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Abstract

Introduction Congenital long QT syndrome (LQTS) is a genetic disorder affecting cardiac ion channels
which leads to an increased risk of malignant ventricular arrhythmias and sudden cardiac death [1]. Diag-
nosing LQTS remains challenging because of a considerable overlap of the QT-interval between LQTS
patients and healthy controls [2]. Analysis of T-wave morphology has shown to be of discriminative
value to diagnose LQTS [3–6]. An objective diagnostic tool that includes T-wave morphology might
further improve LQTS diagnosis.

Methods and results A retrospective study was performed on 699 standard ECGs recorded from
patients with LQT1, LQT2 and LQT3 and genotype-negative relatives. T-wave morphology parameters
and subject characteristics were used as inputs to three machine learning models: logistic regression,
bagged random forest and support vector machine. The final best performing support vector machine
showed an area under the curve (AUC) of 0.886, with a maximal sensitivity and specificity of 80% and
84.8%. The receiver operating characteristic (ROC) of a similarly trained model using only QTc values,
age and gender as inputs, showed an AUC of 0.823, with a maximal sensitivity and specificity of 70.7%
and 80%, respectively, to diagnose LQTS.

Conclusion The proposed model resulted in a major rise in sensitivity and a minor rise in specificity
compared to the current situation and therefore leads to a decrease in LQTS underdiagnosis. External
validation, however, is still necessary to confirm these results.
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Acronyms and parameters

AUC Area under the curve
aV Augmented voltage
AV-node Atrioventricular node
Bagged Bootstrap aggregated
Ca2+ Calcium
CC Correlation coefficient
Cl− Chloride
EAD Early afterdepolarization
ECG Electrocardiogram
ECGRMS Root mean square ECG
fs Sample frequency
HR Heart rate
ISRoC Inversed signed radius of curvature
K+ Potassium
Lasso Least absolute shrinkage and selection operator
LBB Left bundle branch
LQT1, LQT2, LQT3 Long QT syndrome type 1, 2 and 3
LQTS Long QT Syndrome
M-cell Midmyocardial cell
Na+ Sodium
PVC Premature ventricular complex
QTc interval QT interval corrected for heart rate
RBB Right bundle branch
RH R wave heterogeneity
ROC Receiver operating characteristic
RR Interval between two R peaks
RSS Residual sum of squares
SA-node Sinoatrial node
SM QRS-T angle Spatial mean QRS-T angle
SP QRS-T angle Spatial peak QRS-T angle
Tend End of the T wave
Tpk Peak of the T wave
Tstart Start of the T wave
TH T wave heterogeneity
VCG Vectorcardiogram
YI Youden’s index
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Part I

Improving Long QT Syndrome
diagnosis using machine learning on

ECG characteristics
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Chapter 1

Introduction

Congenital long QT syndrome (LQTS) is a genetic disorder affecting cardiac ion channels, increasing
the risk of malignant ventricular arrhythmias and sudden cardiac death, see sections 6.3 and 8.1. [1].
Its prevalence is estimated at 1 in 2000 individuals [7]. LQTS is thought to be the cause of death in
20% of sudden unexplained death cases in the young [8]. In rare cases, cardiac arrest can be the first
presented symptom of LQTS. [9]. For these reasons, early recognition of LQTS is necessary.
Patients often present themselves with a prolonged QTc interval, which is QT interval corrected for heart
rate, as measured in the electrocardiogram (ECG), see section 7.1. However, LQTS can be problematic
to diagnose, due to several reasons. Symptoms as syncope and cardiac arrest, which should be prevented
in the first place, can occur rarely. A prolonged QTc interval often remains undetected by physicians:
only 50% of cardiologists and 40% of noncardiologists are able to correctly identify a lengthened QTc
interval. [10] More importantly, there is a significant overlap of QTc intervals between healthy individuals
and LQTS patients. Since QTc interval is the first and most widely used diagnostic criterion, this causes
severe underdiagnosis of LQTS. A more sensitive tool for LQTS diagnosis in daily clinical practice is
required.

Genetic testing provides extra insights in risk stratification and it can confirm the diagnosis of LQTS.
However, these tests are unavailable to many centers since this is very costly and specialized care. Also,
it can take a significant amount of time before genetic testing results are known. [11]. Additionally,
as described in section 8.2, diagnosis cannot be confirmed in an estimated 20% of patients through
means of genetic testing, misinterpreting innocent genetic changes as mutations may occur, and a large
fraction of genetically identified patients do not show clinical symptoms, due to poor penetrance of the
associated genes [12–14]. Moreover, genetic testing is only performed if patients are suspected of having
LQTS, e.g. if they have obvious symptoms or if mutations are identified in family members.

Besides a prolonged QTc interval, LQTS is also known to produce aberrant T-waves in the ECG,
see section 8.3. An ECG based diagnostic tool could overcome some drawbacks associated with genetic
diagnosis of LQTS, such as high costs, time delay and unavailability. This tool would need to be more
accurate than the QTc interval. However, an easy-to-use, objective, widespread diagnostic tool for all
genotypes of LQTS still lacks.

In light of the above, this study proposes an automated ECG based diagnostic tool for LQTS,
including T-wave morphology- and QRS-based features, QTc interval and patient characteristics. A
machine learning algorithm will be used so future classification is not prone to time-consuming matters
or inter-observer differences.
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Chapter 2

Methods

2.1 Study population

ECG recordings were performed in the initial evaluation of individuals >16 years referred to the depart-
ment of Cardiology and Cardiogenetics of the Academic Medical Centre in Amsterdam, The Netherlands,
in the work-up during family screening for LQTS. ECGs were acquired from January 1996 to December
2017. LQTS patients had a confirmed pathogenic mutation in either the KCNQ1, KCNH2 or SCN5A
gene resulting in LQTS type 1 (LQT1), type 2 (LQT2) or type 3 (LQT3), respectively (see section 8.2).
Controls were genotype-negative family members. Subject gender, age and results of genetic testing
were used for this study. Exclusion criteria were the absence of genetic testing results, absence of base-
line data, and co-morbidities affecting ventricular depolarization, repolarization and/or the registration
of the ECG. Examples included a previous infarction, atrial fibrillation or hypertrophic cardiomyopathy.
A waiver was obtained from the local ethical committee, for ethical approval for the conduct of this
study.

2.2 Data acquisition

Standard 10-second 12-leads body surface ECGs were obtained at rest. Sample frequencies were 250Hz
or 500Hz. ECGs were stored in the MUSE Cardiology Information system (GE Medical System). All
further analysis was done using MATLAB R2017a (MathWorks, Natick, MA, USA), as follows: 1)
Preprocessing of the signal, to remove noise and obtain a uniform sampling frequency; 2) Construction
of an average complex for each lead, to retrieve a smoother signal; 3) Global detection of landmarks,
used to calculate morphology features; 4) Calculation of morphology features. For a more detailed
overview of the methods, see figure 2.1.

2.3 Preprocessing

R and Q detection filtering. For detection of the R-peak and Q-wave (see section 7.1), a 2nd order
high-pass Butterworth filter of 0.5Hz was used. In case of a 500Hz sampling frequency, a 2nd order
low-pass Butterworth filter of 125Hz was also applied. Thereafter, an infinite impulse response notch
filter of 50Hz was applied. This ECG is referred to as ECGR,Q.
T detection filtering. For T-wave detection and analysis, the raw signal was filtered with a 2nd order
Butterworth band pass filter with cutoff frequencies 0.5Hz and 40Hz, referred to as ECGT. [15]
Subsequent preprocessing. The residuals of a median filter with a window of 0.6·fs (=150 or 300
samples) were subtracted from the individual ECG leads of ECGR,Q and ECGT to correct for baseline
wander. A 1D Fourier upsampling method was used to upsample data to 1000Hz, to assure independence
of sampling frequency. Subsequently, nine true unipolar leads were constructed from ECGR,Q and ECGT,
which were used for all further analysis: VR, VL, VF and V1-V6 (see section 7.2). A root-mean-square
ECG was constructed from all 9 unipolar leads for both ECGR,Q (ECGRMSRQ) and ECGT (ECGRMST).
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Data acquisition 
10 second, 12-Leads ECGs 
fs = 250 or 500Hz  

 

Unipolar lead construction 
VR, VL, VF.  

 

 
ECGRMS construction 

Root mean square of 9 unipolar leads 

 

R peak detection (RI) 
In lead with highest R peaks. 
Modified Pan-Tompkins algorithm .

 

QMB detection  
Peak of second derivative in 
ECGRMS .

 

T wave detection 
In PCA1. Tpeak, Tend and Tstart . 

 

QT and QTc calculation 
Bazett, Fredericia, Framingham, 
Hodges 

 

Morphology feature 
calculation 

 

RRI calculation 
Mean value of all RR intervals after removing the 10% 
higest and lowest values of RRs. 

 

RMB detection 

In ACF of ECGRMS. Modified Pan-
Tompkins algorithm 

 

RRF calculation 
Mean value of all remaining RR intervals after 

removal of the 10% lowest and highest RR intervals. 

 
Preprocessing 

1. 2nd order Butterworth filter . 2. 2nd order IIR notch filter.

3. Baseline deviation removal . 4. Upsampling to 1kHz 
 

AC1 construction 
For each unipolar lead. Beats are selected from  
RI-0.25RRI to RI+0.7RRI.  

Beats aligned on RI. For each sample, the 10% 
lowest and highest values of the superimposed 
signals is disregarded. ACI is the average of 
the remaining superimposed signals. 

 

ACF construction 
For each unipolar lead 

1. Removal of noisy and ectopic beats (CC<0.9 
with MBI). 

2. Removal of beats of which RR which deviates 
>20% from RRI .

3. For each sample, the 10% lowest and highest 
values of the remaining superimposed 
complexes is disregarded. ACI is the average 
value of the remaining superimposed signals. 

 

 .

 .

 .

 .

 .  PCA1 construction 
First eigenvector of T wave window in ACF over all 9 
unipolar leads. From RAC+70ms to RAC+0.7RRF 

Figure 2.1: Diagram of all methods. CC: correlation coefficient.
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ECG lead VF

1s

10
0μ

V
Superimposed complexes

100ms

10
0μ

V

Initial average complex (ACI)

•  Removal of 10%
   highest and
   lowest values

•  Calculation of ACI

RI - 0.25·RRI RI + 0.7·RRI

RI - 0.25·RRI RI + 0.7·RRI

Figure 2.2: Construction of initial average complex

2.4 Average complex construction

Initial average complex construction. R-peaks (RI, a vector) were detected in the lead with the highest
peak amplitudes, using a modified Pan-Tompkins algorithm [16]. R-peaks in the first 0.1 seconds and
the last 0.5 seconds of the signal were disregarded. An average complex was constructed for each lead,
see figure 2.2. After disregarding the highest and lowest 10% of RR intervals, RRI was calculated as
the average of all remaining RR intervals. Subsequently, complexes were selected from RI-0.25·RRI to
RI+0.7·RRI, for each lead. For each lead, these complexes were superimposed, aligned on the R-peak.
The highest and lowest 10% of superimposed signals were disregarded at each sample. An average
complex (ACI) was constructed for each lead, using all remaining complexes.
Final average complex construction. After construction of ACI, a three-step approach was used to
retrieve a smoother signal. An adapted version of the algorithm proposed by Orphanidou et al. [17] was
used:

1. If the correlation coefficient (CC) between an individual complexes and ACI < 0.9, the correspond-
ing complexes was disregarded. If CC ≥ 0.9, the complexes was preserved.

2. If the RR interval of a complex deviated >20% from RRI, the corresponding complex was disre-
garded.

3. Subsequently, the number of remaining complexes were investigated.

(a) If <60% of all complexes in one lead was preserved, the associated lead was not taken into
account for analysis.

(b) If a complex was preserved in <6 leads, the complex was disregarded as a whole.

(c) If <60% of all complexes in the whole ECG was preserved, the whole ECG was disregarded.

Subsequently, all remaining complexes were aligned on the R-peak again. For each lead, the lowest and
highest 10% were disregarded, after which a final average complex (ACF) was computed. The final
average RR interval (RRF) was calculated in the same manner, using only the RR intervals of preserved
complexes. ACF and RRF were used for further analysis.
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CC = 0.95

CC = 0.92

CC = 0.99

CC = 0.64

CC = 0.72

RRI=1.1s
RR = 1.0s

RR = 1.2s

RR = 1.1s

RR = 1.0s

RR = 0.85s

CC = 0.92
RR = 1.3s

ACI

Figure 2.3: Step 1 and 2 in constructing AC2. If the correlation coefficient (CC) of AC1 and a certain
complex was smaller than 0.9, this complex was disregarded. If the RR of a complex deviated more
than 20% from the average RR, the complex was disregarded as well. Blue: preserved complexes. Red:
disregarded complexes.

2.5 Landmark detection

R-peak detection. A modified Pan-Tompkins algorithm was used to detect the global R-peak of ACF

(RAC), in ECGRMSRQ [16].
Q-wave detection. A simple linear differentiator (see appendix A.1) was used twice to compute the
second derivative of ACF in ECGRMSRQ . Subsequently, the most prominent peak of the second derivative
in the window from R-100ms to R-20ms was noted as Q.
Principal component analysis. Principal component analysis, using singular value decomposition, was
performed over the unipolar leads of ACF in ECGT, in the window from RAC+95ms to RAC+0.7·RRF.
The first eigenvector (PCA1) was used for T-wave detection. This signal was filtered with a 2nd order
0.2Hz Butterworth high pass filter, to correct for any deviations from the baseline of 0mV.
T-wave detection. T wave detection was based on the methods by Hermans et al. [18] (see figure
2.4). The peak of the T-wave (Tpk) was detected by finding the most prominent peak of PCA1. If the
amplitude of Tpk was <40mV in ECGRMST , the subject was disregarded, to avoid unreliable T-wave start
(Tstart) and T-wave end (Tend) detections. Subsequently, the first derivative of PCA1 was calculated,
using a linear differentiator (see appendix A.1). Tstart was detected as the intersection of the baseline
with a tangent line drawn at the maximum slope of PCA1, in the window from R+95ms to Tpk. Tend

was detected as the intersection of the baseline with a tangent line drawn at the minimum slope of
PCA1, in the window from Tpk to Tpk+0.3·RRF. In case of a negative Tpk, PCA1 was flipped vertically
before Tstart and Tend detection.

2.6 Feature extraction

2.6.1 Included features

Locally determined features. T-wave morphology features were computed within the window between
Tstart and Tend, for each lead. Features included: area, absolute area, biphasicness, amplitude, skewness,
kurtosis, notch score [4] and asymmetry score [4]. Additionally, QRS amplitude was calculated in each
lead [19]. These features were calculated in the unipolar leads VR, VL, VF, and V1 trough V6. Other
features, computed in multiple leads, were T-wave heterogeneity from V1-V3 (TH(V1-V3)) and V4-V6
(TH(V4-V6)) [20], and QRS-heterogeneity from V1-V3 (RH(V1-V3)) and V4-V6 (RH(V4-V6)) [20].
Globally determined features. Globally determined features were: T-wave length, Tpk to Tend interval
(TpTe) [19], R to Tstart interval [3], spatial peak (SP) QRS-T angle [21] and spatial mean (SM) QRS-T

16



Q

RAC

Tend

ACF ECGRMS
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TendECG PCA
Tend

500ms

Tend window

Tpk Tpk+0.3RRI
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Baseline (0mV)

Tpk

RAC+95ms RAC+0.7RRI

PCA1

Tpk window

Tstart window

Figure 2.4: Landmark detection. SecDer: second derivative of ECGRMS.

angle [21].

Appendix B shows which leads were used to calculate which features. A total of 9 (leads) · 9 (local
morphology features) + 4 (other features) + 5 (globally determined morphology features) was calcu-
lated. Additionally, QT interval and corrected QT intervals were calculated, according to table 7.1. A
graphical representation of features is displayed in table 2.1, and figures 2.5 and 2.6.

2.6.2 Feature calculation

Calculation of basic features is shown in table 2.1. If a T-wave was biphasic, skewness, kurtosis, notch
score and asymmetry score were not calculated. Biphasic was defined as Absolute area

area
≤ 0.75.

Biphasicness The biphasicness of a T-wave was calculated calculated by dividing the absolute value of
the area by the absolute area of the T-wave.
Amplitude To calculate the T-wave amplitude, both the most positive and the most negative peak in
the signal were detected. The peak with the largest absolute value was noted as the T-wave amplitude.

Skewness and kurtosis. For the calculation of the T-wave skewness and kurtosis, the T-wave was
treated as if it is a probability distribution curve. To this end, T-waves were normalized to have a min-
imum value of 0 and an area of 1 before calculating the skewness and kurtosis. For more information,
see appendices A.2 and A.3.

Notch score and asymmetry score. Notch score and asymmetry score were derived from Ander-
sen et al. [4, 5] However, instead of calculating the notch score only in the first principal component of
the signal, a notch was sought for in every lead. A 3rd order Savitzky-Golay filter with a window of 51
samples was used to smooth and differentiate ECGT.
To calculate the notch score, the Inversed Signed Radius of Curvature (ISRoC) signal was calculated as
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Table 2.1: Graphic representation of all features and the formulas used to calculate them. For skewness
and kurtosis, a non-biphasic T-wave was used as input, for simplicity.

Feature Example Formula

Area

Absolute area

Amplitude

Length

Time to onset

Skewness

Kurtosis

Tend∑
t=Tstart

ECG(t)

|
Tend∑

t=Tstart

ECG(t)|

See section 2.6.2

t(Tend)− t(Tstart)

t(Tstart)− t(R)

E(ECG−µ)3
σ3 (see appendix A.2)

E(x−µ)4
σ4 (see appendix A.3)

follows:

ISRoC =
ẍ

(1 + ẋ)
3
2

(2.1)

where ẍ is the second derivative of the T-wave signal and ẋ represents the first derivative of the T-
wave signal. Subsequently, a pair of positive and negative values in the ISRoC signal was sought for.
In Andersen’s study, the height of the positive peak of this pair was noted as the notch score [4]. In
contrast, we noted the absolute difference of the pair as the notch score, since the polarity of the ISRoC
curve depends on the polarity of the T-wave. If no pair could be found, the notch score was 0. If the
amplitude was <40mV, no notch score was calculated, since this would lead to detection of noise as a
notch. This method is displayed in figure 2.5.
To calculate the asymmetry score, the first derivative of the ECG was divided into two segments: seg-
ment 1, from Tstart to Tpk, and segment 2, from Tpk to Tend. Both segments were scaled between 0
and 1. Segment 2 was flipped over both the x and y-axis. The shortest segment of the two was sup-
plemented with zeros at the start of the segment, until both segments were equally long. Subsequently,
the asymmetry score was calculated (see figure 2.5).

QRS-T angle. A vectorcardiogram (VCG) was produced (see section 7.3), in which the orthogo-
nal projections of the ECG on the X-, Y- and Z-axis are displayed. From this signal, the spatial peak
QRS-T angle and the spatial mean QRS-T angle were computed. The start of the Q-wave is needed to
calculate QRS-T angles. If no QAC was detected, QAC was denoted as R-50ms.
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Tstart                Tpeak            Tend Tstart                Tpeak            Tend Tstart                Tpeak            Tend

max

min

Pair present

Filtered T wave                 ISRoC signal                   Presence of pair?                  Notch score

= Max(pair) - 
    Min(pair)

Tstart                Tpeak            TendTstart                Tpeak            Tend

T0           T1                             Tpeak

r(t)

Filtered T wave                First derivative        Flipped and normalized         Asymmetry score

Tpeak-T1

=

0

Tstart                Tpeak            TendTstart                Tpeak            TendTstart                Tpeak            Tend Tstart                Tpeak            Tend

0

1

r(t)2 

t=T0     

Tpeak     

∑

Figure 2.5: Asymmetry score and notch score. Asymmetry score: 1) the first and second segment
are separated at Tpk. 2) The second segment is flipped over the x- and y-axis. The shortest segment
is supplemented with zeros at the start of the signal, until both segments are equally long. 3) The
asymmetry score is calculated. T1 is the difference in length between both segments. Notch score: a
notch creates an up-down pair in the ISRoC (Inversed Signed Radius of Curvature) signal. The absolute
difference between the amplitudes of this pair in the ISRoC signal is noted as the notch score. Adapted
from [4].

Figure 2.6: Spatial QRS-T angle as calculated from the VCG. Red: QRS-loop. Blue: T-loop. The
smallest angle between the vectors at maximal T-wave magnitude and maximal QRS magnitude is called
the ‘spatial peak QRS-T loop’.
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Spatial peak QRS-T angle. The spatial peak QRS-T angle is the smallest angle between the vector
at maximal T-wave magnitude in the VCG and the vector at maximal QRS complex magnitude in the
VCG, see figure 2.6. For more information, see appendix A.4.
Spatial mean QRS-T angle. The spatial mean QRS-T angle is the smallest angle between the mean
vector of the T-wave and the mean vector of the QRS-complex in the VCG (see figure 2.6). For more
information, see appendix A.5.

R-peak and T-wave interlead heterogeneity. To calculate R-peak heterogeneity, the QRS-complex
was selected from Q to R+50ms. If no Q was detected, Q was denoted as R-50ms. For T-wave hetero-
geneity, the T-wave was selected from Tstart to Tend. Two groups of precordial leads were investigated:
V1-V3 and V4-V6. Subsequently, the maximum value of the square root of the variance around the
average of the three leads was calculated [8, 22], as follows:

H = max(
√
var(X)) (2.2)

in which X is an n-by-3 matrix consisting of three single-lead vectors of length n. The resulting variance
is a vector of length n.

2.7 Machine learning models

2.7.1 Inputs and models

A publicly available package, ‘glmnet’, was used for model training and testing. [23] Subjects were
classified as LQTS or healthy by a machine learning trained classification model, based on multiple inputs,
see section 2.6.1. Missing observations were replaced by random values within mean±sd (standard
deviation) for the corresponding feature in the corresponding lead. To average out the effect of using
random values, different random values were used three times. The performance of each single model
was averaged over these three random values. Two models were trained: a baseline model with only
subject age, gender, and all QT(c) values (see table 7.1) as inputs, and a final model with all morphology
features as additional inputs. The baseline model is trained and tested similarly as the final model. The
baseline model was used to assess the optimal classification using currently available clinical inputs. The
difference between the baseline model and the final model demonstrates the added diagnostic value of
morphology features.

2.7.2 Final model

The final product of this thesis is a machine learning model which can diagnose LQTS. For this model,
the entire study population is used as a training set. However, if the entire study population is used as
a training set, the model cannot be tested, hence the performance of the model is not known. For this
reason, to assess the performance of the final model, 100 models are trained and tested on a different
randomized training and testing set, see figure 2.7. Training sets consisted of a randomly chosen subset
containing 90% of all subjects, testing sets consisted of the remaining 10% of all subjects. The mean
performance of these 100 models is the expected performance of the final model. [24]

2.7.3 Assessment of final model performance

Feature selection. Each of the 100 models was trained and tested separately. Features with the
highest discriminative performance were selected by means of elastic net regularization, combined with
maximum likelihood estimation in a logistic regression model (see sections 9.1.1 and 9.2). The elastic
net mixing parameter γ was varied from 0 to 1, with steps of 0.2. For each of these 6 γ values, the
elastic net tuning parameter λ was decreased in 100 steps. For each λ, the cross-validated error was
noted. The cross-validated error was found using 10-fold cross-validation, see section 9.1.2. In other
words: 10·6·100 = 6000 models were trained for each randomized training set, to find the optimal set of
discriminative features for this training set. Subsequently, for each γ, the coefficients (β) resulting from
the cross-validation were noted at λmin (at the minimal cross-validated error) and λ1SE (one standard
error away from λmin).
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Figure 2.7: Construction and assessment of final model. For simplicity, only 10 subjects are drawn.
Training and test set are randomized 100 times. The expected performance of the final model is the
mean of the 100 models. In this example, the training set consisted of 80% of all subjects, and the
testing set consisted of 20% of all subjects. Note that although on average subjects were chosen 80
times for training and 20 times for testing, this does not hold for all individual subjects, because of
randomization.

Model training and testing. After feature selection, for each of the 100 randomizations, 3 differ-
ent types of models were trained: logistic regression, a bagged random forest, and a support vector
machine, see section 9.2. These models were trained for features selected at λmin and λ1SE , for each of
the 6 γ values. In other words: 2 · 3 · 6 · 100 = 3600 models were trained after feature selection. Finally,
the model with the best mean discriminative performance over all 100 randomizations (e.g. a logistic
regression model with γ=0.6 at λmin) was chosen for final model training on all subjects. For this final
model, the included features and β resulting from feature selection (see section 9.1.1) are reported.
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Chapter 3

Results

3.1 Study population

A total of 1123 subjects with unique ECGs were recorded. The exclusion flowchart is shown in figure
3.1. The remaining cohort consisted of 699 subjects. Baseline data are shown in table 3.1. Age between
LQTs patients and genotype-negative relatives was significantly different, with LQTS patients being 4
years older, on average. Gender did not differ significantly between LQTS patients and genotype-negative
relatives. Age and gender between LQTS genotypes did not differ significantly either.

Table 3.1: Baseline data of research population. Relative: genotype-negative relatives. Note that
LQT1-LQT3 are genotypes of LQTS. †: two-tailed student’s t-test. ‡: one-way anova. q: chi-squared
test.

Characteristic Relatives LQTS p-value LQT1 LQT2 LQT3 p-value
(n=349) (n=350) (n=135) (n=162) (n=53)

Age 45±15 41±15 3E-4† 41±14 42±15 40±15 0.78‡

Male gender 164 (47%) 148 (42%) 0.21q 55 (41%) 72 (44%) 21 (40%) 0.74q

3.2 QTc interval

All QT(c) interval measurements were manually screened by an experienced researcher (TD). Since the
algorithm was not able to find the end of the T-wave fully reliable in case of biphasic or flat T-waves,
these were adjusted manually for 30 subjects.
Using only the QTc interval as an input in a linear regression model to diagnose LQTS, the receiver
operating characteristic (ROC) shows an area under the curve (AUC) of 0.781-0.812, depending on the
method of QTc calculation. The corresponding ROCs are shown in figure 3.2. The best performing
QTc calculation method was Hodges’, with an AUC of 0.812. The maximal Youden’s index (YImax)
(=sensitivity+specificity-1) is 0.482. The corresponding QTc interval threshold was 435ms, irrespective
of gender. The corresponding sensitivity and specificity were 0.660 and 0.822, respectively.

Table 3.2: Performance of different sorts of QT(c) to diagnose LQTS.

Interval AUC YImax Sensitivity Specificity Threshold at YImax (ms)
QT 0.781 0.443 0.569 0.874 433
QTc Bazett 0.782 0.440 0.590 0.851 450
QTc Fridericia 0.806 0.482 0.671 0.811 435
QTc Framingham 0.803 0.477 0.666 0.811 434
QTc Hodges 0.812 0.482 0.660 0.822 435
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Figure 3.1: Exclusion flowchart. ‘Too much noise’ defined by section 2.4.
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3.3 Machine learning

Baseline model. Regarding the baseline model, the model with the best performance was the logistic
regression model, combined with a tuning parameter γ of 1. Results are displayed in table 3.3 and figure
3.3.
Final model performance. For each model, γ leading to the best performance is reported. The ROCs
of the different types of models are shown in figure 3.3. γ, AUC, and YI are shown in table 3.3. Figure
3.4 displays the performance of 1000 support vector machines with γ = 0.4 and λ = λ1SE on all subjects.

Table 3.3: Performance of models with best tuning parameter γ. Criterion: elastic net mixing
parameterλmin or λ1SE .

Model Best γ Criterion AUC 95% CI YImax Sensitivity Specificity
Baseline model 1 λmin 0.823 0.812-0.833 0.507 0.707 0.800
Logistic regression 1 λmin 0.884 0.876-0.892 0.634 0.769 0.865
Bagged random forest 1 λmin 0.882 0.874-0.890 0.623 0.748 0.875
Support vector machine 0.4 λ1SE 0.886 0.878-0.895 0.648 0.800 0.848

Bagged random forest

Logistic regression
Support vector machine 
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ty
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Figure 3.3: Mean interpolated ROC of all used models and QTc Hodges. The baseline model was a
logistic regression model, with only QT(c) values, age and gender as inputs. The performance was
averaged over all 100 models.
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Figure 3.4: Histograms displaying the performance of the currently used QTc thresholds (450ms for men
and 460ms for women, using QTc Bazett), and our support vector machines. Blue: correctly classified
subjects. Red: incorrectly classified subjects. To produce this figure, 1000 models were used on their
own testing set (see figure 2.7). All models operated at YImax. The average prediction of all 1000
models per subject is shown here.

Included features in final model. Since a support vector machine with γ=0.4 performed the best,
this model was trained on all data. For λ = λ1se , the 10 most important features were: Asymmetry
in VR and V3, skewness in VR, VF, V5 and VL, Tpk to Tend interval, kurtosis in VL and V3, and
biphasicness in VR. For a list of all included parameters and their coefficients, see appendix D.
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Chapter 4

Discussion

4.1 Machine learning model

When using a machine learning approach combined ECG-based morphology features and subject charac-
teristics, the best mean model AUC was 0.886, as opposed to a maximal AUC of 0.812 when only using
QTc thresholding. At a maximal Youden’s index, this means a rise of 14.0% sensitivity and 2.4% in
specificity is achieved, compared to the QTc thresholding, leading to their respective values of 80% and
84.8%. Compared to the baseline model, the added value of T-wave morphology shows an increase in
AUC, sensitivity and specificity of 0.063, 9.3% and 4.8%, respectively. As visible in figure 3.4, the added
value of our method is found in healthy subjects with a Bazett’s QTc>450 (or 460, for females) and
patients with a Bazett’s QTc≤450 (or 460, for females). The proposed model could decrease LQTS
underdiagnosis if implemented in clinical practice, since a major rise in sensitivity and a minor rise in
specificity are achieved when diagnosing LQTS, compared to QTc thresholding.

In our study, our results were compared the genetic testing results. As stated in chapter 1, a large
fraction of genetically identified patients do not show clinical symptoms, due to poor penetrance of the
associated genes [12–14]. Genotype-negative relatives can have a QTc of >500ms, while LQTS patients
can have a QTc of <400ms. Therefore, it could be more relevant to compare our results to the symp-
tomaticity of patients instead of to genetic testing results, as some other studies have attempted [25].
Unfortunately, data on symptomaticity were not available for our study.
Our study contained LQT1, LQT2 and LQT3 patients and compared them to genotype-negative rela-
tives, which resembles reality. In other studies where LQTS was diagnosed through the ECG by Andersen
et al. and Chorin et al., healthy volunteers were compared to LQTS patients [4, 6]. This could lead to
an increase in classification accuracy compared to the real-life scenario. Chorin et al. found a sensitivity
and specificity were 82% and 77% when classifying LQTS at rest, respectively [6]. Andersen et al.
did not include any LQT1 or LQT3 patients, which can also have a positive effect on classification
accuracy. They reported a 90% sensitivity and a 95% specificity when classifying LQT2 patients and
healthy controls [4]. Both studies did not use a training set and a test set to classify subjects, which
could increase prediction accuracy as well, considering that the optimal cutoff values can be found for
the entire research population.
As stated in chapter 1, diagnosis cannot be confirmed in an estimated 20% of patients through means of
genetic testing. Although our study might have contained positively tested patients without symptoms,
we are certain about the genetic diagnosis of all subjects. Since genotype-negative subjects in our study
were relatives of included LQTS patients, no false-negative controls were included, since a subject’s
relative should have the same mutation as the subject himself.
A standard 12-leads ECG is typically a part of standard care in cardiology, which could be a major ad-
vantage for implementation in clinical practice. Other attempts to diagnose LQTS without the use of
genetic testing have also been made, for example by using an epinephrine test or by investigating the
mechano-electrical window in echocardiography. [25,26] The main disadvantage of most studies is that
additional interventions need to be performed.
Our model selected a combination of skewness, kurtosis, and asymmetry, biphasicness and Tpeak to Tend

interval as the 10 most discriminative features. According to articles of Chorin et al. and Yan et al., the
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time to onset, length, amplitude, area, notch should be more discriminative to diagnose LQTS. [3, 6]
However, their research focused on manually assessing pseudo-ECGs or pairs of leads. Our method
automatically combines the outcomes of all leads separately, which could have led to a different set of
discriminative features. Our findings are however in agreement with the findings of Andersen et al., in
general. They found that notch score, asymmetry score and flatness score (=1-kurtosis) discriminate
LQT2 patients from healthy subjects. [4] However, as stated in section 4.3, notch score was not used
as an input in our research.

Recommendations

It needs to be emphasized that in our study, the ratio of patients to controls was approximately 1:1.
This is not representative for the 1:2000 prevalence of LQTS in the general population [7]. For this
reason, it should be considered to choose a different cutoff value with a higher specificity. Otherwise,
an overdiagnosis of LQTS - or at least a high number of referrals for LQTS - could occur.
The models produced in our study have only been tested internally, on a known cohort. Even though
the average performance of 100 models was calculated to assess the potential performance of a final
model trained on all data, this final proposed model has not been tested on an external cohort yet.
Additionally, it is a topic of discussion what the final model should be. Two options are available: 1) to
use an ensemble of 100 models and use their mean prediction for classification, or 2) to train one final
model on all data. The first option poses problems in terms of interpretability. For the second option,
it is less clear how this final model would perform on an external validation set. Both options should be
considered and tested on an external validation set.
Even though the quality of the 10-second 12-leads ECGs in this research most often did not allow to
analyze individual beats, it would be eligible to do so. In our study, these filtering methods and the
calculation of an average complex were necessary to obtain a smooth signal. However, in some cases,
LQTS has been reported to produce T-wave alternans, which are beat-to-beat variations in T-wave
morphology [27,28]. ECGs in this study were part of standard clinical routine. At time of registration, it
was not yet known that these ECGs would be used for automated analysis. For future implementation,
we would advise to give additional care to the quality of the ECG when recording.
Our study focused on an automated method to diagnose LQTS. Some improvements need to be made
regarding the detection of biphasic and flat T-waves in our algorithm, and external validation is still
needed. However, given the performance and the ease-of-use of the model, it does show potential be
implemented in clinical care as a first diagnostic tool to indicate the potential diagnosis LQTS.

4.2 QTc threshold

When using only the individual QT or QTc intervals to classify subjects as healthy or LQTS, Hodges’
QTc yielded the best results in terms of ROC AUC: 0.812. Sensitivity and specificity at YImax were
66% and 82.2%, respectively. The cutoff value was 435ms. Hodges’ QTc was followed by Fridericia
(AUC=0.806), Framingham (AUC=0.782), and Bazett (AUC=0.781), consecutively.
Our study used a global principal component analysis based detection. This method was chosen because
in LQTS, QT intervals can vary greatly between leads (see section 8.1). However, in clinical practice,
the QT interval is measured in lead II, V5 or V6. In 30 patients (4%), T-wave end could not be detected
correctly by the used algorithm. Reasons included biphasic T-waves, flat T-waves or high interlead
variability in Tend. Since our study aimed to develop an observer-independent algorithm, this is one
drawback which should be resolved in the future.
Currently, the most universally used correction method is Bazett’s method, ever since its first intro-
duction in 1920 [29]. However, as multiple studies have indicated before, Bazett’s correction tends to
undercorrect for heart rates (HR) smaller than 60 beats per minute (bpm), and overcorrect for HR >

60 bpm [30–32].
Wong et al. compared six different QT interval correction methods in 1179 caucasian athletes with
or without bradycardia, concluding that Fridericia’s QTc is the best method for clinical interpretation
of QT interval in this study population [30]. Luo et al. concluded that Hodges’ QTc shows the least
correlation with HR in 10303 healthy caucasians, suggesting that Hodges’ method is the best method
of correction [31]. This shows that different methods of QT correction could be more appropriate than

28



the widespread Bazett’s QTc. However, both studies assessed a different goal than our study: they both
aimed to find the QTc method with the least correlation with HR. When aiming for the most widespread
applicability of QT correction and an LQTS diagnosis rate as accurate as possible, we advise to use
Hodges’ QTc combined with a cutoff value of 435ms, irrespective of gender. In our research, this led
to a sensitivity of 66% at 82.2% specificity, as opposed to a sensitivity of 51.3% and a specificity of
89.8% when using Bazett’s QTc with the currently maintained thresholds of 450ms for men and 460ms
for women [33].

4.3 Notch score

The methods of Andersen et al. were used to calculate a notch score [4, 5]. Validation of this notch
score yielded very poor agreement between the calculated notch score by the algorithm and the manual
notch assessments by two of our researchers: YI was <0.1. For this reason, the calculated notch score
was not included as a predictor to the machine learning models.
In our study, other filtering methods were used than the study performed by Andersen et al. [4,5]. Even
though an average complex was constructed in our study and multiple filtering methods were applied
to calculate and validate the notch score, the signal was not smooth enough to correctly determine a
notch score, since the second derivative is very sensitive to noise.
In the study performed by Andersen et al., a low-pass Kaiser finite impulse response filter with a cutoff
frequency of 20Hz was applied to the the first principal component of the (estimated) ST-T segment of
the vectorcardiogram. However, the presence of a notch in this principal component was not validated
with the presence of a notch in the actual ECG in their study. Additionally, the effect of 20Hz filtering
on the presence of a notch was not investigated. Hence, it is unclear whether the notch calculation as
determined by Andersen et al. represents a notch in the actual electrocardiogram. For this reason, our
research focused on validation of their notch score-algorithm. Still, it would be desirable to validate the
presence of a notch in a quantitative manner for LQTS diagnosis, since the presence of a notch has
been widely reported in LQT2. [3, 4]
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Chapter 5

Conclusion

In this thesis, a machine learning-based diagnostic tool for long QT syndrome was developed. Receiver
operating characteristics showed a substantial increase in sensitivity and specificity compared to the
current situation, in which a certain QTc threshold as a diagnostic criterion. The best mean model
area under the curve of the receiver operating characteristic was 0.897, as opposed to a maximal area
under the curve of 0.815 when only using QTc thresholding. At a maximal Youden’s index, this means
that a rise of 21.2% sensitivity is exchanged for a fall of 1.8% in specificity, leading to their respective
values of 79% and 87.5%. While considering the current proposed tool still requires some adjustments
and validation, it does show potential for implementation in clinical practice. If the current method of
QTc thresholding would be replaced by the diagnostic tool as developed in this study, it could potentially
decrease long QT syndrome underdiagnosis.
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Part II

Background
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Chapter 6

Anatomy and physiology

6.1 The heart as a pump

The human heart is divided into four chambers: the left ventricle, the left atrium, the right ventricle and
the right atrium. Blood enters the heart at the atria, and leaves the heart through the ventricles. The
right side of the heart receives blood from the body and pumps it through the pulmonary circulation,
which carries blood to the lungs and returns it to the left side of the heart. In the lungs, carbon dioxide
is removed from the blood, while oxygen is added to the blood. The left side of the heart pumps blood
through the systemic circulation, which delivers oxygen and nutrients to the body. From those tissues,
carbon dioxide and other waste products are carried back to the right side of the heart.

The contraction of the heart is performed in cardiac cycles. Throughout one cardiac cycle, the
following steps occur:

1. Rapid ventricular filling. The majority of inflow into the ventricles occurs passively during this rapid
ventricular filling phase. Also, the atria fill with blood, coming from:

• The inferior and superior vena cava and the coronary sinus, for the right atrium.

• The pulmonary veins, for the left atrium.

2. Atrial contraction. The atria contract, forcing the last 20% of blood into the ventricles.

3. Isovolumetric contraction. The ventricles contract, while no ejection takes place yet. Pressure
builds up in the ventricles.

4. Ventricular ejection. The ventricles contract further, pumping the blood into:

• The aorta, from the left ventricle.

• The pulmonary arteries, from the right ventricle.

Once contraction has finished and the blood has left the ventricles, the cardiac cycle starts over again.
A schematic representation of the basic anatomy of the human heart is displayed in figure 6.1(a).

6.2 The heart as an electrical system

An extensive electrical system is needed to generate and conduct electrical impulses which cause car-
diomyocytes (cardiac muscle cells) to contract. At the start of each cardiac cycle, an electrical impulse
is generated at the sinoatrial node (SA-node), which is situated in the superior wall of the right atrium.
After its generation, this impulse spreads rapidly over the atria, making the atria contract. The elec-
trical impulse takes one of the internodal pathways to travel to the atrioventricular node (AV-node).
After a delay at the AV-node, the electrical impulse travels further through the AV-bundle, which is
situated inferiorly to the AV-node. Subsequently, the impulse spreads through the left and right bundle
branch (LBB and RBB). The bundle branches terminate in Purkinje fibers, which are located in the inner
ventricular walls. The Purkinje fibers pass the electrical activity to the myocardial tissue, making the
ventricles contract simultaneously. A schematic representation of the basic anatomy and physiology of
the electrical system of the heart is displayed in figure 6.1(b).
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(a) Basic anatomy of the human heart. Adapted from
[34].

(b) Basic anatomy of cardiac conduction system. Adapted
from [34].

Figure 6.1: Anatomy of the human heart.

6.3 The cardiac action potential

The generation and conduction of electrical impulses occur on a cellular level. The SA-node is the
primary natural pacemaker of the heart, consisting of a specialized group of cells that can generate
electrical impulses at regulated intervals. These electrical impulses are generated by ion flows which
produce action potentials. These action potentials spread throughout the heart, following the route de-
scribed in 6.2. The cells on the inside of the heart, called cardiomyocytes, are coupled through electrical
bridges, called gap junctions. A cardiac action potential consists of five phases. These phases differ
somewhat between cardiac cells, but as an example, the events within a ventricular cardiomyocyte will
be presented, since this cell type is most relevant considering the scope of this study. Figure 6.2 displays
the five phases of an action potential phases of a ventricular cardiomyocyte, which are as follows [35]:

Phase 4. In this phase, the cardiomyocyte cell membrane is at rest. Among all ions, the cell is
most permeable to free potassium (K+) ions, which explains why the resting cell membrain potential is
roughly -85mV. Ionic pumps maintain this cell potential.

Phase 0. During this phase, a rapid, positive change in voltage across the cell membrane occurs.
The positive change in voltage is called depolarisation. This depolarization originates from activation of
sodium (Na+) channels, which increases the flow of Na+ ions over the cell membrane. Sodium channels
are activated by the arrival of an action potential of a neighboring cardiomyocyte through a gap junction.
If the arrival of this action potential increases the cell membrane potential to a certain threshold value,
the sodium channels will open, depolarizing the cardiomyocyte.

Phase 1. During this phase, Na+ channels are rapidly deactivated, drastically reducing the move-
ment of Na+ ions into the cell. At the same time, K+ channels open for a very brief amount of time,
leaving K+ ions out of the cell, and decreasing the membrane potential slightly more.

Phase 2. In this phase, the membrane potential remains almost constant, while the membrane be-
gins to repolarize very slowly. This means a negative change in membrane potential occurs. This allows
K+ ions to leave the cell. However, calcium (Ca2+) ions and chloride (Cl−) ions flow into the cell, which
almost leaves the membrane potential constant. The Ca2+ inflow does three things:

1. Binding to calcium channels on the sacroplasmatic reticulum, opening them. This allows Ca2+ to
flow out of the sacroplasmatic reticulum, letting the cardiomyocyte contract.

2. Indirectly mediating (Cl−) ion outflow, which opposes the voltage change caused by the K+

outflow.
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3. (Indirectly) increasing activity of the sodium-potassium pump.

As a result of these ion movements, the net membrane potential will barely change.

Phase 3. In the final phase of the cardiac action potential, rapid repolarization takes place. Three
vital steps occur:

1. The Ca2+ ion flow is stopped.

2. More K+ ions leave the cell. Consequently, a net outward positive current occurs, which causes
the cell to repolarize.

3. Ionic pumps restore ion concentrations back to the pre-action potential state, meaning that intra-
cellular Ca2+ ions are pumped out of the cell, which in turn means that the cardiomyocyte stops
contracting. Overall, there is a net outward positive current during phase 3, producing a negative
change in membrane potential.

Figure 6.2: The five phases of a ventricular action potential. Ion currents of Na+, K+ and Ca2+ ions is
denoted. Reproduced from [36].
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Chapter 7

Electrocardiography

7.1 Physiology behind electrocardiography

Action potentials occur in all cardiomyocytes, which means this process occurs in endocardial, epicardial
and midmyocardial cells. Activation starts at the endocardium, since the Purkinje fibers terminate in this
area. Thereafter, the midmyocardial layer and the epicardium are activated. During an electrocardiogram
(ECG) recording, the net sum of these voltages is measured in different directions, typically defined as
described in section 7.2. This is shown in figure 7.1(a). By subtracting the epicardial signal from
the endocardial signal, the pseudo-ECG arises. This pseudo-ECG is a transmural ECG through the
ventricular myocardium, measured at one location. During cardiac activity, this can be performed in
multiple directions, resulting in an ECG which displays the net activation vector in each direction. The
ECG has several distinguished waveforms, which all correspond to a certain electrical activation of
cardiomyocytes:

1. The P-wave corresponds to the depolarization of both atria.

2. The QRS-complex corresponds to the depolarization of both ventricles.

3. The T-wave corresponds to the repolarization of both ventricles.

An example of these characteristic waveforms is displayed in figure 7.1(b).

(a) Cellular basis of the
ECG. The relationship be-
tween the epicardial, M-
cell and endocardial ac-
tion potential produces the
net activation through the
myocardium. Reproduced
from [3].

(b) The waveforms of an ECG, all correspond-
ing to certain electrical activity of the heart. P:
atrial depolarization. QRS: ventricular depolar-
ization. T: ventricular repolarization. Adapted
from [37].

Figure 7.1: Cellular basis of the ECG and ECG waveforms
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Table 7.1: Different methods to correct QT interval for heart rate. RR: interval between current and
previous R-peak. HR: Heart rate in beats per minute.

Correction method Formula
Bazett QTcB = QT√

RR

Fridericia QTcFc = QT
3√
RR

Framingham QTcFh = QT + 0.154 · (1− RR)

Hodges QTcH + 1.75 · (HR − 60)

The QT-interval as shown in figure 7.1(b) is often corrected for heart rate, since repolarization
tends to shorten with increasing heart rate. Multiple correction formulas have been developed: Bazett’s,
Fridericia’s, Framingham’s, or Hodges’ method (see table 7.1). Bazett’s method is applied the most.

7.2 Technical background

An ECG can be acquired by placing electrodes on the body surface. The net sum of all electrical
activity in volts in a certain direction in the heart is summed and measured in the ECG by measuring
potential differences. The ECG is the most used clinical tool to assess cardiac electrical activity, to
identify abnormalities in heart rhythm, conduction or cardiac ischemia. The ECG electrodes to measure
potential differences can be placed in different configurations. The most common way of acquiring an
ECG is by using the limb leads, in combination with the augmented voltage leads and the precordial
leads.

7.2.1 Limb leads

The limb leads, are the original ECG leads as defined by Einthoven, only using three electrodes. One
electrode is placed on the right arm (r), one electrode is placed on the left arm (l) and one is placed
on the left leg (f ). Additionally, a ground electrode is always placed on the right leg as a reference, to
prevent power line noise from interfering with the small biopotential signals of interest. For simplicity,
this electrode is not shown in figures. The three potential differences are called limb leads I, II and
III [38]:

I = φl − φr (7.1)

II = φf − φr (7.2)

III = φf − φl (7.3)

where φr is the potential measured at r , φl is the potential measured at l , and φf is the potential
measured at f . These leads are called bipolar, since they directly measure potential differences between
the electrodes. Einthoven’s leads are displayed in figure 7.2(a).

7.2.2 Augmented voltage leads

The augmented voltage leads, as first described by Goldberger, are constructed by using the limb leads.
They contain no information that was not already present in the limb leads, but the six signals are easier
to interpret by visual inspection. Augmented voltage leads are termed unipolar leads because a single
positive electrode is referenced against a combination of the other limb electrodes. Augmented voltage
(aV )-leads are constructed as follows [38]:
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aVR = φr −
1

2
· (φl + φf ) = −

1

2
· (I + II) (7.4)

aVL = φl −
1

2
· (φr + φf ) =

1

2
· (I− II) (7.5)

aVF = φf −
1

2
· (φr + φl) =

1

2
· (II + III) (7.6)

The augmented voltage leads are displayed in figure 7.2(a).

7.2.3 Precordial leads

The precordial leads (also referred to as Wilson’s leads), are unipolar leads as well. The potential
difference is measured between each precordial electrode and the average of φr , φl and φf . These
potential differences are called V1 through V6. The precordial electrodes all have their own specific
anatomical reference on which they should be placed (see figure 7.2(b)):

• V1 on the fourth intercostal space, just right to the sternum

• V2: on the fourth intercostal space, just left to the sternum

• V3: halfway between V2 and V4

• V4: on the left fifth intercostal space, midclavicular line

• V5: horizontal to V4, anterior axillary line

• V6: horizontal to V5, mid-axillary line

(a) Limb leads and augmented voltage leads. Adapted
from [39].

(b) Precordial leads. Note that the three limb
leads are used as a reference. Reproduced
from [39].

Figure 7.2: ECG leads
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7.2.4 True unipolar limb leads

Mathematically, augmented limb leads are scaled true unipolar limb leads (hence the name ‘augmented’).
For example, the unipolar VR lead is calculated as follows:

VR = φr − φWCT = φr −
φr + φl + φf

3
=

2 · φr − φf − φl
3

=
2

3
· aVR (7.7)

where φWCT is the Wilson central terminal (the electrical center of the frontal plane electrodes). The
augmented limb lead avR is calculated by:

avR = φr −
φl + φf

2
=

2 · φr − φf − φl
2

(7.8)

So, the true unipolar limb leads are calculated by scaling the augmented voltage variants with two
thirds [18]:

VR =
2

3
·

2 · φr − φf − φl
2

=
2 · φr − φf − φl

3
=

2

3
· aVR (7.9)

7.3 Vectorcardiography

As explained in section 7.2, the net electrical activity of the heart in certain directions is displayed in
the ECG. Instead of measuring the net electrical activity in 12 predefined directions like in a 12-leads
ECG, the vectorcardiogram (VCG) displays a reconstruction of the absolute electrical activity in a 3D
space, defined by orthogonal X-, Y-, and Z-axes, containing all electrical information. The three leads
are represented by right-left axis, head-to-feet axis and front-back (anteroposterior) axis. [40] The VCG
can be reconstructed from the original 12-lead ECG, see equations (7.10) to (7.12).

X = −(−0.172 · V1 − 0.074 · V2 + 0.122 · V3 + 0.231 · V4 + 0.239 · V5 + 0.194 · V6 + 0.156 · I− 0.010 · II)
(7.10)

Y = (0.057 · V1 − 0.019 · V2 − 0.106 · V3 − 0.022 · V4 + 0.041 · V5 + 0.048 · V6 − 0.227 · I + 0.887 · II)
(7.11)

Z = −(−0.229 · V1 − 0.310 · V2 − 0.246 · V3 − 0.063 · V4 + 0.055 · V5 + 0.108 · V6 + 0.022 · I + 0.102 · II)
(7.12)

where X is the electrical activity in mV on the X-axis, Y the activity on the Y-axis and Z the activity
on the Z-axis. An example VCG is shown in figure 7.3.
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Figure 7.3: Example vectorcardiogram. Each point in space represents the 3D electrical activity at a
certain point in time.
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Chapter 8

Long QT syndrome

8.1 Pathophysiology

The congenital long QT syndrome is a genetic disorder in which cardiac ion channels are affected. A
variety of ion channels can be affected, as described in section 8.2. This leads to action potential ab-
normalities, particularly in the repolarization phase of the action potential. Repolarization is generally
prolonged in LQTS. Since the penetrance of affected genes can be very low in LQTS, the degree of
repolarization prolongation can vary widely [14]. This means that individuals can carry an affected gene,
without having a prolonged repolarization phase of the action potential. This poses the main challenge
in diagnosing long QT syndrome.

Since not all cardiomyocytes are affected in the same manner, heterogeneity of repolarization is in-
creased, called increased dispersion of repolarization. As described in section 8.3, this can lead to
notable changes in the repolarization phase of the ECG. In LQTS, as a consequence of prolonged re-
polarization and dispersion of repolarization, an extra phenomenon can occur. Groups of clustered cells
can produce an extra depolarization before the action potential is finished. This phenomenon is called
early afterdepolarization (EAD) (see figure 8.1). An EAD is defined as ‘a slowing or reversal of normal
repolarization during phase 2 or phase 3 of the action potential’ [41]. An EAD occurs when the net
outward current required for repolarization is compromized. In general, midmyocardial cells (M-cells) are
more prone to EADs than endocardial or epicardial cells [41]. Although the existence of the M-cell is still
under debate, this discussion is beyond the scope of this thesis. The main point is that repolarization is
dispersed along the transmural axis of the myocardium. Impaired ion currents in LQTS can lead to an
additional depolarization in this phase, even though the cell has not repolarized fully yet.

Figure 8.1: Example of an early afterdepolarization. Note the increased repolarization length. Adapted
from [39].

Under the right conditions, a group of local EADs can lead to depolarization of adjacent cells,
which leads to activation of both ventricles: a premature ventricular complex (PVC). In principle, this
is a harmless mechanism without adverse consequences. However, if an EAD occurs under the right
circumstances (i.e. the right place and time, it can create so-called re-entry mechanisms, see figures 8.2
and 8.3. If re-entry occurs, not all cells are repolarized at the time of EAD formation: these cells are
still refractory. EAD-forming cells can create a current which starts circling around the refractory cells.
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By the time the cycle is almost completed, the previously refractory cells are fully repolarized, making
them excitable again. These can in turn make the original cells depolarize again, creating a continuous
loop, see figure 8.3. This phenomenon is known as a potentially lethal type of ventricular tachycardia,
called Torsades de Pointes, see figure 8.2. [41]

Figure 8.2: Top: typical initiation of Torsades de Pointes. A PVC (which follows an S) is typically
followed by a compensatory pause (denoted L). Consequently, the normal beat which follows this complex
contains an increased QT interval, or repolarization duration. If a PVC falls during this QT interval,
Torsades de Pointes can be initiated, since the ventricles were only partially repolarized. Bottom:
sustained Torsades de Pointes. Adapted from [42].

Figure 8.3: Example of a reentry circuit following from an early afterdepolarization (EAD). Each image
represents tissue in the ventricular myocardium. Red (-): refractory tissue. Blue (+): depolarizing tissue.
Purple (+/-): relative refractory tissue, which is almost ready to be depolarized. The arrows show the
direction of the depolarization front.

8.2 Genotypes

Up until now, at least 16 different gene abnormalities have been associated with LQTS. The most
frequently occurring types - LQT1, LQT2 and LQT3 - account for 75% of the affected population.
Another 5% is affected by the remaining genetic mutations, while 20% of affected patients remain
with a clinical diagnosis without any identified mutation so far. [12] In case of an absent (identified)
mutation, patients are diagnosed based on clinical presentation, such as family history and presentation
of symptoms [33]. Genetic mutations causing LQTS all affect different proteins, which in turn cause
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Table 8.1: The tree most frequently occurring types of LQTS with corresponding gene defects and
affected ion currents.

Genotype Gene defect Affected ion current
LQT1 KCNE1 IKs (slow rectifier K+ current)
LQT2 KCNE2 IKr (fast K+ current)
LQT3 SCN5A INa (Na+ current)

a variety of cardiac ion channels to be affected. Table 8.1 shows the affected ion channels and genes
in LQT1, LQT2 and LQT3. K+, Na+ or Ca2+ channels can be affected, depending on the altered
gene. Although each individual genotype presents itself with its own symptoms and ECG alterations, all
mutations lead to repolarization deficits, potentially leading to very dangerous cardiac arrhythmias like
Torsades de Pointes. [43]

8.3 T-wave morphology

As a direct consequence of the dispersion of repolarization described in section 8.1, morphology alter-
ations can arise in the repolarization phase (the T-wave) of LQTS patients (see figure 7.1(b)). As a
consequence of ionic pump defects, the ECG can show abnormal T-wave morphologies, depending on the
particular genotype. An example of altered T-wave morphologies depending on ionic pump alterations
in a pseudo ECG is shown in figure 8.4.

The end of the M-cell action potential corresponds with the end of the T-wave in the pseudo-ECG
and the end of the epicardial action potential corresponds with the peak of the T-wave in the pseudo-
ECG. In all phenotypes of LQTS, the repolarization duration is increased. In LQT1, M-cell repolarization
and the epicardial repolarization show a deflection, which makes its corresponding T-wave broad and
long. In LQT2, a low-amplitude T-wave appears, because of the small difference between the three
signals during the whole repolarization tract. In LQT3, the epicardial repolarization stops relatively
early compared to the other two signals, which makes the corresponding T-wave asymmetric. Also, the
difference between the three signals remains close to zero for a long time, which makes the T-waves
late-onset. [6, 44, 45] Dispersion of repolarization is prone to inducing Torsades de Pointes, see section
8.1. [3, 46].

Figure 8.4: Abnormal T-waves in pseudo-ECGs due to induced ion channel defects. The combination
of endocardial, M-cell and epicardial signals produces aberrant T-waves. Although the existence of the
M-cell is still under debate, the main point is that repolarization is dispersed along the transmural axis of
the myocardium. A: impaired slowly-activating delayed rectifier K+ current (as in LQT1) B: impaired
rapidly-activating delayed rectifier K+ current (as in LQT2). C: impaired Na+ current (as in LQT3).
Reproduced from [46].
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Chapter 9

Machine learning

9.1 Feature selection

9.1.1 Elastic net regularization

The following equation describes multivariate linear regression for one subject, which is used to develop
a predictive model:

fj(xj) = α+ β · xj + εj (9.1)

where fj(xj) is the regressand for a particular subject, α is the intercept with the y-axis (which is the
response for this subject when all regressors are zero), β is a row vector containing all coefficients, xj is
a column vector containing all regressors (variables used to predict yj), and εj is the error term for this
particular subject. A linear fit can be obtained by minimizing the residual sum of squares (RSS):

RSS =

K∑
j=1

(εj)
2 =

K∑
j=1

(yj − (α+ β · xj))2 (9.2)

where K is the number of subjects and yj is the measured value of the variable to predict, for each
subject. RSS can be minimized by adapting β, to fit the model. This method can work in simple
cases. However, in more complex or elaborate cases (e.g. when K is relatively large), an ordinary least
squares solution does not predict future data accurately and is difficult to interpret. [24] To increase
model interpretability and prediction accuracy, ridge regression or LASSO (least absolute shrinkage and
selection operator) can be applied. Ridge regression shrinks the values of β towards zero. However,
none of the elements of β is exactly equal to zero, leading to difficulties in model interpretability. On
the other hand, LASSO shrinks as much elements of β as possible to zero, while removing correlated
features. However, in case of high correlations between predictors, prediction performance of LASSO is
dominated by ridge regression. The elastic net method combines advantages of both ridge regression
and LASSO. [47] The elastic net method selects the most relevant features to include in the model.
The elastic net equation describes this method mathematically:

min
(α,β)∈RN+1

Rλ(α, β) = min
(α,β)∈RN+1

 K∑
j=1

(
yj − (α+ β · xj)

)2
+ λ

(
γ · ||β||`1 +

1

2
(1− γ) · ||β||2`2

) (9.3)

where ||β||`1 =

M∑
i=1

|βi | (9.4)

||β||2`2 =

M∑
i=1

β2i (9.5)

where λ is the elastic net tuning parameter, ||β||`1 is the `1 penalty leading to feature selection shrinkage
as in LASSO, ||β||2`2 is the `2 penalty leading to coefficient shrinkage as in ridge regression, γ is the
elastic net mixing parameter, and M the number of parameters [23]. Note that this equation is an
altered version of equation (9.2). Both γ and λ are varied to find a solution Rλ as small as possible. γ
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can be varied from 0 to 1, while λ can be varied from 0 to∞, in principle. To find the best γ and λ, the
cross-validated error is investigated, which is described in section 9.1.2. In our study, the probability of
a subject having LQTS is modeled, which means that the outcome is dichotomous, meaning that our
subjects are either healthy or diseased. For this reason, logistic regression (see section 9.2.1) is used
instead of linear regression. Hence, equation (9.3) should be converted from linear to logistic regression.
First, since the probability of a subject belonging to a certain class is modeled, the natural logarithm of
the maximum likelihood function (equation (9.10)) from logistic regression is calculated:

ln

 K∏
j=1

[ 1

1 + e−(α+β·xj )

]yj
·
[

1−
1

1 + e−(α+β·xj )

]1−yj =

K∑
j=1

[
− ln

(
1 + e−(α+β·xj )

)
+ β · yj · xj

]
(9.6)

where yi is the subject’s real disease state. This formulation is also called the log-likelihood. The full
derivation of this formula can be found in appendix C. Subsequently, the linear regression part in equation
(9.3) is replaced by this log-likelihood. The RSS needed to be minimized, to minimize the prediction
error in linear regression (see equation eq:RSS). In contrast, the likelihood of correct classification should
be maximized. For this reason, the elastic net penalty is subtracted from the maximized log-likelihood.

max
α,β∈RN+1

 1

K

K∑
j=1

yj · (α+ βxj)− ln
(

1 + e−(α+β·xj )
)
− λ

(1

2
(1− γ) · ||β||2 + γ · ||β||

) (9.7)

By maximizing the log-likelihood for the optimal γ and λ, the optimal combination regressors to include
can be found.

9.1.2 Cross-validation

Elastic net regularization (see section 9.1.1) can help to select the best subset of regressors for a model,
making use of cross-validation. λ and γ are varied iteratively to find a solution Rλ as small as possible
(see equation (9.3) and (9.6)). Let γ be a vector of N values; in our study, N = 6. Let λ be a vector
of Q values, in our study, K = 100. Remember that each combination of λ and γ leads to its own β,
leading to its own subset selection. Since α is the intercept (which is the response when all elements
of β are equal to 0), α does not change if λ or γ is varied. Cross-validation is used for Q · N times, to
assess the performance of each β. Eventually, the β with the best performance will lead to the optimal
set of features to include in the model.

Cross-validation internally tests each subset of β. In this study, 10-fold cross-validation is used, meaning
that 10 differently fitted logistic regression models are produced for each combination of γi and λj . Data
are separated into 10 equally large groups. For each iteration out of 10, a model is trained on 9 of these
groups, and tested on the last one, see figure 9.1. Each time a new model is tested, the prediction error
εm is noted. Summed over all iterations, the total cross-validation error for this (γi , λj) is equal to:

E(γi , λj) =

10∑
m=1

εm(γi , λj) (9.8)

The cross-validation error is the prediction error on the testing set, summed over all 10 iterations. Since
we are only interested in subsets with a low cross-validation error, the included coefficients β are noted
at two instances:

1. Value of the elastic net tuning parameter λ (λmin) which leads to the minimal cross-validation
error.

2. Value of λ where the cross-validation error is 1 standard error removed from the minimal cross-
validation error(λ1SE).

λ1SE works approximately as good for model training as λmin, while including less predictors. This leads
to a simpler model, which leads to better interpretability. For this reason, the included β at λ1SE are
investigated. [24]
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Figure 9.1: 10-fold cross-validation. Each time, a new model is produced, which is trained on a different
subset of data. Each group of subjects is fixed, and is used for testing once. The process shown above
is repeated 8 more times, so that 10 models arise from cross-validation.

9.2 Machine learning models

In our study, M inputs were used for the machine learning models. This means that the models in our
study are operating in anM-dimensional space. However, anM-dimensional space is hard to understand.
For this reason, graphical material in this section is shown in a two-dimensional space, which makes it
easier to interpret. In this section, three different machine learning models are explained: logistic
regression, a bagged random forest and a support vector machine. These models are used after feature
selection.

9.2.1 Logistic regression

Logistic regression classification is a method used to separate two groups, based on one or more pa-
rameters. When using multiple parameters, this is called a multivariate logistic regression classification.
In our study, the probability of a certain subject having LQTS is modeled. The value of this probability
ranges between 0 and 1. To this end, the multivariate linear regression formulation (see equation (9.1))
should be transformed, so its minimum and maximum values are 0 and 1. In logistic regression, the
logistic function is used to describe the probability of a subject belonging to a certain class (e.g. having
LQTS):

pj(xj) =
1

1 + e−(α+β·xj )
(9.9)

where α is the intercept, β is a row vector containing all coefficients, xj is a column vector containing
all regressors and pj(xj) is the probability of this subject having LQTS, see figure 9.2. Consequently, the
probability of the same subject being healthy is equal to 1 − pj(xj). To fit the model, estimates for βi
are sought in such a way that the predicted probability of a subject having LQTS corresponds as closely
as possible with the individual’s real disease state, also called maximum likelihood estimation. In other
words: pj(xj) should be as close to 0 as possible for all healthy subjects, and as close to 1 as possible
for all LQTS patients. This intuition can be specified using the likelihood function:

L(β) =

K∏
j=1

[
1

1 + e−(α+β·xj )

]yj [
1−

1

1 + e−(α+β·xj )

]1−yj
(9.10)
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where yj is the actual class of the subject (healthy or LQTS). Note that if yj = 1, so when the subject
has LQTS, the second term is 1. If the subject is healthy, yj = 0, so the first term is 1. So L(β) ≤ 1,
and if L(β) = 1, classification is performed perfectly.

p(
LQ

TS
)

ƒ(ß,xj)
0

1

Figure 9.2: The logistic regression function. Probability of having LQTS, plotted against f (xj).

9.2.2 Support vector machine

In figure 9.3(a), variable x1 is plotted against x2. The red dots represent patients with class=1 (e.g.
LQTS) and the blue dots represent patients with class=0 (e.g. healthy). To separate both classes, a
straight line can be drawn through the data, called a hyperplane. The black lines separate class 0 from
class 1, like logistic regression does. However, the question remains which of the three lines separates
both classes best when a new sample is introduced. To find a solution to this problem, a maximal margin
classifier can be used.

(a) Example of several hyperplanes
(dashed lines) to separate classes 0 and
1 as in logistic regression (displayed in
blue and red, respectively).

(b) Example of a hyperplane deter-
mined with a maximal margin estima-
tor. This hyperplane is the best way to
separate both classes.

(c) Example of a hyperplane. One sam-
ple has been added to figure 9.3(b),
leading to a drastically decreased mar-
gin. Consequently, all test subjects in
the gray area belonging to class 0 (blue)
would be classified wrongly.

Figure 9.3: Examples of hyperplanes.

The maximal margin classifier draws a line through the data which minimizes the distance from
the line to its closest points (the margin), see figure 9.3(b). By default, a maximal margin classifier
would try to separate data perfectly. However, this could cause it to predict new data poorly, see figure
9.3(c). In this figure, one subject is added to figure 9.3(b). This drastically decreases the margin.
Consequently, all blue subjects in the gray area would be classified wrongly, in contrast to figure 9.3(b).
For this reason, some models not only consider the performance of the system, but also the margin.
This kind of model is called a support vector classifier, or a soft margin classifier. If it increases the
margin, some of the subjects are allowed to be classified wrongly. The complete working mechanisms of
the required regularization techniques are beyond the scope of this thesis. Interestingly, the hyperplane
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x1≤t1

x2≤t2x2≤t2

x3≤t3 x3≤t3

0 0 01 1 1

Figure 9.4: Example of a decision tree. The combination of x1, x2 and x3 define how the subject is
classified.

following from a support vector classifier depends only upon wrongly classified subjects. Consequently,
observations that are far away from the hyperplane do not affect the behaviour of the support vector
machine. [24].

9.2.3 Random forest bagged decision tree

Decision tree

Decision trees work through a quite simple-to-grasp means of prediction, resembling human decision
making [24]. A number of subsequent binary decisions are made to classify subjects as good as possible.
An example of a decision tree is shown in figure 9.4. It consists of a series of splitting rules, starting at
the top of the tree. The top split assigns observations with x1 ≤ t1 to the left branch, and observations
with x1 > t1 to the right branch. Subsequently, the value of x2 is investigated. If x2 ≤ t2, the subject
is assigned to the left branch. Otherwise, the subject is assigned to the right branch. Each subsequent
binary decision classifies the remaining subjects as well as possible. This is done by iteratively consider-
ing all parameters with varying thresholds, and selecting the best parameter to classify subjects in both
groups.

In our study, the minimal classification error rate is found before making each decision, which is the
recommended criterion when the final classification error rate should be as small as possible [24]. An
example of a hyperplane and its corresponding decision tree is shown in figure 9.5. As visible, hyperplanes
formed by decision trees always produce rectangular classification areas. The minimal group (leaf) size
at the bottom of a decision tree should be specified. In our study, the leaf size was set to the default
value of 1, since our methods are quite robust for predicting new data, in terms of variance (see sections
Bootstrap-aggregation and Random forest).

Bootstrap-aggregation

Since conventional decision trees tend to predict new data poorly because of their high variance, a
more advanced method called bootstrap-aggregation can be used to increase prediction accuracy on test
sets. Resulting models are called bagged decision trees. Based on the original training set, N training
sets (Z1, Z2, Z3, ...ZN) of artificial samples are created, see figure 9.6 [48]. In our study, N = 500.
Subsequently, N decision trees are trained: one for each artificial dataset. By creating N models, the
large variance in conventional decision trees will be divided by N. Hence, bagged decision trees tend to
predict new data a lot better than conventional decision trees [24]. To predict the outcome of data in
the testing set, the mean of the outcomes of all N models is used.

Random forest

On top of using a bagged decision tree, an additional criterion can be implemented. The N different
models of bagged decision trees can be highly correlated with one another, since the strongest predictors
tend to be used early in the decision trees. Consequently, averaging all bootstrap-aggregated models will
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Figure 9.5: Example of a hyperplane and its corresponding decision tree. The combination of x1 and x2
define how the subject is classified.

Observa�on X Y

1 0.8 1

2 0.1 0

3 0.6 1

Observa�on X Y

1 0.8 1

1 0.8 1

2 0.1 0

Observa�on X Y

3 0.6 1

2 0.1 0

3 0.6 1

Observa�on X Y

1 0.8 1

2 0.1 0

3 0.6 1

Original dataset (Z)
Z*1

Z*2

Z*N

Figure 9.6: Example of bootstrap with replacement. N different artificial training sets are produced,
based on samples of the original dataset.
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not lead to a significant reduction in bias. [24] To tackle this problem, random forests do not allow the
model to consider all predictors at each decision. A random forest only allows each model to consider a
subset of predictors (for example, as in our study, n =

√
p, with p being the total number of parameters

at each decision). This provides a means of decorrelation. Consequently, the average of the resulting
trees will be less variable, increasing prediction accuracy on the testing set. [24]
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Chapter A

Supplemental info on methods

A.1 Linear differentiator

A simple linear differentiator was used to calculate the derivative of several signals in our study. The
differentiator works as follows:

ḟ (t) =
f (t − 25)− f (t + 25)

(t − 25)− (t + 25)
(A.1)

where t is the time in ms and f (t) is the signal to be differentiated.

A.2 Skewness

After T-wave transformation, the skewness was calculated as follows:

Skewness =
E(x − µ)3

σ3
(A.2)

where x is the T-wave, µ is the mean of the signal, σ is the standard deviation of x , and E(t) represents
the expected value of the quantity t. The skewness can also be written as:

Skewness =

1
n

n−1∑
i=0

(xi − x̄)3(
1
n

n−1∑
i=0

(xi − x̄)2
) 3
2

(A.3)

where n is the number of samples and x̄ the mean of value of all samples. The skewness of a distribution
depends on the ratio of its mean to its median. When mean < median, the skewness is smaller than 0,
leading to a left-tailed distribution. When mean = median, this leads to a skewness of 0 and a symmetrical
distribution. When median < mean, the skewness is larger than 0, which makes the distribution right-
tailed.

A.3 Kurtosis

The kurtosis, after transforming the T-wave, was calculated as follows:

Kurtosis =
E(x − µ)4

σ4
(A.4)

where µ is the mean of ECG, σ is the standard deviation of x , and E(t) represents the expected value
of the quantity t. The kurtosis can also be written as:

Kurtosis =

1
n

n−1∑
i=0

(xi − x̄)4(
1
n

n−1∑
i=0

(xi − x̄)2
)2 (A.5)

63



where n is the number of samples and x̄ the mean of value of all samples. A higher kurtosis means that
the distribution is more ’peaked’, and a lower kurtosis means a less peaked distribution. An average
kurtosis of 3 belongs to a normal distribution.

A.4 Spatial peak QRS-T angle

To calculate the spatial peak QRS-T angle, the maximal QRS complex magnitude (QRSp) and T peak
magnitude (Tp) were found in the VCG. The spatial peak QRS-T angle was calculated using the definition
of the normalized inner product of spatial peak QRS and T vectors, according to the following equation:

SP QRS-T angle = arccos

(
QRSp · Tp
|QRSp| · |Tp|

)
(A.6)

where QRSp is the vector at the maximal magnitude of the QRS complex, and Tp the vector at the
maximal magnitude of the T-wave.

A.5 Spatial mean QRS-T angle

To calculate the spatial mean QRS-T angle of the average complex, the mean QRS complex vector
(QRSm) and mean T peak vector (Tm) were calculated from the VCG, as follows [21]:

QRSm =

RAC+50∑
t=QAC

xt

RAC + 50−QAC
(A.7)

(A.8)

Tm =

Tend∑
t=Tstart

xt

Tend − Tstart
(A.9)

where xt is the 3-dimensional VCG signal at each time, RAC is the R-peak, QAC is the Q-wave, Tend is
the end of the T wave, Tstart is the start of the T wave (see section 2.4), QRSm is the mean vector
during the QRS-complex and Tm is the mean vector during the T-wave. Subsequently, the spatial mean
QRS-T angle was calculated using the definition of the normalized inner product of spatial mean QRS
and T vectors, according to the following equation [21]:

SM QRS-T angle = arccos

(
QRSm · Tm
|QRSm| · |Tm|

)
(A.10)
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Chapter B

Features per lead

Table B.1: Table indicating which leads are necessary to calculate features. TH: T-wave heterogeneity.
SP: Spatial peak. SM: Spatial mean. RH: R wave heterogeneity. TpTe: T-wave peak to T-wave end
interval. T : T-wave morphology feature. *: Global feature. †: Feature based on multiple leads: only
one value results from all denoted leads.

Feature VR VL VF V1 V2 V3 V4 V5 V6 RM
S

VC
G
X

VC
G
Y

VC
G
Z

VC
G
m
ag
ni
tu
de

PC
A1

AreaT X X X X X X X X X
Absolute areaT X X X X X X X X X
BiphasicnessT X X X X X X X X X
AmplitudeT X X X X X X X X X
SkewnessT X X X X X X X X X
KurtosisT X X X X X X X X X
Notch scoreT X X X X X X X X X
Asymmetry scoreT X X X X X X X X X
QRS amplitude X X X X X X X X X
TH(V1-V3)T † X X X
TH(V4-V6)T † X X X
SP QRS-T angle*† X X X X
SM QRS-T angle*† X X X X
RH(V1-V3)† X X X
RH(V4-V6)† X X X
TpTe* X
R to T interval* X X
Length* X
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Chapter C

Log-likelihood function

The following equation shows how the logarithm of the maximum likelihood function (equation I.(9.7))
leads to a logistic regression formulation combined with elastic net (equation I.(9.3)).
For simplicity, S(α, β, xj) = 1

1+e−(α+β·xj )
.

ln

 K∏
j=1

[
S(α, β, xj)

]yj
·
[

1− S(α, β, xj)
]1−yj

=

K∑
j=1

[
yj · ln

(
S(α, β, xj)

)
+ (1− yj) · ln

(
1− S(α, β, xj)

)]

=

K∑
j=1

[
yj · ln

( 1

1 + e−(α+β·xj )

)
+ (1− yj) · ln

(
1−

1

1 + e−(α+β·xj )

)]

=

K∑
j=1

[
yj · ln

( 1

1 + e−(α+β·xj )

)
+ (1− yj) · ln

(
1−

e−(α+β·xj )

1 + e−(α+β·xj )

)]

=

K∑
j=1

[
ln
(

1−
e−(α+β·xj )

1 + e−(α+β·xj )

)
+ yj

(
ln
( 1

1 + e−(α+β·xj )

)
− ln

( e−(α+β·xj )

1 + e−(α+β·xj )

))]

=

K∑
j=1

[
ln
(

1−
e−(α+β·xj )

1 + e−(α+β·xj )
·
e(α+β·xj )

e(α+β·xj )

)
+ yj

(
ln
( 1

1 + e−(α+β·xj )
·

1 + e−(α+β·xj )

e−(α+β·xj )

))]

=

K∑
j=1

[
ln
( 1

1 + e(α+β·xj )

)
+ yj

(
ln
( 1

e−(α+β·xj )

))]

=

K∑
j=1

[
ln(1)− ln

(
1 + e(α+β·xj )

)
+ yj(ln (1)− ln (e−(α+β·xj )))

]

=

K∑
j=1

[
− ln

(
1 + e−(α+β·xj )

)
+ β · yj · xj

]
.
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Chapter D

Included parameters in final model

Table D.1: Included features and β-values in final model. These values are retrieved after standardization
of all parameters.

Feature β-value
Age -0.012
QTc Bazett 0.0063
QTc Fridericia 0.0037
QTc Framingham 0.0037
QTc Hodges 0.0043
Area in V2 1.8E-6
Area in V3 2.0E-6
Absolute area in V1 3.9E-6
Absolute area in V3 3.4E-6
Biphasicness in VR -0.15
Biphasicness in VF -6.2E-4
Amplitude in V6 -1.2E-4
Length 0.014
Time to onset 0.0091
Skewness in VR -0.73
Skewness in VL -0.17
Skewness in VF -0.55
Skewness in V5 -.48
Skewness in V6 -0.082
Kurtosis in VL 0.29
Kurtosis in V3 0.26
Asymmetry in VR 1.01
Asymmetry in VF 0.0075
Asymmetry in V3 0.24
Asymmetry in V4 0.043
Tpk to Tend interval 0.48
Spatial peak QRS-T angle 0.0021
R-peak heterogeneity in V4-V6 -8.3E-5
T-wave heterogeneity in V4-V6 6.89E-4
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