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Abstract - The goal of this assignment is to find ways to optimize the selectivity of a
double-sided TIA filter for use in multiband transceivers. Its circuit features passive R and
C components for attenuation and capacitive positive feedback to achieve high linearity. The
analysis of the TIA filter is only in baseband and assumes ideal mixing. An equivalent circuit
is derived, from which a system of equations is found. A general way of solving a system of
equations with higher order solutions using MATLAB is found, and used to find expressions
for the transfer function and input impedance of the TTA filter. These expressions are found
to be correct by simulating their frequency response in Simulink and comparing them to
circuit simulations in LTspice. Approximating the transfer function to a standard second
order form proved to be appropriate in the relevant frequency range. System properties like
natural frequency and quality factor are extracted from this approximation. Next, more
insight is gained in the influence of some capacitors on the transfer function of the TIA filter
by stepping their parameter values in simulation. These values are then tuned to achieve
an f_sqgp point at 9.7MHz, a maximum of +1.3dB overshoot and a roll-off of -44dB between
10MHz and 100MHz, providing slightly more optimal selectivity while keeping the overshoot
within acceptable range. This report provides a MATLAB implementation that has been
proven to significantly ease the derivation of large equations. It can be used to automate
much of the design and optimization process of higher order systems.
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1 Introduction

Multiband transceivers have become a standard for mobile phones and other communication
devices. They enable devices to communicate simultaneously over multiple frequency bands.
The biggest challenge in multiband transceivers is to be able to receive a low power signal
while simultaneously transmitting with high power at another frequency close to that of the
weak received signal. The received signal is first frequency mixed to bring it to baseband,
after which it is filtered and amplified. To filter out the unwanted transmitted signal, the
filter needs to have a steep roll-off and high linearity, especially because in many RF appli-
cations RX and TX signals are very close to each other. Steep, higher order filtering can
be accomplished by cascading N-path filter stages [2] [3], but here are often multiple active
gm cells involved, which all contribute to noise and nonlinearity. Resistive positive feedback
has also been used in a receiver front-end [4] which eases input impedance matching at low
noise. However, for better selectivity at high linearity and low noise, a more promising so-
lution has recently been proposed [1]. It uses switches for very high linearity mixing and
a Transimpedance Amplifier (TTA) with capacitive positive feedback for amplification and
filtering. It provides a steep roll-off and high linearity while keeping a low noise figure (NF)
[1].

The goal of this work is to explore ways to further optimize the selectivity of the proposed
TIA filter [1]. Its electrical circuit schematic is shown in Figure 1. The TIA comprises of
amplification g,, R, with feedback filtering through Ry and C;. R, and Re provide some
attenuation, and together with C,; and Cys form the passive cross-coupling circuit for the
capacitive positive feedback and higher order filtering.

The rest of this report is structured as follows. Section 2 contains the derivation of
the expressions for the Transfer Function (TF) and Input Impedance (Z;,) of the circuit
in Figure 1. Assumptions made for this derivation are also stated there, as well as an
analysis on the influence of certain components. In Section 3, the found TF’s are validated
by simulation. In Section 4, the TF is approximated to a standard form, from which system
properties like natural frequency and quality factor are extracted. Also, the influences of the
analyzed components are discussed and tuned to provide optimal roll-off between 10MHz
and 100MHz.
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Figure 1: Schematic circuit model of the complete BB TIA
with low-pass filter structure and positive feedback [1].

2 Circuit analysis

This section is built up as follows. First, the circuit shown in Figure 1 is simplified to an
equivalent circuit to ease the derivation of a system of node equations. Then, symbolic
analysis is used to derive the expressions of the TF and Z;,. Finally, the influences of some
components are analyzed by stepping parameter values.

2.1 Equivalent circuit derivation

For easier derivation, some assumptions in analyzing the circuit of Figure 1 are made. The
analysis is purely in baseband, the mixing circuit is assumed ideal and is not taken into
account. It is also assumed that the circuit is perfectly symmetric, so the opposite sides are
assumed to be actually perfectly opposite.

Since the circuit is double-sided and assumed perfectly symmetrical, an equivalent circuit
can comprise of only half the complete circuit. However, removing one side should be done
with caution in this case as there is cross-coupling over R, and Cyo (Figure 1).

First, a ground line is drawn in the middle of the circuit, separating the positive and
negative sides of the circuit as much as possible. Since perfect symmetry is assumed, the
ground line also includes virtual grounds. To complete the separation, some components
need to be split to create a virtual ground in between. In this case, R,o and C,o are split as
illustrated in Figure 4. Splitting the two components is done according to the Miller theorem
[5]. This theorem states that an impedance connecting two voltages can be split into two
grounded impedances, given that the voltages are proportional to each other.
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Figure 2: Illustration of the application of the Miller theorem.
When Vo = kV; with k£ a constant, Z can be split into two
grounded impedances with Z; = and Zy = % [5].
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The Miller theorem is illustrated in Figure 2. If the voltages Vi and V5 are proportional
to each other according to Vo = kV; with k£ a constant, impedance Z can be split into Z;
and Z,, with

Z ="

Zy = — [5]
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Figure 3: The Miller theorem [5] applied to a resistor and
capacitor both connected between opposite voltages, so k = —1.
For the resistor, Z = Ry so Z1 = Zy = % For the capacitor,

Z= 5021 =22 = ;50

Figure 3 illustrates how a resistor and capacitor each connected between opposite voltages

can be split using the Miller theorem. With opposite voltages, k = —1 so a resistor with
impedance Z = R, can be split into

R, R,
A=TT 7
A capacitor C, has impedance Z = i, which can be split into
: 1
h=itn= 520,
Z w1

T Z1-1  s-20,



Finally, filling in R, and Cys gives the component values

R,
Rz1 = Rgy = 22

Cz1=Cpy=2Cy

which are shown in Figure 4. Now, the ground line includes the virtual grounds in between
the split components.
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Figure 4: Schematic circuit model of the BB TIA filter with
an added ground line. R,2 and Cy2 are split according to the
Miller theorem [5] and highlighted in the red box.

The circuit of Figure 4 is further simplified by removing most of the negative side of
the circuit, but since there is still cross-coupling, some components cannot be removed. To
retain all characteristics of the original circuit, all currents in and out of each positive node
should be taken into account. Assuming perfect symmetry, the negative nodes are defined
as the opposite of their corresponding positive nodes. Therefore, in the simplification of
the circuit of Figure 4, all current paths from the positive nodes to any ground or negative
nodes are taken into account. The rest is removed as shown in Figure 5a. Then the circuit
is redrawn for clarity as shown in Figure 5b.
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Figure 5: Equivalent schematic models of the BB TIA filter
with most of the negative side of the circuit removed. Figure 5b
is simply a redraw of Figure 5a. All currents going in and out of
the positive nodes Vs, V., Vy, V,, are fully defined. Since perfect
symmetry is assumed, the negative nodes —V, and —V; are
defined as the opposite of their corresponding positive nodes.

The final simplification of the equivalent circuit is done by combining parallel impedances.

The equivalent impedance of two parallel impedances is given by

AVA
Log = ————
I+ 7y

In the equivalent circuit of Figure 5b, there are two instances with parallel resistor and capac-



itor, Cy, Ry and %ﬁ, 2C42. The respective equivalent impedances Zy and Zg are therefore

R
Rf + ﬁ 1+ SRfo
Rep 1 Rgo
Z 5 = 2 3'20(12 _ 2
az — - Y
%ﬁ + S~2éa2 1 + Ra2(/a2

The parallel components are replaced with their equivalent impedances into the circuit of
Figure 5b. The final equivalent circuit of the circuit of Figure 1 is shown in Figure 6. This
circuit will be analyzed in the next section, so the directions of the currents are also defined.
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Figure 6: Equivalent schematic circuit model of the BB TIA
filter. The arrows indicate how the directions of the cur-
rents are defined for analysis. The impedances Z; and Zg2
are equivalent impedances of parallel components Cy, Ry and

. . . R
Rg? ,2Cq2, respectively. Their expressions are Z; = m
Ryo ’
p P 2
and Zgo = TTR.9Cas"

2.2 Symbolic analysis of the equivalent circuit

The next step towards the TF and Z;, is to analyze the equivalent circuit of Figure 6. The
directions of the currents are already defined. First, the node current equations are derived
at the nodes V,, V, and V, according to Kirchoft’s law of currents:

IRS - [Cs - [Cal - [Zf =0

Izf —Ilem — Iro — IRa1 = 0

[Ral - IZaQ - IC’al =0
Next, the expressions for all currents are filled in:

V.-V, V, ~ Vi

Rs —‘/Z,‘SCS—(V;/—F‘/I)'SCM—yZ—f:O
vy_‘/o ‘/o ‘/o_vx
A Y G- 22—
Zf v Ro Ral
V,—V, V, o
R—a1 Za2 (Vy—FVx) aCal —0



Then the equations are rewritten to a system of equations for the node voltages Vy, V, and
Ve

_ 1 (Rs//Ry)
Vy—Vs<R//R +sR (Cy +Cf+Ca1)> Vm<1+5(Rs//Rf)(Cs+Cf+Ca1)>+

1+8Rf(]f
+8Rf (C +Cf —I—Cal)

+V,
Rs //Rf

RaQ SRalRaQCal
Vv, =V, v,
2Rq1 + Rao + sRa1 Rao (Con + QCaz) "\ 2R + Raz + sRa1 Raa (Car + 2C42)

1 s R
V.=V, _ -I—V -G Rf—FéRfo
1+ Rf/(l/lRo + SRalcf 14+ —% Ral//Ro + beOf

The system is solvable, since there are three equations with three unknowns V,,,V, and V.
The source Vj is a given parameter and is needed to calculate the transfer function from the
system of equations.
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Figure 7: Schematic representation of the input impedance of
the BB TIA filter. The source voltage V; and source resistance
R are not part of the TIA filter itself. The input voltage of the
circuit is therefore not equal to Vi. If Vi, a‘r}d I;,, are known,

the input impedance is calculated by Z;n, = 7.

For the impedance matching of the circuit, the input voltage and current need to be
known. For this, the system can be drawn like Figure 7. Comparing this to Figure 6, it can
be seen that Vj, =V, and [;;, = . Finally, adding this equation for I;, to the system of
equations makes four equations Wlth four unknowns, since [;, adds no other new variables
to the system.

Working out the system of equations by hand proved to be very complicated and prone
to errors, as the expressions became very large. This is why the further derivation of the TF
was done using symbolic analysis tools in MATLAB, version R2016a. The full MATLAB
script for solving the system of equations can be found in Appendix A. In the rest of this
section, the script will be explained in more detail.
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First, the components need to be defined as symbols so no numeric value is given to
them yet. Also, for easier implementation, some parallel resistances found in the system of
equations are defined beforehand as follows:

syms s Rs Rf Ra Rb Ro Gm Cs Cf Ca Cb; %Create component symbols

Rsf = Rs*Rf/ (Rs+Rf); %$Create parallel resistances for
Rfo = RfxRo/ (Rf+R0); % easier implementation
Rao = RaxRo/ (Ra+Ro);

Next, the system of equations needs to be defined as follows. For clarity, the relations
between the three node voltages are defined separately as subfunctions H, following first the
letter of the node voltage left of the equator, then the letter of the node voltage it relates to.

syms Vs Vx Vy Vo Iin; $Create node voltage symbols
EQl = Vo == Hox*Vx + Hoy=*Vy; sCreate system of equations
EQ2 = Vy == Hysx*Vs — Hyx*Vx + HyoxVo;

EQ3 = Vx == HxoxVo - HxyxVy;

EQ4 = Iin == (Vs — Vy)/Rs;

The system can be solved simply using the command ”solve”. Finally, the expressions for
the TF and Z;, can be derived from these solutions:

TF = solve([EQl, EQ2, EQ3, EQ4], [Vx, Vy, Vo, Iin]); %Find solutions

TFo = (TF.Vo)/Vs; $Vo/Vs $Find transfer functions
TFx = (TF.Vx)/Vs; $Vx/Vs

TFy = (TF.Vy)/Vs; $Vy/Vs

Zin = (TF.Vy)/(TF.Iin); %Vy/Iin $Find input impedance

Now that MATLAB holds the symbolic expressions for the TF and Z;,, a numeric solution
can be found. These expressions were all found to be of the form

ny + nes + nss?
d1 + dQS + d3$2 + d453

with each their own numerator coefficients {ny, ..., n3} and denominator coefficients {dj, ..., ds }.
Defining numeric values for the components and using the command "eval” would give nu-
meric expressions for the TF and Z;,, but the coefficients would not be approximated as
double precision variables. Instead, their exact values were given as fractions of very large
numbers. To be able to check whether the found TF and Z;,, their coefficients first needed
to be converted to double precision variables. For this, they also needed to be separated from
the expressions, as the expressions could not be converted to double precision themselves.

The coefficients were found as follows. First, the expressions were split into numerators
and denominators using "numden”. Then, the coefficients could be derived from them using
7 coeffs”:

[TFo.n, TFo_-d] = numden (TFo); $Find numerators & denominators

Find coefficients with first the DC term
(N(1), D(l)), then increasing orders of s

Nos = coeffs(TFo.n, s);
Dos coeffs (TFo.d, s);

o° o
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Finally, the numeric values of the coefficients can be found using ”eval”. However, these
numeric values needed to be defined separately and initialized first for efficiency, as for-loops
were used. This way, the numeric values were automatically double precision.

No = zeros (length (Nos)); $Initialize numeric coefficients

Do = zeros (length (Dos));

for i = 1l:length (Nos) %$Calculate all coefficients into doubles
No (i) = eval (Nos(i)); % for use in Linear Analysis tool

end

for 1 = 1l:1length (Dos)
Do (i) = eval(Dos(i));

end

Again, the full MATLAB script can be found in Appendix A.
The TF’s for V,, V,, and V, and the expression for Z;, were found to be as follows:

V, —3.83-10°—5-2.97- 1072+ s> -4.84- 10712

V, 542 -10°+s-1.09-1072+s2-1.33-10710 4 §3.2.26- 1020
v, 410-10°4+5-4.70- 1072 + s> - 4.84 - 107"

V, 542-105+s-1.09-102+s2-1.33- 10710 4 §3.2.26- 1020
V. —1.91-105 — 5-9.41-10"% — s2- 1.48 - 1012

Ve 542105 +s-1.09- 102+ s2-1.33- 10710 + §3.2.26 - 1020
; 410-10°+5-4.70- 1073 + s2 - 4.84 - 10712

2651034+ 51251074+ s2-2.56- 10712 + s3-4.53 - 1022

The expressions found will be validated by simulation in Section 3.

2.3 Component influences

The circuit of Figure 1 is simulated in LTspice IV to examine the influences of certain
components to the TF of V,: C,, C,; and C,s. An LTspice directive will be used to sweep
the component values of these capacitors (.step param). The resulting TF’s will be plotted
into one graph. Removing each capacitor will also be examined by setting their value to
C = OF, as their impedance becomes Zo = % = o0, simulating an open circuit. Since
LTspice is limited in plotting clear multiple graphs, the plot data is imported into MATLAB
to be able to make clearer plots. The procedure used for importing LTspice plot data into
MATLAB is described in Appendix B. The values of all components that are not being
examined are as shown in Figure 1, if not stated otherwise.

First, the influence of C, is examined. The resulting TF’s of the parameter sweep are
shown in Figure 8. The first thing that can be seen is that Cs mostly influences high-
frequency attenuation, as higher values attenuate more. Also the cut-off frequency f_34p is
lowered with higher values of Cj.

11
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Figure 8: Resulting V,/V; for different values of Cs. All other
components have their original values. The black line simulates
the circuit while Cy is removed.

Next, Cy is examined. This is done with two different values of Cyo, with first its original
value of 120pF as shown in Figure 1. The resulting TF’s are shown in Figure 9. The most
notable influence is that setting C,; around 300pF introduces overshoot in the TF. Higher
or lower values have much less notable overshoot. Increasing the value also lowers the f_34p
point and smoothens the roll-off around 100MHz. Around C,; = 150pF’, the TF has a sharp
roll-off with little overshoot.
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Figure 9: Resulting V;,/V; for different values of Cg1. All other
components have their original values. The black line simulates
the circuit while Cy1 is removed.

Again, C,; is examined with the same steps, but now C,5 is doubled to 240pF. The
resulting TF’s are shown in Figure 10. The most notable difference with Figure 9 is that
there is less overshoot at values of Cy; up to 300pF. However, higher values seem to have
more offset than before.
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Figure 10: Resulting V,/V; for different values of Cq1. Cq2 is
set to 240pF, the rest of the components have their original val-
ues. The black line simulates the circuit while Cy1 is removed.

Next, C,o will be examined for two different values of C,;, with first its original value of
106pF as shown in Figure 1. The resulting TF’s are shown in Figure 11. The most notable
thing is that C,o sharpens the roll-off around 10MHz. Cjs also causes the TF to be first
order above 1GHz, as removing it flattens the TF from there. Again, increasing the value
decreases the f_34p point.

Vx/Vs (Cat = 106pF)

.
=1

aZ - OF
—— ca2= 150F
—— a2 = 00:F
ez = 450F |

T oz B8

Llagriee [dR)
fa
=

e w wt w
[Mrequercy (Hz)

Figure 11: Resulting V,/V; for different values of Cyo. All
other components have their original values. The black line
simulates the circuit while Cy2 is removed.

Finally, C;» will be examined with the same steps, but with C,; doubled to 212pF. The
resulting TF’s are shown in Figure 12. As seen earlier in Figure 9, setting C,; around
300pF introduces overshoot. It can also be seen that C,s dampens this overshoot more with
increasing values.
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Figure 12: Resulting V/V; for different values of Cy2. Cq1 is
set to 212pk, the rest of the components have their original val-
ues. The black line simulates the circuit while Cy2 is removed.

The parameter sweeps provide possibilities for optimizing the TIA filter by tuning the
three examined capacitors. Overshoot can be decreased by decreasing C,; or increasing Cy,.
High frequencies can be attenuated more by increasing Cs or Cge. However, it should be
taken into account that each of the three capacitors influences the f_34p point, so proper
trade-offs should be made during the optimization process.

In Section 4.3, the values of C,; and C,, will be tuned to optimize the filtering for a f_s;5
point of 10MHz, a maximum overshoot of +1.5dB and an optimal roll-off between 10MHz
and 100MHz.

3 Model validation

In this section, the TF’s found in Section 2.2 through symbolic analysis will be validated by
simulation. First, Simulink and the Linear Analysis tool in MATLAB will be used to plot
the frequency response of the found TF’s. They will then be compared with the frequency
response of the circuit of Figure 1 simulated in LTspice.

Simulink contains a block called ”Transfer Function”, which needs the TF coefficients
as inputs. In Section 2.2, these coefficients have all been found using MATLAB. Filling
in the coefficients in the Simulink block would look like Figure 13. The coefficients were
filled in manually, which is not very efficient. It would be interesting to find a way to fill in
coefficients automatically, especially when large amounts of higher order expressions need to
be analyzed.

No(3).52+No(2).s+MNo(1)
> Do{4).52+Da(3).52+Do(2).s+Do(1)
Vs Vo
Vio/Vs

Figure 13: Simulink model of the TF V,,/Vs. The coefficients
have all been calculated using the MATLAB script in Appendix
A. To use the Linear Analysis tool on the block, its input and
output need to be connected to any other block.
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The input and output of the Transfer Function block need to be connected to another
block, because only then the Linear Analysis tool works. This tool is used to create a Bode
plot of the TF.

LTspice simulation of the complete circuit is used to find the frequency response of the
circuit. This data is then exported to MATLAB to be able to make the comparison with
the Linear Analysis of the found TF easier. Again, this is done as described in Appendix B.

A side-by-side comparison of the frequency responses can be found in Figures 14, 15, 16
and 17. The responses found by simulation in LTspice are shown in Figures 14a, 15a, 16a
and 17a, the responses found by Linear Analysis in Simulink are shown in Figures 14b, 15b, 16b
and 17b. Since each plot of the found TF’s and Z;,, is identical to its corresponding plot
found by simulating the complete circuit, the TF’s and Z;, found in Section 2.2 must be
correct.
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Figure 17

4 Design exploration

4.1 System properties from the TF

From the TF found in Section 2.2, various system properties can be extracted. The TF %‘
is of most interest as it showed the steepest roll-off (Figure 16). An approximation can be
made that omits high frequency components of the TF, which is therefore only viable up to
a certain frequency. Omitting the s and s? terms in the numerator and the s* term in the
denominator results in the following TF:

V. —~1.91-10°

V. 542-10°+s5-1.09-102+ s2-1.33-10-10

Next, dividing by the coefficient of the s? term in the denominator gives a standard form of
a second order low-pass filter:

V, —1.44 - 106

V, s2+823-107s+4.08- 105

To validate this approximation, its frequency response is plotted together with the response
of the original TF, which was already found to be correct in Section 3. The frequency
responses are shown in Figure 18. It can be seen that the approximation is valid for the
frequency range of interest, up to 100MHz. The passband and second order roll-off fall within
this range.
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Figure 18: Bode plot of the TF V,/V; and its approximation.
It is clear that the approximation is not valid for frequencies
higher than 100MHz.

The standard form of a second order low-pass filter is as follows:

Kuw?
s2 + %5 + w3

H(s) =

with K the passband gain, @) the quality factor and fo = 5% the natural frequency of the
TF. Using this standard form, the passband gain, natural frequency and quality factor of

the TIA filter can be extracted from the approximation of ‘Z/f The bandwidth is defined as
Af =L
Q

—1.44 - 106
K=—" " - _353=11.0dB
4.08 - 1015
V4.08 - 1015
Jo= wo _ va4.08-107 10.2MHz
2 2

Q- wo V40810 078
©8.23-107 823-107
10.2 - 10°

Af=""" —131MH
/ 078 3-1MHz

The calculation of these system properties can be implemented into the MATLAB script
in Appendix A, since it calculates all coefficients of the TF. The system properties directly
relate to these coefficients.

4.2 Input impedance

In Section 2.2, an expression for Z;,, has also been found. However, to save time, the frequency
response was plotted using simulation in LTspice instead. Again, the data is exported to
MATLAB as described in Appendix B. Z;, is shown in Figure 17. One notable thing is that
Zin converges to 02 near 100MHz, where C shorts V;,, to ground due to the high frequency
(Figure 1).
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Impedance matching would need an input impedance of 50€2, but Z;, seems to be around
155Q). However, the actual input impedance needed for impedance matching is this TIA
input impedance Z;,, in parallel with the mixer circuit output impedance [1]. The analysis
in this report does not include the mixer circuit, so the shown Z;, of the TIA filter is not
representable for impedance matching.

4.3 Optimizing roll-off 10MHz-100MHz

In this section, the parameter sweeps from Section 2.3 will be used to tune the values of Cy;
and Cy to find a specific optimum. This being a f_3;55 point close to 10MHz, an overshoot
of at most +1.5dB and an optimal roll-off between 10MHz and 100MHz at V.

Looking at Figure 10, setting the values C,5 = 240pF and C,; = 150pF shown as the red
line provides a solid starting point. The overshoot is +1.17dB, the f_34p point is around
9.3MHz and the roll-off between 10MHz and 100MHz is -43.8dB. Tuning C,s to 220pF sets
the f_34p point closer to 10MHz while keeping the overshoot within the acceptable range.
The resulting frequency response at V, is shown in Figure 19, together with the frequency
response at V, of the circuit with its original values from Figure 1. The responses are found
using LTspice simulation, after which the data is imported into MATLAB to create the plot
as described in Appendix B.

Vall's

Magriluce [dB)

108 10 10t 107 'l
Frequancy (Hz)

Figure 19: Frequency response of the TIA filter with both its
original component values (blue line) and with tuned Cy41 and
Cy2 (red line). The tuned frequency response has a f_34p point
closer to 10MHz and a more optimal roll-off between 10MHz and
100MHz.

The original circuit has an overshoot of less than +0.1dB, an f_34p point at 11MHz
and a roll-off of -40dB between 10MHz and 100MHz. The circuit with tuned values has
an overshoot of +1.3dB, its f_sgp point is at 9.7MHz and the roll-off between 10MHz and
100MHz is -44dB. This proves that the tuned values slightly improve the filtering with respect
to the original circuit, according to the given requirements.

5 Conclusion

A TIA filter circuit proposed by [1] is analyzed. An equivalent circuit is derived, which en-
abled the derivation of a system of equations. MATLAB was used to rewrite those equations
to expressions for the transfer function and input impedance of the TIA filter. By approx-
imating the TF, the natural frequency, quality factor and bandwidth of the TF are found.

19



By simulation, more insight is given in the influence of some capacitors, and they are tuned
to achieve optimal roll-off between 10MHz - 100MHz. The goal of this assignment has thus
partly been achieved, as further optimization of the TIA filter could be done using the TF
and the found system properties. MATLAB implementation has been proven to significantly
ease the derivation of large equations, and can be used to automate much of the design and
optimization process.
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6 Appendices

Appendix A: MATLAB script, solving the system of equations

%% TF and Zin, symbolic analysis %%

syms s Rs Rf Ra Rb Ro Gm Cs Cf Ca Cb; %$Create component symbols

Rsf = RsxRf/ (Rs+Rf); %$Create parallel resistances for
Rfo = Rf*Ro/ (Rf+Ro); % easier implementation

Rao = RaxRo/ (Ra+Ro);

Hyl = Rsf/(l+s*Rsf* (Cs+Cf+Ca)); %$Create subfunctions found
Hys = Hyl/Rs; % from basic circuit theory
Hyx = Hyl=*s=xCa;

Hyo = Hyl* (1+s*RfxCf) /Rf;

Hox = 1/ (1+Ra/Rfo+sxRaxCf);

Hoy = (1-Gm#Rf+s*Rf*Cf)/ (1+Rf/Rao+s+xRfxCf);

Hxo = Rb/ (2xRa+Rb+s*RaxRbx (Ca+2+Cb)) ;

Hxy = HxoxsxRaxCa;

syms Vs Vx Vy Vo Iin; %Create node voltage symbols
EQ1l = Vo == Hox*Vx + HoyxVy; %Create system of equations
EQ2 = Vy == Hysx*Vs — Hyx*Vx + HyoxVo;

EQ3 = Vx == HxoxVo - Hxy=*Vy;

EQ4 = Iin == (Vs — Vy)/Rs;

TF = solve([EQl, EQ2, EQ3, EQ4], [Vx, Vy, Vo, Iinl]); $Find solutions
TFo = (TF.Vo) /Vs; $Vo/Vs $Find transfer functions

TFx = (TF.Vx)/Vs; $Vx/Vs

TFy = (TF.Vy)/Vs; $Vy/Vs

Zin = (TF.Vy)/(TF.Iin); %Vy/Iin $Find input impedance

[TFo.n, TFo_-d] = numden (TFo); $Find numerators & denominators

[TFx_.n, TFx_d] = numden (TFx);

[TFy-n, TFy-d] = numden (TFy);

[Zin.n, Zin_d] = numden (Zin);

Nos = coeffs(TFo.n, s); $Find coefficients with first the DC term
Dos = coeffs(TFo.d, s); % (N(1), D(1l)), then increasing orders of s
Nxs = coeffs(TFx.n, s);

Dxs = coeffs(TFx.d, s);

Nys = coeffs(TFy_-n, s);

Dys = coeffs(TFy-d, s);

NZs = coeffs(zZzin_.n, s);

DZs = coeffs(Zzin_d, s);

DCos = Nos (1) /Dos(1); $Find DC gains

DCxs = Nxs (1) /Dxs(1);

DCys = NyS(l)/DyS( )i

DC_Zs = NZs (1) /DZs (1) ; $Find DC input impedance

o\

% TF and Zin, numeric solution %%

Rs = 50; %Create component values
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Rf = 1600;

Ra = 45;

Rb = 90;

Ro = 36;

Gm = 0.37;

Cs = 20%x10" (-12);

Cf = 60107 (-12);

Ca = 106107 (-12);

Cb = 120%x10"(-12);

No = zeros (length(Nos)); $Initialize numeric coefficients

Do = zeros (length(Dos));

Nx = zeros (length (Nxs));

Dx = zeros (length(Dxs));

Ny = zeros (length (Nys));

Dy = zeros (length (Dys));

NZ = zeros(length(NZs));

DZ = zeros (length(DZs));

for i = l:length (Nos) %$Calculate all coefficients into doubles
No (i) = eval (Nos(i)); % for use in Linear Analysis tool

end
for 1 = l:length(Dos)
i) = eval(Dos (1i));
end
for i = l:length (Nxs)
i) = eval (Nxs(i));
end
for i = 1l:length (Dxs)
i) = eval (Dxs(i));
end
for i = 1l:length (Nys)
i) = eval (Nys(i));
end
for i = 1l:length(Dys)
i) = eval (Dys(1i));
end
for 1 = 1l:length (NZs)
) = eval (NZs(1));
end
for 1 = l:length(DZs)
DZ (i) = eval(DZs(i));
end

DCo = 20%1logl0 (abs (eval (DCos))); $Calculate DC gains in dB
DCx = 20%x1ogl0 (abs (eval (DCxs)));

DCy = 20%x1ogl0 (abs (eval (DCys)));

DC.Z2 = eval (DC_.Zs); $Calculate DC Zin
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Appendix B: Exporting LTspice plots to MATLAB

Many of the LTspice data that had to be exported to MATLAB were frequency responses.
Selecting the graph window and clicking File—Export enables the user to make a .txt file
with all datapoints of the graph. Frequency plots are saved in the following format:

Freq. V(n006)

1.00000000000000e+006 (1.09737893154537e+001dB, 1.72885052280355e+002deq)
1.02329299228075e+006 (1.09744159919974e+001dB, 1.72717846567782e+002deqg)
1.04712854805090e+006 (1.09750704152713e+001dB, 1.72546640850514e+002deq)

The first column is the frequency. The magnitude and phase are saved with their units,
between brackets and separated with a comma.

MATLARB is able to read .txt files in columns and rows, but only if there are just numbers.
This is why the .txt file of the LTspice data often had to be edited to remove the brackets,
commas and units. Notepad++ was used for this, since it enables to edit multiple rows
at the same time in 'column mode’. Using Edit— Begin/End Select and Alt+Shift+|, the
brackets, units and commas of the entire dataset could be removed at the same time. The
result should look like this:

Freq. V(n006)

1.00000000000000e+006 1.09737893154537e+001 1.72885052280355e+002
1.02329299228075e+006 1.09744159919974e+001 1.72717846567782e+002
1.04712854805090e+006 1.09750704152713e+001 1.72546640850514e+002

Now, MATLAB can read the .txt file. An example of reading an exported file with frequency,
magnitude and phase is shown below.

data = dlmread('filename.txt','',1,0); %$Read from (edited) .txt file

Freq = data(l:length(data),1); $Find frequency (column 1)
Mag = data(l:length(data),?2); $Find magnitude (column 2)
Pha = data(l:length(data),3); %$Find phase (column 3)

The parameters (* 7,1,0) in the dlmread function means that no delimiters are used, and the
data is read starting from the second row and first column. Delimiters are the characters
with which the data is separated, but the dlmread command allows only one character as
delimiter. In this case, there are multiple delimiters with multiple characters, so the delimiter
parameter cannot be used and the .txt file has to be edited manually. Perhaps a better way
can be found to automate the exporting of data from LTspice to MATLAB more in the
future.
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