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Summary 

Already multiple studies have been performed  with the use of synthetic weather data. These studies aim 
to determine extreme high discharge waves that have not yet been observed.  The synthetic weather 
series are generated over a long period, within these long periods extreme conditions will occur. These 
synthetic weather series are used as input by hydrological models to simulate long discharge series, during 
extreme precipitation events the hydrological should simulate extreme high discharge waves. These 
studies have in common that only a single hydrological model is used for simulating the long discharge 
series. Therefore, it is unclear how another hydrological model might simulate  these discharge waves 
associated with large return periods. Blazkova & Beven, (2002) already mentions that simulations 
performed by other models can show completely different results. This thesis is an explorative study, 
which will analyse the influence of different hydrological model structures on discharges that are 
simulated with the use of synthetic data series. The synthetic data that will be used for this study is 
developed by the KNMI and creates daily weather in the Meuse basin for a period of 50000 years. The 
analysis of the discharge simulations is delimited to daily annual maximum discharge values, which helps 
with filter the amount of data that is generated. Combining the notions stated above the following 
research objective can be formulated: Too study the effect of different hydrological model structures on 
their capability to reproduce statistical characteristics of extreme high flow events of the Meuse river basin 
using synthetic weather series. 
 
In this thesis discharges are simulated for the Meuse basin at Monsin which is located in Liege. The 
discharges are simulated with the use of 14 sub-basins, which are connected to each other via a routing 
system. Annual maximum discharge simulations of different hydrological models for individual sub-basins 
and the whole Meuse basin are compared to each other. However, in order to analyse the influence of the 
model structure it is important to limit the influence of other factors on the discharge simulations. 
Therefore, an experiment is designed in which the difference in simulations is only caused by the 
difference in the model structure. First of all the used hydrological model have similar characteristics. This 
means that the used hydrological models, which are the GR4J, HyMOD, and HBV model, can use the same 
data but also have a similar conceptualised model structures. This makes it easier to identify how model 
structure differences influence the discharge simulations.  
 
Secondly, the preparation of the hydrological models in the calibration process is done the same for every 
hydrological model. The value of an aggregated objective function that combines multiple aspects of the 
hydr is optimized using an optimization algorithm. The use of an optimization algorithm reduces the 
influence of the modeller during the calibration process. As a result the best parameter values are found 
using a more objective method. The calibration is performed for nine upstream sub-basins (Lorraine Sud, 
Chiers, Semois, Viroin, Lesse, Ourthe, Ambleve, Vesdre, Mehaigne), four sub-basins that are located 
downstream (Lorraine Nord, Stenay-Chooz, Chooz-Namur, Namur-Monsin), and one sub-basins is 
calibrated combined with an upstream basin due to lack of observed discharge data (Sambre). The 
calibration of downstream sub-basins required input from at least one of the upstream sub-basins.  
 
Finally, the routing of the discharge is simulated in the same way for every hydrological model. Upstream 
sub-basin discharges are added to downstream sub-basin discharges in order to simulate the total 
discharge of the Meuse. The routing is simulated by applying a lag on the upstream sub-basin discharge. 
This lag is kept constant and the same for every hydrological model. This ensures that the routing does not 
influence simulation differences of the hydrological models. The value for the lag is based on previous 
studies of the Meuse basin.  
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The hydrological models are first used for a simulation of two 15 year historical periods (for most sub-
basins, for some sub-basins discharge data within these periods is missing). The first 15 year period (1-1-
1968/1-1-1983) is used for the calibration of the model. Whereas the second 15 year is used for the 
validation of the hydrological models (1983/1998). The results are presented in the form of objective 
function values for each sub-basin. The GR4J and HBV show the best performance in simulating the 
historical discharge series. Also these two hydrological models show similar performances for the 
calibration and validation periods. This indicates that the these two hydrological have robust performances 
with the optimized parameter values. The HyMOD model performs worse compared to the GR4J and HBV 
model for upstream sub-basins. The performance improves for the downstream discharge simulations. 
 
The results for the simulations using synthetic data are determined with the use of statistical analysis. For 
the statistical analysis a couple of upstream and downstream are selected from the 14 sub-basins (Chiers, 
Semous, Lesse, Ourthe, Mehaigne, Stenay-Chooz, Namur-Monsin). First of all the equality of population 
annual maximum means/variances of the used hydrological models was assessed between: historical data 
simulations/observations, synthetic data simulations/historical data simulations, and synthetic data 
simulations/observations. The population means/variances were unequal for synthetic data 
simulations/observations for the HyMOD model in most upstream basins. Which are in line with the 
performance results. After this analysis Gumbel plots are presented that show the annual maximum 
discharges of the observations and synthetic data simulations. In these Gumbel plots the GR4J and HBV 
synthetic data simulations  in upstream sub-basins are almost equal for more common annual maximum 
discharge values. However, in most upstream sub-basins the GR4J model starts to show higher annual 
maximum discharge values compared to the HBV model for rare events (associated return periods larger 
than 10 years). The GR4J and HBV, synthetic data simulations of the annual maximum discharge at Monsin 
are similar, even for the largest return periods  
 
Due to the similarity of the simulations it cannot be determined whether the HBV model or the GR4J model 
shows a better performance in simulating discharges of the Meuse. Furthermore these similarities 
continue for synthetic data simulations. However, on a sub-basin level different hydrological model 
structure have a large influence on synthetic data simulations when looking at discharges associated with 
large return periods. This means that similar performance does not automatically result in similar synthetic 
data simulations of the larger more uncommon discharge values. The combination of discharges from 
multiple sub-basins can lead to an reduction of the effect that was seen for separate sub-basins. This 
results in similar synthetic data annual maximum discharge simulations of the GR4J and HBV model at 
Monsin for all return periods. Although the paths might be different the result is encouraging, indicating 
that these synthetic data simulations are in the right direction.  
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1. Introduction 

 

1.1 Synthetic weather generator coupled with hydrological models 

Floods are causing large amounts of material damage and casualties worldwide. Each year a large and 
damaging flood occurs. In 2011 and 2012  severe floods occurred in , Madagascar, Mozambique, Namibia, 
Niger, Nigeria, South Africa and Uganda in Africa; Argentina, Brazil, Columbia, Haiti, Mexico and the United 
States in the Americas; and Bangladesh, Cambodia, China, India, North Korea, Pakistan, the Philippines, 
Russia, Thailand and South Korea in Asia. Each of these flood event caused at least 50 casualties,  in the 
Philippines and Colombia the number of casualties even exceeded the 1000 (Kundzewicz et al., 2014). 
These floods caused high structural damages especially in the developing countries. Furthermore there 
are indications that in the recent decades that population and assets exposed to floods have increased 
more rapidly compared to the overall population and economic growth (Kundzewicz et al., 2014). 
Preventing floods will remain a relevant research subject due to the extensive damage that is caused by 
flooding, and also the recent increase in flood risk exposure. 
 
Flood defence systems are often designed by stating that it should be able to handle an extreme discharge 
event with a certain return period (Apel et al., 2004). In order to determine the discharges and the 
associated return periods a flood frequency analysis can be performed. Traditional methods  for 
performing the flood frequency analysis include the estimation of a series of flood peak magnitudes that 
are fitted to a suitable probability distribution function, or use the definition of an extreme design storm 
as input for a rainfall-runoff model (Blazkova & Beven, 2004). When using the probability distribution 
function for the flood frequency analysis discharge observations are required, which are not always 
available and have a limited time length (Kundzewicz et al., 2014). The reproduction of events that have a 
return period that is less or equal than the observation period is generally good. However, there is a 
difference between the values that are found for discharges with a return period that goes beyond the 
time length of the observed discharges (Arnaud & Lavabre, 2002). The reason for this is that the discharges 
that are a result of extrapolation depend on the probability distribution that is fitted to the cumulative 
frequency distribution of the observed discharges. The main drawback of the second method is that it is 
difficult to estimate the probability of an extreme design storm and the effect runoff coefficient. Also, the 
conditions before the extreme design storm are usually not taken into account (Blazkova & Beven, 2004).  
  
Weather generators can be used to bypass the limited length of discharge observations and the difficulty 
of estimating the probability of an extreme storm event. Several studies indicate using a weather 
generator to create input for a hydrological model in order to estimate low probability flood frequencies 
(Arnaud & Lavabre, 2002; Blazkova & Beven, 2002; Blazkova & Beven, 2004; Falter et al., 2015; Hegnauer 
et al, 2014; Kuchment & Gelfan, 2011). Within these studies the approaches of determining low probability 
flood frequencies are different. However, all of the studies acknowledge the use of this method as an 
improved way of dealing with design problems such as dam/bridge/levee construction, flood risk 
assessment and water management issues.  
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The studies that use synthetic data as hydrological model input have another important aspect in common. 
All these studies only use a single hydrological model for the simulations (Arnaud & Lavabre, 2002; 
Blazkova & Beven, 2002; Blazkova & Beven, 2004; Falter et al., 2015; Hegnauer et al, 2014; Kuchment & 
Gelfan, 2011). However, it is important to note that the outcome of these studies is dependent on which 
models are used (Blazkova & Beven, 2002).  Since, only a single hydrological model is used for the analysis 
in the studies mentioned above it is unclear how different hydrological models might have an effect on 
the results. This study aims to explore the influence of hydrological models on discharge simulations that 
use synthetic data. 

1.2 Case study: Meuse 
One of the synthetic data sources mentioned above is the stochastic weather generator developed by The 
Royal Netherlands Meteorological Institute (KNMI). This generator creates long  synthetic weather series 
for the Rhine and Meuse basin, the two largest rivers that flow into the Netherlands (Hegnauer et al., 
2014). With the use of the synthetic data long discharge series are determined and are used for flood 
defense purposes. For this study the synthetic data generated for the Meuse basin will be used in a case 
study. Synthetic weather data is not generated for the Dutch part of the Meuse. Therefore, the focus will 
be on the Belgium and French part of the Meuse.  

 
figure 1-1, Meuse and Rhine basins, (Verkade et al., 2017) 
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The Meuse is smaller compared to the Rhine basin as is depicted in figure 1-1. The source of the Meuse is 
located in northern France and flows through the south eastern part of Belgium before it enters the 
Netherlands near St Pieter. The Meuse can be categorized as a rain fed river which means that the 
discharge highly fluctuates between seasons. The Meuse basin is complex due to the amount of human 
interventions, heterogeneity of the basin, and the fast reaction of the basin to precipitation (Berger & 
Mugie, 1994). The Meuse basin can be divided into three main sections. The most upstream area from the 
source to the mouth of the Chiers can be described as a calm section due to the slim, stretched form and 
the low gradient of the basin. The middle section of the Meuse is from the mouth of the Chiers until the 
Dutch border. The Ardennes, located in this middle section, have a high elevation compared to the rest of 
the Meuse basin (figure 1-2). As a result the Ardennes receive the most amount of precipitation over the 
year.  In combination with the impervious rocky soil, the Ardennes have a large contribution to high 
discharge waves and low contribution to low flow discharges. The width of the river in this section is small 
since it cuts through rocky soil (Berger & Mugie, 1994). A more detailed map of the Meuse basin is 
presented in figure 1-2, important tributaries for the upstream and middle sections of the Meuse are 
depicted in this figure as well  (Chiers, Semois, Viroin, Lesse, Sambre, Ourthe, Ambleve, Vesdre). 

 

 
figure 1-2, Meuse basin elevation map, (de Wit et al., 2007) 
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1.3 Research objective 

While using one model can provide good simulations when compared to the observations, it is not clear if 
the hydrological model is simulating the hydrological behaviour of a catchment correctly. For instance the 
hydrological model can overestimate the actual evapotranspiration resulting in correct discharge 
simulations. Though in reality, the amount of discharge is reduced via another process. Hydrological model 
(inter-)comparison studies can be used to determine which hydrological model structures best represent 
the hydrological behaviour of a catchment (de Boer-Euser et al., 2016). Aside from knowledge about the 
hydrological basins, the results of simulations depends on which hydrological model is chosen for the 
simulations (Blazkova & Beven, 2002). In order to evaluate the influence of model structures on the 
synthetic data simulations some form of model inter-comparison is required.   
 
The multiple studies using synthetic data series are mainly used for the estimation of discharge waves that 
have low occurrence rate. In most cases these values are beyond any values that have been observed. 
Therefore, this study was also focus on the simulation of high flow discharges. In order to analyse the 
higher discharge values generated with synthetic data and the absence of observation data, statistical 
methods are applied. With the use of annual maximum discharge values, extreme value statistics such as 
Gumbel plots can be used for the analysis. Combining the goal of determining the influence of model 
structures on synthetic data simulations for the Meuse basin and the notions stated above the following 
research objective can be formulated:  
 
To study the effect of different hydrological model structures on their capability to reproduce statistical 
characteristics of annual maximum discharges of the Meuse river basin using synthetic weather series. 
 

1.4 Research questions 

The research objective is split into two different research questions. Research question one will focus on 
the preparation of the hydrological models before the synthetic data simulations and will use historical 
data. Research question two is similar to the research objective and will focus on comparing the synthetic 
data simulations. Reason for splitting the research objective is that the preparation of the hydrological 
models is a large part of this study. The results and conclusions will be described with the use of these 
research questions. Further details on the method is described in chapter three. 
 
1. Which hydrological model shows the best performance in simulating discharges of the Meuse river 
basin? 
 
Before hydrological model simulations using a weather generator can be performed it is required to 
prepare the hydrological models for simulations of the Meuse basin. This is done using historical discharge 
and weather data. During the preparation it becomes clear which hydrological model has the best 
capability of mimicking certain aspects of the observed discharge. This can be translated as hydrological 
model performance. It is important to answer this questions since a good model performance strengthens 
the notion that the hydrological model is correctly simulating the hydrological behaviour of a catchment. 
When a hydrological model correctly simulates the hydrological behaviour the chances of correctly 
simulating annual maximum discharge with a small chance of occurrence (synthetic data) increases.  In 
order to answer this question multiple aspects of the observed discharge series will be used. 
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2. What is the effect of different hydrological model structures on the annual maximum discharge 
simulations that use data of a synthetic weather generator as input.  
 
After the preparation of the different hydrological models the synthetic data can be used to simulate daily 
discharges for 50000 years. During this simulation extreme discharge events occur (low and high flows), 
however most of the time the discharges are similar to the historically observed discharges. As stated 
before this study will focus on the annual maximum discharges, since this is also the main application of 
the synthetic data studies. Since annual maximum discharges are used, yearly return periods for these 
peaks can be determined. These annual maximum discharge values of the different sources will be 
compared to each other using statistical methods. This will determine whether the synthetic data 
simulations are similar to the observed annual maximum discharges.   

1.5 Report outline 

This report will be structured in the following way. 

Chapter 2 GRADE instrument and data description 
In this section a description of the GRADE instrument is given. This description will mostly focus on how 
the weather generator creates long weather series and how the HBV model is designed in order to simulate 
discharges for the entire Meuse. Additionally the used data sets that are used for the GRADE instrument 
are described. This includes the preparations that were necessary before the data could be used and which 
data sets are used directly for this thesis.  
 
Chapter 3 Methods 
This chapter will include a description of all different processes that were necessary to acquire the results 
for this thesis. This will include the hydrological model selection, hydrological model structure, calibration 
process, validation process, analysis of the hydrological model performance and statistical tests for 
comparing the annual maximum discharges.   
 
Chapter 4 Results 
In chapter 4 the results are described. This will be done in the same order as the research questions 
mentioned above. The calibration and validation results are included in the first research question since 
these results will be the first step in assessing the performance of the hydrological models. The results will 
be mostly presented in figures and tables with a description explaining the content of the figures/tables.  
 
Chapter 5 Discussion 
The first section of the discussion will focus on possible explanations for the results that were found. 
Stating the potential, limitations, generalizations and implications of this study 
 
Chapter 6 Conclusion + Recommendation 
The final chapter will state the answer for each research question separately. Based on these answers a 
final conclusion will be presented. After this recommendations will be made for policy making and 
further research. 
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2. Sub-basins and datasets of the Meuse basin 

2.1 The GRADE instrument 

The Generator of Rainfall and Discharge Extremes (GRADE) is developed by Deltares and the Royal 
Netherlands Meteorological Institute (KNMI). This instrument is created in order to simulate long 
discharge series. This series present a discharge value for each day over a period of 50000 years. The 
GRADE instrument consists of three different components: the weather generator, the HBV hydrological 
model and the hydrodynamic SOBEK model. Mainly the synthetic data created by the weather generator 
is used for this thesis. However, the historical data sets and a similar hydrological model are used for this 
study as well. The weather generator creates continuous daily weather series, which are used as input for 
the hydrological model. The discharges are routed using the hydrodynamic SOBEK model. The result of 
these simulations is a 50000 year daily discharge series. These series contain randomly generated extreme 
events that can occur over such a long time-period. An overview of the GRADE instrument is presented in 
Figure 2-1.  
  

 
Figure 2-1 Systematic view of the GRADE components (Hegnauer et al., 2014) 
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2.1.1 Synthetic data generation for the Meuse 

The stochastic weather generator creates synthetic data based on historically observed daily weather. For 
multiple Meuse sub-basins areally averaged records are available. These records are used to create new 
series of daily weather for each sub-basin. By resampling the records these new weather series are created 
and repeated for a period of 50000 years. Some restrictions are implemented in the resampling such that 
seasonal weather is taken into account. In other words weather on a day in December cannot be followed 
by weather from a day in June. During these long time-series extreme events occur. This happens when 
multiple days with heavy precipitation are resampled, resulting in a larger multiple day precipitation value. 
An example of this is depicted in figure 2-2, where a larger maximum four day amount is the result of 
resampling daily precipitation. Thus, by using this technique only multiple day extremes are created within 
the synthetic weather series. A more detailed description of the resampling and the use of the historical 
data is described in Appendix A.A.1. 
 
 

  

figure 2-2, Resampling of the historical recorded rainfall series results in a different “largest 4 day amount” (Hegnauer et 
al., 2014). 
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2.1.2 Sub-basins of the Meuse 

As is mentioned before the Meuse basin is divided in multiple sub-basins. Lorraine Sud is the first sub-
basin and represents the Meuse basin from the source to St Mihiel. The other upstream sub-basins 
represent tributaries of the Meuse (Chiers, Semois, Viroin, Lesse, Sambre, Ourthe, Ambleve, Vesdre, 
Mehaigne). The remaining downstream sub-basins represent different sections around the main river 
(Lorraine Nord, Stenay-Chooz, Chooz-Namur, Namur-Monsin). The different sub-basins are presented in 
figure 2-3. The Jeker is not used for this study since it confluences with the main river after Monsin. A 
detailed description of the schematization that is used for Meuse discharge simulations at Monsin are 
presented in the next chapter (3.2.4). 
 

 
 
 
  

figure 2-3, Sub-basins of the Meuse (Hegnauer et al., 2014) 

 



18 
 

2.2 Historical data sets for the Meuse  

2.2.1 Historical weather data series 

For this thesis areally averaged historical daily weather data series are used for discharge simulations of 
the 14 sub-basins that were mentioned in the previous section. The weather data extended over a 31 year 
period, between 1-1-1967/31-12-1998. The weather consists of temperature, precipitation and actual 
precipitation data series. The method of areally averaging the weather data differentiated between the 
French and Belgium part of the Meuse. For the French part precipitation station data is available, whereas 
for the Belgian part area-averaged basin data (precipitation, potential evapotranspiration) is available for 
multiple sub-basins. The available data is divided in two time periods table 2-1. The first period is used for 
the calibration (preparation of the hydrological model) and the second period is used for the validation 
(assessing hydrological model robustness). The next chapter will go into detail about the used calibration 
method. A description of the source can be found in Appendix B.  
 
table 2-1, Weather data for the calibration and validation period. The data includes daily precipitation, temperature and 
potential evapotranspiration series, The first year of both periods is used as run-up period for the hydrological models 

Weather data   
sub-basin Calibration Validation 

1. Lorraine Sud 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

2. Chiers 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

3. Lorraine Nord 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

4. Stenay-Chooz 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

5. Semois 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

6. Viroin 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

7. Chooz - Namur 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

8. Lesse 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

9. Sambre 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

10. Ourthe 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

11. Ambleve 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

12. Vesdre 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

13. Mehaigne 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 

14. Namur - Monsin 01-01-1967 , 01-01-1983 01-01-1982 , 01-01-1998 
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Precipitation 
For the French section of the Meuse basin precipitation has been derived from 55-63 precipitation 
stations. Some of the precipitation stations in the French part of the Meuse basin are added/terminated, 
therefore the number of precipitation stations varies between 55-63. The Royal Meteorological Institute 
of Belgium (RMIB) has provided precipitation data, which is already areally averaged, for 31 sub-basins 
(Leander & Buishand, 2011). These sub-basins are often smaller compared to the sub-basins that are used 
by the hydrological model.  
 
From the total of 14 sub-basins,  3 sub-basins are located in France (Stenay-Chooz, Lorraine Nord and 
Lorraine Sud) 10 in Belgium (Ambleve, Chooz-Namur, Lesse, Mehaigne, Namur-Monsin, Ourthe, Semois, 
Vesdre, Virion) and 2 in France and Belgium (Sambre, Chiers)(figure 2-3). The daily rainfall for the sub-
basins located in France and the France part of the Sambre are determined by using inverse squared 
distance interpolation on a 2.5 km x 2.5 km grid (Hegnauer et al., 2014). For the interpolation only the 
stations 50 km from the grid point of interest were used (Leander & Buishand, 2011) . For the Belgian sub-
basins and the Belgian part of the Sambre the sub-basin precipitation is determined with the use of the 
areally averaged data that is available for the 31 (smaller) sub-basins. 
 
Temperature 
Temperature records from eleven different temperature measurement stations are used. The stations are 
located in France (3), Belgium (6), Germany (1), Netherlands (1) (Leander & Buishand, 2011).  The 
temperature for the 15 sub-basins is also determined by using interpolation, the temperature for each 
sub-basin was estimated by interpolating the daily temperature data from eleven stations  using inverse 
square distance interpolation (Leander & Buishand, 2011).  
 
Potential evapotranspiration 
Potential evapotranspiration observations are only available in the form of area averaged daily potential 
evapotranspiration of 31 Belgian Meuse sub-basins. Meaning that potential evapotranspiration was not 
available for the French section (Hegnauer et al., 2014). Potential evapotranspiration for each of the 15 
sub-basins is entirely based on the 31 Belgian sub-basin data. According to the metadata of an historical 
weather dataset, the potential evapotranspiration for the first 4 sub-basins (Lorraine Sud, Chiers, Lorraine 
Nord, Stenay-Chooz), which happen to be mostly located in France, have been estimated by averaging the 
daily potential evapotranspiration values. Furthermore the potential evapotranspiration for some of the 
sub-basins have been based on from another basin and slightly changed with the help of a transformation 
factor. For the Belgian section long-term monthly average potential evapotranspiration (which is required 
for the weather generator) is derived from the area averaged daily potential evapotranspiration of the 31 
Belgian sub-basins. While the average monthly potential evapotranspiration of the Belgian sub-basins is 
used for determining the long-term monthly average potential evapotranspiration of the French section.  
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2.2.2 Discharge data series 

The observed daily discharge data series that are used for this research is mostly in line with the data set 
described by Kramer et al (2008). Multiple discharge datasets were available at the same observation 
location. However there were differences between the datasets as has been highlighted by Kramer et al 
(2008). In order to clarify which dataset has been used for this thesis, Table B-2  is presented in Appendix 
A and contains the period of the daily discharge dataset per sub-basin, location of observation and source. 
The periods of the observed discharge datasets mostly vary between 1968 and 1998. This is not the case 
for the discharge series at Monsin though, where observations are available from 1911 – 2015. Eight 
observations are from the Meuse tributaries (Chiers, Semois, Viroin, Lesse, Ourthe, Ambleve, Vesdre, 
Mehaigne), which are taken from the final observation station before the tributary enters the Meuse. 
Three observation stations are directly located from the main river (St-Mihiel, Stenay, Chooz). The 
“observations” at Monsin are not directly observed Monsin, but are constructed based on observations at 
Kanne and St-Pieter. These observations are added in order to determine the discharge of the whole 
Meuse, which separates into two different flows at Monsin. For two sub-basins (Sambre, Chooz-Namur) 
are no observed discharge data series available. The table presented below shows the used data for the 
calibration and validation periods. The long discharge series at Monsin are used for the analysis of 
synthetic data. 
 
table 2-2, Discharge data for the calibration and validation period.  

Discharge data   
sub-basin Calibration Validation 

1. Lorraine Sud 01-01-1969 , 01-01-1983 01-01-1983 , 01-01-1998 

2. Chiers 01-01-1968 , 01-01-1983 01-01-1985 , 01-01-1998 

3. Lorraine Nord 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

4. Stenay-Chooz 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

5. Semois 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

6. Viroin 01-01-1974 , 01-01-1983 01-01-1983 , 01-01-1998 

7. Chooz - Namur - - 

8. Lesse 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

9. Sambre - - 

10. Ourthe 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

11. Ambleve 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

12. Vesdre 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 

13. Mehaigne 01-01-1969 , 01-01-1983 01-01-1983 , 01-01-1998 

14. Namur - Monsin 01-01-1968 , 01-01-1983 01-01-1983 , 01-01-1998 
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3. Method 

 

3.1 Hydrological model preparation 

One of the most important part of this research is to isolate the influence of hydrological model structures 
on the discharge simulation. This was the main aspect that had to be kept in mind when preparing the 
hydrological models for the simulation of the Meuse basin. Thus, an experiment has been designed where 
only the hydrological model structure varies. First of all hydrological models have been selected with 
similar ideas and conceptualisations. This means that the same data can be used in all the hydrological 
models. Furthermore, it makes it easier to identify which model structure components influence the, in 
this case, annual maximum discharge simulations. Secondly the routing that connects the sub-basins for 
the discharge of the Meuse basin at Monsin is kept constant for all hydrological models. This means that 
the time that it takes for discharge to reach the next sub-basin does not change and cannot influence 
discharge simulation differences. Finally, the calibration of the hydrological models is performed with the 
use of an aggregated objective function, which takes multiple hydrograph aspects into account. This 
aggregated objective function is optimized by changing the model parameters with an optimization 
algorithm. The influence of human decision making on the calibration process is reduced and ensures that 
the hydrological models are calibrated in a similar fashion.   
 

3.2 Hydrological models 

3.2.1 Hydrological models categorization 

Only hydrological models with similar characteristics as the HBV model are used in this study. These 
characteristics are based on the classification system by Wheater et al., (1993) as mentioned in 
Pechlivanidis et al., (2011). All the different characteristics are presented in table 3-1 and are used to 
categorize different hydrological models. Using hydrological models with similar characteristics increases 
the chance of identifying model conceptualisations that are responsible for differences in simulations. 
Besides this, the weather data that will be used as input for the hydrological models in this study (historical 
weather data, and synthetic data) is areally averaged. Distributed hydrological models cannot use this data 
since these hydrological models require grid based data. Therefore the hydrological model should be semi-
distributed or lumped in order to be able to use the weather data as input. The hydrological models that 
are selected for the comparison are the HBV model, the GR4J, and HyMOD hydrological models. Instead 
of using more hydrological models for separate sub-basins the focus will lie on simulating the entire Meuse 
river basin with each model.  
 
 

 
  

Model structure Model Distribution Model results Model time-scale Model space scale 

Metric models Lumped Deterministic Continuous simulation Small (< 100 km2) 

Conceptual models Distributed Stochastic Event based Medium (100-1000 km2) 

Physics based models Semi-distributed   Large (1000 km2 >) 

Hybrid models     

table 3-1, Hydrological model characteristics Wheater et al.,(1993) as mentioned in Pechlivanidis et al., (2011)  
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3.2.2 Hydrological model structures 

Aside from determining how much hydrological model structures can influence annual maximum 
discharge simulations it will be important to know how high flow discharges are generated. By analysing 
the model structures differences between these structures can be found and can increase the 
understanding of which hydrological process is important for the Meuse for generating high flow 
discharges. Therefore it is important to describe the hydrological model structures in detail. At the the of 
this chapter the main differences between the model structures are explained. Sometimes the state of a 
storage from a previous timestep is required. In order to illustrate the timestep the storages can 
sometimes be denoted by (i), indicating the current timestep. During some of the model calculations the 
states of some storages will change in the same timestep. The number after (,) denotes the number of 
storage state updates.  

GR4J model 

The GR4J model stands for : ‘modèle du Génie Rural à 4 paramètres Journalier’ and is developed by Perrin 
et al., (2003). The GR4J hydrological has conceptual model structures but they are determined based on 
empirical findings from many different (French) sub-basins and should be considered as an empirical 
model. The GR4J model is a modified version of the GR3J model. The GR4J model uses daily potential 
evapotranspiration and precipitation as input. The input is not changed or corrected before it is used to 
determine the daily discharge. The GR4J model does not contain a snow module. This should only have a 
minor influence due to the small snow percentage that is used in the HBV model. The absence of a snow 
module results in a reduction of used parameters. Furthermore the other components in the GR4J model 
are only controlled by four parameters (figure 3-1).   
 

 
 
  

figure 3-1, GR4J Diagram (Perrin et al., 2003), 
parameters: x1,x2,x3,x4 
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Soil Routine 
The first step of the GR4J model is to assess whether there is net evaporation or net precipitation during 
a day. When the input precipitation is larger than the input potential evapotranspiration the net rainfall 
(Pn) is calculated. Net potential evaporation capacity (En) is calculated when the potential 
evapotranspiration is larger than the precipitation. In the event that there is net rainfall a part of this rain 
(Ps)  will enter production store (S). This is based on the outcome of equation 3-1. When there exist a net 
potential evapotranspiration the actual evapotranspiration is determined with equation 3-2 and this 
portion will leave the production store(S). The value of S can never exceed x1, thus the value of x1 
represents the production store limit. A section of the volume that is contained in the production store 
will enter other containers via percolation (Perc) and is found using equation 3-3 After the value of the 
percolation is calculated the water will leave the production store. The remainder of the net rainfall and 
percolation (Pr) will be transferred to the next section of the GR4J model (equation 3-4). 
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𝑃𝑟 = 𝑃𝑛 − 𝑃𝑠 + 𝑃𝑒𝑟𝑐 

 
𝑆(𝑖,1) = 𝑆(𝑖−1,2) + 𝑃𝑛 − 𝐸𝑛        𝑆(𝑖,2) = 𝑆(𝑖,1) −  𝑃𝑒𝑟𝑐 
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equation 3-4 

equation 3-5 , 

 

equation 3-6 

equation 3-2 

equation 3-1 
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Routing Store 
The Pr  that is calculated on a certain day will be split into two flow components. The first flow component 
(Q9) will contain 90% of Pr and will be routed using unit hydrograph 1 (UH1), while the second flow 
component (Q1) will contain remaining 10% of Pr and will be routed with unit hydrograph 2 (UH2). These 
unit hydrographs will spread the Pr from a certain day over several days and are based on the parameter 
x4 which governs over how many days Pr is spread  . The groundwater exchange term (F) is computed using 
x2 and influences R and Q1 (equation 3-7). The routing store (R) is updated by adding Q9 and F (which can 
be either negative or positive). R cannot exceed one day ahead maximum capacity of the routing store (x3). 
The outflow of the routing store (Qr) is calculated based on R  (equation 3-8), which will be also be used to 
update R by subtracting Qr from R equation 3-9. Q1 is changed by adding F as well and becoming Qd. When 
F is negative and is larger than Q1, Qd becomes zero (equation 3-10). The total streamflow (Q) is the sum 
of Qr and Qd (equation 3-11).  
 

𝐹 = 𝑥2 (
𝑅(𝑖−1,2)

𝑥3
)

7
2

 

 

𝑄𝑟 = 𝑅(𝑖,1) {1 − [1 + (
𝑅

𝑥3
)
4

]

−
1
4

} 

 

𝑅(𝑖,1) =  𝑚𝑎𝑥(0;  𝑅(𝑖−1,2) + 𝐹 + 𝑄9),     𝑅(𝑖,2) = 𝑅(𝑖,1) −𝑄𝑟  

 
𝑄𝑑 = max (0;𝑄1 + 𝐹) 

 
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑑 + 𝑄𝑟 

 
 
Model code 
The GR4J model is coded using the Python language. However there was no reliable Matlab code for the 
GR4J from an official scientific source. On the website of the GR4J model developers, GR4J models were 
available in R and in excel (Irstea., 2017). Due to the lack of experience with R it was decided to compare 
the output from the Python version of the GR4J model with the output from the excel version of the GR4J 
model. Due to different number rounding in the excel version and Python version, the outputs of the 
model versions do not match perfectly. The average difference between the outputs is in the order of ‘E-
14’. 
  

 

 

 

equation 3-7 

equation 3-8 

equation 3-9 

 
equation 3-10 

equation 3-11 
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The HyMOD model 

The actual word HyMOD is never mentioned in the paper containing the description of the model 
(Wagener et al., 2001). However every other paper mentioning the HyMOD model is referencing to this 
paper. HyMOD simply stands for hydrological model and is a simple model with typical conceptual 
components according to Wagener et al., (2001). Like the GR4J model the HyMOD model does not 
contain a snow module, reducing the number of required parameters. Furthermore the precipitation and 
the potential evapotranspiration are not changed by the HyMOD model. The HyMOD model has five 
parameters, which need to be calibrated figure 3-2.  

 
 
Soil Routine 
The HyMOD model computes two kinds of effective rainfall (ER1 and ER2). In this model the storage 
capacity (C) does not have to be equal to soil moisture state (S). In order to illustrate spatial soil variety 
within the catchment a curve is introduced governed by two parameters, the degree of spatial variability 
of the soil moisture capacity within the catchment (BEXP) and the CMAX. Based on this curve the value of 
C can be determined using the (S) from the previous timestep (equation 3-13). ER1 depends on the  (Soil 
moisture) storage capacity C and the precipitation (P). When the precipitation combined with C exceeds 
the maximum storage capacity (CMAX) the water will be transitioned into run-off (ER1) (equation 3-12). 
With the (C) and the precipitation that might be stored in the soil (P-ER1) the soil state (S) can be updated 
(equation 3-14). Using these values for ER2 are determined (equation 3-15). Based on the value of S and 
the potential evapotranspiration (PET) the actual evapotranspiration (AET) can be calculated (equation 
3-16). Which in turn is used to update the soil moisture state (S) (equation 3-17).  
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figure 3-2, the HyMOD model, (Wagener et al., 2001), parameters CMAX, BEXP, ALPHA, Kq, Ks 

 

 

 equation 3-14 

equation 3-13 

equation 3-12 
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𝐸𝑅2 =  𝑚𝑎𝑥 (0; 𝑃 − 𝐸𝑅1 − (𝑆(𝑖,1) − 𝑆(𝑖−1,2))) 

 

𝐴𝐸𝑇 = 𝑃𝐸𝑇(1 − 

𝐶𝑀𝐴𝑋
𝐵𝐸𝑋𝑃 + 1

− 𝑆(𝑖,1)

𝐶𝑀𝐴𝑋
𝐵𝐸𝑋𝑃 + 1

) 

 
𝑆(𝑖,2) = 𝑆(𝑖,1) − 𝐴𝐸𝑇 

 
 
Routing routine 
The sum of ER1 and ER2 is distributed by parameter ALPHA and is directed to three linear reservoirs (Rf) 
with residence time (Kq) or a single linear reservoir (Rs) with residence time (Ks)( equation 3-18). The linear 
reservoirs are governed with similar equations, the (j) indicates one of the three fast linear reservoirs 
(equation 3-19, equation 3-20). This distribution will be further revered to as Inflow (I). The outflow (O) 
from the first fast linear reservoir enters the second fast linear reservoir, while the outflow from the 
second fast linear reservoir enter the last fast linear reservoir. The outflow of the linear reservoirs are 
controlled by similar equations as well (equation 3-21, equation 3-22). The outflow from the last fast linear 
reservoir and quick reservoir form the total discharge (equation 3-23).    
 
 

𝐼𝑓𝑎𝑠𝑡1 = 𝐴𝐿𝑃𝐻𝐴 ∙ (𝐸𝑅1 + 𝐸𝑅2),     𝐼𝑠𝑙𝑜𝑤 = (1 − 𝐴𝐿𝑃𝐻𝐴) ∙ (𝐸𝑅1 + 𝐸𝑅2) 

 
𝑅𝑓(𝑖,𝑗) = 𝑅𝑓(𝑖−1,𝑗)(1 − 𝐾𝑞) + 𝐼𝑓𝑎𝑠𝑡𝑗(1 − 𝐾𝑞)   

 
𝑅𝑠(𝑖) = 𝑅𝑠(𝑖−1)(1 − 𝐾𝑠) + 𝐼𝑠𝑙𝑜𝑤(1 − 𝐾𝑠) 

 

𝑂𝑓𝑎𝑠𝑡𝑗 =
𝐾𝑞

1 − 𝐾𝑞
∙ 𝑅𝑓(𝑖,𝑗) 

 

𝑂𝑠𝑙𝑜𝑤 =
𝐾𝑞

1 − 𝐾𝑞
∙ 𝑅𝑠(𝑖) 

 
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑂𝑓𝑎𝑠𝑡3 + 𝑂𝑠𝑙𝑜𝑤   

 
 
Hydrological model code 
The hydrological model code was originally coded using Matlab and was found in one of the Matlab 
packages designed by J, Vrugt. In a study he has used the HyMOD model alongside the co-authors of the 
original paper describing the HyMOD model (Vrugt et al., 2002; Wagener et al., 2001) . Based on this 
Matlab script the code was rewritten using Python. The results from both scripts were identical when using 
the exact same parameters and input data. 
  

 
equation 3-15 

 equation 3-16 

 
equation 3-17 

 

 

 

equation 3-18 

equation 3-19 

 

 

equation 3-20 

 equation 3-21 

equation 3-22 

equation 3-23 
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The HBV model 

In chapter two the Hydrologiska Byråns Vattenbalansavdelning (HBV) model has already been introduced. 
The HBV hydrological model that is used in this thesis is mostly based on the description given by Lindström 
et al., (1997). The HBV model uses many different parameters and constants. According to Lindström et 
al., (1997) twelve parameters are usually calibrated. A schematization of the model structure is presented 
in figure 3-3. table 3-2 presents the values of all the parameters that are used for the HBV model. 
 

 
 

 

  

figure 3-3, Schematization of the HBV model structure (Hegnauer et al., 2014) based on 
(Lindström et al., 1997) (CFLUX is described here as capillary transport , this is CF in 
Lindström et al., (1997), while CFLUX is the maximum value of CF 



28 
 

Snow module 
The snow module of the HBV module can be complicated by stating values of a lot of different parameters. 
In this case most of the parameters that control the snow module have their basic value, Which simplifies 
the snow module. In this case the precipitation (P) can either come down as either snow or rain. When the 
temperature (T) is below zero the precipitation is snow otherwise its rain (equation 3-24). The snow 
module also keeps track of the total snow accumulation after multiple days with snow (SP). When the 
temperature start to rise the snow melts (SM). The rate of the SM depends on the snowmelt factor (cfmax, 
input temperature, and value of the SP (equation 3-25). The SM could infiltrate (inf)  into the soil alongside 
the rain. However the value of SP has a certain water holding capacity (WHC) meaning that the melt water 
does not infiltrate immediately and is contained within the snow. Additionally, this water could refreeze 
further influencing the infiltration (equation 3-25).  The refreeze rate is controlled by T, and how much 
melt water  resides in the snow  (MW) (equation 3-27). With the SM, RF, Snow, and current SP state the 
SP value for the next day is be calculated (equation 3-28). The next value of MW depends on inf, rain, RF, 
and current MW value, and is calculated using equation 3-29. When there is no snow melt or snow pack 
the rain will fully account for the infiltration.  
 

𝑃 = 𝑆𝑛𝑜𝑤,       when  𝑇 < 0,     𝑃 = 𝑅𝑎𝑖𝑛,       when  𝑇 > 0 
 

𝑆𝑀 =  min (𝑆𝑃𝑖;  max (0;  𝑐𝑓𝑚𝑎𝑥 ∙ 𝑇)) 

 
𝑖𝑛𝑓 =  (𝑅𝑎𝑖𝑛 + 𝑆𝑀 − 𝑅𝐹 −𝑊𝐻𝐶 ∙ 𝑆𝑃𝑖) 

 

𝑅𝐹 =  min (𝑀𝑊𝑖;  max (0; −𝑇)) 

 
𝑆𝑃𝑖+1 = 𝑚𝑎𝑥(0; 𝑆𝑃𝑖 + 𝑠𝑛𝑜𝑤 + 𝑅𝐹 − 𝑆𝑀) 

 
𝑀𝑊𝑖+1 = max(0; 𝑀𝑊𝑖 + 𝑅𝑎𝑖𝑛 − 𝑅𝐹 − 𝑖𝑛𝑓) 

 
 
Soil routine 
The water enters the soil via infiltration, which is already determined by the snow module. The amount of 
water that will flow to the upper zone (UZ) via the soil (IF) is controlled by  the maximum soil moisture 
content (FC), current soil moisture content (SMC) and the soil routine parameter (BETA) using equation 
3-30. However, when the soil is saturated the excess water from the infiltration will flow directly (DF) into 
the UZ (equation 3-31). The actual evapotranspiration, like the flow from the soil moisture, also depends 
on the soil moisture content. Using the potential evapotranspiration limit (LP) and the potential 
evapotranspiration input data (PET)  the AET is calculated (equation 3-32). The HBV model also takes 
capillary flow (CF) into account which depends on the soil moisture content and is controlled further by 
the parameter Cflux (equation 3-33). The soil moisture for the following day will be determined with 
equation 3-34.  
 

𝐼𝐹 = max (0; (𝑖𝑛𝑓 − 𝐷𝐹)
𝑆𝑖
𝐹𝐶
)
𝐵𝐸𝑇𝐴

 

 
𝐷𝐹 = max (0;  𝑖𝑛𝑓 + 𝑆𝑖 − 𝐹𝐶)  

 

𝐴𝐸𝑇 = min(𝑃𝐸𝑇;
𝑃𝐸𝑇 ∙ 𝑆𝑖
𝐿𝑃 ∙ 𝐹𝐶

) 

 

 

 

equation 3-24 

equation 3-25 

equation 3-26 

 equation 3-27 

 equation 3-28 

 

 

equation 3-29 

equation 3-30 

equation 3-31 

 equation 3-32 
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table 3-2, HBV model parameters that are used, *the sensitivity analysis will be discussed in detail in the calibration method 

 

 

 

𝐶𝐹 =  min(𝑈𝑍𝑖;  𝐶𝑓𝑙𝑢𝑥 (
𝐹𝐶 − 𝑆𝑖
𝐹𝐶

)) 

 

𝑆𝑖+1 = min(𝐹𝐶;  max(0;  𝑆𝑖 + 𝑖𝑛𝑓 − 𝐼𝐹 − 𝐷𝐹 − 𝐴𝐸𝑇 + 𝐶𝐹)) 

 
 
Run off generation 
The excess water from the infiltration and the flow from the soil moisture will enter the upper zone. A 
portion of this container will become run-off (Q0) using two parameters (kf and ALPHA), the latter controls 
the non-linearity of this container (equation 3-35). A small portion of this container will percolate to the 
groundwater. The percolation is equal to the percolation parameter (PERC). Run-off generated from the 
groundwater (Q1) is only controlled by one parameter (ks) and depends on the groundwater content 
(equation 3-36).The two run-offs combined form the total daily discharge. The state of the upper zone for 
the next day is calculated with equation 3-37, whereas the state of the lower zone (groundwater, LZ) is 
calculated using equation 3-38. Combining Q0 and Q1 gives the total discharge (Qtotal) (equation 3-39).  
 

𝑄0 = min(𝑈𝑍𝑖;  𝑘𝑓 ∙ 𝑈𝑍
1+𝐴𝐿𝑃𝐻𝐴)  

 
𝑄1 = 𝑘𝑠 ∙ 𝐿𝑍  

 

𝑈𝑍𝑖+1 = max(0; 𝑈𝑍𝑖 − 𝑄0 +max(0;  𝐼𝐹 + 𝐷𝐹 − 𝑃𝑒𝑟𝑐) − min(𝑈𝑍𝑖; 𝐶𝐹)) 

 
 

𝐿𝑍𝑖+1 = max(0; 𝐿𝑍𝑖 − 𝑄1 +min(𝑃𝑒𝑟𝑐;  𝐼𝐹 + 𝐷𝐹)) 

 
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄0 + 𝑄1  

 
 
 

HBV model parameter         
      

Input      Soil   

P Precipitation   FC  Maximum soil moisture content 

T Temperature   LP Limit for potential evapotranspiration 

ET potential evapotranspiration   BETA Parameter in soil routine 

    CFLUX Maximum value of CF 

Snow module      

TT threshold temperature 0  Response   

WHC Water holding capacity 0.1  Kf Recession coefficient upper storage 

CFMAX snow melt 3.5  ALFA Response upper storage parameter 

CFR refreezing 0.05  PERC Percolation from upper to lower storage 

    Ks Recession coefficient lower storage 

  always kept constant      

  Calibrated when most sensitive      

 

 

 

equation 3-33 

equation 3-34 

 

 

equation 3-35 

equation 3-36 

 

 

equation 3-37 

equation 3-38 

equation 3-39 
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Model Code 
The HBV model is coded using Python and is based on a Matlab script, which was present at the University 
of Twente. The Python script output has been compared to the Matlab script output in order to assess 
whether the python script model was functioning properly. The Python script output was the same 
compared to the Matlab script output. 

3.2.3 Hydrological model differences/similarities 

This paragraph is included in order to highlight important differences and similarities between hydrological 
models. Besides this, assumptions of the hydrological models that are not always stated in the hydrological 
model descriptions. will be described in this paragraph as well.  
 
Weather interception  
The HBV and GR4J model both have a form of weather interception, while the HyMOD model does not 
have a form of weather interception. For the HBV model the interception is included in the form of a snow 
module in which is determined if the precipitation falls as either snow or rain based on the temperature. 
The interception module of the GR4J model is used in a different matter. In this section the net 
precipitation/evapotranspiration is determined. This is done by subtracting the precipitation with the 
potential evapotranspiration when the precipitation is larger than the potential evapotranspiration and 
vice versa if the potential evapotranspiration is larger than the precipitation. Thus the GR4J model assumes 
that the actual transpiration is equal to the potential evapotranspiration if the precipitation is larger than 
the potential evapotranspiration. 
 
Hydrological model storages 
Each hydrological model uses a different number of storages. Most of these storages however are used to 
represent similar processes. For example each hydrological model uses a storage to symbolize soil 
moisture and has at least one routing store. Still, the water content of these storages are usually not 
controlled with the same equations or limitations. For the soil moisture storage each model uses one 
parameter to limit the amount of water that can be stored by the soil moisture. This value can vary a lot 
between hydrological models, even for the same sub-basin. The remaining water storage of the HBV and 
HyMOD model do not have a limit. This means that each sub-basin can contain unlimited amount of water. 
The GR4J model only uses two storages that both have a limit, which are controlled by two parameters 
(Perrin et al., 2003). This means that each sub-basin has a water storage limit and that this limit can be 
adjusted during the calibration process.  
 
Discharge generation 
The discharge is mostly generated using routing stores, the only exception is 10% of the water that will be 
used for the discharge generation (Pr) in the GR4J model. This water becomes discharge with a unit 
hydrograph induced delay. The use of a unit hydrographs enables the GR4J model to control how quickly 
the sub-basin reacts to precipitation. This is less apparent in the other hydrological models where the 
response to precipitation is more controlled by “residence time” parameters. Another difference is the 
clear separation of base flow in the HyMOD and HBV models. The base flow discharge of the HBV and 
HyMOD model is generated based on content of the storages that represent groundwater. Both of these 
storages have in common that the discharge increases linearly with the content of the storage. For the 
GR4J model it is less apparent what the different flows represent.  
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3.2.4 Discharge simulations of the Meuse at Monsin 

In order to use the synthetic data from the weather generator, without modifying the data, it is necessary 
to use the same Meuse sub-basins and time step that were used by the HBV model in the GRADE 
instrument. Therefore all the hydrological models will use daily a time step and 14 sub-basins will be used 
to simulate the discharge of the Meuse basin at Monsin (The Jeker confluences with the Meuse after 
Monsin). The discharges from the separate sub-basins have to be transformed into a single discharge value 
that represents the total discharge of the river Meuse. To achieve this, the discharges of separate sub-
basins have been summed with an induced lag. The induced lag simulates the travel time of the discharge 
from a certain sub-basin to reach Monsin.  
 
The travel time for most sub-basins have been based on research by Berger & Mugie (1994). However, the 
mentioned travel time is the time that it takes for the discharge to reach Borgharen. The travel times for 
most sub-basins to Borgharen are in the range of hours, thus using a full day as lag would result in an 
estimation that is to rough. In order to prevent this, the daily discharges with lag and without lag 
(sometimes two days and one day lag if the lag is longer than a day) have been multiplied by a fraction. 
These fractioned daily discharges simulate the hourly lag (table 3-3). Although the travel time in Berger & 
Mugie, (1994) could have been modified in order to better suit the travel time to Monsin it was decided 
to keep the travel time of Borgharen. This is due to the hourly travel time that is already approximated in 
the daily time step. Furthermore, modifications of the travel time would have been based on assumptions 
of the travel time of the Meuse between Monsin and Borgharen. A schematization of the Meuse that is 
used to link the sub-basins together is provided in figure 3-4.  
 
table 3-3, The lag that will be used to simulate the travel time of the discharges too reach Monsin. The lag at Stenay and Chooz 
are used as intermediary steps where the discharges from upstream sub-basins accumulate. These intermediary steps are 
necessary steps for the calibration and will be discussed in paragraph 2 of this chapter. 

 

basin numbers Stenay hours days applied lag (days) 
1 St-Mihiel, Stenay 17.35 0.72 0.7 

     
  Chooz hours days applied lag (days) 
2 Carignan ,Chooz 32 1.33 1.35 

1 , 3 Stenay ,Chooz 32 1.33 1.35 

5 Membre ,Chooz 8 0.33 0.35 

6 Treignes ,Chooz 4 0.17 0.15 

     
  Monsin hours days applied lag (days) 

1 , 2, 3, 4, 5, 6 Chooz, Borgharen 16 0.67 0.65 

8 Gendron,Borgharen 13 0.54 0.55 

7 ,9 Namur-Salzinne,Borgharen 7 0.29 0.3 

10 Tabreux,Borgharen 7 0.29 0.3 

11 Martinrive,Borgharen 7 0.29 0.3 

12 Chaudfontaine,Borgharen 5 0.21 0.2 

13 Statte,Borgharen 4.97 0.21 0.2 

14 Namur - Monsin, Borgharen 0 0 0 

     
Directly from Berger & Mugie, 1994       

Estimated based on Berger & Mugie, 1994       

Assumed lag         
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figure 3-4, Applied schematization of the Meuse for the simulation of discharges. This schematization is used for all hydrological 
models. Namur is only used as an output location for sub-basin 7 and 9. No discharge records where available at this location. 
The discharge “observations” at Monsin are the result of the summation of the observations at Kanne and St Pieter 

3.3 Hydrological model calibration 
Before a conceptual hydrological model can simulate the hydrological behaviour of a catchment, 
parameters need to be estimated. These parameters are estimated by calibrating the hydrological model 
against an observed discharge time series (Pechlivanidis et al., 2011). Model calibration in hydrology can 
be defined as the process of selecting suitable values of model parameters such that the simulations of 
the hydrological model approaches the hydrological behaviour of a catchment (Madsen, 2000; Sorooshian 
& Gupta, 1995 in: Booij & Krol, 2010 and Pechlivanidis et al., 2011). The same calibration method is used 
for all the hydrological models 
 
As was mentioned before the calibration will be automated using an optimization algorithm, limiting 
influence of human descision making on the calibration process. This will ensure that the calibration 
process will be consistent and objective (Pechlivanidis et al., 2011). Four major elements can be identified 
in a typical automatic parameter estimation process: the selected objective function, the optimization 
algorithm, the termination criteria, and the calibration data. In this case, the automatic calibration process 
is used to find the values of the hydrological model parameters that will optimize the objective functions 
(Pechlivanidis et al., 2011). The hydrological models will be calibrated using data from the period 1967-
1983 (1967-1968 used as run-up year). The source and preparation of the data is already described in 
chapter 2 
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3.3.1 Objective functions 

An objective function is a numerical measure of the difference between the hydrological model discharge 
output and the observed catchment output (Pechlivanidis et al., 2011). A single objective function is often 
biased on an individual aspect of the hydrograph (Pechlivanidis et al., 2011). Four calibration objectives of 
the hydrograph are formulated by Madsen, (2000).  
 
1. A good agreement between the average simulated and observed catchment runoff volume (i.e. a good 

water balance). 

2. A good overall agreement of the shape of the hydrograph. 

3. A good agreement of the peak flows with respect to timing, rate and volume. 

4. A good agreement for low flows.  

Each calibration objective focusses on a certain aspect of the hydrograph and should be represented by a 
single objective function. Usually there are trade-offs between these different calibration objectives. This 
means that a parameter set which is optimal for a calibration objective is less optimal for another (Madsen, 
2000; Pechlivanidis et al., 2011). As mentioned before the GRADE instrument simulates daily discharges 
over a period of 50000 years, with the main goal to find the most extreme high flows (Hegnauer et al., 
2014). Since this will be also the case for this research project the calibration process should focus on the 
peak flows while the general shape of the hydrograph remains similar to the observed hydrograph. Thus 
calibration objectives 1, 2 and 3 will be used in the calibration process. 
 
The objective functions that will represent calibration objective 1, 2 and 3 are similar to the study 
performed by Booij & Krol (2010). For calibration objective 1 the relative volume error (RVE, equation 
3-40) will be used, while for calibration objective 2 the Nash Sutcliffe coefficient (NS, equation 3-41) will 
be used. The Relative Mean Error in 10-year and 100 year return values (RMERV, equation 3-42) that will 
be used for calibration objective 3 . Booij & Krol, (2010) stated that the disadvantage of using the RMERV 
is that it is assumed that the annual maximum discharges are Gumbel distributed. The optimum values for 
the RVE and RMERV are 0, and can fluctuate between -∞ and ∞. The optimum value for the NS is 1 and 
can fluctuate between 1 and -∞. The RMERV equation presented here has been modified in two ways. The 
100 year return period is replaced by the 25 year return period. Furthermore the absolute values are used 
from the results that consider different return periods. This is done in order to prevent any compensation 
which would also result in an optimum value of 0. 
 
 

𝑅𝑉𝐸 =
∑ [𝑄𝑠𝑖𝑚,𝑖 − 𝑄𝑜𝑏𝑠,𝑖]
𝑁
𝑖=1

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑁
𝑖=1

   

 

𝑁𝑆 = 1 −
∑ [𝑄𝑠𝑖𝑚,𝑖 −𝑄𝑜𝑏𝑠,𝑖]

2𝑁
𝑖=1

∑ [𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠]
2𝑁

𝑖=1

 

  

equation 3-41 

 

equation 3-40 
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            𝑅𝑀𝐸𝑅𝑉 =
|
𝑅𝑉𝑠𝑖𝑚(𝑦1) − 𝑅𝑉𝑜𝑏𝑠(𝑦1)

𝑅𝑉𝑜𝑏𝑠(𝑦1)
| + |

𝑅𝑉𝑠𝑖𝑚(𝑦2) − 𝑅𝑉𝑜𝑏𝑠(𝑦2)
𝑅𝑉𝑜𝑏𝑠(𝑦2)

|

2
, 𝑦1 = 10 , 𝑦1 = 25  

 
Where:  𝑄𝑠𝑖𝑚,𝑖 is the simulated discharge at time 𝑖, 𝑄𝑜𝑏𝑠,𝑖 is the observed discharge at time 𝑖, 𝑅𝑉𝑠𝑖𝑚 is the 

simulated return value using Gumbel, 𝑅𝑉𝑜𝑏𝑠 is the observed return value using Gumbel. 𝑦1 and 𝑦2 denote 
the return period that is associated with the return value.  
 
In order to perform the calibration these objective functions have been combined in a single objective 
function. This combined function is often revered to as an aggregated function. The objective functions 
have to be combined since the optimization process that is used for the calibration of the hydrological 
model can only optimize a single objective function. The aggregated objective function has a form that is 
similar to the aggregated objective function that is suggested by Akhtar et al, (2009) and has the following 
form (equation 3-43).  
 

𝑌 = 
𝑁𝑆

1 + |𝑅𝑉𝐸|
 

 
The NS and RVE are given by equation 3-40 and equation 3-41 respectively. The optimum value for this 
objective function is one and ranges between one and -∞. The use of the absolute value of the RVE is 
important since negative values can lower the ‘1’ in the function. This results in a higher aggregated 
objective function score thus valuing negative RVE values over positive RVE values. equation 3-43 has been 
modified by adding the RMERV function (equation 3-42) and results in equation 3-44. It is not required to 
use the absolute value since the result of the used RMERV equation  is already absolute.  
 

𝑌𝑚𝑜𝑑 = 
𝑁𝑆

1 + |𝑅𝑉𝐸| + 𝑅𝑀𝐸𝑅𝑉
 

 
 

3.3.2 Optimization Algorithm 

The optimization algorithm that will be used in this research is the shuffled complex evolution (SCE-UA) 
algorithm, which can be considered as a global search method (Duan et al., 1992).  The SCE-UA method 
ensures that the starting values of the parameters do not influence the outcome of the optimization, thus 
resulting in a global optimum value. The SCE-UA method can only be used for optimizing a single objective 
function. The use of an aggregated objective function like equation 3-44 makes it possible to optimize the 
parameters based on multiple calibration objectives using the SCE-UA method. 
 
 
 
 
 
 
 
 
 

equation 3-42 

equation 3-43 

equation 3-44 
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SCE-UA set up 
The SCE-UA optimization is performed by using a Python package (Houska et al., 2015). Before this 
optimization algorithm can be used in the calibration process it has to be set-up correctly. This set-up can 
be translated to the termination criteria that are mentioned before (Pechlivanidis et al., 2011). The 
following decisions have to be made in order properly set-up the SCE-UA algorithm:  (1.) Selecting the 
numerical measure that will be optimized (𝑌𝑚𝑜𝑑  ,equation 3-44), (2.) Selecting the hydrological model 
parameters that will be calibrated (3.) Determine the parameter ranges of the hydrological model 
parameters that will be calibrated, (4.) Selecting the maximum number of iterations and (5.) Choosing the 
proper algorithm parameters, which influence the performance of the SCE-UA algorithm. The selected 
parameter ranges are based on prior research for which these hydrological models have been used (table 
3-4). By selecting large ranges for the parameters, the optimisation algorithm can find the global optimum 
from a large parameter space, while making no prior assumptions about the hydrological behaviour of the 
sub-basin.  
 
For this thesis, four parameters for the GR4J model, five parameters for the HyMOD model and eight 
parameters for the HBV model need to be calibrated. However the calibration of eight parameters could 
be much more time consuming compared to the calibration of four/ five parameters. Furthermore, by 
decreasing the number of parameters that will be calibrated, the over-parametrization and parameter 
dependence risk will be reduced (Brauer, Teuling, F. Torfs, & Uijlenhoet, 2014). By performing a sensitivity 
analysis for each sub-basin, five parameters will be selected for the calibration process of the HBV model 
(table 3-5). Some parameters in the HBV model do not have a default value, in this case the sensitivity 
analysis is also used to estimate a constant value for that parameter if said parameter will not be 
calibrated. 
 
table 3-4, parameter ranges used for the calibration, GR4j: ( Tian et al., 2014), HyMOD: (Herman et al. , 2013), HBV 2: (Harlin & 
Liden, 2000), 3 (Booij & Krol, 2010) 1: It is stated that x4 cannot become lower than 0.5 and is therefore adjusted (Perrin et al., 
2003).  

GR4J Range  HBV Range 

x1 (mm) 10, 2000  FC (mm) 2 100, 800 

x2 (mm) -8 , 6  Beta (-) 2 1 , 6 

x3 (mm) 10, 500  LP (-) 3 0.2 , 1 

x4 (d)1 0.5, 4  Alpha (-) 2 0 , 3 

   Kf (d-1) 3 0.005, 0.1 

HyMOD Range  Ks (mm*d-1)3 0.005, 0.1 

cmax (mm) 10 , 2000  Cflux  (mm*d-1) 3 0.01, 2.5 

b_exp (-) 0 , 7  Perc  (mm*d-1) 2,3 0.01 , 5 

Alpha (-) 0 , 1    

Ks (d-1) 0 , 0.15    

Kq (d-1) 0.15 , 1    
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The SCE-UA algorithm uses a certain set of parameters that influence the overall performance of the 
optimization algorithm. For the optimization of objective function 𝑌𝑚𝑜𝑑 the SCE-UA global optimization 
algorithm will use a maximum of 10000 iterations. The minimum number of complexes should at least be 
the same as the number of calibrated parameters. The number of complexes for the SCE-UA algorithm will 
be set to six for each hydrological model. This number is larger than the amount of parameters used in the 
calibration process and will be kept constant for each hydrological model. The rest of the parameters have 
been set to the default values as is suggested by Duan et al (1994). 
 
table 3-5, The HBV model parameters that will be calibrated for each sub-basin. 1,2,3 Denote for which sub-basins the same 
parameters will be calibrated  

HBV model parameters     

1. Lorraine sud 1 1, 2, 3, 4, 5  8. Lesse 2 1, 3, 4, 5, 8 

2. Chiers 2 1, 3, 4, 5, 8  10. Ourthe 1 1, 2, 3, 4, 5 

3. Lorraine nord 1, 2, 3, 4, 8  11. Ambleve 1 1, 2, 3, 4, 5 

4. Bar etc 2 1, 3, 4, 5, 8  12. Vesdre 1 1, 2, 3, 4, 5 

5. Semois 1 1, 2, 3, 4, 5  13. Mehaigne 3 1, 2, 4, 5, 8 

6. Viroin 2 1, 3, 4, 5, 8  14. Namur - Monsin 3 1, 2, 4, 5, 8 
     

FC =  1 , Beta = 2, LP = 3, Alpha = 4,  Kf= 5,  Ks = 6, Cflux = 7, Perc = 8  
 

3.3.3 Termination criteria/Calibration data 

The calibration process will stop if the improvement of the aggregated objective function by changing the 

hydrological model parameters is no longer sufficient. The improvement is no longer sufficient when the 

aggregated objective function only improves with a very small number (in the order of 0,0001). In chapter 

two it was already shortly mentioned which data would be used for the calibration and validation process. 

The hydrological models will be calibrated using data from the period 1967-1983 (1967-1968 used as run-

up year). If the available discharge data is limited the calibration period is shortened accordingly and 

includes a run-up year that predates the earliest available discharge data by a year. For the Sambre and 

the Namur-Monsin sub-basins no discharge data is available. Therefore these sub-basins will be calibrated 

alongside the most downstream sub-basin (Monsin)  

3.4 Hydrological model Validation 

After the hydrological model is calibrated, the model needs to be validated in order to assess the model 
performance. This is done by using a portion of the observed discharge that has not been used in the 
calibration process (Pechlivanidis et al., 2011).  The validation reveals the hydrological models robustness, 
how well hydrological behaviour is simulated and whether some calibrated parameters have any biases 
(Pechlivanidis et al., 2011). Usually it is found that the hydrological performance is better during the 
calibration period compared to the validation period. For the sub-basins that have an available discharge 
data set the remainder of the available historical data is used. This is 1983-1998 for all sub-basins excluding 
Sambre and Namur-Monsin.  Days with missing discharge values are filtered and not used for calculating 
the objective function values (Chiers). The aggregated objective function (equation 3-44) that is used for 
the hydrological model calibration will also be used for the hydrological model validation. 
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3.5 Synthetic data analysis 

The focus will lie on the high flow simulations and observations. For this reason the maximum discharges 
of each hydrological year of the simulations and observations are selected. The analysis will be performed 
using these yearly maximum discharges. With the use of statistical tests the annual maximum discharge 
distributions of the synthetic data simulations, historical simulations and observations can be compared.  
 

3.5.1 Sub-basins selection for statistical analysis 

The test described above will be performed for multiple sub-basins and for each hydrological model. The 
first notion was to mainly focus on analysing the discharges at congregating sections of the Meuse (Chooz 
and Monsin). Simulated discharges at Monsin can be compared to the results of the original GRADE 
instrument, while the simulated discharges at Chooz give an intermediate result of the simulations. 
However, the discharge input of multiple sub-basins makes it more difficult to identify which model 
structure components are causing differences in the high discharge simulations of the hydrological models. 
For this reason it is also interesting to perform the analysis on multiple upstream sub-basins. Only a limited 
number of sub-basins will be selected to be analysed in order to save time. The Ourthe, Lesse and Semois 
are already used in an earlier inter-comparison study (de Boer-Euser et al., 2016). The results might be 
similar to the results of the inter-comparison study making these sub-basins good candidates for analysis. 
In order to incorporate an upstream sub-basin that is not located in the Ardennes the Chiers will be used 
for the analysis as well.  Additional sub-basins might be selected if the results of a sub-basin for the 
calibration and validation prove to be interesting.  
 

3.5.2 Comparing the mean 

The mean of the annual maximum discharges of the WG simulation, historical simulations and 
observations are compared using the Two-independent samples T-test. An advantage of this T-Test is that 
it does not have to be assumed that the variances of the samples are the same. A disadvantage of this test 
is that the test is sensitive to normality of the data. However, the T-distribution approaches the normal 
distribution when the size of a sample is around 30 (Davis, 2002). The observed annual maximum discharge 
sample has the smallest size which is usually 31. Thus the Two-independent samples T-test can be used 
for this analysis. The null-hypothesis for this test is that the two population means are equal.  
 

3.5.3 Comparing the variance 

For the comparison of the variances of the WG simulation, historical simulation and observation annual 
maximum discharges the Brown-Forsythe test is used. This has the following null-hypothesis: The variances 
of the populations are equal. This test is a different version of the more commonly used Levene’s test. The 
difference is that the Brown-Forsythe test uses the median instead of the mean. Furthermore the Brown-
Forsythe test does not require that the samples have a normal distribution. This makes the number of 
samples less relevant.  
  



38 
 

3.5.4 Gumbel plot 

After the variance and means comparisons that are used to compare the different simulations of the same 
hydrological model, Gumbel plots are presented. These graphs will be used compare the synthetic data 
annual maximum discharge simulations of the different hydrological models with each other. Gumbel plots 
are a way to present annual maximum discharge values with an associated return period. In order to create 
a Gumbel plot the synthetic data annual maximum discharge simulations and observations are sorted from 
highest to lowest. Ranks are assigned to each of the sorted values beginning with 1 until the lowest value 
has an assigned rank. The first step in determining the plotting positions on the X-axis is to transform the 
rank values using the Gringorten equation (equation 3-45). 
 

𝑃(𝑋) = 1 − 𝐹(𝑋) =  
𝑟 − 0.44

𝑁 + 0.12
 

 
Where P(X) is the probability of exceedance, F(X) is the opposite of P(X), r is the rank, and N is the 
number of used values. These probability of exceedance can be transformed into a reduced variate, and 
a return period (equation 3-46, equation 3-47).The reduced variate is used for the X-axis plotting 
positions.  
 

𝑦 =  −ln(−ln(1 − 𝑃(𝑋))) 

 

𝑇(𝑋) =
1

𝑃(𝑋)
 

 
Where y is the reduced variate, and 𝑇(𝑋) is return period in years. The synthetic data annual maximum 
discharge simulations and observations values are plotted against the associated reduced variates, 
resulting in a Gumbel plot.  
 

3.5.5 Comparing Synthetic data simulations with observations 

The Gumbel plots provide a method for comparing the simulations using synthetic data of the different 
hydrological models. Although the annual maximum discharge observations are presented in these graphs 
as well, it is still difficult to compare the synthetic data simulations with the observations. The reason for 
this is that the number of annual maximum discharge observations is much lower compared to the number 
of annual maximum discharge simulations using synthetic data. Therefore a method is designed in order 
to perform the comparison. First of all the simulation values are selected that  have similar associated  
reduced variates (y) compared to the reduced variates associated with the observed values. Thus the 
sample size of the annual maximum discharge observations and synthetic data simulations will be the 
same. After the selection procedure the observations are plotted against the simulations with similar 
reduced variates. The resulting scatter plot reveals whether the synthetic data simulations are close to the 
observations.  
  

 

 

 

 equation 3-45 

equation 3-46 

equation 3-47 
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3.6 Model structure effect on high flow discharges 

3.6.1 Hydrograph analysis 

In order to determine which section of the model structure mostly influence the high flow discharges. Five 
different flood waves have been selected. The three largest flood waves, a floodwave during the summer 
and a floodwave were snow played an important role in generating the floodwave. For multiple upstream 
sub-basins hydrographs will be presented (Chiers, Semois, Lesse, Ourthe. Mehaigne)  These hydrographs 
contain additional information such as daily precipitation, snowfall according to the HBV model, and total 
volume of the discharge wave.  The additional information can only be acquired from upstream basins 
simulations. This is because only the discharge from upstream basin simulations is used to determine 
downstream simulations. Additionally, using upstream simulations prevents any influences from other 
sub-basins on the hydrographs.  Using the model structure descriptions stated in the previous paragraphs 
it is assessed whether the model structures can explain the hydrographs of the simulations.  

3.6.2 Floodwave contribution 

In order to also consider the effect of the model structure on downstream simulations the five selected 
discharge waves are used again. In this case it is calculated how large the contribution of each sub-basin 
is to the total volume of the discharges waves at Monsin for each hydrological model. By comparing this 
to the “observed” contribution it can be determined if the hydrological models are correctly mimicking 
the discharge contribution from each sub-basin. The contributions of each sub-basin are presented for the 
hydrological models and observations per sub-basins in the form of 20 Pie-charts. The lag that is 
mentioned in table 3-3 is used to only take the discharge from the sub-basins into account that contributed 
to the discharge wave at Monsin. For example only the discharge volume from Lorraine sud 2.7 days prior 
and 2.7  days before the end of the discharge wave at Monsin are considered.  
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4. Results 
This chapter consists of three different sections. The first section will assess the performance of the 
hydrological models during the calibration and validation period. The performance is assessed using the 
historical data. Following the performance, the statistical analysis of the synthetic data is presented for 5 
important sub-basins. The data is mainly compared between the observations. Unlike the performance 
assessment, the statistical analysis focusses on annual maximum discharge values alone. Finally, the switch 
is made back to the simulations with historical data. In this final section it is determined which hydrological 
model structure component can be important when simulating high value discharges. Furthermore, this 
section presents the sub-basin contribution to high flow discharges waves at Monsin. This is done in order 
to find if the hydrological models simulate the floodwave contribution percentages correctly.  
 

4.1 Hydrological model discharge simulation performance (Historical) 

The calibration results are presented in four separate graphs below. Each graph is presented in a similar 
manner. The colour theme for each hydrological model is mostly retained throughout this thesis. 
Calibration and validation results are presented for each sub-basin, which are denoted on the x-axis. In the 
first graph the results of the aggregated function values are given, where three objective functions are 
combined. Following the first graph, the values for the individual objective functions are given.  
 
Aggregated objective function 

  figure 4-1, Values of the aggregated objective function for each Meuse sub-basin. The values close to 1 are an indication that the 
simulations are closely mimicking the observations The different colours are representing the hydrological models, red represents 
the GR4J model, orange the HyMOD model and green the HBV model. The results for the calibration and validation are represented 
by filled and unfilled symbols respectively 
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In figure 4-1 the objective function values reveal that the HyMOD model is performing worse compared to 
GR4J model and the HBV model for every sub-basin. This is the case for both the calibration and validation 
period. The GR4J model shows similar results for the objective functions compared to the HBV model, 
although the GR4J model mostly has slightly better results than the HBV model. The discharges of six sub-
basins are accumulating at Chooz and the discharges of all sub-basins are accumulating at Monsin. 
According to figure 4-1 the performance at Chooz and Monsin for all hydrological models is better 
compared to the upstream sub-basins. Downstream sub-basins cannot be calibrated separately since 
these sub-basins require discharge input from upstream catchments. Therefore it is possible that during 
the calibration process the model parameters for these downstream sub-basins are calibrated such that 
the faults of the upstream discharge simulations are compensated. These compensations could increase 
the value of the objective functions for downstream catchments compared to the objective function values 
of the upstream sub-basins. 
 
Nash-Sutcliffe efficiency (NS) 

 
 
 
 
 
Observing figure 4-2  shows that the difference between the objective function values of the HyMOD 
model compared to the objective function values of the other hydrological models is less than the 
difference in figure 4-1. This is especially the case for the first three sub-basins, where the HyMOD model 
no longer has the lowest objective function value. This is an indication that the objective functions other 
than the NS-value are responsible for the low aggregated objective function values for the HyMOD model. 
Another interesting aspect of figure 4-2 is the better NS-values for the validation period in most of the sub-
basins. Usually the objective function has a better value during the calibration period since the value is 
optimized for this period. The NS-value emphasises on higher discharges. Therefore a possible explanation 
for the higher objective function value during the validation period could be the wetter conditions in the 
validation period. Another explanation could be an increase in observed data quality in the validation 
period. 
 
 
 
 

figure 4-2, Values of the Nash-Sutcliffe efficiency for each Meuse sub-basin. The values close to 1 are an indication that the simulations 
are closely mimicking the observations The different colors are representing the hydrological models, red represents the GR4J model, 
orange the HyMOD model and green the HBV model. The results for the calibration and validation are represented by filled and unfilled 
symbols respectively 
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Combination REVE objective functions: RMERV (return periods 10 and 25 years) 

 

figure 4-3, Values of the combined REVE objective functions with a 10 year and 25 year return period for each Meuse sub-basin. 
The values close to 0 are an indication that the simulations are closely mimicking the observations. The different colours are 
representing the hydrological models, red represents the GR4J model, orange the HyMOD model and green the HBV model. The 
results for the calibration and validation are represented by filled and unfilled symbols respectively  

figure 4-3 presents the value of the combined Relative extreme value errors, which is used to assess 
whether the hydrological models are able to simulate high flow discharges. During the calibration period 
the GR4J model and HBV model are showing a good performance for every sub-basin, since these objective 
function values are very close to zero. As opposed to what was seen for the Nash-Sutcliffe efficiency, the 
performance of these models worsens in the validation period for the combined REVE objective functions. 
The HyMOD has, again, the worst performance of the hydrological models. The negative objective function 
scores indicate that high flow discharge simulations are lower compared to the observations. This means 
that the HyMOD model is not able to simulate high discharges that are observed in most of the sub-basins. 
The values of the objective function at Chooz and especially Monsin are good, even for the HyMOD model. 
This further encourages the notion that the hydrological model parameters of the downstream basins are 
calibrated such that some of the simulation errors of the upstream basins are corrected. 
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Relative Volume Error (RVE) 

 
 
 
 
 
Relative Volume Error (RVE) 
figure 4-4 present the objective function values for the RVE. This figure shows good scores for the GR4J 
model and HBV model during the calibration period and become worse in the validation period. These 
results are similar compared to the results of the objective functions in figure 4-3. The HyMOD model still 
under performs compared to the other models. In this case the RVE values for the HyMOD model are 
positive instead of the negative results for the combined REVE objective function. This indicates that the 
HyMOD model is overestimating the discharge volume in the simulations.  
  

figure 4-4, Values of the Relative Volume Error (RVE) objective function for each Meuse sub-basin. The values close to 0 are an 
indication that the simulations are closely mimicking the observations. The different colours are representing the hydrological models, 
red represents the GR4J model, orange the HyMOD model and green the HBV model. The results for the calibration and validation are 
represented by filled and unfilled symbols respectively 
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4.2 Synthetic data analysis 

In this paragraph the results of the statistical tests are presented. The used significance for every test in 
this study is 95%. This means that when a p-value lower than 0.05 is found the test is significant and the 
null hypothesis is rejected. The cells in the table that are marked red will indicate that the null-hypothesis 
can be rejected. This will be the case for every table in this chapter. Only a couple of upstream sub-basins 
are selected for this analysis. The selected upstream sub-basins are Chiers, Semois, Lesse, Ourthe, and the 
Mehaigne. The Mehaigne is added to the selection because of the calibration/validation results. First of all 
the calibration and validation results show that the performance of the GR4J is superior to the 
performance of the HBV and HyMOD model (figure 4-1). The good performance of the GR4J model might 
be explained by the additional term of the GR4J model structure that allows water to leave the sub-basin 
via groundwater. This makes the Mehaigne an ideal sub-basin for further analysis.  
 
First of all the results of the equality of means test is presented. The results of the test is presented in a 
table. The table represents the results of the equality of means test of the annual maximum discharges 
that are from the following sources: observed, simulated using historical data, and simulated using 
synthetic. This will be done for all every hydrological model and for each selected sub-basin. The results of 
the equality of variance test is shown next. The lay-out of this table is the same as the table of the equality 
of means test results. After the results of the equality of variance/mean are presented, the Gumbel plots 
of the synthetic data annual maximum discharge simulations are given. These Gumbel plots show the 
results of the synthetic data simulations at Chooz, Monsin and each selected upstream sub-basin. Finally 
the results are presented for the scatter plots, which are used to analyse the synthetic data simulations 
and observations in more detail. Like the Gumbel plots, the results of the scatter plots are presented  at 
Chooz, Monsin and each selected upstream sub-basin.  
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4.2.1 Equality of mean test 

The statistical test that was used to test whether the population means are equal is the Two-independent 
samples T-test. The green cells are an indication that the null-hypothesis cannot be rejected. In this case 
it can be assumed that the population means of the annual maximum discharges are the same. If the 
means of the annual maximum discharge simulations are different compared to the annual maximum 
discharge observations the overall annual maximum discharges might be over or underestimated. table 
4-1 shows that again the HyMOD model has difficulty properly simulating the annual maximum discharges. 
Thus the simulated annual maximum discharges are over or underestimated resulting in a higher or lower 
mean compared to the observations. The tests comparing the population means of the observations and  
synthetic simulations indicate that the means are unequal. Whereas the population means of the 
observations and historical data simulations appear to be equal.  
 

Equality of mean: historical simulations - observations       

 upstream  downstream    

 Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.6263 0.5733 0.7801 0.9665 0.3314 0.7587 0.2829 

HyMOD 0.4967 0.6033 0.6744 0.1961 0.0858 0.0139 0.5416 

HBV 0.5791 0.4447 0.8417 0.7773 0.5018 0.9929 0.1865 

        

Equality of means: synthetic data simulations - historical data simulations   

  upstream   downstream       

  Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.5661 0.8490 0.6641 0.3594 0.7660 0.8487 0.7530 

HyMOD 0.6274 0.5071 0.7749 0.8017 0.1760 0.4603 0.2733 

HBV 0.4881 0.9588 0.6985 0.3604 0.9248 0.6832 0.9846 

        

Equality of means: synthetic data simulations - observations     

 upstream  downstream    

 Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.1681 0.1410 0.3993 0.4066 0.1730 0.7871 0.0636 

HyMOD 0.0704 0.9954 0.2924 0.0015 0.0106 0.0000 0.9821 

HBV 0.0986 0.1472 0.4736 0.1615 0.2801 0.6986 0.0322 

 
 
 
  

table 4-1, Two-independent samples T-test results comparing annual maximum discharge means of different sources 
(downstream indicates that multiple sub-basins are linked together to simulate the discharge: 6 for Chooz, 14 for Monsin) 
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4.2.2 Equality of variance test 

The table below presents the p-values of the equality of variance test results. The statistical test that was 
used to acquire the p-values is the Brown-Forsythe test. If the test does not show a significant results 
(green cells) then it can said that the population variances of the distributions are the same. The 
simulations should be close to the observations. Thus when the population variances are significantly 
different (red cells) the simulations are not correctly showing the variability in the annual maximum 
discharge simulations. From table 4-2 it is clear that during the synthetic data simulations the HyMOD 
model has difficulty simulating the variability of the annual maximum discharges for most of the upstream 
basins. The equality of the population variances for the historical data simulations and observations can 
be explained by the smaller number of annual maximum discharges that are compared (30/30 instead of 
49998/30). The larger sample size increases the precision of the test. This increases the chance that the 
test show significant results when even small variance differences are found (This is also the case for the 
HBV and GR4J model but these models seem to simulate annual maximum discharge variances that are 
close to the observations). 

Equality of variance: historical simulations - observations     

 downstream upstream     

 Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.9065 0.2998 0.0607 0.8367 0.7635 0.6241 0.6350 

HyMOD 0.6711 0.3817 0.3781 0.2853 0.3074 0.0075 0.2848 

HBV 0.8825 0.4179 0.2265 0.7658 0.7636 0.7796 0.3460 

        

Equality of variance: synthetic data simulations – historical data simulations   

  downstream upstream         

  Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.3949 0.5879 0.0993 0.2864 0.7810 0.5059 0.4617 

HyMOD 0.1384 0.1315 0.0168 0.0812 0.1838 0.2947 0.1782 

HBV 0.2853 0.6522 0.0483 0.3858 0.5947 0.2150 0.0140 

        

Equality of variance: synthetic data simulations - observations     

  downstream upstream         

  Chooz Monsin Chiers Semois Lesse Ourthe Mehaigne 

GR4J 0.5274 0.2745 0.2887 0.4949 0.4113 0.9712 0.2207 

HyMOD 0.0186 0.5245 0.5228 0.0000 0.0001 0.0000 0.0023 

HBV 0.1877 0.4136 0.8720 0.1601 0.2789 0.4143 0.2129 

 
  
  

table 4-2, Brown-Forsythe test results comparing annual maximum discharge variances of different sources (downstream 
indicates that multiple sub-basins are linked together to simulate the discharge: 6 for Chooz, 14 for Monsin) 
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4.2.3 Gumbel plots 

figure 4-5 shows the annual maximum discharges of the observations and the synthetic data simulations. 
The graph shows sorted annual maximum discharge values. The synthetic data simulations for each 
hydrological model are presented using the same colours as was shown previously in this chapter. The 
largest discharge values have a low chance of occurrence. The chance of occurrence increases when the 
discharge values decrease. In order indicate return periods that are associated with the discharge values 
several red lines are given which present the return periods.  
 
GR4J and HBV 
Comparing the synthetic data simulations from the GR4J and HBV model shows that the simulations are 
similar in most plots (figure 4-5). This is especially the case for discharge simulations that have a higher 
chance of occurrence (before the T = 10 year line). However, when looking at larger discharge values the 
gap between the GR4J and HBV model discharge simulations increases. In most cases this means that the 
GR4J model discharge simulations are higher compared to the HBV discharge simulations. Thus, when the 
precipitation becomes more extreme the GR4J model simulates higher discharges compared to the HBV 
mode for most upstream sub-basins (Chiers, Semois, Ourthe, Mehaigne).  This is also the case for the 
discharges at Chooz, showing increasing differences between the GR4J and the HBV when annual 
maximum simulations become larger. However, when all the discharges are combined for the simulation 
of the total Meuse discharge at Monsin the simulations are very similar.  
 
HyMOD 
From these graphs it becomes clear that the HyMOD annual maximum discharge simulations are lower 
compared to the simulations of the other hydrological models. This is supported by the low RMERV values 
for  found during the calibration process. In the calibration process the RMERV value is underestimated 
for the HyMOD model in most of the selected sub-basins. The lowest HyMOD simulations (Semois, Lesse 
and Ourthe) are also supported by of the statistical analysis, showing that the population means/variance 
of the simulations and observations are unequal.  
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figure 4-5, Graphs, presenting the annual maximum discharge simulations for each hydrological model using synthetic data using 
a Gumbel scale 
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4.2.4 Scatter plots 

The scatter plots present a more detailed comparison between the synthetic data simulations and the 
observations. Per selected  sub-basin the discharge simulations are plotted against the observed 
discharges for each hydrological model separately. Using linear correlation techniques a line for the scatter 
plot is determined in order to clarify the graph. The black dashed line indicates when the observations are 
equal to the simulations. When the points are under the dashed black line the annual maximum discharge 
values are underestimated, while they are overestimated when located above said line. The scatterplots 
are presented in (figure 4-6). 
 
Since the scatterplots are based on the Gumbel plots, the scatterplots reveal similar things as the Gumbel 
plots. The GR4J and HBV model simulations have similar lines when they are compared to each other.  
Although the simulations of the two models are similar in most cases the discharges are underestimated. 
An explanation for this is that the length of the observed series is limited. During this short period outliers 
could have occurred. This would have increased the steepness of the observation points in the Gumbel 
plots. For instance the highest discharge in the Lesse might be considered as an outlier since its 
approximately 33% larger compared to the second largest discharge. 
 
HyMOD discharge simulations are in most cases larger underestimated compared to the discharge 
simulations of the GR4J and HBV model. However what the scatterplot also reveals is the overestimation 
of the lower annual maximum discharges by the HyMOD model. The overestimation of the lower annual 
maximum discharge and underestimation of the higher annual maximum discharges causes the fitted line 
to shift. This creates a gentle slope compared to the scatter plots of the other models. The gentle slope is 
an indication that the HyMOD model is unable to simulate the variability of the discharge that is required 
for the Meuse basin. 
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figure 4-6, Scatterplots using the observed annual maximum discharge data alongside the synthetic data annual maximum 
discharge simulations of the different hydrological models with similar reduced variate values.  
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4.3 Model structure analysis (historical) 

The most important differences between the hydrological model structures are described in the method. 
Based on these differences, this paragraph will discuss which hydrological model structure components 
have the most influence on the high flow discharge simulations of the models. By analysing the influence 
of the model structure on the peak discharge the modeller gains a better understanding of the used 
hydrological models. 
 

4.3.1 Linear storages 

In Appendix C different hydrographs of five flood events are presented of multiple upstream sub-basins, 
figure 4-7 is presented as an example. What these hydrographs reveal is that peak discharge simulations 
of the HyMOD model are consistently underestimated. However the overall simulated discharge volume 
of the HyMOD model during that period is in most cases larger compared to the observations and other 
hydrological model simulations. This was also found for upstream basin calibration and validation results.  
 
So some part of the HyMOD model structure is causing to underestimate peak discharges but also 
overestimates more average flows. The most likely cause is that the discharge is solely generated with the 
use of linear containers. Based on two model parameters a percentage of the containers water volume is 
transformed into discharge. This percentage does not increase with the water volume of the container. 
Whereas, for the GR4J and HBV model the percentage increases with the water volume of the container. 
Thus the HyMOD model is not capable of simulating the rapid response of the Meuse basin towards large 
volumes of precipitation. In an attempt to simulate the high discharge peaks and lower the RMERV value 
the discharge volume is overestimated and still the hydrological model fails to reach the highest discharge 
peaks.  

 
figure 4-7, Discharge flood wave for the Semois 1995, above the precipitation (all models) is presented, on the left the total volume 
of the discharge wave is presented. For this discharge wave actual evapotranspiration and snow melt does almost not occur. 
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4.3.2 Unit hydrographs 

The GR4J in this study can control the discharge more precisely compared to the HBV model. With the use 
of unit hydrographs the time that it takes for precipitation to transition into discharge can be simulated. 
Since the MAXBAS parameter is not included in this version of the HBV model the reaction of the HBV 
model to precipitation is always one day. For a lot of sub-basins the parameter (x4) that controls the unit 
hydrographs in the GR4J model also uses a reaction time of one day. This occurs when x4 has a value close 
to two (Lesse, Ourthe. Appendix E). Indeed for most of the sub-basins the HBV and GR4J peak timing is 
similar for the Ourthe and Lesse. An interesting case is the Semois were the parameter value for x4 is 
higher than three. This implies that the reaction time of the Semois to precipitation is larger than one day. 
From the hydrographs it becomes apparent that the GR4J model is better at correctly timing  the peak 
discharges in the Semois compared to the HBV model (figure 4-7, Appendix E).  
 

4.3.3 Snow module 

Another component that could have an influence on the high discharge peaks is the snow module. This 
module assumes whether precipitation falls as snow or rain based on the temperature. Precipitation could 
come down as snow and accumulates when the temperature is low enough. When the temperature 
increases, the combination of melt water and rain could induce large discharge peak. This large discharge 
peak would have been missed by hydrological models without a snow module since precipitation would 
always come down as rain. The precipitation would be transformed into discharge much earlier, thus 
resulting in a more evenly spread discharge wave. HBV contains a snow module , unlike the GR4J and 
HyMOD model. In order to illustrate the situation that is described above the hydrographs of the discharge 
wave of March 1988 Is presented for sub-basin the Ourthe (figure 4-8) (HBV does not generate discharges 
due to snowmodule, whereas GR4J and HyMOD simulate discharges). The hydrographs of other sub-basins 
in the same period have similar results.  

 
figure 4-8, Discharge flood wave with large snowmelt contribution for the Ourthe 1988, above the precipitation, and snowmelt 
(HBV) on the left the total volume of the discharge wave is presented alongside the precipitation percentage that contributed to 
the discharge wave as snow melt (HBV). 
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4.3.4 Upstream basin contribution 

In previous chapters it was already mentioned that during the calibration process the values of the 
parameters that were found  for downstream sub-basins might not correctly represent the hydrological 
behaviour of the sub-basin. Instead the values for the parameters that were found for downstream basins 
compensate for the lower simulations of upstream sub-basins. In order to assess this for the high flow 
discharge simulations the contribution to the total water volume of a discharge wave at Monsin is 
presented. This is done for the observations and each hydrological model for five discharge waves (same 
as in Appendix C), resulting in 20 different pie charts. In order to determine the percentage for each sub-
basin only the discharge that contributed to the discharge wave are used. Although this might not be 
entirely true for the observations, it should illustrate how accurate the contributions are according to the 
different hydrological models figure 4-9. 
 
From this graph it becomes clear that the HyMOD model is not capable of correctly simulating the 
contribution to the discharge wave. Compared to the observations the HyMOD model overestimates the 
upstream basin contribution. This shows that although the objective function values for the HyMOD model 
are decent at Monsin the model is producing decent simulations for the wrong reasons. When looking at 
the parameter set of the HyMOD model for the most downstream basins and the Sambre the value for 
parameter five implies that the sub-basins react faster to precipitation that the sub-basins in the Ardennes 
(Appendix E). This is unlikely since the slopes in the Ardennes are much steeper compared to the 
downstream sub-basins.  
 
For most discharge waves the GR4J model and HBV model seem to approach the contribution suggested 
by the observed discharge waves (figure 4-9). However for the discharge wave in 1988 only the HBV model 
is approaching the contribution suggested by the observations. This can be explained by the snow module 
in the HBV model. The GR4J and HyMOD model are probably underestimating the volume of the discharge 
wave since a portion of the precipitation is already transitioned into discharge instead of being stored as 
snow. Still it is not entirely clear if the GR4J and HBV model correctly simulate the most downstream sub-
basins when looking at the parameter sets. The GR4J model parameter set implies that water is leaking to 
other sub-basins via the groundwater. Whereas the parameter values of FC and BETA are very close to the 
maximum values set in the range.  
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figure 4-9, sub-basin contribution to five different floodwaves according to the different hydrological models. Discharge 
contributions from Chooz contain the six sub-basins that are located upstream of Chooz.  
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5. Discussion  
 
Potential 
This study has been an attempt at assessing the hydrological model structure influence on synthetic data 
simulations. Exploring how different hydrological models, which are prepared using the same methods, 
and use the same input data, can influence annual maximum discharge simulations. It is shown that it is 
worth taking model structures into account when performing synthetic data simulations. The usage of 
another hydrological model could result in different synthetic data simulations (on a sub-basin level), 
which could lead to completely different conclusions.  
 
Limitations 
One of the most important limitations of this study is that there is no way of telling  which hydrological 
model simulates the annual maximum discharges with the largest return periods more correctly.  This large 
uncertainty about the synthetic data simulations makes it difficult to use for legislation purposes. 
Furthermore, the sudden similarity of the annual maximum discharge simulations at Monsin cannot be 
explained. There are some ideas why this happens for instance the HBV model could simulate larger 
discharges in the most downstream sub-basins (Chooz-Namur, Sambre, Namur-Monsin) under extreme 
precipitation conditions compared to the GR4J model. This is certainly possible since the parameter values 
suggests that when the storage that is mainly responsible for generating discharge contains a lot of water, 
large amount of run-off is generated by the HBV model (Large ALPHA and Kf value, Appendix E). 
 
Aside from the uncertainty about the annual maximum discharge simulations using synthetic data, there 
are other uncertainties as well. Mainly because the aim of this thesis was to analyse the influence of model 
structures, the assessment of parameter uncertainty has been neglected. Whereas other studies focus 
more on parameter uncertainty assessment (Blazkova & Beven, 2002; Blazkova & Beven, 2004; Hegnauer 
et al., 2014) The optimization algorithm only provided a single optimal performing parameter set. 
Assessing the parameter uncertainty could have helped determine which hydrological processes are more 
important in the Meuse sub-basins according the hydrological models. Also the constant routing between 
the sub-basins does not correctly represents reality. The routing should be variable, however for the 
purpose of this thesis the constant routing is justified.  
 
Generalisations 
Although no studies have been found were multiple hydrological models use synthetic data for the 
simulations, the literature states that there is no reason not to do this. Blazkova & Beven (2002), suggested 
that other models (weather and hydrological) could generate discharges by using synthetic data that are 
just as “correct”. Furthermore the outcome of synthetic data simulations are extremely dependent on 
which hydrological model and synthetic data is used (Blazkova & Beven, 2002). Even with the large 
uncertainties considering the synthetic data simulations, there is no reason why the extrapolation of 
observed data provides results for large annual maximum discharge values that are more “correct” 
(Blazkova & Beven, 2004). The approach of using synthetic data and hydrological models provides a more 
physical basis for large discharge estimations (Hegnauer et al., 2014) , which takes basin characteristics 
and rainfall statistics into account (Blazkova & Beven, 2004). 
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Implications 
When comparing the results of the of the annual maximum discharge synthetic data simulations at Monsin 
with the discharges found in the original study the results are very similar (Hegnauer et al., 2014, appendix 
A.2.3). The discharges found in the original paper are higher but this might be explained by the use of the 
hydrodynamic SOBEK model. This would probably increase the flow velocity during high flow discharges, 
resulting in larger annual maximum simulations. This study shows that with a relative simple routing 
method similar annual maximum discharges can be generated.  
 
Many studies for the GRADE instrument have already been performed in perfecting the discharge 
simulations (Hegnauer & Verseveld, 2013; Kramer et al., 2008; Kramer & Schroevers, 2008; Leander & 
Buishand, 2011; Leander & Buishand, 2004; Winsemius et al., 2013). These studies have not yet included 
another hydrological model in their analysis. In this study the GR4J model clearly had the best performance 
in simulating discharges of the Mehaigne. Suggesting that components of this hydrological model are 
better capable of mimicking the hydrological behaviour of the Mehaigne. Instead of trying to optimize a 
hydrological model that is missing a certain process that is important for a sub-basin it might be worth it 
to consider another hydrological model for the synthetic data simulations.  
 
The amount of uncertainty outlined in the limitations imply that it will be difficult to make a strong 
conclusion about the results. Even so, this research is still valuable, showing that model structure can have 
large influences for synthetic data simulations on a sub-basin level. This further increases the notion that 
it is always important to determine if the hydrological model structure is correctly representing 
hydrological processes in a sub-basin, especially when using synthetic data that create conditions that 
have not yet been observed.  
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6. Conclusion and Recommendations 

6.1 Performance of the hydrological models 

When comparing the objective functions it shows that the GR4J and HBV model have similar performances 
in simulating discharge for most sub-basins. These two hydrological models are generating objective 
function values that are approaching their optimum value for all separate objective functions. This is the 
case for the calibration and validation period, indicating robust performances for both hydrological 
models.  The differences between the GR4J and HBV models are to small too conclude which of the 
hydrological has the best performance. While two hydrological models have good performances, the 
HyMOD model shows worse performances in almost all sub-basins. This is especially the case for the 
objective function value which represents the peak discharges (RMERV) indicating that the HyMOD model 
is not capable of simulating the peak discharges correctly. Although the downstream simulations generate 
better objective function values,  floodwave contribution analysis reveal that the downstream sub-basins 
overestimate the discharge. Indicating that the downstream sub-basin simulation is compensating for the 
upstream sub-basin performance.  
 
Conclusion: 
The GR4J and HBV model show similar robust performances for the calibration and validation periods. 
Both the hydrological models are capable of simulating discharges that are similar to the observed 
discharges. Due to the small differences it is unclear which of these two hydrological models have the best 
performance. The HyMOD model cannot is not able to reach the required peak discharge values, resulting 
in a worse performance compared to the other hydrological models.  
 

6.2 Annual maximum discharge simulations using synthetic data 

The results of the statistical tests, gumbel plots, and scatter plots support each other. Showing that for 
higher occurrence rates the GR4J and HBV model simulate similar annual maximum discharges when using 
synthetic data. However when looking at most upstream sub-basin simulations the annual maximum 
discharge simulations of the GR4J model starts to increase faster compared to the annual maximum 
discharge simulations of the HBV model. This shows that the model structure selection for upstream sub-
basin simulation can have an effect on the annual maximum discharge simulations with larger associated 
return periods. When analysing the synthetic data simulations at Monsin the GR4J and HBV simulations 
are over the whole range of annual maximum discharge values. Thus, something is flatting the effect in 
the upstream sub-basin simulation. The HyMOD is not able to reproduce the peak discharges of the Meuse 
basin. This effect translates to lower annual maximum discharge simulations for all sub-basins.  
 
Conclusion: 
While the synthetic data discharge simulations of the GR4J and HBV model are similar for the lower return 
periods ( < T=10), they start to differentiate when the return period increases. This suggests that the 
selection of a model structure has a large influence on the most annual maximum discharge simulations 
with a small chance of occurrence. However, the similar simulations at Monsin indicates that the 
differences caused by the upstream sub-basin simulation can be reduced when the discharges of multiple 
sub-basins are combined.  
 
 
 



58 
 

6.3 Final conclusion 

When looking at both the conclusions for the research questions some interesting aspects can be found. 
First of all similar performances seem to indicate similar synthetic data simulations. Furthermore higher 
values for the objective function responsible for peak discharge simulations (RMERV) also lead to higher 
synthetic annual maximum discharge simulations. However the upstream sub-basin synthetic data 
simulations, which are only influenced by the model structures, show that hydrological models with similar 
performances can diverge when the associated return periods of the discharges increase. This suggests 
that similar performances of hydrological models do not automatically lead to similar annual maximum 
discharge with a small occurrence chance. Although, there are differences for the synthetic data upstream 
sub-basin simulations, the results for the discharge simulations at Monsin are encouraging. Even with the 
combination of all the different sub-basins the GR4J and HBV still manage to simulate discharges over a 
50000 year period that are very similar.  
 
Conclusion: 
Similar performance does not automatically result in similar synthetic data simulations in upstream sub-
basins when considering the annual maximum discharge values associated with large return periods. 
Different model structures can result for similar synthetic data simulations for the whole Meuse basin.  
Although, the paths of the hydrological model to reach these similar results might be different.  
  

6.4 Recommendations 

 
Policy recommendations 
The similar results of the synthetic data simulations and historical data simulations for the GR4J and HBV 
model near Monsin are encouraging. The contribution of sub-basins to high discharge wave simulations 
are very similar (except when snow is involved) and more importantly close to the observed values. This 
indicates that both hydrological model seem to correctly reproduce the hydrological behaviour of a sub-
basin. Although it is impossible to say which of the synthetic data simulations are more “correct” the 
similarity of both these hydrological models seem to suggest that the GR4J and HBV simulations are in the 
right direction. Therefore, the synthetic data annual discharge simulations of the GR4J and HBV should be 
considered over the synthetic data of the HyMOD model.  
 
Scientific recommendations 
This study showed that when the model structure is almost completely isolated (single upstream sub-basin 
simulations) large differences in the synthetic data simulations occur for discharge associated with large 
return periods.  Whereas this is not the case for simulated discharges that are more common (< T=10). 
This might indicate that the influence of the differences between hydrological model structures are more 
apparent for larger discharges. Further research could determine whether this is case. Aside from the 
annual maximum discharges, the influence of hydrological model structures on the simulation of low flow 
discharges using synthetic data could be investigated as well.  
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Appendix A.  The GRADE instrument 

 

A.1 Stochastic weather generator 

The weather generator in the GRADE instrument is generating daily weather for separate sub-basins of 
the Meuse. These generated daily weather series contain daily precipitation, daily temperature and daily 
potential evapotranspiration. This is done over a very long time period (50.000 years) (Hegnauer et al., 
2014). The generated weather is based on historical precipitation and temperature series.  The daily 
rainfall and temperature measurements are resampled using a nonparametric resampling technique. This 
creates different temporal patterns compared to the observed historical data (figure A-1). Since these 
different temporal patterns are simulated over a very long period, new extreme weather events are the 
result of this resampling (Hegnauer et al., 2014).  

A.1.1 Generating Potential evapotranspiration 

Temperature and precipitation are generated directly with the resampling of historical temperature and 
precipitation series. This is not the case for the potential evapotranspiration, which is derived based on 
the resampled temperature and the averages of the observed potential evapotranspiration 
The daily potential evapotranspiration for the weather generator is determined using the following 
equation (equation A-1). 
 

𝑃𝐸𝑇𝑤𝑔 = (1 + 𝑒𝑡𝑓 ∙ (𝑇𝑟𝑒 − �̅�)) ∙ 𝑃𝐸𝑇̅̅ ̅̅ ̅̅
𝑚 

  

figure A-1, Resampling of the historical recorded rainfall series results in a different “largest 4 day amount” (Hegnauer et 
al., 2014). 

equation A-1 
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Where 𝑃𝐸𝑇𝑤𝑔 (mm∙day-1) the weather generator daily potential evapotranspiration, 𝑇𝑟𝑒 (oC) is the daily 

temperature that was a result of the resampling, �̅� (oC) observed long-term monthly average temperature, 
𝑒𝑡𝑓 is the proportionality constant and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅

𝑚  (mm∙day-1) is the long-term monthly potential 
evapotranspiration. The value for 𝑒𝑡𝑓 varies from an average of 0.08 (oC) -1 in winter and 0.13 (oC) -1  in 
summer (Hegnauer et al., 2014).  

A.2.1 Resampling process 

 
Data sets 
The resampling process uses two data sets. The first dataset is consists only of a few 
precipitation/temperature stations but is available for a longer time period and is used for the driving of 
the weather generator (step 3 and 4). The driving can be explained as the process of selecting a random 
day from which the data will be used. The second available dataset is for a shorter period but consists of 
more precipitation/temperature stations and also potential evapotranspiration stations, which results in 
a dataset with more spatial differential data. Therefore daily weather values are drafted from this dataset 
for each Meuse sub-basin (step 5) based on the day that was randomly selected in step 3 and 4. The details 
of these datasets will be described later in this chapter. 
 
Feature vector 
Each historical day from the long period observed weather series can be described using a feature vector. 
The feature vector consists of three different components:  
1. The average daily value of the standardized temperature based on the only two temperature stations 

of the long period dataset, which is denoted by �̃�𝑡.  
2. The average daily value of the standardized precipitation based on seven precipitation stations, which 

is denoted by �̃�𝑡.  

3. The average of standardized rainfall of the four preceding days, i.e. ¼( �̃�𝑡−1 + �̃�𝑡−2 + �̃�𝑡−3 + �̃�𝑡−4 ), 

denoted by �̃�𝑡−4 𝑎𝑣𝑔.  

This last component was added in order to improve the reproduction of the autocorrelation of daily rainfall 
and the standard deviation of monthly totals (Leander et al., 2005). The feature vector is used in the 
resampling process to find the nearest neighbours.  
 
Resampling steps 
This paragraph states the resampling steps in order to generate daily weather. These steps are based on 

the description given by  Leander et al., (2005) with the extended datasets described in (Leander & 

Buishand, 2011). The resampling steps are schematized in the  

1. Randomly select a historical day within the moving window centred on 1 January as the first simulated 
day. 

2. Compose a feature vector consisting of the three following components: �̃�𝑡  , �̃�𝑡 and the �̃�𝑡−4 𝑎𝑣𝑔  

3. Find the 𝑘 nearest neighbours of the latest sampled day within a window centred on the selected day 
(The number of nearest neighbours is denoted by 𝑘, the window is expressed in a number of days denoted 
by 𝑊) 
4. Randomly select one of these nearest neighbours, using the decreasing (equation A-2). Denote the date 
of the selected nearest neighbour by [𝑖] and that of its historical successor by [𝑖 + 1]. 
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5. For each of the simulated variables (areal rainfall or station temperature), check whether data for this 
variable exist for day [𝑖 + 1] in the short time period data set.  
 

– If so, add the standardized historical data to the generated sequence for this variable. 
– If not, use the feature vector of the standardized station data for day 𝑖 + 1, find the nearest 
neighbour of day [𝑖 + 1] among the days for which the data for the considered variable do exist 
and add the standardized data of this nearest neighbour to the generated sequence. The search is 
restricted to a 𝑊 -day window centred on day [𝑖 + 1]. 

 
6. Repeat steps 2–5 for each simulated day.  
7. Transform the resampled standardized variables back to their original scale. 
 
 

 
Figure A-2, Schematization of the resampling process (Leander & Buishand, 2004) (One of the nearest neighbours (green, k=5) of 
the last sampled days (red) is randomly selected (blue arrow), with the use of a decreasing kernel Fout! Verwijzingsbron niet 
gevonden.)The next historical day (red arrow) provides the values for the new resampled day. 

 

𝑝𝑗 = 

1
𝑗

∑
1
𝑖

𝑘
𝑖=1

 

  

equation A-2 
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equation A-2 represents the decreasing kernel, where 𝑝𝑗  is the selection chance, 𝑗 gives the neighbour 

rank, 𝑖 presents the selected day and 𝑘 the number of neighbours. The decreasing kernel function gives a 
weight to closer neighbours increasing the likelihood of selecting the closer neighbours during the 
resampling process. Large values of 𝑘 for number of nearest neighbours usually results in reproduction of 
autocorrelation coefficients that are worse compared to lower values of 𝑘. While small values of 𝑘 could 
result in repetitive sampling of the same historical days. In order to preserve autocorrelation and prevent 
repetitive sampling the number for 𝑘 was set to 10 (Hegnauer et al., 2014).  A window which is centred on 
day 𝑖 was incorporated in order to constraint the number of days that can be used for the nearest 
neighbour technique. This ensures that a summer day is never preceded or succeeded by a winter day 
(Leander & Buishand, 2004). The value for 𝑊 was set to 121 days in order to prevent repetition of the 
same historical days during extreme multi-day weather events.  
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A.2 GRADE instrument discharge simulations at Borgharen 

 

A.1.2 HBV and SOBEK model implementations 

Discharges of the entire Meuse basin are generated using 15 smaller sub-basins. Daily precipitation, daily 
temperature and daily potential evapotranspiration for all of these sub-basins are used as input for the 
HBV model (Hegnauer et al., 2014) in order to simulate discharges for each sub-basin. Which is an semi-
distributed hydrological model described in Lindström et al (1997).  The sub-basins are located upstream 
of Borgharen and cover an area of approximately 21000 km2.  In order to calibrate the HBV model a 
GLUE analysis is applied. This calibration method also serves as an uncertainty analysis of the HBV model 
parameters. 
 
A flood routing component is also included in the HBV model, however in order to incorporate the effect 
of upstream flooding a hydrodynamic model is required. The flood routing is performed with a 
hydrodynamic Sobek model. The hydrodynamic model starts at Chooz (France) and ends at Keizersveer 
(The Netherlands). Although the hydrodynamic model is incorporated simulations including upstream 
flooding have not yet been performed for the Meuse (Hegnauer et al., 2014) 

 
 
 

  

Figure A-3, Layout of the sub-basins of the Meuse HBV model 
(Hegnauer et al., 2014) 
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A.3 GRADE instrument results 

A.1.3 HBV model performance 

 As a result of the GLUE analysis calibration, multiple sets containing different parameter values are 
accepted. In order to reduce the calculation time, 500 parameter sets have been selected to perform 
simulations using the weather generator. After these simulations the yearly maximum discharge was 
found with a return period of 100 years was found for each simulation. From the yearly maximum 
discharge distribution five values are selected. Each of these represent different percentiles of the 
distribution. These are the mean 50%, the quadrants (25% and 75%), upper and lower (95% and 5%) 
boundaries. The five parameter sets that correspond to the percentiles are selected for the performance 
assessment. Each parameter set is used in the HBV model to simulate nine discharge events. In order to 
measure the performance the Nash-Sutcliffe (NS) efficiency is used  The parameter sets are compared to 
the parameter sets that are used by Van Deursen who calibrated the HBV model for the entire Meuse 
basin without the focus on the high flow discharges. The results of the simulations are presented in table 
A-1. A value close to one indicate that the parameter set is performing well according to the NS efficiency. 
 

A.2.3 Final GRADE result 

Frequency discharge curves are based on the long time series of daily discharges simulated by the HBV 
model in the GRADE instrument. In Hegnauer et al., (2014) the HBV model generates daily discharges for 
a period of 50000 years using the parameter set that is associated with the mean (50%) simulations. A 95% 
confidence band is constructed by performing additional simulations uncertainty simulations. The 
uncertainty of the weather generator is incorporated in the confidence band by generating multiple 
different 20000 year weather generator datasets that are using 69 year of daily weather data instead of 
72 years. The historical daily weather dataset that is used by the weather generator shifts every 3 non 
overlapping years, which results in a total of 24 different 20000 year daily weather datasets. Each 
parameter set that represents different percentiles found in the previous paragraph (5%, 25%, 50%, 75%, 
95%) uses the 24 weather generator datasets in order to simulate daily discharges. Thus the total amount 
of uncertainty simulations that are performed are 24x5 simulations (Hegnauer et al., 2014). 
 
 
 
 
 
 
 

Start event  16-12-93 25-1-95 20-10-98 1-12-99 15-12-00 22-1-02 15-12-02 15-12-02 5-1-04 mean 

End event 26-12-93 04-02-95 26-10-98 15-01-00 15-04-01 30-03-02 29-01-03 29-01-03 31-01-04   

Van Deursen  0.84 0.78 0.89 0.76 0.83 0.84 0.71 0.86 0.76 0.81 

GRADE 5% 0.71 0.78 0.78 0.86 0.89 0.91 0.81 0.97 0.92 0.85 

GRADE 25%  0.68 0.69 0.70 0.89 0.88 0.87 0.86 0.97 0.92 0.83 

GRADE 50%  0.58 0.83 0.91 0.86 0.84 0.85 0.89 0.97 0.92 0.85 

GRADE 75%  0.95 0.60 0.75 0.88 0.86 0.88 0.79 0.97 0.94 0.85 

GRADE 95%  0.86 0.64 0.76 0.87 0.80 0.82 0.90 0.96 0.93 0.84 

table A-1, Nash-Sutcliffe (NS) efficiencies for the HBV simulations at Borgharen for 9 discharge events between 1993 and 2004.(Kramer & 
Schroevers, 2008) The bold numbers indicate the highest value for a high flow event 
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The frequency discharge curve with the confidence band is presented in figure A-4. By determining the 
standard deviations of the discharge that is associated with a return period using the uncertainty 
simulations the confidence band is constructed. The following equation is used in the process. 
 

𝑄𝑇 ± 𝑧𝑦 ∙ 𝑠 = upper  / lower bound 

 
Where: QT is the discharge from the 50000 year reference simulation that is associated with return period 
T, 𝑧𝑦 is 1.96 in the case of a 95% confidence interval, and 𝑠 is the standard deviation. figure A-4 shows a 

shift in slope between the 100 and 500 year return period. Due to the shift in slope the design discharge 
with a return period between 4000 and 10000 years become lower compared to the design discharge of 
the HR2006 method with the same return period. Upstream flooding is not yet incorporated in the long 
time series simulations. Including upstream flooding will probably lower the most extreme discharges. 
Weissman devised a method to reduce the effect of random fluctuations in the upper tail of the 
distribution. This method makes use of the joint limiting distribution of these order statistics. The 
Weissman fit is also used to extrapolate to return periods of 100,000 years (Hegnauer et al., 2014). 

 

  

figure A-4, Frequency discharge curve for the river Meuse at Borgharen, together with the sorted observed 
annual maxima and the 95% confidence band 

equation A-3 

 

Equation A-4 
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Appendix B.  

The shorter more detailed daily weather series per sub-basin are consisting of precipitation: 1961-2007, 
temperature: 1968-2008 and potential evapotranspiration 1961-2007 (Not entirely clear but the 
potential evapotranspiration shares the source with the Belgian precipitation source). This dataset is 
resampled to create synthetic weather. A smaller part of this weather data set was actually available for 
this study (1967-1998) 
 

B.1 Weather data 

 

Driving data 

 

Figure B-1, Location of the observation stations for the long weather dataseries for the period 1930 – 2008                    (except 
1940-1945) 
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table B-1, Sources of the daily area-averaged precipitation for the period 1961 – 2007 per sub-basin. Interpolated station data 
is used for the French part. For the Belgian part the name of the (sometimes) smaller sub-basins with their associated 
observation location are mentioned 

 

table B-2, Derivation of the area-averaged temperature for the period (1967-2008), The data of each sub-basins is corrected for 
the height before the data of the four sub-basin is averaged 

 

 

Sub-basin area-average temperature based on the following stations: 
1. Lorrainde sud Lacuisine, Langres, Loxeville, Reims 

2. Chiers Lacuisine, Loxeville, Reims, St Hubert 

3. Lorraine Nord Forges, Lacuisine, Loxeville, Reims 

4. Bar etc Dourbes,  Forges, Lacuisine, St Hubert 

5. Semois Dourbes,  Forges, Lacuisine, St Hubert 

6. Viroin Chimay, Dourbes, Forges, St Hubert 

7. Chooz - Namur Chimay,  Dourbes, Ernage, Forges 

8. Lesse Dourbes, Forges, Lacuisine, St Hubert 

9. Sambre Chimay, Dourbes, Ernage, Forges 

10. Ourthe Dourbes, Forges,  Lacuisine, St Hubert 

11. Ambleve Aachen,  Ernage,  Lacuisine, St Hubert 

12. Vesdre Aachen,  Beek, Dourbes, Ernage 

13. Mehaigne Aachen,  Beek, Dourbes, Ernage 

14. Namur - Monsin Aachen,  Beek, Dourbes, Ernage 

15. Jeker Aachen,  Beek, Dourbes, Ernage 

 Table B-1, Derivation of the area-averaged temperature for the period (1967-2008), The data of each sub-basins is corrected for 

the height with the following equation: 
( ℎ𝑒𝑖𝑔ℎ𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑠𝑢𝑏𝑏𝑎𝑠𝑖𝑛)∙0.6

100
 before the data of the four sub-basin is averaged 

 

Long daily weather series 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-basin Source of daily area-average precipitation 
1. Lorraine Sud Interpolated station data 

2. Chiers Interpolated station data (French part), and Ton (Harnoncourt) 

3. Lorraine Nord Interpolated station data 

4. Stenay-Chooz Interpolated station data 

5. Semois Semois (Membre) 

6. Viroin Viroin (Vierves) 

7. Chooz-Namur Meuse (Namur, ex. Sambre), excluding Lesse (Gendron), Viroin (Vierves), Semois (Membre) 
and Ton (Harnoncourt) 

8. Lesse Lesse (Gendron) 

9. Sambre Interpolated station data (French part), and Sambre (Namur Belgian part) 

10. Ourthe Ourthe (Hamoir,Tabreux) 

11. Ambleve Ambleve (Martinrive) 

12. Vesdre Vesdre (Chaudfontaine) 

13. Mehaigne Mehaigne (Moha) 

14. Namur-Monsin Meuse (Namur-Huy), Meuse (Huy-Liège), Berwinne (Dalhem) and Hoyoux (Marchin) 

15. Jeker Jeker (Kanne) 

Sub-basin area-average temperature based on the following stations: 
1. Lorrainde sud Lacuisine, Langres, Loxeville, Reims 

2. Chiers Lacuisine, Loxeville, Reims, St Hubert 

3. Lorraine Nord Forges, Lacuisine, Loxeville, Reims 

4.  Stenay-Chooz Dourbes,  Forges, Lacuisine, St Hubert 

5. Semois Dourbes,  Forges, Lacuisine, St Hubert 

6. Viroin Chimay, Dourbes, Forges, St Hubert 

7. Chooz - Namur Chimay,  Dourbes, Ernage, Forges 

8. Lesse Dourbes, Forges, Lacuisine, St Hubert 

9. Sambre Chimay, Dourbes, Ernage, Forges 

10. Ourthe Dourbes, Forges,  Lacuisine, St Hubert 

11. Ambleve Aachen,  Ernage,  Lacuisine, St Hubert 

12. Vesdre Aachen,  Beek, Dourbes, Ernage 

13. Mehaigne Aachen,  Beek, Dourbes, Ernage 

14. Namur - Monsin Aachen,  Beek, Dourbes, Ernage 

15. Jeker Aachen,  Beek, Dourbes, Ernage 
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table B–4, Location, period and source of the observed discharges (1, http://www.hydro.eaufrance.fr/. 2,  http://voies-
hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html. 3, Direct source is not stated. 4, discharge data from 
1969 – 1973 is based on Weerts & van der Klis, 2006.  

 

sub-basin river discharge 
observation location  

discharge period Sources 

1 Lorraine sud 
Meuse St-Mihiel 1968-1998 Banque Hydro1 

2 Chiers Chiers Carigan 1968-1998 Banque Hydro1 

3 Lorraine Nord Meuse  Stenay 1968-1998 Banque Hydro1 

4 Bar etc  Meuse  Chooz 1968-1998 Weerts & van der Klis, 2006 

5 Semois Semois Membre 1968-1998 Région Wallonne2 

6 Viroin  Viroin Treignes 1974-1998 Région Wallonne2 

7 Chooz-Namur Meuse Monsin -  
8 Lesse  Lesse Gendron 1968-1998 Weerts & van der Klis, 2006 

9 Sambre  Flor./Salz. Monsin -  
10 Ourthe  Ourthe Tabreux 1968-1998 Weerts & van der Klis, 2006 

11 Ambleve  Ambleve Martinrive 1968-1998 Weerts & van der Klis, 2006 

12 Vesdre  Vesdre Chaudfontaine 1968-1998 Weerts & van der Klis, 2006 

13 Mehaigne 4 
Mehaigne Moha 1968-1998 

Weerts & van der Klis, 2006 
+ Région Wallonne2  

14 Namur-Monsin Meuse Sint Pieter + Kanne 1911 - 2015 Rijkswaterstaat 
 Table B-2,Location, period and source of the observed discharges (1, http://www.hydro.eaufrance.fr/. 2,  http://voies-
hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html. 3, Weerts & van der Klis, 2006. 4, discharge data from 
1969 – 1973 is based on Weerts & van der Klis, 2006.  

table B–3, Sources of the daily area-averaged potential evapotranspiration for the period 1961 – 2007 per sub-basin. 

Sub-basin Source of daily area-average potential evapotranspiration 
1. Lorraine Sud Averaged potential evapotranspiration from all Belgian sub-basins 

2. Chiers Averaged potential evapotranspiration from all Belgian sub-basins 

3. Lorraine Nord Averaged potential evapotranspiration from all Belgian sub-basins 

4. Stenay-Chooz Averaged potential evapotranspiration from all Belgian sub-basins 

5. Semois Semois (Membre) 

6. Viroin Viroin (Vierves) 

7. Chooz-Namur1 Meuse (Namur, ex. Sambre), excluding Lesse (Gendron), Viroin (Vierves), Semois (Membre) and Ton (Harnoncourt)  

8. Lesse Lesse (Gendron) 

9. Sambre Interpolated station data (French part), and Sambre (Namur Belgian part) 

10. Ourthe Ourthe (Hamoir,Tabreux) 

11. Ambleve2 Ambleve (Martinrive) 

12. Vesdre3  Vesdre (Chaudfontaine) 

13. Mehaigne Mehaigne (Moha) 
14. Namur-Monsin4 Meuse (Namur-Huy), Meuse (Huy-Liège), Berwinne (Dalhem) and Hoyoux (Marchin) 

15. Jeker Jeker (Kanne) 

 
 

1 31-12-1988 onward coupled to sub-basin 6 with a transformation factor of 0.997 based on annual averages from 
1968-1986 

2 31-12-1987 till 01-01-1990 Coupled to sub-basin 10 with a transformation factor of 1,107 based on annual 
averages from 1968-1986 

3 31-12-1987 till 01-01-1990 Coupled to sub-basin 10 with a transformation factor of 1,136 based on annual 
averages from 1968-1986 

4 31-12-1987 till 01-01-1990 Coupled to sub-basin 9 with a transformation factor of 0.969 based on annual averages 
from 1968-1986 

B.2 Discharge 

 

sub-basin river discharge 
observation location  

discharge 
period 

Sources 

1 Lorraine sud Meuse St-Mihiel 1968-1998 Banque Hydro1 

2 Chiers Chiers Carigan 1968-1998 Banque Hydro1 

3 Lorraine Nord Meuse  Stenay 1968-1998 Banque Hydro1 

4  Stenay-Chooz Meuse  Chooz 1968-1998 Weerts & van der Klis, 20063 

5 Semois Semois Membre 1968-1998 Région Wallonne2 

6 Viroin  Viroin Treignes 1974-1998 Région Wallonne2 

7 Chooz-Namur Meuse Monsin - 
 

8 Lesse  Lesse Gendron 1968-1998 Weerts & van der Klis, 20063 

9 Sambre  Flor./Salz. Monsin - 
 

10 Ourthe  Ourthe Tabreux 1968-1998 Weerts & van der Klis, 20063 

11 Ambleve  Ambleve Martinrive 1968-1998 Weerts & van der Klis, 20063 

12 Vesdre  Vesdre Chaudfontaine 1968-1998 Weerts & van der Klis, 20063 

13 Mehaigne 4 Mehaigne Moha 1968-1998 Weerts & van der Klis, 20063 
+ Région Wallonne2  

14 Namur-Monsin Meuse Sint Pieter + Kanne 1911 - 2015 Rijkswaterstaat 

http://www.hydro.eaufrance.fr/
http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html
http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html
http://www.hydro.eaufrance.fr/
http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html
http://voies-hydrauliques.wallonie.be/opencms/opencms/fr/hydro/annuaires/index.html
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B.3 Calibration data 

 

 

 

 

 

 

 

 

 

 

 

 

B.4 Validation data  

 

 

 
 

 

 

 

 

 

 

 

 
 
 

Sub-basin Daily Weather Daily Observed Discharge 
   

1. Lorraine Sud 01-01-1967 , 01-01-1983 01-01-1969 , 01-01-1983 

2. Chiers 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

3. Lorraine Nord 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

4.  Stenay-Chooz 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

5. Semois 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

6. Viroin 01-01-1967 , 01-01-1983 01-01-1974 , 01-01-1983 

7. Chooz - Namur 01-01-1967 , 01-01-1983 - 

8. Lesse 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

9. Sambre 01-01-1967 , 01-01-1983 - 

10. Ourthe 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

11. Ambleve 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

12. Vesdre 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

13. Mehaigne 01-01-1967 , 01-01-1983 01-01-1969 , 01-01-1983 

14. Namur - Monsin 01-01-1967 , 01-01-1983 01-01-1968 , 01-01-1983 

Sub-basin Daily Weather Daily Observed Discharge 
   

1. Lorraine Sud 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

2. Chiers 01-01-1982 , 01-01-1998 01-01-1985 , 01-01-1998 

3. Lorraine Nord 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

4.  Stenay-Chooz 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

5. Semois 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

6. Viroin 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

7. Chooz - Namur 01-01-1982 , 01-01-1998 - 

8. Lesse 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

9. Sambre 01-01-1982 , 01-01-1998 - 

10. Ourthe 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

11. Ambleve 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

12. Vesdre 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

13. Mehaigne 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

14. Namur - Monsin 01-01-1982 , 01-01-1998 01-01-1983 , 01-01-1998 

table B-3, Calibration data, Weather data includes precipitation, potential evapotranspiration and temperature. (Year 
1967 – 1968 is used as a run up year) 

table B-4, Validation data, Weather data includes precipitation, potential evapotranspiration and temperature. (Year 
1982 – 1983 is used as a run up year) 
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Appendix C. Floodwave hydrographs 

In appendix C hydrographs are given for five different sub-basins during five flood waves. The 1980 
floodwave occurred in the summer, whereas the 1988 hydrograph shows large snow melt contribution to 
the discharge waves. Each figure contains the observed discharges and the simulated discharges for each 
hydrological model these are presented on the bottom side of the left graphs. The top side of the left 
graphs contains precipitation, snow melt and actual evapotranspiration values. The right graph of each 
figure presents the discharge volume of the wave on the ride side and the snow melt on the left side. The 
snow melt is determined with the snow module of the HBV model 

C.1 Summer Flood wave of 1980 

 

Figure C-1, Discharges Chiers 1980

 

Figure C-2, Discharges Semois 1980 
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Figure C-3, Discharges Lesse 1980 

 

Figure C-4, Discharges Ourthe 1980

 

Figure C-5, Discharges Mehaigne 1980 
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C.2 Floodwave of 1984 

Figure C-6, Discharges Chiers 1984 

Figure C-7, Discharges Semois 1984

 

Figure C-8, Discharges Lesse 1984 
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Figure C-9, Discharges Ourthe 1984 

Figure C-10, Discharges Mehaigne 1984 
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C.3 Floodwave with large snowmelt contribution of 1988 

 

Figure C-11, Discharge Chiers 1988 

 

Figure C-12, Discharges Semois 1988 

Figure C-13, Discharges Lesse 1988 
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Figure C-14, Discharges Ourthe 1988 

Figure C-15, Discharges Mehaigne 1988 
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C.4 Floodwave of 1993 

Figure C-16, Discharges Chiers 1993 

Figure C-17, Discharges Semois 1993

Figure C-18, Discharges Lesse 1993 
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Figure C-19, Discharges Ourthe 1993 

 

Figure C-20, Discharges Mehaigne 1993 
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C.5 Floodwave of 1995 

Figure C-21, Discharges Chiers 1995 

 

Figure C-22, Discharges Semois 1995 

Figure C-23, Discharges Lesse 1995 
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Figure C-24, Discharges Ourthe 1995 

Figure C-25, Discharge Mehaigne 1995 
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Appendix D. Leaking catchments 

This appendix present figures that indicate if sub-basins leak/gain water from other sub-basins. Values 

above the Blue line indicate that water is received from other sub-basins (figure D-1). Whereas values 

under the redline indicate that water is lost to other sub-basins via groundwater leakage (figure D-1). 

The analysis performed for Meuse sub-basins implicate that the Vesdre and the Mehaigne are losing 

water to other sub-basins. However all values are very close to critical line indicated by the purple dotted 

line (figure D-2). 

 

figure D-1, Leaking gaining sub-basin example graph, Q is the discharge, P is the precipitation, E0 is the potential 
evapotranspiration 

figure D-2, Graph indicating which sub-basins leak water. For these sub-basins, model structures (GR4J) that allow such a leak 
should be able to simulate the discharge better.    
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Appendix E.  Parameter values 

This appendix contains the parameter values that are generated via the calibration process. These 
parameter sets are the historical and weather generator simulations. Not all parameters have been 
calibrated for the HBV model. The cells that are yellow indicate that the values are kept constant in that 
certain sub-basin. Green cells indicate that the parameters are calibrated.  
 
Table E-1, GR4J parameter sets for each sub-basin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table E-2, HyMOD parameter sets for each sub-basin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Sub-basin Parameters     

 x1 x2 x3 x4 

Lorraine Sud 220 -1.21 67 4 

Chiers 693 -1.46 182 2.57 

Lorraine Nord 509 1.08 499 1.45 

Stenay-Chooz 230 1.29 152 2.43 

Semois 231 -1.06 84 3.31 

Viroin 169 -1.07 49 2.02 

Lesse 248 -1.21 71 2.19 

Ourthe 179 -1.31 77 2 

Ambleve 235 -0.5 88 2 

Vesdre 290 -0.99 43 2 

Mehaigne 448 -2.01 48 2.28 

Chooz-Namur,Sambre, Namur-Monsin 147 -3.19 34 2 

Sub-basin Parameters       

 CMAX Bexp Alpha Kq2 Ks 

Lorraine Sud 1034 0.117 0.988 0.00017 0.34 

Chiers 704 0.055 0.389 0.0092 0.39 

Lorraine Nord 332 0.051 0.639 0.02451 0.15 

Stenay-Chooz 349 0.569 0.675 0.03893 0.32 

Semois 1482 0.11 0.962 0.0242 0.43 

Viroin 539 0.187 0.85 0.00002 0.54 

Lesse 1013 0.138 0.703 0.05482 0.52 

Ourthe 703 0.084 0.65 0.02657 0.49 

Ambleve 770 0.122 0.569 0.0439 0.56 

Vesdre 1953 0.149 0.677 0.02568 0.6 

Mehaigne 687 0.087 0.497 0.00042 0.53 

Chooz-Namur,Sambre, Namur-Monsin 1428 0.081 0.999 0.114 0.65 
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Table E-3, HBV parameter sets for each sub-basin 

 

 
 

Sub-basin Parameters             

 FC BETA LP ALFA Kf Ks Cflux PERC 

Lorraine Sud 236 5.93 0.64 0.7419 0.008 0.01 1 2 

Chiers 447 2 0.63 0.0033 0.077 0.01 1 1.05 

Lorraine Nord 261 1.46 0.83 0.0011 0.02 0.01 1 1.08 

Stenay-Chooz 100 3 1 0.0395 0.1 0.01 1 0.82 

Semois 291 5.99 0.8 0.3779 0.039 0.01 1 3 

Viroin 227 3 0.5 0.6658 0.027 0.01 1 0.88 

Lesse 272 2 0.54 0.5118 0.026 0.01 1 0.57 

Ourthe 188 5.99 0.61 0.4551 0.038 0.01 1 3 

Ambleve 394 4.13 0.97 0.736 0.009 0.01 1 1 

Vesdre 507 1.74 0.64 1.613 0.005 0.01 1 1 

Mehaigne 546 3.53 0.5 0.1817 0.1 0.01 1 1.22 

Chooz-Namur,Sambre, Namur-Monsin 799 5.99 0.6 0.643 0.05 0.01 1 0.34 


