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Abstract

In medical imaging the role of 4D dynamic reconstruction meth-
ods are fundamental, for example for the study of moving objects, like
heart or lung motion, or tracer activity (kinetics). Many existing re-
construction methods in nuclear medicine, e.g. PET, are based on
Poisson modelling, however often the objects are static and motion is
not taken into account. We make use of a model for inhomogeneous
poisson point processes and will study the relation between different
methods, that reconstruct data from a given source, in the context of
motion.
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1 Introduction

In many medical imaging facilities in hospitals in the world, patients are
medically examined for the mapping of brain and heart functions or finding
tumors. In the examination it is of great benefit to see how active the bio-
chemical process is and where in the body it is active. These processes in
the body can be measured and viewed through the use of Positron Emission
Tomography (PET) and Single Photon Emission Computed Tomography
(SPECT), both are part of emission computed tomography (ECT). Since
PET and SPECT are able to capture processes in the body, both are func-
tional imaging methods.

To capture a process with ECT, an (radioactive) isotope, the tracer, is ad-
ministered to a patient. Every process that needs to be imaged has its own
specific tracer, which is an isotope of an element that is present in the spe-
cific process. The tracer has a short half-life, because it is unhealthy to be
exposed to radiation for too long. A practical advantage of a short half-life
is the possibility of more ECT-scans in a short amount of time.

To be able to make an actual image the gamma rays emitted by the tracer1

need to be observed with a special camera. Multiple attributes of the gamma
ray can be measured, e.g. energy, occurrence time and angle, when observed.
These attributes are used to acquire better results, but only occurrence time
is assumed to be available.
PET is typically measured in an array of detectors that makes up a ring. The
array of detectors in SPECT is typically a plane, with often the freedom that
this plane can rotate around the patient, often called an Anger camera. The
scanners of Philips Healthcare, [16, 15], for both PET and SPECT seen in
Figure 1 show that the array placement is apparent even in the end product.

From the acquired data an image is computed that shows the distribution of
the tracers activity and thus makes it possible to examine functions inside
the body. The computation can be done analytically, but nowadays iterative
methods are favoured, which are presented in this work.

Regardless of the method of computation, a tracer that is present in greater
quantities emits more gamma rays. Hence the number of detections per

1PET and SPECT have tracers with different properties. SPECT-tracers emit gamma
rays directly in the decay process, whereas PET-traces emit positrons, these meet free
electrons in the tissue, which causes a annihilation event and gamma rays appear.
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(a) (b)

Figure 1: Philips Healthcare: (a) Vereos Digital PET/CT-scanner, it can
simultaneously scan PET and CT and overlay the results. (b) CardioMD
IV is a SPECT-scanner.

detector is higher, which results in a computed image of better quality. Un-
fortunately the great quantity of radioactive matter is also harmful. Hence,
it is desirable to have low count and good quality.

During the detection of gamma rays from the process in a body it is op-
timal that the body is static. A static body has fixed location, which means
that detected gamma rays are from the same location in the body. This
results in an image of better quality, respectively, it represents better the
process in the body. In reality the function that needs to be imaged is not
part of a static body. Examples of functions with motion are blood flow or
lung motion.

Applied Goal
This work is about motion of an object in ECT and the produced image.
We focus on the number of detected gamma rays per detector or number of
counts per detector. So there is no focus on the details of PET and SPECT
or which one is better. For a more comprehensive background on ECT, see
[17].

1.1 Outline

This thesis is organised as follows. We start describing our problem in the
next section and address our main goal in subsection 1.3. In subsection 1.4
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we will address the decisions we made to study our problem. We start
to describe the one-dimensional model in section 2 and extend that one-
dimensional concept to higher dimensions. The simplification of this higher
dimensional problem is done in subsection 2.3. We end that section with
the complete discrete model and various methods. The results are shown in
section 4 and this work is close in section 5.

1.2 Problem

In medical imaging the role of 4D2 is fundamental, because there is a lot of
motion inside the patient’s body apart from the patient’s movements. Ex-
amples are the aforementioned heart or lung motion, but also tracer activity
(kinetics).

To the best of our knowledge all dynamic ECT studies only investigate the
retrieval of time-activity-curves (TAC) and kinetic parameters of physiologi-
cal processes, in a relatively static object. If the body undergoes motion, this
affects the tracer activity at a certain point in space. For visual examples see
Figure 2. This multi-dimensional problem can be reduced to multiple one-
dimensional problems, due to detectors partitioning space. The role of the
one-dimensional subproblem is even more important when there is motion.
Over time accelerations occur, because of motion, with shifts in space-time
as result. These shifts are preserved as drops of activity, referred to as a gap
in Figure 2,

The TACs studied in papers that are reviewed in the work by A. Reader [18,
R381] are smooth and in some cases just a monotonically decreasing func-
tion. Those TACs do not reflect a sense of motion, since there are no gaps.
Since the role of movement is fundamental we are particularly interested in
the case when we do have a moving object in ECT.

Instantaneous change of the tracer activity exemplifies the shifts, due to
motion, in a TAC. This change is not necessarily noticeable, if the time
to the next opposite instantaneous change is short. The natural question
coming forth would be: how short can an interval between two opposite,
instantaneous, changes be to be detected?

Those intervals are the gaps and change the mean number of counts in

23D space and 1D time.
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(a) (b)

(c)

Figure 2: Space-time activity of (a) a static body, (b) a body in motion and
(c) motion of the heart, which causes periodic expansion. This is meant to
show the difference of a source staying in a point in space and one that is
moving.
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a detector, which can cause unfaithful reconstructions. Although we know
that more counts in a detector yields better quality TACs, it can also be
more harmful for the patient. So it is of interest if there is a measurable
drop in quality beyond a certain number of counts.

A better understanding of both these mechanics could help medical imaging.
It would represent the tracer activity better over time (in a moving body)
and minimize the exposure of a patient to radioactive matter.

1.3 Main Goals

To achieve our Applied Goal we have goals that are more specific. The main
goals of this work is to improve the understanding of the relation between
a homogeneous and a non-homogeneous Poisson model in the context of
Medical image reconstruction. We do this by comparing results from both
models and measure how they perform under different circumstances. Of
particular interest is (simulated) motion. The specific goals are elaborated
in the upcoming section.

Specific Goals:

• Does there exist an apparent improvement going from low valued SNR
to higher valued SNR? Or more general, e.g. can we quantify the word
low in low SNR?

• How short can an interval between two opposite, instantaneous, changes
be to be detected

• Does there exist an optimal ratio between the number of intervals and
the number of counts? (i.e. can we find a rule of thumb)

1.4 Research Context

To study our problem we made decisions, for reasons that will be covered
in the next paragraph. One decision we made is to interpolate (tempo-
rally) over acquired list-mode data. For the interpolation we use uniform
B-splines, see subsection 2.3. Due to these decisions we make use of an itera-
tive method to minimize a cost function, see (1), that describes the problem.
We will be using a first-order primal-dual algorithm, by Chambolle [4], to
minimize our cost function. Note that other authors also suggested this class
of algorithms, yet in slightly different forms.
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The reason for choosing list-mode data as a way of storing acquisition data
is to improve precision and memory usage. ECT acquisition data can be
saved in multiple formats. Counts can be binned based on time intervals,
i.e. making a histogram, or saved in lists (list-mode). The difference is that
binned data only saves the number of counts in an interval, whereas list-
mode registers the occurred time of one count (event). So from list-mode
it is possible to acquire binned data, but not the other way around, which
means list-mode contains more information. In works as early as 1984 [24]
it is elaborated how list-mode data could improve ECT. With list-mode not
only precision, but also memory usage could be improved, as argued in Bar-
rett in [2].

In list-mode data the occurrence times of an event are stored, that event
is the detection of a gamma ray, i.e. a photon. In essence this is a multi-
dimensional photon counting problem and that is a Poisson process, see [9,
ch. 4], [12, ch. 3.9] and [25, p. 69, 93], for more elaborate explanation. How-
ever, the classical (analytical) method Filtered Back Projection (FBP), that
is used to go from acquisition data to a reconstructed image, can’t use this
information about the noise.

Favoured nowadays are iterative methods, often in cases of statistical mod-
els, because they can deal with the physics of ECT, see [17] . Such as Poisson
noise generated by the Poisson process and other various effects that worsen
reconstruction, such as scattering and attenuation. List-mode data improves
precision, which is our motivation to use a statistical model.

Iterative methods work with a cost function that needs to be maximized
or minimized. The commonly used cost function in literature, with the
specific noise incorporated into it, is given by,

arg min
u

∫
Ω

∫ T

0
Ku− f log (Ku) dtdx+ αR(u). (1)

Here u is the source, the tracer, that emits gamma rays (photons) per unit
time. This is done through the use of K a (non-)linear compact forward
operator, which described how the measurements are done on u in the spe-
cific setup of PET and SPECT. Then f is our observed data. Both K and
f are known, such that we can reconstruct u. The last term R(u) is the
regularisation term, that penalizes the values of u to make it smoother for
example. We elaborate this in forthcoming sections.
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The most used iterative methods to solve variant of (1) are variations of
the expectation-maximization (EM) algorithm with and without regularisa-
tion term, for one of the early papers see [23]. However EM cannot easily be
generalized to a cost function with regularisation, so we use a primal-dual
algorithm where this is possible. This primal-dual algorithm is used in only
one other work on this topic, see [7], as far as we know. We chose this
iterative method, because of its ease of use, adaptability and performance.

To compute an solution from the continuous representation of our prob-
lem, see (1), we need to discretise all variables. Multiple works, listed in
[18], use a representation for u that has physiological meaning. But we are
interested in motion and as described in subsection 1.2 the TAC, u, can have
no physiological meaning. So the reason for picking B-splines specifically as
discrete representation for u is that B-splines also does not have restrictive
physiological meaning.

Furthermore, B-splines, have also been used in older works see [14, 20, 13,
10, 27, 28, 26]. Except Li and Verhaeghe, [10, 26], all these works favour
non-uniform B-splines. Verhaeghe even describes succinctly how to jointly
optimize the non-uniform knots for B-splines in [28]. A reason for most stud-
ies choosing non-uniform B-spline is given in [14], since concentration decay
there is less data. Non-uniform B-splines, distribute sparse data more effi-
ciently. This non-uniformity has more freedom in parameter choice, which
brings the question how to place the non-uniform mesh. To try to under-
standing the relationship between the signal-to-noise-ratio (SNR) and the
number of basis-function, we do not need extra complexities. Note that high
SNR, means a lot of counts. To study those effects it is more intuitive to
use uniform B-splines, because solutions don’t have a different distribution
of B-splines. So the reason of using uniform B-splines is ‘fair’ comparison
between realizations.

As said, none of the aformentioned references, [14, 20, 13, 10, 27, 28, 26],
study the effects between SNR in a comprehensive way. That means they
are not clear about the number of events that have been used to make a
reconstruction. When they do mention the number of events, they do not
clarify if that is for one pixel or in the whole plane of pixels. For example in
[18] it is said that a scanner detects somewhere between 104 and 109 number
of events depending on the study type and duration. A scanner can mean
the whole set-up, but it could also be one detector. Another example is [22]
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where the words ‘extremely low SNRs’ are used, but not quantified. Hence,
addressing this issue is one of our goals, which was previewed in the previous
subsection and is summarized in the upcoming subsection.

2 Model

In the general (ideal) image reconstruction we study the operator equation:

Ku† = f †. (2)

Here K : X → Y is a (non-)linear forward operator and has a similar
meaning as described in subsection 1.4. It operates on the source u† ∈ X
and results in the (exact) data f † ∈ Y . Due to data being changed by noise
and modelling effects, we do not acquire f †, but rather a noisy f †. Which
can be written in a similar fashion as (2),

Ku = f,

= η
(
f †
)
. (3)

In this problem we want to resolve u ∈ X, which is the inexact reconstruc-
tion of the acquired data f ∈ RN which is typically discrete. The noise, η,
is applied to the original signal instead of being multiplicative or additive,
because the acquisition data in ECT are, as mentioned earlier photon counts
and photon counting is a Poisson process3. So the data is generated with the
original signal as the non-negative Poisson intensity. An assumption here
is that photon detections are considered independent arrivals, but this does
not generally hold, Barrett describes this in [2].

The Poisson intensity can be homogeneous, i.e. constant, and is called a
homogeneous Poisson process (HPP). The non-costant counterpart is called
a non-homogeneous Poisson process (NHPP)4 for one-dimensional defini-
tions of both one can look in the section 6, for multi-dimensional definitions
one can read [25, 11]. The next subsections elaborate on HPP and NHPP
and their use. But first we will describe a method to attempt to solve (3).

To solve (3) for u the trivial option is to invert K, but generally speak-
ing it cannot be (continuously) inverted. That is due possible compactness

3Again see [9, ch. 4], [12, ch. 3.9] and [25, p. 69, 93].
4Synonymous with inhomogeneous Poisson point process and non-stationary Poisson

point process
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of K, which in turn means solving (3) for u is ill-posed. We already men-
tioned in subsection 1.4 that there exist direct (analytical) methods, such
as FBP, to solve this problem. But it is advantageous to use iterative meth-
ods, since it is possible for extensions which deal with various effects, such
as noise models. We do not take into account other effects separately in the
model. Although these effects do affect the intensity, we considered them as
part of the synthetic source signal.

These iterative methods determine values for u, an example for an iterative
method is Newton’s method, which uses Taylor expansions to approximate
solutions iteratively. Since our generated data suffers from Poisson noise,
we can also derive a variational problem specific to this noise. This is done
by use of the probability density function of the Poisson process data in a
maximum-likelihood (ML) estimation. The use of ML is common, but we
take a Bayesian approach and use the maximum-a-posterior (MAP). More
specifically the negative log MAP, because of the exponential function in a
Poisson distribution. With this Bayesian approach we get the description
for a variational problem, which is used to acquire expressions for HPP and
NHPP.

arg min
u∈X

− log (p(u|f)) ,

⇒ arg min
u∈X

− log (p(f |u))− log(p(u)), (4)

= arg min
u∈X

D (f ;Ku) + αR(u).

The nice thing of MAP is the term p(u) which is the prior probability of
u and can also be interpreted as the regularisation of u, since it can be
chosen freely. Hence if not explicitly noted, we will be using Gibbs functions
p(u) ∼ exp {−αR(u)}. The data-term D (f ;Ku) refers to − log (p(f |u)), the
problem specific expression is derived from the stochastic process in the next
sections.

2.1 Continuous Data-term 1D

The list-mode data is presumed to be collected for a given end time, in
the nuclear-medicine this assumption is referred to as preset time (see [2]).
Starting with the one-dimensional (temporal u ∈ L1(R)) problem, where
list-mode data f ∈ RN , obtained from Poisson intensity Ku are random
variables W0 < W1 < W2 < . . . < Wn < . . . < WN < T denoting the oc-
currence time of the n-th photon appearance, here W0 = 0, n ∈ [0, N ] ⊂ N
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and N is the total number of events in the time interval [0, T ]. To be spe-

cific, Λ(a, b) =
∫ b
a Kudt is the parameer of the Poisson process and Ku the

intensity.

For a homogeneous, i.e. constant, Ku parameter Λ(a, b) can be computed
explicitly. The Poisson distribution that generates the noise,

Poisson (n;TKu) := e−TKu
(TKu)n

n!
. (5)

For the MAP data-term in (4) we need to find out the conditional density
function (cdf). Consequently, Proposition 8.2 is used,

− log(p({wn}n|u)) = − log

(∏
n

p (wn|Wn−1 = wn−1, u) p (T |WN = wN , u)

)
,

= − log

(∏
n

Ku(wn)e−(wn−wn−1)Kue−(T−wN )Ku

)
,

= TKu−
∑
n

log (Ku(wn)) ,

= TKu−N log (Ku(wn)) , (6)

=: Dhom(N ;Ku).

We made use of the Markov property of a Poisson process, the given cdf of
Proposition 8.2 and a variant of the cdf with zero events between the last
occurrence time and the preset time T . In the last step the assumption of
constant intensity was used.

For the one-dimensional (temporal u ∈ L1(R)) inhomogeneous problem the
steps are fairly similar, but we start with any non-negative function Ku as
the Poisson intensity. Thus computing Λ(a, b) explicitly is not possible and
the major difference, because the integral becomes part of the problem. As-
sumptions for the random variables and notation are still the same. We also
use Proposition 8.2 and a variation with zero events up to the end of the
time interval.

Poisson (n; Λ(0, T )) := e−Λ(0,T ) (Λ(0, T ))n

n!
. (7)
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The expression for the data-term in (4) then reads,

− log(p({wn}n|u)) = − log

(∏
n

p (wn|Wn−1 = wn−1, u) p (T |WN = wN , u)

)
,

= − log

(∏
n

Ku(wn)e−Λ(wn−1,wn)e−Λ(wN ,T )

)
,

= Λ(0, T )−
∑
n

log (Ku(wn)) ,

=

∫ T

0
Ku− f(t)Kudt, (8)

=: Dnhom({wn}n;Ku).

Here f(t) =
∑

n δ(t− wn), where δ(·) is the Dirac-delta function.

It is obvious that (6) results from (8), if Ku is taken constant in (8). That
will also be assumed in the multi-dimensional case in the next subsection.

2.2 Continuous Data-term ND

The one dimensional problem can easily be extended to a multi-dimensional
problem, e.g. 2D-space and 1D-time, but is to involved for this work. We
will only deal with multiple one-dimensional problems as representation of a
multi-dimensional problem, which will be derived in subsection 2.3. There-
fore precise derivation as done in the previous subsection is not done here.
We refer to [25, p. 87] for the derivation of the multi-dimensional ML expres-
sion, which is changed in MAP expression. The multi-dimensional NHPP
data-term for the variational problem (4),

DKL (f |Ku) :=

∫
Ω

∫ T

0
Ku− f(x, t) log(Ku) dtdx. (9)

Here f(x, t) =
∑N

n=1 δ(x − xn, t − wn), with N =
∑

kNk. Both are an
impulse train and just for the occasion xn is defined as the spatial location
and wn the occurrence time of the n-th event.
If Ku is homogeneous, then the HPP data-term for the variational problem
(4) that results from (9), is given by,

Dhom (N |Ku) := T |Ω| Ku−N log(Ku) dtdx. (10)

With N the total number of events that occurred up to time T in space Ω.
Whereas |Ω| is the multi-dimensional ‘size’ of the space, e.g area in 2D and
volume in 3D.
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2.3 B-splines

A simplification that is done to easily use B-splines is to consider the spatial
and temporal dimensions to be multiplicative, as is usual in the entire cur-
rent literature [18] and will be used throughout this work to discretise the
continuous expression from subsection 2.1 and subsection 2.2. So first we
define the one-dimensional B-spline, which is short for basic splines. We do
not cover definitions for multi-dimensional B-splines, but these are usually
product of multiple one-dimensional B-splines and we assume that too.

Definition 1 ( [5, p. 89] ). A B-splines basis function of degree p or order
p+ 1,

Bi,0(t) :=

{
1, if ti ≤ t < ti+1,

0, otherwise.
,

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t
ti+p+1 − ti+1

Bi+1,p−1(t).

These basis function have some common properties.

1. The Bi,p, form a partition of unity, hence
∑

iBi,p = 1.

2. The Bi,p(t) > 0 in the interior interval (ti, ti+p+1) and zero outside
this interval. Furthermore a particular given ti = ti+p+1 ⇒ Bi,p = 0.
(Support and positivity).

As seen B-splines are built with so called knots, ti. Knots describe in-
terval endpoints, but also multiplicity of such endpoints by repeating such a
point. The interval endpoints are not necessarily uniform, e.g. |ti − ti+1| =
a, a ∈ R,∀i. We make a clear distinction between knots with simple multi-
plicity and those with a higher multiplicity. Knots with simple multiplicity
are considered unique and called breakpoints.

We use uniform spaced breakpoints {b1, b2, . . . , bI+1}, with the begin and
end breakpoint repeated in the knot vector. I is the total number of inter-
vals in the interval [b1, bI+1] These are repeated as many times, such that the
curve has free endpoints. The number of repetitions depend on the degree
of the B-splines. Without free endpoints, the freedom of fitting the solution
to data is restricted, which is undesired.

A generic knot vector for a B-spline of degree p (or order p + 1) with
free end-points has multiplicity p + 1 for the begin and end breakpoint.
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Such a knot vector is {t1, t2, . . . , tI+1+2p}, with t1 = . . . = t1+p = b1 and
tI+1+p = . . . = tI+1+2p = bI+1. This vector is used to build the B-splines of
degree p, see Definition 1.

Since B-splines are just polynomial functions a closed form of the integral
of a B-spline exists. This definition will be used in a later section.

Definition 2 ([6] and [5, p. 127]).∫ t

t1

n∑
i=1

φiBi,p(x) dx =
s−1∑
i=1

 i∑
j=1

φi(ti+p+1 − ti)/(p+ 1)

Bi,p+1(t),

here t1 ≤ t ≤ ts and s ≥ 2. Note that the same knot sequence is used in the
case of degree p as in the case of degree p+ 1, this is important for getting
the right area values. Furthermore t1 means the left end of the first interval,
since it is implied that we use B-splines with variable ends.

So we first define the one-dimensional representation for u,

u(t) =

I+p∑
i=1

θiBi,p(t). (11)

The multi-dimensional û(x, t) is discretised with help of the separability of
space-time in the following manner,

û(x, t) = ũ(x)u(t),

reuse (11),

=

(
K∑
k=1

φkBk,0(x)

)(
I+p∑
i=1

ϕiBi,p(t)

)
.

=
∑
k,i

θk,iBk,0(x)Bi,p(t). (12)

Here θk,i represent the product between ϕi and φk. Bk,0(x) is the multi-
dimensional B-spline of degree 0 and as mention above Definition 1 this
represents a product of multiple one-dimensional B-splines.

Inserting (12) into (9) and only computing the spatial integral yields,

DKL (f ;Ku) =
∑
k

(∫ T

0
Kku− fk(t) log(Kku) dt

)
. (13)
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here Kk is a temporal functional resulting from integrating the block con-
stant spatial B-splines. It should be straightforward that this is solving k
one-dimensional problems like (8). With this reduction all multi-dimensional
problems can be tackled, if computers can handle it. The choice for such
simple B-splines in space, is that we deal with detectors that partition a
region in space. That is a physical limitation, hence higher order spatial
B-splines don’t make a lot of sense. Especially, since we use synthetic data.
Note that in the case I = 1 and p = 0 for (12) and inserted into (9), then
(13) is equivalent to a discretised form of (10) or multiple (6).

We first continue with describing regularisation methods in the next subsec-
tion. After that we come back to (12) and (13) to make a system of equation
such that we are able to minimize the variational problem.

2.4 Regularisation Methods

The description for the variation problem (4) has an extra term besides the
data-term D(·), that is the regularisation term R(u). This penalizes solu-
tions for u, which means that the solution space for u becomes smaller. If
the right property is penalized this can give a u with desired properties,
but R(u) has to be chosen in such a way that the problem is still convex or
well-posed. We see every chosen R(u) term as a different method.

The simplest method is when there is no R(u). Adding the term f log(f)−f
to (9) in the data-terms integral, gives the the Kullback-Leibler functional
(14).

DKL (f ;Ku) =

∫ T

0
f log

(
f

Ku

)
− f +Ku dt, (14)

which is convex, see [3, p. 121] and [19]. Note that the convention 0 log(0) =
0 is used. Here f is considered the truth and Ku the approximation. An
intuitive explanation is the amount of information lost when Ku is used to
approximate f .

It is valid to add the extra term since (9) is minimised for u and not f ,
so it only adds constants to the problem. This is actually a generalization
of the Kullback-Leibler entropy, which is a Bregman distance (divergence)
with respect to the Boltzmann entropy, see [3].

We discuss two more regulariser, the first one is a simple temporal derivative
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and the second one is the temporal second derivative. All three problems in
a column, with a tag.

arg min
u

DKL(f ;Ku) + chi{u≥0}. (15)

arg min
u

DKL(f ;Ku) +
α

2
‖∂tu‖22 + χ{u≥0}. (16)

arg min
u

DKL(f ;Ku) +
α

2

∥∥∂2
t u
∥∥2

2
+ χ{u≥0}. (17)

here +χ{u≥0} is the characteristic function and the non-negativity constraint
for u.

χB(x) :=

{
0, x ∈ B,
∞, /∈ B.

.

The regularisation in (16) enforces C1-continuity and (17) the C2-continuity
also referred to as the curvature of a function. It is common, [13, 26], to
use the curvature as regularisation term, hence the reason we use it. In the
upcoming section the methods will be fully vectorized.

3 Numerics

We continue with the semi-discrete formulation of our data-term (13). There-
fore the operator K from (3) has implicitly been simplified and we continue
to assume Kk being constant. This means that K becomes a discretised
spatial linear operator.

The assumption of Kk is done, because we are not sure if the formula for the
integral Definition 2 is still valid. It is more efficient to use this formula to
compute an exact value for the integral, then to approximate it. Efficiently
in the sense of memory, but also implementation plays a huge role. We have
not investigated possible extension for Definition 2.

Since K is now only a spatial operator, Kk is a constant and the tempo-
ral operator is the identity operator. Effectively that means our temporal
problem is the simplest class of reconstruction, namely denoising. And so
for the one-dimensional problem we will be only denoising. To keep it gen-
eral we build the discrete form of the problem for the multiple dimensions.
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We also start by using integration of (13) over the temporal B-splines.

DKL (f ;Ku) =
∑
k

(∫ T

0
Kku− fk(t) log(Kku) dt

)
,

=
∑
k

(
Kk
∫ T

0
udt−

∑
n

log(Kku(wkn))

)
,

now insert (11) and use Definition 2,

=
∑
k

(
Kk
∫ T

0

I+p∑
i=1

φiBi,p(t) dt−
∑
n

log

(
Kk

I+p∑
i=1

φiBi,p(w
k
n)

))
,

=
∑
k

(∫ T

0

I+p∑
i=1

θk,iBi,p(t) dt

)
−
∑
k,n

log

(
I+p∑
i=1

θk,iBi,p(w
k
n)

)
.

(18)

In the last line θk,i = Kkφi and relates to the θ in (12). Both terms can be
put in matrix-vector products, we first show this for the right-most term.
We start with an one-dimensional example, e.g. K = 1.

∑
1,n

log

(
I+p∑
i=1

θ1,iBi,p(w
1
n)

)

=
∑
1,n

log


B1,p(w1) B2,p(w1) · · · BI+p,p(w1)
B1,p(w2) B2,p(w2) · · · BI+p,p(w2)

...
...

...
B1,p(wN ) B2,p(wN ) · · · BI+p,p(wN )




θ1,1

θ1,2
...

θ1,I+p

 ,

=
∑

log (B1,pθ1,p) . (19)

In the last line the 1 means that we chose K = 1 as example. Note that the
log is element-wise.
Now to go from one to more k terms is somewhat involved, because we
kept to the convention of MATLABs column-major. Since we use a lot of
MATLAB build-in functions this was a logical step, to reduce work on the
code. We start with describing the solution vector θp,

θp :=
(
θ1,1 θ2,1 . . . θK,1 θK,2 . . . θK,2 . . . θ1,I+p . . . θK,I+p.

)′

17



Here the accent, ′, denotes the transpose of the vector. Next up is the spatial
transformation matrix K. A temporal slice θI+p from θp transformed by this
K is written,

θ̃I+p = K
(
θ1,I+p θ2,I+p . . . θK,I+p

)′
.

If we furthermore define Di,p = diag (Bi,p(w1), Bi,p(w2), . . . , Bi,p(wN )), then
the right-most term from (19) can be written as,

∑
k,n

log

(
I+p∑
i=1

θk,iBi,p(w
1
n)

)

=
∑
k,n

log


D1,p

D2,p

. . .

DI+p,p



K 0 · · · 0

0 K . . .
...

...
. . .

. . . 0
0 · · · 0 K

θp,

=
∑

log(BpKθp). (20)

This can be written in different ways, but since not all basis functions will
have non-negative values, implementation-wise this is the most optimal for
now. All these steps can also be done with the left-most terms in (19) and
results in,

∑
k

(∫ T

0

I+p∑
i=1

θk,iBi,p(t) dt

)
= BpKθp.

Here Bp is the operator computing the integral. Together with (20) this
results in the matrix-vector minimisation problem,

arg min
θp

BpKθp −
∑

log(BpKθp) + αR(Kθp). (21)

It is necessary to define an approximation for the first and second derivative,
due to (16) and (17). The numerical derivatives,

∂t+uk :=

{
uk,i+1−uk,i)m

h , if 1 ≤ i < I + p,

0, if i = I + p.

∂2
t uk :=

{
uk,i+2−2uk,i+1)m+uk,i

h2
, if 1 ≤ i < I + p− 1,

0, if i => I + p− 1.
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Now we define matrix D1 as the counterpart ∂t+ and D2 for ∂2
t . Note

that we have to compute our basisfunctions on multiple spots to us that as
approximation for the derivative. We do this for a high number of spots,
this number is fixed. Finally we can describe the methods (15), (16) and
(17) in matrix-vector product that will be minimised with the primal-dual
algorithm, see [4]. We use a customized toolbox Flexbox [8].

arg min
θp

BpKθp −
∑

log(BpKθp) + χ{θp≥0}. (KL)

arg min
θp

BpKθp −
∑

log(BpKθp) +
α

2

∑∥∥D1θp
∥∥2

2
+ χ{θp≥0}. (KLL2)

arg min
θp

BpKθp −
∑

log(BpKθp) +
α

2

∑∥∥D2θp
∥∥2

2
+ χ{θp≥0}. (KLL2nd)

Notice that I, p, α and R(u) are all free to pick, giving extra freedom. Would
it be a non-uniform B-spline, then not only the length of that knot vector
would matter, but the placing of the knots as well. Making it even more
complex, which is a whole separate optimisation task and problem to solve.
Note that the options for R(u) are also abundant.

4 Results and Discussion

We start with the easiest function as source, a constant function. This is
done as first step as a benchmark, then we investigate the shifted piecewise
constant function to simulate the motion with a gap, see Figure 2. The
approach to our goals is to look at the number of intervals in relation to the
number of events that were registered in the experiment.

4.1 Constant Function

Every reconstruction in Figure 3 was done with a different number of inter-
vals, but a fixed number of data points. No regularisation was used, hence
λ = 0. The behaviour seen in Figure 3 is as expected for the constant
function. The best approximation of the truth constant function is with a
constant function, since a B-spline with p = 0 (degree) and I = 1 (interval).
The higher orders look like their boundary basis function, which is not very
surprising either.
Increasing the number of intervals, i.e. taking smaller steps, for the approx-
imation u to a continuous function would make the approximation more ac-
curate. However, in minimisation problems the (discrete) data is the truth
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(d)

Figure 3: One realisation of minimising the data-term (KL) with different
number of intervals/bins: (a) 1, (b) 10 (c) 50 and (d) 100. Every figure has
a B-spline order 1 up to 6. The blue points indicate the location of a data
points (63 data-points). The black line is the true intensity with expected
number of 50.
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that has to be fitted.
If the data is sparse enough or the number of intervals is high enough
this means our u can approximate this sparsity with Dirac-delta-like peaks.
While this is undesired, it is a good approximation of the data in the min-
imisation problem, see Figure 3d. Because of the B-spline representation, u
has this freedom. That makes the freedom a weakness for a reconstruction
u, depending on the number of intervals.

Apparent from Figure 3 is that a higher number of intervals cause oscil-
lations, or rather the intervals without (many) events. This suggest a rela-
tionship between the number of events and the number of intervals. Also
Furthermore, it is observable in Figure 3a and Figure 3b that the functions
of the fourth-order and higher have very similar shapes. That implies that
taking a order higher then four for splines is not necessary, because there is
almost no distinction.

Very noticeable in Figure 3b is that the mean value of the intensity function
is equal to the number of count divided by the time. We did a check for this
figure and all intensities have the same behaviour. This is not very surpris-
ing, since we only solve the data-term from, (21), derived from a Poisson
distribution. Or to put it differently the expected value (mean) is equal to
the parameter Λ(0, T ) = βT , a homogeneous intensity due to the mean value
theorem. It does have something to do with the next figure. Figure 4 shows
the relative L1-norm between the reconstruction and the truth, with num-
ber of events vs. number of intervals. The data in Figure 4 looks to suggest
that the number 104 mentioned in subsection 1.4 is the number of counts
per detector. In [17] there is mentioning of 104, because with 104 counts,
the relative Poisson variation is less then 0.1%. But these are results from
a constant function in time that means, those values are nice, on average.
With the results from Figure 4 and those references we think the low SNR is
somewhere between 0 and 104. Moreover, it is quite clear, at least for a con-
stant function, the more events the better and how fewer intervals the better.

Now some a summary of number of event vs. number of interval for the
method (KLL2) in The subfigers look very similar for the λ-values that we
tried, between 10 and 500. The figure results suggest that 104 limit observed
in Figure 4 has shifted here. Again it is obvious from the figures that more
intervals give worse results. We plotted some instances from the results in
Figure 5, on the upper row of Figure 6. The reconstruction are not only
peaks, but it is also visible that more intervals doesn’t do much, it makes
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Figure 4: Relative L1-error figures, with the constant functions as reference.
In (a) the vertical dashed lines are the realized number of events and in (d)
the dashed lines represent the actual used number of intervals. In the legend
with two separate numeric values, the left value is the analytical expected
number and the right value the realized number of events.
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Figure 5: Top row (KLL2) and bottom row (17).
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the intensity look more jagged, but the overall shape is the same. It is also
visible that there are zero-trapped intervals, meaning that too many inter-
vals next to each other are zero. Although, we have a solution that is more
smooth, it is still noisy (over time, e.g. a flickering film screen). To put it
differently C1-continuity is not enough to make this signal less noisy.

The bottom row in Figure 6 contains the solutions from (16), which has
the C2-continuity constraint and e result look already much more smooth,
even the zero-trapped intensities. It is notable that even though there is
more then one interval, but the order 1 reconstruction looks like it has only
one interval. This is due to the C2-continuity constraint. Furthermore, the
mean value of the intensity function is not equal to the number of event di-
vided by the time, because of regularisation. The snapshots at the bottom
row of Figure 5 correspond with the aggregated information in Figure 7.
The left column shows the same kind of structure as in Figure 5, but then
zoomed in

4.2 Piecewise Function

The shifted functions shows that the B-splines of higher order are actually
really good at capturing shifting peaks. Their suitability to these kind of
functions is observable in for example Figure 4. In overview Figure 9, where
Figure 8 is part of, one can clearly see that the number of intervals must
be low for a small error. Another notable result is Figure 9a, since it has
a sawtooth error or is somewhat constant. This sawtooth shape could due
to the Nyquist frequency. the function is shifted with 2.5 temporal stepsize
and the number of intervals is of length 5. The constant errors are due to
this function’s analytical expected value to be constant for every gap size.

5 Conclusion

In this paper we discussed dynamic objects and the problem of capturing
these with ECT. We modelled this as a one-dimensional problem by looking
at a gap between two peaks in time. We believe that a better understanding
of the one-dimensional problem, for example with a low number of counts
can improve the reconstruction dynamic objects in ECT. To solve the min-
imisation problem we used the of Poisson processes to derive a variational
problem. This was solved with an extended primal-dual toolbox Flexbox.

It is now clear for me what low SNR is and that extremely low SNR in
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Figure 6: Relative L1-error figures, with the constant functions as reference.
In (a) the vertical dashed lines are the realized number of events and in (c)
the dashed lines represent the actual used number of intervals. In the legend
with two separate numeric values, the left value is the analytical expected
number and the right value the realized number of events.
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Figure 7: Relative L1-error figures, with the constant functions as reference.
In (a) the vertical dashed lines are the realized number of events and in (c)
the dashed lines represent the actual used number of intervals. In the legend
with two separate numeric values, the left value is the analytical expected
number and the right value the realized number of events.
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Figure 8: Shifted functions
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Figure 9: Relative L1-error figures, with the constant functions as reference.
In (a) the vertical dashed lines are the realized number of events and in (c)
the dashed lines represent the actual used number of intervals. In the legend
with two separate numeric values, the left value is the analytical expected
number and the right value the realized number of events.
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the region [0, 103 lies. Furthermore, I could not find any indication of a
good ratio between the number of counts and the number of intervals. The
best rule is, few intervals (less then 50, with a timespan of 50) and as much
counts as possible. The best direction would be non-uniform B-splines al-
though, the placement of knots is a problematic case as well.

6 Appendix

6.1 Specific Mathematics

Definition 3 ([3, p. 33]). (Image). Let Ω ⊂ Rd, d ∈ N be an image domain.
A function u : Ω → R is called a d-dimensional image if the following
conditions are fulfilled,

1. u has a compact support, if Ω is not bounded.

2. 0 ≤ u(x) <∞, ∀x ∈ Ω.

3.
∫

Ω u(x) dx ≤ ∞.

This is easily extended for multiple channels (e.g. colour images).

Definition 4 ([3, p. 33]). (Image sequence, video). Let ΩT = Ω × [0, T ]
be a space-time cylinder. A function u : ΩT → R is called a d-dimensional
image sequence if it is a d-dimensional image for every fixed t ∈ [0, T ] and
T > 0.

Definition 5 ([21, p. 312]). A stochastic process {Nt, t ≥ 0} is said to be a
counting process if Nt represents the total number of ‘events’ that occur by
time t and satisfies the properties:

1. Nt ≥ 0.

2. Nt ∈ N.

3. If s < t, then Ns ≤ Nt.

4. For s < t, Nt − Ns equals the number of events that occurred in the
interval (s, t],

Definition 6 ([21, p. 313]). The counting process {Nt, t ≥ 0} is said to be
a homogeneous Poisson process having rate λ, λ > 0, if

1. N0 = 0.

2. The process has independent increments.

29



3. The number of events in any interval of length t is Poisson distributed
with mean λt. That is, for all s, t ≥ 0

P ({Nt+s −Ns = n}) = e−λt
(λt)n

n!
, n = 0, 1, . . .

Note that it follows from the last condition that a Poisson process has sta-
tionary increments and also that E [Nt] = λt.

Definition 7 ([21, p. 314]). The counting process {Nt, t ≥ 0} is said to be
a homogeneous Poisson process having rate λ > 0, if

1. N0 = 0.

2. The process has stationary and independent increments.

3. P ({Nh = 1}) = λh+ o(h).

4. P ({Nh ≥ 2}) = o(h).

With function f(·) is said to be o(h) if: limh→0 f(h)/h = 0.

Proposition 7.1 ([21, p. 317]). Tn, n = 1, 2, . . ., the interarrival time be-
tween the (n− 1)-st and n-th event, are independent identically distributed
exponential random variables having mean 1/λ.
It follows that Sn =

∑n
i Ti, the waiting time until the n-th event, has a

gamma distribution with parameters n and λ,

pSn(t) = λe−λt
(λt)n−1

(n− 1)!
, t ≥ 0.

Definition 8 ([21, p. 339]). The counting process {Nt, t ≥ 0} is said to be
a nonhomogeneous Poisson process (NHPP)5 with intensity function λ(t),
t ≥ 0, if

1. N0 = 0.

2. {Nt, t ≥ 0} has independent increments.

3. P ({Nt+h −Nt = 1}) = λ(t)h+ o(h).

4. P ({Nt+h −Nt ≥ 2}) = o(h).

More specifically if Λ(a, b) =
∫ b
a λ(t) dt, then

{Nt+s −Nt = n} ∼ Poisson (n; Λ(t, t+ s)) . (22)

5Also referred to as inhomogeneous or non-stationary in literature.
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Proposition 8.1 ([21, p. 342]). Let {Nt, t ≥ 0} and {Mt, t ≥ 0}, be inde-
pendent NHPP, with respective intensity functions λ(t) and µ(t), and let
N∗t = Nt +Mt. Then, the following statements are true.

1. {N∗t , t ≥ 0} is a NHPP with intensity function λ(t) + µ(t).

2. Given that an event of the {N∗t } process occurs at time t then, inde-
pendent of what occurred prior to t, the event at t was from the {Nt}
process with probability λ(t)

λ(t)+µ(t) .

Proposition 8.2. For a NHPP with rate λ(t) > 0, the conditional density
function (cdf) of next event’s occurrence time wn+1, with knowledge of the
past event’s occurrence time wn, is p(t|Wn = wn) = λ(t) exp (−Λ(wn, t)).

Proof. We first define the interarrival times Tn+1 = Wn+1 − Wn for n =
0, 1, . . . here W0 = 0.

P (Wn+1 ≤ t|Wn = wn) = P (Tn+1 < x|Wn = wn) ,

= P ({Nwn+x −Nwn ≥ 1} |Wn = wn) ,

= 1− P ({Nwn+x −Nwn = 0}) , use (22)

= 1− exp

(
−
∫ t

wn

λτ dτ

)
. (23)

Taking the derivative with respect to t gives the conditional probability
density function.

Theorem 1 ([1]). Let N be a NHPP, suppose Λ(0, t) is continuous, and
define

Mt(ω) = Nτ(t)(ω)

with τ(t) := inf {s : Λ(0, s) > t} for all t ≥ 0 and ω ∈ Ω. Then M =
{Mt; t ≥ 0} is a homogeneous Poisson process with rate 1.
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