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Abstract To improve our understanding of transient long-
term plan view dynamics of tidal sandbanks, we have de-
veloped a nonlinear idealized morphodynamic model. Cur-
rent mechanisms describe how an isolated bank breaks into
multiple banks, but they lack process-based support. We aim
to provide such support with the inclusion of nonlinear in-
teractions between tidal flow, topography, Coriolis and bot-
tom friction in the hydrodynamic formulation and depth-
dependent wind wave stirring and slope effects in the bed-
load sediment transport formulation.

We distinguish three generic evolution paths. (I) Rota-
tion of the bank ends towards the preferred angle of deposi-
tion and separate growth, causing bank-breaking. (II) Rota-
tion of the bank ends towards the preferred angle of deposi-
tion and central growth, triggering an S-shape. (III) Straight
outline and central growth, triggering an S-shape, but much
faster than path II. In addition to the path-dependent dynam-
ics, the banks also experience pattern expansion, elongation
and amplitude growth.

Bank-breaking (path I) requires two condition. The ini-
tial bank may not have an orientation in the angle of pre-
ferred deposition and must be sufficiently long to trigger
separate growth. Alternatively, the nonlinear flow response
to an elevated centre triggers evolution towards an S-shape.
The proposed paths are consistent with mechanisms in Huth-
nance (1982b) and Smith (1988). The characteristic final S-
shape shows resemblance to meandering banks in the North
Sea.
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1 Introduction

Offshore tidal sandbanks occur in patches throughout shal-
low shelf seas, such as the North Sea. With lengths in the
order of tens of kilometres, widths of five to ten kilome-
tres and heights of tens of metres, they are the largest in
the class of tide-driven rhythmic bottom features (Dyer and
Huntley 1999). Additionally, sandbanks generally have an
orientation of 0 to 20 degrees anticlockwise with respect
to the principal tidal current on the Northern Hemisphere
(Kenyon et al 1981) and migrate with a speed of around 1
m/year (Knaapen 2005). Their slow evolution, typically on
a time scale of centuries, makes it unclear whether they are
in equilibrium (Dyer and Huntley 1999).

Understanding the dynamics of tidal sandbanks is of both
scientific and practical interest. They provide an attractive
option for the extraction of aggregates (Van Lancker et al
2010), a habitat for marine flora an fauna (Kaiser et al 2004;
Atalah et al 2012), a foundation for wind farms (Whitehouse
et al 2011; Fairley et al 2016) and those closer to the coast
serve as coastal protection (Dolphin et al 2007). This wide
range of interests emphasizes the relevance to understand
the natural dynamics as well as the response to human inter-
ventions. This paper focusses on the former, i.e. the inherent
behaviour.

To gain insight into the bank-building mechanisms, many
banks have been investigated. For example, Caston and Stride
(1970) used sandwave observations to derive residual circu-
lating currents around the Norfolk banks, indicating a link
between currents and topography. The interactions between
tides and topography were investigated by Huthnance (1982a,b),
De Vriend (1990) and Hulscher et al (1993), who explained
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Fig. 1 Breaking mechanism as proposed by Caston (1972): (a) Linear sand body parallel to the direction of the tidal currents, (b) slight “kink”
present, possibly due to unequal rate of transport, (c) evolution towards a double curve, (d) the double curve becomes an incipient pair of ebb
and flood channels, (e) the channels lengthen, resulting in “blow outs” in the bank, (f) the bank breaks into three parts. The arrows represent the
principal tidal flow lines.

Fig. 2 Breaking mechanism proposed by Smith (1988): (a) asymmetric sandbank, which is aligned slightly oblique to the tidal currents, has a
small kink and sandwaves on top, (b) the sand carried in from both sides of the banks is incorporated in the sand waves at both sides of the kink,
which results in a topographic low at the kink, (c) the topographic low becomes a trough, (d) the sand wave fields at both ends drift apart apart,
resulting in a passageway, and (e) a characteristic head and tail, when the banks have broken. The arrows represent the principal tidal flow lines.

sandbanks as free instabilities of a sandy seabed subject to
tidal flow. Roos et al (2008) showed how the formation pro-
cess can be triggered by a local topographic disturbance,
such as a sand extraction pit. This was all done with lin-
ear analyses of idealised process-based models. These are
however restricted to the initial stage of bank formation.

Idealised models have been extended to finite-amplitude
behaviour by Huthnance (1982a) and Roos et al (2004). Both
obtained equilibrium profiles for tidal sandbanks, but under
the restriction of parallel depth contours. In an extended ver-
sion of his linear stability model, Huthnance (1982b) dropped
this restriction and managed to find two-dimensional equi-
librium profiles. However, he used simplified flow condi-
tions (block flow, omitting inertial terms and negligence of
Coriolis force) and restrictive sediment availability.

Via a complex numerical hydrodynamic model, Sanay
et al (2007) reproduced flow circulations around the Nor-
folk bank. Similar results were obtained at many other North
Sea locations, e.g. Middelkerke Banks (Williams et al 2000;

Pan et al 2007), Hinder Banks (Deleu et al 2004), Great
Yarmouth Banks (Horrillo-Caraballo and Reeve 2008) and
Kwinte Bank (Brière et al 2010; Van den Eynde et al 2010).
Coupled with a morphodynamic module, the numerical mod-
els showed how the resulting sediment transport contributes
to the stability of the banks. However, it proved to be hard to
identify the processes relevant on the time scale of centuries
on which sandbanks evolve.

Due to the restrictions of both idealised and complex nu-
merical modelling, research into long-term plan view mor-
phodynamics is limited to two descriptive hypotheses and
one model result. Caston (1972) suggested that an isolated
bank will break into three separate banks, based on his ob-
servations of the Norfolk banks (Fig. 1). Smith (1988) pro-
posed a different breaking mechanism, based on his obser-
vations of the Hinder banks, where an isolated bank breaks
into two separate banks (Fig. 2). This mechanism is sup-
ported by analysis from Deleu et al (2004). However, both
hypotheses yet lack process-based support.
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Fig. 3 Schematization of the formulated domain. It is square with
length Ldom and periodic boundaries. A sandbank is put on an oth-
erwise flat bed. Its initial topography h(x,y) is characterized by bank
length Lbank, bank width Bbank, bank height hbank and the angle be-
tween the the major bank axis and principal tidal flow (here along the
x-axis) θbank. Finally, ζ (x,y) denotes the surface water level.

In his aforementioned extended linear stability model,
Huthnance (1982b) aimed to provide such process-based sup-
port. He observes bank elongation, evolution towards an S-
shape and rotation towards the angle of preferred deposition
in the finite-amplitude regime. Although many interesting
bank patterns are shown, a systematic analysis of the driv-
ing physics is absent and the simplifications should be kept
in mind.

The present study aims to provide systematic process-
based support for long-term morphological behaviour of tidal
sandbanks. To this end, we develop an idealised model, which
includes the essential processes, nonlinear dynamics and a
topography that varies in both horizontal directions. This
model will be used to study the long-term behaviour of iso-
lated sandbanks subject to tidal flow. We focus on transient
behaviour, such as the conditions for bank-breaking to oc-
cur, and do not aim to obtain equilibrium bank configura-
tions. Furthermore, we will systematically vary the initial
topography of the bank to investigate its effect on the long-
term evolution.

The outline of this paper is as follows: first, the model
formulation is introduced in section 2. Next, the solution
procedure is presented in section 3, followed by the results
in section 4 and the discussion in section 5. Finally, conclu-
sions are drawn in section 6.

2 Model formulation

2.1 Geometry

Consider an offshore region of a shallow shelf sea, far away
from coastal boundaries. Here, influences of a coastline and
shelf slope are neglected. The mean water depth H∗ is in
the order of 20 - 30 m, with an asterisk denoting an un-
scaled variable. The model consists of a squared domain
with spatially periodic boundaries (Fig. 3). On the domain,

tidal sandbanks are described by a spatiotemporally varying
bed level z∗ =−h∗(x∗,y∗, t∗).

2.2 Model equations

The model is kept as simple as possible, while still retaining
the essential physics. In line with earlier studies, we adopt
depth-averaged flow (e.g. Huthnance 1982a,b; Hulscher et al
1993; Roos et al 2008). Tidal flow velocity (u∗,v∗) is char-
acterized by a dominating semidiurnal lunar component (M2
with angular frequency σ∗ = 1.405× 10−4 rad/s) with a
maximum flow velocity U∗, typically 0.5− 1.0 m/s. Fur-
thermore, bed friction and the Coriolis effect are included to
capture the mechanism of tidal rectification (e.g. Pattiaratchi
and Collins 1987). Conservation of momentum and mass
is expressed by the nonlinear depth-averaged shallow water
equations, which take the following form:

∂u∗

∂ t∗
+u∗

∂u∗

∂x∗
+v∗

∂u∗

∂y∗
− f ∗v∗+

r∗u∗

h∗+ζ ∗
=−F∗−g∗

∂ζ ∗

∂x∗
, (1)

∂v∗

∂ t∗
+u∗

∂v∗

∂x∗
+v∗

∂v∗

∂y∗
+ f ∗u∗+

r∗v∗

h∗+ζ ∗
=−G∗−g∗

∂ζ ∗

∂y∗
, (2)

∂h∗+ζ ∗

∂ t∗
+

∂ (h∗+ζ ∗)u∗

∂x∗
+

∂ (h∗+ζ ∗)v∗

∂y∗
= 0 . (3)

Here, f ∗= 2Ω ∗sinϕ denotes the Coriolis parameter (with
the angular frequency of the Earth’s rotation Ω ∗ = 7.292×
10−5 rad/s and latitude ϕ). Following Lorentz’ linearisation,
r∗ = 8

3π
cdU∗ denotes the linear friction coefficient (with di-

mensionless drag coefficient cd). This is widely employed
in model studies of large-scale seabed dynamics to retain
the by the flow experienced bottom friction over a tidal cy-
cle (e.g. Zimmerman 1982; Huthnance 1982a,b; Roos and
Hulscher 2003). Furthermore, g∗ = 9.81 m/s2 is the gravi-
tational acceleration and (F∗,G∗) are spatially uniform yet
time-dependent forcing terms. They will be specified in sec-
tion 2.4.

Considering sediment transport, the model is restricted
to bed load transport only. This mode drives bank growth
and has been proven to establish equilibria in a model envi-
ronment (Roos and Hulscher 2004). The essential properties
to be included are: 1. a higher order (larger than 1) power
dependency of sediment transport on flow velocity; 2. a bed
slope effect; 3. depth-dependent sediment stirring by wind
waves. Following earlier studies (e.g. Hulscher et al 1993),
a third order power law is adopted. Additionally, wind wave
velocities (u∗w,v

∗
w) with an amplitude Uw = 0.6 m/s drive sed-

iment stirring. They do not have a preferred direction and
storms are excluded. These properties result in the follow-
ing (wind wave-averaged) sediment transport formula:

#»q ∗ = α
∗
(
| #»u ∗|2 + 1

2
U∗2w

[ h∗

H∗

]−κ)
( #»u ∗+λ

∗ #»

∇
∗h∗) . (4)
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Here, #»q ∗=(q∗x ,q
∗
y) is the sediment transport flux in m2/s,

α∗ is a proportionality coefficient in s2/m (Van Rijn 1993)
and κ = 2 is a power to control the depth effects of wind
wave stirring. Furthermore, λ ∗ = λ̃ ∗U∗ is a bed slope coef-
ficient in m/s, which describes the preferred downhill move-
ment of the sediment (with λ̃ inversely proportional to the
angle of repose (Sekine and Parker 1992)). Moreover,

#»

∇∗ =
(∂/∂x∗,∂/∂y∗) is the (dimensional) horizontal nabla opera-
tor.

Finally, bed evolution is computed using the commonly
employed Exner’s equation, in which the bed evolution is a
function of the divergence of the sediment fluxes:

(1− εpor)
∂h∗

∂ t∗
=

# »

∇
∗ · #»q ∗ . (5)

Herein, εpor = 0.4 denotes the porosity of the seabed
(typically 0.4).

2.3 Scaling

We introduce dimensionless coordinates (without asterisk)
according to

(x,y) = (x∗,y∗)
L∗ , z = z∗

H∗ , t = σ∗t∗ , tmor =
t∗

T ∗mor
.

Herein, the tidal excursion length L∗ = U∗/σ∗ serves
as the horizontal length scale and the mean water depth H∗

serves as the vertical length scale. Two time scales are in-
troduced to distinguish between short-term (tidal cycle) and
long-term (scale of bed evolution) dynamics: a tidal time co-
ordinate t for the hydrodynamics and sediment fluxes, and
a slower morphological time coordinate tmor for bed evolu-
tion, with Tmor = (1− εpor)

H∗L∗

α∗U∗β
. This means that the bed

level is a function of tmor but not of t. Note that equation
(4) was already averaged over the shorter time scale of wind
waves.

Next, we introduce scaled quantities according to

(u,v) = (u∗,v∗)
U∗ , h = h∗

H∗ , ζ = g∗ζ ∗

U∗2 , (qx,qy) =
(q∗x ,q

∗
y)

α∗U∗β
.

In terms of the scaled coordinates and quantities, the hy-
drodynamic model equations (1)-(3) become:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y
− f v+

ru
h

=−F− ∂ζ

∂x
, (6)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+ f u+
rv
h

=−G− ∂ζ

∂y
, (7)

∂ (hu)
∂x

+
∂ (hv)

∂y
= 0 . (8)

Herein, we have introduced scaled Coriolis and friction
coefficients, f = f ∗

σ∗ respectively r = r∗
σ∗H∗ , and (F,G) =

(F∗,G∗)
U∗σ∗ represents the dimensionless forcing. Furthermore,

we apply the rigid lid assumption. This means that the con-
tribution of the free surface elevation to the mean water depth
is neglected, which is justified, because the squared Froude
Number Fr2 = U∗2

g∗H∗ ≈ 2×10−3 is negligible. It is also found

that the bed level change ∂h
∂ tmor

is negligible in the continu-
ity equation for tidal flow (Eq. 8), because 1/(σ∗T ∗mor) ≈
10−6. Hence, the hydrodynamic calculations can be decou-
pled from the sediment transport and the bed evolution, which
is commonly known as the quasi-stationary approach.

Next, the scaled equation for sediment transport becomes:

#»q =
(
| #»u |2 + 1

2
U2

wh−κ

)
( #»u +λ

#»

∇h) . (9)

Herein, Uw =
U∗w
U∗ and λ = λ ∗H∗

L∗U∗ . Finally, the scaled ver-
sion of Exner’s equation, i.e. Eq. (5) becomes:

∂h
∂ tmor

=
#»

∇ ·
〈

#»q
〉
. (10)

The brackets denote averaging over a tidal cycle:
〈
·
〉
=

1
2π

∫ 2π

0 · dt. Because of the quasi-stationary approach, only
the tidally averaged sediment flux effectively contributes to
the bed evolution.

2.4 Tidal forcing

The tidal forcing represents a spatially uniform yet time-
dependent pressure gradient, which is written as a truncated
Fourier series:

(F,G) =
2

∑
p=−2

(Fp,Gp)exp(ipσt) . (11)

Herein, p= 0 denotes the residual component of the tidal
flow, p = ±1 denotes the components of an M2-tide and
p = ±2 denotes the components of the first overtide (M4).
(Fp,Gp) are complex Fourier coefficients which relate to the
Fourier coefficients of tidal flow over a flat bed (U0p,V0p),
i.e. excluding the interaction with topography:

Fp =−(ip+
r

h0
)U0p + fV0p , (12)

Gp =−(ip+
r

h0
)V0p− fU0p . (13)

We have specified the tidal forcing terms such that they
fulfil equations (1) and (2). The complex Fourier coefficients
(U0p,V0p) include the magnitude γ0 and direction ϑ0 in case
of the residual flow (p = 0) or semi-major axis γp, ellipticy
εp, inclination ϑp and phase ψp for an M2- or M4-tide. The
relations can be found in appendix A.
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Fig. 4 Top view of the initial sandbank topography. We distinguish a
main part, with length Lbank, width Bbank and heightover the along-bank
axis hbank (not shown), and two bank ends, each with length Lend . The
main part is Gaussian-shaped over the cross-section and the bank ends
are in both horizontal directions. Hence, the bank contour is shown at
height 0.46×hbank. θbank denotes the bank orientation.

2.5 Initial topography

The initial topography in this study consists of a single iso-
lated Gaussian-shaped bank in the middle of the domain
(Fig. 3). We divide the bank in a main part, with length Lbank,
width Bbank and height hbank, and two bank ends, each with
length Lend (Fig. 4). The main part has a Gaussian-shaped
cross-section Abank such that Abank = Bbankhbank. The bank
ends have a 2D Gaussian shape such that Vtot =LtotBbankhbank.
Herein, Vtot is the total bank volume and Ltot = Lbank+2Lend
is the total bank length. We define Lend equal to 0.3Bbank in
order to retain the slope ratio between both horizontal direc-
tion in case of bank scaling. The whole bank rotated anti-
clockwise with respect to the principal tidal current accord-
ing to bank orientation θbank.

3 Solution procedure

3.1 Outline

The solution procedure consists of five steps (Fig. 5). First,
we will write the topography h(x,y) as the sum of a spa-
tially uniform h0 and a spatially non-uniform part h1 in sec-
tion 3.2. Both parts are connected via expansion parameter
ε . Secondly, vorticity η will be introduced in section 3.3 to
formulate the problem compactly. Thirdly, we introduce the
hydrodynamic solution vector φ = (η ,u,v,ζ ), which will be
expanded in powers of ε in section 3.4. Finally, the sediment
fluxes will be obtained directly via a bed load transport for-
mulation from the hydrodynamic solution and bed evolu-
tion will be computed via discrete fourth order Runge-Kutta
time-stepping of the tidally averaged sediment fluxes in sec-
tion 3.5. This will serve as input in the next time-step. Ad-
ditionally, we will present a model version with linearised
sediment transport in section 3.6. This is to be applied when
nonlinear hydrodynamic contributions are neglected.

𝜙 = 

𝑗=0

𝐽

𝜖𝑗𝜙𝑗

ℎ = ℎ0 + 𝜖ℎ1Topography

Hydrodynamics

Sediment transport

𝜂 ≡
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
Vorticity

Bed load     
transport

Bed evolution
4th order 

Runge-Kutta
time-stepping

§ 3.2

§ 3.3

§ 3.4

§ 3.5

§ 3.5

Fig. 5 Outline of the solution procedure in five steps: (1) the bed is for-
mulated as combination of the flat bed h0 and the perturbed bed εh1;
(2) vorticity η is introduced in the hydrodynamic problem; (3) the hy-
drodynamic solution φ is expanded in powers of ε . j and J are respec-
tively the order and the truncation number of the expansion; (4) sed-
iment transport is computed via a bed load transport formulation; (5)
the bed level is updated using fourth order Runge-Kutta time-stepping.
This is input for the next time step.

3.2 Perturbed topography

The topography h(x,y) is formulated as a composition of the
mean water depth h0 and the spatially dependent perturbed
water depth h1:

h = h0 + εh1 (14)

with ε being an expansion parameter equal to the am-
plitude of the most perturbed mode (h1max) in its truncated
Fourier series. This generally equals the bank amplitude.
The truncated Fourier series of h1 are written as:

h1(x,y) =
M

∑
m=−M

M

∑
n=−M

ĥ1mn(t)exp(i[kmx+ lny]) . (15)

Here, the wave numbers associated with domain size
(km, ln) = (m,n)kmin are introduced, in which kmin = 2π

Ldom
.

This formulation complies with the periodic boundaries. Fur-
thermore, M is the spatial truncation number.

3.3 Vorticity

Vorticity η is defined as
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η ≡ ∂v
∂x
− ∂u

∂y
. (16)

An evolution equation for this quantity is obtained by
cross-differentiation of the momentum equations (6)-(7) and
application of the continuity equation (8). This leads to

L η =

[
f
h

∂h
∂x
− r

h2
∂h
∂y

]
︸ ︷︷ ︸

R

u+
[

f
h

∂h
∂y

+
r

h2
∂h
∂x

]
︸ ︷︷ ︸

S

v (17)

with operator L = ∂

∂ t +u ∂

∂x +v ∂

∂y +
r
h . The vorticity on

the left-hand side experiences acceleration, advection and
dissipation due to bottom friction. It is produced on the right-
hand side by the Coriolis and frictionally induced tide-topography
interactions in x- and y-direction (denoted by Ru respec-
tively Sv).

3.4 Hydrodynamic solution

The hydrodynamic solution is expanded in powers of ε ac-
cording to

φ =
J

∑
j=0

ε
j
φ j = φ0 + εφ1 + ε

2
φ2 + . . .+ ε

J
φJ . (18)

Herein, j depicts the order of expansion. We distinguish
j = 0, j = 1 and j≥ 2, which represent respectively the con-
tributions of the basic flow, first order flow and higher order
flow solutions. The basic flow describes flow over a flat bed,
the first order flow the linear flow response to the bed and
the higher order flow the nonlinear flow response to the bed.
We terminate the hydrodynamic expansion either at a pre-
scribed order J or when the estimations of the functions S
and R (see section 3.3) deviate less than 10−5 from the exact
value.

It follows from the expansion that, at each order j, the
hydrodynamic problem in terms of vorticity is a linear prob-
lem forced by the lower order flow solutions. Hence, we start
by solving the basic flow and expand its solution towards
higher orders. Details of this expansion can be found in the
appendices. Appendix B covers the basic flow solution, ap-
pendix C covers the first order flow solution and appendix D
covers the higher order flow solutions.

3.5 Sediment transport and bed evolution

Once the hydrodynamic solution is known to a prescribed
order J, we will use the truncated flow velocity vector

Table 1 Overview of dimensions of the initial topography for sample
cases A and B and a range for the sensitivity analysis.

Bank dimension Symbol A B Range Unit

Bank height h∗bank 4 4 −4 - 12 m
Bank length L∗bank 20 10 10 - 40 km
Bank width B∗bank 2 2 1 - 4 km
Bank orientation θbank 0 42 0 - 360 deg

#»u = (u,v) =
J

∑
j=0

ε
j(u j,v j) (19)

as input for the sediment transport model in Eq. (9),
which yields #»q or, in Fourier space, #̂»q mn for each spatial
mode (m,n). Eq. (10) is applied to obtain an expression for
the bed evolution, which is based on the tidally averaged
sediment fluxes according to

∂ ĥ1mn

∂ tmor
= ikm

〈
q̂x,mn

〉
+ iln

〈
q̂y,mn

〉︸ ︷︷ ︸
B̂mn

. (20)

Herein, we have defined the tide-averaged bed evolution
function B, which is the morphodynamic response to input
topography h. The tidal averaging is carried out numerically
over Ntide equidistant time points in the tidal cycle. Mor-
phodynamic time-stepping is conducted via the fourth or-
der Runge-kutta method. Updating the bed topography ef-
fectively closes the morphodynamic loop.

3.6 Linear dynamics

In case J = 1, implying linear dynamics, we linearise the
sediment transport model (following e.g. Hulscher et al 1993):

#»q = (| #»u0|2 +
1
2

U2
wh−κ

0 )( #»u1 +λ
′ #»
∇h1)+

(2( #»u0 · #»u1))−
1
2

κ .U2
wh−κ−1

0 h1
#»u0 (21)

With respect to the bed evolution, we apply the property
that there is no interaction between the spatial modes and
combine this with Exner’s equation (10) to find a formu-
lation in which each mode grows or decays exponentially
according to

ĥ1mn(tmor) = ĥinit
1mn exp(ωmntmor) (22)

with complex growth rate ωmn =
#»

∇ ·〈 #»q1〉
ĥ1mn

.
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Table 2 Overview of physical parameters.

Parameter Symbol Value Unit

Mean water depth H∗ 25 m
Latitude ϕ 51 deg
Friction coef. cd 2.5×10−3 −
Sediment transport coef. α∗ 4×10−5 s2 m-1

Bed slope coef. λ̃ ∗ 2 −
Wave stirring parameter U∗w 0.6 m s-1

Wave stirring power κ 2 −
M0 M2 M4

Tidal flow (ampl.) γ∗tide 0 0.6 0 m s-1

Inclination ϑtide 0 0 0 deg
Eccentricity# εtide − 0 0 −
Phase ψtide − 0 0 deg
# Eccentricity is defined as the ratio of the semiminor and semimajor
axis of the tidal ellipse.

Table 3 Overview of numerical parameters.

Parameter Symbol Value Unit

Spatial truncation number M 128 −
Temporal truncation number P 5 −
Calculation points within tidal cycle Ntide 64 −
Domain length L∗dom 100 km
Morphodynamic time step ∆ tmor 0.01 −

4 Results

4.1 Overview of simulations

We present two sample cases that feature qualitatively dif-
ferent behaviour. The cases differ only in their initial topog-
raphy. All physical and numerical parameters are equal. Fur-
thermore, we will investigate the sensitivity of the plan view
evolution to a varying initial topography. The dimensions
and their range to be varied for the sensitivity analysis are
listed in Table 1. All runs are executed under North Sea con-
ditions. The physical parameters are listed in Table 2 and the
numerical settings are listed in Table 3.

4.2 Sample case A

Plan-view evolution The plan view evolution of a bank par-
allel to the principal tidal flow is investigated as sample case
A. This choice relates to the initial stage in Caston (1972)
[Fig. 1]. In the evolution according to our model, we distin-
guish four characteristic stages (Fig. 6a-d):

(a) The initial topography consists of a bank height of 4
m, bank length of 20 km, bank width of 2 km and an orien-
tation parallel to the principal tidal flow. These dimensions
correspond to ε = 0.16.

(b) The ends rotate anticlockwise towards the preferred
angle of deposition. Furthermore, the bed parallel to the head
and the tail deepens, which results in the formation of par-

allel troughs and bank with yet a small amplitude. We also
find erosion over the whole bank, but especially at the cen-
tral part. This results in an S-shaped topography with rotated
crests at both ends of the bank and a slightly lower central
part.

(c) The elevated crests grow in amplitude and length,
while the central part continues to erode. This results in two
separate growing features.

(d) The central depression turns into a trough, which
breaks the original bank in two parts. The separate banks
align towards a field of sandbanks. All features grow in am-
plitude and elongate. This includes the two main banks, troughs
and newly formed parallel banks (stage b).

Hydrodynamics The underlying hydrodynamics of each
stage are provided in the middle and bottom row of Fig. 6 in
the form of streamlines (middle row) and flow divergences
(bottom row). The streamlines are computed by stream func-
tion Ψ , which satisfies

∂Ψ

∂y
= hu ,

∂Ψ

∂x
=−hv . (23)

Furthermore, the flow divergences
#»

∇ · #»u show zones of
convergence and divergence.

We observe clockwise circulation of the residual flow
around the bank at all stages. In stages (a) and (b), the circu-
lation occurs around the whole bank and is skewed towards
the preferred angle of deposition. Furthermore, anticlock-
wise rotation cells are present at the locations where troughs
form. All streamlines converge at the ends of the banks. This
corresponds with the location of the largest flow acceleration
and deceleration (where the streamlines diverge).

In stage (c), separate clockwise circulation cells are present
around both elevated crests, which are stronger than the cir-
culation around both banks. The anticlockwise circulation
around the trough is also strengthened. The more complex
streamline pattern results in additional zones of flow acceler-
ation and deceleration. Acceleration occurs at the bank ends
and over the central part of the bank and deceleration occurs
around the elevated crests. Finally, the anticlockwise circu-
lations have disappeared in stage (d), while the flow diver-
gence field shows acceleration at the far ends of the banks
and deceleration at sides facing the x-axis.

4.3 Sample case B

Plan-view evolution Sample case B is subject to the same
physical conditions as sample case A, but differs in initial
topography. It has an anticlockwise orientation (with respect
to the principal tidal flow) and is shorter than case A. This
initial topography relates to Huthnance (1982b) and Smith
(1988) [Fig. 2]. The plan view evolution is presented in Fig.
7. We again distinguish four stages:
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Fig. 6 Dynamics of sample case A at four evolution stages: (a) tmor = 0, (b) tmor = 3, (c) tmor = 5 and (d) tmor = 10 with ∆ tmor = 235 year. The top
row show the plan view evolution. The middle row shows streamlines Ψ of the residual flow (red clockwise, blue anticlockwise). The bottom row
shows flow divergences of the residual flow (red acceleration, blue deceleration). The stages are explained in text. Note that the plotting domain is
only a part of the model domain. Contour lines correspond with z =−24 m.

(a) The initial topography consists of a bank with a height
of 4 m, length of 10 km, width of 2 km and an orienta-
tion of 42 degrees anticlockwise with respect to the principal
tidal current. This angle is obtained from the fastest growing
mode in the linear model (section 3.6).

(b) The bank retains its straight outline, but the central
part of the bank grows faster than the bank ends. We also
observe the formation of troughs adjacent to the bank.

(c) The bank grows in amplitude and elongates. The fastest
growth is observed at the central part of the bank. Further
pattern expansion is suppressed.

(d) The central part of the bank rotates clockwise to-
wards an orientation parallel to the principal tidal flow, while
the ends remain oriented towards the preferred angle of de-
position. The bank outline is now S-shaped.

Contrary to sample case A, the initial bank does not
break. Major differences are the rate and location of growth.
Sample case B grows faster in amplitude and length than
case A. Furthermore, sample case B shows central growth,
while case A grows at the bank ends. Similarities can be

found in their preferred orientation in stage (a-c) and their
tendency to expand their pattern. Although, the latter is sup-
pressed in sample case B during the later stages.

Hydrodynamics The hydrodynamics are presented on the
middle and bottom row of Fig. 7. The middle row shows the
streamlines for all stages and the bottom row the flow di-
vergences. We observe elliptic clockwise rotations around
the bank at all stages. The major axis of the ellipse rotates
clockwise over time. Its orientation is anticlockwise of the
initial bank orientation at stage (a), but parallel to the bank
and the principal tidal flow in stage (d). The residual flow
velocities are the highest at the slopes of the central part of
the bank, where the distances between the streamlines are
the smallest.

The residual flow divergences are consistent over all stages.
The flow decelerates over bank slopes facing the x-axis and
accelerates over bank slopes not facing the x-axis. In stage
(c) and (d), maximum flow acceleration and deceleration oc-
cur over the inner and outer bend of the S-shape respectively.
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Fig. 7 Dynamics of sample case B at four evolution stages: (a) tmor = 0, (b) tmor = 3, (c) tmor = 5 and (d) tmor = 10 with ∆ tmor = 235 year. The top
row show the plan view evolution. The middle row shows streamlines Ψ of the residual flow (red clockwise, blue anticlockwise). The bottom row
shows flow divergences of the residual flow (red acceleration, blue deceleration). The stages are explained in text. Note that the plotting domain is
only a part of the model domain. Contour lines correspond with z =−24 m.

4.4 Sensitivity to initial topography

Here, a sensitivity analysis will be performed to identify
how the plan view evolution depends on the initial topog-
raphy, while keeping flow conditions. We investigate the ef-
fect of the following characteristics of the initial topography:
orientation θbank (with respect to the principal tidal current),
bank length Lbank, bank height hbank and bank width Bbank.

Orientation The initial orientation θbank of the bank with
respect tot the principal tidal controls the type of evolution
(Fig. 8). Five orientations have been examined: (1) a bank
parallel to the principal tidal flow (short version of sample
case A, top row), (2) a bank oriented 20 degrees anticlock-
wise (second row) (3) a bank oriented in the preferred angle
of deposition (sample case B, third row), (4) a bank perpen-
dicular to the principal tidal flow (fourth row); (5) a bank
perpendicular to the preferred angle of deposition (bottom
row). All banks have a length of 10 km, because the charac-
teristic dynamics of each orientation are best shown at this
bank length.

All orientations show the strongest topographic changes
at their bank ends, which prefer an orientation in the direc-
tion of the angle of preferred deposition. For each orienta-
tion, this results in a different shape. The parallel case takes
an S-shape, the 20 degree case rotates slightly anticlockwise
as a whole, the preferred angle case retains its shape, the per-
pendicular case takes a Z-shape and the perpendicular to the
preferred angle case takes an H-shape. The perpendicular
case and the perpendicular to the preferred angle case even-
tually break due to separate evolution of the elevated crests
(similar to sample case A). For the perpendicular case this is
characterized by a depression, which remains constant at 3
metres above mean bed level, rather than a trough. Its pattern
expansion is also limited. The perpendicular to the preferred
angle case does form a trough and aligns towards a sandbank
field. These properties are also observed in sample case A.
This case is also the quickest in its breaking process.

Contrary to sample case A, the parallel case does not
break. This indicates an effect of the initial bank length,
which will be discussed in the next paragraph. The angle
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Fig. 8 Sensitivity of the initial orientation with respect to the principal tidal flow. From top to bottom row: parallel (0◦ anticlockwise), slightly
rotated (20◦), angle of preferred deposition (42◦), perpendicular (90◦), perpendicular to angle of preferred deposition (-48◦). Contour lines corre-
spond with z = −24 and z = −20 m. 1) The perpendicular case is presented at tmor = 5 for stage (c) and at tmor = 7 for stage (d) to highlight its
bank-breaking dynamics. 2) These analysis have been carried out with γtide = 0.7 m/s. To be fixed before submission to Ocean Dynamics.

of preferred deposition case equals sample case B and its
dynamics were thoroughly discussed in section 4.3. Banks
with an initial orientation between the parallel and the pre-
ferred angle cases follow one these. The 20 degree case fol-
lows the evolution of the preferred angle case, while a bank
with an anticlockwise orientation of 10 degrees follows the
evolution of the parallel case (not shown in Fig. 8).

Bank length The initial bank length Lbank controls the
number of separate banks in which the initial bank will break.
Banks with initial lengths of 10, 20 and 40 kilometres have
been investigated for both sample cases (not shown). Sample
case A had a bank length of 20 km and broke into two parts.
The 10 km bank does not break. Compared to the 20 km
case, the ends indeed rotate towards the angle of preferred
deposition, but the two elevated crests grow too close to each

other and eventually reconnect. This results in a bank with
a very wide central kink, where it grows the fastest. Ulti-
mately, the central part also rotates towards the angle of pre-
ferred deposition and this case continues to evolve similarly
to sample case B, but with additional pattern expansion.

On the other hand, the head and the tail develop far apart
in the 40 km case. As a result, two separate bank fields de-
velop and those do not interact. The remaining central part
develops into a separate bank, which rotates towards the an-
gle of fastest deposition and grows after an initial decay, but
it lags far behind the two sandbank fields in both sides. Sam-
ple case B does not break for any bank length.

Bank height The initial bank height hbank controls the
extent to which patterns expansion occurs and may as well
affect the time scale of the dynamics. We varied the initial
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bank height with values of 2 and 8 meters and a 4 meter
deep pit, which were compared to a height of 4 meters of
the sample cases. Furthermore, we looked at a perpendicu-
lar bank with a height of 8 m. Interestingly, all banks evolve
similar to their respective sample case. However, we find
that the pit cases trigger the most parallel banks and troughs,
while less are triggered by initially higher banks. For sample
case B, we also find that these bank evolve faster towards an
S-shape, but the bank-breaking time scale is unaffected for
sample case A. On the other hand, the breaking time scale
was reduced for the 8 m perpendicular bank. These differ-
ences indicate that height effects are closely related to the
type of evolution.

Bank width The initial bank width Bbank controls the
rate of amplitude growth and affects the bank dimension on
longer time scales. The bank width is varied to values of 1
and 4 kilometer. Both banks show qualitatively similar be-
haviour as the sample cases. The main difference is that the
4 km banks enhance amplitude growth, while it is weakened
for the 1 km banks. However, literature indicates that further
widening may not necessarily strengthen amplitude growth,
because there will be a preferred wave length (e.g. Hulscher
et al 1993).

Additionally, the 4 km banks remain wider at all stages,
while the 1 km banks remain smaller. However, the differ-
ence with respect to the sample cases tends to decrease over
time. Especially the 1 km bank tends to widen.

4.5 Other sensitivities

– Flow velocity γtide (velocity amplitude of the M2-tide)
affects the time scale of the evolution. Higher flow ve-
locities result in a faster evolution time scale. This re-
lation is stronger than the cubic relation in the bed load
transport formula (Eq. 4).

– The wave stirring parameter Uw damps the topography
and as such affects the bank outline as well as the time
scale of the dynamics. A higher wave stirring parameter
flattens the bank slopes, increases bank width and sup-
presses amplitude growth.

– Exclusion of Coriolis, i.e. f = 0, results in a second
preferred angle of deposition, which is mirrored over
the x-axis. Hence, the bank ends in sample case A ro-
tate in both directions, which results in a cross-shaped
plan view at both ends and breaking into multiple small
banks. Sample case B is already oriented in the original
preferred angle and thus unaffected.

– Bottom friction is essential for the production of Corio-
lis, which controls the time scale of evolution. An in-
creased bottom friction coefficient cd strengthens am-
plitude growth and quickens breaking and evolution to-
wards an S-Shape.

– The sediment transport coefficient α is inversely propor-
tional to the time scale of evolution. This coefficient in-
corporates the effects grain size, sediment density and
critical shear stress parameter.

– The porosity εpor controls the time scale of evolution. A
higher porosity results in a faster evolution.

5 Discussion

5.1 Classification of bank evolution paths

Based on the results and sensitivity analysis, we classify the
plan view evolution of the banks in three general paths (Fig.
9). Each path can be divided in four stages. The followed
path depends on initial orientation and initial bank length.

Path: (I) Initial topography→ (II) Rotation of the bank
ends→ (III) Separate growth→ (IV) Bank breaking

All breaking banks, such as sample case A, follow this
path. It requires a sufficiently long initial bank length and
an initial orientation not in the direction of the preferred an-
gle of deposition. Path characteristics are rotation and sep-
arate evolution of the bank ends, resulting in various forms
of breaking. Parts can be separated by troughs (e.g. sample
case A) or depressions (e.g. the perpendicular case), and, de-
pending on initial orientation and bank height, may align in
various configurations such as a sandbank field or a head-
tail connection. Finally, the number of separate banks de-
pends on the bank length. The proposed path differs with
the stages in Caston (1972), while the evolution described
in Smith (1988) complies with (III)→ (IV) on this path. The
relation to Caston (1972) and Smith (1988) will be covered
in section 5.4.

Path: (I) Initial topography→ (II) Rotation of the bank
ends→ (III) Central growth→ (IV) S-shape

This path is followed by banks with an initial orienta-
tion not in the direction of the preferred angle of deposition
and an initial bank length, which is too short for breaking.
An example is the short version of sample case A (Fig. 6,
top row). The path is characterised by rotation of the bank
ends followed by central growth and evolution towards an
S-shape. There is no separate evolution of the bank ends,
because they are not far enough apart.

Path: (I) Initial topography→ (II) Straight bank→ (III)
Central growth→ (IV) S-shape

This path is followed by banks with an initial orienta-
tion in, or close to, the direction of the preferred angle of
deposition, such as sample case B. It is characterised by a
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Fig. 9 General flow chart of possible bank evolution mechanisms. We distinguish three paths: (A) Initial topography→Rotation of the ends→
Separate growth→Breaking; (B) Initial topography→Rotation of the ends→Central growth→S-shape; (C) Initial topography→Straight bank→
Central growth→S-shape. The followed path depends on initial orientation and bank length.

straight bank with central growth followed by clockwise ro-
tation of the central part towards a direction parallel to the
principal tidal flow. This results in a characteristic S-shape.
Huthnance (1982b) presents a model result with a similar
path. This is covered in section 5.4.

In addition to the path-specific dynamics, banks are also
subject to path-independent dynamics. These are pattern ex-
pansion during stage (II) and elongation and amplitude growth
during stage (III). Finally, we emphasize that these are gen-
eral paths and specific evolution depends on the topographic
and physical properties.

5.2 Physical description

We describe the physics along path stages II to IV. Stage I is
model input and therefore left out.

Stage II is characterized by pattern expansion and possi-
ble rotation of the bank ends. Both sample cases and the sen-
sitivity analysis have shown that the initial orientation con-
trols whether the bank ends rotate. If the initial orientation
is in its preferred angle, no rotation occurs. If this is not the
case, the ends rotate towards the preferred angle of deposi-
tion. This is driven by linear process as described by, among
others, Huthnance (1982a) and Robinson (1983). The rota-
tion occurs at the end, because the middle part cannot drive
a divergence in sediment transport. Pattern expansion is also
explained by these linear processes (e.g. Roos et al 2008).
We add that the expansion rate is suppressed for fast grow-
ing banks.

Stage III is characterized by elongation and amplitude
growth, which can occur at the ends of the bank (IIIa) or at
the central part of the bank (IIIb). We find that banks without
rotated ends always show central growth, while it depends
on the initial bank length for banks with rotated ends. Those
show separate growth when the bank is sufficiently long, but

central growth otherwise. Amplitude growth is driven by the
generation of vorticity under an oblique angle (similar to lin-
ear processes), while elongation is the result of decelerating
currents and decreasing net transport when they turn around
the bank end with net deposition (Huthnance 1982b).

Stage IV is the result of the continued evolution of the
previous stages. This results in bank-breaking or an S-shaped
plan view. Our simulations indicate that the broken banks
may also form an S-shape over longer time, but our simula-
tions have been to short too conclude this. We explain break-
ing as the result of separately evolving bank ends combined
with central erosion. The characteristic S-shape is explained
as the combination of three effects: (1) when the bank grows,
the depth over the bank decreases. Consequently the fric-
tion term, which prefers a parallel orientation of the along-
bank axis with respect to the principal tidal flow, increases in
weight relatively to the Coriolis term in the vorticity equa-
tion (17); (2) the residual currents converge parallel to the
middle part of the bank instead of the bank ends (Fig. 7); (3)
residual flow accelerates over slopes facing the x-axis and
decelerates over slopes not facing the x-axis. The combina-
tion of these three effects drives rotation of the central part
of bank towards an orientation parallel to the principal tidal
flow.

5.3 Linear versus nonlinear dynamics

Our model includes both linear and nonlinear dynamics. Each
contributes to the plan view evolution in its own way (Fig.
10-11). The linear contribution (section 3.6) drives rotation
of the bank ends, amplitude growth and pattern expansion
in accordance with the fastest growing mode. This is the
spatial mode that dominates the linear topography over time
(Dodd et al 2003). Under the physical conditions of the sam-
ple cases, this mode has a wave length of 7.9 km and an
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Fig. 10 Comparison of linear and nonlinear effects on the plan view evolution of sample case A. Top row: modelled plan view evolution. Middle
row: plan view evolution based on linear dynamics only. Bottom row: nonlinear correction terms. Contour lines are at z =−24 and z =−20 m in
the top two rows and at ∆z = 0.75 and ∆z =−0.75 m in the bottom row.

orientation of 45 degrees anticlockwise with respect to the
principal tidal current.

The nonlinear contributions damp amplitude growth and
pattern expansion and drive evolution towards an S-shape.
The damping effects can clearly be seen in sample case A
(Fig. 10, bottom row). There is a positive contribution to
the bed levels at troughs, while it is negative at crests. This
is consistent with the observation that pattern expansion is
suppressed for initially higher banks, for which the nonlin-
ear contribution is relatively stronger.

Sample case B (Fig. 11, bottom row) shows the produc-
tion of an S-shape next to the damping effects. This can most
clearly be seen by the asymmetry of the positive correction
terms in stages (c) and (d). These are wider in the top-right
and bottom-left quadrants in stage (c) as well as longer in
stage (d). Hence, rotation of bank ends and pattern expan-
sion can also be captured in a linear model, but the sup-
pression of pattern expansion and the S-shape require the
inclusion of nonlinear dynamics.

5.4 Comparison with bank-break hypotheses from literature

The breaking mechanism as proposed by Caston (1972) [Fig.
1] is related to sample case A. Both plan view descriptions
show a parallel bank that breaks in response to tidal flow. We
were able to reproduce breaking in three parts by lengthen-
ing the initial profile. However, his intermediate stages do
not fit our path.

The breaking mechanism of an oblique bank as proposed
by Smith (1988) [Fig. 2] related to sample case B, but could
only be reproduced with a different initial topography. Sam-
ple case B lacked a necessary kink. Instead, such instabil-
ity was found in the evolution of a perpendicular bank (Fig.
8, fourth row). After rotation of the bank ends, stage (III)
shows an oblique bank with a kink, which corresponds with
the initial topography in Smith (1988). Hereafter, both de-
scribe that the bank breaks, because the head and tail of the
separate growing bank ends drift apart.

In his description, Smith (1988) suggests that sandwaves
may affect the breaking mechanism. These are driven by
circulations in the vertical plane, which would require 3D-
model to include (Hulscher 1996). However, while severely
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Fig. 11 Comparison of linear and nonlinear effects on the plan view evolution of sample case B. Top row: modelled plan view evolution. Middle
row: plan view evolution based on linear dynamics only. Bottom row: nonlinear correction terms. Contour lines are at z =−24 and z =−20 m in
the top two rows and at ∆z = 0.75 and ∆z =−0.75 m in the bottom row.

increasing the computational load, this may add little to our
current model. We have shown that sandwaves are not re-
quired for bank-breaking and, moreover, sandbanks are gov-
erned by circulations in the horizontal plane. Alternatively,
Deleu et al (2004) suggests that tidal flow asymmetry may
be required. Although we have presented bank-breaking with-
out tidal asymmetry, it would allow for migration and may
affect the breaking mechanism.

The model results from Huthnance (1982b) are very com-
parable to sample case B. We were able to reproduce the
elongation and the characteristic S-shape of the bank. Fur-
thermore, Huthnance (1982b) also investigated a bank per-
pendicular to the tidal flow. He shows that this indeed leads
to the evolution of two separate banks. However, we have
shown that, for example for sample case A, Coriolis forces
are essential. Furthermore, we use a more advanced flow de-
scription. The inclusion of both Coriolis and sinusoidal flow
allow for more topographies and better estimates of evolu-
tion time scales.

5.5 Comparison to North Sea banks

We have shown that banks evolve along three generic paths,
but that its specific topography depends on the initial shape
and physical conditions. Nonetheless, each evolution paths
shows that along-bank irregularities in orientation, width and
height are triggered. These along-bank irregularities com-
ply, for example, with the bathymetry of the Norfolk Banks
(Fig. 12). The Ower Bank and the Indefatigable banks show
a kink in their topography, which we found after rotation of
the bank ends at stage (b). Furthermore, the Swarte Bank
and the Indefatigable Banks show separately growing fea-
tures. These were found at stage (c) on our proposed break-
ing path. Finally, the Leman Bank and Ower Bank show a
meandering along-bank profile, which is associated to me-
andering forms as found on paths triggering an S-shaped to-
pography.

Besides good resemblance to the bathymetry of Norfolk
banks, our model has reproduced bank-breaking hypotheses
from literature that are based on observations (Caston 1972;
Smith 1988).
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Fig. 12 Map op the bathymetry of the Norfolk banks, UK Continental
Shelf. Red represents the shallowest parts, while blue represents the
deepest parts. Data obtained from Carr (2013)
.

6 Conclusions

The process-based nonlinear idealized morphodynamic model
presented in this research has shown to be capable of de-
scribing the transient long-term plan view dynamics of iso-
lated sandbanks with the inclusion of nonlinear interactions
between tidal flow, topography, Coriolis and bottom friction,
and depth-dependent wind wave stirring in the formulation
of the hydrodynamics and slope effects in the formulation of
bed-load sediment transport. The nonlinear dynamics prove
to be essential as damper and for modelling meandering bed
forms.

We distinguish three generic evolution paths. (I) Rota-
tion of the bank ends towards the preferred angle of deposi-
tion and separate growth, causing bank-breaking. (II) Rota-
tion of the bank ends towards the preferred angle of deposi-
tion and central growth, triggering an S-shape. (III) Straight
outline and central growth, triggering an S-shape, but much
faster than path II. In addition to the path-dependent dy-
namics, the banks also experience pattern expansion, elon-
gation and amplitude growth (possibly after initial erosion),
which are controlled by (a combination of) initial orienta-
tion, height and width.

The followed path depends on the initial bank orienta-
tion and length. Bank-breaking (path I) requires two condi-
tion. The initial bank orientation may not already be in the
angle of preferred deposition. This would prevent the forma-
tion of a kink in the middle part of the bank. Furthermore,
the bank should be sufficiently long for the elevated crests to
develop separately. The bank length also controls the num-

ber of parts the bank will break in. If the first condition is
not fulfilled, the bank will evolve along path III. If only the
second condition is not fulfilled, the bank will develop along
path II.

The here presented paths are consistent with the observational-
based breaking mechanism by Smith (1988) and the results
of the stability model by Huthnance (1982b). Although we
were able to reproduce breaking under the conditions in Cas-
ton (1972), his stages do not fit our path. Furthermore, in
each path, a straight bank triggered along-bank irregularities
in orientation, width and height. Such irregularities show re-
semblance to broken and meandering forms as found in the
North Sea.

We have successfully investigated the transient evolution
of tidal sandbanks, but a bank will continue to evolve. It is
left for future work to extent the paths towards equilibria.
Other interesting topics are the effect of (tidal) asymmetries
and the evolution starting from a random, infinitesimal per-
turbed bed.
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Appendix A: Forcing of the basic flow

The basic flow is written as a truncated Fourier series ac-
cording to

(u0,v0) =
2

∑
p=−2

(U0p,V0p)exp(ipσt) . (24)

The complex Fourier coefficients (U0p,V0p) relate to the
magnitude γ0 and direction ϑ0 in rads in case of the residual
flow (p = 0) or semi-major axis γp, ellipticy εp, inclination
ϑ in rads and phase ψp in rads for an M2- or M4-tide (p=±1
and p =±2 respectively). The magnitude γ has been scaled
according to γ = γ∗

U∗ , in which γ∗ is the amplitude of the tidal
flow in m/s. We formulate the following relation between
flow properties and the Fourier coefficients of the tidal flow
according to

U00 = γ0 cos ϑ0, V00 = γ0 sin ϑ0 (25)

for p = 1, otherwise:

U0p =
1
2

γ|p| (cos ϑ|p|+ ε|p| sin ϑ|p|)exp(− p
|p|

iψp) , (26)

V0p =
1
2

γ|p| (sin ϑ|p|− ε|p| cos ϑ|p|)exp(− p
|p|

iψp) . (27)

Appendix B: Basic flow solution

In Eq. (18), φ0 describes the lowest order flow, which is spa-
tially uniform oscillatory flow over a flat bed h = h0, as trig-
gered by the spatially uniform yet time-dependent tidal forc-
ing terms (F(t),G(t)). It relates to the Fourier coefficients of
tidal flow over a flat bed (Eqs. 12-13):
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(u0,v0) =
2

∑
p=−2

(U0p,V0p)exp(ipσt) . (28)

The spatial uniformity implies that the vorticity vanishes
over the domain: η0 = 0.

Appendix C: First order flow solution

φ1 describes the linear response to bed perturbation h1. To
this end, we evaluate Eq. (17) at O(ε):

L0η1 =

[
f

h0

∂h1

∂x
− r

h2
0

∂h1

∂y

]
︸ ︷︷ ︸

R1

u0

+

[
f

h0

∂h1

∂y
+

r
h2

0

∂h1

∂x

]
︸ ︷︷ ︸

S1

v0 (29)

with linear operator L0 = ∂/∂ t + u0∂/∂x+ v0∂/∂y+
r/h0. It shows that the first order vorticity is advected by
the basic flow and forced by the interaction between the first
order topography (including bottom friction and Coriolis ef-
fects) and basic flow: R1u0 and S1v0. Note that the terms
R0u1 and S0v1 vanish, because the lowest order topography
is spatially uniform. It follows that η1 varies both spatially
and temporally:

η1(x,y, t) =
M

∑
m=−M

M

∑
n=−M

η̂1mn(t)exp(i[kmx+ lny]) , (30)

in which the Fourier coefficients are

η̂1mn(t) =
P

∑
p=−P

E1mnpexp(ipt) . (31)

Herein, P is the temporal truncation number and E1mnp
are the spatio-temporal Fourier components. Because the ba-
sic flow is spatially uniform, the spatial modes (denoted by
subscripts m and n) do not interact. Hence, the Fourier com-
ponents of the vorticity of each spatial mode can be solved
separately via a first order linear system:

LmnE1mn = b1mn . (32)

with (2P+1)× (2P+1) matrix Lmn, which for P = 2 is
given by


−2i+A0 +

r
h0

A−1 A−2 0 0
A1 −i+A0 +

r
h0

A−1 A−2 0
A2 A1 A0 +

r
h0

A−1 A−2

0 A2 A1 i+A0 +
r

h0
A−1

0 0 A2 A1 2i+A0 +
r

h0


with shorthand notation Ap = ikmU0p + ilnV0p. Further-

more, E1mn is a column vector with elements E1mnp as is
forcing term b1mn with elements

b1mnp =

([
f ikm

h0
− riln

h2
0

]
U0p +

[
f iln
h0

+
rikm

h2
0

]
V0p

)
. (33)

Next, we combine the continuity equation (8) with the
definition of vorticity (Eq. 16) to obtain an expression for
the Fourier coefficients of the tidal flow:

û1mn =
ilnη̂1mn + ikmaĥ1mn/h0

k2
m + l2

n
, (34)

v̂1mn =
−ikmη̂1mn + ilnaĥ1mn/h0

k2
m + l2

n
(35)

with a = ikmu0 + ilnv0.

Appendix D: Higher order flow solutions

φ j with j = 2,3, . . . ,J describe subsequent nonlinear contri-
bution terms to the hydrodynamic solution. These contribu-
tions are of higher order in h1, i.e. quadratic for j = 2, cubic
for j = 3 and so on up to order J. The forcing terms of the
j-th order vorticity η j emerge as convolution sums of lower
order quantities:

L0η j =
j

∑
j′=1

(
R j′u j− j′ +S j′v j− j′︸ ︷︷ ︸

Coriolis and
frictional torques

−

[
u j′

∂η j− j′

∂x
+ v j′

∂η j− j′

∂y

]
︸ ︷︷ ︸

advection

− µ j′η j− j′︸ ︷︷ ︸
depth effect .
on friction

)
(36)

Herein, R j′ , S j′ and µ j′ are the j′-th order expansions of
the functions R, S and µ according to:

R j = (−1) j−1
(

h1

h0

) j−1[ f
h0

∂h1

∂x
− jr

h2
0

∂h1

∂y

]
, (37)

S j = (−1) j−1
(

h1

h0

) j−1[ f
h0

∂h1

∂y
+

jr
h2

0

∂h1

∂x

]
, (38)

µ j = (−1) j
(

h1

h0

) j r
h0

. (39)
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Contrary to the first order flow solution, the spatial modes
in the nonlinear forcing terms in Eq. (36) do interact. Hence,
spatial convolution sums need to be evaluated in all forc-
ing terms. We use the pseudospectral method to compute
these. Furthermore, an additional temporal convolution sum
needs to be computed in the advective term. With the forc-
ing known, the j-th order vorticity η j and flow (u j,v j), can
be computed in a way similar to the first order hydrodynamic
solution, see Eqs. (32) - (35). This results in the Fourier co-
efficients for the tidal flow (except the spatial uniform part):

û jmn =
ilnη̂ jmn + ikma/h0

k2
m + l2

n
, (40)

v̂ jmn =
−ikmη̂ jmn + ilna/h0

k2
m + l2

n
(41)

with a= ikm{h1u j−1}mn+iln{h1v j−1}mn. Here, {h1u j−1}mn
and {h1v j−1}mn refer to the contributions of the spatial con-
volution of the quantities h1u j−1 and h1v j−1 to mode (m,n).

The spatially uniform part of the flow is treated sepa-
rately. Hereto, we apply the spatially averaged momentum
equations to obtain:

[
ip+µ0 − f

f ip+µ0

][
U j00p
Vj00p

]
=

[
−C j00p
−D j00p

]
, (42)

in which C j00p and D j00p are the p-th order temporal
Fourier coefficients according to

ĉ j00 =
j

∑
j′=1

{
µ j′u j− j′ +u j′

∂u j− j′

∂x
+ v j′

∂u j− j′

∂y

}
00
, (43)

d̂ j00 =
j

∑
j′=1

{
µ j′v j− j′ +u j′

∂v j− j′

∂x
+ v j′

∂v j− j′

∂y

}
00
. (44)

The solution of the linear system in Eq. (42) is given by

û j00 =
(ip+ r

h )ĉ j00 + f d̂ j00

(ip+ r
h )

2 + f 2 , (45)

v̂ j00 =
− f ĉ j00 +(ip+ r

h )d̂ j00

(ip+ r
h )

2 + f 2 . (46)


