains its distributed storage using the Apache
Hadoop18 ecosystem. This cluster is managed with the graphical web-based
user interface Apache Ambari19 v2.4.2.0. The infrastructure is depicted in fig-
ure 1.4. All analysis operations and queries for stored data go through Drill
and/or Hadoop.

Data storage format Apache Drill uses the Apache Parquet20 format to store its ta-
bles. It uses a column-based storage structure, as opposed to conventional row-
based structures. A big advantage is that it enables quick physical data retrieval
for a few columns on a large dataset. For example, retrieving the timestamps
of all requests of a specific user is fast, but retrieving all rows within a specific
timespan is very slow.

Data querying (back-end) The center of action is Apache Drill21 v1.7.0. Drill is a
schema-free SQL query engine that Apache promotes as having far less over-
head due to its flexibility and agility in easily working with multiple data
sources. A disadvantage is that this proved false in our case. For example, when
joining different tables, casting must take place to force a schema on each table
so Drill can perform a proper hash join. An advantage is that it uses (ANSI)
SQL for querying.

Data querying (front-end) Apache Zeppelin22 v0.7.1 is a web-based notebook that
interfaces with Drill. It enables execution of several languages, which is handled
by interpreters, and incorporates rudimentary version control. The available
languages are Angular (for interactive notebooks), Drill (for directly querying
the back-end), Markdown (for simple text), Python (for handling data with a
full-fledged programming language), and R (for more basic data analyses). It
also offers a fairly extensive display system for easy visualization of (business
intelligence) datasets.

Data processing Within Zeppelin, Python23 v2.7 is used because of the advantage
of having a complete programming language.

Other data, such as the NPS data and any data from the Somtoday database, are
exported from their respective sources into CSV format and made available to Drill
by uploading to the Hadoop cluster using Ambari. Seeing as the dataset does not get
updated often, this is a manageable workflow.

1.5 Approach

This section summarizes the approach used in this research project. Each phase’s
challenges and results are discussed in more detail in their respective parts: chap-
ters 3 to 7. The goal of each phase is to find an answer to the respective research

18 https://hadoop.apache.org/
19 https://ambari.apache.org/
20 https://parquet.apache.org/
21 https://drill.apache.org/
22 https://zeppelin.apache.org/
23 https://www.python.org/

https://hadoop.apache.org/
https://hadoop.apache.org/
https://ambari.apache.org/
https://parquet.apache.org/
https://drill.apache.org/
https://zeppelin.apache.org/
https://www.python.org/
https://hadoop.apache.org/
https://ambari.apache.org/
https://parquet.apache.org/
https://drill.apache.org/
https://zeppelin.apache.org/
https://www.python.org/
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questions described in section 1.3. The overall structure is a combination of the com-
mon approaches used in the fields of web usage mining and machine learning, seeing
as this study is exactly that: a combination of those two fields. A basic version of this
approach was used at the start of this project as a pilot to get familiar with the process,
using raw login frequencies as a data feature.24

1.5.1 Feature discovery

The results of the first phase of this project determined the exact content of the sub-
sequent phases: researching which data features might be an influence on a user’s
NPS response. Discovering which features might be relevant was done by speaking
with several stakeholders that can be considered domain experts. These include not
only teachers, but also Topicus’ staff in the customer service, customer relations, de-
velopment and data analysis departments. Several questions were prepared with the
purpose of having a clear direction for each short interview. In addition to these ques-
tions the interview had a brainstorm approach, seeing as the purpose was to gain
new insights and come up with new ideas for features. Additionally, the qualitative
dataset was manually scanned for ideas. Suggestions were disregarded that were
previously encountered, immeasurable (based on the available data), or otherwise
had no practical value.

1.5.2 Data preprocessing

This phase is notorious for being underestimated in time spent on it. During this
phase, the available data were transformed into a format that could be used in sub-
sequent phases. For the NPS data this meant filtering on user type and time frame.
For usage data this means only keeping entries that relate to the users of the NPS
data, within a specific time window of the NPS response and discarding other irrel-
evant entries. While more features were researched, this phase was repeated. Note
that validation of this phase proved to be important in ensuring that the dataset
used in subsequent phases was correct. Validation was done by preprocessing the
dataset at each atomic step in different ways, and comparing the resulting amount of
records. Also, taking a random sample and zooming in on it was useful for detecting
irregularities.

1.5.3 Pattern extraction

The purpose of this phase was to get meaningful, measurable data from the prepro-
cessed, large dataset in the format of one or several values per data feature. The taken
approach differs per feature. For some it was as simple as summing up values, for
others it entailed coming up with a new algorithm.

1.5.4 Model training

At this point the working dataset was reduced to several features per user. This was
used together with the known NPS responses to train a machine learning model, such
that it could be used to predict NPS responses of other users based on new, unseen

24 One should not consider the used data feature as potentially relevant. It was unprocessed: it simply
counted how often the system’s authenticator was called. This is not limited to users manually logging
in, e.g. it also happens when the users are automatically logged in or external authenticators are used.
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data. Several models, model parameters and preprocessing methods were investi-
gated and evaluated. Examples of models include decision trees, linear regression,
support vector machines, neural networks, and k-nearest neighbors. Training time
wasn’t much of an issue, provided that it’s in the order of days, not weeks.

1.5.5 Validation

Validation was done by utilizing a brute force approach for the models, model pa-
rameters and preprocessing methods. Additionally, looking at the generated decision
trees and confusion matrices of the best models adds to the comprehension of the
model results and was thus also used for validation.

1.6 Ethical considerations

Data privacy issues are a hot topic lately. This is illustrated with the approaching
date of the 25th of May, 2018, on which the General Data Protection Regulation will
take effect [22] and the large impact this has on entities processing data [48]. The
act of linking NPS responses to usage data on a per-user basis lies undoubtedly in a
legal and ethical gray area. After having discussed this with their legal department,
Topicus has given one-time permission for data processing as described in this thesis
with the following arguments.

• The purpose of this study is to check the viability of predicting NPS responses
based on usage data. It does not entail or build upon a practical application.

• The data is pseudonymised: any fields relating to individual users are scram-
bled, making it practically impossible to relate the data back to specific individ-
uals.
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Chapter 2

Background

This section gives background information on all relevant subjects discussed in this
thesis, such that no external sources are needed to understand its content. This study
focuses on predicting Net-Promoter Scores, explained in section 2.1, using most of
the approach of the field of web mining, outlined in section 2.2. Machine learning is
used to apply the predictions, discussed in section 2.3. One field of research specific
for repetitive patterns is discussed in section 2.4.

2.1 Net-Promoter Score (NPS)

The Net-Promoter Score is a metric to measure customer loyalty and to some extent
customer satisfaction [49]. Respondents are asked to answer one question: "How likely
is it that you would recommend our system to a friend or colleague?". The answer score
is based on a scale of 0 to 10. Respondents giving a 9 or 10 are called Promoters and
are considered loyal users that stimulate company growth by way of word-of-mouth
advertising: they are likely to promote the system to others. Respondents giving a
score of 0 to 6 are called Detractors and are considered users that are to some extent
dissatisfied. Respondents giving a 7 or 8 are called Passives. They fall between the
categories of Promoters and Detractors and could be labeled as moderately satis-
fied users who would easily switch to a cheaper system. The system’s NPS value is
calculated by using NPS = Promoters−Detractors

respondents × 100. Or, put differently:

NPS = (%Promoters−%Detractors)× 100

As such, the range is -100 to 100. Passives are added solely to the total respondents
and shift the NPS value closer to zero.

The NPS questionnaire is supplemented with one or more requests for elaboration
to the answer on the main question. From a corporate perspective, this is useful for a
deeper analysis of user attitude towards the system.

The validity and reliability of this metric is much debated in scientific studies [21,
24, 33, 36, 37, 44]. Most of these studies focus on the inability to measure satisfaction
and its inherent nuances: only a few such as [21, 36] claim the NPS does not actually
measure loyalty. Irrespective of the extent of its validity, companies use the NPS
metric to ascertain their overall performance which encourages more research into
the subject.

2.2 Web usage mining

The internet is an important part of our lives these days. The Dutch government even
went as far as saying that fast internet access is a primary need [32]. To offer good
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services to their users, website owners constantly try to improve their websites. This
is often done using explicit feedback from their users, but a less time and resource
intensive way to collect this data is through the use of web mining [13]. This area
focuses on analyzing the available data of a website to discover patterns that can
lead to an optimization of the offered services. Web mining can be divided into three
categories. Web content mining focuses on the information that is served on web pages,
web structure mining focuses on the links between web pages, and web usage mining is
all about the behavior of users.

Analyzing user behavior within an application can give interesting insights. A
few of areas using this analysis are decision support in business, marketing and
web design, personalization and recommendations [12, 47], and web caching. Many
studies into web usage mining focus on the areas of e-commerce and search engines.
Three main tasks are identified with web usage mining [58].

Preprocessing Often referred to as the most time consuming task in the process [29],
preprocessing is about preparing the data for the next task. Difficulties lie
(among other things) in identifying individual users, dividing a user’s data
in different sessions and handling missing data due to cached page views.
Sometimes content preprocessing is also necessary. For example, pages can
be classified according to their subject or in the case of e-commerce, product
class. The same goes for structure preprocessing, e.g. classifying a web site into
a hierarchical product class model in e-commerce.

Pattern discovery There are several techniques used in web usage mining for pattern
discovery. Statistical analysis is the most common technique. It looks at descrip-
tive statistics such as frequency, mean and median values about page visits, visit
time, visit length, active users, user session length, etc. Another technique is
association rule discovery. It looks at sets of pages that are often accessed together
in a single session, irrespective of whether the pages are directly connected
through hyperlinks. For example, in a web shop this might show that users
shopping for electronics often also shop for sports clothing. This might indicate
to the web shop owner that those categories could be placed closer together.
The apriori algorithm is one of the most commonly used algorithms. Cluster-
ing tries to group pages or users together that have similar properties. This is
especially useful when giving personalized recommendations to users. Classi-
fication attempts to categorize users, pages or sessions into predefined classes.
Examples of classifiers are neural networks, decision trees, naive Bayesian and
k-nearest neighbors. This can be used for targeted marketing. Finally, sequential
pattern mining looks at temporal patterns in the scope of multiple sessions. A
few examples are trend analysis, change point detection and similarity analysis.
This task is called the pattern extraction phase in the current project.

Pattern analysis This task intends to draw conclusions from the discovered patterns.
Commonly used mechanisms for analysis are SQL and OLAP operations with
data cubes. This study uses machine learning to find predictive value in the
patterns found in the previous step. The model training phase is aimed at this.

2.3 Machine learning

Naqa et al. describe machine learning as "an evolving branch of computational al-
gorithms that are designed to emulate human intelligence by learning from the sur-
rounding environment" [20]. Arthur Samuel coined machine learning as a term in
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1959, defining it as "the field of study that gives computers the ability to learn without
being explicitly programmed" [50]. Put differently, machine learning algorithms learn
a mapping function from data, such that they can generalize that to new, unseen data.

The general process of building a machine learning model is as follows. One starts
with a dataset in which each row is a data point called a sample and each column is a
feature (sometimes also called an attribute). These features are values for each sample
that are used by the model to make its predictions. This dataset is split into two
subsets: a training and a test dataset. This training dataset is used to train the model,
after which the model’s performance is measured by applying the model on the test
dataset. This performance can be increased by preprocessing the dataset, e.g. using
normalization or outlier removal. A well-performing model is highly generalizable
to new data.

The two largest directions of machine learning are supervised [56] and unsuper-
vised learning [18, 46]. Supervised learning makes a predictive generalization based
on a training dataset where the target attribute (or label) is known. If the outcome data
type is discrete, it uses classification methods. If the outcome data type is continuous,
it uses regression methods. Unsupervised learning is not based on training data. It
tries to discover patterns based only on input data. There are also other directions.
Examples are semi-supervised learning [9], in which only part of the classes of the
training data is known, and reinforcement learning [61], in which a model learns
based on continuous feedback. This study uses supervised learning since the focus
is on training a model so that it can make predictions.

The dataset used for training has to be of certain quality. If the dataset is full of
errors, missing data or otherwise of low quality, the model becomes useless. Several
preprocessing methods can be used to deal with this.

Normalization can be applied to prevent dominance of certain features and pre-
vent computing problems. This technique puts the features in the same range, for
example by subtracting each value from that feature’s mean and dividing by the
feature’s standard deviation.

A dataset might contain samples that are exceptions to the general rule and are
thus not representable. There are various algorithms to detect such outliers, such as
DIS, kNN and RNN [68].

Most models can not deal with missing values in the dataset. One solution is to
simply discard a sample that does not have values for each feature. This has several
drawbacks such as adding bias and decreasing representativeness. A better solution
is data imputing. This is a concept similar to interpolation: it replaces missing data
with estimated values.

Another factor that can impact a dataset’s representativeness is class imbalance. If
90% of samples are of class A, a model can obtain 90% accuracy by always predicting
class A. The effects of class imbalance can be mitigated in several ways. Collecting
more data is an important one, although rarely feasible. Penalized models put more
weight on misclassifying the underrepresented classes during training. Upsampling
(or oversampling) copies samples from the underrepresented class, while downsam-
pling (or undersampling) removes samples from the overrepresented class. Both
resampling methods even out the amount of samples in the classes. Upsampling can
also be applied by generating synthetic samples. The most commonly used algorithm
is SMOTE [10], which uses an element of randomness to mitigate the chance of over-
fitting.
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One pitfall that must be avoided with predictive modeling is being on one end
of the bias-variance tradeoff. High variance means that a model is sensitive to small
fluctuations in the training set. The model then fits the training data too well, but not
any unseen data: the model is not generalizable. This is also known as overfitting.
On the other hand, bias means too many assumptions are made and the model is
thus not sensitive enough to the training set, resulting in underfitting.

One commonly used method of evaluating a model’s performance is k-fold cross-
validation [59]. The dataset is split into k equally sized subsets. For k times, k − 1
subsets are used as the training dataset while the other one is used as the test dataset.
The performances of the k evaluations are averaged. k is often chosen to be 10. This
method eliminates the chance that a model’s performance evaluation is an outlier.

Model performance can be measured with different metrics. The error in this
context is the difference between a predicted value and the value of the target at-
tribute of a sample. For regression models, the most commonly used metrics are R2,
mean squared error (MSE), root mean squared error (RMSE) and mean absolute er-
ror (MAE). R2, also known as the coefficient of determination, is a measure of the
variance explained by the model ranging from 0 to 1. If this value is 1 it means all
variance in the data is explained by the model, but this most often means the model
is a victim of overfitting. The MSE takes the mean of all squared errors, as the name
suggests. The RMSE does the same and takes the root, changing the unit of this error
metric back to the target attribute’s unit. The MAE again does what the name sug-
gests and has the added advantage that the metric is better comprehensible. Both the
RMSE and MAE have the advantage that they are in the original unit of the predicted
value. The RMSE is more influenced by large error outliers, whereas the MAE is more
affected by the error variance.

For classification, commonly used metrics are the confusion matrix and a few of
its derivatives: precision, recall and accuracy. Each row specifies the predicted classi-
fication, each column shows the true classification and each cell contains the amount
of samples that have that combination of predicted and true value. The precision of
each classification measures the proportion of accurate predictions to the predictions
made for that classification. The recall of each classification measures the proportion
of accurate predictions to the actual samples of that classification. The accuracy is the
proportion of accurate predictions to the total amount of samples.

A few model concepts are outlined here. Note that each model has numerous
variations, each with their own advantages and disadvantages. Several approaches
can also be combined, either by joining the outputs [5, 66] or by integrating multiple
algorithms [4]. Each one listed below is used in this study, be it the original algorithm
or a variation based on the original.

Decision trees This represents a tree in which a decision is made at each node based
on a feature (e.g. "is x1 ≥ 2?"). This way, the tree is traversed and ultimately a
leaf node is selected, which represents a classification. Common algorithms are
ID3, C4.5 and CART. A few advantages of a decision tree model are its simplic-
ity, capability to handle both continuous and discrete data, capacity to process
large datasets, and above all: its understandability to humans. Its simplicity
also gives rise to its disadvantages: decision trees tend to be relatively inaccu-
rate and are prone to failures if the dataset changes too much. Variations on
this model used in this project are: decision stumps, which are decision trees of
depth 1; random trees, which are decision trees that use random subsets of fea-
tures; random forests, which are ensembles of decision trees that mitigate the
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chance of overfitting; and Chi-square automatic interaction detection (CHAID),
which prunes decision trees based on the chi-squared attribute relevance test.

Artificial neural networks These simulate the behavior of the human brain. It con-
sists of many, simple units (neurons) that are activated by other neurons or
input sensors connected to the environment. The connections between neurons
are weighted. Learning occurs by changing the weights of connections until
desired behavior results from the specific configuration. An advantage of neu-
ral nets is that they perform better at incremental learning. Their accuracy is
similar to decision trees, although training time is much longer [19, 41]. One
of the largest disadvantages is the lack of explanation. The logical steps of the
process with which a neural network algorithm comes to a result is practically
impossible to comprehend by humans. Neural nets can be used for both clas-
sification and regression tasks. Deep learning is a variation that uses multiple
hidden layers of neurons.

Naive Bayes These classifiers are based on Bayes’ theorem. They assume all features
are independent, simplifying the probabilistic calculations. This assumption
is rarely true, hence the ’naive’ term. Despite the independence assumption,
Naive Bayes classifiers often perform competitively. They are trained fast and
scale well.

Support Vector Machines A Support Vector Machine places one or more separating
hyperplanes between the data points in the training set. It tries to maximize the
distance to all data points of the different classes. The side on which the data
points are with respect to the hyperplane determines which class they belong
to. An important advantage of this classifier is its independence on the amount
of features. However, this technique has a fairly long training time and it needs
the data to be in similar ranges. It can also work with regression problems.

Rule induction These iteratively add and remove rules to come up with an optimal
set. Rule induction models are similar to decision trees, as they both use rules.
An advantage is that rules are easily understandable by humans and computers
(i.e. they can be expressed in programming language syntax without effort) and
one’s own rules can be manually added. A disadvantage is that the model does
not scale.

Linear regression Regression works with numerical values and tries to predict a
continuous value. Linear regression tries to fit a linear equation to the observed
data. Polynomial regression tries to do the same, but with a higher order equa-
tion. The Generalized Linear Model (GLM) is an optimized variation on linear
regression that is more flexible. Linear regression works well when the relation-
ship between the features and the target attribute is linear (or polynomial), but
can not properly handle situations where this is not the case.

k-Nearest Neighbors This model looks at a sample’s k nearest neighbors. The dis-
tance to its neighbors is calculated in n-dimensional space based on its n fea-
tures. An example distance metric is the Euclidian distance (e.g. in 1-dimensional
space, the distance between point (3) and point (5) is 2). In the case of classi-
fication, it classifies the sample based on the majority of the neighbors. With
regression, the predicted value is the neighbors’ average. It can be useful to let
closer neighbors weigh more than neighbors farther away. Advantages are that
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this method is robust with non-linear relationships (as mentioned in the de-
scription for linear regression) and it is relatively simple. However, its training
time is long and is sensitive to unbalanced datasets.

2.4 Sequential pattern mining

Agrawal and Srikant introduced the problem of sequential pattern mining in 1995 [1].
Their goal was to find patterns in sequences, specifically with the use case of customer
transactions in retail. In the scenario of video rentals: if customers typically rent "Star
Wars", then "Empire Strikes Back" and then "Return of the Jedi", a sequential pattern
is identified. The input is a database of customer transactions, having three fields:
customer identification, transaction order and the items contained in that transaction.
The transaction order field is often a date and/or time value. Continuing the video
rental example, table 2.1 shows a possible customer transaction database. Quantities
are not taken into account.

TA B L E 2 . 1 : Example customer (video rental) transaction database
used as input for sequence pattern mining

customer ID transaction date items
items
(shortened)

1 2011-03-01 (Battlestar Galactica, Star Wars) (B, S)

1 2011-03-03 (Empire Strikes Back) (E)

2 2011-05-05 (Caprica, Star Wars) (C, S)

2 2011-05-06 (Alien, Empire Strikes Back) (A, E)

1 2011-05-07 (Minority Report, Return of the Jedi) (M, R)

2 2013-06-07 (Killjoys, Return of the Jedi) (K, R)

Each product (or video in this example) is defined as an item and each transaction
as an unordered itemset, event or element. Note that the parentheses are usually omit-
ted when denoting an itemset of length one. Items in the same itemset are written in
alphabetic order, even though they are in an unordered set. To transform a customer
transaction database into a format used for sequential pattern mining, each itemset
is grouped per customer and ordered by transaction date. An ordered list of transac-
tions is called a sequence. The keys of a sequence database are only used as sequence
identifiers. Table 2.2 shows the mapping of the terminology used in literature onto
the real-life example. The purpose of table 2.2 is to aid in understanding the original
problem of Agrawal and Srikant.

Table 2.3 shows the sequence database of our example. This is the format that is
analyzed in sequential pattern mining algorithms. SID is short for sequence ID.

Sequential patterns have to adhere to more requirements. The minimum support
(or minsupport) is defined as the minimum amount of sequences a pattern occurs
in. Patterns that occur at least in minsupport sequences are called frequent patterns.
Additionally, frequent patterns must be maximal. This dictates that a pattern can not
be a subpattern of another frequent pattern.

Applying this to our example and setting minsupport to 2, pattern SER is consid-
ered a frequent. Pattern SE is not: it is a subpattern of SER, which means it is not
maximal.
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TA B L E 2 . 2 : Sequential pattern mining terminology mapping

terminology of [1] terminology in a real-life example example value

item product (or video) S

itemset/element transaction (BS)

sequence customer history <(BS)E(MR)>

sequence database transaction history {1: <(BS)E(MR)>,
2: <(CS)(AE)(KR)>}

TA B L E 2 . 3 : Example sequence database

SID sequence

1 <(SB)E(RM)>

2 <(SC)(EA)(RK)>

Countless algorithms have been developed since the initial problem was first
proposed by Agrawal and Srikant. Each approach since then has had its optimiza-
tions. In addition, numerous variations of the original problem required specifically
tailored solutions. Giving an introduction to several of the main approaches will sup-
port comprehension of the field of sequential pattern mining. All approaches use the
apriori property defined by Agrawal and Srikant that says that a pattern is frequent
only if all of its subpatterns are frequent. The AprioriAll algorithm [1] was the first
to use this principle.

The Generalized Sequence Pattern (GSP) algorithm [57] was the first practical
algorithm that built upon AprioriAll. Each item is counted during the first database
pass and all non-frequent items are discarded. A loop is entered in which each itera-
tion finds patterns of increasing length. In the candidate generation step, pairs found
in the previous iteration are merged. If, for example, the previous iteration found abc
and bcd, these are merged into abcd. In the candidate pruning step, candidates are
pruned that contain an infrequent subsequence. abcd would be pruned if acd was
infrequent. Candidates are eliminated in the next step if their support proves to be in-
sufficient, based on a traversal of the sequence database. This loop continues until no
candidates or no frequent patterns can be found. Disadvantages of this approach are
the amount of database passes and the amount of generated candidates. A strength
compared to AprioriAll is the candidate pruning. It uses a horizontal format, illus-
trated in tables 2.3 and 2.4.

The algorithm Sequential Pattern Discovery using Equivalent Classes (SPADE) [67]
uses a vertical format. Take the sequence database shown in table 2.4, with minsup-
port=2. SPADE first converts this to the vertical format shown in table 2.5a. EID is
short for element ID (or event ID), of which the values are shown in factors of ten
to emphasize the distinction between the SIDs. The conversion to vertical format re-
quires only one database scan. Next, the ID lists of each item are generated, partially
illustrated in table 2.5b. The ID lists of infrequent items are discarded, such as item e
in our example. Candidates of length 2 can be found by joining rows of the ID lists of
candidates of length 1: if they share the same SID and if their EID is sequential, join
them. Table 2.5c shows the result of joining a with b and vice versa, and table 2.5d
shows the result of joining ab with ba. This continues until no frequent patterns can
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be found anymore. SPADE reduces the amount of database scans, but still requires
large sets of candidates.

TA B L E 2 . 4 : Example sequence database for the SPADE algorithm

SID sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

TA B L E 2 . 5 : Example progression of SPADE

SID EID itemset

1 10 a
1 20 abc
1 30 ac
1 40 d
1 50 cf
2 10 ad
2 20 c
2 30 bc
2 40 ac
3 10 ef
3 20 ab
3 30 df
3 40 c
3 50 b
4 10 e
4 20 g
4 30 af
4 40 c
4 50 b
4 60 c

( A ) Sequence database in
vertical format

a b . . .
SID EID SID EID . . .

1 10 1 20 . . .
1 20 2 30
1 30 3 20
2 10 3 50
2 40 4 50
3 20
4 30

( B ) ID lists of patterns length 1

ab ba . . .
SID EID (a) EID (b) SID EID (b) EID (a) . . .

1 10 20 1 20 30 . . .
2 10 30 2 30 40
3 20 50
4 30 50

( C ) ID lists of patterns length 2

aba . . .
SID EID (a) EID (b) EID (a) . . .

1 10 20 30 . . .
2 10 30 40

( D ) ID lists of pattern length 3

An approach that greatly reduces the effort of candidate generation uses pat-
tern growth. Prefix-projected sequential pattern mining, or PrefixSpan, uses this
method [25]. It sees subsequences as prefixes and their corresponding suffixes as
projected databases. Patterns are grown by examining frequent patterns in each pro-
jected database. We take same example example sequence database again, shown in
table 2.6a. PrefixSpan first finds all length-1 sequential patterns, i.e. a, b, c, d, e and f.
Each pattern is considered a prefix, where the suffix is its projected database. Only
the first occurrence in each sequence are taken into account. Table 2.6b shows the
projected database of pattern a, where underscores indicate that the prefix can also
occur there. These projected databases are used to grow the pattern. In the case of
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our pattern a, the frequent items are a, b, _b, c, d and f. The length-2 patterns with
prefix a are found to be aa, ab, (ab), ac, ad and af. Each is considered a prefix and
their projected databases are generated. The projected database of prefix aa consists
of <(_bc)(ac)d(cf)> and <(_e)>. As none of the items occur in both sequences, there
are no frequent patterns. Table 2.6c shows the projected databases of prefix ac. This
contains frequent patterns a, b and c, resulting in the length-3 patterns with prefix
ac being aca, acb and acc. Doing this again for prefix acb results in the projected
database in table 2.6d. This process is recursively repeated for the frequent patterns
found in each projected database until no more frequent patterns can be found. Even
though the projected databases keep shrinking, constructing them physically is costly.
This can be minimized by using pseudo-projection: storing the starting index of the
projected suffix instead of the whole sequence. This works if the database can be held
in memory. If it can’t, a combination of physical and pseudo projection can be made.

TA B L E 2 . 6 : Example progression of PrefixSpan

SID original sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>
( A )

a-projected db

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>
( B )

ac-projected db

<(ac)d(cf)>

<(bc)(ae)>

<b>

<bc>
( C )

acb-projected db

<(_c)(ae)>

<c>
( D )
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Chapter 3

Feature discovery

The first part of this project answers research question 1 by determining what might
be an influence on the individual NPS responses. This is necessary for the subsequent
phases, because performing arbitrary magic without a direction on a large dataset
doesn’t get viable results. This introduction first describes the format of data features
and the reason for the general approach that was used. Section 3.1 describes the ef-
forts and steps taken, including highlights of the results stemming from the different
steps, while section 3.2 lists the actual results of the overall process of feature discov-
ery. Section 3.3 concludes this chapter by listing a selection of data features that this
project focuses on.

Each feature is meant to become an aggregation of a user’s usage data into one
or several metrics. An example of the result of such a data feature analysis could
be "During the 90 days prior to his NPS response, user x has logged in 20 times per
day on average". This has several components. The data feature in this case is the
daily average login frequency. The result format is thus a floating point number. If
the machine learning algorithm chosen later on requires discrete values, such a trans-
formation will be applied. The time period of 90 days is implicit in all data feature
definitions in this chapter and is an attempt at normalizing the available dataset per
NPS response. This exact duration is selected to have a balance between having suf-
ficient log data available, and potential issues resulting from improvements made to
the system’s structure.

The purpose of this part of the research is acquiring a prioritized list of data
features to focus the usage data analysis efforts on. In an ideal situation, this would
be accomplished by performing a full-fledged user experience study. Unfortunately,
this is out of the scope of this project and that is why a heuristic approach was chosen
instead.

3.1 Efforts

The following subsections describe the efforts taken to discover possibly relevant
features in semi-chronological order. Semi because some efforts took place in parallel,
which is stated explicitly if relevant. In addition to the different activities described
here, several features were also discovered during undocumented, informal conver-
sations with Topicus’ developers, data analysts and other friends. The results of these
chats have been included in section 3.2. Whenever a term such as "interesting" or "rel-
evant" is used in this chapter, it means the construct in question is directly relevant
for this research project.

Specific discussion topics were prepared for the conversations to give a clear di-
rection in which to search for features. In addition to these topics, most conversations
ended in a brainstorm-like discussion in which the main thread was basically the
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first research question: what might be an influence on the user loyalty towards Somtoday?
The prepared topics are outlined here, after which the different subsections specify
how these were used.

Note that most of the discussed topics focus mainly on negative experiences with
the system. This is because early conversations brought to light that proper use of
the system might only be visible in efficient use and the absence of indicative pat-
terns. Nevertheless, section 3.2 includes some suggestions that include these efficient
’power users’.

Integration into daily routine "At which moments during a regular weekday do you use
which functionalities of Somtoday?" was the question formulated for this subject.
The motivation for this is that the system is meant to be integrated into teachers’
daily routine. Take for example absentee registration. If a teacher writes this
down on paper during class and enters this into the system after school, s/he is
essentially doing double work and that might influence the NPS response. The
purpose of this subject was thus to see if something came up that was out of the
ordinary. This was not the case. Except for the mentioned example, everyone
described their routines as expected beforehand (which is based on personal
preference): absentee registration during or right after class, homework plan-
ning during class or breaks, grade registration during breaks, in the evening or
during the weekends, asessment planning during or right after class, etc. These
results are not repeated in the subsections, seeing as there was nothing more
worth mentioning.

Annoyances This is basically the research question of this chapter, only framed dif-
ferently: "What are your greatest annoyances about the use of Somtoday and which
functionalities does this concern?" This phrasing, as opposed to the literal research
question, is easier to interpret for teachers. This way the interviewee does not
have the opportunity to ascertain whether an answer is relevant or not.

User clustering This subject originated in the idea that some users might use the
system efficiently (the previously mentioned ’power users’) and some very
differently. In turn, it might be that some features are specifically influential
for certain types of users. For example, it might be that older teachers spend
more time per page finding their way than younger teachers. Lengthy click
paths might in that case be more significant than for younger teachers who
quickly find their destination and who deprioritize the amount of clicks to some
extent. Teachers were asked: "How do you think that your colleagues use Somtoday
differently than you and how would you differentiate different groups?" If they could
not give an answer, which was understandable due to the potential difficulty in
interpreting the question1, examples were given like the distinctions between
young and old, and math and English teachers.

The interviews were recorded by writing down (during the interview) possibly
relevant system behaviors and example situations. The same was done with the
qualitative data: possible features were immediately extracted from the data without
being subject to in-depth analyses.

1 Note that much thought was put into phrasing this question correctly. This question was only
asked in face-to-face interviews, so more explanation could be given about its purpose.
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3.1.1 Service desk interview and qualitative data

Efforts concerning Topicus’ service desk were twofold. On March 13th, 2017, the head
of the service desk was interviewed. During this interview it was explained how
primary (business-related) communication between Topicus and its customers (i.e.
schools) works: each school has an application manager that acts as a spokesperson
for all school employees. This has several advantages for Topicus, but is mainly a
disadvantage for this study: practically all complaints and questions received by
the service desk are from application managers. The only relevant result from the
interview was this explanation and a warning that the associated qualitative data
will probably not result in relevant features. The latter proved not to be true.

The second part, however, was more useful for feature discovery. As was ex-
plained in section 1.4.5, a ticket is created in the issue tracking system JIRA for each
received complaint (i.e. bug report) or question that can not be answered immediately
by the service desk. There were 2314 tickets created between January 2nd, 2014 and
April 25th, 2017. A random sample of about 40 tickets was inspected from the 303
tickets created in the last 60 days (i.e. between February 25th and April 25th, 2017).
Almost all of them were about highly specific, malfunctioning functionality from
which no relevant features could be deduced. However, about 10% of the tickets was
about faulty authentication services, i.e. failing log-ins or forced log-out situations.
There are data available about these authentication scenarios, so this is a relevant
feature.

3.1.2 Customer relations interviews

As opposed to Topicus’ service desk, their customer relations department does have
regular contact with teachers. The employees of this department are considered and
called consultants, and each consultant is responsible for about 22 schools. Three
consultants were interviewed, primarily about the subjects of annoyances and user
clustering. These three were selected based on the explicit recommendation of their
supervisor.

The first interview was on March 13th, 2017. The main theme was a specific school
that had issues with Somtoday during the academic year 2015-2016. They held a
negative opinion about the system and ultimately left as customer. The interviewee
explained why this happened (in hindsight): the school’s teachers complained that
they were missing a great deal of functionalities, while unbeknownst to them, their
application manager had disabled about 70% of Somtoday’s functionalities. Metrics
about this can be extracted from the data by looking at prevalence of functionality
use and at which functionalities are disabled.

June 1st, 2017, was the date for the second interview. The key takeaway was that
the usage of some functionalities can be quite complex initially, which teachers may
find annoying. This can be gathered from the data by looking at long clickstreams,
which might indicate that a user can’t find their target page or simply needs too
many clicks to complete an action. The latter can also be investigated by looking at
repetitive tasks. Furthermore, ideas for user clustering were age, gender, years on
the job, courses taught, whether the teacher teaches junior or senior classes, the class
levels taught (e.g. HAVO or VWO) and the amount of system usage within or outside
of scheduled hours.

The final interview was on June 19th, 2017. The interviewee gave a short list
of annoyances that he had encountered in his experiences with teachers: repetitive
tasks, long clickstreams (e.g. the amount of clicks between associated pages), login
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frequencies, prevalence of functionality use, and how often users switch between
Somtoday and Somtoday Docent. The latter was suggested because it might indicate
missing functionalities or other reasons to favor one over the other. It was suggested
that teachers of the higher class levels (i.e. HAVO/VWO/gymnasium) use more of
the assessment registration functionalities (e.g. grade registration) than the teachers
of the lower class levels (i.e. VMBO), which use the administration functionalities
more often (e.g. absentee registration). This can be researched by looking at the
class levels taught or the prevalence of functionality use. Another suggestion for
user clustering is age. Specifically because intuitively, younger people are quicker in
finding their way in a digital system.

3.1.3 Topicus’ student convention

This event was held on June 7th, 2017, during which all Topicus’ graduation interns
were given the opportunity to present their research. This chance was taken to intro-
duce this study and set up a discussion into the research question of feature discovery.

The time allotted for the presentation and discussion was only fifteen minutes, so
the experience wasn’t particularly extensive. Nevertheless, many good suggestions
were given by the audience. These tips all boiled down to the analysis of clickstreams,
prevalence of functionality use, or a combination of both. An audio recording was
made of the presentation and subsequent suggestions.

3.1.4 Teacher survey

A digital survey was sent by e-mail to 27 teachers on June 13th, 2017. The last of the
12 responses was received 14 days later. These 27 teachers have explicitly indicated
to Topicus that they want to cooperate with initiatives to improve Somtoday, hence
the small subset. Consequently, this group is not representative, which was neither
the intention nor the requirement: the purpose was to gain insights, not to poll the
general opinion. Nonetheless, these 27 teachers are from 25 different schools through-
out the Netherlands and together they teach almost all available subjects, from math
and physics to German and economics. The survey results were collected and stored
by SurveyMonkey2.

The (open) survey questions were essentially those from the integration into daily
routine and annoyances subjects, supplemented with an answering format that respon-
dents could use multiple times per question. The format for the former subject was
"I do <task> most often during <time period>." where <time period> could be something
like during class, during breaks or in the evening. The format for the latter subject was
"I find it annoying that <annoyance> with <functionality>.". Both of these formats have
been translated from Dutch, seeing as the survey was in Dutch. Additionally, the user
clustering subject was potentially covered by asking if the respondents were prepared
to further discuss during a phone conversation, on which half responded positively.
The purpose of this was not only to get a more nuanced opinion, but also to ask about
user clustering. This eventually turned out not to be necessary. In addition to these
questions, the survey asked about two basic demographics: date of birth and courses
taught.

Most responses were not directly relevant. Some were about the user interface
being too cluttered, either in general or on mobile devices, missing information and
a schedule component that should be placed differently. Others were about failing
functionalities, such as planned homework that stays stationary when rescheduling

2 https://www.surveymonkey.com/

https://www.surveymonkey.com/
https://www.surveymonkey.com/
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the associated class, or missing functionalities, such as an auto-save function for notes
and absentee registration for multiple days. There were also a few interesting annoy-
ances. Several respondents mentioned that some functionalities require too many
clicks, such as when switching to a next lesson or class, or with homework planning.
Another annoyance was the (perceived) high occurrence of system downtime.

3.1.5 Teacher interviews

On June 22th, 2017, several Topicus employees had an appointment at the Etty Hille-
sum Lyceum in Deventer to introduce new improvements to Somtoday Docent. In
parallel to this presentation, the teachers’ break room was available for administering
short interviews. Between 10:00 and 11:00 AM, five teachers that were on their break
were interviewed. They were selected based on their availability in the break room
and their willingness to spend some time on an interview. This is clearly not repre-
sentative, as it concerns a very small subset of teachers and only from one school.

The subjects of annoyances and user clustering were discussed, but next to no new
information came to light. Concerning the latter subject, there was one economics
teacher suggesting that not age would be the distinctive property, but personality.
This, however, is not a feasible feature to extract from the available data.

3.1.6 Qualitative NPS data

As is described in sections 1.4.1 and 1.4.5, the NPS data include answers to an open
question in which respondents can elaborate upon the reason behind their NPS re-
sponse. Of the 9160 NPS responses collected between August 25, 2016 and May 2nd,
2017, the latest 600 or so responses were browsed through. Over 50% were about the
user interface not being sufficiently clear or intuitive or similar complexity issues.

Other recurring themes were the length and duration of clickstreams, login fre-
quency, downtimes frequency, and page loading times; the latter especially in the
context of repetitive tasks.

3.1.7 Qualitative feedback data

Between November 13th, 2015 and June 27th, 2017, Somtoday’s integrated feedback
button received 1953 submissions. The purpose of this specific data collection is to
get new ideas and suggestions for improvements of Somtoday. About 40 responses
submitted between February and June 2017 were sparsely browsed and checked for
feedback that could be translated into data features.

There were only two points of interest encountered. The first is about fast switch-
ing between student groups, e.g. when a new class starts. Secondly, several instances
were found where the responses effectively described annoyances related to repeti-
tive tasks.

3.2 Results

The results of the efforts described in section 3.1 are aggregated here. These were
selected based on whether they are measurable from the available data. The cate-
gories are listed in no particular order. They are explained with real-life examples
and include specifications of one or multiple data features. This section purposefully
uses generic specifications as much as possible: this way, they can be generalized
to similar systems. Effort has been made to normalize these features over different
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aggregation levels, such as individual NPS responses (the previously mentioned 90
day time period) and schools (see features D F6 to D F10).

Section 1.1 mentions the key factors of data system adoption: data availability,
reliability, findability, and (supported) interpretability. Data mentioned in this context
refers to the data contained in an educational data system. The data availability and
reliability are difficult to accurately measure. Data findability can be measured by
looking at the clickstreams and whether the user easily ends up on his target page.
The data’s (supported) interpretability is a bit more complex. In the case of Somtoday
this can be measured by looking at the prevalence of functionality use, while treating
the generation of reports as a distinct functionality.

Prevalence of functionality use [65]

This category focuses on the measured use of a system’s distinct functionalities. In
the first interview of section 3.1.2, an example of this category is described. If Top-
icus had looked at the prevalence of functionality use around that time, the whole
situation could’ve been prevented. The hypothesis that this is an especially relevant
feature category has two lines of reasoning. The first is that a positive opinion about
a specific functionality results in its increased use. This is the simplest and most in-
tuitive argument; if one likes something, one uses it more. However, the nature of
educational data systems poses an important rebuttal: teachers are obligated by their
employer to use certain functionalities such as grade registration and absentee regis-
tration. This can partially be taken into account by also looking at the distribution of
their usage. The hypothesis for this line of reasoning is: the higher the prevalence of
a functionality’s use, the more positive the user’s opinion.

The causality of the previous line of reasoning can also be reversed: someone that
uses a functionality more often consequently develops a strong opinion about it. This
can be increasingly positive on the one hand, for example when a user gets accus-
tomed to utilizing a functionality. This has a scientific basis in the Mere Exposure
Effect [23], which shows that over time, mere exposure results in a positive opinion.
On the other hand, this opinion can become increasingly negative in the case that a
user continuously encounters the same annoyances. The hypothesis resulting from
this is: the higher the prevalence of a functionality’s use, the more extreme the user’s
opinion (either negative or positive).

Both lines of reasoning indicate that the prevalence of functionality use is worth
researching. Note that each data feature applies for each functionality of the system.
This inherently means that during preprocessing, each log entry must be mapped
to a functionality. Some log entries can be mapped to several functionalities. For ex-
ample, generating reports is a functionality that is included in absentee registration,
grade registration, and more. Additionally, note that a comparison should be made
of prevalences of the same functionalities between users, not of prevalences between
different functionalities per user.

Prevalence can be measured in different ways. The simplest is (per functionality)
the amount of requests. A time period of a week should be good, seeing as this
is also a common time unit used in education. This assumes these functionalities
are used somewhat uniformly over the period of several weeks. For example, grade
registration of exams at the end of a period is not taken into account. To deal with
this to a limited extent, the average of monthly requests can be considered.

D F1: the average amount of weekly requests per functionality
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The same can be done with a time unit. Seeing as the log data does not include
time spent on a page, this would have to be estimated based on the timestamps of
the requests. This can be done by calculating the time interval until the user’s next
request. If that interval is not too large, then it can be seen as time spent on the page.
Not too large in this case would be an interval of which it would be reasonable that the
user was still actively using the functionality. This would be something in the order
of a few minutes, seeing as the system is built for data input and output, which both
usually don’t take long with the amounts of data involved here. A disadvantage of
this method is that the time spent on the last page can’t be estimated. This is the case
for all data features that measure time.

D F2: the average amount of weekly time spent per functionality

As mentioned before, looking at the distribution of functionality usage might also
prove useful. A relatively easy metric for this is the time spent on a functionality per
session. Imagine a teacher spent a total of one hour on absentee registration in six
different sessions, then the value of this metric would be 10 (minutes per session).
This shows a clear distinction with a teacher who accumulates his work of absentee
registration and inputs this into the system once a week for a duration of one hour.
Feature D F2 would produce the same value, but D F3 would show the distinction.

D F3: the average amount of weekly time spent per session per functionality

Looking at the time of day of functionality use might prove useful. Interviews indi-
cated that the exact time of day wouldn’t be that relevant, but whether a functionality
is used during or outside of class hours might be (recall from section 1.4 that class
schedules are available in the dataset). This might indicate to what extent certain
functionalities are integrated into the teacher’s daily routine, especially concerning
the absentee registration. This can, again, be measured in terms of number of requests
and units of time. Additionally, seeing as this is a binary classification of requests,
the measured feature is a ratio between number of requests or time spent during and
outside of class hours.

D F4: the average ratio of weekly number of requests within vs. outside of sched-
uled class hours, per functionality

D F5: the average ratio of weekly time spent within vs. outside of scheduled
class hours, per functionality

Scenarios were encountered where the absolute values of features D F1 to D F5 would
be considered invalid, such as the example mentioned in section 3.1.2. In this case
the school doesn’t use a functionality at all. Whatever the underlying reason is, if
the whole school doesn’t use a functionality, a prevalence of zero has no meaning
in the context of this research. The feature values should thus be normalized. This
can be done by taking values relative to the school’s average. Take for example a
school where the per-teacher average time spent on absentee registration during the
second week of 2017 is one hour. If a teacher spent half an hour that week on absentee
registration, he has a relative value of 0.5. The feature value would then be an average
of that value over multiple weeks.

D F6: the average amount of weekly requests, relative to the school average, per
functionality
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D F7: the average amount of weekly time spent, relative to the school average,
per functionality

D F8: the average ratio of weekly number of requests within vs. outside of sched-
uled class hours, relative to the school average, per functionality

D F9: the average amount of weekly time spent per session, relative to the school
average, per functionality

D F10: the average ratio of weekly time spent within vs. outside of scheduled
class hours, relative to the school average, per functionality

Repetitive tasks

These are inevitable in administrative systems. Nonetheless, users might find them
annoying, especially if the individual task requires many clicks or takes a long time
to perform. A few requirements have been constructed to further specify what con-
stitutes as a possibly influential repetitive task.

A repetitive task that happens in just one or two sessions probably has no real
effect on the NPS response. Therefore the first requirement is that a repetitive task
occurs in multiple sessions. This is the inter-session occurrence requirement. Note that
if the partitioning into sessions would be omitted, no such distinction could be made.
Subsequently, if a task is performed only once in a session, it might simply be a
navigational pattern. However, if it concerns for example grade registration and the
task requires three clicks per student, this has a far greater measure of repetitiveness.
For that reason, a minimum of five occurrences within each session is required for a
repetitive task to have an influence on the NPS response. The amount of occurrences
is based on the fact that teachers often deal with whole classes within the system.
This is the intra-session occurrence requirement. These are the requirements that apply
to features D F11 to D F13:

inter-session occurrence ≥ 3

intra-session occurrence ≥ 5

By using the distinction of features D F11 to D F13, the several dimensions of the
concept of repetitive tasks are taken into account. These different dimensions are
explained in section 5.2.

D F11: the amount of distinct repetitive tasks

D F12: the amount of iterations of repetitive tasks

D F13: the weighted amount of task iterations This is calculated by multiplying
each repetitive task length (i.e. the amount of actions) with its amount of
iterations.

Clickstreams

Clickstreams are sequences of user clicks showing how the user traverses the applica-
tion, often specifically from landing page to target page. The lengths and durations
of these clickstreams were reported to be too long. A clickstream can be defined in
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several ways. A simple example is to divide each session into subsessions with an
expiry of 30 seconds, as navigational actions can be assumed to take less than 30
seconds and the last page would be the target page. Another example is to analyze
clickstreams between pages that are connected based on association rules [26].

D F14: the average clickstream length

D F15: the average clickstream duration

D F16: the average amount of clickstreams per session

Miscellaneous

Some of these features can be considered profile data. They are listed nonetheless,
because they can be added to the dataset with relatively minor preparation effort.

Encountered downtimes were reported to be quite an annoyance. As section 1.4.4
describes, two types of downtime exist: unplanned and planned downtimes. Taking
into account the difference in frequency of both types, planned downtimes are the
most relevant. These short periods of maintenance are always announced, which
begs the question of causality: do the users experience hinder from the downtimes
because they coincidentally try to use the system during those periods, or is this be-
havior fueled by the knowledge of the planned downtimes? Either way, encountered
downtimes greatly impact user experience. From that point of view, it doesn’t matter
whether the system’s unavailability was planned or not, so the unplanned moments
should also be taken into account.

An inherent issue with analyzing encounters of unavailability is that the system
does not generate log data. An approximation can be made by looking at the amount
of log entries right before the relevant periods: if a user is using the system right
before it becomes inaccessible, it is likely he experienced the transition and thus was
hindered in his work. A first try for the ’right before’ period is 10 minutes preceding
the start of a downtime period.

D F17: the amount of downtime periods likely encountered based on activity 10
minutes preceding a downtime period

A convenient functionality of Somtoday is the (re-)authentication screensaver that
is activated after 10 minutes of user inactivity. Seeing as the system is often used in
class, and students are not always the most morally strong beings, this extra layer of
security is certainly fitting. Security always comes with a trade-off in convenience.
The screensaver is dismissed by entering user credentials, which can become annoy-
ing if this situation is encountered often. This is an example how hindering login
frequencies might be influential. Hindering in this case means that the user expe-
riences hinder to his workflow because of the required login action. A situation in
which this is (possibly) not the case, is when a user manually logs out instead of
being logged out due to a session timeout or screensaver. Because it is not possible to
accurately know which login actions are hindering and which are not, feature D F18
attempts to approximate this by considering only logout-decoupled login actions: the
amount of (manual) logout actions is subtracted from the amount of login actions.

D F18: the amount of average logout-decoupled login actions per week, only count-
ing the weeks in which the system was used at all
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The degree of competence in handling such a extensive system as Somtoday is likely
to have an impact on the user experience. The hypothesis is that users having a
low proficiency handling the system are less positive about it. More experience may
indicate a higher proficiency, which is why feature D F19 looks at the time spent in
the system. Another line of reasoning is the same as with prevalence of functionality
use: one uses the things one likes more often. Also, the Mere Exposure effect is an
argument for this feature. Features D F20 and D F21 are the result of breaking down
feature D F19 into its separate interfaces.

D F19: the total time spent in the system This is normalized because the data ana-
lyzed in each data feature concerns only 90 days before each NPS response.

D F20: the total time spent in Somtoday

D F21: the total time spent in Somtoday Docent

Somtoday and Somtoday Docent are different interfaces for the same system. A
risk of having two different interfaces is that users find it annoying that one has
functionality the other doesn’t. A practical example: one teacher uses the more basic
interface of Somtoday Docent during class on his phone for homework planning.
After school, he uses his laptop in combination with Somtoday for grade registration.
This how the system is intended to be used. Another teacher does the same, but also
often uses Somtoday during class for grade registration. He switches from Somtoday
Docent to Somtoday, because grade registration is not possible in Somtoday Docent.
The hypothesis is that this switch is annoying, irrespective of the reason (device
switch, layout switch, finding functionality, etc.). This can be deduced from the data
in a way similar to feature D F2, the difference being that only log entries are taken
into account where the interface of the current log entry is different from the next,
and it is measured in frequency instead of time.

D F22: the total amount of bidirectional switches between Somtoday and Somto-
day Docent

The school where a user teaches might also be a predictor of the NPS response.
There are several ways the school might be of impact. A school’s policy is one: if all
teachers are required to use iPads, they might dislike the interface of Somtoday and
the limited functionality of Somtoday Docent. A school’s geographic location might
be another: if a school is surrounded by other schools that use another system, they
might be inclined to like that system better because of word of mouth advertising.
The school might also be using the system for a relatively short amount of time, giving
the teachers less time to get accustomed with the system. Another example is the
one mentioned in section 1.1 where teachers of one specific school were dissatisfied
because of the few available functionalities (that their school management disabled).
Either way, the school might be an indicator.

D F23: the school at which the user works

It is estimated that teachers educating different class education levels use the sys-
tem differently. For example, teachers educating the higher levels3 focus more on
grades and graduation, whereas teachers educating the lower levels4 focus more on

3 HAVO/VWO in the Netherlands
4 VMBO in the Netherlands
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attendance and similar non-teaching activities. This data is readily available in the
system.

D F24: the education levels a user teaches

To account for time-of-the-year differences, the time of the NPS response can be
included. This has been formulated in this continuous value format:

D F25: the age of the NPS response measured from January 1st, 2016, in days

3.3 Selection

Researching all features listed in section 3.2 or determining feature relevance based
on empirical evidence is out of the scope of this project. Features were selected if
they have a high expected impact on the NPS response, require little time to prepare
or are easily generalizable. The expected impact was assessed with the interviewed
consultants mentioned in section 3.1.2 and one of Somtoday’s product owners. The
preparation time concerns the data preprocessing phase. A feature’s generalizability
implies how easily it can be used in similar systems (e.g. time spent on absentee
registration is less generalizable than total time spent in the system).

With that in mind, the chosen features are as follows. They are put into categories
for easy grouping in the rest of this thesis. The categories are put in chronological
order of research efforts:

System usage

These were chosen first mainly because they are simple to measure. Additionally,
D F19 is highly generalizable.

D F19: the total time spent in the system

D F20: the total time spent in Somtoday

D F21: the total time spent in Somtoday Docent

D F22: the total amount of bidirectional switches between Somtoday and Som-
today Docent

Repetitive tasks

This feature set is highly generalizable and was expected to have a high impact on
the NPS response. People often do not like to reiterate the same task, especially if it
is perceived to be inefficient (e.g. when a task requires too many clicks).

D F11: the amount of distinct repetitive tasks

D F12: the amount of iterations of repetitive tasks

D F13: the weighted amount of task iterations

Low-hanging fruit

These features were chosen because of their easy measurability.

D F23: the school at which the user works
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D F24: the education levels a user teaches

D F25: the age of the NPS response measured from January 1st, 2016, in days
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Chapter 4

Data preprocessing

This phase is said to take up a majority of the time spent on a data analysis project [29],
as was indeed the case with the present study. The efforts put into the data prepro-
cessing and its associated validation turned out to be essential. During validation,
several bugs in the workflow and data infrastructure were uncovered. The steps
taken, issues encountered and a basic analysis of the results are discussed in this
chapter. Sections 4.1 and 4.2 cover the NPS and request log datasets, respectively,
while sections 4.3 and 4.4 describe feature-specific efforts. Note that some efforts
are similar and the preprocessed datasets could be combined to save storage space.
However, seeing as storage space was no issue, a clear separation was preferred.

4.1 NPS

The desired dataset format is listed in table 4.1.

TA B L E 4 . 1 : Target format for the NPS dataset

Field Data type Description

ID string An identifier for the NPS response.
date date The date the NPS response was entered.
score integer The actual NPS response, being 0 6 score 6 10.
user ID string An identifier for the user. This is used to join this

dataset with the logs. This includes the username, or-
ganization and organization abbreviation, seeing as
the non-API and API logs utilize distinct combina-
tions of those.

The NPS dataset (discussed in section 1.4.1) was provided by Topicus in Microsoft
Excel’s XLSX format. The data integration suite Pentaho Kettle/Spoon1 was used to
apply some basic ETL operations: removal or renaming of columns, special character
removal, string trimming and saving in the simple comma-separated value (CSV) for-
mat. The CSV file was then uploaded via Apache Ambari to the distributed storage,
making it available to the Apache Zeppelin workspace.

Subsequently, Drill’s SQL implementation was utilized to apply some more ETL
operations and store the dataset in Drill’s native Parquet format. The first priority
was to only keep the NPS responses of teachers. This was done using two filters.

Prior process: active account employee Only the value active account employee was
kept of the prior process field. Teachers are always employees, so students and

1 http://community.pentaho.com/projects/data-integration/

http://community.pentaho.com/projects/data-integration/
http://community.pentaho.com/projects/data-integration/
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parents are discarded. By disregarding non-’active account’ values such as service
desk and training, an attempt is made to discard NPS responses that were given
in the context of a specific situation.

Roles: teacher and mentor The filter for the role of teacher is obvious. Nearly all men-
tors are also teachers, so this role was also taken into account. The few cases in
which this is not the case (e.g. a dean might be a mentor, but not a teacher), are
negligible according to domain experts at Topicus. Discarded roles included
application administrator and miscellaneous.

Another filter is applied on the dates of the NPS responses. For the log dataset,
the start date was chosen on which all schools in the country have started (seeing
as this differs between regions): September 4th, 2016. This dictates the NPS date
constraint of December 3rd, 2016, because 90 days of log data is analyzed for each
NPS response. The maximum date is set on June 30th, 2017, as this is the end of the
academic year. The system will be utilized after that date, but to normalize the data
as much as possible this has not been taken into account.

The next step was making the join with the request log dataset possible. Individ-
ual log entries include a user’s username and organization, while the NPS dataset
includes user identification strings (UUIDs) generated by Somtoday. Topicus has pro-
vided an XLSX file containing a mapping of UUIDs to usernames and organisations.
This dataset was made available to Drill using the same workflow as used with the
NPS dataset. Using this mapping, each NPS response was joined with the associated
username and organization, enabling future joins with the log dataset. Each NPS
response also received a unique ID.

There were still a few inconsistencies found during validation in the record counts
between these datasets. In some cases, different capitalization was used in organi-
zation names or usernames. These issues were resolved by lowercasing all of these
values after confirming with Topicus that the capitalization has nothing to do with
user or organization uniqueness.

A different issue was encountered that is a result of merging schools. This resulted
in some users having multiple organizations. Due to the nature of upcoming joins
with the log data, it was possible to simply include multiple NPS response records
per user and keep the NPS response ID the same, thus the only difference being the
organization. When applying a left join between the NPS and log datasets later on,
the correct log entries are associated with the correct NPS response. The same issue
was identified and resolved in the context of usernames.

Finally, it also became apparent that some users had submitted a response to
the NPS survey twice. Of the 1085 NPS responses, 12 (1.1%) were from users with
multiple responses: 6 users had two responses. Statistics of this subset are shown
in table 4.2. The time between responses and the variance in score is motivation to
treat these NPS responses as distinct data points. Note that there was one anoma-
lous instance in which a user had just 47 days between two responses. The first was
discarded: the user has more experience with the system at the time of his second
response, making a well-founded response more likely. To distinguish between re-
sponses from the same user, different IDs were assigned consisting of the response
date concatenated with the first eight characters of the user’s UUID. Those eight
characters have been checked for uniqueness.

The response and temporal distributions are shown in figures 4.1 and 4.2 and
are the exact same as figures 1.1 and 1.2 (respectively) from section 1.4.1. They are
repeated here for convenience.
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TA B L E 4 . 2 : Descriptive statistics of users with multiple NPS re-
sponses

Time between subsequent
responses

NPS score
increase

Average 133.5 days ≈ 4.4 months 0.17

Sample standard
deviation

45.1 days ≈ 1.5 months 0.98

Minimum 84.0 days ≈ 2.8 months -1

Maximum 192.0 days ≈ 6.3 months 1

F I G U R E 4 . 1 : Response distribution of teacher NPS responses

After preprocessing the usage logs it was discovered that 39 NPS respondents
had no usage logs that could be associated with them. These NPS respondents were
discarded, as we could not reliably determine whether the absence of usage logs
could be considered part of a usage pattern. To do that, research into (the data of)
all 39 respondents would show whether they explicitly made a choice not to use
Somtoday and Somtoday Docent or whether they switched accounts, only just started
to use the system, or had some other reason for not generating log entries. After
discarding these samples, the dataset consisted of 1046 NPS respondents.

4.2 Usage logs

The desired dataset format is listed in table 4.3. The non-API and API logs are treated
separately due to the different level of detail included in their logs.

As explained in section 1.4.2, the request logs are accessible to Apache Drill via
the Zeppelin web interface. Using SQL queries, a new dataset was created that only
includes the relevant log entries and columns. To make efficient data analysis possi-
ble, several main filters had to be applied:

1. Only the logs relating to NPS responses are relevant. This filter was applied
based on the user and organization associated with the log entry, and the users
in the NPS dataset.

2. A time constraint is applied based on the date of the NPS response. This is an
attempt to normalize the amount of log entries per NPS response, to keep the
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F I G U R E 4 . 2 : Temporal distribution of teacher NPS responses. Note
that the different response values are shown solely to indicate that

there is variation.

TA B L E 4 . 3 : Target format for the logs dataset.

Field Data type Description

NPS ID string A reference to the NPS response that the log entry is
associated with.

timestamp timestamp The timestamp that Wicket received the request, accu-
rate to the millisecond.

request de-
tails

strings and
integers

Various details about the page requested and the page
from which the request was made. This includes the re-
sponse*, event*, *component* and behaviorClass fields
for the non-API logs, the restResource, range, category
and method fields for the API logs and the requestedUrl
and duration fields for both log types. Specific field de-
scriptions are available in table 1.2.

logs actually relevant to the NPS response (e.g. logs from two years prior an
NPS response are expected to have next to no influence on the given NPS score)
and to account for structural and functional improvements to Somtoday that
accumulate over time. For this reason, a time period of 90 days prior to the day
of the NPS response was chosen.

3. Duplicates should be removed. The process of data aggregation described in
section 1.4.6 is not perfect. This has led to several instances in which data was
aggregated multiple times, resulting in duplicate log entries.

The first issue encountered pertains to Drill’s ’schema-free’ capabilities. To apply
filtering of any kind, conditional SQL statements must be possible. However, due to
variation in the data formats and values, Drill often infers them inaccurately. Also,
it does this for each value separately. This is useful in many situations, but in this
case leads to numerous errors when applying comparisons and join operations. Drill
might infer a numeric data type on a value that should be treated as a string, resulting
in an error when a string data type and a ’numeric’ data type are compared. This
can be solved by explicitly casting each column and each value. In practice, this
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was applied by creating a view that returns casted values for each column, thereby
effectively enforcing a schema and abandoning Drill’s schema-free advantages.

The next step was applying the first two filters mentioned above. In theory, this is
fairly straight-forward: take the NPS dataset, use a left join with the logs on the user
ID and apply a filter based on the NPS date. This method was invalidated by com-
paring the records counts of result sets generated by equivalent queries. By applying
a step-wise approach, a solution was found. Each filter was implemented in different
ways: using joins versus using conditionals with SQL’s IN operator (filter 1), taking
all original data as input at once versus taking subsets of the data based on their
timestamp (filter 2), using SQL’s SELECT DISTINCT operator versus grouping on all
relevant fields (filter 3). In addition these filters were tried in different orders. Finally,
the effectiveness of using a view-wrapper was validated by also trying the same with-
out a view (but with casting). Both choices for filter 1 performed well, except that
using a join has the advantage that the NPS ID can be included immediately instead
of in a later stage. Applying filter 2 resulted in the conclusion that Drill somehow
did not actually include all data when querying the complete dataset (and it was also
slower, seeing as the complete dataset also includes irrelevant logs from 2015). The
solution was to query the years 2016 and 2017 separately. The options for filter 3 had
the same result and both gave rise to memory issues. This was resolved by applying
filter 3 on the intermediate result set of filters 1 and 2. Eventually, this process of pre-
processing consisted of eight queries. One extraction query that applied filters 1 and 2
(essentially extracting the relevant log entries from the original dataset) and one filter
query that applied filter 3 on the result of the previous filter. These two queries are
executed on each relevant year (2016 and 2017) and on both log types, which makes
the sum of eight. The only non-semantical query difference between the log types is
that some API logs have duplicates with different duration values. This was handled
by taking only the log entry with the largest duration into account in the second query.

In a later stage, it became apparent that the desired dataset has another require-
ment: requests that are not an action of a user are irrelevant. Each of the following
filters has been validated by selecting all matching requests and incrementally check-
ing if they indeed are irrelevant. These have also been checked by data experts at
Topicus.

Resources Resources are loaded together with user requests and are thus irrelevant
for the analysis. All requests that have the value
’org.apache.wicket.request.handler.resource.ResourceReferenceRequestHandler’
for the eventTargetClass field are requests for one of the following file types:
jpg, png, gif, svg, js, css, pdf, csv, cls, doc, docx, txt, xml, ttf or woff. Additionally,
requests with requestedUrls that contain the value
’nl.topicus.iridium.web.resource.ImageResourceReference’ were removed. Im-
age requests were also discarded by matching on values ’pagetitle:image’, ’pageti-
tle:iconContainer:image’ or ’title:iconContainer:image’ values in the component-
Path field.

Screensaver As mentioned before in section 3.2, Somtoday has a security measure
implemented to protect against malicious students. After a short period of inac-
tivity, a screensaver pops up, forcing a teacher to input his password. A request
is made each time the screensaver is enabled or dismissed. These have the value
’screensaver’ in the componentPath field.
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Timed updates Some requests are caused by a client-side timer that means to up-
date a component on the page, e.g. the calendar requesting any changes to the
current view. These log entries have the value
’org.apache.wicket.ajax.AjaxSelfUpdatingTimerBehavior’ for the behaviorClass
field.

Semantically useless pages Non-API log entries that have a NULL value for their re-
sponse_pageClass, event_pageClass and componentPath fields are useless for
this project. Two examples of practical occurrences are with resource requests
and when redirecting. In the latter, Wicket adds two log entries: one in which
solely the URL contains all information and one in which the rest of the fields
hold all the information. The former is discarded by this filter.

Lazily loaded content These requests always follow regular page request within
mere milliseconds. They have the values
’org.apache.wicket.extensions.ajax.markup.html.AjaxLazyLoadPanel$1’ or
’nl.topicus.iridium.web.components.panel.AjaxLazyLoadPanel$1’ for the behav-
iorClass field and values ’lazyContentPanel’, ’dossiers’ or ’dataview’ for the com-
ponentPath field.

The final and most unexpected issue encountered seems to be a bug in Drill: some
queries returned results non-deterministically. There was a pattern to it, but instead
of diving into the inner workings of Drill, the whole data preprocessing process was
broken down into its most basic parts. Topicus’ data storage workflow stores each
batch of data in a separate directory. Drill’s flexibility allows for easy aggregation
of those directories, e.g. by using ’2016*’ to select every directory starting with
’2016’. The solution was to not use that flexibility, query each separate directory
in each step and only do one specific thing per step. Each step uses the dataset of
the previous step. This temporarily consumes 482.6 Gigabytes of storage space, but
ensures a validated and working process. The resulting process is:

Step CA This step copies all original log entries to a new directory, casting the relevant
fields and discarding the irrelevant ones. Note that this is only applied for the
relevant months, as it would be useless to make a casted copy of the complete
historical dataset.

Step UN This step keeps the log entries that are relevant to the NPS dataset, based on
username and organisation.

Step NP This step adds the NPS ID to each log entry.

Step TF This step applies the time frame filter, discarding log entries that are not within
the 90 day period prior the relevant NPS response.

Step FT This step applies the action filter as described above. This step does not apply
to API log entries, seeing as they do not need action filters.

Step DU This step removes duplicate entries using a SELECT DISTINCT statement.

Step FN This step simply copies all entries from the working directory to a final direc-
tory.

Each step is validated as described above. This process is applied to both non-API
and API logs. The total amount of queries, taking into account the directories, steps
and log types, is 5025. These took about 3.5 to 4 hours to complete and another 10
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minutes to validate.

The time necessary for Drill to execute the preprocessing queries was optimized
by discarding several columns. Which ones would be discarded was determined
by looking at their usefulness for later analysis. For example, all fields relating to
the user’s device and browser were discarded due to their irrelevance in this study.
The impact of this optimization was substantial because of the column-based nature
of Drill’s Parquet file storage format. In one instance during query construction,
omitting one column resulted in an execution duration dropping from about 45
minutes to about 15 minutes.

Figure 4.3 shows the histogram of the relevant log entries per NPS response. The
average is 1408.2 log entries with a standard deviation of 3296.9. Figure 4.4 shows the
histogram of the relevant log entries per date. The weekends and holidays are clearly
visible. Additionally, the tails at both boundaries are expected due to the overlap of
relevant NPS response log periods.

F I G U R E 4 . 3 : Response distribution of relevant log entries per NPS
response

F I G U R E 4 . 4 : Temporal distribution of relevant log entries

A few of the common issues in the field of web usage mining are user identifica-
tion, caching, and grouping requests into distinct sessions [13, 14, 58]. User identifi-
cation is no issue in Somtoday and Somtoday Docent, seeing as user authentication
is required to use the system. Wicket has built-in functionality to exert control over
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client-side caching. It allows this only for resources such as images. Seeing as we
ignore such resources, caching is no issue. Wicket also handles sessions. However,
seeing as it does this in the context of security, it does not conform to what is required
for our purposes. A quick analysis of sessions specified by Wicket shows that some
sessions lasted for hours, which does not mean the user actually was active for hours.
For example, the session length is increased significantly due to use of the screen-
saver. To mitigate this, a custom session grouping was implemented. An expiration
time commonly used in commercial applications is 30 minutes [14]. A time of 60
minutes was chosen for this project so that system activity at the start and end of a
class is registered into the same session. Assigning session IDs is done in three stages.
First, for log entries of both log types, the NPS ID and timestamp is extracted. Next,
each log entry is assigned information about the timestamp of the previous and next
timestamps having the same NPS ID, but only if the time difference between the
current and previous or next timestamps is smaller than the session expiration time.
In the final stage, each log entry without a previous timestamp is considered the start
of a new session. A session starting request and all next requests (grouped per NPS
ID) up until but excluding the next session starting request, receive the same session
ID. The session ID consists of the NPS ID and an integer that equals the amount
of preceding requests without a previous timestamp. The result is a table with the
columns described in table 4.4 and that contains only the bare essentials necessary to
identify user activity.

TA B L E 4 . 4 : Format for the sessions dataset

Field Data type Description

NPS ID string A reference to the associated NPS response.

timestamp timestamp The timestamp of the request.

previous
timestamp

timestamp|NULL The timestamp of the previous request, but only
if (current− previous) < session expiration.

next times-
tamp

timestamp|NULL The timestamp of the next request, but only if
(next− current) < session expiration.

session ID string The generated session ID.

4.3 Feature-specific: system usage

To be able to extract data features D F19: the total time spent in the system, D F20: the
total time spent in Somtoday, D F21: the total time spent in Somtoday Docent and
D F22: the total amount of bidirectional switches between Somtoday and Somtoday
Docent, first the data must be put into the format shown in table 4.5.

The first step was to combine the requests of the non-API and API datasets into
one. Each entry received a value indicating its logtype. Only the NPS ID, timestamp
and logtype fields were necessary. The next step made sure that each log entry re-
ceived the timestamp and logtype of the subsequent log entry of the same NPS ID.
The pattern extraction step aggregates this dataset and is discussed in section 5.1.

The reason this dataset only includes timestamps and logtypes is that these data
features exclusively concern system use itself and nothing more.
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TA B L E 4 . 5 : Target format for the system usage preprocessed dataset.

Field Data type Description

NPS ID string A reference to the associated NPS response.

timestamp timestamp The timestamp of the request, accurate to the mil-
lisecond.

logtype enumeration A value indicating the log type.

nextTimestamp timestamp The timestamp of the next request corresponding
to the same NPS response.

nextLogtype enumeration A value indicating the log type of the next request
corresponding to the same NPS response.

4.4 Feature-specific: repetitive tasks

To extract patterns of repetitive tasks for D F11: the amount of distinct repetitive tasks,
D F12: the amount of iterations of repetitive tasks and D F13: the weighted amount of
task iterations, the data has to be processed into the desired dataset format listed in
table 4.6. The dataset contains both logtypes.

TA B L E 4 . 6 : Target format for the repetitive tasks preprocessed
dataset

Field Data type Description

NPS ID string A reference to the associated NPS response.

timestamp timestamp The timestamp of the request, accurate to the mil-
lisecond.

session ID string The generated session ID.

action string A string representing the intended action of the
request.

The session ID is introduced by including the sessions dataset described in sec-
tion 4.2. The action string is a concatenation of a few fields. These are described in
tables 4.7 and 4.8, respectively for the non-API and API logtypes. Note that table 4.7
does not include fields containing the target page. This is because a click on the same
(type of) button is considered the same action and multiple clicks on similar buttons
(e.g. going to the profile of student X and going to the profile of student Y) are the
same task. Equivalently, the API action string does not include parameter values.

The resulting dataset (with the format described in table 4.6) is now a chronolog-
ically ordered list of tasks that can be grouped on session and corresponding NPS
response. Analysis of repetitive tasks is the next step.

4.5 Feature-specific: low-hanging fruit

Data features D F23: the school at which the user works, D F24: the education levels
a user teaches and D F25: the age of the NPS response measured from January 1st,
2016, in days consist mainly of profile data. Topicus supplied XLSX files with map-
pings from UUID to corresponding schools and UUID to education levels taught,
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TA B L E 4 . 7 : Concatenated fields for the action string of the non-API
logtype.

Field Description Transformations

event_pageClass The Java (page) class that triggered the
request.

Lowercased.

componentClass The component that triggered the re-
quest, e.g. a button

Lowercased.

componentPath The path to the component that trig-
gered the request.

Lowercased and re-
moved any IDs us-
ing regular expres-
sion ’:[0-9]+’.

TA B L E 4 . 8 : Concatenated fields for the action string of the API log-
type.

Field Description Transformations

restResource The REST resource, with no parameters set. Lowercased.

method The method with which the request was
sent, e.g. GET, POST, UPDATE.

Lowercased.

for features D F23 and D F24, respectively. These were preprocessed by Pentaho Ket-
tle/Spoon, again only for simple ETL operations such as string trimming, field re-
naming and removal and saving into CSV format. Feature D F25 did not require any
preprocessing as its data can be extracted directly from the NPS dataset.
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Chapter 5

Pattern extraction

This chapter describes how values for each feature are extracted from the prepro-
cessed dataset. These values are input for a machine learning algorithm in the next
phase, which will be discussed in chapter 6. Pattern extraction entails only basic ETL
operations for some features, as sections 5.1 and 5.3 describe for the system usage
and low-hanging fruit features respectively, but uses more complicated algorithms
for others, as section 5.2 describes for the repetitive tasks features.

5.1 System usage

Seeing as there is no data available about the time users spend on each page, this
is measured indirectly by looking at the time the user spends browsing from page
to page. This means a simple summation of intervals between a user’s requests is
sufficient. Recall from section 4.3 that each log entry in the preprocessed dataset
includes the current and the next timestamp, as well as the current and the next
type of log entry. A too large interval between requests indicates user inactivity. The
example of a user reading or writing a lengthy report for several minutes is a reason
to make the interval not too small. For that reason, a maximum of 10 minutes was
chosen between subsequent requests. If two requests are more than 10 minutes apart,
it is assumed that the user landed on its target page. This means it is essentially
a partitioning into sessions with an expiration time of 10 minutes. These are the
conditions considered per feature, for each log entry:

D F19: the total time spent in the system If the next timestamp minus the current
timestamp is smaller than 10 minutes, add that interval to the user’s total sys-
tem usage.

D F20: the total time spent in Somtoday If the next timestamp minus the current
timestamp is smaller than 10 minutes and the current entry’s log type is non-
API, add that interval to the user’s total Somtoday usage.

D F21: the total time spent in Somtoday Docent If the next timestamp minus the cur-
rent timestamp is smaller than 10 minutes and the current entry’s log type is
API, add that interval to the user’s total Somtoday Docent usage.

D F22: the total amount of bidirectional switches between Somtoday and Somtoday Docent
If the next timestamp minus the current timestamp is smaller than 10 minutes
and the current entry’s log type is different than the next entry’s log type, incre-
ment the user’s total interface switch count by one.

Note that, as mentioned in section 3.2, a disadvantage of this indirect measurement
method is that the last visited page of a user’s session is not taken into account for
the user’s system usage time, i.e. features D F19 to D F21.
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5.2 Repetitive tasks

In a collection of sequences, sequential pattern1 mining discovers patterns of ele-
ments that are often found in the same subsequent order. Scientific literature men-
tions three requirements that a pattern must meet to be eligible for further analysis:
the minimum pattern length (minpatternlength) that specifies the minimum amount
of elements in the pattern; the minimum support (minsupport) that says in at least
how many of the sequences the pattern must occur and which relates directly to
our minimum inter-session occurrence requirement mentioned in section 3.2; and the
minimum repetition support (minrepsupport) that dictates the minimum amount of
occurrences of the pattern in each sequence and which relates directly to our minimum
intra-session occurrence requirement. The multitude of variations on each sequential
pattern mining algorithm type adds and/or removes several pattern requirements.
These ones mentioned here are the most basic and interesting, especially because
they map directly onto our requirements for features D F11 to D F13. To clarify: the
patterns that are found using these algorithms are the repetitive tasks that we are
looking for.

In our initial literature study, no algorithm was identified that satisfied our re-
quirements for features D F11 to D F13. A new algorithm was constructed to find the
repetitive tasks we are looking for. The steps of our algorithm, Apriorirep1i, are based
on the frequent items analysis algorithm Apriori and its sequential pattern mining
extension AprioriAll [1]. This was chosen to support intuitive comprehension of
the algorithm, especially in the maximal phase (explained later on). In hindsight,
Apriorirep1i turned out to practically take a PrefixSpan approach, but breadth-first
(finding all patterns of the same length) instead of depth-first (finding patterns of
increasing length with the same prefix). Nearing the end of this project we found
that important work was overlooked in our initial search that would have altered our
approach to Apriorirep1i. Related work, including the overlooked work, is discussed
in section 5.2.4. It should be noted that the implementation of a different algorithm
(along with the validation of its correct execution) would have required a slightly
less but similar amount of time than was spent on Apriorirep1i.

Semantic differences between the algorithms found in literature and the one re-
quired for repetitive system actions are shown in table 5.1. Especially notice the
semantics of the itemset concept, because this is the most influential and practical
difference. The difference in sequence database semantics means that the algorithm
in our case is applied on each user instead of the complete dataset. Also note that an
action is the same as a request.

The basic algorithm is discussed in section 5.2.1, an extension that makes it com-
plete in section 5.2.2 and its application on the preprocessed dataset in section 5.2.3.
The similarities and differences with regard to previous work are discussed in sec-
tion 5.2.4.

5.2.1 Apriorirep1i (basic)

This algorithm was made while keeping in mind that results had priority over opti-
mal performance. A few measurements are given in section 5.2.3 to indicate that this
was not an issue. The Python 2.7 implementation that was used for this study can be

1 In this section a pattern is a sequential pattern: an ordered series of items. In the rest of this thesis
a pattern is a user’s usage pattern.
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TA B L E 5 . 1 : Semantic differences between use cases of the algorithms found in litera-
ture and our algorithm

concept web shop records
web system
usage logs

sequence database complete history of bought products one user

sequence ordered history of bought products of
one user

user session

itemset / element set of products bought together action1

item bought product action
1 Due to the nature of web system usage logs, a user can not perform two actions at the same

time. Consequently, itemsets are always of length 1.

found in appendix A and online2.

The support is in literature defined as a relative value. In the case of the pattern
support, for instance, it is the fraction of total sequences that support that pattern.
However, in section 3.2 we defined the inter- and intra-session occurrences as abso-
lute values. Since there are no practical advantages or disadvantages to using one
or the other in our situation and since existing algorithms internally use the abso-
lute value anyway, from now on the absolute value is meant when talking about the
support.

Literature defines large itemsets or litemsets as itemsets that have the minimum
support. Seeing as Apriorirep1i works with itemsets of length one, litems or large
items are the equivalent of large itemsets of length one.

The algorithm uses the data structure occurrence set internally and as its output.
This is a map of patterns mapped to their occurrences. The occurrences are maps,
where the zero-based sequence indices of the sequence database are mapped to a
set of zero-based indices pointing to the starting occurrence of the pattern within
the sequence. To illustrate, the following is an occurrence set of two patterns occur-
ring in the example sequence database of table 5.2: (”abcd” → (4 → {0, 4, 8}, 5 →
{0, 5, 9}), ”de” → (5 → {3, 12})). An advantage of this structure is that information
about a pattern’s occurrences is retained, while metrics can be obtained in a compu-
tationally cheap way by counting the elements in the lists of the occurrence set.

As a running example, we take the sequence database shown in table 5.2. The
example includes a fair amount of self-succeeding cyclical occurrences. This was
chosen to show that even though this algorithm finds both cyclical and non-cyclical
repetitive patterns, it is not perfect. Note that this algorithm is independent of the
lexical value of the element symbols: replacing element a with z yields the same
results.

The patterns in the example that can be identified are abcd, abc, bca and cab. As
one might notice, abc, bca and cab are the cyclically shifted versions of each other
resulting from their self-succeeding occurrences. Should all of these patterns be iden-
tified as frequent patterns, or only one of them? This self-succeeding pattern origin
ambiguity is addressed in section 5.2.2.

The input expected by Apriorirep1i is a sequence database and the parameters
minsupport, minrepsupport and minpatternlen, having constraints minsupport>0,

2 https://karim.elass.al/masterthesis/apriorirep1i

https://karim.elass.al/masterthesis/apriorirep1i
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TA B L E 5 . 2 : The sequence database used as a running example to
illustrate the workings of Apriorirep1i and has parameters minsup-

port=2, minrepsupport=2 and minpatternlength=2

seq.
index sequence

0 a b c a c

1 a c t y

2 a b c a b c a b

3 b c a b c a b c a b c

4 a b c d a b c d a b c d

5 a b c d e a b c d a b c d e

6 x y z

minrepsupport>1 and minpatternlen>1. Before the different phases are discussed,
one step needs to be explained that is applied several times throughout the algorithm:
the purge_nonlpatterns step. The term lpatterns (or large patterns) follows the
equivalent definition of litems, but applied to repetitive patterns. The occurrence set
of an lpattern adheres to the minrepsupport and minsupport requirements. This step
works in this order:

1. Only occurrences are retained of sequences that adhere to the minrepsupport
requirement, so this is evaluated per sequence.

2. Only patterns are retained that adhere to the minsupport requirement, so this
is evaluated per pattern.

The algorithm overview is shown in listing 5.1. The differences with Aprio-
riAll are discussed next, per phase. Note that the purge_cyclic_shifts and
purge_interconnecting_subpatterns steps are discussed in section 5.2.2.

L I S T I N G 5 . 1 : Apriorirep1i algorithm

1 # IN: sequence database -> sequence_db
2 # int -> minsupport
3 # int -> minrepsupport
4 # int -> minpatternlen
5 # OUT: occurrence set
6

7 # litem phase
8 L1 = get_litems(sequence_db, minsupport, minrepsupport)
9

10 # transformation phase
11 DT = truncate_nonlitem_sequences(sequence_db, L1)
12

13 for (k = 2; Lk−1 ̸= ∅; k++):
14 # sequence phase
15 Lk = get_next_patterns(DT , Lk−1)
16 Lk = purge_nonlpatterns(Lk, minsupport, minrepsupport)
17

18 Lk = purge_subpattern_cycle_start(Lk, Lk−1, DT )
19 Lk = purge_cyclic_shifts(Lk, DT )
20 Lk = purge_nonlpatterns(Lk, minsupport, minrepsupport)
21
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22 # maximal phase
23 if k - 1 < minpatternlen:
24 delete Lk−1

25 else:
26 Lk−1 = purge_interconnecting_subpatterns(Lk−1, Lk)
27

28 Lk−1 = purge_subpatterns(Lk−1, Lk)
29

30 L = purge_nonlpatterns(L, minsupport, minrepsupport)
31 return L

AprioriAll starts with a sort phase in which the original database with customer
transactions is transformed into a sequence database. To increase generality, Apri-
orirep1i expects a sequence database and thus skips the sort phase.

AprioriAll’s litemset phase focuses on finding all litemsets. Seeing as we work
with items instead of itemsets, Apriorirep1i applies a litem phase. The sequence
database is traversed, storing each item encounter. The purge_nonlpatterns step
is applied and the result is the litem occurrence set L1. In the case of our running
example, L1 is shown in table 5.3. An future optimization to reduce memory space
is to apply occurrence purging based on the minrepsupport requirement during the
litem phase.

TA B L E 5 . 3 : The result L1 after Apriorirep1i’s litem phase of our
running example

seq.
occurrences
of a

occurrences
of b

occurrences
of c

occurrences
of d

s0 {0, 3} {2, 4}
s2 {0, 3, 6} {1, 4, 7} {2, 5}
s3 {2, 5, 8} {0, 3, 6, 9} {1, 4, 7, 10}
s4 {0, 4, 8} {1, 5, 9} {2, 6, 10} {3, 7, 11}
s5 {0, 5, 9} {1, 6, 10} {2, 7, 11} {3, 8, 12}

The next phase for AprioriAll is the transformation phase in which all non-litems
are dropped from the sequence database to speed up the subsequent sequence phase.
This is not viable for Apriorirep1i because of its use of occurrence sets: if litems are
omitted, the indices refering to occurrences don’t match anymore. An approximation
of this effort is made by truncating the sequences that do not contain litems. This
way the sequence keys (i in si) in the occurrence set still refer to the correct sequences
in the sequence database and those irrelevant sequences are removed from memory.
The result of applying Apriorirep1i’s transformation phase is that s6 is truncated.
The resulting sequence database is from here on out denoted as DT .

The focus now shifts to finding the desired patterns. This is called the sequence
phase. The algorithm enters into a loop, incrementing the pattern length k at each
iteration and continuing while there are lpatterns found of length k − 1. Explaining
the steps of this phase is easier when we skip two k. The occurrence set L3 is shown
in table 5.4. First all candidates of length k = 4 must be found. This step traverses
all lpatterns in Lk−1 and returns an occurrence set of patterns of length k = 4 found
in DT . This is done by looking at each pattern’s occurrence and considering the ele-
ment that directly follows the pattern. The candidates found in our running example
are abca, abcd, bcab, bcda, bcdb and cabc. Again, the purge_nonlpatterns step is
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TA B L E 5 . 4 : The intermediate result L3 after two iterations of Apri-
orirep1i with our running example

seq.
occurrences
of abc

occurrences
of bca

occurrences
of cab

occurrences
of bcd

s2 {0, 3} {1, 4} {2, 5}
s3 {2, 5, 8} {0, 3, 6} {1, 4, 7}
s4 {0, 4, 8} {1, 5, 9}
s5 {0, 5, 9} {1, 6, 10}

applied to discard irrelevant occurrences. The result is shown in table 5.5. This does
not include all candidates, since not all of them are lpatterns.

TA B L E 5 . 5 : The intermediate result L4 of Apriorirep1i with our run-
ning example after the get_next_patterns step of sequence phase,

with purge_nonlpatterns applied

seq.
occurrences
of abca

occurrences
of abcd

occurrences
of bcab

s2 {0, 3} {1, 4}
s3 {2, 5} {0, 3, 6}
s4 {0, 4, 8}
s5 {0, 5, 9}

As one might notice, abca is a superpattern of abc. Step purge_subpattern_cy-
cle_start removes occurrences of abca if it links two occurrences of the subpattern
abc. Index 0 in s2 qualifies for the purge, but index 3 does not: subpattern abc has no
occurrence at index 6 as the sequence ends after index 7. The result is shown in ta-
ble 5.6. Only the occurrences of abcd remain after purge_nonlpatterns is applied
again.

TA B L E 5 . 6 : The intermediate result L4 of Apriorirep1i with our run-
ning example after the purge_subpattern_cycle_start step of

sequence phase

seq.
occurrences
of abca

occurrences
of abcd

occurrences
of bcab

s2 {3} {4}
s3 {} {6}
s4 {0, 4, 8}
s5 {0, 5, 9}

Apriorirep1i places the next phase, the maximal phase, partially inside and par-
tially outside of the loop, contrary to only outside as AprioriAll does. Since this phase
focuses on patterns of length k − 1, this design choice allows for better comprehensi-
bility. The maximal phase removes occurrences of patterns that are not maximal, i.e.
that are found in other patterns. First it discards patterns of length k − 1 if they are
smaller than the minimum pattern length.
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If k − 1 ≥ minpatlen, it applies the purge_subpatterns step. Table 5.7 shows
the input for this step limited to s4 and s5. It shows clearly that all occurrences of
abc and bcd are part of the occurrences of abcd. These are found by looking at the
two subpatterns obtained by removing the head (resulting in bcd)and tail (resulting
in abc) elements, respectively, and comparing their occurrences with those of the
superpattern. In this case, all occurrences of abc and bcd are discarded.

TA B L E 5 . 7 : The running example input for the maximal phase at
k = 4 of Apriorirep1i reduced to s4 and s5

L4 L3

seq.
occurrences
of abcd

occurrences
of abc

occurrences
of bcd

s4 {0, 4, 8} {0, 4, 8} {1, 5, 9}
s5 {0, 5, 9} {0, 5, 9} {1, 6, 10}

Finally, the maximal phase concludes with applying purge_nonlpatterns
again. Placing this inside the loop applies the step more often on smaller datasets,
while placing it outside the loop applies it one time on the result. We’ve chosen the
same as with AprioriAll: outside the loop.

The result of running the basic version of Apriorirep1i on our running example
is shown in table 5.8. This shows that the occurrences of the individual items of abc,
bca and cab have overlap and is discussed in section 5.2.2.

TA B L E 5 . 8 : The result of basic Apriorirep1i applied on the running
example

seq.
occurrences
of abcd

occurrences
of abc

occurrences
of bca

occurrences
of cab

s2 {0, 3} {1, 4} {2, 5}
s3 {2, 5, 8} {0, 3, 6} {1, 4, 7}
s4 {0, 4, 8}
s5 {0, 5, 9}

5.2.2 Apriorirep1i (complete)

In the sequence <abcabcabc> it is clear that pattern abc is the main sequential pattern.
Sequence <bcabcabca> clearly has the main sequential pattern bca. In a sequence
database we should take them both into account, seeing as they both contain the
other’s main sequential pattern. This is what we’ve called self-succeeding pattern
origin ambiguity: which pattern should be considered the main pattern? An imper-
fect solution was found using a sliding window approach.

This is mainly dealt with by the purge_cyclic_shifts step. We take the iter-
ation k = 3 to illustrate. Traversing s2, it starts the sliding window at index 0 and
checks in Lk if there’s a frequent pattern with an occurrence there. It finds abc and re-
members it as the main pattern. Incrementing the index to 1, it checks if the cyclically
shifted version bca is a frequent pattern occurring there. This is the case, so it purges
that occurrence of bca. When the occurrence of the main pattern is traversed (after
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index 2), it forgets the main pattern and starts looking for a new one. Continuing
with s3 the first main pattern found is bca and does the same. Table 5.9 shows the
result of this step. It shows that it indeed discarded abc from s3, bca from s2 and cab
from both s2 and s3.

TA B L E 5 . 9 : The intermediate result L3 of Apriorep1i after
purge_cyclic_shifts step of sequence phase with our running

example

seq.
occurrences
of abc

occurrences
of bca

occurrences
of bcd

occurrences
of cab

s2 {0, 3} {} {}
s3 {} {0, 3, 6} {}
s4 {0, 4, 8} {1, 5, 9}
s5 {0, 5, 9} {1, 6, 10}

There is one additional step required as a consequence of the sliding window
approach. Pattern ca is also recognized as frequent due to the fact that it connects
self-succeeding occurrences of abc. In s2, this results in occurrences at indices 2 and 5.
The step purge_interconnecting_subpatterns identifies such cases by com-
paring occurrences of frequent subpatterns with the tail-less cyclically shifted ver-
sions of each pattern, e.g. subpatterns ab, bc and ca of abc. In our example, it retains
index 5 of s2 because no occurrence of abc is found at corresponding index 6.

Note that the result (shown in table 5.10) of running Apriorirep1i on our exam-
ple ultimately does not include occurrences of abc and bca. This is because abc is a
subpattern of abcd in s4 and s5 and is thus discarded by the purge_subpatterns
step. The remaining occurrences of abc in s2 and bca in s3 both do not adhere to
the minsupport requirement. This interplay of side effects is less significant when
dealing with large datasets.

TA B L E 5 . 1 0 : The result of complete Apriorirep1i applied on the
running example

seq.
occurrences
of abcd

s4 {0, 4, 8}
s5 {0, 5, 9}

5.2.3 Application

Apriorirep1i expects a sequence database as input. This was done by simply map-
ping each action (as described in section 4.4) to a symbol. After the algorithm was
applied on the log entries dataset for each NPS response, the results from the occur-
rence set were aggregated into single values corresponding to features D F11 to D F13
and stored for the next phase of this project. Additionally, a dataset with the found
patterns was constructed to support Topicus with future analysis of the repetitive
patterns.

The requirement in terms of efficiency was that it could run in an acceptable
time frame. There were 1046 NPS entries, 107 355 sessions and 6 320 136 actions in
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total. Averaging the average amount of actions per session over the amount of NPS
responses, the result is 61.79 actions per session. Apriorirep1i took about 15 minutes
to run on all of the log entry datasets of all NPS responses.

5.2.4 Related work

Toroslu introduced the notion of minimum repetition support [62]. He called this the
field of cyclic pattern mining, a generalization of sequential pattern mining. It is a gen-
eralization because a minimum repetition support of 1 would yield the same results
as sequential pattern mining algorithms. Toroslu presented an algorithm similar to
Apriorirep1i. His algorithm is also based on Agrawal and Srikant’s AprioriAll [1].
Contrary to sequential pattern mining algorithms and like Apriorirep1i, it finds only
patterns with itemsets of length 1. Instead of our occurrence set structure, it uses a
hash-tree for efficient storage of candidates. Where Apriorirep1i only finds patterns
with consecutive elements, Toroslu’s algorithm allows patterns to be interleaved
with other elements. This is more appropriate for the use cases of his research: the
stock market and customer transactions. To illustrate, consider the sequence <cacba-
cacabbacabacaac>. One of the cyclic patterns with repetition support 3 that Toroslu
identifies is aba.

Another important difference is how Toroslu deals with his equivalent problem to
the self-succeeding pattern origin ambiguity. In his case the patterns are not (necessar-
ily) self-succeeding, as patterns can be interleaved with other elements. Terminology
aside, the pattern origin ambiguity is still present and Toroslu takes a different ap-
proach. He views the shifted versions of a pattern as members of the same family.
Consider the previously mentioned sequence again. The shifted patterns aab, aba and
baa have repetition supports 2, 3 and 3, respectively. All three patterns are considered
supported in the sequence (assuming a minimum repetition support of 3) because
the family’s highest repetition support (aba or baa) satisfies the minimum. The nature
of these cyclic patterns ensure that the difference between the repetition support of
family members is only 1. To illustrate both approaches in the context of this study,
take the sequence <cabcabcghabcabc>. Apriorirep1i’s basic version would recognize
all occurrences of both the cab and abc patterns. Its sliding window approach of
dealing with the ambiguity would identify cab as the main pattern of the first six
indices and thus remove the first two found occurrences of abc. Its result would be
repetition support 2 for both cab and abc patterns. Toroslu’s approach would find
repetition support 4 for pattern cab: the first two and the last one are obvious; the
third occurrence is interleaved with the elements gh. Applying Toroslu’s approach
to Apriorirep1i can be easily done by joining occurrences of shifted patterns into one
family. Table 5.8 illustrates that this would work: the shifts of each pattern’s elements
correspond to the shifts in their occurrence index, e.g. bca occurs one index later than
abc.

Other related work focuses on approaches with more or different requirements.
Hu and Chiang [28], who extended the work of Toroslu, state that a constant mini-
mum repetition support is too coarse-grained to take all types of sequential events
into account. They introduce multiple minimum repetition supports and implement
this in their PrefixSpan-based algorithm rep-PrefixSpan. PrefixSpan only takes the
first occurrence of a pattern as a prefix. Rep-PrefixSpan considers each occurrence of
a pattern as a prefix and limits the projected database length with another parameter.
It does not deal with the ambiguity mentioned above. Rep-PrefixSpan is less suitable
for datasets where the elements are unknown beforehand, as the researcher has no
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idea which element should have which minimum repetition support.

Barreto and Antunes [2] also use a PrefixSpan-based approach. They state that
periodicity is relevant for cyclic patterns. They define a pattern as a (s, ρ, δ) tuple,
where s is the (contiguous) sequence, ρ is the period (i.e. the space between two
occurrences) and δ is the amount of repetitions. Although their algorithm, PrefixS-
pan4Cycles, aims to find periodic patterns, its first part finds cyclic patterns without
considering their periodicity. It does this in a way highly similar to basic Apriorirep1i.
The data structure used is almost identical to occurrence sets. The biggest difference
is that PrefixSpan4Cycles is recursive (depth-first), while Apriorirep1i is iterative
(breadth-first). It also supports itemsets of lengths greater than 1, which Apriorirep1i
does not as this was not relevant for our use case.

In conclusion, Apriorirep1i’s basic part should have been subject to Barreto and
Antunes’ approach of the first part of PrefixSpan4Cycles. Apriorirep1i’s ambiguity
issue can be solved by the familial approach provided by Toroslu. Combining these
methods and doing measurements of effectiveness and efficiency is considered future
work into this algorithm for finding repetitive patterns that consist of consecutive
actions and without the requirement of periodicity.

5.3 Low-hanging fruit

The pattern extraction operations for features D F23 to D F25 are relatively simple.
Each user can have multiple schools at which he’s worked in the 90 days prior his
NPS response. This most often occurs because schools fuse, according to Topicus
experts. The data format for D F23: the school at which the user works should thus be
binary, where each school is a field. The resulting (reduced) dataset format is shown
in table 5.11. The source is the mapping data mentioned in section 4.5.

TA B L E 5 . 1 1 : The reduced dataset format for feature D F23

Field Data type Description

NPSID string The NPS ID.

school: * boolean Whether the user was associated
with the school mentioned in the
field (’*’) or not.

A similar line of reasoning is used for D F24: the education levels a user teaches.
Each user can teach multiple education levels, so the target data format should be
binary. Table 5.12 shows the reduced format. Again, the source is the mapping data
previously mentioned in section 4.5.

TA B L E 5 . 1 2 : The reduced dataset format for feature D F24

Field Data type Description

NPSID string The NPS ID.

edlvl: * boolean Whether the user taught the educa-
tion level mentioned in the field (’*’)
or not.
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Finally, feature D F25: the age of the NPS response measured from January 1st,
2016, in days has a numeric format and the format is shown in table 5.13. The source
is the date of the NPS response, included in the NPS dataset.

TA B L E 5 . 1 3 : The dataset format for feature D F25

Field Data type Description

NPSID string The NPS ID.

npsage integer The age of an NPS response mea-
sured from Janaury 1st, 2016, in
days.
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Chapter 6

Model training

This chapter discusses how the preprocessed datasets are joined and applied to see
if there is any predictive value in them. The format of the dataset resulting from the
pattern extraction efforts discussed in chapter 5 is shown in table 6.1. Section 6.1
discusses the approach to applying machine learning and section 6.2 mentions what
model-specific preprocessing is applied in an attempt to improve the results. Finally,
section 6.3 presents the results.

TA B L E 6 . 1 : The dataset format for the machine learning model input

Field Data type Description

NPS integer The NPS score. This is the attribute that will be
predicted.

total_time integer D F19: the total time spent in the system

total_napitime integer D F20: the total time spent in Somtoday

total_apitime integer D F21: the total time spent in Somtoday Docent

total_switches integer D F22: the total amount of bidirectional switches
between Somtoday and Somtoday Docent

repetitive_patterns integer D F11: the amount of distinct repetitive tasks

accumulated_repetitions integer D F12: the amount of iterations of repetitive
tasks

weighted_pattern_iterations float D F13: the weighted amount of task iterations

school: * boolean D F23: the school at which the user works

edlvl: * boolean D F24: the education levels a user teaches

NPSAGE integer D F25: the age of the NPS response measured
from January 1st, 2016, in days

6.1 Approach

Table 6.1 shows that most data types of the dataset are numerical. Only two features
are boolean, allowing for several possibilities in utilizing this dataset. The target
attribute NPS can be treated as continuous (numerical) and discrete (categorical)
due to the nature of the type of NPS scoring. The range 0 to 10 is numerical, but
can be treated as categorical without loss of semantics. These categories can also be
aggregated, again without loss of semantics from the perspective of NPS scoring.
NPS scores 0 to 6 fall into the category ’Detractor’, scores 7 and 8 in ’Passive’, and 9
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and 10 in ’Promoter’. The input attributes can also be treated in different ways. The
boolean types can be discarded, allowing for a fully numeric dataset. This opens the
door to models like linear regression. A different option is to discretize the numerical
attributes to end up with only categorical and binary attributes. This discretization
can be done using different methods, discussed in section 6.2. We end up with the
combinations of data types shown in table 6.2.

TA B L E 6 . 2 : Datasets used with predictive modeling

input data types output data types

numerical binary categorical (11 values)

numerical binary categorical (3 values)

categorical binary categorical (11 values)

categorical binary categorical (3 values)

numerical binary numerical

numerical numerical

Seeing as all these different variations are not necessarily incremental in perfor-
mance, a brute force approach was chosen. Multiple combinations were tried con-
cerning the data types of the dataset, the models, the model parameters and the
preprocessing methods used (more on those in section 6.2).

The main evaluation metric differs per data type of the target attribute. The ac-
curacy was chosen for the categorical data type, which is a measure for the ratio of
correctly classified samples. This metric would be high if the data has lots of predic-
tive value. In each instance the confusion matrix and each class’ recall and precision
was examined to determine whether anything interesting was going on in addition
to the accuracy.

For the numeric type the mean absolute error (MAE) was chosen. The error vari-
ance is more important than large outliers, making the MAE preferred over RMSE.
Additionally, reasoning about the model’s usefulness is more intuitive when the error
is in the same unit as the predicted value. This makes the MAE preferred over R2

and MSE. This value should be low if the data has lots of predictive value.
Model validation is done using 10-fold cross validation. The predictive value of

a model will be determined by comparing the performance with a model that makes
random or constant predictions.

Another metric to consider is the correlation between a feature and the target at-
tribute (i.e. the NPS score). This measures their association and can thus be valuable
for the results.

RapidMiner Studio1 was chosen as tooling for training and evaluating the models.
It is advertised as a visual environment that "streamlines transformation, develop-
ment and validation" and includes lots of machine learning models. RapidMiner
uses nested visualized data flows, so showing them here would not increase under-
standing. Instead, listing 6.1 shows the hierarchical flow in text format. Each line
requires some elaboration. First the data is read from a CSV file which has the format
described in table 6.1. Then the target attribute is preprocessed. This entails type

1 https://rapidminer.com/products/studio/

https://rapidminer.com/products/studio/
https://rapidminer.com/products/studio/
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casting the numerical values into the categorical values 0 to 10 or ’Detractor’ to ’Pro-
moter’. This step is skipped when the target attribute is treated as a continuous value.
The model chooser applies its nested operators on different models, so it’s basically
a loop. The parameter chooser does the same but with changing model parameters.
The cross validator again does the same, but with a different fold of the data. Within
the cross validation, the attributes are preprocessed, followed by the training of the
model. Note that the chosen model, model parameters and dataset are all passed
down to this model training operation. Attribute preprocessing is applied again, but
on the test subset. Any normalization or discretization model from the training phase
is used at this point. The reason this attribute preprocessing is done within the cross
validation instead of right after reading the data is to deal with knowledge leakage.
The trained model is applied on the test dataset, the performance metric is extracted
and passed back up the hierarchy together with the model parameters resulting in
the best performance. These metrics are aggregated into a table for evaluation.

L I S T I N G 6 . 1 : RapidMiner workflow

1.1. read data
1.2. target attribute preprocessing
1.3. model chooser

2.1. parameter chooser
3.1. cross-validation

4.1. training dataset: attribute preprocessing
4.2. training dataset: model training
4.3. testing dataset: attribute preprocessing
4.4. testing dataset: model application
4.5. testing dataset: performance extraction

The models and parameters in tables 6.3 to 6.6 were chosen to be used with our
brute force approach. Note that only limited effort was put in choosing the most
optimal parameters: our brute force approach removes that need. These models were
chosen based on the data type they can handle and availability within RapidMiner.
The same goes for the model parameters. Each table shows the models used for a dif-
ferent input-output data type combination. Combinations of all variable parameters
were tried. Note that several changes to both the static and variable parameters were
heuristically tried, but with no significant effect on the results as they are presented
in section 6.3.

TA B L E 6 . 3 : The selected machine learning models for input types
numerical and binary, output type categorical

Model Abbr. Parameter Value(s)

Decision tree DT criterion {gain_ratio, informa-
tion_gain, gini_index,
accuracy}

prepruning minimal gain [1 ·10−3, 1 ·10−2, . . . , 1 ·101]
maximal depth 20
pruning confidence 0.25
prepruning minimal leaf
size

2

Continued on next page
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Table 6.3 – continued from previous page
Model Abbr. Parameter Value(s)

prepruning minimal size
for split

4

number of prepruning al-
ternatives

3

Naive Bayes NB laplace correction {yes, no}
Naive Bayes
(kernel)

NBk laplace correction {yes, no}
estimation mode full
bandwidth selection heuristic

k-Nearest
Neighbors

kNN k [1, 2, . . . , 50]
weighted vote {yes, no}
measure MixedEuclideanDistance

Rule induc-
tion

RI criterion {information_gain, accu-
racy}

sample ratio 0.9
pureness 0.9
minimal prune benefit 0.25

Random
Forests

RF criterion {gain_ratio, informa-
tion_gain, gini_index,
accuracy}

number of trees [1, 3, . . . , 151]
maximal depth 20
apply pruning yes
confidence 0.25
apply prepruning yes
minimal gain 0.1
minimal leaf size 2
minimal size for split 4
number of prepruning al-
ternatives

3

Random
Tree

RT criterion {gain_ratio, informa-
tion_gain, gini_index,
accuracy}

minimal gain [1 ·10−3, 1 ·10−2, . . . , 1 ·101]
minimal leaf size 2
minimal size for split 4
maximal depth 20
confidence 0.25
number of prepruning al-
ternatives

3

Continued on next page
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Table 6.3 – continued from previous page
Model Abbr. Parameter Value(s)

Deep Learn-
ing

DL activation {Tanh, TanhWithDropout,
Rectifier, RectifierWith-
Dropout, Maxout, Max-
outWithDropout, ExpRec-
tifier, ExpRectifierWith-
Dropout}

hidden dropout layers 0.5, 0.5
hidden layer sizes 50, 50
epochs 10
train samples per iteration automatic
adaptive rate yes
epsilon 1.00 · 10−8

rho 0.99
standardize yes
L1 1.00 · 10−5

L2 0
max w2 10.0

Decision
stump

DS criterion {gain_ratio, informa-
tion_gain, gini_index,
accuracy}

minimal leaf size 1

TA B L E 6 . 4 : The selected machine learning models for input types
categorical and binary, output type categorical

Model Abbr. Parameter Value(s)

Everything the same as table 6.3 except for this replacement and addition:
k-Nearest
Neighbors

kNN k [1, 2, . . . , 50]
weighted vote {yes, no}
measure {NominalDistance, DiceS-

imilarity, JaccardSimilarity,
KulczynskiSimilarity,
RogersTanimotoSimilarity,
RussellRaoSimilarity, Sim-
pleMatchingSimilarity}

Chi-squared
Automatic
Interaction
Detector

CHAID minimal gain [1 ·10−3, 1 ·10−2, . . . , 1 ·101]
minimal leaf size 2
minimal size for split 4
maximal depth 20
confidence 0.25

Continued on next page
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Table 6.4 – continued from previous page
Model Abbr. Parameter Value(s)

number of prepruning al-
ternatives

3

TA B L E 6 . 5 : The selected machine learning models for input types
numerical and binary, output type numerical

Model Abbr. Parameter Value(s)

k-Nearest
Neighbors

kNN k [1, 2, . . . , 50]
weighted vote {yes, no}
measure MixedEuclideanDistance

Generalized
Linear
Model

GLM solver {IRLSM, L_BFGS,
COORDI-
NATE_DESCENT_NAIVE,
COORDI-
NATE_DESCENT}

use regularization {yes, no}
family automatic
standardize yes
lambda search yes

Deep
Learning

DL activation {Tanh, TanhWithDropout,
Rectifier, RectifierWith-
Dropout, Maxout, Max-
outWithDropout, ExpRec-
tifier, ExpRectifierWith-
Dropout}

hidden dropout layers 0.5, 0.5
hidden layer sizes 50, 50
epochs 10
train samples per iteration automatic
adaptive rate yes
epsilon 1.00 · 10−8

rho 0.99
standardize yes
L1 1.00 · 10−5

L2 0
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TA B L E 6 . 6 : The selected machine learning models for input type
numerical, output type numerical

Model Abbr. Parameter Value(s)

k-Nearest
Neighbors

kNN k [1, 2, . . . , 50]
weighted vote {yes, no}
measure {EuclideanDistance,

CamberraDistance, Cheby-
chevDistance, Correlation-
Similarity, CosineSimilar-
ity, DiceSimilarity, Dynam-
icTimeWarpingDistance,
InnerProductSimilarity,
JaccardSimilarity, Ker-
nelEuclideanDistance,
ManhattanDistance,
MaxProductSimilarity,
OverlapSimilarity}

Neural net NN learning rate {0.3, 0.03}
momentum {0.2, 0.02}
training cycles {500, 5000}
decay no
error epsilon 1.00 · 10−5

Linear
regression

LR feature selection {none, M5 prime, greedy, T-
Test, Iterative T-Test}

minimum tolerance {0.5, 0.05, 0.005}
eliminate colinear features yes
use bias yes
ridge 1.00 · 10−8

alpha 0.05
maximum iterations 10
forward alpha 0.05
backward alpha 0.05

Support
vector
machine

SVM kernel type {dot, radial, polynomial,
anova, epachnenikov,
gaussian combination,
multiquadric}

C {-0.1, 0.01, 0.1, 1, 10, 100}
convergence epsilon 0.001
maximum iterations 100 000
kernel gamma 1
kernel degree 2
kernel a 1
kernel b 0

Continued on next page
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Table 6.6 – continued from previous page
Model Abbr. Parameter Value(s)

kernel sigma1 1
kernel sigma2 0
kernel sigma3 2
kernel shift 1
L positive 1
L negative 1
epsilon 0
epsilon plus 0
epsilon minus 0

Polynomial
regression

PR replication factor {1, 2, 3}
maximum degree {5, 6, 7, 8, 9, 10}
maximum iterations 5000
minimum coefficient -100
maximum coefficient 100

6.2 Model-specific preprocessing

Several preprocessing attempts were made to improve the results of the predictive
models. Some models work better with data that is preprocessed in certain specific
ways. Examples include normalization and outlier removal. To cover these cases,
our brute force approach applied all preprocessing options to check which had any
impact on the results.

The numeric attributes have different ranges, making normalization of the data a
relevant choice. Several methods were tried:

Range transformation (range -1 to 1) This method downscales the values so that the
minimum value becomes -1 and the maximum becomes 1.

Proportion transformation This method is based on the proportion of each attribute
value on the whole attribute value set.

Z-transformation Also known as statistical normalization, this method makes sure
the new dataset has a mean of zero and a variance of one. It reduces the influ-
ence of outliers and preserves the original distribution.

Discretizing was applied in the case where the numerical attributes were treated
as categorical. Due to the skewness of the distribution of each attribute, the only
feasible type of discretizing was binning. The amount of bins tried were 10 and 100.

Removal of ten outliers was tried based on the Euclidian distance function. The
same was attempted with a cosine distance function.

Figure 4.1 shows the clear class imbalance of the target attribute. Different meth-
ods of dealing with this are:
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Class upsampling2 This multiplies random samples from the underrepresented
classes so each class becomes a specified size.

Class downsampling3 This cuts random samples from the dominant classes so that
each class becomes a specified size.

SMOTE upsampling This method by Chawla et al., Synthetic Minority Over-sampling
Technique [10], takes a sample from an underrepresented class, considers its
k nearest neighbors and adds a random sample between itself and one of its
neighbors to the dataset. This randomness makes sure the synthetic samples
are similar to the existing, but not exact copies. This reduces the chance on
overfitting.

Adding weights Weights can be added to each sample to increase or decrease its
importance, e.g. for the underrepresented and dominant classes, respectively.
This can also be used to give more priority to features with more predictive
value.

6.3 Results

Table 6.7 shows the result of random predictions averaged over 1000 iterations. The
values are calculated twice: with and without taking the NPS score distribution into
account. Table 6.8 shows the results for the situation where the dominant classifica-
tion 7 (or ’Passive’) is always predicted. To place the MAE value in a bit more context:
if 50% of the samples is predicted correctly and the rest randomly (without taking the
distribution into account), the average MAE over 1000 iterations is 1.555. The same
situation with 80% correctly predicted samples results in a MAE of 0.627.

TA B L E 6 . 7 : Results if prediction is done randomly, with and without
taking the target attribute distribution into account, averaged over 1000

iterations

target attribute

with distribution without distribution

accuracy MAE accuracy MAE

categorical (11 values) 16.07% 9.093%

categorical (3 values) 45.41% 41.24%

numerical 2.457* 3.101
* This value is based on predicting integers instead of floats because of the

known distribution. Adding random noise wouldn’t have added any value
because the prediction is already random.

The results shown in tables 6.9 to 6.11 are the best values that could be obtained
using the model parameters from tables 6.3 to 6.6 and the preprocessing methods
mentioned in section 6.2. Normalization, outlier removal and dealing with the class
imbalance seemed to have no positive effect. Discretizing into 100 bins resulted in
about a 0.1% accuracy increase compared to discretizing into 10 bins.

Most models performed similar with most of their model parameters. Notable
mentions are the models based on decision trees (random forests, random trees,
CHAID, decision stumps and decision trees), which performed consistently in the

2 Also known as oversampling.
3 Also known as undersampling.



66 Chapter 6. Model training

TA B L E 6 . 8 : Results if the predicted value is always the dominant
classification: 7 (or ’Passive’)

target attribute accuracy MAE

categorical (11 values) 27.63%

categorical (3 values) 44.07%

numerical 1.7333

higher accuracy ranges, and the Naive Bayes models, which performed consistently
on the low end. K-Nearest Neighbor model performance varied the most with the
value of k, ranging from best to worst when compared to other models. There was
no clear connection observed between the performance and the value of k.

TA B L E 6 . 9 : Prediction model results for output data type categorical
(11 values)

Model Optimal model parameters Accuracy

Input data type: numerical and binary

RF number of trees: 21, criterion: gain ratio 27.92%

DS criterion: gain ratio 27.73%

RT criterion: gain ratio, minimal gain: 0.001 27.63%

DL activation: RectifierWithDropout 27.63%

DT criterion: accuracy, minimal gain: 0.01 27.62%

kNN k: 50, weighted vote: false 25.24%

RI criterion: information gain 21.32%

NBk laplace correction: false 13.14%

NB laplace correction: false 10.22%

Input data type: categorical and binary

RF number of trees: 9, criterion: gain ratio 27.47%

RT criterion: gain ratio, minimal gain: 0.001 27.47%

DL activation: RectifierWithDropout 27.38%

DS criterion: gain ratio 27.38%

CHAID minimal gain: 0.001 27.38%

DT criterion: information gain, minimal gain: 0.001 27.38%

kNN k: 49, weighted vote: false, nominal measure: DiceSimilarity 26.46%

RI criterion: information gain 25.90%

NB laplace correction: false 19.68%

NBk laplace correction: false 19.68%

Finally, appendix B shows the correlations between the attributes and the NPS
score in table B.1. The ten attributes with the highest correlations are repeated in
table 6.12. Feature selection was tried by discarding the least relevant features based
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TA B L E 6 . 1 0 : Prediction model results for output data type categori-
cal (3 values)

Model Optimal model parameters Accuracy

Input data type: numerical and binary

DL activation: MaxoutWithDropout 52.64%

DT criterion: accuracy, minimal gain: 0.001 51.53%

RF number of trees: 49, criterion: gain ratio 51.43%

kNN k: 47, weighted vote: false 51.16%

RT criterion: gain ratio, minimal gain: 0.001 50.97%

RI criterion: accuracy 50.69%

DS criterion: gain ratio 50.60%

NBk laplace correction: false 38.57%

NB laplace correction: false 34.35%

Input data type: categorical and binary

kNN k: 43, weighted vote: true, nominal measure: NominalDistance 54.30%

DL activation: Tanh 52.36%

RT criterion: information gain, minimal gain: 0.001 52.08%

RF number of trees: 5, criterion: information gain 51.53%

RI criterion: information gain 51.52%

DT criterion: information gain, minimal gain: 0.001 50.97%

CHAID minimal gain: 0.001 50.69%

DS criterion: gain ratio 50.60%

NB laplace correction: false 49.07%

NBk laplace correction: false 49.07%

TA B L E 6 . 1 1 : Prediction model results for output data type numeri-
cal

Model Optimal model parameters MAE

Input data type: numerical and binary

DL activation: MaxoutWithDropout 1.7613

GLM solver: COORDINATE_DESCENT, use regularization: true 1.7732

kNN k: 48, weighted vote: true 1.8102

Input data type: numerical

SVM kernel type: anova, C: 0 1.7267

kNN k: 49, weighted vote: true, numerical measure: MaxProductSimilarity 1.7504

LR feature selection: T-Test, minimum tolerance: 0.5 1.7866

NN learning rate: 0.03, momentum: 0.02, training cycles: 500 1.8069

PR replication factor: 1, maximum degrees: 6 4.5254



68 Chapter 6. Model training

on correlation, chi squared, information gain and gini index. This did not lead to
better results.

TA B L E 6 . 1 2 : Top 10 attributes having the highest correlation with
the NPS score

Attribute Correlation

school: #25 0.1108

total_napitime 0.1095

school: #123 0.0978

school: #84 0.0912

edlvl: VMBO BBL 0.0891

school: #116 0.0878

edlvl: VMBO KBL 0.0859

school: #114 0.0815

edlvl: VMBO TL/GL 0.0744

school: #19 0.0705
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Chapter 7

Validation

The performance metrics suggest that there is almost no predictive value in the
dataset, because the results are not significantly better than the scenario where the
dominant class is always predicted. The brute force approach tells us that this is not
due to our model, model parameter or preprocessing method choice. This line of
reasoning shows that the brute force approach can be seen as a validation method, at
least to show the predictive value of this dataset.

It was validated that the workflow as described in listing 6.1 avoids information
leakage. The accuracy of the model increased when class upsampling was applied
before the cross validation and kept growing with the class sample size.

Figure 7.1 shows that the decision tree model could find practically no predictive
value in the dataset. Only two samples are directed to the ’true’ branch (of which
one is wrongly classified), hence the graphical differences of the two branches and
two leaves. All other samples are predicted to have classification 7, which is in line
with our calculations of always predicting the dominant class. The decision trees
generated with other parameters and other datasets yielded similar results: only a
few samples diverging from the main branch. Figure 7.2 supports this. Even though
it has more branches, there is no feature that makes a clear cut between the data. Just
a few of the samples are directed away from the main branch.

F I G U R E 7 . 1 : One of the decision trees generated for the dataset with
input data types numerical and binary and output data type categor-
ical. The accuracy of this model is 27.7247%. Colors orange and red

signify true values 10 and 1, respectively.

Table 7.1 shows the confusion matrix of the best performing model of the dataset
with input data types numerical and binary and output data type categorical (11
values). The underlined values on the diagonal are the amount of correctly predicted
samples adding to the model’s accuracy. This shows that this model also has almost
no predictive value: there are relatively few correctly predicted samples. Additionally,
the prediction of the dominant class does not have much value, seeing as 92.8% of
all samples are predicted to belong to this class. Precision of some classes is high,
but this does not work in favor of the model’s predictability seeing as the recall of
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F I G U R E 7 . 2 : One of the decision trees generated for the dataset with
input data types numerical and binary and output data type categori-
cal. The numbers between parentheses denote the amount of samples
in the respective true classes in that prediction branch. The accuracy of
this model is 52.3901%. Colors blue, green and red signify true values

Passive, Detractor and Promoter, respectively.

the corresponding classes is low. table 7.2 shows the confusion matrix for the best
performing model of the dataset with input data types categorical and binary and
output data type categorical (3 values). This shows that the performance is a bit better,
although the underrepresented class (Promoter) isn’t predicted at all. The dominant
class (Detractor) is still the ’best’ predicted class. Nevertheless, the increased accuracy
can be attributed to the coarseness and imbalance of the classes. Other confusion
matrices were similar: more samples predicted in the dominant class and sometimes
more (incorrectly predicted) outliers.

TA B L E 7 . 1 : The confusion matrix of the best random forest model
for the dataset with input data types numerical and binary and output
data types categorical (11 values), with the optimal model parameters

{number of trees: 77, criterion: gain ratio}

true value
predicted 10 9 8 7 6 5 4 3 2 1 0 precision

10 0 0 0 0 1 0 0 0 0 0 0 0.00%
9 1 0 0 0 1 0 0 0 0 0 0 0.00%
8 1 1 11 4 6 5 1 2 1 0 0 34.38%
7 15 34 153 275 170 122 52 41 28 26 55 28.32%
6 1 1 3 7 7 2 1 0 1 0 0 15.79%
5 0 0 4 2 2 1 1 1 1 0 1 7.69%
4 0 0 0 1 0 0 0 0 0 0 0 0.00%
3 1 0 1 0 0 0 0 1 0 1 0 25.00%
2 0 0 0 0 0 0 0 1 0 0 0 0.00%
1 0 0 0 0 0 0 0 1 0 0 0 0.00%
0 0 0 0 0 0 0 0 0 0 0 1 100.00%

recall 0.00% 0.00% 6.40% 95.16% 1.64% 0.77% 0.00% 2.13% 0.00% 0.00% 1.75% 27.92%
accuracy ↪→
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TA B L E 7 . 2 : The confusion matrix of the best k-Nearest Neighbors
model for the dataset with input data types categorical and binary
and output data types categorical (3 values), with the optimal model
parameters {k: 43, weighted vote: true, nominal measure: NominalD-

istance}

true value

predicted Promoter Passive Detractor precision

Promoter 0 0 0 - 1

Passive 22 126 89 53.16%

Detractor 33 335 441 54.51%

recall 0.00% 27.33% 83.21% 54.21% 2

accuracy ↪→

1 The nature of the precision calculation ensures a division by zero
when using only zero values.

2 The accuracy differs from table 6.10 because it is based on a model
applied on one fold instead of the average of a cross-validation.

For the regression models, other performance metrics are similar to the values
obtained when always predicting the dominant value. Always predicting an NPS
score of 7 results in a root mean square error (RMSE) of 2.583. The best performing
regression models, DL (for input datatype numerical and binary) and SVM (for input
datatype numerical), both have an RMSE of 2.301.

A model that always predicts a value of 7 has a mean squared error (MSE) of 6.667.
The DL and SVM models perform with an MSE of 5.324 and 5.335, respectively. This
seems like a large difference, but remember that the operation of squaring a value
magnifies small differences. It tells us that the DL and SVM models have smaller
errors compared to the ’constant’ model, but are still not even close to accurate.

The other models had similar values for both performance metrics. These values
support our results presented in section 6.3.
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Chapter 8

Conclusion

With this study we’ve tried to find patterns in teachers’ usage data with which NPS
responses can be predicted regarding the education support application Somtoday.
Section 8.1 presents our findings, and section 8.2 discusses those. Finally, section 8.3
points out this thesis’ contributions and argues our recommendations.

8.1 Main research findings

Chapters 3 to 7 have answered the research questions and each one discusses a
distinct phase of this project:

The feature discovery phase had the purpose of getting an indication of which
usage patterns might be of influence on the NPS response. A list of 25 data features
was created by talking to the system’s users and domain experts and by looking at
the qualitative data. Ten of those data features (D F11 to D F13 and D F19 to D F25),
divided over the categories system usage, repetitive tasks and low-hanging fruit,
were selected from this list to use in this project. Selection was done based on the
features’ expected impact on the NPS response, their preparation time and their
generalizability to other systems.

The data preprocessing phase focused on transforming the raw data into a format
that was usable for research. This was done by applying several filters (e.g. based
on user role, time, relevance and duplicity) and ETL operations (e.g. grouping into
sessions and including the timestamp of the next log entry).

The pattern extraction phase found the usage patterns for each user and com-
pressed them into one value per data feature, resulting in ten values per NPS re-
sponse. This was the most complex with the repetitive tasks category, as we initially
could not find an algorithm in scientific literature that met our requirements. The al-
gorithm Apriorirep1i was created to find repetitive tasks from which, in turn, values
for features D F11 to D F13 were extracted. The system usage features (D F19 to D F22)
were extracted by looking at the time between subsequent requests of the same user
and the low-hanging fruit features were extracted from the NPS dataset (D F25) and
Somtoday’s database (D F23 and D F24).

The model training phase tried to find predictive value in the extracted patterns
by applying a brute force approach. A multitude of combinations of models, model
parameters an preprocessing methods was tried. The most significant findings are
aggregated in table 8.1. This shows that even the best performing models are doing
only slightly better than the scenario where the dominant class is always predicted.
Applying a model with such performance in a production environment would yield
results that are unreliable. Even though the three-value categorical case has a 10.23%
accuracy improvement, the coarse granularity of the target attribute diminishes its
significance. Thus, there is practically no predictive value in the dataset.
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The validation phase had the same outcome. This was determined by validating
that the model training workflow was correct and by looking at decision trees and
other performance metrics. The low feature-to-NPS correlations shown in table B.1
support this.

TA B L E 8 . 1 : Top results from section 6.3 put together

target
attribute

input
attributes model model parameters accuracy MAE accuracy* MAE*

categorical
(11 values)

numerical,
binary

RF number of trees: 21, cri-
terion: gain ratio

27.92% 27.63%

categorical
(3 values)

categorical,
binary

kNN k: 43, weighted vote:
true, nominal measure:
NominalDistance

54.30% 44.07%

numerical numerical SVM kernel type: anova, C: 0 1.7267 1.7333
* If the dominant class is always predicted.

These answers to the research questions lead to the answer to the main research
question: teachers’ usage data can not be reliably used to predict the user’s loyalty
towards the system. At least, not based on the chosen data features and dataset.

8.2 Discussion

The answer to the main research question raises a new question: why can’t the usage
data be used to predict user loyalty? We expected to find at least some predictive
value. Three themes were identified in which to look for an explanation.

The first is the process of going from the raw data to the NPS prediction. We skip
the feature discovery phase for now, as this will be discussed in our recommenda-
tions.

In the context of data preprocessing more time could’ve been spent on getting
to know the ins and outs of the (usage data) dataset, e.g. how each action or set
of actions in the system is mapped in the dataset. With our approach we’ve done
our best, for example, to discard all irrelevant log entries and only keep ’actionable’
entries, but more irrelevant entries can probably be found if more time is spent on it.

In the pattern extraction phase, the Apriorirep1i algorithm can be improved with
a better solution to the self-succeeding pattern origin ambiguity. One way is to extend
the sliding window approach so that it also looks at the tail of a sequence of self-
succeeding pattern occurrences, e.g. by detecting that sequence <abcabcabc> begins
and ends with pattern abc. A different and preferred method is the approach used by
Toroslu: considering a pattern’s shifted versions (e.g. abc, bca and cab) as members of
the same family and consequently dealing with pattern families instead of individual
patterns. This would result in a better selection of repetitive tasks. Had our current
methods found a hint of predictive value in the repetitive tasks data features, we
would have reason to believe that these improvements to Apriorirep1i could result
in better predictive performance. However, this is not the case, leading us to believe
that such a scenario would not change the conclusions of this project.

Regarding the model training phase, we’ve tried to cover the possibility of using
different models, model parameters and preprocessing methods with our brute force
approach. As a result, we have no specific points of discussion for this phase.
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The second theme is the target data: the NPS dataset. The class imbalance was ev-
ident during the model training phase. It is possible that a better distribution of NPS
responses would’ve increased the model’s predictive performance. This is unlikely,
seeing as our efforts of class upsampling, downsampling and SMOTE upsampling
did not yield better results.

A different and more Occam’s razor-like explanation is that, in addition to the
metric’s debatable validity mentioned in section 2.1, NPS responses simply can’t
be predicted based on usage data. Because, for example, the NPS metric might be
too coarse-grained and global to let behavioral patterns influence it. Perhaps NPS
responses can only, or primarily, be predicted based on non-usage data, such as atti-
tude, intrinsic motivations, general happiness or IT competence. The only way to be
reasonably confident that this is the case is by researching more usage patterns.

The third theme is the source data: the log entries dataset. One way of looking at
this is by applying the previous explanation to the dataset used in this project: there
might indeed be no predictive value in our chosen features. This can also be tested by
researching more usage patterns.

Another perspective shows that our familiarity with the dataset is limited to what
was necessary for its analysis. It is possible that our specific knowledge hindered us
from processing the dataset properly. We may have not taken into account nuances
that we were unaware of. For example, why is there such a high variation in the
amount of log entries per NPS response? And are the repetitive tasks found by Apri-
orirep1i indeed repetitive tasks, or can they be explained by something we haven’t
thought of? We have talked to domain experts, but this is merely an approximation
an approximation to full familiarity with the data. If our knowledge had been all-
encompassing, we’d be able to answer these kinds of questions. This understanding
might have lead to better data preprocessing and pattern extraction, which in turn
might have lead to better results. One way to deal with this is addressed in our
recommendations.

8.3 Recommendations

Our contributions to Topicus and to science in general are largely similar. We looked
into making first steps for creating a non-invasive, automated and userbase-wide
way for system owners to discover which users to focus their improvement efforts
on in the context of education support web applications. As our conclusion is that
this is not feasible with our current research parameters, we contribute the notion
to redirect focus to different data features. We provide Topicus with a list of data
features that can be researched next. Likewise, the scientific community can use this
list as a starting point for research with similar systems. We also provide Topicus
with the process we used for data preprocessing. This validated workflow could save
valuable amounts of time for future research efforts. In addition we have provided
Topicus with the repetitive patterns found in the pattern extraction phase. These can
be used for further analysis, for example to determine which tasks are repeated the
most and thus can be considered for batching.

Although Apriorirep1i is not yet ready for practical use, it contributes to the field
of data mining and specifically sequential pattern mining. Together with the sugges-
tion of combining parts of the algorithms introduced by Toroslu in 2003 and Barreto
and Antunes in 2014, it opens the door for efficient analysis into repetitive tasks
consisting of consecutive actions and without the requirement of periodicity. Future
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work includes developing this improvement and doing measurements into its effec-
tiveness and efficiency.

The motivations for this research are well-founded and because the conclusion
definitely does not rule out the possibility that user loyalty towards a system can
be predicted based on their behavior, our main recommendation for Topicus is to
focus on finding predictive value in other usage patterns. From the list compiled in
our feature discovery phase, we’d recommend starting with the features about click-
streams (D F14 to D F16) and encountered downtimes (D F17). These can be researched
in a cost-effective way, as they are fairly straightforward. Additionally, methods for
analyzing clickstreams are abundandly researched by the scientific community.

Should Topicus indeed decide to search for predictive value in more usage pat-
terns, then valuable time can be saved by improving their data infrastructure before-
hand. To illustrate: one of Apache Drill’s advertised advantages, its schema-free flex-
ibility, considerably hindered our preprocessing efforts. Even though a strict schema
might require a bit more effort to set up, it does allow for easier data analysis. The
collection and storage of log data should facilitate in future data analysis. Our recom-
mendation (to data-processing organizations in general) is to make sure the process
of data analysis is actually assisted by the choice of collection and storage methods
and not obstructed it.

Finding predictive value in more usage patterns should also be the goal for future
work of the scientific community. There is, however, one concern with this project
from a scientific standpoint: the indicative nature of the feature discovery results. Our
recommendation is to conduct a more in-depth feature discovery research project.
Although it is not primarily recommended to Topicus due to its extensiveness and the
indirectness of its contribution to NPS predictions, it does provide value and is worth
considering by Topicus. A full-scale user experience study with the goal of usage data
analysis gives the researcher quantitative and qualitative data about what users think
of different aspects (e.g. navigation and layout) and functionalities and how their
behavior is mapped onto the log entries dataset. An extensive survey is one way, and
should at least be supplemented by sit-in sessions where the researcher observes the
user’s behavior and the generated data in real-time. Having better insight leads not
only to validated feature selection, it also leads to refined knowledge about how data
features can be measured and what the nuances are. Choosing this approach, one or
multiple directed studies into specific usage patterns can be set up and the researcher
has a better chance of finding predictive value in user behavior: the researcher is no
longer looking in the proverbial dark.

Data is a basis for research, so it holds that, especially in the context of data
research: knowledge1 is power.

1 about the subtleties of the researched data
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Appendix A

Apriorirep1i implementation

This implementation is also available on https://karim.elass.al/masterthesis/
apriorirep1i.

L I S T I N G A . 1 : Python 2.7 implementation

1 from collections import defaultdict
2

3 def apriorirep1i(sequence_db, minsupport, minrepsupport, minpatternlen=2):
4 '''
5 A Python (2.7) implementation of the apriorirep1i algorithm, based

on AprioriAll. More information and an online version can be found at
https://karim.elass.al/masterthesis/.

↪→

↪→

6 The return value is an occurrence set: a dictionary where the keys
are tuples of frequent patterns, the values are dictionaries where, in
turn, the keys are the sequence indices and the values are sets of
integers. Those integers are the indices indicating where the frequent
pattern starts in the sequence.

↪→

↪→

↪→

↪→

7 The value of minsupport is considered to be absolute and
minrepsupport must be larger than 1.↪→

8 '''
9

10 # Sort phase is already done when receiving sequences.
11

12 # Litemset phase.
13 Lk = get_l1items(sequence_db, minsupport, minrepsupport)
14 l1items = Lk.keys()
15

16 # Transformation phase.
17 # Truncate irrelevant sequences instead of removing all non-l1items:

else the occurrence set data structure doesn't work anymore.↪→

18 Dt = truncate_nonlitem_sequences(sequence_db, l1items)
19

20 # Sequence phase.
21 k = 2
22 # Lk is the occurrence data of k-1, L is the occurrence data of k.
23 L = defaultdict(lambda:defaultdict(set)) # occurrence data
24 result = defaultdict(lambda:defaultdict(set)) # occurrence data
25 while len(L) > 0 or k == 2:
26

27 L = get_next_patterns(Lk, Dt)
28 L = purge_nonlpatterns(L, minsupport, minrepsupport)
29

30 # Purge occurrences of patterns that are a starting cycle of its
subpattern (e.g. abca in abcabc with subpattern abc).↪→

31 L = purge_subpattern_cycle_start(L, Lk, Dt)
32

33 # Purge occurrences of patterns that are a self-succeeding
cyclically shifted variant (e.g. bca and cab in abcabcabc).↪→

34 L = purge_cyclic_shifts(L, Dt)

https://karim.elass.al/masterthesis/apriorirep1i
https://karim.elass.al/masterthesis/apriorirep1i
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35

36 # Enforce minsupport and minrepsupport requirements.
37 # Necessary because irrelevant patterns shouldn't be taken into

account in the next step.↪→

38 L = purge_nonlpatterns(L, minsupport, minrepsupport)
39

40 # Maximal phase.
41 if k-1 >= minpatternlen:
42

43 # Purge subpatterns that connect two consecutive occurrences
of a superpattern (e.g. ca in abcabc).↪→

44 Lk = purge_interconnecting_subpatterns(Lk, L)
45

46 # Purge subpatterns that are actually part of a superpattern
(e.g. ab in abcabc).↪→

47 Lk = purge_subpatterns(Lk, L)
48

49 # Save Lk.
50 result.update(Lk)
51

52 # Continue.
53 Lk = L
54 k += 1
55

56 # Include the latest L in the result.
57 result.update(L)
58

59 # Enforce support requirements for patterns that had their occurrences
decreased in the maximal phase.↪→

60 result = purge_nonlpatterns(result, minsupport, minrepsupport)
61

62 return result
63

64 def get_l1items(sequences, minsupport, minrepsupport):
65 ''' Return an occurrence data structure of litems. '''
66 items = defaultdict(lambda: defaultdict(set))
67 for si,sequence in enumerate(sequences):
68 for i,item in enumerate(sequence):
69 items[(item,)][si].add(i)
70 return purge_nonlpatterns(items, minsupport, minrepsupport)
71

72 def truncate_nonlitem_sequences(sequences, litems):
73 ''' If there is not any litem in a sequence in L, truncate that

sequence. '''↪→

74 return [
75 []
76 if not any((item,) in litems for item in sequence)
77 else
78 sequence
79 for sequence in sequences
80 ]
81

82 def get_next_patterns(Lk, Dt):
83 ''' Generate patterns of length k+1 based on the occurrences of

patterns of length k. '''↪→

84 L = defaultdict(lambda: defaultdict(set))
85 # For each pattern of length k...
86 for p, occurrences in Lk.iteritems():
87 # si : sequence id/index.
88 # psi: 'pattern in sequence' index (start of the pattern).
89 # For each pattern occurrence in each sequence...
90 for si, psis in occurrences.iteritems():
91 for psi in psis:
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92 # 'item in sequence' index of the litem subsequent to p.
93 isi = psi+len(p)
94 # Avoid out of bounds exception.
95 if len(Dt[si]) <= isi:
96 continue
97 # Add new pattern to the result set.
98 L[p + (Dt[si][isi],)][si].add(psi)
99 return L

100

101 def purge_nonlpatterns(L, minsupport, minrepsupport):
102 ''' Filter an occurrence data structure by minimum sequence and

repetitions. '''↪→

103 for c, occurrences in L.iteritems():
104 L[c] = defaultdict(set, {
105 si:s
106 for si, s in occurrences.iteritems()
107 if len(s) >= minrepsupport
108 })
109

110 return defaultdict(lambda:defaultdict(set),
111 {
112 c: occurrences
113 for c, occurrences in L.iteritems()
114 if len(occurrences) >= minsupport
115 })
116

117 def purge_subpattern_cycle_start(L, Lk, Dt):
118 ''' Purge the occurrences of candidates in L that are starting their

self-succeeding cycle, based on occurrences of length k-1 (passed
in Lk). '''

↪→

↪→

119 for c in L.keys():
120 if c[0] == c[-1] and Lk.has_key(c[0:-1]):
121 for si, s in L[c].iteritems():
122 # Remove index if Lk[c[0:-1]] has the cyclical occurrence

(starting at i and i+length of c[0:-1]).↪→

123 L[c][si] = set([
124 i
125 for i in L[c][si]
126 if not (i in Lk[c[0:-1]][si] and
127 i+len(c[0:-1]) in Lk[c[0:-1]][si])
128 ])
129 return L
130

131 def purge_cyclic_shifts(L, Dt):
132 ''' Purge the occurrences of self-succeeding cyclically shifted

variants of a candidate. '''↪→

133 # Use a sliding window to determine the first occurrence of a pattern.
134 if len(L) > 0:
135 l = len(L.keys()[0]) # pattern length
136 for si,s in enumerate(Dt):
137 cp = None # current main pattern
138 cpi = None # current pattern index
139 for i in range(0, len(s)-l+1):
140 p = tuple(s[i:i+l])
141

142 # Within cyclical pattern range.
143 if cp is not None and i < cpi+l:
144 shift = i - cpi
145 cp_shifted = cp[shift:] + cp[:shift]
146 if p == cp_shifted and i in L[cp_shifted][si]:
147 L[cp_shifted][si].remove(i)
148 # Outside of cyclical pattern range or no main pattern set

yet, and pattern encountered.↪→



84 Appendix A. Apriorirep1i implementation

149 if (cp is None or i >= cpi+l) and i in L[p][si]:
150 cp = p
151 cpi = i
152 return L
153

154 def purge_interconnecting_subpatterns(Lk, L):
155 ''' Purge subcandidates that connect two consecutive occurrences of a

candidate. '''↪→

156 # For each candidate...
157 for c,_ in L.iteritems():
158 # For each cyclical variant of the candidate...
159 for shift in range(-1, -1*len(c), -1):
160 # Get the subcandidate (shifted variant of candidate, minus

the last element).↪→

161 subc_shifted = c[shift:] + c[:shift-1]
162

163 # For each sequence that the subcandidate occurs in...
164 for si, s in Lk[subc_shifted].iteritems():
165 # Remove index if the subcandidate is part of two

consecutive occurrences of the main candidate.↪→

166 Lk[subc_shifted][si] = set([
167 i
168 for i in Lk[subc_shifted][si]
169 if not (i-shift-len(c) in L[c][si] and
170 i-shift in L[c][si])
171 ])
172 return Lk
173

174 def purge_subpatterns(Lk, L):
175 ''' Purge non-cyclical subcandidates that are part of the larger

candidate. This must happen after cyclical subcandidates are
processed, not before. '''

↪→

↪→

176 # For each candidate...
177 for c,occurrences in L.iteritems():
178 j = len(c)-1 # Length of the candidates in Lk
179 # For each shift variation of the candidate...
180 for shift, subc in [(0, c[0:-1]), (1, c[1:])]:
181

182 # For each sequence of the candidate...
183 for si, s in L[c].iteritems(): # No list comprehension: we

overwrite only the relevant sequence indices.↪→

184 # Only keep the occurrences that are not part an
occurrence of the main candidate.↪→

185 Lk[subc][si] = set([i for i in Lk[subc][si] if i-shift not
in L[c][si]])↪→

186 return Lk
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Correlations between attributes
and NPS scores

The correlations of the binary school and edlvl attributes are calculated by transform-
ing their values from false and true to 0 and 1, respectively. This should be taken into
account when interpreting the correlation values.

Note that the school names have been removed as these are business sensitive for
Topicus.

TA B L E B . 1

Attribute correlation
school: #25 0.1108
total_napitime 0.1095
school: #123 0.0978
school: #84 0.0912
edlvl: VMBO BBL 0.0891
school: #116 0.0878
edlvl: VMBO KBL 0.0859
school: #114 0.0815
edlvl: VMBO TL/GL 0.0744
school: #19 0.0705
school: #4 0.0701
school: #49 0.0699
edlvl: VWO 0.0691
school: #63 0.0673
edlvl: VMBO BBL/KBL 0.0667
school: #46 0.0661
school: #21 0.0657
school: #13 0.0652
school: #72 0.0648
school: #20 0.0605
school: #68 0.0564
school: #34 0.0557
school: #74 0.0557
school: #126 0.0551
school: #134 0.0539
school: #94 0.0515
school: #32 0.0513
school: #71 0.0513

Continued on next page
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Table B.1 – continued from previous page
Attribute correlation
school: #127 0.0501
school: #115 0.0498
edlvl: PRO 0.0497
school: #28 0.0496
school: #59 0.0491
NPSAGE 0.0476
total_time 0.0476
school: #99 0.0445
school: #124 0.0444
school: #38 0.0442
school: #14 0.0436
school: #66 0.0436
school: #69 0.0436
school: #122 0.0425
school: #23 0.0424
school: #58 0.0423
school: #56 0.0423
school: #130 0.0413
school: #119 0.0412
school: #75 0.0409
school: #33 0.0408
school: #47 0.0408
edlvl: MYP 0.0401
edlvl: DP 0.0387
school: #35 0.0387
school: #6 0.0385
school: #129 0.0381
school: #76 0.0368
school: #92 0.0351
edlvl: OND 0.0348
school: #16 0.0348
edlvl: MBO-VO 0.0346
school: #45 0.0346
school: #102 0.0345
edlvl: HAVO 0.0339
school: #108 0.0333
edlvl: ESS 0.0314
school: #95 0.0314
school: #62 0.0310
school: #77 0.0298
school: #41 0.0284
school: #48 0.0280
school: #51 0.0271
school: #65 0.0269
school: #110 0.0253
total_apitime 0.0250
school: #11 0.0249
school: #9 0.0247

Continued on next page
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Table B.1 – continued from previous page
Attribute correlation
school: #54 0.0244
school: #82 0.0243
school: #61 0.0227
school: #52 0.0216
school: #101 0.0209
school: #22 0.0208
school: #106 0.0198
school: #31 0.0196
school: #96 0.0195
school: #86 0.0193
school: #40 0.0192
school: #89 0.0192
school: #29 0.0190
school: #55 0.0190
school: #121 0.0188
school: #2 0.0177
school: #17 0.0177
accumulated_repetitions 0.0176
repetitive_patterns 0.0166
school: #78 0.0161
school: #8 0.0159
school: #44 0.0158
school: #88 0.0155
school: #98 0.0155
school: #100 0.0155
school: #117 0.0155
school: #128 0.0155
school: #133 0.0155
school: #125 0.0155
school: #27 0.0151
school: #70 0.0151
school: #79 0.0151
edlvl: VMBO 0.0144
school: #97 0.0141
total_switches 0.0141
school: #10 0.0125
school: #107 0.0125
school: #118 0.0125
school: #120 0.0124
school: #91 0.0122
edlvl: HAVO/TL 0.0120
school: #109 0.0118
school: #105 0.0116
school: #26 0.0116
school: #15 0.0114
school: #42 0.0114
school: #1 0.0113
school: #12 0.0113

Continued on next page
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Table B.1 – continued from previous page
Attribute correlation
school: #43 0.0113
school: #64 0.0113
school: #132 0.0109
school: #39 0.0108
weighted_pattern_iterations 0.0095
school: #81 0.0086
school: #103 0.0080
school: #131 0.0077
school: #104 0.0074
school: #85 0.0065
school: #60 0.0061
school: #90 0.0061
edlvl: HAVO/VWO 0.0060
school: #24 0.0060
school: #67 0.0058
school: #73 0.0057
school: #111 0.0057
school: #3 0.0056
school: #5 0.0051
school: #37 0.0042
school: #87 0.0042
school: #18 0.0037
school: #7 0.0030
school: #50 0.0030
school: #53 0.0026
school: #80 0.0026
school: #83 0.0021
school: #112 0.0021
school: #113 0.0013
school: #93 0.0005
school: #36 0.0003
school: #57 0.0003
school: #30 0.0002
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