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Abstract

There are abundant situations where teams of players compete. The competing players have qual-
ities that influence the outcome of a match, but in some cases, individual contributions are not
recorded and only team results can be observed. Examples can be found in sports (football, basket-
ball, volleyball, etc.), e-sports (Dota, StarCraft, League of Legends, etc.), film-making and company
management. In this research, we developed an individual player quality inference algorithm which
only requires historical team results. Whenever groups of individuals produce collective results and
we do not have the data regarding individual contributions, our model can be applied.
Most existing models that are used to estimate individual qualities deal with 1-vs-1 matches, with
a single quality per player and a single binary outcome per match. Our model is an extension of
existing models; providing a structure to deal with multiple individual qualities, for many-vs-many
matches and multiple outcomes per match, each with an ordinal outcome space. The goal was to
create a model for any environment where groups of players compete with each other while only the
collective results are observed. The research was conducted in partnership with SciSports, a football
data analytics company, therefore we chose to apply the model to football.
We considered multiple existing models like ELO, Glicko, Bradley-Terry, Thurstone-Mosteller and the
Microsoft TrueSkill. We combined ideas from these models with novel insights to define a probability
model, defining the relationship between participating player’s qualities and the match-outcome dis-
tribution. This relationship is essential for the inference of player quality parameters. The unknown
parameters that define the player specific qualities are modeled as latent traits within a latent variable
model. We started with a general model, developed in the field of psychometrics, and showed that it
is equivalent to our desired model under certain assumptions. Furthermore, we discuss how ordinal
observations should be interpreted and we find accurate and useful approximations for the ordinal
outcome probability distribution given player participation.
We list several existing estimation methods that can be used to extract estimators from the data by
applying our probability model. The methods were taken from other research and modified such that
they can be applied to our specific case.
Eventually, we decided to use the Conditional Gaussian Inference method, which has been success-
fully implemented in Python. We applied the model to a historical football dataset, yielding two
qualities per player; attack and defense. The results were tested with a subjective and an objective
method, both methods show that our model produces useful results.
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1 Introduction

There are abundant situations in reality where a coalition of players collaborate to achieve a collective
set of goals. Such players have certain skills that often cannot be measured directly, but are an
explanatory variable for historical and future results. The goal of this research is to find an algorithm
that estimates individual player skill quality by using historical results achieved by coalitions of
players. We do this by modeling the relationship between quality, performance and realized outcome
and applying estimation techniques to infer player quality from historical results.
Some examples of collaborating teams with collective observable outcomes are start-up company
entrepreneurs, football players and film-making teams. In film-making, a team of professionals works
together to produce a profitable and qualitative end product. In a start-up company, a small team of
entrepreneurs and professionals collaborate to build a profitable business. In the game of football two
teams compete with the objective to score more often than their opponent. In these environments, it
is possible to observe collective results, but there is a need to understand contributions of individuals
to the achievements of a team. Individual achievements are often difficult to extract because of the
collaborative nature of the environment. Most individual results are (partly) a team performance,
rather than purely an individual performance.

1.1 Player quality estimation

Knowledge regarding player qualities can be very useful for decision-making purposes. Numerical
evaluations of the qualities of film-makers can be used in the decision-making progress of funding al-
location for future films (Timmer et al. , 2017). Whenever playing online on the Xbox, the opponents
are done by a match-making system that uses player quality estimates to pair evenly matched players,
hereby avoiding that an advanced player will play against players that are new to the game (Herbrich
et al. , 2007). Accurate player quality estimates provide an understanding of hidden variables that
can be used to explain historical and predict future performances.
In game theory, the importance of individual contributions to coalitions has been extensively re-
searched. Coalitions have a value, which can be distributed over the coalition members in according
to certain criteria. The Shapley value is a unique value distribution that follows from a set of desirable
properties. The Core is a set of value distributions that cannot be improved upon by sub-coalitions
(Gillies, 1959).
A different approach to estimating player quality, is by benchmarking a player’s strategy to the op-
timal strategy. Another approach would be to perform cognitive or physical tests and use the results
as a proxy for player quality.
Our research focused on environments where we do not have observations of individual performances
of players. Our approach is data-driven; the only input required is data of match outcomes and player
participation. Our model requires a very limited amount of domain knowledge; i.e. what we require
from domain experts are weights that assign importance to qualities in certain situations. We do not
need to model the game environment, understand successful strategies or know the exact rules.

1.2 Existing models

There are existing models that assign a value to player qualities.
In game theory, the value of individual contributions in coalition games is a very important result.
Whenever the values of all sub-coalitions are known the value of individuals within a game can be
characterized by the Shapley value (Shapley, 1953).
In some environments, we can have a round-robin tournament (all-play-all) schedule and yield a
ranking for all the players. The main disadvantage of this is the large amount of (possibly irrelevant)
matches that need to be played. A different approach is to keep track of player qualities in a so-called
rating system. A rating system keeps track of player ratings, can predict the outcome probability
from the ratings of player and updates the ratings after every encounter. Ideally, such a rating is a
representation of skill.
The first rating system was the ELO-rating (Elo, 1978), developed by Árpád Élő for the game of
chess and is used to determine the official chess (FIDE) world ranking. The system can be used
to objectively calculate the relative levels of skill in a competitor-versus-competitor environment,
providing insight into player quality for games where round-robin schedules are infeasible. The ELO-
rating system has been applied to other games like Scrabble, Football, American Football and Go.
These extensions of the ELO-rating calculate only the quality of teams (coalitions), rather than
the quality of individual players. The Glicko (Glickman, 1999) model is an extension of the ELO
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method. It models the player quality as a Gaussian random variable. This improved the error
and convergence of the ratings. The Microsoft TrueSkill algorithm (Herbrich et al. , 2007) model is
designed for multi-player environments, applying state-of-the-art modeling techniques (factor graphs)
and inference algorithms (Expectation Propagation).
Player qualities can also be estimated with statistical approaches. The plus-minus method applies
linear regression between player participation and outcomes (Fitzpatrick, 2017; Rosenbaum, 2004).
The qualities of film-makers can be estimated by a linear estimator using the success of films made
in the past (Timmer et al. , 2017).
Another existing individual player rating model has been developed by SciSports, the company for
which we performed this research. The model is called SciSkill, was developed especially for football
and covers more than 70.000 football players from the whole world. It is a difference based approach
inspired by the ELO rating system. The algorithm contains a lot of components that solve problems
in a very pragmatic way. The model was built with a focus on application, therefore certain parts
of the algorithm lack scientific justification. The model is not published, and therefore we will not
discuss it in the literature study.

1.3 Our approach

Our focus is finding a method to estimate player qualities, without using any individual data, only
team results. We assume that player quality, an unobservable variable, has a stochastic relationship
with historical outcomes and future outcomes. The historical outcomes can be used to estimate
the qualities, and the estimates we yield can be used for prediction of future matches. We assume
the player quality to be non-deterministic, therefore it is modeled as a random variable. As players
perform in teams, against other teams, we require a way to aggregate performances. We assume that a
useful aggregation can be achieved by a weighted sum of the individual qualities. This aggregation has
a non-linear relationship with the observed outcomes. We define this relationship with a probability
model.
After the construction of the probability model, we apply estimation techniques that extract player
quality parameter from the historical data. The estimation techniques use different assumptions and
optimization criteria. The estimators we find are tested according to a subjective criterion (player
rankings) and an objective criterion (future match prediction).
Due to the assumptions and modeling choices, the abstract problem we solve in this research is
parameter estimation of a normal distributions, if we only observe a specific non-linear transformation
of an affine transformation of the realizations of this normal distribution.

1.4 Contributions

The rating model we developed in this thesis is an extension and improvement of several existing
rating models. The main difference is that most models focus on 1-vs-1 matches with only a single
quality per player. In environments where players play in teams, such models aggregate player ratings
to a single rating per team. The first contribution of our model is that it can deal with many-versus-
many matches, not focusing on the coalition strengths but on the individual player strengths. Our
second contribution is that our model can estimate multiple qualities for each player player. This
allows differentiation between players that have different qualities and roles. The third contribution
of our model is that it is built for an environment with an ordinal outcome space. Most other
models focus on a binary (sometimes extended to a ternary) outcome space. Effectively our inputs
contain more information and therefore should produce more accurate estimates. Due to the fact
our model utilizes an ordinal outcome space, it naturally deals with winning margin. Our fourth
contribution is that our method not only yields point estimates for player qualities but also player
quality uncertainty and covariance between our estimates of player qualities. The final contribution
of our work is that it can predict the outcome distribution for specific coalition comparison outcomes.
The quality estimates we yield from historical data are used as input, and can be used to predict the
probability distribution of the outcome of future matches. Such predictions can be used to validate
our methodology.
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2 Literature study

There have been efforts to create effective algorithms that infer the qualities of individuals. Such
qualities are latent variables, as they cannot be observed directly, but have a relationship with ob-
servable quantities. Therefore accurate quality models can be used to analyze historical outcomes
and predict future outcomes.
The first type of quality estimation method we discuss is strategy benchmarking. The idea of this
method is to assess the quality of players, by benchmarking their strategy to the optimal strategy.
We discuss this approach in Subsection 2.1.
There are other methods that generate statistical metrics to assess player qualities. Such metrics are
based on smart counting of past performances, which often misses out on a lot of context information.
We discuss some of these statistical metric methods in Subsection 2.2.
Rating systems include a very important contextual element; the quality of the opponent is taken
into account. Rating systems produce estimates of player ratings (unobservable latent variables),
that are a representation of player quality. Rating systems use historical data to infer estimates
of player ratings. Some possible data sources are polls, betting odds or historical results. A very
important building block of a rating system is quality inference based on historical comparisons of
two objects. Such experiments are called pairwise comparisons, and we describe methods that use
these in Subsection 2.3. The outcomes of pairwise comparisons are traditionally binary, but in real-
ity, outcomes often are ordinal or continuous. The most famous pairwise comparison models are the
Thurstone-Mosteller and Bradley-Terry models, discussed in 2.3.2 and 2.3.1. We will discuss some
extensions of the Bradley-Terry model that allows for draws in Subsection 2.4. We will continue with
discussing rating systems in Section 2.5. The most famous rating systems are ELO and Glicko, these
will be elaborated in 2.5.1 and 2.5.2 respectively.
A relatively new approach is the TrueSkilltm developed by Microsoft Research, specifically to achieve
fair matchmaking for online games on the Xbox, Microsoft’s online gaming platform. The TrueSkill
methodology applies Bayesian graphical modeling to infer player rating distributions from past re-
sults, we discuss it separately in Subsection 2.6. Lastly, we discuss a coalition assessment model, that
has been applied successfully to estimate the qualities of film-makers in Subsection 2.7.
Throughout this section, we will require the definition of likelihood L of parameters given a set of
observations. Whenever we have parameters θ and data D, we define the likelihood of the estimator
θ̂ of the parameters θ as:

L
(
θ = θ̂;D = d

)
= Pθ̂ (D = d) (1)

Here we use the notation Pθ̂ (D = d), which is the probability that D = d under the condition that

the parameter θ = θ̂. The estimator of θ that maximizes the likelihood, is defined as the Maximum
Likelihood Estimator (MLE):

θ̂MLE = argmax
θ̂

Pθ̂ (D = d) (2)

= argmax
θ̂

H
(
Pθ̂ (D = d)

)
(3)

Here H : [0, 1]→ R must be a strictly increasing function.

2.1 Strategy benchmarking

The idea of this approach is to perform player quality estimation by evaluating the strategy (all
decisions and actions) of a player with respect to the game theoretical optimal strategy. Finding such
an optimal strategy is very complex, but for our purposes, a strategy that can beat top human players
is enough and evaluate game-states. The main assumption is that players with a high quality have a
superior strategy over players with a high quality.
In general, it is very difficult for an algorithm to determine a good strategy in a game. In real-world
scenarios, there are intractably many possible tactics and strategies. In game environments successful
strategies are often not fully understood, the outcomes are influenced by unobservable stochastic
variables, and interactions between players are very unpredictable. An individual game like chess
is finite, discrete, non-stochastic and still has enormous complexity. Researchers required a very
long time to make an algorithm that can beat the best human player (King, 1997). Once a computer
algorithm is able to beat top human players in a certain game, we refer to it as solved. The idea is, that
the strategy of such an algorithm can be used as a proxy for the optimal strategy. Algorithms based
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on reinforcement learning techniques explicitly have an internal game-state evaluation model, which
makes it possible to evaluate all the decisions and actions given a certain game-state. This evaluation
could be performed on past performance of individuals. A good example of such a method is the
centipawn loss system developed in chess, which calculates how much centipawns ( 1

100 of a pawn) a
player loses on average compared to the computer move. A low centipawn loss can be seen as a good
proxy for player quality. A nice feature of the centipawn methodology is that it has a dimension
(centipawns lost per move), and therefore can be interpreted intuitively.
Due to increased computing power and the utilization of machine learning techniques, progress in the
field of solving games has been: examples are Jeopardy (general knowledge quiz), Go (deterministic
board game) and No-Limit Texas Hold’em (stochastic card game).

Remark 1. Some games are not solved due to the fact that not only decisions need to be made,
but they also need to be executed with precision. Examples of such games are football, golf, ping-
pong, Dota 2 and StarCraft. In football, Robocup is an ongoing initiative, started in 1997 (Robocup,
2017), with the ambitious goal of designing humanoid robots to beat real humans at football before the
year 2050 (Kitano et al. , 1997). There has been research with the goal of designing robots that can
autonomously play ping-pong (Peters et al. , 2013). Very recently, the company OpenAI successfully
developed a bot for 1-vs-1 matches in the game Dota 2, beating top human players (OpenAI, 2017).

We expect more games to be solved by algorithms in the future. We expect rating systems based
on the described approach to be very accurate. An assumption of this approach is that an optimal
strategy in human vs human matches is equal (or at least similar) to the strategy a computer chooses.
Unfortunately, this is not always true; psychological mind-games and intimidation can play a big role
in human-vs-human matches, while a computer algorithm would never be influenced by this. An
important quality in human-vs-human matches is to understand your opponents (weaknesses and
strengths), while this quality is irrelevant against a strictly better computer algorithm and therefore
will not be measured.

2.2 Statistical player metrics

There are models that focus on finding statistical metrics to quantify player performance. In the
sport of football examples are: goals scored, successful pass percentage and expected goals. All these
metrics are a weighted counting technique, where often context is not fully captured. Goals scored
can, for example, be skewed because a player played a lot, or because a player takes penalties. It is
always interesting to normalize quantities (apply relevant dimensions), e.g. non-penalty goals per 90
minutes played instead of total goals. A nice property of such methods is that statistical assessments
(metrics) have a dimension, which often allows for intuitive interpretation and usage. The plus-minus
statistic is a more elaborate statistical method, discussed in detail in Section 2.2.1.
In (Tiedemann et al. , 2011) the performance of players is evaluated based on a non-parametric
concave meta-frontier approach. The meta-frontier defines a theoretical optimal player performance,
based on the playing time and position of the best player. This permits estimation of all players’
efficiency. A positive correlation has been found between players’ efficiency and their historical team
performance. We believe the main reason for this relationship is that (within this method) goals for
and goals against form a very important factor in determining the efficiency of players and success of
teams. The method does not provide any predictive capabilities.
A data-driven method to determine the ability of soccer players entirely based on the value of their
completed passes was developed by (Brooks et al. , 2016). Passes are valued according to location and
shot opportunities generated. The relationships are learned from data and mostly work for offensively
minded players.

2.2.1 Plus-minus statistic in basketball and ice-hockey

The plus-minus statistic (PM) is a statistical measure to determine the average added value of basket-
ball players in the NBA (Rosenbaum, 2004) and NHL (Fitzpatrick, 2017). The simplest interpretation
of this rating system is a virtual counter of the total goals a team scores minus the total goals a team
concedes, whenever a player is in the field. The system looks at player participation, and sets up a
linear system for each part of the match where there is no substitution:

M = qhome + δ0q0 + δ1q1 + δ2q2 + ...+ δkqk + ε (4)

The variable M represents the difference in average points per possession, qhome is a variable that
accounts for home advantage, qi is the quality of player i, for i = {1, 2, ..., k}, and ε is an error term.
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Only players that reach a minimum amount of minutes receive a personal rating, other players are
grouped in the variable q0. Lastly; δi = 1, if player i plays for the home team, and δi = −1 if a player
plays for the away team. The plus-minus statistic is very dependent on the context wherein a player
performs, mostly the quality of his own team and the opponents team. Because of the lack of context
incorporated in the plus-minus calculation is biased and a player with the exact same skill can get a
different rating.
The plus-minus statistic can be extended to the adjusted plus-minus (APM) statistic, by separating
the single equation for each match into two equations. This separation is done on a player level;
yielding an equation for the time a player was in the field, and the other equation for the time this
player was not in the field. The performance (realized score margin) of a team during the part of
the match when the player is in the field and when he is on the bench are compared. This way we
can detect differences in performance of a team whenever a single player is playing. By using this
approach we eliminate the influence of own team strength and opponent strength.
One of the main requirements for using PM is a high scoring frequency. Furthermore, the APM
approach works optimally in sports where a line-up is constantly changing during the game.

2.3 Pairwise comparisons

In this section, we will call the players/objects that are compared pi, and they will have a quality
rating of qi. The rating of all players is represented in the vector q. Depending on the model, player
qualities are defined as a parameter or a random variable. In the case that the qualities are random
variables, we take qi ∼ Qi. We call the variable Dij the outcome of the pairwise comparison of i and
j and define it such that:

Dij =


1 if i wins

0 if j wins
1
2 i draws j

(5)

It holds that Dij + Dji = 1. In general, i and j could be compared multiple times, but we do not
account for this in our notation.
There has been some fundamental research into pairwise comparisons. Two of the most used models
in literature are the Bradley-Terry (Bradley & Terry, 1952) and Thurstone-Mosteller (Thurstone,
1927), (Mosteller, 1951) rating systems. Both approaches are not developed explicitly to deal with
draws or multiple players, but the models can be extended to allow for such cases. We will discuss
some examples of extensions in Section 2.4.

2.3.1 Bradley-Terry model

The Bradley-Terry approach (Bradley & Terry, 1952) considers that all the objects which are being
compared have a constant rating parameter. In the original approach pairwise comparison experi-
ments are considered with a binary outcome, not allowing for draws, with probabilities defined as:

Pq(Dij = 1) =
q1

q1 + q2
= 1− Pq(Dij = 0) (6)

Parameters of teams can be estimated efficiently, multiple methods have been developed to achieve
this. One method is a recursive Minorization-Maximization procedure (Hunter, 2004) applied to the
log-likelihood function of observations. We define all our results as D, and calculate the probability
of observing the results d, we can extract wij as the number of times i has beaten j to get:

Pq(D = d) =
∏
i,j

(
qi

qi + qj

)wij
(7)

logPq(D = d) =
∑
i,j

wij log(qi)− wij log (qi + qj) (8)

The maximum likelihood estimators for the parameters can be found with a method similar to logistic
regression. A feasible solution exists under the condition that there is no partition of the players in
two groups, where the outcomes of all comparisons between players from different groups have one-
sided outcomes. If such a partition, of the whole player set P , were to exists, say p and pc so that
p ∪ pc = P and ∀i,j : i ∈ p ∧ j ∈ pc =⇒ wij ≥ 0 ∧ wji = 0. In essence; no player from pC has
ever beaten a player from p. To avoid the trivial case (no games at all were played between players
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from p and pC) we require ∃i,ji ∈ p ∧ j ∈ pc (wij > 0). Under the previous scenario, our maximum
likelihood solution will become:

q̂BT−MLE = argmax
q

(logPq(D = d)) (9)

q̂BT−MLE
i →∞ ∀i, i ∈ p (10)

q̂BT−MLE
j → −∞ ∀j , j ∈ pC (11)

The values we calculate will diverge, which is a useless answer for our problem. This problem may
occur when we have a small dataset and results between two groups are very one-sided, but fortunately
it can be avoided by regularizing the player rating parameters. This can be done, according to a
Bayesian approach by taking a prior distribution over the ratings q ∼ Q. We are left with the
following log-likelihood to be maximized:

pD,Q(d, q) = P (D = d|Q = q)pQ(q) (12)

log(pD,Q(d, q)) = log(P (D = d|Q = q)) + log(pQ(q)) (13)

q̂BBT−MLE = argmax
q

[log(P (D = d|Q = q)) + log(pQ(q))] (14)

2.3.2 Thurstone-Mosteller model

The Thurstone-Mosteller model (Thurstone, 1927) assumes that player ratings are random variables
with a normal distribution, thus qi ∼ N (µi, σ

2
i ). In general, σ2

i is player dependent, but often for
simplicity it is chosen the same for all players. The model now states that the winner of a paired
comparison is the player with the highest player performance, which has the same distribution as his
rating. We get the following:

P
(
Dij = 1|qi ∼ N (µi, σ

2
i ), qj ∼ N (µj , σ

2
j )
)

= P
(
qi > qj |qi ∼ N (µi, σ

2
i ), qj ∼ N (µj , σ

2
j )
)

= P
(
X > 0|X ∼ N (µi − µj , σ2

i + σ2
j )
)

= 1− P
(
X < 0|X ∼ N (µi − µj , σ2

i + σ2
j )
)

= 1− Φ

 µj − µi√
σ2
i + σ2

j


= Φ

 µi − µj√
σ2
i + σ2

j


Here we use that Φ is the standard normal cumulative distribution function. This shows that the
Thurstone-Mosteller model is a linear probit model (Albert & Chib, 1993). The ratings can be
estimated efficiently by assuming that the rating distributions are constant during the complete
period during which the pairwise comparisons were performed. The complete likelihood function
becomes:

q ∼ N (µ,Σ) (15)

L(µ,Σ;D = d) = Pµ,Σ(D = d) (16)

=
∏
i,j

DijΦ

 µi − µj√
σ2
i + σ2

j

+ (1−Dij)

1− Φ

 µi − µj√
σ2
i + σ2

j

 (17)

µ̂TM−MLE , Σ̂TM−MLE = argmax
µ,Σ

[L(µ,Σ;D = d)] (18)

Gibbs sampling can be used to efficiently find the MLE for the above likelihood expression.

2.4 Pairwise comparison models with non-binary outcomes

In a lot of cases, pairwise comparisons have a non-binary outcome space. For example in the sports
of hockey, football, and chess matches can all end in a draw. One solution is proposed by the ELO
rating model discussed in 2.5.1, by looking at the expected outcome. In this section, we will look at
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extensions of the Bradley-Terry model with an outcome space of N possibilities.
A generalized Bradley-Terry model could look as follows;

P (Yij = k) =
ezk(i,j)

N∑
n=1

ezn(i,j)

(19)

Here the function zn is specific for outcome n, but depends on the participants i and j. An extension
of the Bradley-Terry approach by for the specific case of three outcomes, where two are decisive and
one is non-decisive, a model was proposed by (Davidson, 1970):

P (Yij = 1) =
eqi

eqi + eqj + eλ+ 1
2 qi+

1
2 qj

(20)

P

(
Yij =

1

2

)
=

eλ+ 1
2 qi+

1
2 qj

eqi + eqj + eλ+ 1
2 qi+

1
2 qj

(21)

P (Yij = 0) =
eqj

eqi + eqj + eλ+ 1
2 qi+

1
2 qj

(22)

Another solution discussed in the same paper, the Rao-Kupper tie model, gives the following equa-
tions:

P (Yij = 1) =
eqi

eqi + λeqj
(23)

P (Yij =
1

2
) = (λ2 − 1)

eqi+qj

(eqi + λeqj )(eqj + λeqi)
(24)

P (Yij = 0) =
eqj

λeqi + eqj
(25)

where we require that λ ≥ 1. In the case that λ = 1 reduces to the standard Bradley-Terry model.
These two examples are both valid varieties of the generalized model described in Equation (19).
We conclude that there is no single choice for the functions zn(i, j), and for specific applications,
tailor-made solutions should be developed.

2.5 Rating models

In this subsection, we will discuss two rating models that are often used; ELO and Glicko. These
models, as most rating models, use a latent variable that is a representation of player quality, and
a mapping from the qualities of all players in a match to the match outcome. The main difference
between the models is that ELO only estimates the first moment of player ratings, while Glicko also
estimates the second moment. The probability model that is necessary for rating inference, can be
used to predict future fixtures.
The main difference between previously discussed models and rating models, is that rating models
incrementally process historical data. Therefore the produced ratings are a time series, showing the
development of the rating rather than just a point estimate. Another attractive feature of rating
systems is that they allow a continuous outcome space, as rating updates are performed as a function
of difference between performance and expected performance. We use the following notation; qi is
the prior and qnew

i is the posterior rating of player i. We define dSij as the prior rating difference
and dSOij as the observed strength difference for a match between player i and j. Also, we need a
monotonically increasing function g(·) that gives us the update magnitude based on observed rating
difference.
We get the following equations for the update after a match between player i and player j:

dSij = qi − qj = −dSji (26)

qnew
i = qi + g(dSOij − dSij) (27)

qnew
j = qj + g(dSOji − dSji) (28)

It makes sense to choose g such that we have g(0) = 0 and g(−x) = g(x), so that over-performance
increases and under-performance decreases ratings, and the total amount of points in the system
remains constant.
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2.5.1 ELO-rating

The ELO-rating is a widely used rating system, initially developed to determine the relative strengths
of chess players, by applying an iterative inference process on game outcomes (Elo, 1978). The rela-
tive strengths are parametrized as ratings, and can be used to generate match outcome probabilities
for players that have never played each other.
The approach uses the Bradley-Terry paired comparison formula to determine match outcome proba-
bilities. It applies a logarithmic transform on the ratings, using q̃i = eqi where q̃i are the Bradley-Terry
strength parameters. We get the following relationship:

Eij = E[Yij ] (29)

=
q̃i

q̃i + q̃j
(30)

=
eqi

eqi + eqj
(31)

=
1

1 + eqj−qi
(32)

Where Eij corresponds to the average amount of points player i gets when competing against player
j, where a win counts for one point, draw counts as 1

2 point and a loss as zero points. We can observe
that this implies that match outcome probabilities follow directly from the rating difference, qj − qi.
The updating of ratings given a match outcome is done relative to the expected outcome, which is
calculated with the player ratings. Whenever a player over-performs(under-performs) his rating will
become higher(lower). This way the ratings slowly converge to their real value. In the ELO model
the update equations look as follows:

qnew
i = qi +K · (Yi − Ei) (33)

Where Yi is the total points and Ei is the expected amount of points of player i in the period since
the last rating change. K is a parameter that determines the magnitude of the rating change. K is
positive such that ratings of players increase (decrease) whenever players overperform (underperform).
In general, K should be chosen higher for important matches. Friendly matches should have a lower
K factor, than a world cup final match. The choice of the K remains a domain and match specific
problem. The system has received a lot of theoretical critique, and statistical improvements have been
proposed by Glicko-model, discussed in the next subsection. Nonetheless the ELO-model remains the
standard in a lot of disciplines. The main reason is that the ELO-model is much easier to understand,
explain and implement than any other available alternative.

2.5.2 Glicko-rating

The Glicko-rating system (Glickman, 1999) was developed by Mark Glickman, it is an extension to
the ELO-rating but it specifies the rating as a random variable. The rating of player i has a normal
distribution, we use the following notation:

Qi ∼ N (µi, σ
2
i ) (34)

pQi(qi) = N (qi;µi, σ
2
i ) (35)

The method applies an incremental approximate Bayesian estimation procedure to infer the player’s
skill distribution from past results. The model defines an initial prior rating distribution and performs
updates based on the outcomes of games. These updates occur in batches, by assuming that the
player’s posterior distribution can be determined by integrating out the opponents strength parameter
over their prior distribution. In the following equations, we will not index the parameters of the player
under consideration, i.e. the player whom posterior parameters we are estimating. We use qi ∼ Qk as
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the strength of the player under consideration and qk ∼ Qk as the prior strength of his kth opponent.

fQ(qi|D = d) =

∫
...

∫
fQi(qi|Q1 = q1, ..., QN = qN , D = d)N (q1;µ1, σ

2
n)...N (qN ;µn, σ

2
n)dq1...dqN

(36)

∝
∫
...

∫
N (qi;µi, σ

2
i )L(Qi = qi, Q1 = q1, ..., QN = qN ;D = d)N (q1;µ1, σ

2
1)...N (qN ;µN , σ

2
N )dq1...dqN

(37)

= N (qi;µi, σ
2
i )

N∏
j=1

∫
L(Q = q,Qj = qj ;Di,j = di,j)N (qj ;µj , σ

2
j )dqj (38)

∝ N (qi;µi, σ
2
i )

N∏
j=1

∫
P (Di,j = di,j |Q = q,Qj = qj)N (qj ;µj , σ

2
j )dqj (39)

Here we use that N (x;µ, σ2) is the probability density function of a normal distribution with mean
µ and variance σ2, evaluated in the point x. In Equation (39) we use the Dj ∈ {0, 1}, which is the
subset of D with the relevant data of outcomes of matches between player j and the player under
consideration.
To proceed we need to have the outcome probability given the player ratings. Just like with ELO,
as shown in equation (32), this is taken as a logistic distribution. Furthermore, the author uses an
approximation from (Crooks, 2013) for the integral in Equation (39):

P (Di,j = Yi,j |Qi = qi, Qj = qj) =
(eqi−qj )

Yij

1 + eqi−qj
(40)∫

P (Di,j = Yi,j |Qi = qi, Qj = qj)N (qj ;µj , σ
2
j )dqj =

∫ (
e(qi−qj)

)Yij
1 + e(qi−qj)

N (qj ;µj , σ
2
j )dqj (41)

≈

(
eg(σ

2
j )(qi−qj)

)Yij
1 + eg(σ

2
j )(qi−qj)

(42)

g(σ2
j ) =

1√
1 +

3σ2
j

q2

(43)

Using this approximation, we yield the update equations for the rating of player i:

µnewi = µi + (
1

σ2
i

+
1

δi
)−1

N∑
j=1
j 6=i

g(σ2
j )(Yij − E(Yij |µi, µj , σ2

j ))

σnewi = (
1

σ2
i

+
1

δ2
i

)−
1
2

E[Yij |µi, µj , σ2
j ] =

1

1 + e−g(σ
2
j )(µi−µj)

δ2
i =

 N∑
j=1
j 6=i

g(σ2
j )E

[
Yij
∣∣µi, µj , σ2

j

]
(1− E

[
Yij
∣∣µi, µj , σ2

j

]
)


−1

The Glicko-system also describes a backward filtering step, using a Kalman Filter approach to extract
improved estimators for previous time steps.

2.5.3 Dutch tennis league rating system

The Dutch tennis federation (KNTB) uses a player rating system call DSS that is a Dutch acronym
for “Dynamic Playing Strength” (KNTB, 2017). A conceptual difference with most other ranking
models is that a lower score is considered favorable. The model can be seen as an estimator of playing
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strength and uses the following formulae:

R
(k)
i =


qj − 1 if Yij = 1 and qi > qj − 1

removed if Yij = 1 and qi < qj − 1

qj + 1 if Yij = 0 and qi < qj + 1

removed if Yij = 0 and qi > qj + 1

(44)

qnewi =
1

|M |
∑
m∈M

R
(m)
i (45)

M = {R(k)
i |R

(k)
i 6= removed} (46)

Here we have that M is a collection of matches that are not “removed” that were played during a
certain year. During the start of each year, last year’s results are used to form the new player rating.
The driving idea behind this rating system is that players are expected to win against an opponent
with a rating that is one point higher (worse). Every player keeps a record of scored points; the score
is relative to the opponent. Winning from a player means that your rating should be one less than his
current rating, therefore your result record will contain this score. For players with large differences,
more than one rating point, the expected outcome (lower rated player wins) will be classified as
removed. This means that a theoretical property of this rating is that players cannot improve their
rating whenever they play against much lower rated players, but can worsen their rating (drastically).
For this reason, it is very unattractive for competitive players that focus on getting a low rating to
play against much weaker players.
There are manual, non-mathematical, adjustments to the model to deal with new players, player
inactivity and infrequent playing results. The documentation explaining the system even contains a
subsection elaborating that in some (extreme) cases the federation can manually adjust the ratings
of players if there is a reason to do so. This shows that the federation employs the rating system as
a guideline; adjusting where needed to ensure correctness in extreme cases.

2.6 Microsoft TrueSkill

The TrueSkill rating system (Herbrich et al. , 2007) has been developed by Microsoft to be used in
a broad spectrum of games offered on their Xbox game console. The main goal of this rating system
is to match players with equivalent skills, in essence maximizing draw probability of matches. This
way competitive matches between users on the platform ideally are between players of equal strength.
TrueSkill is also suitable for multi-player games; it assumes that player qualities are additive. In the
following sections, we will explain the model and discuss its performance.

2.6.1 Model

The model uses factor graphs to create a complete probability distribution of individual player
skills, team skills, and game outcomes. The skill of individual i is modeled by the random vari-
able Mi ∼ N (µMi , σ

2
Mi

). Whenever a player performs, his performance is qi ∼ Qi = N (Mi, β), where
β is a constant performance uncertainty for all players. Players perform in teams, and the team
performances to be additive, thus:

Tj =
∑
i∈Aj

Qi = N (
∑
i∈Aj

Mi, β ·NAj ) (47)

NAj = |{i ∈ Aj}| (48)

Here Aj is the set of indices of players in coalition j. The eventual ranking of the teams within a
match is considered to be a direct consequence of the team performances, we define such ranking as
r = {r(1), .., r(n)} such that i ≥ j =⇒ tr(i) ≤ tr(j) where tk ∼ Tk and r(m) is the index of the team
that is ranked in the mth place. A lower ranking is considered to be a better. The model introduces
dummy variables that indicate the differences between the performance of adjacent teams represented
by dk = tr(k)− tr(k+1). Some teams have the same rank, this happens whenever dk < ε. The dummy
variables are only considered for adjacently ranked teams. The idea is to represent this model in
a factor graph, yielding an efficient representation of joint probability distribution. A factor graph
is a bipartite graph containing all factors of the probability distribution and can be a very efficient
way to define a complex probability distribution. Because the graph contains no cycles an efficient
algorithm, the sum-product algorithm can be applied to perform inference. Historical results can be
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fed to the algorithm to produce improved beliefs of player quality parameters.
A very important part of the algorithm is the approximation method Expectation Propagation al-
gorithm (EP) by Tom Minka, one of the authors of the TrueSkill model. EP is a method to ap-
proximately factorize a probability distribution iteratively, by optimizing single factors during each
iteration.
A team’s skill is set equal to the sum of individual participant skills. Some mathematical techniques
like message passing, belief propagation, and expectation propagation, are used for graph inference
using game outcome information. Some of these techniques are only exact for normally distributed
variables. Therefore within the algorithm, the distribution of non-Gaussian variables is approximated
by Gaussians. The approximation is done by minimizing Kullback-Leibler divergence, which with an
approximation by a Gaussian distribution comes down to moment matching (Ranganathan, 2004).

2.6.2 Model performance

The model performs very well; rating convergence and outcome prediction are better than for com-
parable models. The model is twice as inefficient as the theoretical limit (MacKay, 2002, Shannon
entropy). Throughout the model, several assumptions are made, we summarize them in the following
list:

• The team performance is the sum of individual team member performances, it can be seen as
the L1-norm of the vector with player qualities. Other research papers have found that the
inference algorithms can be modified to work with a weighted average of the player qualities in
a different norm than the L1-norm (Nikolenko & Sirotkin, 2011). By using an Ln-norm with
n > 1 (n < 1), we can achieve the behavior that exceptionally good players have larger (smaller)
influence.

• The outcome of a match is modeled as a ranking of teams, allowing for draws but not for margin
of victory” into account. This could be achieved by defining multiple parameters like ε, that
would enforce distances between team performances given a specific margin.

• Inference is performed purely based on the final ranking of the teams. This means that margin
of victory cannot be accounted for.

• Individual performance is independent of teammates and opposing players.

• There is a small inconsistency in the model. Drawing occurs whenever two teams have a perfor-
mance that differs less than a chosen constant ε. This means that whenever team performance
differs by < ε teams have the same rank (they draw), and whenever the difference > ε the
better performing team has a lower (better) rank. We can see that for 3 teams, we can get the
following inconsistency:

ti = tj +
2

3
ε = tk +

2

3
ε (49)

Then we would have that i draws j, j draws k which implies i draws k, but we also have
ti = tk + 3

2ε > tk + ε, thus team i should have a lower rank than team k from a standalone
perspective. It is unclear how the model deals with this inconsistency.

2.7 Coalition Assessment in Film-Making

The final model we discuss was developed to estimate individual qualities of players performing in
coalitions, but not necessarily in a competitive environment (Timmer et al. , 2017). The model was
applied in the world of film-making to identify qualities of professionals and predict the potential
quality of future projects. We translated formulation in the paper to fit the language of this thesis.
Throughout this thesis, we referred to events where coalitions of players perform as matches. Rather
than using the term match (which implies a competitive environment), we use the term project (which
implies collaboration, i.e. all coalition members work together).
The idea is that players perform with an average quality and a Gaussian error. We have that the
quality of a player i during project m is:

Qi,m ∼ N (µi, σ
2
i,m) (50)

The variance σ2
i,m is model-specific. The variance can contain a factor that can increases variance for

non-recent projects and decrease variance for experienced players.
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Within a project, the players perform in teams (coalitions), we denote the set with the indices of
players participating in project m by C(m). The value of the team in project m, is denoted by Vm.
It is assumed that player qualities can be aggregated by addition to yield the coalition value:

Vm =
∑

i∈C(m)

Qi,m ∼ N (
∑

i∈C(m)

µi,
∑

i∈C(m)

σ2
i,m) (51)

The idea is that we have historical observations of player performance QOi,m for a set of historical

projects. If only the value of a film is observed, V Om the authors suggest we can take:

QOi,m = βi,mV
O
m (52)

Here βi,m denotes the importance of player i in project m according to some criterium. In the article,
βi is chosen to be the profit share of player (film-maker) i.
The general definition of a linear unbiased estimator µ̂i for the mean of the player quality µi is:

µ̂i =
∑

{m|i∈C(m)}

di,mQ
O
i,m (53)

Var(µ̂i) =
∑

{m|i∈C(m)}

d2
i,mσ

2
i,m (54)

∑
{m|i∈C(m)}

di,m = 1 (55)

The idea is that the weights d can be chosen, under the condition in Equation (55), such that the
variance of our estimator is minimal, ensuring that µ̂i is the Best Linear Unbiased Estimator (BLUE).
The optimal value of d depends on the exact definition of σ2

i,m; the authors find explicit equations

for specific choices of σ2
i,m.

The model can also be applied in a setting where players have different weights in a coalition. The
value of a team with weighted contributions is defined to be V δm:

V δm =
∑

i∈C(m)

δi,mQi,m ∼ N (
∑

i∈C(m)

δi,mµi,
∑

i∈C(m)

δ2
i,mσ

2
i,m) (56)

∑
i∈C(m)

δi,m = 1 (57)

This way the value of a project is not simply additive, but the importance of players is accounted for.
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3 Mathematical model

This section presents the mathematical model we constructed to estimate player qualities by using
multi-player team game data.
Players have multiple qualities, which are modeled as latent variables. We are interested in estimating
these qualities, but they cannot be observed or measured directly. What we do observe are outcomes
that follow from matches. Matches are interactions between coalitions of players. We refer to a
coalition of players as a team. We call an observable quantity, related to a match, a Key Performance
Indicator (KPI). KPI outcomes are a direct result of the performance of the participating players.
The performances of players are non-deterministic but are closely related to the player quality we
seek to estimate.
Our model contains four types of objects types; players, qualities, matches and KPI’s. We will use
indices to represent affiliation between variables and objects; we use i for players, j for qualities, m
for matches and k for KPI’s. We define NP ,NQ, NM and NK as the number of players, qualities
per player, matches and KPI’s per match respectively. Qualities are related to players; therefore a
specific quality of a player is referred to as player-quality. KPI’s are related to matches; therefore a
specific KPI of a match is referred to as match-KPI.
Within our model we make the following assumptions:

a.1 The quality of a player is a normal random variable.

a.2 The mean of the quality of a player is a normal random variable.

a.3 The performance of a player is a realization of the random variable representing the player
quality.

a.4 Player performances are independent.

a.4.1 Performances over qualities of the same player are independent.

a.4.2 Performances over qualities of different players are independent.

a.4.3 Performances over a single quality of a player within a match for different KPI’s are
independent.

a.5 The outcome space of KPI’s is ordered and discrete (ordinal).

a.6 The outcome distribution of a match-KPI follows directly from an aggregation of the perfor-
mance, role, intention and participation, of players.

a.7 Player performances can be aggregated by weighted summation. The result is a representation
of the performance of the complete coalition.

a.7.1 Such weights are defined for all combinations of player, quality, match, and KPI.

a.8 Players that have the intention to increase (decrease) a KPI have a positive (negative) weight
factor.

a.9 We have a method (designed using domain knowledge) that deterministically determines the
influence on a KPI given a player’s role, intention, and participation data.

The quality j of player i is represented by Q(i,j) and with assumptions a.1 and a.2 we have that;

Q(i,j) ∼ N
(
M(i,j), σ

2
(i,j)

)
(58)

M(i,j) ∼ N
(
µM(i,j)

, σ2
M(i,j)

)
(59)

σ2
(i,j) ∈ R+, µM(i,j)

∈ R, σ2
M(i,j)

∈ R+ (60)

Here we have that N (a, b), a ∈ R, b ∈ R+ is the Gaussian distribution with mean a and variance b.
We represent all qualities of player i in the vector Q(i), and all the qualities of all the players in the
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vector Q. The distribution of these vectors is:

M(i) ∈ RNQ×1,Σqi ∈ RNQ×NQ (61)

Q(i) =


Q(i,1)

Q(i,2)

...
Q(i,NQ)

 ∼ N (M(i),Σqi) (62)

Mq ∈ R(NQNP )×1, Σq ∈ R(NQNP )×(NQNP ) (63)

Q =


Q(1)

Q(2)

...
Q(NP )

 ∼ N (Mq,Σq) (64)

We use that N (A,B) is the multivariate Gaussian distribution with mean A and covariance matrix
B. Here we require that A ∈ RS , B ∈ RS×S , and B is symmetric and positive semi-definite.
The vectors M(i) and Mq are random variables representing the mean of the qualities of player i
and all the players, respectively. The matrices Σqi and Σq are covariance matrices of the qualities of
player i and the qualities of all players, respectively.
From Assumption a.4.1 we have that Σqi is a diagonal matrix, as player qualities are uncorrelated.
From Assumption a.4.2 we have that Σq is also a diagonal matrix. This is because independence
implies the following relationship:

Cov(Q(a,b), Q(c,d)) = 0 if (a 6= c) ∨ (b 6= d) (65)

For the mean of the player qualities we find the following distribution:

Mq ∼ N (µMq ,ΣMq ) (66)

µMq
∈ RNPNQ×1, ΣMq

∈ RNPNQ×NPNQ (67)

We define Dk,m as the random variable representing KPI k of match m. The realizations of the
random variable Dk,m is represented by dk,m. All the KPI’s of match m are represented by:

Dm =


D1,m

D2,m

...
DNK ,m

 , D =


D1

D2

...
DNM

 (68)

di,m ∈ Di (69)

dm ∈ D = D1 × D2 × . . .DNK ,m ∈ {1, ..., NM} (70)

Di is an ordinal set ∀i (71)

The idea is that Dk,m is a random variable with the outcome space Dk.
In general, KPI outcomes can be both continuous and discrete, with very context specific probability
distributions. As stated in Assumption a.5, we take KPI’s to be ordinal. Each KPI type can have
a different outcome space, therefore as stated in Equation (69) we have different outcome spaces for
different KPI types. The complete probability model is discussed extensively in Section 4. Some
examples of KPI’s and non-KPI’s are listed in Table 1.
During a match several players perform, but we only observe KPI’s that are related to an aggregation
of the performance of players (Assumption a.6). The idea is that the aggregation we perform is
a representative way to measure team performance, and thus influences the outcome of the KPI.
From Assumption a.7 we have that the performance of different players can be aggregated by using
an importance weighted linear addition. We call such linear importance weights δ. Specific scaling
factors are denoted by δ(i,j,k,m) and depend on the player i, the quality j, the observed KPI k and the
match m. We define δ(k,m) as the weights associated with match m and KPI k, δ(m) as the weights
corresponding to match m and δ as the matrix with weights for all match-KPI’s:
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δ(k,m) =
[
δ(1,1,k,m) δ(2,1,k,m) ... δ(NP ,1,k,m) δ(1,2,k,m) ... δ(NP ,NQ,k,m)

]
(72)

δ(m) =


δ(1,m)

δ(2,m)

...
δ(NK ,m)

 =


δ(1,1,1,m) δ(2,1,1,m) ... δ(NP ,1,1,m) δ(1,2,1,m) ... δ(NP ,NQ,1,m)

δ(1,1,2,m) δ(2,1,2,m) ... δ(NP ,1,2,m) δ(1,2,2,m) ... δ(NP ,NQ,2,m)

... ... ... ... ... ... ...
δ(1,1,NK ,m) δ(2,1,NK ,m) ... δ(NP ,1,NK ,m) δ(1,2,NK ,m) ... δ(NP ,NQ,NK ,m)

 (73)

δ =



δ(1,1)

δ(2,1)

...
δ(NK ,1)

δ(1,2)

...
δ(NK ,NM )


=



δ(1,1,1,1) δ(2,1,1,1) ... δ(NP ,1,1,1) δ(1,2,1,1) ... δ(NP ,NQ,1,1)

δ(1,1,2,1) δ(2,1,2,1) ... δ(NP ,1,2,1) δ(1,2,2,1) ... δ(NP ,NQ,2,1)

... ... ... ... ... ... ...
δ(1,1,NK ,1) δ(2,1,NK ,1) ... δ(NP ,1,NK ,1) δ(1,2,NK ,1) ... δ(NP ,NQ,NK ,1)

δ(1,1,1,2) δ(2,1,1,2) ... δ(NP ,1,1,2) δ(1,2,1,2) ... δ(NP ,NQ,1,2)

... ... ... ... ... ... ...
δ(1,1,NK ,NM ) δ(2,1,NK ,NM ) ... δ(NP ,1,NK ,NM ) δ(1,2,NK ,NM ) ... δ(NP ,NQ,NK ,NM )


(74)

δ(i,j,k,m) ∈ R, δ(k,m) ∈ R1×(NPNQ), δ(m) ∈ RNK×(NPNQ), δ ∈ R(NKNM )×(NPNQ) (75)

The value of δ(·) follows directly from the player’s participation data: playing position, intention
and playing time. As stated in Assumption a.9, we have a method to determine the importance
weights from historical participation data. Such a method must be devised using domain knowledge,
incorporating the fact that δ(i,j,k,m) should be the importance weight of quality j of player i on KPI
k in match m. In Section 6.1 we show the method we used for our application in football.
Note that δ(i,j,k,m) is defined for every combination of i, j, k, and m, also in the case that a player
does not even participate in a match. In such cases the player does not have any influence on the
KPI’s in match m, we define:

Player i does not participate in match m =⇒ δ(i,j,k,m) = 0 ∀j,k (76)

In most cases, only a fraction of all players participates in a match. In football, only 22-28 players
are involved in a match, while our model considers a large population of players. Effectively this
means that δ is a large sparse matrix. There might be environments where during each match a
large proportion of players participates, consequently, the matrix δ will not be sparse. We can say
that if during a match, on average NZ players perform, each row of δ will contain (at most) NZ ·NQ
non-zero values. More δ’s can be zero; as participating players that do not influence a KPI with a
certain quality will receive δ(·) = 0. It follows that the approximate fraction of non-zero elements in

δ is NZ
NP

.
Within a match players have certain intentions; they are constantly trying to achieve something.
We model the intentions of players very straightforward, a player either wants to increase a KPI or
decrease a KPI. This also follows from Assumption a.8. Whenever we have two teams, we have that
players of opposing teams, with opposing intentions, will have weight factors δ(·) with opposite signs.
Whenever aggregating, we are effectively calculating the strength difference between the players that
want to increase and decrease a KPI. For this reason, we refer to the aggregation as the strength
difference, dS. For KPI k in match m we define the strength difference as dSk,m. We have that:

dSk,m =
∑
i,j

δ(i,j,k,m)Q(i,j) = δ(k,m)Q (77)

dSk,m ∈ R (78)

As dSk,m is a weighted sum of Gaussian random variables, it is a Gaussian random variable itself.
We have:

dSk,m ∼ N (δ(k,m)Mq, δ(k,m)Σqδ
T
(k,m)) (79)

= N (δ(k,m)µMq , δ(k,m)Σqδ
T
(k,m) + δ(k,m)ΣMqδ

T
(k,m)) (80)

The randomness of dSk,m is caused by inconsistency in the performance and uncertainty in the mean
quality of players. The realization of dSk,m is referred to as dSOk,m. We use the superscript ”O”,

because dSOk,m is an observation of dSk,m.
From Assumption a.6 we assume that the probability distribution of such a KPI is a function of the
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strength difference. We define a function ξk : (Dk × R) =⇒ [0, 1] for each KPI k, that models the
relationship between the strength difference and the outcome probabilities for KPI k:

P (Dk,m = d) = ξk(d, dSk,m) (81)

The idea of the function ξ is that it captures the relationship between the strength difference during
a match, and the probability distribution of the KPI outcome. In Section 4 we will elaborate this
relationship, which is essential to estimate past performance of players from historical data.
The average performance of players is a good indication of future player performance, but players will
always overperform or underperform due to random effects. We call such deviations from expected
performance player quality inconsistencies, these are captures by the matrix Σq. From Assumption a.4
we have that performance inconsistencies of players are uncorrelated. We conclude that inconsistencies
in the strength differences of different match-KPI’s, even KPI’s in the same match, are uncorrelated.
Even the performance inconsistency of a single player-quality for a different match-KPI is independent.
For this assumption to be reasonable we must consider KPI’s within a match, that are independent.
We define the vector with all strength differences, dS, by:

dS ∼ N (δMq, δΣqδ
T ◦ I) (82)

In Equation (82) we use δΣqδ
T ◦ I, where ◦ is the element-wise product. By applying this operation

we ensure that ΣdS is a diagonal matrix. As required, the strength for match-KPI’s are uncorrelated:
cov(dSa,b, dSc,d) = 0, ∀a6=c∨b6=d. The fact that all strength differences are independent follows from
all assumptions in a.4. Assumption a.4.3 is essential to ensure match-KPI’s within a certain match
are independent.
The main goal of our model is to calculate estimators for the probability distribution parameters of
the individual player qualities; µMq

, ΣMq
and Σq. These player qualities cannot be observed, and

therefore are latent variables that we create to model player strengths. What we do observe are KPI
realizations. The unknowns in our model are µMq , ΣMq , Σq, δ and ξi(·). The values for ξi(·) and δ
will be chosen in sections 4.1 and 6.1 respectively.

Table 1: Examples of KPI’s; the main requirement is that is must be a measurable outcome of a
collaborating team. Some examples have a continuous outcome space, to be applied in our model we
would need to discretize the variable to yield an ordinal outcome space.

Context KPI Not KPI
Football goals scored/conceded ability to attack

goals conceded ability to defend
shots on target stamina

Tennis first serve percentage player length
points scored serving/not serving public attendance

Golf score relative to par player gear
Start-up sales company culture
Film-making IMDB score movie review text

box office sales actors

Remark 2. In Section 2 we described multiple models, we list the main characteristics of our model
to highlight the differences:

• Any amount of players can participate in a match

• Matches have multiple observable outcomes

• Match outcomes are ordinal

• Players have multiple qualities

• The mean of a player’s quality is modeled as a random variable

Remark 3. Our model shares the assumption that player qualities are additive with (Timmer et al. ,
2017), Section 2.7, and (Herbrich et al. , 2007), Section 2.6. We can say that player qualities are part
of a linear space where multiple qualities can be aggregated by addition. This holds for our model and
both these models. The main difference is the space of our observations. In (Timmer et al. , 2017) the

16



outcome space is the same as the quality space; after adding all qualities no further transformations
are applied. In (Herbrich et al. , 2007) our observations are a ranking of the team qualities; which
is a non-linear transformation of elements of the space. The idea in our research is that we assume
additive player qualities, and a non-linear relationship with the space of our observations. Up to this
point, this relationship has been defined in Equation (81) by an unspecified mapping ξ.
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4 Probability model

In this section, we will construct the probability model that describes the relationship between player
qualities and outcomes of matches.
We will discuss our choices that lead to an expression for the conditional outcome probability Pθ(Dm =
dm). We contain all relevant information regarding a match in the parameter θ. Essentially what we
will be modeling is the function ξ from Equation (81), as this is the relationship between the player
qualities (aggregated in dS) and realizations d of D.
Recall from Assumption a.5 that our KPI outcomes, D, are ordinal. A variable is ordinal if the
outcome space is countable and ordered. An example is the Likert scale (Likert, 1932), an educational
grading system or the outcome of a football match.
Ideas from the field of psychometrics were found to be applicable to our research. This field deals
with measurements of latent characteristics based on comparison data. Ordinal outcomes are very
common in this field (Casalicchio, 2013). Whenever pairwise comparisons are performed by humans,
there are underlying stimuli that guide the decision-making process. The strength of these stimuli
can be modeled as a latent variable, just like we have done with the player ratings in our models.
Throughout this section, we will develop methodologies and formula’s that hold for a single KPI
within one match, and can easily be extended to multiple KPI’s for a large set of matches. Therefore,
in this section, we will refer to KPI’s only with a single index (defining the matches), while in the
rest of the thesis we apply a double index (defining the match and specific KPI type).
In Section 4.1 we will look at the general method behind parametrizing the outcome probability
distribution conditioned on player strength. In this subsection, we will introduce three abstract
concepts and discuss them in the next subsections: utility function 4.2.1, benchmark parameters 4.2.2
and link function 4.2.4. In Section 4.3 we will discuss how we observe the strength difference within
a match, and we will continue to explain how we can use bookmaker odds as an input to our model
in Subsection 4.4.

4.1 Relationship between KPI outcomes and strength difference

We want to find a model for the probability distribution of KPI’s given the player-data in a match
(player-roles, participation and intentions). We already have the first step; we defined the strength
difference dS as the aggregation of player strengths on a match level in Equation (77). Even though
for a match multiple KPI’s can be observed, as stated, in this section we will use the index m to
specify a specific KPI for match m (rather than the double index convention used in Section 3).
Our KPI’s are random variables, Dm, with realizations dm that are elements of an ordinal set D(·), as
defined in Equation (69). The index of D is unspecified, we use to the outcome space of the KPI under
consideration. We say D(·) = {1, 2, ...,K}, thus it is a set of K ordered outcomes. From Equation
(81) we have that the probability distribution of Dm is regulated by the strength difference within
match-KPI m, dSm, as stated in Equation (81). Recall from Equation (77) that we have

dSm = δmQ (83)

µdSm = E[dSm] (84)

σ2
dSm = E[dS2

m]− E[dSm]2 (85)

In the next sections, we construct a direct mapping from the realization of the strength difference,
dSOm, to the realized outcome dm. We used methodologies from psychometrics, with some specific
choices that lead to the following relationship:

{dSOm ∈ [βk−1, βk)} ⇐⇒ {dm = k} (86)

P (dm = k) = P (dSOm ∈ [βk−1, βk)) (87)

This means that we have a relationship between regions of the realized strength difference, [βk−1, βk),
and KPI outcomes. Whenever the strength difference realization falls in such an interval, the outcome
dm of the match is the corresponding ordinal element of D.
We use the following notation for the outcome probability distribution, conditioned on the distribution
of the strength difference:

P (Dm = dm|dSm ∼ N(µdSm , σ
2
dSm)) (88)

The idea behind this notation is that in matches can be very different (mostly due to the fact that
different players participating), and outcome probability distributions are a function of the strength
difference, dSm, distribution.
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4.2 IRT model

The modeling approach we apply comes from the field of Item Response Theory (IRT). This theory
finds a probabilistic relationship between performances of individuals on specific tests and a measure
of their general performance in other tests. The goal of an IRT model is to describe the relationship
between latent traits (unobservable inputs) and (observable) experiment outcomes. The main idea
is that the outcome of an experiment depends on underlying traits, that can be inferred by using
the experiment outcome. The formulation of our model is abstract and contains multiple unknown
elements. In the subsequent subsections, we will elaborate how we constructed or chose these un-
known elements. The approach is similar to (McCullagh, 1980), and has been developed further by
(Fahrmeir & Tutz, 1994) and (Casalicchio, 2013).
We use a utility function u : R→ R, a continuous monotonically increasing function, and a link func-
tion F : R → [0, 1], a cumulative distribution function. The utility function reflects the importance
of a certain strength difference. The link function describes the relationship between the outcome
and an affine transformation of the utility strength difference. Furthermore, we use the following:

E[dSm] = µdSm ∈ R (89)

Var(dSm) = σ2
dSm ∈ R+ (90)

βk ∈ R for k ∈ {0, ...,K} (91)

{i ≥ j} =⇒ {βi ≥ βj} (92)

β0 = −∞∧ βK =∞ (93)

u(0) = 0 (94)

We get the following equation:

P (Dm ≤ k|dSm ∼ N (µdSm , σ
2
dSm)) = F (βk − u(µdSm), σdSm). (95)

By defining the above we see that the ordinal response D has a probability distribution that depends
on the distribution of strength discrepancy dSm ∼ N (µdSm , σdSm). The strength discrepancy utility
is equal to u(µdSm).
If we would assume that for all samples the second moment is equal, we can let it be absorbed by
the function F . Under this assumption, equation (95) is a specific case of the generalized Fechner
Problem, where F (·) is Fechnerian discrimination index and u(·) is a utility function (Falmagne, 1971).
Fechner’s research was pioneering in finding mathematical measures that represent the psychometric
principles behind how humans distinguish objects. Their idea was to find mappings between object
features and preferences. We can extend the usage of these ideas to the context of player comparisons
in any competitive environment.
We choose to add randomness to the psychometric model, because the performance of players in a
competitive environment is affected by a lot of random effects. Also it makes sense that results are
more (less) predictable, if we have a higher (lower) certainty regarding the strength difference.
It is clear that the strength difference has a match specific probability distribution.

Example 1. When considering the KPI home goals scored in football, it is clear that the home team
wants to increase this KPI. From Assumption a.8 it follows that the home players will have δ(·) > 0
for this KPI. The parameters of the strength difference dS will be different, depending on the quality
of the players of the two teams. We can say that u(µdSm) ≈ 0 (no strength difference) in matches
where teams are evenly matched, while in a match where the home team is stronger we would have
u(µdSm) > 0. From Equation (94) we have u(µdSm) = 0 =⇒ µdSm = 0, combining this with the fact
that u is monotonously increasing we have u(µdSm) > 0 =⇒ µdSm > 0.

We can speak of the average strength difference and the average inconsistency for matches, which
are the population means. We define µ̄dS as the population mean of µdS , and σ̄2

dS as the population
mean of σ2

dS . These numbers can be interpreted as the mean and variance of an average match.
The utility of the average strength difference, u(µ̄dS), should be 0 as on average there is no strength
difference between teams. We get µ̄dS = 0 from Equation (94) and we choose σ̄2

dS = 1, without loss
of generality. Our choices of the population mean and population variance are free because dS is a
latent variable that is translation and scale invariant. Also, any scaling and translations of dS can
also be absorbed by alternative, methodologically equivalent, choices for β, the functions u and the
function F .
We now proceed to analyze Equation (95) under the assumption that σ2

dSm
= σ̄2

dS = 1. We will use
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the following notation:

F̄ (x) = F (x, σ̄2
dS). (96)

From this we get the following equation:

βi = F̄−1

 i∑
j=1

P
(
Dm = j|dSm ∼ N

(
µ̄dS , σ̄

2
dS

)) , for i = 0, 1, 2, ...,K. (97)

Note that we have β0 = −∞ and βK =∞. From (95) it follows directly that:

P (Dm = k|dSm ∼ N (s, σ̄2
dS)) = F̄ (βk − u(s))− F̄ (βk−1 − u(s)). (98)

Recall that F and F̄ are cumulative density functions. In the case these functions are differentiable

they have well defined densities, f(x, r2) = dF (x,r2)
dx and f̄(x) = dF̄ (x)

dx , the corresponding probability
mass functions. We note that by the fundamental theorem of calculus the following relationships
hold:

P (Dm = k|dSm ∼ N (s, r2)) =

βk+u(s)∫
βk−1+u(s)

f(x, r2)dx (99)

=

βk∫
βk−1

f(x+ u(s), r2)dx (100)

P (Dm = k|dSm ∼ N (s, σ̄2
dS)) =

βk+u(s)∫
βk−1+u(s)

f̄(x)dx (101)

=

βk∫
βk−1

f̄(x+ u(s))dx (102)

The function u(s) represents the impact of a strength difference of s. Our choice for this function
is elaborated in 4.2.1. In the Subsection 4.2.2, we will discuss an estimation procedure for βi. In
Section 4.2.4, we will assume that F is a normal cumulative distribution and show the implications
this has. In Subsection A.1.2 of the appendix, we show the quality of the approximations when
applied to estimate a Poisson distributed random variable.

4.2.1 Strength difference utility function

In the original formulation in the field of psychometrics the functional u represented the utility of a
certain stimulus in a pairwise comparison. In our model, the inputs are individual player qualities and
their influences on the comparison outcome. u is a mapping from these individual player qualities
to their utility when it comes down to influencing a certain KPI outcome. We assume that this
relationship is linear, we choose u to be the identity transformation and define dSm according to
Equation (77) as a combination of individual player qualities:

dSm = δmQ (103)

µdSm = δmµMq
(104)

σ2
dSm = δm(ΣMq + Σq)δ

T
m (105)

u(µdSm) = µdSm (106)

We can argue that the calculation of dSm, by weighing the factors of Q with carefully chosen δ(·)’s
is already a linear transformation from player qualities to their utility. Therefore dSm had already
information about the utility of the quality of participating players, which is an argument for choosing
u to be the unitary transform.
Note that u(·) this is not an increasing function with respect to the player qualities, Q, for elements
of Q(·) where the corresponding δ(·) < 0 the function is strictly decreasing. It is trivial that u(·) is, as
required, a monotone increasing function of dSm. This is important because it ensures that a higher
(lower) strength difference always gives a higher (lower) utility.
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4.2.2 Benchmark parameter estimation

In this section we will determine estimators for the benchmarks βk, using the complete dataset and
Equation (95). An important assumption we make is that βi’s are constant wrt σ2

dSm
and µdSm .

The benchmarks are KPI dependent; so in this subsection m refers to a certain KPI within match
m. In total, we have NK KPI types, and we apply the equations in this section for all KPI types
separately.
We start off by adjusting equation (95) such that it holds (approximately) for the complete dataset,
using the utility function chosen in Equation (106):

F (βk, σ̄
2
dSm) = F̄ (βk) = P (Dm ≤ k|dSm ∼ N (0, σ̄2

dS)) (107)

= P (Dm ≤ k|dSm ∼ N (µ̄dS , σ̄
2
dS)) (108)

≈ P (Dm ≤ k) (109)

This approximation is by definition not exact. In Equation (108) the outcome probability is condi-
tioned on the average strength difference distribution, thus averagely matched teams, and in equa-
tion (109) we do not condition (effectively we consider a random match). The approximation follows
from the assumption that match outcome probabilities for an average match, with an average strength
difference (µ̄dS = 0) and average variance (σ̄2

dS), are equal to the outcome probabilities of a random
match. Therefore we can equate these outcome probabilities, and we can estimate outcome probabil-
ities for equally matched teams by looking at the population average outcome occurrence frequency.
Under the approximation in Equation (109) we yield:

βk = F̄−1


NM∑
m=1

1(dm ≤ k)

NM

 . (110)

Here we use the indicator function with a statement X as an argument:

1(X) =

{
1 if X is True

0 if X is False
(111)

4.2.3 Improved benchmark parameter estimation

The benchmark parameter estimation in Subsection 4.2.2 was done using the dataset under the
approximation in Equation (109). Once we have model results, we can relate strength difference
estimates to outcome data. This enables us to find improved estimates of βi; for example, we can
make βi estimates depend on µdSm . The idea is that we yield more accurate estimates of β, for
different average strength differences µdS . As we have the implied strength differences of our model,
we can improve the approximation in (109) by taking:

P (Dm ≤ k|dSm ∼ N (0, σ̄2
dS)) ≈ P

(
Dm ≤ k

∣∣ |µdS | < ε
)

(112)

Here epsilon is a small value, that ensures that we estimate β by only looking at matches that
according to our model are evenly matched. This can be seen as a clustering method, that we can
use to calculate βi for all possible strength differences by defining:

βk(s) = F̄−1


NM∑
m=1

1(|µdSm − s| < ε)1(dm ≤ k)

NM∑
m=1

1(|µdSm − s| < ε)

 (113)

Here βk(s) is used for a match whenever µdSm = s.
Another method that can be applied is Kernel Density Filtering (KDF), yielding the following formula:

βk(s) = F̄−1


NM∑
m=1

1(dm ≤ k)N (s;µdSm , σ
2
dSm

)

NM∑
m=1
N (s;µdSm , σ

2
dSm

)

 (114)

This way samples are weighted accordingly with a Gaussian kernel. We choose the kernel to be the
match dependent probability distribution of the strength difference; N (µdSm , σ

2
dSm

).
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4.2.4 Gaussian distribution as link function

In this section we apply the model from 4.1 and choose an appropriate F (·, ·). Such a function is
often referred to as the link function; as it is the function that links the input variables to the output
variables. We choose F to be the normal cumulative distribution, we get F (a, b) = Φ( a√

b
) = P (x <

a√
b
|x ∼ N (0, 1)). Here we have that Φ is the standard normal cumulative distribution. From 4.2 we

have that σ̄2
dS = 1, thus it follows that F̄ (a) = F (a, 1) = Φ(a). We get:

P (Dm ≤ k|dSm ∼ N (s, r2)) = F (βk − u(s), r2) (115)

= Φ

(
βk − s
r

)
(116)

The model has a lot of resemblances with the Thurstone-Mosteller model from Subsection 2.3.2, but
where this model uses binary outcomes we have ordinal outcomes.
We now use equations (99), (100) and (106) yielding the following for k 6= 1 and k 6= K:

P (Dm = k|dSm ∼ N (s, r2)) = Φ

(
βk − s
r

)
− Φ

(
βk−1 − s

r

)
(117)

=

βk∫
βk−1

N (x; s, r2)dx (118)

=

∞∫
−∞

1[βk−1,βk](x)N (x; s, r2)dx (119)

=

∞∫
−∞

1[−βk,−βk−1](−x)N (x; s, r2)dx (120)

= |βk − βk−1|
∞∫
−∞

U [−βk,−βk−1](0− x)N (x; s, r2)dx (121)

= |βk − βk−1|
(
U [−βk,−βk−1] ∗ N (s, r2)

)
(0) (122)

Here we use the indicator function and the continuous uniform probability density function:

1[A,B](x) =

{
1 if x ≥ A ∧ x ≤ B
0 if x < A ∨ x > B

(123)

U [C,E](x) =

{
1

|B−A| if x ≥ C ∧ x ≤ E
0 if x < C ∨ x > E

(124)

=
1

|C − E|
1[C,E](x) (125)

Furthermore, to get from Equation (121) to (122) we use the definition of the convolution of two
probability distributions:

h(z) = (f ∗ g)(z) =

∫ ∞
−∞

f(z − t)g(t)dt (126)

We know from (Grinstead & Snell, 2009) that the convolution of two probability density functions
corresponds to the pdf of a random variable that is distributed as the sum of the two underlying
random variables. We now yield that:

P (D = k|dS ∼ N (s, r2)) ∼ (βk − βk−1)pC(0) (127)

C = A+B (128)

A ∼ U [−βk,−βk−1] (129)

B ∼ N (s, r2) (130)

We would like to emphasize that this expression for P (Dm = k|dSm ∼ N (s, r2)) does not integrate
to 1 as it is not a probability distribution, but a probability of an event happening conditioned on
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the distribution dSm. Therefore we do have that∑
k

P (Dm = k|dSm ∼ N (s, r2)) = 1

We can now approximate P (Dm = k|dSm ∼ N (s, r2)) probability for k = {2, 3, ...,K − 1} by a
normal distribution. We do this by a method called assumed density filtering, which in our case
comes down to moment matching (Ranganathan, 2004), because our assumed density function is
the normal distribution. This means that our normal approximation is optimal according to this
methodology when we choose the corresponding 1st and 2nd moments:

E[C] = E[A] + E[B] = −βk + βk−1

2
+ s (131)

Var(C) = Var(A) + Var(B) =
(βk − βk−1)2

12
+ r2 (132)

We see that for k = 1 or k = K, the moments are not well defined (β0 = −∞ and βK =∞), therefore
we will need a different calculation for these cases.
From Equations (131) and (132) we have seen that we can approximate P (Dm = k|dSm ∼ N (s, r2)),
for k = {2, 3, ...,K − 1}, by the following Gaussian distribution:

P (Dm = k|dSm ∼ N (s, r2)) = Φ

(
βk − s
r

)
− Φ

(
βk−1 − s

r

)
(133)

≈ (βk − βk−1)N
(

0; s− βk − βk−1

2
, r2 +

(βk − βk−1)2

12

)
(134)

= (βk − βk−1)N
(
−s;−βk − βk−1

2
, r2 +

(βk − βk−1)2

12

)
(135)

= (βk − βk−1)N
(
s;
βk − βk−1

2
, r2 +

(βk − βk−1)2

12

)
(136)

∝ N (s;µDk , r
2 + σ2

Dk
) (137)

µDk =
βk − βk−1

2
(138)

σ2
Dk

=
(βk + βk−1)2

12
(139)

Now for the edge cases we have that:

P (Dm = k|dSm ∼ N (s, r2)) =

{
Φ(β1−s

r ) if k = 1

1− Φ(βK−1−s
r ) if k = K

(140)

4.3 Observed strength difference

In sections 3 and 4.2.1 we have defined strength difference for KPI k in match m as a linear weighted
sum of the individual qualities of players, dSk,m = δk,mQ. Even though a team has a higher (average)
quality, random factors can influence the performance and therefore the outcome of a match.
Whenever we observe the KPI outcome, we know that the dSOk,m is in a certain range. We repeat
Equation (86) that describes this relationship explicitly:

{dSOk,m ∈ [βz−1, βz)} ⇐⇒ {dk,m = z} (141)

Essentially we never observe a specific value value of the strength difference, but we only know the
prior distribution and the eventual range. We say that:(

dSOm
∣∣Dm = k

)
=
(
dSOm

∣∣dSOm ∈ [βk−1, βk)
)

(142)

We see how this works in figure 1. In this example we have chosen µdS = 1 and σ2
dS = 1, and all filled

regions under the normal distribution correspond to ordinal outcome bins. Whenever an outcome
occurs, the observed strength difference for this match was somewhere in the bin, and the conditional
distribution takes the form of a truncated Gaussian. To avoid dealing with truncated Gaussians we
approximate such outcome with a normal distribution by moment matching. The equations for this
are described in Subsection C.1. In figure 1 we show how this approximation looks in a specific

23



Figure 1: Standard class distribution

case. The figure displays Gaussian curves are an approximation of a truncated Gaussian areas. The
Gaussian curves are normalized to have the same area as the area of the truncated Gaussian they
approximate.
The following equations describe the mean and variance associated with a truncated Gaussian, and
therefore our approximation:

pdS(dSOm) ∼ N (dSOm;µdSm ,ΣdSm) (143)

pdS
(
dSOm

∣∣Dm = k
)
∼ N (dSOm;ψk, π

2
k) (144)

ψk = µdS +
φ(a)− φ(b)

Φ(b)− Φ(a)
σdS (145)

π2
k = σ2

dS

[
1 +

aφ(a)− bφ(b)

Φ(b)− Φ(a)
−
(
φ(a)− φ(b)

Φ(b)− Φ(a)

)2
]

(146)

a =
βk−1 − µdS

σdS
(147)

b =
βk − µdS
σdS

(148)

φ(x) = N (x; 0, 1) (149)

Φ(z) = P (X < z) where X ∼ N (0, 1) (150)

Almost all estimation techniques require observations to be certain, rather than a probability distri-
bution. Therefore, for simplicity, throughout this report we will use a point estimate; (dSOm|Dm =
k) = ψk. This assumption will not influence estimators of quality means, it will only affect our
certainty of these means. In essence; we assume that our observations are point values of the strength
difference, which corresponds to the average of the strength difference distribution associated with
the KPI outcome. We discuss a method that could potentially be used to transfer the uncertainty of
the observation to the parameter we estimate in Section C.3.

4.4 Market knowledge

In some cases a match between teams catches the interest of a lot of people. In general, disagreements
about future outcomes are very common, and this leads to a large demand for money wagering. For
individuals it provides an interesting way of fan engagement and companies can use it as investment
opportunities. Fact is that there is a large market where people from the whole world bet on more
than 1.000 events every day. Such bets are accessible to be wagered on by anyone with internet.
The total annual gross win by companies in Sports Betting is 11.5 Billion in 2012 (Statista, 2012).
Multiple sources indicate that this is only a fraction of the total sports betting market, as most action
occurs illegally and therefore is unregistered.
The business model of companies in this market is to provide quotes (odds) that can be wagered on.
Such odds indicate the multiple a customer receives whenever he wagers money on an event and this
event happens. Just like in classical casino games (blackjack, roulette, etc.), the bookmakers aim to
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provide a circumstance wherein the pay-off structure is such that their profit has a positive expected
value. This means that in the long run they make profit consistently. The odds that bookmakers
provide are the reciprocal of the implied probability. There are reliable methods to infer probabilities
that bookmakers expect for an event from the odds they provide. The bookmakers have incentive to
provide correct odds, otherwise there are players that can consistently take advantage of inefficiencies
and make money in the long run. This means that the bookmaker will lose money; which is a scenario
that they clearly want to avoid.
It must be noted that bookmaker odds are heavily influenced by (irrational) betting patterns of
gamblers. This means that the odds in the market can always contain bias. Nevertheless; for events
with high liquidity (a large amount of betting) we can use the ”Efficient Market Hypothesis” to argue
that the final implied probabilities, the equilibrium of all the participating parties, in general is a
very good estimator of the real probabilities. The Efficient Market Hypothesis states that in financial
economics all asset prices fully reflect all the information available. A sports bet could be seen as
an investment opportunity; therefore wrong implied probabilities lead to mispricing and should be
exploited by the rest of the market in the long term.
The bookmaker implied probabilities can be used to calculate bookmaker implied strength difference.
An idea is to use predictions made by bookmakers as the measurements we train our model on. This
way we use observations that could be biased, but contain much lower variance. Another advantage
of this approach is that we do not need to make any mathematical model for Pθ(Dm = k), where θ
contains all the relevant information for match m. This information is simply implied by the betting
market. It is a result of all the people and companies in the world that have a certain opinion
about the outcome of this match. We develop an estimation procedure using this methodology in
Subsection 5.7.
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5 Estimators for mean quality, quality variance and player
inconsistency

In this section we will construct multiple estimators that may be used to find the parameters in our
model. We are mostly interested in the mean player quality, Mq. This is parametrized by it’s mean
µMq

and uncertainty ΣMq
. This player quality is the average player performance of a single player,

while the inconsistency of the player performance is captured by the parameter Σq. We have the
following probabilty model:

pQ(q) = N (q;Mq,Σq) (151)

pMq (x) = N (x;µMq ,ΣMq ) (152)

pdS(y|Mq = x) = N (y; δx,ΣdS) (153)

We have that the variances of the strength differences for KPI outcomes, given Mq, are uncorrelated.
We get:

ΣdS = diag(σ2
dS1

, σ2
dS2

, ..., σ2
dSNMK

) =


σ2
dS1

0 ... 0
0 σ2

dS2
... 0

... ... ... ...
0 0 ... σ2

dSNMK

 (154)

σ2
dSj =

NPQ∑
i=1

δ2
j,i(Σq)i,i = δj,∗Σqδ

T
j,∗ (155)

ΣdS = δΣqδ
T ◦ I (156)

Σq = diag(σ2
q1 , σ

2
q2 , ..., σ

2
qNPQ

) =


σ2
q1 0 ... 0
0 σ2

q2 ... 0
... ... ... ...
0 0 ... σ2

qNPQ

 (157)

Recall from Section 3, that NM is the number of matches, NK is the number of KPI’s per match, NQ
is the number of qualities per player and NP is the number of players in our dataset. For convenience
we define NKM = NKNM and NPQ = NPNQ. We are interested in finding estimates for µMq , ΣMq

and Σq, denoted by µ̂Mq
, Σ̂Mq

and Σ̂q respectively. Estimators have a superscript that contains an
abbreviation of the estimation method.
In the case that δ ∈ RNKNM×NPNQ = RNKM×NPQ has incomplete column rank this means that
there exists collinearity between player performances. A statistical model cannot distinguish between
collinear player performance without prior information or additional assumptions. Some methods
require that δ has full row rank, implicitly requiring that NKM > NPQ.
Throughout this section we will find estimators that are optimal according to a certain criterion. The
likelihood of an estimator is a very important property, defined in (1). Estimators that are optimal
according to this criterion are called maximum likelihood estimators (MLE), defined in Equation (2)
and (3). Another well known measure for the quality of an estimator is the mean squared error
(MSE), defined as:

MSE
(
θ̂
)

= E

[(
θ − θ̂

)2
]

(158)

The estimator of θ that minimizes the MSE is referred to as the minumum mean square error (MMSE).
The following properties and definitions are useful:

MSE
(
θ̂
)

= Var
(
θ̂
)

+ bias
(
θ̂, θ
)2

(159)

bias
(
θ̂, θ
)

= E
[
θ̂
]
− θ = E

[
θ̂ − θ

]
(160)

MMSE (θ) = argmin
θ̂

MSE
(
θ̂
)

(161)

= E [θ|D = d] (162)

We prove Equation (159) in the Appendix B.1 and Equation (162) in the Appendix B.2. In Sub-
section 5.1 we calculate the likelihood function of our model, in an attempt to calculate maximum
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likelihood estimators, using the formulas from Section 4.2.4. After this we will develop estimators
that are unbiased in Subsections 5.2 and 5.3. Later, in sections 5.4 and 5.6 the estimates will be
biased but with a lower MSE than the unbiased estimator. In the Subsection 5.5 and 5.6.1 we will
discuss how the earlier discussed methods can be applied in batches. This allows us to yield in-
termediate results of our estimators. We will also go in-depth how we go about the estimation of
player inconsistencies under the assumption that these are heteroskedastic in Appendix D. Finally;
in Section 5.9 we summarize the results and explain which method we implemented.

5.1 Maximum likelihood estimation

As stated, a logical approach would be to find estimators for the parameters of our model that
maximize the outcome likelihood. We get such MLE estimators by:

L(D = d;µMq
= m,ΣMq

= R,Σq = S) = Pm,R,S(D = d) (163)

(µ̂MLE
Mq

, Σ̂MLE
Mq

, Σ̂MLE
q ) = argmax

m,R,S
L(D = d;µMq

= m,ΣMq
= R,Σq = S) (164)

By solving Equation (164) we yield point estimates µ̂MLE
Mq

, Σ̂MLE
Mq

and Σ̂MLE
q for µMq

,ΣMq
and Σq.

For notational convenience we use:

θ = (µMq
,ΣMq

,Σq) (165)

θ̂ = (µ̂Mq
, Σ̂Mq

, Σ̂q) (166)

θ̂MLE = (µ̂MLE
Mq

, Σ̂MLE
Mq

, Σ̂MLE
q ) (167)

We use the following equations to construct the likelihood expression:

L(θ̂;D = d) = Pθ̂(D = d) =
∏
m

Pθ̂(Dm = dm) (168)

Pθ̂(Dm = k) ≈ (βk − βk−1)N (µ̂dSm ;µk, σ
2
Dk

+ σ̂2
dSm) for k = 2, ...,K − 1 (169)

Pθ̂(Dm = 1) = Φ

(
β1 − µ̂dSm
σ̂dSm

)
(170)

Pθ̂(Dm = K) = 1− Φ

(
βK−1 − µ̂dSm

σ̂dSm

)
(171)

In these Equations we use m as the match index and we define:

µ̂dSm = δmµ̂Mq
(172)

σ̂2
dSm = δm(Σ̂q + Σ̂Mq )δ

T
m (173)

By using Equations (136) and (140) we can write down the likelihood explicitly as:

Pθ̂(D = d) =
∏
m

Pθ̂(Dm = dm) (174)

=
∏
m

Φ

(
β1 − µ̂dSm
σ̂dSm

)1(dm=1)

×
(

1− Φ

(
βK−1 − µ̂dSm

σ̂dSm

))1(dm=K)

(175)

×
K−1∏
j=2

[(
(βj − βj−1)N (µ̂dSm ;µDj , σ

2
Dj + σ̂2

dSm)
)1(dm=j)

]
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We take the logarithm of this expression to yield the following log-likelihood expression:

lnPθ̂(D = d) ∝
∑
m

1(Dm = 1) ln Φ

(
β1 − µ̂dSm
σ̂dSm

)
+ 1(Dm = K) ln

(
1− Φ

(
βK−1 − µ̂dSm

σ̂dSm

))
(176)

+

K−1∑
j=2

1(Dm = j)
(
ln(βk − βk−1) + lnN (µ̂dSm ;µDk , σ

2
Dk

+ σ̂2
dSm)

)
=
∑
m

1(Dm = 1) ln Φ

(
β1 − µ̂dSm
σ̂dSm

)
+ 1(Dm = K) ln

(
1− Φ

(
βK−1 − µ̂dSm

σ̂dSm

))
(177)

+
1

2

K−1∑
j=2

1(Dm = j)
(µ̂dSm − µDk)2√
σ2
Dk

+ σ̂2
dSm

+ Constants

We can now find µ̂MLE
Mq

, Σ̂MLE
Mq

, Σ̂MLE
q = argmax

µMq ,ΣMq ,Σq

lnL(µMq ,ΣMq ,Σq;D), as the maximum likeli-

hood estimators for this problem. Unfortunately, direct optimization of this equation does not work,
because the dimensionality of the feasible space is too large. Σq has O(NPNQ)2 elements, which is
too expensive to optimize numerically. Even if we would only consider active players within a football
match we would have NP = 26, we could choose NQ = 2 and even this small problem size can’t be
solved efficiently.
Numerical feasibility is not the only issue with this approach. There is no way to distinguish the in-
fluences by ΣMq and Σq because their influence on σ2

dSm
is identical, as we can see in Equation (173).

Another downside of this approach is that for it to be feasible we would need to assume that µMuq ,
ΣMq

, and Σq are constant over the whole dataset, but it is much more realistic for the player ratings
to vary over time. In the next subsections, we develop methodologies that are much more efficient
direct inference methods, that can process batches and large amounts of players.

5.2 Ordinary least squares

Ordinary least squares (OLS) is a widely used estimation method for linear problems (Rao, 1973).
The idea is that we want to minimize the Euclidian norm of the error vector, effectively minimizing
the sum of squared differences between our predictions and real observations. We assume that the
player inconsistencies are heteroskedastic, which means that Σq = σ2I where σ > 0. We get the
following, unbiased OLS-estimator for µMq :

Q ∼ N (Mq,Σq) (178)

Mq ∼ N
(
µMq ,ΣMq

)
(179)

dSm = δmQ (180)

dS = δQ (181)

dSOm = δmM̂q + εm (182)

dSO = δM̂q + ε (183)

ε ∼ N (0,ΣdS) = N (0, δΣqδ
T ◦ I) = N (0, σ2(δδT ◦ I)) (184)

M̂q = N (µ̂Mq , Σ̂Mq ) (185)

µ̂OLSMq
= argmin

m
(dS − δm)T (dS − δm) (186)

= argmin
m

‖dS − δm‖2 (187)

= (δT δ)−1δT dS (188)

28



This estimator only exists under the assumption that δ has full row rank and therefore (δT δ)−1 exists.
The estimator is unbiased because:

E[µ̂OLSMq
] = E[(δT δ)−1δT dS] (189)

= (δT δ)−1δTE[dS] (190)

= (δT δ)−1δT δµMq = µMq (191)

The variance of this estimator is:

Var
(
µ̂OLSMq

)
= Var

((
δT δ

)−1
δT dS

)
(192)

=
(
δT δ

)−1
δTVar(dS)δ

(
δT δ

)−1
(193)

=
(
δT δ

)−1
δTΣdSδ

(
δT δ

)−1
(194)

We use matrix operations from (Petersen & Pedersen, 2012) to find estimates for the other parameters:

ΣdS = σ2(δδT ◦ I) (195)

σ2
dSm = σ2

NPQ∑
j=1

δ2
m,j (196)

ε = dS − d̂S (197)

= dS − δµ̂Mq
(198)

= dS − δ(δT δ)−1δT dS (199)

= (I − δ(δT δ)−1δT )dS (200)

εT ε = dST (I − δ(δT δ)−1δT )T (I − δ(δT δ)−1δT )dS (201)

= dST (I − δ(δT δ)−1δT )dS (202)

E[εT ε] = E[dST (I − δ(δT δ)−1δT )dS] (203)

= E[(δµq + ε)T (I − δ(δT δ)−1δT )(δµq + ε)] (204)

= E[εT (I − δ(δT δ)−1δT )ε] (205)

= Tr((I − δ(δT δ)−1δT )ΣdS) (206)

= Tr(ΣdS)− Tr(δ(δT δ)−1δTΣdS) (207)

= σ2Tr(δT δ)− σ2Tr(δ(δT δ)−1δT (δδT ◦ I)) (208)

(σ̂OLS)2 =
εT ε

Tr(δT δ)− Tr(δ(δT δ)−1δT (δδT ◦ I))
(209)

Σ̂OLSq = (σ̂OLS)2I (210)

Σ̂OLSdS = (σ̂OLS)2(δT δ ◦ I) (211)

Σ̂OLSMq
= Var((δT δ)−1δT dS) (212)

= (δT δ)−1δT Σ̂OLSdS δ(δT δ)−T (213)

= σ̂2(δT δ)−1δT (δδT ◦ I)δ(δT δ)−1 (214)

Note that (σ̂OLS)2 is unbiased, as equation (209) in expectation is equivalent to Equation (208).
In some cases we have that δ∗,iδ

T
∗,i ≈ c ∀i, this gives us that (δT δ ◦ I) ≈ c · I, therefore we yield:

E[ε̂T ε] ≈ σ2Tr(δT δ)(1− cNPQ
NKM

) (215)

(σ̂OLS)2 ≈ εT εNKM
Tr(δT δ)(NKM − cNPQ)

(216)

Σ̂Mq ≈ (σ̂OLS)2 · c · (δT δ)−1 (217)
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5.3 Generalized least squares

An extension to the OLS estimation is Generalized Least Squares Estimator (GLS). The method
utilizes a matrix Ω, which must be an invertible matrix that we can choose freely. While in OLS
all samples carry equal weight, in GLS the Ω matrix can be seen as the weighting applied to our
observations. If ΣdS is known, in general Ω = ΣdS is chosen as this minimizes the variance of the
estimator. By applying the GLS method we find the estimator by:

µ̂GLSMq
= argmin

m
(dS − δm)TΩ(dS − δm) (218)

= argmin
m

‖dS − δm‖Ω (219)

= (δTΩδ)−1δTΩdS (220)

This estimator is also unbiased, as we have that:

E[µ̂GLSMq
] = E[(δTΩδ)−1δTΩdS] (221)

= (δTΩδ)−1δTΩE[dS] (222)

= (δTΩδ)−1δTΩδµMq
(223)

= µMq
(224)

Analogous to the equations in Section 5.2, under the assumption that Σq = σ2I, we can now derive
the estimates for the other parameters.

(σ̂GLS)2 =
εT ε

Tr(δTΩδ)− Tr(δ(δTΩδ)−1δTΩ(δδT ◦ I))
(225)

Σ̂GLSq = (σ̂GLS)2I (226)

Σ̂GLSdS = (σ̂GLS)2(δδT ◦ I) (227)

Σ̂GLSMq
= Var((δTΩδ)−1δTΩdS) (228)

= (σ̂GLS)2(δTΩδ)−1 (229)

5.4 Regularized estimates

The OLS and GLS methodology applied in previous sections have quite a few drawbacks. Even
though our estimators were unbiased, their variance can be very high. Also, we required δT δ (OLS)
or δTΩδ (GLS) to be an invertible matrix which is not always the case. In some scenario’s, just like in
ours, this requires a lot of data. A technique that is often used to overcome the previously mentioned
problems is regularization of the estimator. We discuss a method called Tikhonov regularization,
more often referred to as ridge regression (RR) (Hoerl & Kennard, 1970). This method effectively
damps the effect of the data on our predictions, regularizing the estimators we yield. The idea is
that we want to achieve informative parameters, while not over-fitting to the historical data. In the
approach we have that:

µ̂RRMq
= argmin

m
‖dS − δm‖2 + λ‖m‖2 where λ > 0 (230)

µ̂RRMq
= (δT δ + λI)−1δT dS (231)

Σ̂RRMq
= Var(µ̂RRMq

) (232)

= (δT δ + λI)−1δTΣdSδ(δ
T δ + λI)−T (233)

Here we choose a parameter λ > 0. Unfortunately, this estimator is biased, as we have that:

E[µ̂Mq
] = (δT δ + λI)−1δT δE[Mq] (234)

=
[
I − λ((δT δ + λI)−1)

]
µq = µMq − λ(δT δ + λI)−1µMq (235)

The fact that our estimator is biased is obviously a disadvantage of this method. On the other hand,
this method has two advantages. Firstly; we do not require δT δ to be invertible, as the inverse of
(δT δ + λI), λ > 0 always exists. Secondly, even though we introduce bias, the mean squared error
of our estimator can decrease significantly. The choice of λ depends on the specific application. In
general, it holds that larger (smaller) λ leads to a larger (smaller) bias and a smaller (larger) variance.
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We will show that rigde regression, with appropriately chosen λ is equivalent to applying MLE in
a Bayesian context. We will assume that Var(dS) = σ2

dSI and we take a prior distribution over
Mq ∼ N (0, σ2

t0I). We follow the standard maximum likelihood estimation procedure;

L(dS = ds;Mq = m) ∝ pdS(ds|Mq = m)PMq (m) (236)

= N (ds; δm, σ2
dSI)N (m; 0, σ2

t0I) (237)

∝ exp(−σ−2
dS (ds− δm)(ds− δm)T − σ−2

t0 mm
T ) (238)

lnL(dS = ds|Mq = m) ∝ −(ds− δm)(ds− δm)T −
(
σdS
σt0

m

)(
σdS
σt0

m

)T
(239)

µ̂BRRq = argmin
m

‖ds− δm‖2 +
σ2
dS

σ2
t0

‖m‖2 (240)

We see that Ridge Regression with the choice λ =
σ2
dS

σ2
t0

is therefore equivalent to this method.

5.5 Batch inference

In some cases we would like to know the evolution of our estimate over time; we can achieve this
by processing all the data in batches rather than in a single run. Batch processing is very intuitive
when applying a Bayesian method, as we will do in Section 5.6. For such estimators, we simply use
the posterior as the prior for a next batch. For our OLS estimator of the mean quality, we get the
following equations in the case that we use two batches:[

dSt1
dSt2

]
=

[
δt1
δt2

]
Mq +

[
εt1
εt2

]
(241)[

εt1
εt2

]
∼ N

(
0,

[
δt1Σqδ

T
t1 ◦ I 0

0 δt2Σqδ
T
t2 ◦ I

])
(242)

µ̂OLSMq
=

([
δt1
δt2

]T [
δt1
δt2

])−1 [
δt1
δt2

]T [
dSt1
dSt2

]
(243)

=
(
δTt1δt1 + δTt2δt2

)−1 [
δTt1dSt1 + δTt2dSt2

]
(244)

Here we require that δTt1δt1 is invertible, as the first batch needs to yield results by itself. This will
guarantee that

(
δTt1δt1 + δTt2δt2

)
is invertible, because this matrix is symmetric and positive definite.

Both δTt1δt1 and δTt2δt2 are symmetric and PSD. Due to the fact that δTt1δt1 is invertible and symmetric,
it must be positive definite. The sum of a symmetric PD matrix and a symmetric PSD matrix is a
symmetric PD matrix.
The idea is now that if we want to apply batch processing, all processed batches are aggregated in
t1, and the new batch is t2. This also means that the inverse of δTt1δt1 is readily available, from the
previous iteration. We note that the computationally most expensive step during each iteration is
the calculation of the inverse of

(
δTt1δt1 + δTt2δt2

)
. Once we have this inverse the estimators of Σ̂Mq

and Σ̂q can be calculated efficiently with Equations (209), (210) and (214).
We get very similar equations for the GLS methodology:

µ̂GLSMq
=

([
δt1
δt2

]T [
Ω11 Ω12

Ω21 Ω22

] [
δt1
δt2

])−1 [
δt1
δt2

]T [
Ω11 Ω12

Ω21 Ω22

] [
dSt1
dSt2

]
(245)

=
(
δTt1Ω11δt1 + δTt1Ω12δt2 + δTt2Ω21δt1 + δTt2Ω22δt2

)−1
[
δt1
δt2

]T [
Ω11 Ω12

Ω21 Ω22

] [
dSt1
dSt2

]
(246)

In this case the structure of Ω can be chosen freely, though it must be an invertible matrix. Again
the computationally challenging step is finding the inverse of a large matrix:(

δTt1Ω11δt1 + δTt1Ω12δt2 + δTt2Ω21δt1 + δTt2Ω22δt2
)

(247)

Once we have this, the estimators of Σ̂Mq
and Σ̂q can be calculated efficiently with Equations 225

to 229.
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5.5.1 Woodbury matrix identity

We found that the Woodbury matrix identity was very useful to apply for computational efficiency
(Press et al. , 1992, Woodbury Formula Sec. 2.7.3):

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (248)

A ∈ RS×S , C ∈ RT×T , U ∈ RS×T , V ∈ RT×S (249)

This method assumes that A and C are invertible, and the inverse of A is known (or easy to calculate).
Rather than inverting A + UCV , a S × S matrix, we only need to invert C, a T × T matrix and
perform some matrix multiplications. If S � T , applying this identity can save a lot of computation
time. For the application in OLS we have:

A = δTt1δt1 , U = δTt2 , C = I, V = δt2 (250)

For the special case that rank(δTt2δt2) = 1 and (δTt1δ
T
t1)−1 is known from the previous iteration we get

the following equations, by using (Press et al. , 1992, Sherman-Morrison formula Sec. 2.7.1):

(G+H)−1 = G−1 − 1

1 + Tr(G−1H)
G−1HG−1 (251)

G = δTt1δt1 (252)

H = δTt2δt2 (253)

This procedure can be very useful if we want to apply online updates, after each match. It is much
more efficient because no large inverses of matrices (except during the first iteration), have to be
computed.
We can also apply the Woodbury matrix identity to the GLS batch inference. The appropriate way
depends on the choice for the matrix Ω. If we have Ω12 = Ω21 = 0, we can use:

A = δTt1Ω11δt1 , U = δTt2 , C = Ω22, V = δt2 (254)

This specific choice of Ω makes sense in our case, as we assume that Cov(dSt1 , dSt2) = 0. Under the
condition that rank(δTt2Ω22δt2) = 1, we can apply Equation 251 with:

G = δTt1Ω11δt1 (255)

H = δTt2Ω22δt2 (256)

5.6 Conditional Gaussian inference

In this section we will consider a Bayesian estimation method; we will use a prior and calculate the
posterior probability distribution conditioned on the available data. As stated in Equation (162),
the estimator that minimizes the MSE is the conditional expectation of the variable that we want to
estimate. In general, the conditional distribution cannot be calculated analytically, but because our
distributions are Multivariate Gaussian we can find the conditional distributions analytically. We
describe the method, taken from (Bishop, 2006) in Appendix C.4.
To apply this method we require a prior distribution over Mq ∼ N (µ0

Mq
,Σ0

q) and an estimate for

Σq. In theory this inference equations of this method will work for any choice of µ0
Mq
,Σ0

q and Σq. A

separate method can be used to determine a value of Σq, but we will take Σq = (σ0
q )2I, assuming that

all players have the same performance randomness. The parameters µ0
Mq

and Σ0
q are prior parameters,

for unknown players we take:

µ0
Mq

= m0
~1 (257)

Σ0
Mq

= (σ0
Mq

)2I (258)

Here ~1 is a column vector filled with ones. This means that each player quality will start out with
mean m0 and uncertainty (σ0

Mq
)2.

We have the following equations:

pQ(q) = N (q;Mq,Σq) (259)

pMq (x) = N (x;µ0
Mq
,Σ0

Mq
) (260)

pdS(ds|Mq = x) = N (y; δx,ΣdS) = N (y; δx, δΣqδ
T ◦ I) (261)

pdS(y) = N (y; δµ0
Mq
, δ(Σ0

Mq
+ Σq)δ

T ) (262)
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As described in Appendix C.4 we yield:

pMq
(x|dS = y) = N (x; µ̂Mq

, Σ̂Mq
) (263)

Σ̂Mq
=
(

(Σ0
Mq

)−1 + δT (ΣdS)−1δ
)−1

(264)

=
(

(Σ0
Mq

)−1 + δT (δΣqδ
T ◦ I)−1δ

)−1

(265)

=
(

(Σ0
Mq

)−1 + (σ0
q )−2δT (δδT ◦ I)−1δ

)−1

(266)

µ̂Mq
= Σ̂Mq

(δTΣ−1
dS y + (Σ0

Mq
)−1µ0

Mq
) (267)

The idea is to apply this method in batches, using the posterior of each batch as the prior for the
next batch. This also allows us to keep track of incremental changes in the estimators, so we can see
player quality evolving over time. We prove that batch processing is equivalent to processing all the
data in a single iteration in Section 5.6.1.
The bias of the estimator µ̂Mq and the norm the estimator of ΣMq decrease each iteration. This
shows that the method converges, and is asymptotically unbiased. We prove this in Section C.5 of
the appendix.

5.6.1 Batch processing

In this section we will show that application of the conditional Gaussian Inference method in batches
is equivalent to inference over the complete dataset.
We will assume that our dataset can be separated in NB non-overlapping batches. We use that:

δ =


δ(1)

δ(2)

...
δ(NB)

 , dS =


dS(1)

dS(2)

...
dS(NB)

 , y =


y1

y2

...
yNB

 (268)

ΣdS =


Σ

(1)
dS 0 ... 0

0 Σ
(2)
dS ... 0

... ... ... ...

0 0 ... Σ
(NB)
y

 (269)

First, we apply the model to two batches:

pMq
(x|dS(1) = y1, dS

(2) = y2) = N (x;µMq|y1,y2
,ΣMq|y1,y2

) (270)

µMq|y1,y2
= ΣMq|y1,y2

[δ(1)

δ(2)

]T [
Σ

(1)
dS 0

0 Σ
(2)
dS

]−1 [
y1

y2

]
+ (Σ0

Mq
)−1µ0

Mq

 (271)

= ΣMq|y1,y2

(
(δ(1))T (Σ

(1)
dS )−1y1 + (δ(2))T (Σ

(2)
dS )−1y2 + (Σ0

Mq
)−1µ0

Mq

)
(272)

ΣMq|y1,y2
=

(Σ0
Mq

)−1 +

[
δ(1)

δ(2)

]T [
Σ

(1)
dS 0

0 Σ
(2)
dS

]−1 [
δ(1)

δ(2)

]−1

(273)

=
(

(Σ0
Mq

)−1 + (δ(1))T (Σ
(1)
dS )−1δ(1) + (δ(2))T (Σ

(2)
dS )−1δ(2)

)−1

(274)

We define Z = (Mq|dS(1) = y1), which is the conditional random variable we would get if we would
condition only on the first batch. We get:

pMq
(x|dS(1) = y1) = pMq|y1

(x) = pZ(x) = N (x;µMq|y1
,ΣMq|y1

) (275)

µMq|y1
= µZ = ΣMq|y1

(
(δ(1))TΣ

(1)
dS y1 + Σ0

Mq
µ0
Mq

)
(276)

ΣMq|y1
= ΣZ =

(
Σ0
Mq

+ (δ(1))TΣ
(1)
dS δ

(1)
)−1

(277)

Now we can apply the same model to the random variable Z with the observations dS(2) = y2, to
extract (Z|dS(2) = y2). As expected, we get that (Z|dS(2) = y2) = (Mq|dS(1) = y1, dS

(2) = y2),
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because dS(1) and dS(2) are independent. We get:

pZ(x|dS(2) = y2) = pZ|y2
(x) = N (x;µZ|y2

,ΣZ|y2
) (278)

µZ|y2
= ΣZ|y2

(
(δ(2))T (Σ

(2)
dS )−1y2 + (ΣZ)−1µZ

)
(279)

= ΣZ|y2

(
(δ(2))T (Σ

(2)
dS )−1y2 + (δ(1))T (Σ

(1)
dS )−1y1 + (Σ0

Mq
)−1µ0

Mq

)
(280)

ΣZ|y2
=
(

Σ−1
Z + (δ(2))T (Σ

(2)
dS )−1δ(2)

)−1

(281)

=
(

(Σ0
Mq

)−1 + (δ(1))T (Σ
(1)
dS )−1δ(1) + (δ(2))T (Σ

(2)
dS )−1δ(2)

)−1

(282)

This means that sequential application of the algorithm on two independent sets of results is the same
as application of the algorithm on all the results at once. This property can be extended to hold for
any partition in batches, under the conditions that batches are non-overlapping and the union of all
batches contains all the results.
The result we yield is not surprising; effectively when conditioning on two independent random
variables dS(1) and dS(2) we are projecting our random variable Mq on two independent subspaces.
We use the initial prior Equations from (257) and (258), and get the following equations for the N th

batch:

µ̂
(N)
Mq

= Σ̂
(N)
Mq

(
(δ(N))T Σ̂

(N)
dS yN + Σ̂N−1

Mq
µ̂N−1
Mq

)
(283)

Σ̂
(N)
Mq

=
(

Σ̂
(N−1)
Mq

+ (δ(N))T Σ̂
(N)
dS δ(N)

)−1

(284)

The most expensive step during each batch is calculating the inverse of
(

Σ̂
(N−1)
Mq

+ (δ(N))T Σ̂
(N)
dS δ(N)

)
.

We can apply the Woodbury inverse from Equation (248), keeping in mind that we have
(

Σ̂
(N−1)
Mq

)−1

readily available from the previous iteration, we use:

A = ΣN−1
Mq

, U = (δ(N))T , C = Σ
(N)
dS , V = δ(N) (285)

This gives us the following update equation:

Σ̂
(N)
Mq

=
(

Σ̂
(N−1)
Mq

)−1

−
(

Σ̂
(N−1)
Mq

)−1 (
δ(N)

)T ((
Σ̂

(N)
dS

)−1

+ Σ
(N)
dS

(
Σ̂

(N−1)
Mq

)−1 (
δ(N)

)T)−1

δ(N)
(

Σ̂
(N−1)
Mq

)−1

(286)

Using this equation gives a significant improvement of computation time.

5.7 Estimation using bookmaker predictions

As discussed in Section 4.4 we can use the probabilities provided by bookmakers to infer the ratings
of the players participating in the match. We define the probabilities implied by the bookmaker
by PB(D = d). There are two main approaches we can take. The first approach is discussed in
Section 5.7.1 and it uses the bookmaker implied probabilities P (D = d|q ∼ N (Mq,Σq))) within an
approach similar to MLE, to find point estimators for Mq and Σq. In Section 5.7.2 we discuss the
second approach where we infer the strength difference between teams, implied by bookmakers. We
can use this strength difference as an additional observation next to other KPI-outcomes of a match.
Both methods require the usage of the Kullback–Leibler divergence. This is a measure of the difference
between two probability distributions. It is defined for discrete probability distributions by the
following formula:

DKL(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
(287)

Note that the Kullback-Leibler Divergence is non-associative; we have that:

DKL(P ||Q) 6= DKL(Q||P ) (288)
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5.7.1 Bookmaker maximum likelihood

In the first approach, we will find estimators for Mq and Σq such that the predictions of the book-
makers correspond to predictions by our model. We measure the correspondence of the bookmaker’s
and our model’s outcome probability distribution by calculating their Kullback-Leibler divergence.
We get the following:

M̂BMLE
q , Σ̂BMLE

q = argmin
Mq,Σq

DKL(P (D = d|q ∼ N (Mq,Σq))||PB(D = d)) (289)

Effectively we are finding estimates M̂BMLE
q , Σ̂BMLE

q , such that we minimize the KullBack-Leibler
divergence between the predictions of the model and the predictions of the bookmakers. The problem
in equation (289) is not trivial to solve.

5.7.2 Bookmaker implied strength difference

In this subsection, we propose the procedure whereby we calculate the implied strength differences
for each match to develop estimators for µMq

, ΣMq
and Σq. We will represent our estimate of the

strength difference implied by the bookmaker for a single match m as dSBm. We get:

(µ̂dSBm , σ̂
2
dSBm

) = argmin
s,r2

DKL
(
P (Dm = dm|dSm ∼ N (s, r2))

∣∣∣∣PB(Dm = dm)
)
∀ matches m (290)

Once we have the bookmaker implied strength differences for each match, there are two approaches.
One approach is to directly maximize the likelihood of bookmaker implied strengths. We get M̂BIM

q

and Σ̂BIMq as follows:

(µ̂BIMMq
, Σ̂BIMMq

) = argmax
µMq ,ΣMq

L(µMq
,ΣMq

; dSO = µ̂dSB ) (291)

L(µMq
,ΣMq

; dSO = µ̂dSB ) = PdS(µ̂dSB |Mq ∼ N (µMq
,ΣMq

)) (292)

=
∏
m

N (µ̂dSBm ; δmµMq
, δm(Σq + ΣMq

)δTm)) (293)

This result looks quite similar to our original MLE from Section 5.1. The bookmaker implied incon-
sistency, σ̂2

dSBm
, can be utilized to estimate Σq, with methods from Appendix D.

The second approach in utilizing dSB , is by using it as an additional observation in any other es-
timation method we developed. We can simply input this information into the models described in
Sections 5.2 and 5.6, by using the strength difference provided by the bookmaker, dSB , as an obser-
vation of the strength difference. we make a new KPI, the bookmaker implied strength difference, and
thus define the observations for this KPI as dSOm = µdSBm . The main advantage of using bookmaker
implied strength differences is that these do not contain any noise. Our current inputs, the number of
goals scored in matches, do contain a lot of noise. We see this because outcomes can be very different
than the real performance of teams; i.e. due to random factors, a worse performing team can still
win. The bookmaker’s odds provide us with an outcome distribution rather than a single outcome.
Outcomes have a large variance and low bias, while bookmakers predictions have low variance and
some bias. As discussed; the bias introduced by bookmakers must be quite low, due to financial
incentives of the bookmakers.

5.8 Dynamic player qualities

In the previous sections we developed estimators for static player qualities, but in reality, the qualities
of players will change over time. It is possible to assume that player quality will change randomly,
while in reality there might be a general relationship between age and player quality. For football we
have that, in general, field players achieve their peak quality at the age of 25-27, after this age, their
quality tends to decline (Dendir, 2016). For goalkeepers, this peak lies at a later age, due to lower
amounts of endured physical stress.
The idea is to design update equations, that apply time-effects between the analysis of two batches.
In general, we can say that the mean quality is affected by player effects a, and the player quality
uncertainty is affected by passed time and frequency of activity during a period, summarized in the
variable τ . We get the following:

µ̂′Mq
= µ̂Mq

+ φA(a) (294)

Σ̂′Mq
= (1− φT (τ))Σ̂Mq

+ φT (τ)Σ0
q (295)
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We will choose:

φA(a) = 0 (296)

φT (τ) = exp(−ατ) (297)

This way we assume that player qualities evolve non-directional, random, but accumulate variance
over time. We can now analyze the performance of our algorithms under these circumstances. Because
the mean µMq

is unaffected, all the unbiasedness properties we have proven will remain the same.

5.9 Discussion of methods

Throughout Section 5 we have developed several estimation methods for the parameters of our model.
In this subsection, we will discuss the advantages and disadvantages of the methods, and explain which
method we chose to apply to our dataset.
Both the OLS and GLS procedures give unbiased estimates of µMq and ΣMq . They are reasonably
simple to implement, and inference can be done in batches. Even on a match-by-match basis, the
algorithm would be computationally feasible, by using the algorithm described in Equation (253).
The main disadvantage of these methods is the requirement that the performances of players, i.e. the
columns of δ, are independent. In general, players quite often perform within a very similar team,
only slightly differing columns can lead to extreme overfitting of the parameters to the data. All
methods will be influenced by co-linearity, so with a limited dataset we believe some restrictions on
the estimated parameters must be applied. Using prior distributions or regularizing the parameters
is necessary to avoid overfitting.
Both the Ridge Regression and the conditional Gaussian Inference method deal with this problem
by taking a prior distribution over the mean player quality. We chose to implement the conditional
Gaussian inference method. The main reason is that this method is the MMSE estimator that is
asymptotically unbiased. Also; this method gives us an analytical posterior estimator of the dense
matrix ΣMq

. This matrix contains a lot of information about the estimator dependencies in our
model, and we have seen that optimizing its elements numerically is very inefficient.
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6 Results

In this section we will summarize the achieved results. We focused on developing the Conditional
Gaussian Inference method discussed in 5.6. We applied the implementation to our dataset with
historical football data. The complete dataset contains 450.000 matches in 580 competitions, for
150.000 players and 13.500.000 player-match objects. After some consideration, we decided to focus
on implementing methods that can deal with all the data related to a single competition. In our
dataset, most competitions have approximately 3000 unique active players (from 2003-2017), but
there are some regional amateur competitions that have much more unique players. We have applied
our model to 33 competitions, all of these are listed in Table 6.
The complete results can be downloaded from the following link:
https://drive.google.com/open?id=1EnEOnhaWBJvEvUjSee4TMPYBvxku1Z1S

6.1 Model parameters

In this subsection, we will discuss how we determined parameters we used as input for our model.
Firstly we decided to use two individual player qualities; Attack and Defense. These two player
qualities are in line with the two main objectives within a football match; scoring goals and not
conceding goals.
For an individual match, we have considered two KPI’s: goals scored by the home team and goals
scored by the away team. These two metrics are the most important for a match; they completely
determine the outcome of the match. There is some dependence between home goals and away goals,
but nonetheless, we assumed that these measurements are independent.
The most important parameter we choose is the player-quality influences on the match-KPI’s; the δ(·)
that form the matrix δ. It must be determined by applying domain knowledge; finding an importance
relationship between player roles, player qualities and match-KPI’s.
We choose according to Assumption a.8 that δ(·) > 0 if a player’s intention is to increase a KPI and
δ(·) < 0 if a player’s intention is to decrease a KPI. In most cases, a player has no influence on a
KPI, because he does not participate in a match, which leads to δ(·) = 0. In our case, home players
get positive δ(·) for home goals, and negative δ(·) for away goals (opposite for away players). The
magnitude of δ is equal to the fraction of minutes played multiplied by the positional factor. These
positional factors are different for the KPI’s, shown in Table 2. Positional factors are dependent on
the match, because a single player can have a different position within different matches. We get:

Sign(i, k,m) =

{
+1 if player i in match m wants to increase KPI k

−1 if player i in match m wants to decrease KPI k
(298)

Minutes%(i,m) =
minutes by player i in match m

total minutes in match m
(299)

Positional(i, j, k,m) = positional factor for quality j of player i for KPI k in match m (300)

δ(i,j,k,m) = Sign(i, k,m) ·Minutes%(i,m) · Positional(i, j, k,m) (301)

We use: player i, quality j, KPI k and match m

The method that we implemented, the Conditional Gaussian Inference method from Section 5.6,
requires prior values for player quality mean and player quality variance. It also needs covariance
matrix representing the player performance inconsistency. We assumed that prior error in our estimate
mean is equal to the performance inconsistency of players; therefore (σ0

Mq
)2 = σ2

q . This gives us that

the player inconsistency covariance matrix Σq = σ2
qI.

In the current runs we have initiated all player quality distributions with m0
q = 0 and (σ0

Mq
)2 = 0.0833

and σ2
q = 0.0833. These parameters were chosen according Section 4.1. The idea is that we chose an

average strength difference mean and variance, these are the population mean and variance. These
parameters must also hold for a random match; thus in our initial state. We defined the mean of
the strength difference of a random match as µ̄dS = 0 and the variance of the strength difference
of a random match as σ̄2

dS = 1. We have that E[dS0] = µ̄dS = P · m0
q and var[dS0] = σ̄2

dS =√
P · ((σ0

Mq
)2 + σ2

q ), where P is equal to the average Euclidian norm of the vector δm for all matches.

By analysis of the data, we found P ≈ 6. From this, we yield m0
q = 0 and σ0

Mq
= σ2

q ≈ 1
12 ≈ 0.833.

Our initial guess for ΣMq
is a diagonal covariance matrix, so all player quality inconsistencies are

equal and independent. After processing data the algorithm will find covariances between player
quality estimates.
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The data is processed in batches, each batch containing all matches of a competition in a certain
month. This way we create a constantly evolving player rating from month-to-month throughout the
whole history.

Table 2: In this table, we show the definition of the Positional(i, j, k,m) function from Equation (300).
It represents the relationship between player position and importance of defense and attack. Attack-
ing quality solely contributes to scoring goals and defensive quality solely contributes to preventing
conceding goals.

Position Attack Defense
Goalkeeper 0 1
Right\Left Central Defender 0.1 0.9
Right\Left Back 0.15 0.85
Central Defensive Midfielder 0.25 0.75
Right\Left Wing Back 0.25 0.75
Midfielder 0.5 0.5
Offensive Midfielder 0.75 0.25
Forward 0.9 0.1
Right\Left Forward 0.9 0.1

6.1.1 Implementation Specifics

The model has been implemented using the programming language Python3. We used of packages for
data management (Pandas, NumPy), Scientific Computing (SciPy, NumPy) and Statistics Related
functions (SciPy Statistical).
The computer used for the simulations was a Lenovo Thinkpad with i7 Quadcore CPU, 3.5 Ghz to
4.0 Ghz. A single iteration for one month of mathes takes approximately 5 seconds (depending on
amount of players and matches). The computation time of the model for a single competition takes
approximately 15 minutes.
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6.2 Player ranking

The rankings of players within a competition can be compared. We display the top 20 players for
the German Bundesliga, English Premier League and the Primera División in tables 3, 5 and 4
respectively. Note that these results currently were only validated by subjective observations; we see
popular, well-known, professional players on the top of our rankings.

Example 2. Due to the fact that we apply our estimation method in batches, we have the evolution
of the estimates throughout time. We show the attacking quality of four players from the Primera
División over time in Figure 2.
The quality estimate of Henry stops after 2010 due to the fact that he transferred to a different
competition. Some small movements are due to the fact his estimate was still correlated with the
estimate of other players.
Rather than only showing the progress of famous players, we decided to find a player with the highest
deviation. We chose the following deviation metric (qmax − qmin)(qmax)2(qmin)2, this way ensuring
that a player has a high maximal rating and low minimum rating. The variables qmax and qmin are
the maximum and minimum estimate value a player achieved throughout his carreer. The player with
the highest deviation turned out to be Álvaro Negredo. As we can see in Figure 2 his quality estimate
was high for some years, but after that it declined massively. We looked at some simple individual
performance data. As he is a striker we looked at goals and minutes played, to calculate the number
of goals scored per 90 minutes played. Note that this information was not used in our estimation
procedure. We see that Negredo had the following individual performance:

total goals minutes played goals per 90 minutes club active years
31 5690 0.49 Almeria 2007, 2008
70 10022 0.63 Sevilla 2009, 2010, 2011, 2012
10 2681 0.34 Valencia 2014, 2015

We see that the individual performance data also implies that the goal-scoring performance of Álvaro
Negredo has become worse over time, which supports the fact that our estimate of attacking quality
declined.

Table 3: Top 20 players of the German Bundesliga. Only players that were active in 2017 and played
at least 2000 minutes in total are shown.

Name Most played club Attack Defense Weighted Rating
F. Ribéry FC Bayern München 0.59 0.29 0.46
A. Robben FC Bayern München 0.69 -0.1 0.36
Y. Poulsen Rasen Ballsport Leipzig 0.4 0.02 0.34
L. Piszczek BV Borussia 09 Dortmund 0.34 0.31 0.32
S. Kolašinac FC Schalke 04 -0.01 0.46 0.29
Luiz Gustavo VfL Wolfsburg 0.49 0.14 0.28
N. Müller Hamburger SV 0.31 0.2 0.27
O. Baumann SC Freiburg 0 0.26 0.26
M. Kruse Borussia VfL Mönchengladbach 0.31 0.01 0.26
P. Herrmann Borussia VfL Mönchengladbach 0.28 0.24 0.26
R. Lewandowski BV Borussia 09 Dortmund 0.3 0.01 0.26
M. Matip FC Ingolstadt 04 0.07 0.34 0.26
D. Abraham Eintracht Frankfurt -0.09 0.4 0.25
G. Castro TSV Bayer 04 Leverkusen 0.7 -0.22 0.25
S. Rudy TSG 1899 Hoffenheim 0.31 0.21 0.25
M. Compper TSG 1899 Hoffenheim 0.27 0.24 0.25
R. Bürki BV Borussia 09 Dortmund 0 0.24 0.24
Javi Mart́ınez FC Bayern München 0.11 0.31 0.24
E. Durm BV Borussia 09 Dortmund -0.09 0.41 0.24
F. Sørensen 1. FC Köln 0.08 0.3 0.24
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Table 4: Top 20 players of the Spanish Primera División. Only players that were active in 2017 and
played at least 2000 minutes in total are shown.

Name Most played club Attack Defense Weighted Rating
L. Messi FC Barcelona 0.6 -0.05 0.5
Bruno González Real Betis Balompié 0.15 0.49 0.38
Cristiano Ronaldo Real Madrid Club de Fútbol 0.39 0.1 0.34
M. Krohn-Dehli Real Club Celta de Vigo 0.32 0.34 0.33
Lucas Vázquez Real Madrid Club de Fútbol 0.39 0.18 0.32
Juanfran Club Atlético de Madrid -0.13 0.47 0.3
G. Bale Real Madrid Club de Fútbol 0.34 0.07 0.29
Aleix Vidal UD Almeŕıa 0.33 0.2 0.28
M. ter Stegen FC Barcelona 0 0.27 0.27
Alejandro Gálvez Rayo Vallecano 0.08 0.35 0.27
Marco Asensio Reial Club Deportiu Espanyol 0.39 -0.08 0.26
Dani Parejo Valencia Club de Fútbol 0.47 0.05 0.25
Bruno Villarreal Club de Fútbol 0.25 0.24 0.25
Albentosa Málaga Club de Fútbol 0.04 0.32 0.24
L. Suárez FC Barcelona 0.29 -0.06 0.24
Soldado Valencia Club de Fútbol 0.29 -0.05 0.24
Casemiro Real Madrid Club de Fútbol 0.18 0.27 0.23
Mikel Rico Athletic Club Bilbao 0.09 0.33 0.23
Pablo Sarabia Getafe Club de Fútbol 0.15 0.34 0.23
R. Varane Real Madrid Club de Fútbol 0.17 0.25 0.23

Table 5: Top 20 players of the Premier League. Only players that were active in 2017 and played at
least 2000 minutes in total are shown.

Name Most played club Attack Defense Weighted Rating
M. Dembélé Tottenham Hotspur FC 0.55 0.42 0.48
A. Valencia Manchester United FC 0.35 0.55 0.45
M. Darmian Manchester United FC -0.02 0.63 0.43
H. Kane Tottenham Hotspur FC 0.51 -0.02 0.43
J. Henderson Liverpool FC 0.45 0.33 0.39
P. Cech Chelsea FC 0 0.39 0.39
D. Sturridge Liverpool FC 0.45 0.05 0.39
D. Sakho West Ham United FC 0.41 -0.05 0.33
J. Cork Swansea City AFC 0.36 0.3 0.32
V. Kompany Manchester City FC 0.27 0.33 0.31
F. Forster Southampton FC 0 0.3 0.3
N. Matic Chelsea FC 0.01 0.45 0.3
David Silva Manchester City FC 0.33 0.24 0.29
Azpilicueta Chelsea FC 0.39 0.24 0.29
T. Alderweireld Tottenham Hotspur FC 0.22 0.31 0.28

M. Özil Arsenal FC 0.36 0.09 0.28
S. Coleman Everton FC 0.2 0.31 0.28
Fernandinho Manchester City FC 0.52 0.12 0.27
Y. Touré Manchester City FC 0.16 0.35 0.26
J. Lescott Everton FC 0.56 0.14 0.26
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Figure 2: Estimates of the mean attacking quality of Lionel Messi, Cristiano Ronaldo, Thierry Henry
and Álvaro Negredo throughout time

6.3 Match outcome prediction

Our model produces outcome probabilities for KPI’s, also prior to matches. In our implementation
specifically, we yield outcome probability distributions for goals scored by the home and away team.
We can compare our predictions with the odds provided by bookmakers. There are several betting
markets we could benchmark our predictions with (total goals, total goals over/under, exact score,
handicap, Asian handicap), but we chose to simply focus on the match outcomes. A match outcome
is either a home win, a draw or away win.
In some research papers, we see the percentage of correctly predicted outcomes as the evaluation
criterion. In our opinion this is an incorrect metric to use in this setting where all events are completely
different (not identically distributed). For example, whenever a professional team is playing an
amateur team, predicting a win for the professional team will achieve an accurate prediction almost
always.
A way to evaluate our predictions is by calculating the logarithmic loss (LogLoss). This is a measure
of the likelihood of our predictions. The metric logarithmic loss is defined as:

LogLoss(θ̂) = − 1

NM

NM∑
m=1

ln
(
Pθ̂(Dm = dm)

)
(302)

Here we hcae that Pθ̂(Dm = dm) is our predicted probability for the eventual outcome dm of match m.
The LogLoss of our predictions is shown in Table 6. We expect a dummy model to get a logarithmic
loss of 1.05 per match. In some competitions, our model performs quite good, especially in the last
year where the parameter estimates are closer to convergence. Unfortunately, we see bad results for
some competitions. This is because in some cases our model makes very extreme predictions that
turn out to be incorrect.
We believe that the the most challenging benchmark for any prediction algorithm is the existing
market opinion. We can find the market opinion, which is publicly available, in the odds provided
by bookmakers in the gambling market. We used our predictions to generate a historical betting
strategy and test whether the betting strategy would have yielded a profit. We explain the betting
strategy in words:

Bet 1 unit if Odds · Probability > 1.1 and Probability > 0.3 (303)

The decision to only bet on events with higher than 30% probability was made due to experience
with earlier prediction models. Firstly; we believe bookmakers are very difficult to outperform on
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low-probability events. Another reason is that betting on low probability events adds a lot of variance
to the realized profit. By betting events with a probability > 30% we keep the variance of the realized
profit relatively small, which makes it more reliable.
The bookmaker odds were taken from a purchased dataset, which is collected and distributed by
(Indatabet, 2017). The results are also shown in Table 6.
We used historical odds provided by the bookmaker Pinnacle. This bookmaker tends to apply a 2%
margin on all their odds. Effectively this means that any random betting strategy is expected to lose
2% of the total amount bet, in the long run.

Table 6: In this table, we present two metrics that measure the quality of our predictions. The
model was applied separately for multiple competitions, yielding the average logarithmic loss and the
profitability for each. For the logarithmic loss lower values are considered better. The profit is the
amount of money won by by wagering one unit per match according to our betting strategy described
in (303). The total bet column shows how many units were wagered in total. The columns recent
profit and recent total bet refer to the total profit and total amount wagered during the most recent
year of betting.

League Name Country Profit Total bet Recent profit Recent bet LogLoss Recent LogLoss
Eredivisie Netherlands -12.31 627 3.25 157 0.98 0.84
Eerste Divisie Netherlands 43.12 841 21.51 205 1.03 1.27
La Liga Spain -39.76 734 -10.13 162 1 0.84
Premier League England -40.38 843 -12.12 213 1 0.82
Bundesliga Germany 32.86 781 6.52 170 1.03 1.14
2. Bundesliga Germany 9.21 900 1.91 241 1.07 1.04
Segunda División Spain 24.68 1294 0.72 280 1.07 1.1
Serie A Italy 17.48 856 -0.02 182 1.01 0.99
Serie B Italy -39.64 1340 9.96 325 1.08 1.08
League One England 67.06 1732 7.5 415 1.06 1.26
Ligue 1 France -49.87 925 -6.11 221 1.05 0.99
Ligue 2 France -26.75 956 -39.23 252 1.09 1.04
Süper Lig Turkey 12.82 794 31.38 166 1.04 0.97
Veikkausliiga Finland 23.06 437 13.89 81 1.05 0.91
First Division A Belgium 3.62 712 7.76 166 1.02 0.85
Serie A Brazil 7.66 677 -2.56 110 1.06 2.78
Super League Switzerland 27.43 497 -9.01 104 1.03 1.22
Allsvenskan Sweden 20.5 469 2.82 101 1.03 0.97
Eliteserien Norway -2.12 503 8.28 104 1.02 1.13
MLS USA 17.02 677 27.07 133 1.06 1.04
Premier Division Republic of Ireland 28.24 329 4.77 80 0.99 1
1. Division Norway -10.62 463 -9.91 118 1.04 1.12
Superettan Sweden -19.37 518 -11.89 126 1.05 1.13
Premiership Scotland 10.32 560 24.02 117 1.02 0.83
Championship Scotland 11.35 409 9.78 87 1.03 1.18
Bundesliga Austria 12.34 392 7.8 72 1.02 0.92
1. Liga Austria -14.26 477 6.54 96 1.04 1.05
CSL China PR -39.56 251 -3.5 85 1.05 1.02
First Division B Belgium 18.68 664 -9.49 111 1.05 1.11
National 1 France 62.25 1003 30.15 242 1.06 0.92
1. HNL Croatia -36.08 289 7.35 41 0.98 0.85
Primeira Liga Portugal -62.17 590 4.06 178 0.98 1.12

Total 56.81 22540 123.07 5141 1.03 1.08



7 Conclusions and recommendations

In this section, will discuss the results, the applicability and the shortcomings of our model. We will
also provide recommendations for further work.
In this thesis, we developed a model for inferring individual player qualities based on group com-
parisons. We implemented the model for football, calculating the attack and defense qualities for
all players based on historical match outcomes. The only information used from each match were
line-ups (player positions and playing time), home goals and away goals. The results of our model
can be assessed by looking at player rankings and predictions of future match outcomes. The player
ranking is a subjective criterion. Professional football scouts can disagree on the quality of a player,
even if presented with the same information. Our player ranking results in high qualities and low
uncertainty for a lot of well-known, highly skilled players. An objective way to assess the model
quality is by looking at the generated predictions for future matches. The betting results show a
small positive return, which is much better than the expected -2% loss per bet for a random strategy.
The model we developed can be applied in any context where multiple players collaborate and/or com-
pete to influence (increase/decrease) certain match outcomes (Key Performance Indicators, KPI’s).
Good examples are team-based projects (film-making, crime investigation, project development), on-
line games (Dota, Overwatch, League of Legends, Call of Duty, etc.) and sports (Football, Basketball,
Volleyball, Hockey, etc.).
We modeled the relationship between player participation and KPI outcomes. We wanted to use
a non-parametric and non-linear approach. For this we created the variable strength difference, a
weighted linear combination of player qualities that has a non-linear relationship with the KPI out-
come distribution. The weights in this linear combination correspond to the importance of certain
player qualities. A weight is positive whenever a player wants to increase a KPI, a weight is negative
if a player wants to decrease a KPI and a weight is zero if a player does not have any influence
on a KPI. An important assumption is that we determine these weights deterministically by using
domain knowledge. In the application to football we used a combination of domain knowledge and
participation data to determine the weights. The non-linear relationship between the strength differ-
ence and KPI outcomes is modeled by an IRT model, with some parameters that are estimated from
the data.

7.1 Assumptions and shortcomings

We assumed that player qualities are additive and independent. Firstly; this means we assume there
is no auto-correlation between performance, while a lot of professionals believe there is some. Indi-
viduals are referred to having a good/bad streak and being in/out of form. In basketball, this effect,
within a match for a certain player, is called ”the hot-hand”. Multiple research suggests that this
effect does not exist, therefore it’s often referred to as ”the hot-hand fallacy” (Gilovich et al. , 1985).
We assumed that player qualities are additive and inconsistencies are independent, effectively we do
not account for multi-player synergistic effects. We explicitly chose not to model such effects; the
main reason being that there are too many multi-player coalitions to consider. Within a team of N

players there are N(N−1)
2 pairs of players. It is infeasible to model so many effects properly; for a

football match within a single team there are 66 duos and 220 triplets of players within one team.
Even though we used a large dataset, we believe more data would yield better results. Ideally, we
would have a very diverse and rich data; huge amounts of comparisons with constantly changing
participation structures. This would give us the ability to find all relationships between the quality
of players, and potentially even identify synergistic effects. In the current dataset we observe that
quite often players tend to perform within a very similar coalition. In football, players are affiliated
with a single team, and therefore they will only play together with other players affiliated to this
team against opponents from a single competition. This can lead to co-linearity, and thus indistin-
guishability between players. This is an important reason why we implemented a method with prior
distributions over unknowns in our model; to avoid overfitting player quality parameters to the data.
Throughout the research, we explored the idea of improving our estimates by using subjective ob-
servations; the implied strength differences based on bookmaker odds. The bookmaker’s odds are
a result calculated by the global betting market, we argue that they are correct due to the efficient
market hypothesis. Using the information provided by bookmakers can help dealing with unknown
or rapidly changing player qualities; bookmakers incorporate additional information rather than only
historical results. We did not apply this idea to the results presented in this research.
A large problem, that we did not solve in this research is the estimation of competition quality. Teams
within a competition have several encounters, while teams from different competitions almost never
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encounter one another. We applied our model to individual competitions separately, disregarding
any matches played in a different competition. This means an experienced player, that goes to a
new competition will be treated as an unknown/random player in our current model. We chose to
do this due to computational limitations for the methods when applied to multiple competitions.
Cross-competitional quality estimation is very difficult and should be an important focus for further
research. Having accurate competitional qualities can lead to the efficient application of our model
over multiple competitions and overall improvements of the results due to a richer performance history
for all players.

7.2 Recommendations for future work

The current model was formulated abstractly to be applicable in all situations where individuals
participate, but only team results are observed. This corresponds to the type of data collected in
the film-making business; the credits describe who participated in film and the overall success of a
film could be measured, but individual contributions are not recorded in general. We will apply the
model in the near future to calculate the qualities of professionals in the film industry (cast, director,
producer) by using the IMDb dataset.
Within this project we extensively discussed the possibility to utilize bookmaker predictions as an
input to the model. We see this type input as very useful, due to the fact that it contains almost
no variance. A next step can be to add the information implied from bookmaker odds to the model,
hopefully yielding even better results.
The project was in collaboration with SciSports, therefore one of the desired goals was to create a
model that can be applied industrially by SciSports within the world of football analytics. Currently,
SciSports already has an individual player quality model, the SciSkill, producing player quality es-
timates for 70.000 active players in dozens of leagues. The SciSkill algorithm is a difference-based
approach, inspired by the ELO model, and it produces other player metrics like potential rating and
resistance (experience) factor. The next version of the SciSkill model, due summer 2018, will contain
insights, ideas, and algorithms that we developed throughout this research. Within this research we
have focused on analytical mathematical techniques, during implementation it should be considered
to use certain non-analytic techniques like Gibbs-sampling, machine learning algorithms or methods
relying on numerical integration to calculate the player quality estimates.
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8 Table with variable definitions

Table 7: Table with variable definitions
Variable Explanation
Q(i,j) Random variable representing the quality j of player i
Q(i) Column vector containing all Q(i,j) for player i
Q Column vector containing Q(i,j) for all qualities of all players
M(i,j) Random variable for the mean of quality j of player i
M(i) Column vector containing all M(i,j) for player i
Mq Column vector containing all M(i,j) for all players
σ2

(i,j) Variance of Q(i,j)

Σqi Covariance of column vector Q(i)

Σq Covariance of column vector Q
µMq

Mean of column vector Mq

ΣMq
Covariance of column vector Mq

δ(i,j,k,m) Weight of quality j of player i in match m for KPI j
δm Row vector containing all δ(·) related to match m
δ Matrix containing all the δ(i,j,k)

dS Vector containing the strength difference for all matches, often represented as δQ
dSm Strength difference in a match m, often represented as δmQ
Dk,m Ordinal random variable of the outcome of KPI k in match m
Dm Column vector containing all Dk,m for match m
D Column vector containing all Dk,m for all matches
ξk General mapping from strength difference to outcome probability of KPI k
β Benchmark parameters that are required for the function ξ
dk,m Observation of random variable Dk,m

d Observation of random variable D
dSOm Observation of strength difference in a match m; follows from the observation d of D
u(·) Utility function, required for the function ξ
E[X] Expected value of random variable X
V ar[X] Variance of random variable X
N (µ, σ2) Gaussian random variable with mean µ and variance σ2

N (x;µ, σ2) Probability density function of Gaussian random variable with mean µ and variance σ2

U [a, b](x) Probability density function of uniform random variable
Pθ(D = d) Probability distribution of D, whenever we choose θ as the parameters of our model
pX(x) Probability density function of random variable X

L(θ = θ̂;D = d) Likelihood of parameter estimate θ̂, as a function of observed outcome d of random variable D
DKL(P‖Q) KL divergence of probability distribution P with respect to probability distribution Q
dSBm Strength difference implied by bookmaker odds
NP , NM , NK , NQ Total number of players, matches, KPI’s per match and qualities per player, respectively
D Vector of random variables that represent the KPI outcomes
Dk,m Random variable that represents the outcome of KPI k in match m
R Real Numbers
D Ordinal outcome space of all the KPI’s in a match
Dk Ordinal outcome space of KPI type k
Yij Outcome of match for i against j

R
(m)
i DSS game outcome rating (KNTB Tennis)

θ Variable that contains all parameters of our model that need to be estimated

θ̂ Estimator of θ
ε Estimation error; the difference between estimated and realized outcome
φA(a) function that affects our estimate of the player quality mean as a function of player effect a
φT (τ) function that affects the estimate of the player quality covariance as a function of time effects τ
I Identity Matrix
1(X) Indicator function, equal to 1 if X is true
1[a,b](x) Indicator function, equal to 1 if x ∈ [a, b]
~1 Column vector filled with ones
A ◦B Elementwise multiplication of matrices A and B
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A KPI outcome probability model

In this section, we will further clarify our approach to determining the probability distribution of
a KPI outcome. Firstly we will explain the intuition behind our complete approach, then we will
visualize the procedure with some numerical examples and finally, we will apply the procedure to a
Poisson distribution where the mean is a latent variable.

A.1 Intuitive explanation of methodology

The goal of this methodology to determine a mapping from participants in a match to outcome prob-
abilities. Firstly we have created latent variables for all players that numerically describe their power
in a certain quality. We assume that the utility, or strength, of a team, can be seen as a weighted
sum of individual qualities. This difference between two coalitions in a certain match is the strength
difference, in short notation for match m we have dSm = δmQ.
There is a general, intuitive relationship between outcome probabilities and strength difference;
stronger teams perform better and therefore have an outcome probability with higher (lower) mean
for positive (negative) events. An event is considered positive if a team wants it to happen. We have
by assumption that strength has a normally distributed around its average value, dS ∼ N (µdS , σ

2
dS).

The method in Section 4 was constructed with the following idea;

P (D = k|dS = s) =

{
1 if s ∈ [βk−1, βk)

0 else
(304)

Intuitively we can now see that if the link function gives a correct representation of the strength
difference outcomes, we can keep the thresholds the same for all different, match dependent, strength
difference distributions.

A.1.1 Visualisation of Gaussian distribution as a link function

To clarify the approximation procedure from Section 4.2.4 we made two pictures that illustrate a
simple example. In our example, we look at 3 ordered categories; category 1, category 2 and category
3. We choose average class probabilities 50%, 26%, and 24% respectively. In figure 3 we show the
extracted of βk given class probabilities PCk , as in equation (97). We get β1 = 0 and β2 = 0.7 , while
β0 = −∞ and β3 =∞ are implied.
Now we have a new observation and we want to determine the category probabilities for it. We
take that for this record we have a strength discrepancy of wT q = 0.5. We yield figure 4, and can
extract the class probabilities, while leaving the βi’s unchanged. We get P̄C1 = 0.31, P̄C2

= 0.27 and
P̄Ck = 0.42.

Figure 3: Standard class distribution
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Figure 4: Class distribution for specimen with δMq = 0.5

A.1.2 Applicability to Poisson distribution

We will now apply the procedure the procedure, discussed in Appendix A.1 and developed in Section 4,
to Poisson Distribution with a variable mean. The idea is that the mean is a function of a latent
variable. We will show that the approximate probability distribution we yield with our method is
similar to the real probability distribution. We compare our approximation and the real distributions
by looking at two metrics: the Kullback-Leibler Divergence (Kullback & Leibler, 1951) and Total
Variation. We summarize the procedure as follows:

1. First, we choose an appropriate mean for our central distribution. Whenever δMq = 0, our
approximated distribution will be exact.

2. Now we extract the β’s by using equation (97)

3. We calculate the class probabilities PCk(x) = P (D = k|δmMq = x) according to equation (98),
leaving δMq as a parameter

4. With the calculated PCk(x) we extract the mean of our probability distribution, µ̄(x) =∑
k

kPCk(x), numerically

5. Now we calculate the probabilities should expect, PRCk(x) given the variable has a Poisson
distribution, by taking

PRCk(x) = P (Y = k|Y ∼ Poiss(µ̄(x))). (305)

6. We calculate the difference between the real and estimated probability distribution with metrics
like Total Variation and the KL-divergence

Even though the probability distributions are in-exact, we yield decent approximations the Poisson
distribution. If we take µ0 = 1.7 and δMq = x = 1, this implies µ̄(1) = 3.12, and yields a total
variation (TV ) of 0.089. This is calculated by:

Total Variation = TV =
∑
k

|PRCk(x)− P̄Ck(x)| (306)

The Kullback-Leibler Divergence is calculated by the following equation:

D(PR||P̄ )(x) =
∑
k

PCk(x) log

(
PCk(x)

P̄Ck(x)

)
(307)

The results are summarized in Table 8 and 9.
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Table 8: Distribution approximation performance for δMq = 1, implying µ = 3.12

k PCk
k∑
i=1

PCi βk+1 P̄Ck Poiss(µ̄) |PRCk − P̄Ck | KL Divergence

0 18.27% 18.27% -0.91 2.84% 4.42% 1.59% 0.85%
1 31.06% 49.32% -0.02 12.62% 13.79% 1.17% 0.53%
2 26.40% 75.72% 0.70 22.65% 21.51% 1.14% -0.48%
3 14.96% 90.68% 1.32 24.49% 22.35% 2.14% -0.89%
4 6.36% 97.04% 1.89 18.63% 17.43% 1.20% -0.51%
5 2.16% 99.20% 2.41 10.83% 10.87% 0.04% 0.02%
6 0.61% 99.81% 2.90 5.06% 5.65% 0.59% 0.27%
7 0.15% 99.96% 3.36 1.97% 2.52% 0.54% 0.27%
8 0.03% 99.99% 3.80 0.66% 0.98% 0.32% 0.17%
9 0.01% 100.00% 4.22 0.19% 0.34% 0.15% 0.09%
10 0.00% 100.00% 4.63 0.05% 0.11% 0.06% 0.04%
11 0.00% 100.00% 5.02 0.01% 0.03% 0.02% 0.01%

Table 9: TV and KL divergence of the approximation of the Poisson distribution for different values
of δMq

δMq µ̄ Total Variation KL divergence
-2 0.16 5.3% 0.30%
-1.5 0.36 9.0% 0.39%
-1 0.68 9.1% 0.29%
-0.5 1.13 6.0% 0.10%
0 1.70 0.0% 0.00%
0.5 2.37 4.5% 0.10%
1 3.12 8.9% 0.37%
1.5 3.95 11.5% 0.75%
2 4.84 13.2% 1.17%
2.5 5.81 14.5% 1.62%
3 6.84 15.4% 2.07%
3.5 7.93 16.1% 2.51%
4 8.15 15.8% 2.60%

A.2 Bayesian two-dimensional rating inference

Consider two players, player 1 and player 2, take respective ratings θ1 ∼ Θ1 and θ2 ∼ Θ2. For this
specific case Bayes’ rule resorts to:

P (Θ1 = θ1,Θ1 = θ2|Y1,2 = y) =
P (Y1,2 = y,Θ1 = θ1,Θ2 = θ2)

P (Y1,2 = y)
(308)

=
P (Y1,2 = y|Θ1 = θ1,Θ2 = θ2)P (Θ1 = θ1,Θ2 = θ2)∫

x1

∫
x2

P (Y1,2 = y|Θ1 = x1,Θ2 = x2)P (Θ1 = x1,Θ2 = x1)dx1dx2

(309)

We assume that player ratings behave over time according to a Brownian motion. This means that
ratings have a normal distribution, with an increasing variance during periods of inactivity. Whenever
there is a result, we gain information and can, therefore, update our estimator of the current location
of the Brownian Motion.
This gives us that θ1 ∼ Θ1 = N (µ1, σ

2
1) and θ2 ∼ Θ2 = N (µ2, σ

2
2). We assume a logistic outcome

probability distribution:

P (Y1,2 = 1|Θ1 = θ1,Θ2 = θ2) =
1

1 + eθ2−θ1
(310)

Equation (310) represents the relationship between outcome probability and player ratings. We
discuss other and generalized choices of such relationships in Section 4.1.
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Combining Equations (309) and (310) gives us the following relationship:

P (Θ1 = θ1,Θ2 = θ2|Y1,2 = y) =
1

1+eθ2−θ1N (θ1;µ1, σ
2
1)N (θ2;µ2, σ

2
2)∫

x1

∫
x2

1
1+ex2−x1

N (x1;µ1, σ2
1)N (x2;µ2, σ2

2)dx1dx2

(311)

=
1

1+eθ2−θ1N (θ1;µ1, σ
2
1)N (θ2;µ2, σ

2
2)∫

D

1
1+e−D

N (D;µ1 − µ2, σ2
1 + σ2

2)dD
(312)

≈ e−g(σ1,σ2)(θ1−θ2)

1 + eg(σ1,σ2)(θ2−θ1)
N (θ1;µ1, σ

2
1)N (θ2;µ2, σ

2
2) (313)

In Equation (313) we have that g(σ1, σ2) =

√
1 +

π(σ2
1+σ2

2)
8 , which is the result of procedure to approx-

imate a logistic integral (Crooks, 2013), that has also been applied in the Glicko-model (Glickman,
1999). The multiplication of Gaussian pdfs is discussed in Appendix C.2.
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B Estimators

In this section we will prove, or refer to proofs of statements made throughout the report regarding
estimators.

B.1 Bias-variance decomposition

The bias and variance of an estimator are very important properties. We will define them, and prove
the bias-variance decomposition of the MSE of an estimator.

Var(θ̂) = E

[(
θ̂ − E[θ̂]

)2
]

(314)

bias(θ̂, θ) = E
[
θ̂ − θ

]
= E[θ̂]− θ (315)

MSE(θ̂) = E
[
(θ̂ − θ)2

]
(316)

= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2
]

(317)

= E

[(
θ̂ − E[θ̂]

)2
]

+ E
[
2
(
θ̂ − E[θ̂]

)(
E[θ̂]− θ

)]
+ E

[(
E[θ̂]− θ

)2
]

(318)

= E

[(
θ̂ − E[θ̂]

)2
]

+ 2
(
E[θ̂]− E[θ̂]

)(
E[θ̂]− θ

)
+
(
E[θ̂]− θ

)2

(319)

= Var(θ̂) + bias(θ̂, θ)2 (320)

B.2 Minimum mean squared error

Here we will prove uniqueness of the minimum MSE estimator and show that θ̂MMSE = E[θ|Data].

We will denote our data by Y and our estimator by g(Y ) = θ̂.

MSE = E

[(
θ − θ̂

)2
∣∣∣∣Y = y

]
= E

[
(θ − g(Y ))

2
∣∣∣Y = y

]
(321)

= E
[
θ2
∣∣Y = y

]
− 2E [θg(Y )|Y = y] + E

[
g(Y )2|Y = y

]
(322)

= E
[
θ2
∣∣Y = y

]
− 2g(y)E [θ|Y = y] + g(y)2 (323)

dMSE

dg(y)
= −2E [θ|Y = y] + 2g(y) = 0 (324)

g(y) = E [θ|Y = y] (325)
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C Gaussian random variables

In this section of the appendix we will elaborate certain analytical and approximation methods we
have applied throughout this research regarding Gaussian random variables.

C.1 Truncated Gaussian distribution

In some cases we can deal with a normally distributed random variable, for which we know it must lie
in a (bounded or unbounded) range. The probability distribution of such a random variable is char-
acterized by the truncated normal distribution. The parameters of a truncated normal distribution
were taken from (Burkardt, 2004) and are listed here:

Z ∼ N (µ, σ2) (326)

X ∼ Z|Z ∈ [a, b] (327)

f(x;µ, σ, a, b) =
φ(x−µσ )

σ
(

Φ( b−µσ )− Φ(a−µσ )
) (328)

E[X] = µ+
φ(a−µσ )− φ( b−µσ )

Φ( b−µσ )− Φ(a−µσ )
σ (329)

V ar(X) = σ2

1 +
a−µ
σ φ(a−µσ )− b−µ

σ φ( b−µσ )

Φ( b−µσ )− Φ(a−µσ )
−

(
φ(a−µσ )− φ( b−µσ )

Φ( b−µσ )− Φ(a−µσ )

)2
 (330)

C.2 Multiplication of Gaussian PDFs

In a few places throughout our research we need to find the product of (multivariate) Gaussian
probability density functions. We know that if X ∼ N (µ,Σ), then:

pX(x) =
1

(2π)
d
2

√
|Σ|

exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(331)

By using (Bromley, 2014), we get the following results:

n∏
i=1

N (µi,Σi) = exp

((
n∑
i=1

ζi

)
− ζn

)
exp

(
ζn + (

n∑
i=1

Σiµi)
Tx− 1

2
xT (

n∑
i=1

Σn)x

)
(332)

ζi = −1

2

(
d log 2π − log |Σi|+ (Σiµi)

TΣ−1
i (Σiµi)

)
(333)

For the special case of n = 2 we get:

N (x;µ1,Σ1)N (x;µ2,Σ2) = N (µ1;µ2,Σ1 + Σ2)N (x;C(Σ−1
1 µ1 + Σ−1

2 µ2), C) (334)

C = (Σ−1
1 + Σ−1

2 )−1 (335)

Note that the integrate over the multiplication of two Gaussians pdf, we yield the following:

∞∫
−∞

N (x;µ1,Σ1)N (x;µ2,Σ2)dx = N (µ1;µ2,Σ1 + Σ2) = N (µ2;µ1,Σ1 + Σ2) (336)

C.3 Multivariate Gaussian distribution with multivariate Gaussian mean

Imagine that we have:

pX(x) = N (x;µx,Σx) (337)

pY |X(y) = N (y;AX + b,Σy) (338)
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Here we assume that A is invertible, and we yield the following result:

pY (y) =

∞∫
−∞

fY |X(y|x)fX(x)dx (339)

=

∞∫
−∞

N (y;Ax+ b,Σy)N (x;µx,Σx)dx (340)

=

∞∫
−∞

C · exp(−1

2
((Ax+ b− y)TΣ−1

y (Ax+ b− y)

+ (x− µx)TΣ−1
x (x− µx))

(341)

=

∞∫
−∞

C · exp(−1

2
((Ax+ b− y)TA−TATΣ−1

y AA−1(Ax+ b− y)

+ (x− µx)TΣ−1
x (x− µx))

(342)

=

∞∫
−∞

C · exp(−1

2
((x−A−1(y − b))TATΣ−1

y A(x−A−1(y − b))

+ (x− µx)TΣ−1
x (x− µx))

(343)

=

∞∫
−∞

N (x;A−1(y − b), A−TΣyA
−1)N (x;µx,Σx)dx (344)

= N (A−1y;µx +A−1b, A−TΣyA
−1 + Σx) (345)

= N (y;Aµx + b,Σy +ATΣxA) (346)

We believe this can be applied to deal correctly with the relationship between dS and dSO in Sec-
tion 4.3. Currently, we worked with certain observations, while in reality observations contain some
additional uncertainty. The equations in this section show that whenever we have a Gaussian random
variable of which the mean is an affine transformation of a Gaussian, the uncertainty of this Gaussian
can be moved to the covariance matrix of the original Gaussian.

C.4 Marginal Gaussian inference equations

In this section of the appendix, we will show equations that can be used to infer conditional distri-
butions for guassians in the following setting:

Y = AZ + b (347)

pZ(z) = N (z;X,Σz) (348)

pX(x) = N (x;µx,Σx) (349)

pY (y|X = x) = N (y;Ax+ b,Σy) (350)

We get from (Bishop, 2006, p. 93) that:

pY (y) = N (y;Aµx,Σy +AΣxA
T ) (351)

pX(x|Y = y) = N
(
x; Σnew

x

(
ATΣ−1

y y + Σ−1
x µx

)
,Σnew

x

)
(352)

Σnew
x =

(
Σ−1
x +AΣ−1

y AT
)−1

(353)

These equations are the exact conditional distributions, therefore they can be utilized to calculate the
minimum MSE estimators for µx and Σx. The method does not calculate Σz, this matrix is chosen
or calculated separately.

C.5 Convergence and asymptotic unbiasedness of conditional Gaussian

In this section, we will look at the convergence properties of the method proposed in Section 5.6.
We make use of matrix manipulations that are listed in (Petersen & Pedersen, 2012, the Matrix
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Cookbook). We repeat the equations with an alternative notation:

Y = AẐ + b (354)

pZ(z) = N (z; X̂, Σ̂z) (355)

pW (x) = N (x; µ̂x, Σ̂x) (356)

pY (y|X = x) = N (y;Ax+ b, AΣ̂zA
T ) (357)

For the error of the estimate µ̂x of µx we now get the following equations:

E[µx − µ̂x] = εµ (358)

‖E[µx − µ̂x]‖ = ‖εµ‖ (359)

We now get that:

pY (y) = N (y;Aµ̂x + b, A(Σ̂z + Σ̂x)AT ) (360)

pX(x|Ŷ = y) = N (x; Σnewx (AT (AΣ̂zA
T )−1(y − b) + Σ̂−1

x µ̂x), Σ̂newx ) (361)

µ̂newx = Σnewx (AT (AΣ̂zA
T )−1(y − b) + Σ̂−1

x µ̂x) (362)

Σ̂newx = (Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1 (363)

E[µ̂newx − µx] = (Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1(AT (AΣ̂zA
T )−1Aµx + Σ̂−1

x (µx + εµ))− µx (364)

= (Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1Σ̂−1
x εµ (365)

µx = (Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1(Σ̂−1
x +AT (AΣ̂zA

T )−1A)µx (366)

‖E[µ̂newx − µx]‖ = ‖(Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1Σ̂−1
x εµ‖ (367)

≤ ‖(Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1Σ̂−1
x ‖ ‖εµ‖ (368)

≤ ‖εµ‖ (369)

To go from Equation (368) to (369) we use the following:

‖(C +B)−1C‖ = ‖(C +B)−1(C−1)−1‖ (370)

= ‖(C−1(C +B))−1‖ (371)

= ‖(I + C−1B)−1‖ (372)

We call λ(K) the set of eigenvalues of the matrix K, and indicate a specific eigenvalue by λi ∈
lambda(K). We note that in our case matrices C and B represent:

C = Σ̂−1
x (373)

B = AT (AΣ̂zA
T )−1A (374)

Both matrices are symmetric and positive semi-definite. Therefore we have that λ(C) > 0 and
λ(B) > 0, i.e. all the eigenvalues of C and B are positive. We use that λi ∈ λ(C) =⇒ 1

λi
∈ λ(C−1)

from (Petersen & Pedersen, 2012, eq. 287), therefore λ(C−1) > 0. We now use λ(FD) = λ(DF ) and
λi ∈ λ(D) =⇒ (1 + λi) ∈ λ(I +D) from (Petersen & Pedersen, 2012, eq. 280 & 285):

λmin(C−1B) = λ(C−1B
1
2B

1
2 ) (375)

= λ(B
1
2C−1B

1
2 ) (376)

minλ(C−1B) = argmin
λ

(B
1
2C−1B

1
2x, x)

(x, x)
(377)

= argmin
λ

(C−1B
1
2x,B

1
2x)

(B
1
2x,B

1
2x)

(B
1
2x,B

1
2x)

(x, x)
(378)

≥ λmin(C−1)λmin(B) ≥ 0 (379)

λmin(I + C−1B) ≥ 1 (380)

0 ≤ λ((I + C−1B)−1) ≤ 1 (381)

‖(I + C−1B)−1‖ ≤ 1 (382)
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Finally, we use that B
1
2 exists, as every PSD matrix can be decomposed as B = V DV T , where V is

an orthonormal matrix that contains all the eigenvectors and D is a diagonal matrix that contains
the corresponding eigenvalues. We can see that B

1
2 = V D

1
2V T , where D

1
2 is a diagonal matrix with

the square root of all corresponding eigenvalues. We conclude that:

‖(Σ̂−1
x +AT (AΣ̂zA

T )−1A)−1Σ̂−1
x εµ‖ ≤ ‖εµ‖ (383)

This means that the bias in our estimate decreases after every iteration, therefore our estimator is
asymptotically unbiased.

C.6 Bayesian Inference of a Multivariate Normal Distribution

In this section, we will introduce the general Bayesian inference method for multivariate Gaussian
Distributions. We will apply the problem to our specific context in Appendix C.7. Firstly we start
out with the prior probability distribution over the player qualities Q and the player inconsistency
matrix Σq:

pQ
(
qO
∣∣µq = M,Σq = S

)
= N

(
qO;M,S

)
(384)

pµq (M |Σq = S) = N (M ;µ0, β0S) (385)

pΣq (S) =W (S; a0, B0) (386)

E [Σq] = a0B
−1
0 (387)

a0 ∈ R, β0 ∈ R, µ0 ∈ RNPQ , B0 ∈ RNPQ×NPQ (388)

Here W denoted the Weibull distribution. The idea is that we have N observations of all the player
qualities, qOi ∼ Q, and we use all these to get the following posterior distributions:

pµq (M |Σq = S,Q = qO) = N (M ;µN , βNΣq) (389)

pΣq (S;Q = qO) =W(S; aN , BN ) (390)

Here we have that:

µN =
β0µ0 +Nq̄

βN
(391)

βN = β0 +N (392)

a = a0 +
N

2
(393)

BN = B0 +
N

2

[
Σ̄ +

β0

βN
(q̄ − µ0)(q̄ − µ0)T

]
(394)

q̄ =
1

N

N∑
n=1

qOn (395)

Σ̄ =
1

N

N∑
n=1

(qOn − q̄)(qOn − q̄)T (396)

C.7 Application of Bayesian Inference with unknown partial observations

Throughout the project, we have tried to apply Bayesian Inference as a methodology for player rating
parameter estimates. In this section, we will outline the progress we made with applying the method
to our specific problem. The approach we take is very similar to the approach to (Glickman, 1993),
and we use the general method of Bayesian Inference for Gaussians was taken from (Penny, 2014). We
have rewritten this general method in Section C.6 according to the notation we have used throughout
this thesis.
Before we can apply the general method to our problem, we identified crucial differences that require
modifications in the algorithm. Firstly; the general Bayesian Inference for Gaussians algorithm
assumes complete observations of the vectors that need to be estimated, while we only observe
a subset of players during a match. We need to modify the algorithm so that it can deal with
”importance weighted” observations. We will do this by changing a, β and N to diagonal matrices,
containing the appropriate inputs, specific for each player-quality.
Secondly, we must apply inference incrementally. This means that we do batch processing, rather
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than processing the complete dataset at once. This is not difficult, during each batch we define its
outcome as the posterior, which will be considered the prior for the next batch.
Lastly; we currently do not have any observations of player performance, only observations of outcome
implied strength difference between teams. An additional difficulty is that this strength difference
contains some uncertainty. We solve this by estimating player performance from the implied strength
difference.
As discussed earlier, we will replace a, β and N , by matrices we will call A, B and D. We see the
following equations:

BtN = diag(βt1, β
t
2, ..., β

t
P ) (397)

=


β1

β2

...
βNPQ

 (398)

AtN = diag(at1, a
t
2, ..., a

t
NPQ) (399)

D = diag(δ+
1P ) (400)

(δ+)ij = |(δ)ij | (401)

D is defined as the total amount of observations, but in our case we observe only a subset of players,
not all with same importance. We will count a fully played match as one observation. An observation
is irrelevant of the sign of the coefficient, therefore we take the column-sums of δ+. which equals to
δ but we take the absolute value of all elements.
To be able to apply the Bayesian methodology, we must have observations of player performances.
Unfortunately, we only have outcomes that we can translate to an observed strength difference. To
get a useful player quality observation we can apply the same procedure as in 5.6. Whereas the
method initially was used to infer information about the player quality mean, we will now simply
infer the player performance during a single match. We use ΣdS|qO , the covariance matrix of strength

difference if the strength difference would be known. As qO has a direct mapping to match outcome,
we can use Equation (144) to determine ΣdS|qO .
We get the following prior equations:

P (qO|µq,Σq) = N (qO;µq,Σq) (402)

P (dS|µq,Σq, qO) = N (dS; δqO; ΣdS|qO ) (403)

Which leads to the following posterior probability distributions, using (Bishop, 2006):

P (dS|µq,Σq) = N (dS; δµq,ΣdS|qO + δΣqδ
T ) (404)

P (qO|µq,Σq, dS) = N (qO; J(δT (ΣdS|qO )−1dS + Σ−1
q µq), J) (405)

J = (Σq + δTΣdS|qOδ)
−1 (406)

Now we can put the notation in block-matrix form. For readability, we assume that, index-wise, all
active players are first, and inactive player are after that. This can be achieved by specific columns
(and the same row) permutations. We get the following equations:[

µ
(1)
t

µ
(2)
t

]
= γ−1

t

(
γt−1

[
µ

(1)
t−1

µ
(2)
t−1

]
+

[
Dt 0
0 0

] [
µ

(1)
qt

µ
(2)
qt

])
(407)

γt = γt−1 +

[
Dt 0
0 0

]
(408)

At = At−1 +
1

2

[
Dt 0
0 0

]
(409)

Bt = Bt−1 +K = Bt−1 +

[
K11 K12

K21 K22

]
(410)

K11 =
1

2
Dt

[
Σ̄t + γt−1(γt)

−1(q̄ − µt−1)(q̄ − µt−1)T
]

(411)

K12 = KT
21 = 0 (412)

K22 = 0 (413)

q̄t = µqO = J(δT (ΣdS|qO )−1dS + Σ−1
q µq) from Equation (405) (414)

Σ̄t = ΣqO = J = (Σq + δTΣdS|qOδ)
−1 from Equation (406) (415)
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For the players where we have an observation, we know how to update Bt. Unfortunately, we have
not found how to do this exactly for the other parts of K, we have chosen the K12 = KT

21 to be empty.
With the current approach, we are certain Bt remains PSD symmetric matrix, because we only add
K which is a PSD symmetric matrix.
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D Heteroskedastic player inconsistency

In all the models discussed in Section 5 we assumed that player performance variance was equal for
all players; we assumed homoskedasticity. In this section of the appendix, we will look at methods
that can estimate the player variances under the assumption that these are uncorrelated and player
specific, thus different for each player; we call this heteroskedastic. We did not implement any methods
discussed in this section due to computational difficulty and estimator uncertainty. We believe more
data points per player are needed in order to be able to estimate the specific inconsistency parameter
for each player-quality.
We will assume in this section that we have an estimator for µMq , which we use to calculate the
residuals ε. If we apply the OLS-estimation procedure we get:

ΣdS = (δΣqδ
T ◦ I) (416)

Σ̂Mq
= (δT δ)−1δT (Σ̂dS)δ(δT δ)−1 (417)

ε = dS − d̂S (418)

= dS − δµ̂Mq
(419)

= (I − δ(δT δ)−1δT )dS (420)

εk ∼ N (0,

NPQ∑
i=1

δ2
k,i(Σq)i,i) = N (0,

NPQ∑
i=1

δ2
k,iσ

2
qi) (421)

So we have an expression for the estimated error ε in equation (420) and we know its distribution to
be as in equation (421). We see that we can write these equations for all matches as:

Var(ε1) = δ2
1,1σ

2
q1 + δ2

1,2σ
2
q2 + . . .+ δ2

1,NPQσ
2
qNPQ

Var(ε2) = δ2
2,1σ

2
q1 + δ2

2,2σ
2
q2 + . . .+ δ2

2,NPQσ
2
qNPQ

. . .

Var(εNKM ) = δ2
NKM ,1σ

2
q1 + δ2

NKM ,2σ
2
q2 + . . .+ δ2

NKM ,NPQσ
2
qNPQ

These equations can be represented conveniently in matrix form, yielding the relationship between
observed errors and our estimator for the player inconsistency of player qualities:

E


ε21
ε22
. . .
ε2NKM

 =


δ2
1,1 δ2

1,2 . . . δ2
1,NPQ

δ2
2,1 δ2

2,2 . . . δ2
2,NPQ

. . . . . . . . . . . .
δ2
NKM ,1

δ2
NKM ,2

. . . δ2
NKM ,NPQ




σ2
q1

σ2
q2

. . .
σ2
qNPQ

 (422)

E[ε◦2] = δ◦2~σ◦2 (423)

=


δ2
1,1σq1 δ2

1,2σq2 . . . δ2
1,NPQ

σqNPQ
δ2
2,1σq1 δ2

2,2σq2 . . . δ2
2,NPQ

σqNPQ
. . . . . . . . . . . .

δ2
NKM ,1

σq1 δ2
NKM ,2

σq2 . . . δ2
NKM ,NPQ

σqNPQ




σq1
σq2
. . .

σqNPQ

 (424)

=
(
δ◦2 ◦ (~σT ⊗ ~1NKM )

)
~σ (425)

The two formulations can be used to find appropriate estimators σ̂qk by minimizing the difference
between the left and righthand side of equation (422) or (424). This difference can be defined in
different ways, we will explore squared, absolute difference and relative difference in sections D.2, D.3
and D.4 respectively.
Another applicable method we found in literature is called variance component analysis. The idea
of this method is to break up the total variance over the components. In our case, components
are individual player qualities, and we write Σq as a sum of matrices multiplied by the variances of
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individual players:

ΣdS =

NPQ∑
i=1

σ2
qiRqi (426)

Rqi =


δ2
1,i 0 . . . 0
0 δ2

2,i . . . 0
. . . . . . . . . . . .
0 0 . . . δ2

NKM ,i

 (427)

D.1 Heteroskedasticity - maximum likelihood estimation

A method that is used often to estimate parameters is Maximum Likelihood Estimation. The idea is
that we find estimators that maximize the likelihood of our observations. We have attempted to do
this for all parameters using the observations in 5.1. In this subsection, we will start with the MLE
equations and derive an expression for the maximum likelihood estimators:

L(Σ̂q, µ̂Mq ; ε = ε̂) = PΣ̂q,µ̂Mq
(ε = ε̂) (428)

=

(
1

2π

) 1
2NKM 1√

|δΣ̂qδT ◦ I|
exp

(
−1

2
ε̂
(
δΣ̂qδ

T ◦ I
)−1

ε̂T
)

(429)

=

(
1

2π

) 1
2NKM

 M∏
j=1

(
N∑
i=1

δ2
j,iσ̂

2
qi

)− 1
2

 exp

−1

2

M∑
j=1

ε̂2j (
N∑
i=1

δ2
j,iσ̂

2
qi)
−1

 (430)

logPΣ̂q,µ̂Mq
(ε = ε̂) = −1

2
NKM log(2π)− 1

2

M∑
j=1

log

(
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δ2
j,iσ̂

2
qi

)
− 1

2

M∑
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ε̂2j (
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δ2
j,iσ̂

2
qi)
−1 (431)

∂ logPΣ̂q,µ̂Mq
(ε = ε̂)

∂σqk
= −1

2

M∑
j=1

2δ2
j,kσqk

N∑
i=1

δ2
j,iσ̂

2
qi

+
1

2

M∑
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ε̂2j2δ
2
j,kσqk

(
N∑
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δ2
j,iσ̂

2
qi

)−2
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=

M∑
j=1

ε̂2j
(

N∑
i=1

δ2
j,iσ̂

2
qi

)−1

− 1

 δ2
j,kσqk

(
N∑
i=1

δ2
j,iσ̂

2
qi

)−1
 (433)

∂ logPΣ̂q,µ̂Mq
(ε = ε̂)

∂(µ̂Mq
)h

=

M∑
j=1

∂ logP (ε̂|Σ̂q, µ̂Mq )

∂ε̂j

∂ε̂j
∂(µ̂Mq

)h
(434)

= −
M∑
j=1

ε̂j(

N∑
i=1

δ2
j,iσ̂

2
qi)
−1 · (−δj,h) (435)

=

M∑
j=1

ε̂jδj,h(

N∑
i=1

δ2
j,iσ̂

2
qi)
−1 (436)

We can now solve
∂ logPΣ̂q,µ̂Mq

(ε=ε̂)

∂(µ̂Mq )h
= 0 and

∂ logPΣ̂q,µ̂Mq
(ε=ε̂)

∂σ̂qk
= 0. These equations can only be solved

numerically, and correspond to the equations in (Pelgrin, 2016).

D.2 Heteroskedasticity - least squares

We can use the Ordinary and Generalized Least Squares methods discussed in 5.2 and 5.3. We get
from Equation (424):

Σ̂H−OLSq = diag((∆T∆)−1∆T ε2) (437)

Σ̂H−GLSq = diag((∆TP∆)−1∆TPε2) (438)

∆ = δ◦2 (439)

58



We can also use the second definition, here we use Equation (422) and we must iteratively solve the
following equations until convergence:

Σ̂H2−OLS
q = diag((ΓTΓ)−1ΓT ε2) (440)

Σ̂H2−GLS
q = diag((ΓTPΓ)−1ΓTPε2) (441)

Γ = δ◦2 ◦ (diag(

√
Σ̂q)⊗ 1NKM ) (442)

Even though the OLS and GLS estimators are unbiased, these estimates can produce undesirable
results. A large drawback of this approach is that the estimator σ̂2

qi for a single player can be
negative, while obviously σ2

qi must be positive.
A possible solution to avoid negative (or very small) estimates of σ2

qi we could apply the Non-Negative
Least Squares (NNLS) method (Lawson & Hanson, 1995). The method has the same minimization
criterion as OLS and GLS, but with an inequality constraint:

Σ̂H−NNLSq = argmin
σ◦2

(
ε−∆~σ◦2

)2
subject to ~σ◦2 ≥ C (443)

To achieve a non-negative solution, we choose C = 0. An efficient algorithm to yield a solution of
equation 443 is an an active set modification of the standard least squares model, and is described in
(Lawson & Hanson, 1995, p. 161).

D.3 Heteroskedasticity - p-norm difference

Another way we can estimate heteroskedastic errors by observing that:

ej ∼ N (0,

NPQ∑
k=1

δ2
j,kσ

2
qk

) (444)

E[e2
j ] =

NPQ∑
k=1

δ2
j,kσ

2
qk

(445)

σ̂DEVp = argmin
σ

NKM∑
j=1

∣∣∣∣∣∣e2
j −

NPQ∑
k=1

δ2
j,kσ

2
qk

∣∣∣∣∣∣
p

(446)

This estimator can be found for any p > 0 using a method called iteratively reweighted least squares
(Burrus, 2012). This method uses the following equations:

σ̂IRLS = argmin
σ

NKM∑
j=1

wj(σ)

∣∣∣∣∣∣e2
j −

NPQ∑
k=1

δ2
j,kσ

2
qk

∣∣∣∣∣∣
2

(447)

wj(σ) =

∣∣∣∣∣∣e2
j −

NPQ∑
k=1

δ2
j,kσ

2
qk

∣∣∣∣∣∣
p−2

(448)

After each iteration, the terms wj are updated and the least squares problem in Equation (447) is
solved again.

D.4 Heteroskedasticity - relative error

In the previous sections, we have estimated the player quality inconsistencies by looking at a norm
of the differences between measured and expected error. Another possibility is to look at the relative
error; for every j we have that:

E[e2
j ] =

NPQ∑
i=1

δ2
jiσ

2
qi =⇒

E[e2
j ]

NPQ∑
i=1

δ2
jiσ

2
qi

= 1 (449)

We can take the natural logarithm, yielding:

ln(E[e2
j ]) = ln

NPQ∑
i=1

δ2
jiσ

2
qi

 (450)
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We would now seek the estimator for σ such that:

σ̂MRE = argmin
σ

NKM∑
j=1

∣∣∣∣∣∣ln(e2
j )− ln

NPQ∑
k=1

δ2
j,kσ

2
qk

∣∣∣∣∣∣ (451)

Unfortunately we cannot apply the same approach as in D.3, because our function of σ is non-linear.
We can apply the Newton method for minimization (Murray, 2010). We define the function g as:

g(σq) =

NKM∑
j=1

∣∣∣∣∣∣ln(e2
j )− ln

NPQ∑
i=1

δ2
jiσ

2
qi

∣∣∣∣∣∣ (452)

∂g(σq)

∂σqk
= 2

NKM∑
j=1

Sj(σq)
δ2
jkσqk

NPQ∑
i=1

δ2
jiσ

2
qi

(453)

∂2g(σq)

∂σ2
qk

= 2

NKM∑
j=1

Sj(σq)

 δ2
jk

NPQ∑
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2
qi

+
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(
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jiσ
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qi)

2

 where Sj(σ) 6= 0 ∀j (454)

∂2g(σq)

∂σqk∂σqm
= 4

NKM∑
j=1

Sj(σq)
δ2
jkσqkδ

2
jmσqm

(
NPQ∑
i=1

δ2
jiσ

2
qi)

2

where Sj(σ) 6= 0 ∀j (455)

Sj(σ) = sign

ln(e2
j )− ln

NPQ∑
i=1

δ2
jiσ

2
qi

 (456)

The update equations become;

σ̂new = σ̂old −
[
Hess g(σ̂old)

]−1∇g(σ̂old) (457)

(∇f)i ≡
∂f

∂xi
(458)

(Hess f)ij ≡
∂2f

∂xi∂xj
(459)

When applying this method, we must consider that the factors Sj(σ) are non-continuous. We did
not have enough time to fully investigate this behavior, but we believe this method can be applied
to yield an estimator under the criterion of Equation (451).

D.5 Heteroskedasticity - almost unbiased estimator

Another way to estimate the heteroskedastic variances is to apply variance component estimation
techniques. There are multiple methods described by (Teunissen & Amiri-Simkooei, 2008). Such
methods require a representation like in equations (426) and (427). Most methods require numerically
expensive computations. We chose to consider a promising method that is efficient, biased but
asymptotically unbiased, also described by (Rao, 1970). The estimator we yield is referred to as
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almost unbiased estimator.

E[εTΣ−1
dS ε] = Tr(Σ−1

dSΣε) + E[ε]TΣ−1
dSE[ε] (460)

E[εTΣ−1
dSΣdSΣ−1

dS ε] = Tr
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dS (I − δ(δT δ)−1δT )ΣdS

)
(461)
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(σ̂AUEqk
)2 =
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j=1

δk,je
2
j

(
∑
i

δi,jσ2
i,j)

2

 σ2
qk

Tr(RqkΣ−1
dS (I − δ(δT δ)−1δT ))

(467)

To go from (464) to (465) we use that Tr(ABC) = Tr(BCA) = Tr(CAB), from (Petersen &
Pedersen, 2012). The trace in the denominator of expression (467) cannot be simplified further
because δ(δT δ)−1δT is not a diagonal matrix. The idea is that if we apply this method iteratively,
our estimation converges to an unbiased estimate.
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Arjan. 2017. Estimating the potential of collaborating professionals, with an application to the
Dutch film industry. OR Spectrum, Oct.

64


