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Executive summary 
This research aims to improve the planning of the workhours, which we call the capacity, in the 

whitefish processing facility of Båtsfjord, which is owned by LNS. LNS has problems planning the 

capacity, due to uncertainty in the supply of raw fish to the processing plant. LNS cannot catch fresh fish, 

which is used as raw material, itself due to regulations by the Norwegian government. Hence, the 

company depends on supply of external fishing vessels, where the catch varies every shipment. The only 

information that LNS has is which vessels are coming to deliver fish, three days in advance. The research 

consists of three steps:  

1. Finding a method to reduce the uncertainty in the supply of raw material;  

2. Creating a mathematical model of the processing plant in Båtsfjord and implementing the 

method of step 1 in this model;  

3. Estimating the gains of the reduction in uncertainty of the supply of raw material.  

In the first step we compare three methods to reduce the supply uncertainty. With the requirements 

that LNS set, we decide that a method where we forecast the fish catch per vessel fits the needs of LNS 

the best. We use the information about the vessel length, the vessel age, the wind speed from the west, 

and the visibility to forecast the number of kilogram Cod a vessel delivers to LNS. All the four predictors 

are significant with a maximum error of 5%. This error gives the probability that a predictor seems to 

have influence, while this is not the case.  

For step 2 we create a mathematical model of the processing plant. We decide to use Stochastic 

Programming since we consider the processing times deterministic. The age and quality of the raw 

material dictates which products LNS can produce. Hence, when not all the supply is used at a given day, 

the possible value of the raw material deteriorates. Therefore, there is a recursion in the calculations, 

making it too difficult to calculate the gains with exact formulae. We decide to use a simulation method 

to evaluate the gains of our forecasting method. We use a rolling planning horizon and simulate for each 

day a realized supply of raw material and for the coming three days a forecasted supply of raw material, 

using the forecasting method of step 1. 

To calculate the gains in step 3 of the research approach, we need a current scenario to compare the 

results of the simulation model with. Because LNS cannot provide us with detailed data of the planned 

capacity in the processing plant, we create our own scenario where LNS uses the average catch of a 

vessel to forecast the supply, we name this scenario the base scenario. With this scenario we show the 

gains when we reduce the supply uncertainty. For this we create the KPI “profit”, which consists of the 

generated profit per kilogram raw fish. Also, we compare the results with the use of our forecasting 

model with actual data of the planned hours in the cutting department of LNS. We create the KPI 

“productivity”, which consists of the kilogram processed fillet per cutting hour. We call this scenario the 

current situation.  

Next, we create the new scenarios where we use the forecasting method of step 2 of the research. We 

create three scenarios that can potentially improve the current situation at LNS: 

1. Only use the forecasting method to forecast the supply of raw material; 

2. Use extra capacity that is flexible against extra costs; 

3. Use method 2 in combination with an extra filleting machine.  
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Table 1 shows the results of the comparisons between the methods we create, and the current 

situation. We see that in all the cases the lower bound of the confidence intervals yields an 

improvement. This leads to the conclusion that the forecasting method increases the current situation.  

Although the case with an extra filleting machine yields the best profits, we advise LNS to implement the 

case with only extra capacity. The investment in the extra filleting machine has a 42% probability of 

yielding less profit than only using overtime. The differences in profits follow a normal distribution. This 

has the result that the probability distribution is symmetric, making the probability of saving a given 

number of NOK the same as losing this amount. This results in a high volatility of the returns of the 

investment. Therefore, we consider the investment too risky for LNS currently, and advice only the use 

of extra capacity, as this does not require any investment.  

  

Method number KPI Confidence interval 
95% Current situation  

Confidence interval 95% 
Base scenario 

 
 

Min Max Min Max 

1 (Forecasting 
method) 

Productivity  14% 28% 3% 8% 

Profit  No data 2% 76% 

2 (Extra capacity) Productivity  15% 59% 13% 23% 

Profit  No data 10% 73% 

3 (Extra capacity 
with extra 
fileting machine) 

Productivity  20% 41% 12% 22% 

Profit No data 18% 90% 

Table 1: Comparison of KPIs with current situation (higher is better) 
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1 Introduction  
This chapter discusses the background of this research. It explains the problem and discusses the 

research, which follows from the problem. Section 1.1 gives a brief explanation of the company, which is 

necessary to understand the problem. Section 1.2 continues with the problem statement and Section 

1.3 gives the research questions and methods. Section 1.4 finishes this section by giving the scope of the 

research. 

1.1 Company description  
Lerøy Norway Seafoods (LNS) is a processor of whitefish, where the most important fish species are Cod, 

Pollock, and Haddock. LNS is active in the northern part of Norway. The company has 8 processing 

plants. It has 3 big plants, operating mostly all year, and 5 smaller plants, which are mostly opened in 

season (Figure 1.1) (Norway Seafoods, 2017). The season starts around the end of January and ends in 

July. LNS needs raw fish to process, which comes from fishing vessels. It does not own its own fishing 

vessels. The reason for this is that it is prohibited for a land-based processing company to catch fish. 

Hence, LNS depends on external fishermen to deliver the raw fish. 

 

Figure 1.1: LNS and their production facilities (Google Maps, 2017)  

The company specializes its core activities on the fileting of freshly caught fish. Its strategy is to keep 

supply times low, by producing and delivering the filets as fast as possible. At this way LNS is able to 

deliver fresher products as its competitors. This gives a competitive advantage. LNS supplies to a wide 

customer base and does not keep close customer relationships.   
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To determine the competitive strategy of LNS, we use the model from Treacy & Wiersema. The strategy 

is determined by using three value disciplines (Wiersema, 1992): 

1. Operational excellence: when there is a focus on Operational Excellence, a company will try to 

outperform the competition by having the most efficient and streamlined operation to supply 

with low costs.  

2. Product leadership: a company focusing on product leadership will compete by creating 

products with higher quality or which are more innovative.  

3. Customer intimacy: customer service and attention are the main competition aspect on this 

discipline. Also, the possibility to deliver a wide range of products, or fast delivery can be seen as 

a customer intimacy strategy.  

When combining the facts of LNS and the knowledge of the 

model of Treacy & Wiersema, we conclude that LNS focusses 

on product leadership (Wiersema, 1992). In Figure 1.2 we 

show the model when we apply it on LNS. Hence, for the 

company it is important to be able to supply the end 

products as freshly as possible.  

Financially LNS made losses since 2011. Figure 1.3 

summarizes the financial results from 2010 until 2015. 

(Konsernregnskapet, 2015). The raw material costs, which 

consists of fresh fish, are a big part of the expenses of the 

company. In 2017 Norway Seafoods AS is bought by Lerøy, 

after which the financial reports are not specified anymore 

for Norway Seafoods. Norway Seafoods remains operating 

autonomously as a business unit within Lerøy, making it Lerøy Norway Seafoods.  

 

 

Figure 1.3: Financial results Norway Seafoods AS (in 103 NOK) 

 

Figure 1.2: Strategy LNS analyzed with Treacy & Wiersema 

 

Product 
Leadership

Customer 
Intimacy

Operational 
Excellence
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1.2 Problem statement 
Since LNS does not catch fish itself, the company depends on external parties to deliver the (fresh) fish 

to the processing plants. These external parties are independently operating fishing vessels, where LNS 

must make agreements with about when to deliver a shipment of fish. LNS knowns approximately three 

days in advance which vessels are going to deliver. Besides this, there is no further information 

exchanged between a vessel and a processing facility.  

The problem that LNS faces, is that the quantity of fish a vessel will deliver is uncertain for LNS until the 

moment of actual delivery. Since the strategy of LNS is to compete on product quality, LNS must process 

the fish as soon as possible to be able to deliver the highest quality products. It is unclear for LNS how 

much fish it will get delivered on a given day, and thus how much demand there will be for capacity. 

Therefore, the production planning is made under uncertainty. Currently, this planning is not based on 

any objective measurements, but is made on intuition of one central planner. Also, the supply 

characteristics of each vessel in terms of quantity are not being tracked or stored in a database. This can 

result in a human bias in the planning, where systematically too much or too little capacity is planned, 

based on the objective of the planner.  

There are two different cases that cause problems: over- and under capacity. When LNS plans too much 

capacity, given the amount of raw material, there is overcapacity and LNS pays employees while 

employees are not able to perform value added activities. When there is less capacity planned than 

there is capacity needed for the raw material, not all the raw material can be processed. As a result, the 

fish becomes one day older and it reduces in value. Alternatively, the employees have to work in 

overtime, resulting in extra costs.  

Figure 1.4 shows the Ishikawa diagram corresponding to the problems of LNS. 

Differences in planned 
capacity and required 

capacity

PeopleProcess

Environment

Uncertainty in raw material supply

No ability to use own vessels

Human bias in planning

Planning not based on objective data

High uncertainty in raw material supply

Data about historicial supplies not being used

 

Figure 1.4: Ishikawa diagram for the problems and causes of LNS 
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1.3 Research questions and methods 
Now that we analyzed the problems that LNS faces, we formulate the research starting with the 

research questions. After the research questions, we discuss the methods that we use to answer these 

questions.  

The main research question this report answers is:  

“How can information about the raw material supply be used to improve the capacity planning within 

the processing facilities of LNS to reduce under- and overcapacity of labor and optimize the use of the 

raw material” 

Since this main research question is too broad to answer in one time, we divide it in 5 sub questions.  

1. How are the primary processes organized within LNS that are relevant for the capacity 

planning? 

To improve the current situation, it is important to first analyze the current processes and clarify 

how the flow of materials and information are organized within the processing plants. Chapter 2 

focusses on these aspects.  

In this research question we use descriptive research, together with both quantitative and 

qualitative data that comes from historical data of LNS and a plant visit and interview with 

employees.  

2. Which methods exist to plan capacity with uncertain supply? 

We need information to optimize the current capacity planning. Chapter 3 consists of the literature 

research about planning capacity with uncertain supply, which gives the necessary information 

about capacity planning with uncertain supply. In this research question we use descriptive research 

for the literature research.  

3. How can the uncertainty about the supply of fish be reduced? 

To answer this research question, we need information about the possibilities to reduce the 

uncertainty in supply. Chapter 3 focuses on this. In Chapter 4 we select the best method for LNS and 

we develop this method further with respect to the situation of LNS. To answer this research 

question, we use both descriptive research in the literature research and exploratory research to 

analyze which methods LNS can use. We use both quantitative and qualitative data. The data 

consists of catch statistics of vessels in Norway and qualitative information about reduction of 

uncertainty in supply which we find in the literature.  

4. How can the information about the supply be used in the capacity planning and what are the 

advantages of using this information?  

We use the information and method to reduce uncertainty of research question 3 in the capacity 

planning. We do this in Chapter 5. We use exploratory research to answer this question, in 

combination with both qualitative and quantitative data.  
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5. Which savings can LNS expect when using the supply information in the capacity planning? 

To determine the effectiveness of the method, we need an objective measurement of the savings 

for LNS. Chapter 6 focusses on this. This question consists of testing research together with 

quantitative data. Testing research consists of research where we test if our findings in the other 

research questions are true.  

There are four major stages in the project: analysis of the current situation, reviewing the literature, 

reducing the uncertainty of supply, implementing and testing the reduction in the processing plant of 

LNS. Figure 1.5 shows these phases together with the research questions that we answer. The report 

consists of 6 main chapters. Chapter 7 finishes the report, with the conclusions and recommendations, 

this chapter is not included in Figure 1.5.  

Analyze current 
situation

 (Chapter 2)

Find method to 
reduce uncertainty 
raw material supply 

(Chapter 4)

Implement method 
in capacity  
planning

 (Chapter 5)

Gains and results 
(Chapter 6)

Qualitative data Numerical data

Interview Plant visit
Catch 

statistics
Historical 

data

Descriptive

1 2 3 4 5

Review literature 
(Chapter 3)
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Research 
questions    

1, 2, 3

Descriptive
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and 
exploratory

Exploratory Testing

Research 
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Research 
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Research
 method

Project
 phase and 

chapter

Data 
requirements

Data from previous phase  

Figure 1.5: Schematic overview project LNS 

1.4 Scope of the research  
Due to the time limitations, we focus our research on 1 processing plant. We choose a big processing 

plant, since these are operating the whole year. In this way we can test our method for in-season 

months and off-season months. We choose to test our method on the processing plant in Båtsfjord, 

since this processing plant can produce fresh and frozen finished products and has the most problems 

with the uncertainty in supply according to LNS.  
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2 Current situation LNS: External and internal analysis  
This chapter analyzes the current situation of LNS and the supply chain in which it operates, answering 

research question 1. Section 2.1 gives some general information about the Norwegian fish industry and 

the supply chain of whitefish. Section 2.2 continues with a general analysis of the supply chain of 

whitefish. After this background information, Section 2.3 continues with the current situations specified 

on LNS. Finally, Section 2.4 finishes this chapter with the conclusions.   

2.1 Norwegian fish industry 
The fish industry is important for Norway, considering its value and its share in the GDP and export. In 

2016 the value of the caught fish was over 18 billion NOK (Statistisk sentralbyrå, 2017). Comparing this 

to the GDP of Norway in 2016, which was 3118 billion NOK, we see that the fish industry accounts for 

0.6% of the GDP. The export of Norway was 1064 billion NOK in 2016 (Statistisk sentralbyrå, 2017). 91.6 

billion of this export was as result of seafood export, making it account for 8.6% of the export value 

(Norwayexports, 2017). Figure 2.1 shows this visually. The total value of the fish catch increased over 

the last 3 years. Compared to other fish exporting countries, Norway is the second largest exporter 

when looking at the total value in USD (Figure 2.2). Considering the small population of Norway 

compared with China, which is the first, and the USA, which is the third largest exporter, it is 

understandable why the fish industry is an important source of income.  

When looking at the fish catch in Norway, Cod is the most important single specie for the Norwegian fish 

catch, it accounts for 20% of the total fish catch in 2016 (Statistisk sentralbyrå,  2017).  

2.2 Supply chain of whitefish: General analysis  
It is important to know from which sources LNS gets its supply of raw materials. Therefore, we analyze 

the supply chain of whitefish in this section. We use the research of Thakur (2017), which is a qualitative 

research about the whitefish supply chain. In Section 2.2.1 we explain the information and raw material 

flows in the supply chain. Section 2.2.2 shows the demand characteristic of the export of the Norwegian 

whitefish industry.  

  Figure 2.1: Export statistics Norway 2005 until 2016 Figure 2.2: Largest fish export nation in 2012 
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2.2.1 Supply of raw material and information flow 
LNS gathers its fish from three sources: seagoing vessels, coastal vessels or internal transport between 

processing plants. Coastal vessels fish with lines or small nets and return the same day to deliver fish 

(Thakur, 2017). Coastal vessels deliver the fish fresh, since there is no capacity to freeze the fish 

onboard. Seagoing vessels take around 3-5 days to deliver the fish. In 2012, there were a total of 5400 

vessels that operate the whole year. Table 2.1 shows the distribution of these vessels with respect to 

the size. As we can observe, the majority of vessels is under 11 meter, and are coastal vessels (Facts 

about Fisheries and Aquaculture 2013, 2013).  

Table 2.1: Distribution of the length of the active fishing vessels in Norway 

0-11 m 11-
14,9m 

15-
20,9m 

21-
27,9m 

28m 
and 
over  

Total 

4157 702 159 135 247 5400 

As Chapter 1 states, it is not allowed for land based processing plants to catch fish with own fishing 

vessels (Tveterås, 2014). This is done to ensure that one party in the chain cannot have the total power.  

Each time a fishing vessel comes to deliver fish, it stores data about the date, location, specie and weight 

of the supplied fish in the database of the Norwegian Fishermen’s Sales Organization (NFSO), which is 

publicly available.  

2.2.2 Demand characteristics of finished products 
Raw whitefish can be produced into different end products. Besides the customer requirements with 

respect to shelf life, the quality and age of the fresh fish also determines the kind of end product that 

can be produced.  

The main products can be classified into three different groups: frozen fillets, fresh filets, and whole fish. 

Figure 2.3 shows the export characteristics of each product group (Henriksen, 2013). We conclude that 

the whole fish and the fresh fillets are taking a bigger part in the export last years.  

 

Figure 2.3: Export characteristics from Norwegian fish export  
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2.3 Analysis of LNS  
Now that we explained the global fish market and the supply chain globally, we focus the analysis on 

LNS internally. This section covers the current situation of LNS, qualitatively and quantitatively. The 

section starts with Section 2.3.1, which analyzes the supply characteristics and uncertainty in general. 

Section 2.3.2 focusses on the production matrix and the raw material requirements. Section 2.3.3 

continuous with the processing plant in Båtsfjord and explains the production processes. Finally, Section 

2.3.4 concludes with the planning processes. We base this section on a plant visit and interview in the 

processing plant in Båtsfjord. 

2.3.1 Purchasing and receiving of raw materials and uncertainty  
LNS buys it fish directly from a vessel. As Section 1.2 states, LNS knows approximately three days in 

advance which vessels come to deliver fish. However, the amount of fish that a vessel on the delivery 

day is uncertain. Per week, approximately 30 ships deliver fish at each of the processing plants 

(Pettersen, 2017). Figure 2.4 shows the information and raw material flows between a vessel and a 

processing plant of LNS. There is no information exchanged about the catch while the vessel is at sea. 

The process starts with a vessel coming to deliver fish at LNS. The vessel plans its next moment it goes 

out to sea, which is generally three days later. LNS checks the production schedule to see if it has 

enough capacity free to receive the shipment. In practice, it seldomly happens that LNS can, or will not 

accept a shipment, since raw material is scarce.   
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Fish can be purchased frozen or fresh from the fishing boats. Coastal vessels deliver fresh fish, since this 

type of vessel does not have freezing capacity. Seagoing vessels deliver slaughtered, frozen fish, since 

the period these vessels are on sea is too long to deliver the fish fresh. Of all the raw fish purchased by 

all the facilities, 97% consists of fresh fish and thus 3% is purchased frozen. (LNS (1), 2017). There are 

two processing plants that process frozen raw material (Melbu and Stamsund). When a fisherman 

arrives with its shipment to a processing facility LNS checks the fish for damage and weighs each fish. 

The fish is either delivered with, or without head. The minimum prices for raw fish and the quality 

control is standardized and set by the government (Rafisklaget, 2017). When fish is delivered without 

head, the price is converted to fish with head using official conversion ratios (Appendix 1). Since LNS 

uses fish without head in their production planning, we use this conversation as well. The conversion 

ratio from fish without head to fish with head is 1.5.  

The prices depend, besides the fact if there is damage or not, on the weight of each individual fish. The 

weight of the fish has a relatively small impact on the price, the difference between the heaviest fish 

and the lightest fish is approximately 2.5 NOK per kilogram. When the fish is damaged, the prices drops 

with 4.8 to 5.9 NOK per kilogram.  

Table 2.2 shows average weighted price LNS paid 

to the fisherman of each specie of the three most 

processed species without head, which are Cod, 

Haddock, and Pollock. LNS did not buy frozen 

Pollock in 2017.  

Since the strategy of LNS is to compete on product 

quality (see Section 1.2) LNS must process the 

fresh fish as soon as possible to maintain its freshness and thus be able to sell the end products for a 

higher price. LNS does not take fish in production which is older than 6 days, counted from the moment 

it is caught at sea. After this, LNS cannot process the fish anymore, and sells it for a lower price than 

when it would be taken into production. 

In 2017, LNS bought in total 44 million kilograms of raw material for all the processing facilities. 1.45 

million comes from seagoing vessels, 37.65 million from coastal vessels and 4.90 million from external 

suppliers (LNS (2), 2017).  

Out of these 44 million kilograms, the processing plant in Båtsfjord bought 16, making it the largest 

processing plant with respect to raw material purchasing. Figure 2.5 shows the fish species bought by 

Båtsfjord. Most of this raw material consists of fresh, undamaged Cod (almost 10 million kilogram). The 

amount of fish that is available fluctuates each month. Figure 2.5 shows the total number of kilogram 

purchased fish by Båtsfjord. The production plant was 249 days operational in 2017.  

 
Cod Haddock  Pollock 

Fresh (NOK per kg) 23.65 14.28 9.14 

Frozen              
(NOK per kg) 

29.90 22.22 - 

Damaged              
(NOK per kg) 

17.75 9.49 3.91 

Table 2.2: Purchasing prices raw materials 
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Figure 2.5: Raw material bought by Båtsfjord in 2017            Figure 2.6: Raw material bought per month by Båtsfjord 

2.3.2 Production matrix and raw material requirements  
After LNS receives the fish, it grades the shipment by quality. The grading process is done visually and by 

sample, based on the amount of blood spots, the shininess of the skin and the temperature (LNS (3), 

2017). Then LNS categorizes the fish into three categories (good, regular, and bad). The quality bad is 

given when the fish is received damaged (see Section 2.3.1). In 2015, LNS stored the quality of the 

shipment of 361 vessels the quality of the shipments. Out of the 2597 shipments, 1307 were given the 

quality good, 1180 the quality regular and 110 shipments had bad quality fish. We need this information 

in Chapter 5. 

Out of the raw material, LNS sells and produces different end products that require each a minimum 

standard of quality and age of the raw material. Table 2.3 shows the possible products together with the 

selling prices (LNS (4), 2017). For Pollock, there are two products that have no demand: frozen tail and 

whole fish older than 5 days. Therefore, the product price of these products is 0. 

 

 

 

 

 

 

 

 

   Selling prices (NOK per kg) 

Category Product 
number 

Product Cod  Haddock Pollock 

Processed 
products 

1 Fresh loin 74 64 48 

2 Frozen loin 68 57 47 

3 Frozen portion 62 22 22.50 

4 Fresh tail 54 12 0 

5 Frozen tail 52 10 0 

6 Block 45 19 18.5 

Unprocessed fish 
(whole fish) 

7 Good or regular 
quality fish 
between 1 and 
5 days old 

20 12.79 9.75 

8 Bad quality fish 
between 1 and 
5 days old 

18 5 4 

9 Whole fish 6 
days and older 

16 3 0 

Table 2.3: Selling prices of the end products 
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If the fish is taken into production, the fillets are removed out of the fish first. The weight of the filet 

that can be cut out of a fish without head is on average 50.0% for Cod, 60.9% for Haddock and 50.1% for 

Pollock of the weight of the whole fish (LNS (5), 2016). This is in line with the official Norwegian 

conversion rates, which convert the weight of fillet products to the original weight of whole fish (see 

Appendix 1) (Fiskeridir, 2009). Once the fillet is out, it is cut into different end products. Figure 2.7 shows 

the optimal cutting plan of a fillet, where all parts are used to produce the most expensive product. The 

percentages show the weight of each part with respect to the total weight of the fillet. These factors are 

constant, independent of the weight and specie of 

the fish (LNS (6), 2017).  

The quality and the age of the raw fish dictate 

which parts LNS can use for which product. When 

the fish gets too old, or the quality is not good enough, 

LNS cannot produce the highest quality products of 

Table 2.3. As a result, the cutting plan is different 

for certain combinations of age and quality of the 

raw material. The loin can be produced 

into portion or block. The tail and portion 

can be used to produce block. Fish older 

than 5 days is sold without taking it into 

production. Table 2.4 shows the 

production matrix of each age/quality 

combination. For example, when we look 

at a good quality fish of 5 days old we 

see that LNS cannot produce loins. Table 

2.5 shows which parts of the fish (Figure 

2.7) can be used for which products.  

We give an example to clarify the usage 

of the raw material: LNS wants to know the optimal cutting plan for regular quality fish of 5 days old. We 

see in Table 2.4 that LNS can produce Frozen portion, Block and Frozen tail. We thus cannot produce 

Fresh loin, Frozen loin, and Fresh tail. We search in Table 2.5 the most expensive product that we can 

produce for this age/quality combination. For both Fresh loin and Frozen loin, this is Frozen portion.    

                       Quality                         
Age  
(days)                 
             

Good Regular Bad 

1 until 2 L, FL, FP, B, T, FT L, FL, FP, B, T, FT B 

3 and 4 FL,FP,B,T, FT FL,FP,B,T, FT B 

5 FP,B, FT FP, B, FT B 

6 S S S 

 
Fresh 
Loin 

Frozen 
loin 

Frozen 
portion 

Fresh 
tail 

Frozen 
tail  

Block 

Fresh loin 1 1 1 0 0 1 

Frozen loin 0 1 1 0 0 1 

Frozen 
portion 

0 0 1 0 0 1 

Fresh tail 0 0 0 1 1 1 

Frozen tail  0 0 0 0 1 1 

Block 0 0 0 0 0 1 

Waste
(7%)

Block(15%)

Tail(12%)
Fresh 

loin(39%)

Frozen 
loin(14%)

Portion(13%)

Table 2.4: Production matrix with respect to age and quality raw material 
(L=Fresh Loin, FL=Frozen Loin, FP=Frozen portion, B=Block, T=Tail, FT=Frozen tail, S=Sell without processing)  

 

Figure 2.7: Optimal cut of a raw fish 

Table 2.5: Possible end products for each part 
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For Fresh tail, this is Frozen tail. This fish then yields a total of 66% Frozen portion, 15% block and 12% 

frozen tail. Bad quality fish fresher than 6 days always yields 93% block.  

2.3.3 Primary production process in the plants, processing times, and capacity 
Once the fish is weighted and given a quality grade, LNS decides if and how much fish of each quality 

and age combination it takes into production that day and how much raw material it sells without 

processing. If fish is sold without processing, it skips the whole production process, and goes directly to 

the packing station, where it is packed in a retail pack. We can neglect the production time of whole fish, 

since the packing process of whole fish is automated and there is sufficient capacity in the plant to pack 

the whole catch if this is necessary.  

When fish is taken into production the fillets must be removed first. We call this process the filleting 

process. There are 4 lines to fillet the fish. Each individual line consists of two machines: a beheading 

machine and a filleting machine. There are two lines that are capable of processing fish with a weight of 

over 2.3 kg. Two employees are needed per production line to feed the fish to the machines. The change 

over time from one fish specie to another at the filleting line can be neglected, since this time is almost 

zero. 

After the filleting of the fish, the filets need to be cut into the different products of Table 2.3. The cutting 

of the filets is done manually, and there is place for 26 employees at the cutting station. Since all the 

products are cut at the same time, the production time at this station is the same for every product. 

After the cutting the products that must be frozen are taken into a freezing tunnel, where two 

employees are needed to put the products correctly on the conveyor belt. Next the products are 

checked if they are free of bones, using an automated X-Ray machine. When there are still bones in the 

fillet, employees must remove these before the products are checked again. Finally, the products are 

packed in a retail or wholesaler packing. This requires, in contrast to packing the whole fish, production 

capacity. Employees must place the products manually in the packages.  

Employees are not trained to be multifunctional, they can only perform one task in the factory 

(Pettersen, 2017). Figure 2.8 visualizes the production process and choices that LNS makes daily, based 

on the quality of the fish. 

The bottleneck in the process is the filleting process. When the machines are set to process big fish (>2.3 

kg), it processes 28 fishes per minute and the set up for small fishes has a capacity of 33 fishes per 

minute. The weight of the fish or the type of specie has no influence on the beheading, filleting or 

cutting time. Also, the machines can be changed in setup from small to big fish, so each fish can be 

filleted on its optimal speed. Since each product has a fixed routing within the manufacturing system, 

this setup can be considered as a product oriented layout (Slack, 2008).  

The production times per kilogram fish depend on the weight of the fish. To calculate the production 

time of the filleting process, we need to know the weight of the average whole fish purchased in 

Båtsfjord. We give the calculations for Cod. Since some fish is purchased without head, we convert all 

the purchased fish to whole fish without head, using official conversion ratios (see Appendix 1 for the 

conversion rates). If the fish is purchased with or without head does not influence the production time 

since the fish still must be processed on both machines.  We need the average weight for fish under 2.3 

kilogram and over 2.3 kilogram, since this differentiate on which speed the fish is produced. The average 
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weight for fish under 2.3 kg is 1.28 kg and for fish over 2.3 kg the average weight is 2.86 kg. 80% of the 

purchased fish is under 2.3 kilogram.  

We now have all the numbers we need to calculate the processing time. We calculate the processing 

time for small fish and big fish and take the weighted average of both processing times. We determine 

the processing time using:   

 

2.3 2.3

2.3 2.3 2.3 2.3

2.3

1 1 1 1
* * (1 )* * *

Where: =Fraction of purchased fish lighter than 2.3 kg

=Capacity in fishes per minute given that the fish is lighter or heavier t

w w

w w w w

w

w

prtime P P Q
C A C A

P

C

 

   



 
= + − 
 

han 2.3 kg

=Average weight of a fish given that the fish is lighter or heavier than 2.3 kg

Conversion factor fish without head to fish with head

wA

Q =

  (2.1a) 

When we fill in Equation 2.1a with the numbers we calculated in this section we obtain: 

 
1 1 1 1

0.8* * (1 0.8)* * *1.5 0.220 minutes per kilogram
33 28 28 2.3

prtime
 

= + − = 
 

  (2.1b) 

Equation 2.1b gives the processing time for a whole fish without the head. To calculate the total capacity 

of the filleting lines in fillet, given 4 machines and 6.6 operational hours per day, we use:  

 
1

*4*60*6.6*0.50 23,956kilogram of fillet per day
0.0205

Capacity = =   (2.2) 

We define 0.50 as the conversion ratio from whole fish without head to fillet. We define 60 as the 

conversion from minutes to hours and 4 stands for the 4 filleting lines in Båtsfjord.  

Next, we determine the capacity at the quality station. We know that on average 85% of all checked 

fillet parts are free of bones. 15% needs extra operation to make them bone free. Since the X-Ray 

machine scans the products continuously, there is no maximum capacity given for this work station. 

Hence, we only consider the production time of removing the bones to determine the capacity of this 

station, which is 0.0566 minutes per kilogram fillet. There is place for a maximum of 5 employees 

simultaneously to remove the bones. The capacity is then:  

 
1

*60*6.6*5 34,982.33kilogram of fillet per day
0.0566

capacity quality station = =   (2.3) 
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Table 2.7: Production times for Haddock and Pollock 

 

 

The production times of the other work stations are given by LNS. Table 2.6 summarizes all the 

information and we conclude that the filleting line is the bottleneck of the processing plant (LNS (7), 

2018).  

Next, we need to determine the production time for Haddock and Pollock. We calculate the average 

weight of a Haddock fish purchased in Båtsfjord to be 0.92 kg and the average weight of a Pollock fish to 

be 0.90 kg. Haddock and Pollock can be produced on both machine setups. We calculate the production 

time of the filleting line for the remaining to species in the same way as for Cod. Table 2.7 summarizes 

the production times of the remaining two species  

 

         

 

 

 

Work 
station 
number 

Work 
station 

Number of 
parallel lines or 
places 

Employees 
needed per 
line or place 

Minute per 
kilogram Cod- per 
line or place 

Capacity in kg filet 
Cod per day with 
6.6 hours daily 

1 Filleting 4 2 0.0220 23,951 

2 Cutting 26 1 0.350 24,882 

3 Freezing Continuous flow 2 0.0105 >filleting  

4 Quality 
check 

Continuous flow 1 0.0566 >filleting 

5 Packing 2 2 0.0298 53,154 

Work station 
number 

Work station Minute per kilogram 
Haddock per line or place 

Minute per kilogram 
Pollock per line or place 

1 Filleting 0.0329 0.0334 

2 Cutting 0.406 0.502 

3 Freezing 0.0216 0.0221 

4 Quality check 0.1167 0.1192 

5 Packing 0.0614 0.0628 

Table 2.6: Production times and capacity for Cod 
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Figure 2.8: Primary production processes  

2.3.4 Planning processes and productivity   
Since both the quality and the quantity of the supply of raw fish is uncertain, the capacity planning in the 

plants is made under uncertainty. The maximum age of the raw material that can be used for processing 

is 6 days and the age of the raw material determines, together with the quality, which products LNS can 

produce. Because of this the capacity planning for today influences the amount of raw materials in 

coming days and the value of this raw material. After 6 days, LNS sells the raw material against a lower 

price than when it would take it into production and incurs a loss.  

The planning structure is hybrid, where each processing facility receives a global number of hours it can 

use each day. After this the local plant manager makes a detailed planning. The global planning, or 

Rough-Cut Capacity Planning (RCCP) is made by a central planner. The central planner uses information 



27 
 

about the current raw material inventory and amount of shipments each facility receives to determine 

the number of hours each facility can use on each workstation. Currently the central planner does not 

make the RCCP in any systematic way or uses an algorithm, but the central planner uses his experience. 

Since the production process has a production-oriented layout, the products incur in general the same 

production steps. This leads to a low variability in the production times, making it easy to translate the 

RCCP to a detailed planning. Hence, we conclude that the most difficult aspect LNS faces is to make the 

RCCP for the processing plants.  

LNS has an agreement with its workers that they always must know their work schedule for three days 

in advance. For example, at the beginning of Monday, the work schedule must be made for Monday 

until Wednesday. LNS has flexible workers, which means there is no minimum number of hours a worker 

must be planned in.  

Figure 2.9 shows the information flow between the processing plants and the central planer, where 

processing plant X stands for a random plant 

within LNS. The local plant manager updates the 

central database of the plant with the production 

plan and the inventory planning of the raw 

material. He then transmits this information 

through a conference call with the central planner 

after which the central planner makes the RCCP 

for the plant. The central planner sends the RCCP 

to the central database of the local plant. The 

RCCP consists of the number of hours that a local 

plant can use on each workstation, in the coming 

three days. The local plant manager transforms 

this RCCP to a detailed production plan and plans 

in the employees the coming three days.  

The number of hours used by each processing 

facility is recorded. This is split out in total hours 

and cutting hours. The total hours include 

overhead hours for management and the other working stations. On average 38% of the total hours 

consisted of cutting hours (LNS (8), 2016).  

To analyze if the current usage of hours is efficient, we plot the processed raw material of a certain day 

against the used capacity of this day. Since the total hours have a fixed character for the overhead, we 

use the cutting hours as planned capacity indicator. Figure 2.10 shows the result. The trendline shows 

the expected number of cutting hours, given an amount of processed raw material. Since the processing 

times have little variation due to the production-oriented layout, we expect little variability in the 

plotted values, given that the planned capacity accurately matches the needed capacity. We see in 

Figure 2.10 this is not the case, since the data points show big fluctuations compared with the trendline.  

Table 2.8 shows the summary statistics of the productivity of the plant (kilogram raw material processed 

per cutting hour). We observe that there are indeed big fluctuations, given the large range of the 

confidence interval.  

 Figure 2.9: Information flow between processing facility and central planner 
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Table 2.8: Summary statistics productivity of cutting department  

 Confidence interval 95% 

Variable N Mean kilograms 
per cutting hour 

SE Mean StDev Lower bound Upper bound 

Productivity 402 180.87 2.33 46.73 86.65 303.84 

 

 

Figure 2.10: Plotted processed raw material against cutting hours in Båtsfjord 

2.4  Conclusions about the processes within LNS 
Fish is an important product for the Norwegian industry, considering that 8.6% of the total export 

consists of fish. Fresh products have more value than unprocessed or frozen products. This makes it 

important for LNS to produce the fish as soon as possible. As a result, we conclude that matching the 

supply and demand from capacity is important for LNS.  

LNS only has information about when a specific fishing vessel comes to deliver raw fish. Besides this 

there is no information available in advance about the amount and quality of raw material. Since the 

capacity planning is based on these facts, LNS has difficulties planning the daily capacity in the plants.  

The quality and age of the raw material determine which products can be produced with the raw 

material. Although it is theoretically possible to produce block products from parts that can be produced 

in more expensive products, LNS always produces the most expensive product possible. Hence, the 

production matrix is constant for each individual age/quality combination of the raw material given 

there is enough freezing capacity available.  

When there is insufficient capacity to produce all the raw material, the remaining inventory becomes 

one day older and reduces in value since less expensive products can be produced. When there is too 

much capacity planned, money is wasted on excess salaries for the employees. Hence, the profit that 

LNS generates out of the raw material is a measure for the quality of the capacity planning.  
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The production process is relatively simple, since the bottleneck of the process is the beheading 

machine that has a deterministic processing time. Since the capacity of the fillet products in the 

production plant is thus limited to the beheading machine we can conclude that we can plan the 

capacity based on this machine. The required capacity of the other processing steps (cutting, freezing, 

quality check, and packing) depend on the planned capacity of the beheading machine. As the 

production has a production oriented lay-out and the fact that the bottleneck has a deterministic 

processing time, the employee’s productivity, given that there is available work, is relatively constant. 

Therefore, we expect the processed kilograms of fillet per cutting hour to be constant when the 

planning is accurate. Hence, the differences in the number of kilograms processed raw material per 

cutting hour (Section 2.3.3) each day must be caused by planning errors. The difference between the 

highest observed productivity (304 kilogram per cutting hour) and the lowest (86), is more than factor 

3.5. Therefore, we conclude that the current RCCP is not optimal and leads to overcapacity, reducing the 

productivity of the processing plant.  
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3 Theoretical background  
In this chapter we analyze the literature and find the necessary literature to use during the research. 

This chapter consists of 2 sections. Section 3.1 focusses on capacity planning with uncertainty, gathering 

the knowledge to answer research question 3. Section 3.2 gathers the theory about the reduction of 

uncertainty within the supply. This sections answers research question 2.  

3.1 Optimization of capacity planning  
Since the problem LNS faces copes with an optimization problem with uncertain supply, we need theory 

on how the literature solves these problems. To understand the problem Section 3.2.1 first focusses on 

the capacity planning in the deterministic case. Section 3.2.2 continues with the stochastic case.  

3.1.1 Capacity planning in the deterministic case  
Smunt (1996) describes the process of making a RCCP in a deterministic 

situation on a high aggregation level. He argues that the capacity planning 

should be based on the Master Production Schedule (MPS), which consists of 

demand forecasts, desired inventory levels, the production plan, constraints 

and customer orders. Figure 3.1 shows the process according to Smunt (1996). 

The goal of the RCCP is to transform the MPS into capacity needs for the most 

important work stations (WS), for example the bottlenecks of the production 

process.  

The actual determination of capacity is not given by Smunt (1996). Figure 3.1 

only states that an appropriate technique should be used. Guide JR. et al. 

(1997) investigate several techniques. They base their research on a 

remanufacturing environment. The research distinguishes three techniques 

to determine the capacity requirements:  

1. Bill of Resources (BoR):  

The BoR is the simplest technique for capacity planning and can be 

applied when all products go through the same work stations.  
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2. Modified Bill of Resource (MBoR): 

This method is comparable with the BoR but adds the probability that a product needs 

operation in a work station, making it suitable for job shops. Also, the MPS is adjusted by 

multiplying the original MPS quantity with the Material Recoverability Rate (MRR). The MRR 

gives the percentage of total incoming raw material that is qualified for processing.  

Figure 3.1: Process of creating the RCCP 
according to Smunt (1996) 
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3. Capacity Planning using Overall Factors (CPuOF):  

This method takes the utilization into consideration. To do so the utilization of each work station 

should be estimated, based on historical data. The capacity of each work station is then 

calculated with:    
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In all proposed methods for capacity planning the MPS is needed. Hence, we need a method to 

determine which products to produce on a given day and make a RCCP based on this. Begen et al. (2003) 

do research for a processing plant for red fish in Canada. They develop a mathematical model to support 

the short time (operational) production planning for the processing plants once the catch is known. This 

model takes the quality of the inventory in consideration. Figure 3.2 shows the quality deterariation 

model.  

Inventory 
collection

Deterioration
Inventory 
collection

Supply day d

Deterioriated Inventory day d-1 Left-over
 inventory

 day d

Deteriorated 
inventory 

day d

Supply day d+1

Production day d Production day d+1

Left-over inventory day d+1

 

Figure 3.2: Deterioration process of raw material  

The mathematical model that Bergen et al. (2003) create consists of a Linear Programming model which 

goal function optimizes the total profit of the processing plant.  Bergen et al. (2003) assume that the 

product mix (which quality and which specie is needed for each end product) and the profits of each end 

product are known and deterministic. Further they include the recovery rates for each specie. The 

recovery rate is a number in the interval [0,1] that gives the fraction of the weight of the fish that can be 

used to produce a certain end product. For example, if a cod of 5 kg yields a loin filet of 1 kg, the 

recovery rate for this product is 0.2.  

 

 

 



33 
 

The LP uses an objective function, which maximizes the total profit. The LP maximizes the profit by 

taking the sum over the produced raw materials of all different quality and species. The goal function 

multiplies all quality/specie combinations with the profit coefficient and recovery rate to obtain the 

total profit.  

We omit the 12 constraints of the LP program. They ensure, together with the decision variables, that 

there is sufficient capacity, raw material and that the product matrix is respected. The LP does not take 

customer demand characteristics into consideration, as it assumes there is always sufficient demand for 

each product. Also, the labor costs are not specifically included in the goal function but are taken into 

consideration in the profit coefficient. This means that the marginal labor costs per end product have to 

be known. The objective function maximizes the weighted average of the profit and the recovery rate of 

each end product.  

Jensson (1988) also proposes a planning method for daily fish production in a processing firm. He 

investigates the case when a processing firm produces frozen end products and thus takes the freezing 

capacity into consideration. He uses a 5-day planning horizon. Other differences with the model of 

Begen et al. (2003) is that the daily production is bounded by an interval. The lower bound gives the 

accumulated quantity of fish, from day 1 to T, that must be processed, or else the fish will be damaged. 

The upper bound is the accumulated received quantity of fish from day 1 to T. Hence, in this model all 

the raw material has to be processed. Also does the model include an upper and lower bound for each 

finished product if the product is bounded by market constraints. The goal function of the model of 

Jensson (1988) is different when we compare it with the model of Bergen et al. (2003). The first model 

has the capability to vary the personnel costs with the time as well as with the department. Again, we 

omit the constraints, which ensure that the freezing capacity is respected, all the raw material is being 

processed and that there is enough capacity on 

all departments.  

3.1.2 Capacity planning in the uncertain 

case  
To position the problem which LNS faces we use 

the research from Peidro et al. (1998). They 

classify the source of production uncertainty in 

three types: demand-, process- and supply 

uncertainty. Especially the third uncertainty is 

important for LNS, since the supply of fish is 

uncertain. Next, there are three types of 

problem: strategic, tactical and operational 

problems. We conclude that LNS copes with 

operational problems which are caused by 

supply uncertainty. In Figure 3.3 we show the 

framework of the problems with respect to the 

two classification methods. We place LNS in the 

combination of operational problem type with 

supply uncertainty, which is the under right 

quadrant.  
Figure 3.3: Matrix of problem combinations according to Peidro et al.  
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When looking at a similar problem formulation compared to LNS, one can look at an emergency 

department in a hospital. Here the capacity planning also must be made under uncertain supply. For 

example, Rosetti et al (1999), solve this kind of problem using discrete event simulation. By analyzing 

data of 17 weeks they find an arrival distribution for the patients for each hour, which is used as input 

for the simulation model. Next to this they analyze the transport routes within the facilities since 

patients can move between various departments within the hospital. Using this approach, they manage 

to improve the current situation significantly, reducing the waiting time of patients.   

Begen et al. (2003) use stochastic programming to solve a case of uncertain supply of red fish at a 

Canadian fish processor. They use the model that we explained in Section 3.1.1 and adapt it to cope with 

uncertain supply. To cope with the uncertainty, they propose to use a forecasting technique to forecast 

the catch size each day, and define possible outcomes each day. Each possible outcome, defined as a 

catch size, should then be given a probability.  

Next, the stochastic version of the model sums over all the different possible scenarios multiplied with 

their probability. The model maximes the expected value of the profit based on the probabilities of the 

scenarios. The other decision variables and the restrictions assure again that the capacity restrictions are 

respected and that it is not possible to produce more than there is raw material available.  

Kazemi Zanjani (2008) present a stochastic model of a wood producer, who has to deal with uncertainty 

in the dimensions of wood logs he gets supplied as well as uncertainty in demand for finished products. 

This situation can be compared with the problem LNS faces, since the quality of raw fish that LNS 

receives is also uncertain. Kazemi Zanjani (2008) proposes a multi-stage stochastic programming (MSP) 

model to solve this multi-period, multi-product (MPMP) producting planning problem.   

In this model all the different possible scenarios of demand are given a probability. P(n) is then the 

probability of scenario demand scenario n. The decision variable gives the number of times a process is 

run. Since the supply of logs is stochastic, the yield of finished products by running a scenario is 

uncertain. The goal function first calculates the raw material costs over all different end products. The 

second part of the equation calculates the holding costs of the inventory and the backorder costs. Then 

the goal function minimizes the expected raw material, inventory and backorder costs over all possible 

scenarios.  

We observe that there are different approaches in solving the planning problems with uncertainty in the 

literature. Allen et al. (2015) describe that the complexity of the problems determines the best solving 

approach. They argue that complex problems with many different decision to make can best be solved 

using discrete event simulation. When problems are less complex, analytical models provide better 

solutions. To classify the complexity of a problem, Ullman (2007) classifies the algorithms that are 

consturcted to solve a problem into the maximum running time that is needed to solve the problem to 

optimallty. This is known as the “Big-O” notation. When a problem can be solved to optimality in 

polynominal time (O(nx), x∈ ℕ), an analytical model has the preference. When a problem cannot be 

solved in polynomial time we call this problem NP-hard, resulting in a longer running time of the 

algorithm compared with algorithms with polynomial time. When the problem becomes too big, the 

running time explodes, and one must use heuristics or simulation. 
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3.2 Reduction of uncertainty of supply  
There are several ways listed in the literature to reduce the uncertainty of supply in a manufacturing 

system. Vorst et al. (1998) investigate the uncertainty in a food supply chain. They use a supply chain of 

chilled salads with a producer, one central distribution center, and 100 retail outlets. Since a food supply 

chain also has to cope with the problems that come with perishable goods, we can compare this 

situation can with the situation of LNS. In this reasearch the uncertainty is split out in different sources, 

which each require a different approach to cope with this type of uncertainty. The source of the 

uncertainty is split up in three types: order forecast horizon, input data and decision process. The order 

forecast horizon refers to the uncertainty in the time between placing and receiving an order. Input data 

refers to the uncertainty of available data that is available 

to base a decision upon. The decision process copes with 

the uncertainty with respect to human behavior  

Table 3.1 shows the three sources together with general 

solutions. The order forecast horizon problems can be 

solved by using Electronic Data Interchange (EDI) to 

acquire more accurate information about the lead times. 

Next decision support systems can be used, such as 

Computer Assisted Ordering in the retail shops or 

automated production planning systems can be used.  

For the input data general solutions are to share more 

information in the supply chain, or to create new 

information by combining different data sources to gain 

new insights.  

The solutions for the decision process problems are based 

on changing the processes to create standardization, or to 

eliminate human interference to lower the chances of 

human bias.  

Hameri et al. (2010) investigate the supply chain of fish in 

Iceland, where they deal with the questions how to match 

the fluctuations in demand with the supply of raw materials and how to increase the speed of the 

material flow in the whole supply chain. Also they observe in this research that the supply of fish is 

subject to fluctuations due to natural causes. There are several solutions proposed to solve this 

problem: 

1. Share more information in the first two echelons in the supply chain. That means increase the 

information flow between the supplier of raw material and the first processor.  

2. Start producing fish at fish farms. By producing fish in a controlled manner, fish can be supplied 

with almost no uncertainty. There are a few downsides to this: it requires big investments to 

feed the fish and diseases are common within the fish farms, reducing the quality of the fish.  

Since it could also be possible for LNS to create new data, we gather theory for this approach. 

Type of 
uncertainty  

General solutions  

Order 
forecast 
horizon 

Use Electronic Data Interchange 

Use decision support systems  

Decrease process throughput 
time  

Input data Create new information flows in 
different stages in the supply 
chain 

Use real-time management 
systems 

Create new information 

Use information systems to 
exchange information  

Decision 
process  

Eliminate decisions or redesign 
procedure 

Co-ordinate procedures in 
supply chain 

Eliminate or reduce human 
influences 

Table 3.1: Types of uncertainty with solutions 

 



36 
 

To use the stochastic programming models explained in Section 3.1.2, we need forecasts for the raw 

material supply. Therefore, it is necessary to predict the fish catch. Begen et al. (2003) propose the use 

of forecasting to predict the catch size and thus the raw material supply. Stergiou et al. (1997) 

distinguish two categories of forecasting methods: 

1. Time series methods: These methods use historical observations to predict future outcomes. 

Examples of time series methods are the moving average method, exponential smoothing and 

trend estimation  

2. Causal methods: These methods use underlying factors that explain the outcome of a variable 

(the response variable) with the help of one or more factor(s) (predictors). Regression analysis is 

an example of a causal method.  

Next to these two methods, Witten et al. (2005) propose a third relevant category: 

3. Machine learning methods: Machine learning consists of making categorizing or predictions 

based on an algorithm and training data. Popular machine learning methods are decision and 

categorization trees, which make a prediction based on a set of rules. These classification rules 

are based on the training data.  

Bergen et al. (2008) try to forecast the catch using time series models such as simple exponential 

smoothing, moving average models and mean models, but none of these gave significant results. They 

propose the use of causal models.  

Wikstrom (2015) researches how to predict fishing success on recreational level. In this report, he 

gathers weather variables from public databases and puts them in a model, 

together with the response variable. The response variable in this case is 

the weight and the amount of fish caught by recreational fishers. Since 

coastal vessels also use lines to catch fish and LNS gather its fish mostly 

from line fishing vessels, this method is potentially interesting for LNS. 

Table 3.2 summarizes the variables. 

Wikstrom (2005) uses a linear regression model and two machine learning 

techniques. To rate the models by their accuracy he uses the relative 

absolute error (RAE), which is calculated using:  
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Variable Unit 

Weight Kg 

Cloud coverage % 

Humidity % 

Precipitation Mm 

Air temperature °C 

Water 
temperature 

°C 

Visibility km 

Wind direction ° 

Wind speed Km/h 

Moon phase - 

Day of year days 

 

Table 3.2: Variables with the used units 
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Wikstrom (2005) uses, next to the regression model, machine learning techniques. In machine learning a 

prediction variable is known as an attribute. Wikstrom (2005) uses the following techniques: 

1. Multilayer perceptron: A multilayer perceptron is an artificial neural network, which is 

commonly used for the prediction of values with a non-linear classification. It consists of nodes 

(neurons) that are connected to each other. Input nodes are used to input an attribute from the 

data set, after which this value flows through the network using connection equations between 

the nodes. Finally, an output node gives the predicted value.  

2. Random forest: The random forest uses prediction trees to predict a value. These trees are 

generated based on training data and predict a value with the attributes of the dataset based on 

different choices in the tree. From the training data, randomly n attributes are drawn from 

which a prediction tree is made. This is done x times to make x random trees. Then the final 

prediction is the average of all x predictions of all the trees. An example of a random forest with 

two random trees is given in Figure 3.4. The values are fictional.  
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Figure 3.4: Schematic visualization of the random forest algorithm  

The random forest performs well on large datasets and requires little computational time. Since it relies 

on more than one prediction tree it has the potential to have a low absolute error. The disadvantage is 

that the random forest has a high risk of overfitting the training data, which means the algorithm 

performs well on the training data but is inaccurate on new data.  

3. Random tree: The random tree is comparable with the random forest, but instead of taking the 

average of multiple trees, only one tree is constructed, and the prediction of this tree is used. 

The random tree is easy to interpret, and the outcomes are easy to implement in models. 

Disadvantages is the fact that the prediction is based on one tree. Therefore, it is on average less 

accurate than the prediction of the random forest.   

Wikstrom (2005) evaluates the three methods based on the prediction error. He puts the linear 

regression model as base model and finds that the multilayer perceptron algorithm performs worst, 

increasing the RAE with 9%. The random forest decreases the RAE with 10% and performs best.  

According to Witten (2005) there are two other effective methods that can be used to predict numerical 

data: 

1. The M5P Tree: This algorithm generates a decision tree just like the random tree. The difference 

between the two algorithms is that the M5P Tree predicts values in the leaves with a regression 
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model, where the random tree takes the average of all the values reaching a leave. The M5P 

Tree performs well in situations where there is a linear dependency between the response 

variable and the predictors.  

2. The Reduced Error Pruning (REP) Tree: The REP Tree also starts building a full decision tree 

based on all available attributes. This in contrast with the random tree, where attributes are 

selected randomly. The initial tree can be, based on the number of attributes, relatively big 

compared with the other algorithms. After constructing the full tree, the algorithm examines all 

nodes and checks the total prediction error in the whole tree if this node is pruned. Pruning 

means that all nodes and leaves under the selected node are removed. The tree is pruned, using 

a greedy heuristic, on the node where the forecasting error reduces the most. This is done until 

the forecasting error does not reduce any further. The REP Tree has the advantage that it is a 

strong algorithm when attributes combined explain the response variable, but each of the 

individual attributes not.  

Witten (2005) states that there is not one model which outperforms the others in general, this depends 

on the kind of data and the attributes. We present the summary of all the methods together with the 

preferred data dependency in Figure 3.5.  
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Figure 3.5: Categorization of the forecasting methods 



39 
 

4 Reducing uncertainty of the supply to LNS 
In Chapter 3 we observe that we need a method to estimate the supply to optimize the capacity 

planning. Hence, the first part of improving the planning of LNS is to find a proper method to reduce the 

uncertainty of the supply of raw fish to the processing plants. This chapter starts with Section 4.1, where 

we define the alternative methods and requirements of LNS and choose the best method to reduce the 

supply uncertainty. Section 4.2 gives the characteristics of the vessel fleet of the Norwegian fishing 

vessels and we choose a proper sample to research based on the fleet characteristics. Section 4.3 

explains the data that we use to reduce the supply uncertainty. Sections 4.4 to 4.7 develop the best 

method that we chose in Section 4.1.  Section 4.8 finishes with the conclusions about this chapter. This 

section answers research question 3.   

4.1 Choosing best method to reduce uncertainty  
To analyze what the best method for LNS is, we need to define when we consider a method to be 

effective. To do so, we need the requirements for LNS. The only certain information LNS currently has is 

the number of vessels coming to deliver raw material. This information becomes known approximately 3 

days in advance. Section 4.1.1 starts by defining the requirements of LNS, so we can determine when a 

method is effective. This section then obtains three different possibilities to reduce the uncertainty 

based on the literature research of Chapter 3. Section 4.1.2 compares the defined methods and choose 

the best one for LNS based on the requirements.  

4.1.1 Obtaining methods for reducing uncertainty  
First, we need to define how to measure the effectiveness of a method. We choose the measurements 

in consultation with LNS, where we agreed on three dimensions that measure the effectiveness. These 

three dimensions comply with what is mentioned in the literature. The dimensions are:  

1. Earliness: The earlier LNS receives the information needed to make the production planning, the 

more this information is worth. This is because LNS then can plan employees in an early stage, 

and does not need to invest more in flexibility, such as flexible employees.  

2. Accuracy: It is obvious that data that reflects the reality better is worth more. When LNS obtains 

accurate data about the supply, the models mentioned in Section 3.1.2 provide more accurate 

calculations and the capacity planning reflects the reality better. 

3. Financial impact: The financial impacts of acquiring and using the data or method to reduce the 

uncertainty are also important. We define the financial impact as the total of the investment 

costs and the potential to save costs for LNS. As mentioned in Section 1.1, LNS makes financial 

losses and can therefore not invest a large capital.  

Section 3.2 gives methods to reduce the uncertainty. We test these methods on the three dimensions 

and compared them with each other. Then we select and work the best method further out. We do not 

take the methods that are not feasible due to external constraints, such as catching fish with own 

vessels, into consideration.  

We base the possible methods on the literature research (Section 3.2). We can derive three methods 

out of the literature (a, b and c), which we base on two general solutions (1 and 2). We derive these 

general solutions from Table 3.1 of Section 3.2.  
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1. Increase information sharing between echelons in the supply chain: 

a. Create a real-time information flow between the fishing vessels and the processing 

plants, where information is exchanged about the catch size and the quality of the fish.  

b. Buy fish from fish farms. When LNS buys fish from fish farms, it can make contracts 

about what to receive daily. Fish farmers can accurately predict when fish is ready for 

production (Hameri, 2010). In this way LNS has total control over the information that is 

needed to support the capacity planning. This method is tested in an Icelandic whitefish 

supply chain (Hameri, 2010). In 2015 Norway produced 1.4 million tons of fish on fish 

farms (Statistisk sentralbyrå, 2016). Hence, there is sufficient production to buy all the 

fish LNS needs. 

2. Create new information: 

c. LNS can use the information they have available (e.g. about the fishing vessel) to make 

an estimation about the delivery it can expect. This method has already been executed 

on recreational level (Wikstöm, 2015).  

4.1.2 Ranking the methods and choosing the best fit for LNS 
We need to analyze the presented methods based on their advantages and disadvantages and give a 

score on each dimension so that we can make an objective comparison, and we can choose the best 

method. 

1. Earliness of the information: 

The method to buy fish from fish farms (method b) scores best on this dimension, since the fish can 

be monitored constantly, and it can be accurately predicted when a fish is ready for processing 

(Vorst, 1998). The estimation based on known information (method c) scores second on this 

dimension, since it is known three days in advance which vessel will deliver the fish. The information 

exchange between supplier and processor (method a) scores worst, since the information is known 

the moment the vessel will catch the fish. Since LNS obtains most of its raw fish from coastal vessel, 

which are only fishing for one day, the information is known at its most one day in advance.  

2. Accuracy of the information: 

On this dimension, method b scores the best since the information about the supply can be most 

accurately predicted and thus the fish farmers can supply exactly the amount LNS requests. Second 

is method a since the information LNS obtains is based on the real catch. Method c scores last on 

this aspect because the information is based on an estimate and can have deviations from the real 

supply.  

3. Financial impact of the information 

Method c scores the best on financial impact. The information can be acquired internally, and the 

method can be developed without external expertise. Method a scores second. Some meetings with 

the fisherman are required and it could be necessary to invest in information systems. Method b 

scores worst. This is because operation and feeding the fish at the farms is expensive and labor 

intensive (Hameri, 2010). Next to this, diseases are common at fish farms and the quality of the fish 

is worse than caught fish at sea, resulting in inferior product quality, reducing the possible profits. 

This would interfere with the strategy of LNS to compete on product quality (Section 1.1).   
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Figure 4.1 visualizes the rankings on each dimension. Closer to the origin means an idea performs worse 

on this dimension. After discussing the ideas with LNS, they indicated that the costs are an important 

aspect, since the company has been making financial losses over the last years. Hence, LNS does not 

have the resources and permission from the stakeholders to make big investments. Since method c does 

not require any significant investment, we use this idea to reduce the supply uncertainty.  

Earliness

Accuracy Financial impact

 

Figure 4.1: Score of each method visualized (blue= idea a, red=idea b, green=idea c) 

As Chapter 3 shows, it is possible to forecast the fish catch of each individual vessel, based on the vessel 

information and weather characteristics, such as wind speed and temperature (Begen, 2003) (Wikstöm, 

2015). Since it has been tried already to use time dependent forecasting techniques, such as exponential 

smoothing and moving average, we use causal models and machine learning models.  

4.2 Data explanation and sampling 
A causal model must explain the data with external variables (see Chapter 3). Therefore, we need to 

choose a sample on which we base our forecasting model. We try to include variables that are based on 

weather data because research suggest that it is possible that weather variables explain the catch size 

(Stergiou, 1997) (Wikstöm, 2015). Since the weather varies over the location, we need to select a region 

where we base the model on.  

This section chooses this region and explain the data that we use to build the models. In Section 4.2.1 

we explain the facts about the statistics of each region in Norway after which we choose the region and 

sample in Section 4.2.2. 
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4.2.1 Data explanation  
To forecast the amount of fish caught by a given vessel on a given day we 

first need a response variable. Since LNS always has to buy the complete 

shipment of a fisherman, the forecast model should predict the total 

catch of fish per vessel, per shipment. The Norwegian Fishermen’s Sales 

Organization (NFSO) stores the weight of all individual shipments per 

specie in a public database. The data is split out per region of Norway 

(see Figure 4.2) The database has data available from 01-01-2017 until 

31-12-2017. This is important as there is a main fishing season, which 

starts in January and lasts until July (see Section 1.1). Therefore, we need 

to include a whole year of data to be able to analyze if the season 

influences the catch. There is no information about the quality of the 

caught fish stored in the public database.  

 

We give the data of the response variable the following notation: 

Tonnesof fish caught of species i,on day j, with vesselk,in region lijklY =     (4.1) 

Since we use weather variables in the models, we prefer to make the region where the fish is caught as 

small as possible so that the weather information is as accurate as possible. The exact location where 

the fish is caught is not stored in the database. The only information that is known is the location where 

the fish is delivered. Due to the limited time we cannot forecast the catch for all regions. We select the 

best region with respect to size in the next section and base our models upon this region.  

4.2.2 Statistics of each region 
The data of the fish catch is distinguished into five regions in Norway. From each region the public 

information about the catch of individual vessels is known. It is only known that the fish is caught in this 

region, but not in which exact location. To keep the weather information accurate, we want to have a 

small location where the fish can be caught. However, it is also important to have as much as data 

available, since the more data there is available, the more potential there is to create an accurate 

forecasting model (Witten, 2005).  

The possible surface where the fish can be caught is determined by how many kilometers a vessel ships 

from the coastline into the sea, multiplied with the length of the coastline. Since we do not know the 

first distance, we consider the number of kilometers of coastline of a region the measurement of how 

big the catching surface is. Hence, we want to maximize the amount of caught kilograms fish per 

kilometer of coastline. To measure the coastline, we choose the coastline of the mainland, excluding the 

islands. Figure 4.3 shows the total catch per region per kilometer coastline (Norges råfisklag, 2017) 

(Statistisk sentralbyrå, 2013). We conclude that the region Troms has the highest catch per kilometer 

coastline. Hence, we choose this region to base our forecasting model on.  

 

 

 

Figure 4.2: Norway and its regions 
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Figure 4.3: Catch per kilogram coastline for the relevant regions 

4.2.3 Choice of the sample  
Finally, we need a sample out of the region Troms to base our forecasting model on. To do so, we first 

need to know how many individual data points we need. A general rule that is used is that one needs a 

minimum of 10 data points per covariate (predictor) (Harrell, 2001). In total, we have a maximum of 14 

different covariates (see Section 4.3.2), which means that we need more than 140 usable data points for 

a region. 

For two species (Pollock and Haddock), 58.6% of all the observations are smaller than 1 ton. These small 

values are the result of bycatch. Bycatch happens when a fisherman catches a different fish specie than 

the specie he intends to fish on. This bycatch data makes the data unreliable since we do not want to 

predict bycatch. When removing these observations, we have less than 140 data points left for each 

specie. For Cod, only 1.8% of the catch data is smaller than 1 ton (see Figure 4.4). We still have 236 data 

points for Cod, which is sufficient to use linear regression. Hence, we base the model on the catch of 

Cod in the Troms region.  

 

Figure 4.4: Data distribution of the response variable  
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4.3 Prediction model: Response- and prediction variables 
To make a proper model, it is important to analyze how the dependent variable is distributed and if 

there are outliers. Also, we present the prediction variables (independent variables) here, together with 

the data scheme to show how the variables relate to each other. In Section 4.3.1 and 4.3.2 we explain 

the response variable and the prediction variables respectively. 

4.3.1 Response variable: Distribution and transformation 
As stated in Section 4.2.3, we base the models on the Cod catch in the region Troms in 2017.  

We define the response variable as follows: 

 TonnesCod caught on day j, with vessel kjkY =   (4.2) 

To apply causal models such as linear regression we need the errors of the forecasts to be normally 
distributed, since otherwise the model is unreliable. To achieve this, it is desirable to have the response 
variable distributed as a normal distribution (Walpole, 2012).  
When looking at the histogram of the data and applying a 
normality test (Kolmogorov-Smirnov test), we conclude that 
the data is not normally distributed (see Figure 4.5 and 
Appendix 2).  
We try to normalize the data using a Box-Cox transformation. 
This is commonly used to try to normalize not-normal 
distributed data (Sakia, 1992). In Appendix 3 we proof that 
taking the natural logarithm of the data is the best 
transformation.  
 
When making a histogram from the transformed data, we 
indeed conclude that the data is more normally distributed 
(Figure 4.6). The QQ-plots and the value of the test statistic of 
the Kolmogorov-Smirnov test confirm this (Appendix 2). 
However, the p-value of the test is still smaller than 0.05, 
which means there is still enough evidence to reject the 
hypothesis that the data is normally distributed. This means 
that we have to analyze the forecasting errors carefully, which 
we explain in Section 4.4. We call the transformed data 
LNCATCH. 
 
 

 

 

 

 

 

 

 

Figure 4.5: Distribution of the catch  

Figure 4.6: Distribution after transformation 
with natural logarithm 
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4.3.2 Prediction variables: data schema  
To predict the catch of a vessel, we need independent variables. We can categorize the independent 

variable into two categories: date specific, and vessel specific. Table 4.1 and Table 4.2 show the variables 

together with the interval of possible values they can obtain, the measurement, and the acronym we 

use in this report.  

Table 4.1: Date specific prediction variables 

Date specific Acronym Measurement Interval/set 

Average temperature AVGTEMP °C (-273.15,∞) 

Rain RAIN millimeter [0, ∞) 

Average wind AVGWIND Kilometers hour-1 [0, ∞) 

Wind direction WINDDIR Degrees [0,360) 

Visibility VISIBIL Kilometers {0,1,..,13,14} 

Humidity  HUMID Percentage [0,100] 

Pressure PRESSURE Pascal [0,∞) 

Sun hours SUNH Hours day-1 [0,24] 

Moon phase MOON - [0,29.53] 

 

Table 4.2: Vessel specific prediction variables 

Vessel specific Acronym Measurement Interval/set 

Vessel length LENGTH Meters (0,∞) 

Vessel width WIDTH Meters (0, ∞) 

Vessel age AGE Years (0, ∞) 

Material MATERIAL - {Steal,Aluminium,Plastic,Composite} 

Power HP Horsepower (0,∞) 

 

The moon phase is the only variable we did not extract directly from the weather database. We 

calculate it using:  

 n

29.5305

n

8885( ) mod(

: moonphaseo dayi

dateof a know new mo

3)

o

i i m

i

m

MOON date date

Where MOON

date

= −

=

=

  (4.3) 

Figure 4.7 shows a star schema of the data to visualize how the variables are connected in our database. 
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Figure 4.7: Star schema of the prediction variables  

4.4 Causal model: linear regression 
In this section we construct a linear regression model to forecast the catch observations, using one or 

more prediction variables. As shown in Section 4.3.1, the response variable is, after the best possible 

transformation, still not normally distributed according to the Kolmogorov-Smirnov test. A normal 

distributed response variable is desired when using linear regression (Larsen, 2012). However, it is more 

important that the errors of the regression model ( ˆ
i iY Y− ) have a normal distribution, as this is one of 

the requirements for a regression model to be reliable (Li, 2012). In Section 4.4.1 we make a first model 

where we include all the variables, after which we transform some independent variables and construct 

a new model in Section 4.4.2. For all significance levels we choose 0.95. Hence for a predication variable 

to be significant, the maximum Type I error is 0.05.  

4.4.1 Regression with all independent variables: a first impression  
To get a first impression of the significance of the variables, we construct a model where we include all 

the independent variables. First, we analyze if there is a significant correlation between the prediction 

variables. If this is the case, we should pay attention when interpreting the regression model, since it 

may look like a prediction is significant, while this could be due to multicollinearity (Larsen, 2012). 

Appendix 4 shows the correlation that have a p-value smaller than 0.05 

Especially when a vessel specific variable is correlated with a weather specific variable we have to pay 

attention, since it could happen that prediction variables are predicting each other, instead of the 

response variable. When this happens, it seems like a prediction variable has a significant explanation 

power with respect to the response variable, while it is only explaining another prediction variable. This 

phenomenon is known as multicollinearity (Walpole, 2016). We observe that AGE is correlated with 

SUNH and WIDTH with AVGWIND. Hence, we need a measurement for the multicollinearity in the 

model.  
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To check for multicollinearity, we use the Variance Inflation Factor (VIF), which is calculated in a linear 

regression model with m as the number of prediction variables as:  
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Hence, we check the exploratory power of each prediction variable by constructing a linear regression 

model without the response variable. When the VIF equals 1, it means there is no multicollinearity. A 

general rule for the upper bound is that the VIF should be lower than 6 (O'Brien, 2007). 

When we construct a linear regression model with all the predication variables as shown in Section 4.3.2 

we observe that the model has an adjusted R2 of 65%. The adjusted R2 corrects the regular R2 when 

there are too many prediction variables included in the model, something we call overfitting. An 

adjusted R2 of 65% means that 65% of the variation of the response variable can be explained by the 

prediction variables. The p-value is equal to 0.000, which means the model has enough exploratory 

power to be significant. However, we can see that there are some variables with an increased VIF, such 

as the length (VIF=6.59) and the width (VIF=7.51). This means there is multicollinearity in the model. 

Appendix 5 shows the summary of this model.  

4.4.2 Transforming independent variables  
Currently, the variables may not be optimally transformed to explain the catch properly. Therefore, we 

look for transformations that can improve this. For this, it is necessary to acquire information about how 

the different weather factors influence the catch size.  

When looking at the literature review, we see that there is a research where full moon with a margin of 

three days, has a positive effect on the catch size (Courtney, 1996). Besides this, there is a common 

believe in the fishery that offshore wind is most promising for sea fishing and onshore wind the worst 

(Britishseafishing, 2016). 

Hence, we transform the moon phase and the windspeed combined with the wind direction to match 

the findings as stated before. 
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We transform the wind direction to be 1 when there is onshore wind, and 0 when there is offshore 

wind. Then, we multiply this value with the windspeed. We do this using:  
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  (4.5) 

For the moon phase, the data is similarly transformed. We want the transformed value to be at its 

maximum (1) at full moon and decreasing to its minimum (0) when the moon phases reaches new 

moon. We transform the moon phase using:  
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  (4.6) 

Now we create a new model with only the 

predictors that had a p-value smaller than 0.10 and 

adding the two newly constructed predictors. Also, 

we remove WIDTH from the model, since LENGTH 

and WIDTH have multicollinearity, given the high 

VIF.  

Model 1 shows the output of this model. The 

transformation with the wind direction and wind 

speed is indeed significant. The moon phase 

transformation is highly insignificant, and we 

remove it from the model. This is in contrast with 

what we saw in the literature, where the moon 

phase had a significant positive influence on the 

catch size. 

In the final model (Model 2), all used predictors are 

significant, and the model has an adjusted R2 score of 62.48%. All the VIF values are around 1, which 

indicate there is no, or very limited multicollinearity in the model. We also see that the standard 

deviation of the forecasting error (S) is equal to 0.514. 

Model Summary 

S R2 R2 (adj) R2 (pred) 

0.514116 63.28% 62.48% 60.88% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 3.016 0.223 13.55 0.000    

LENGTH 0.10389 0.00567 18.32 0.000 1.02 

VISIBIL 0.0327 0.0197 1.66 0.098 1.17 

AGE -0.01033 0.00237 -4.36 0.000 1.01 

WINDOPT 0.02250 0.00866 2.60 0.010 1.13 

MOONOPT -0.110 0.119 -0.92 0.357 1.15 

 

Model 1: Linear regression with transformed variables  
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As we stated in Section 4.4 it is important that the prediction errors are normally distributed. Hence, we 

test the residuals for normality using a Chi-squared test. The p-value of the test statistic is equal to 

0.987. Hence, there is no evidence to believe the distribution of the residuals is not normally distributed. 

We conclude the regression model, based on this dataset, is reliable. Appendix 6 shows the calculation 

of the test statistic and the test. Figure 4.8 shows the predicted values, which are plotted in blue, when 

sorted from small to large. The orange dots show the corresponding predicted value. When we look at 

this figure, one can doubt the effectiveness of this model, since there are some large deviations from 

the predicted value. However, we have to keep in mind that these deviations are smaller with the 

regression model than in the case where we do not use a forecasting model and use the expected catch 

as forecasting method. We proof this in Chapter 6, where we observe the differences when we use a 

forecasting model and when we use the expected value of the catch size.  

4.5 Machine learning models  
Now that we have a base model, and a way to measure the accuracy of this model (the RMSE, or S), we 

try to improve this model using machine learning techniques. We use the most common used 

techniques that are applicable to regression models with a continuous response variable: the REP tree, 

the random forest, and the M5P Tree. We omit the Multilayer Perceptron algorithm as literature tells us 

this gives the worst results when applied to the forecasting of fishing success (see Section 3.2). Section 

3.2 gives a brief overview and comparison of these algorithms.  

To not lose observations while building the models based on training data, we use 10-fold cross 

validation. This means the algorithm constructs a model 10 times using 90% as training data and 10% as 

test data. The accuracy is then determined by taking the average accuracy of these 10 models. We use 

the standard deviation of the forecasting error (S) as measurement for the accuracy of the models. The 

accuracy of the model is estimated using:  

Model Summary 

S R2 R2 (adj) R2 (pred) 

0.513953 63.15% 62.51% 61.12% 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 0.856 0.205 4.18 0.000    

LENGTH 0.10406 0.00567 18.37 0.000 1.02 

VISIBIL 0.0376 0.0189 1.99 0.048 1.09 

AGE -0.01046 0.00236 -4.43 0.000 1.01 

WINDOPT 0.02113 0.00853 2.48 0.014 1.10 

 

Model 2: Final model with all significant predictors 
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Figure 4.8: Predicted values from the linear regression model  
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In Section 4.5.1 we build the Reduced Error Pruning (REP) Tree, after which we continue with the M5P 

Tree in section 4.5.2. In Section 4.5.3 we finish with the random forest algorithm. The attributes we use 

in these algorithms are the same as the prediction variables used in Model 2 of Section 4.3.2, where we 

built the linear regression model.  

4.5.1 REP Tree 
Since it is possible that the weather attributes interact with each other we need an algorithm that can 

cope with this. The Reduced Error Pruning (REP) Tree has this ability. Because the REP Tree is pruned 

after construction it is optimized in size, making it easier to use in the capacity planning (Belouch, 2017).  

To measure the error in a decision tree with numerical variables, we use:  
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  (4.8) 

Appendix 7 shows the algorithm to construct this tree. Table 4.3 shows the summary of this method. We 

can see that the standard deviation of the error has a value of 0.525, which is slightly worse than the 

linear regression model that has an S value of 0.514.  

Table 4.3: Performance indicators REP Tree 

Mean absolute error                       0.4092 

Root mean squared error (S)                 0.525 

Total Number of Instances                236 

 

 

 

 

0

1

2

3

4

5

6

7

0 50 100 150 200 250

LN
C

A
TC

H

Observation

Figure 4.9: Forecasted values together with observed values from 
the REP Tree 
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In Chapter 5 we explain how we evaluate the production planning when including the forecasting 

model. To do so we need the errors of the REP Tree to follow a statistical distribution. Hence, we test 

the errors with a Chi-squared test to check for normality. The p-value of this test is equal to 0.18 

(Appendix 6). Hence, there is no reason to assume the distribution of the errors is not normal. Figure 4.9 

plots the predicted values together with the observed values. Appendix 8 shows the tree with the leaves 

that we use to make a prediction.  

4.5.2 M5P Tree 
The M5P Tree is an ordinary decision tree, with the difference that in each leave a regression model is 

used to predict the values, instead of using the expected value in a leave. A M5P Tree is built by 

branching on the attribute that reduces the variation down each branch the most (Witten, 2005). When 

calling the fraction of training data that reaches a certain node, T, we obtain the Standard Deviation 

Reduction (SDR) with:  
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We build the tree until there are <5 instances in a leaf, or when 
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After building the tree, we prune the tree, just as in regular decision trees. We do this iteratively and 

continue if and only if the Mean Squared Error decreases. We construct a linear model in each node, 

using the training data that reach this node. Then, we prune a subtree if and only if:  
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  (4.10) 

Appendix 9 shows the algorithm of the M5P Tree. The tree has 3 leaves, with 3 corresponding linear 

models, Appendix 10 shows the tree. Table 4.5 shows the performance of this model. We see that the 

model performs better than the linear regression model and the REP Tree, as the S value is lower. Again, 

we test the residuals on normality using the Chi-squared test. The p-value for this test is 0.88, which 

again leads to the conclusion that there is no reason to doubt that the errors are distributed normally. 

Figure 4.10 shows the graph with the predictions and observed values. 
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Table 4.4: Performance indicators M5P Tree 

Mean absolute error  0.3796 

Root mean squared error (S)                          0.4992 

Total Number of Instances              236 

 

4.5.3 Random forest 
The random forest is an algorithm that uses a bootstrap 

algorithm (bagging). This means there are more training 

sets derived from the data, which all generate an 

independent prediction. Then, the predicted value is the 

average of the independent predictions.  

The random forest generates multiple random trees. For 

each node in each tree there are k attributes chosen randomly to build the tree with (Liaw, 2002). 

Section 3.2 explains this process in more detail.  

Then, we calculate the best splitting attribute again using the SDR (See Equation 4.9) (Witten, 2005). 

Appendix 11 shows the algorithm to construct a random forest.  

Since there are several trees generated, and the trees are random, we do not be display the trees. The 

Chi-squared test for the residuals has a p-value of 0.74 in this case. Hence, also for the random forest, 

there is no reason to assume the residuals are not normally distributed (Appendix 6).  

Table 4.6 shows the performance indicators for the random forest. Figure 4.11 shows the plotted values 

together with the prediction. We observe that S is 0.5126, which is better than the regression model and 

the REP Tree, but worse than the M5P Tree.  

Table 4.5: Performance indicators random forest 

Mean absolute error                       0.385 

Root mean squared error (S) 0.5126 

Total Number of Instances              236 
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Figure 4.10: Forecasted values together with observed values of 
the M5P Tree 

 

Figure 4.11: Forecasted values together with observed values 
from the random forest 
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4.6 Weather forecast accuracy and impact on prediction model  
Since it is impossible to perfectly predict the weather, the three variables that are based on weather 

prediction also need to be treated as random variables. In Section 4.4 and 4.5 we assumed the weather 

attributes to be deterministic. In this section we analyze the influence of the stochastic weather 

variables on the forecasting models created in these sections. To do so, we need the forecasting 

accuracy of the weather forecasts. Therefore, we need to gather information about the historical 

weather forecasts with respect to the observed weather. We can use these forecasts to see the accuracy 

of the weather forecasts and use this information in the forecast models for the fish catch. In Section 

4.6.1 we start with analyzing the accuracy of the weather forecast. We use this information in section 

4.6.2 to see what the influence of this uncertainty is on the models of Section 4.4 and 4.5. In Section 

4.6.3 we summarize the results and choose the best forecasting method to predict the fish catch. 

4.6.1 Accuracy of the weather forecast 
There is enough information available about historical observed weather, but there is almost no data 

about the historical forecasts (what was the weather forecast on a given day). The only information 

available consists of historical forecast of the average temperature. Although we do not use the 

temperature in the models, it gives an idea on how accurate the weather forecasts are for the other 

variables. Figure 4.12 shows an example of the observed and the two-day forecast.  

It is not exactly clear how many days in advance the forecasting for the fish is needed by LNS, so we 

make the calculations for 1 until 6 days in advance. The forecasts are made for Tromsø and consists of 

one-year historical data (01-01-2016 until 01-01-2017). To determine the accuracy of a forecast, we use 

the variance of the forecast:  
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  (4.11) 

Figure 4.13 shows the variance for each of the six forecast days. As we can expect, the variance 

increases until 5 days in advance, and then shows a small decrease. We assume that the other weather 

variables can be as accurately predicted as the temperature. This assumption has the result that we also 

can assume that the Coefficient of Variation (CoV) is equal for all the weather attributes and we can 

calculate the accuracy of the visibility, the wind speed, and the wind direction with CoV of the 

temperature predictions.  
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Figure 4.13: Variance of forecast temperature  

 

The CoV is defined as 
𝜎

𝜇
. The average temperature measured in Tromsø in 2016 is 4.82°C. Then the CoV 

for the prediction 2 days in advance is 
2.25

4.82
= 0.467. We assume that the CoV for the two-day forecast 

for the visibility is also 0.467. The average visibility used in the model is 8.07 km. Hence, the estimate for 

the standard deviation is then 0.467*8.07=3.77.  

In Section 4.4.2 we transformed the variables wind speed and wind direction to create WINDOPT. The 

random variables wind speed and wind direction are multiplied. To estimate the variance for WINDOPT 

we need a formula to determine the variance when two random variables are multiplied.  

We use (Walpole, 2012):  
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+ − =

+ + + − + +

  (4.12) 

We consider the forecast accurate. The definition of an accurate forecast is that the mean of the 

forecast is equal to the mean of the observed variable. Therefore, we can assume that the covariance of 

the observed data reflects the covariance of the forecasts. There is no significant correlation between 

the windspeed and the wind direction. Therefore, the covariance is equal to 0, dropping the first term of 

Equation 4.12. Then the variance for the windspeed is equal to 11.56*0.467=5.402=29.16 and the 

variance of the transformation for the wind direction (see Equation 4.12) is equal to 

0.505*0.467=0.242=0. 0576. 

Then the variance for WINDOPT: 

 
2 2 2( ) (29.16 11.56) *(0.0576 0.505) (11.56 0.505) 379.26Var WINDOPT = + + − + =

  (4.13) 

Finally, Table 4.6 shows the means and standard deviations of the weather forecasts we use in the 

forecasting model for the catch size.  

Figure 4.12: Scatterplot observed values and 
predicted values 
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Table 4.6: Expected value and expected standard deviation for VISIBIL and WINDOPT two days in advance 

Forecast  E(X) SX  

VISIBIL 8.07 3.77 

WINDOPT 5.98 19.47 

 

4.6.2 Impact of weather uncertainty on the fish forecasting models      
In Section 4.4 we created a linear regression model and machine learning models to predict the fish 

catch per vessel. This regression model has the following equation:  

 ˆ 0.856 0.104606* 0.0376* 0.01046* 0.02113*Y L V A W= + + − +   (4.14) 

In Section 4.4 we considered the Visibility (V) and the WINDOPT (W) deterministic in the models. The 

visibility and the WINDOPT are, in contradiction to the length (L) and age of the vessel (A), stochastic 

variables itself. We must consider this in the determination of the variance of the errors of the 

forecasting models. 

 Since two of the regressors are stochastic, we calculate the errors with:  
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ŷ =predicted catch observation i, j days in advance
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  (4.15) 

Since there are no simple closed formulae to determine the variance of the model with the stochastic 

influence of the weather attributes, we use Monte Carlo simulation. Before we set up the simulation, we 

must take into consideration that there is a correlation between VISIBIL and WINDOPT (Appendix 4). 

This means the variables are not independent and that we estimate WINDOPT when we know VISIBIL. 

We construct a simple linear regression model where we use WINDOPT as dependent variable and 

VISIBIL as regressor. The model is significant, although R² is only 0.0796. The equation is as follows:  

 11.21 0.630*WINDOPT VISIBIL= −   (4.16) 

The estimated standard deviation of the error is equal to 3.97. Hence, to estimate the WINDOPT: 

 

1 2

1 2

11.21 0.630* ( | 0,3.97 )

11.21 0.630* ( | 0,3.97 )f f

WINDOPT VISIBIL F p and

w v F p

−

−

= − +

= − +
  (4.17) 

Since we assumed that the forecasts are accurate, the second equation in Equation 4.17 is true. This 

means that the variance of the observed weather is the same as the variance of the forecasts. 

Therefore, the regression equation for the forecasts of WINDOPT is the same as for the observed 

weather data at time T=0.  
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The Monte Carlo simulation to estimate the accuracy for the forecasting of the fish caught j days in 

advance consists of 8 steps:  

1. Draw a random observation (i) out of the list of all observed catch statistics together with the 

attributes; 

2. Read the attributes LENGTH and AGE of the vessel of observation i; 

3. Read the attribute VISIBIL, that is the observed visibility of observation i; 

4. Draw a random number (p) in the interval [0,1]. Then determine from VISIBIL a predicted 

visibility j day in advance. For j=2: 1 2( | 3.77 )fv VISIBIL F p−= + . Where F-1(p|S2) is the 

inverse standard normal distribution with probability p and variance S2; 

5. Draw a random number q in the interval [0,1]. From the predicted forecast visibility, we can 

calculate a forecast WINDOPT since these variables are correlated. We use Equation 4.17 with 

random number q in the interval [0,1] for the probability p; 

6. Use all forecasts and attributes to calculate a prediction with one of the forecasting techniques 

(Linear regression, REP Tree, M5P Tree); 

7. Determine the prediction error and square this error; 

8. Sum all the squared prediction errors and divide this by the number of simulation runs, we now 

have the variance of the forecast error. 

Figure 4.14 schematically explains the simulation process.         
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Figure 4.14: Schematic model for Monte Carlo simulation  

First, we test the model to ensure its appropriateness. To determine the number of required runs we 

use the linear regression model that has a real standard deviation of 0.51 when the weather predictors 

are deterministic. When running the Monte Carlo simulation with all predictors deterministic, the 

calculated standard deviation of the simulation model converges to the real standard deviation after 

around 100 simulation runs (Figure 4.15). Hence, we consider 1000 simulation runs an appropriate 

number. Appendix 12 shows the codes used for the Monte Carlo simulation. 
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After running al the simulations, we obtain the results as in Figure 4.16, where the vertical axis shows 

the estimated standard deviation of the error (S) of the forecasting models. We observe here that the 

REP Tree incurs the highest increase in standard deviation as the increase from day 0 to day 1 is the 

largest. This is due to the discrete nature of this tree, where a small deviation in the prediction variables 

can have the result that the prediction falls in another leave, changing the prediction value drastically. 

The linear regression model and the M5P Tree show a similar increase, considering the parallel lines. 

Although the M5P Tree is also a classification tree, the tree only classifies based on the vessel length. It 

is not possible to estimate the increase in standard deviation of the random forest since this algorithm 

does not have a fixed tree. Instead, we assume that the increase of the random forest is the same as the 

increase of the M5P Tree.  

 

Figure 4.16: Estimated standard deviation based on Monte Carlo simulation 

Figure 4.15: Estimated variance for various simulation runs 
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4.7 Selection of best model 
We take the linear regression model as base model and compare the estimation of the standard 

deviation with the other models. The running time for making a forecast is for all algorithms smaller 

than O(n^2). Given the small size of daily fishing vessels visiting a plant (approximately 4 per day), we 

consider the running time of all algorithms sufficiently small and we do not compare the methods on the 

running time.  

Figure 4.17 shows the model comparison. We observe that the REP Tree performs on average 40% 

worse in all scenarios than the linear regression and that the M5P Tree performs best. Therefore, we 

select the M5P Tree to forecast the supply for LNS. The expected value for the M5P Tree is 2.42. Hence, 

we expect a random vessel to deliver 11.28 tons of Cod. We need this information in Section 5.4 to 

determine how many fishing vessels deliver fish to LNS daily.  

 

Figure 4.17: Comparison of all forecast methods (linear regression=1.0) 

4.8 Conclusions of the reduction of supply uncertainty  
In this chapter we started with proposing three possible methods, derived from the literature, which are 

interesting for LNS to reduce the supply uncertainty of raw material. Since LNS competes on product 

quality (see Section 1.1) the company needs good quality raw material to produce the best quality end 

products. Therefore, purchasing raw material from fish farms is not an option for LNS, since the quality 

of the raw material is not as good as fresh caught sea fish. Also, the fishermen have the most power in 

the supply chain. As a result, they are not willing to share catch information with LNS. We consider the 

option to forecast the catch size as the best solution to reduce the supply uncertainty.  

We conclude that the region Troms is the best region to base our forecast on, due to the fact the tones 

of caught fish per kilometer coastline was the highest in this region. We showed that a combination of 

classification and regression gives the best results, as the forecasting error is the smallest in the M5P 

Tree. We must note that, although the forecasting models are significant on this dataset, the model can 

give different results when applying on data of another region or another year. We consider the 

forecasting error representative for the other regions and years.  
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5 Using the supply information in the capacity planning  
In this chapter we use the acquired distribution of the catch forecast of Chapter 4 to optimize the 

capacity planning of LNS. To do so, we first look for a method to model the processing plant of LNS in 

Section 5.1. Section 5.2 explains the way of modelling and why we choose for this method. The model 

consists of three modules; one to optimize the capacity planning in the processing plant, one to evaluate 

the planning method, and one to collect data. Section 5.3 explains the first module, which optimizes the 

capacity planning. Section 5.4 focusses on the evaluation of the model, generating raw material supply, 

and collecting the output of the model. Finally, Section 5.5 finishes this chapter with the conclusions. 

This chapter answers research question 4. 

5.1 Assumptions about the processes  
We must make several assumptions about the production processes of LNS. These assumptions are 

necessary for two reasons: to scope the model because of our limited time and because LNS cannot 

provide us with all the necessary data.  

5.1.1 Assumptions to scope the model  
Although strictly spoken we have variables that are integer within the model, we assume all variables to 

be continuous. We plan the capacity in hours and not in employees. LNS must pay employees in shifts of 

6.6 hours. We always round up since the production plan must be feasible. The maximum rounding 

difference from hours to employees is thus 6.6 hours per workstation. We checked the impact of this 

with LNS and the company indicates there is enough extra work to spend these hours productively. Also, 

we measure all produced products, used raw material and bought raw material in kilograms. Although 

very strictly spoken we should measure this in the number of fishes, LNS also uses kilograms for these 

variables.  

Next, we omit all constraints with respect to the market demand. Hence, we assume all end products 

are sold immediately. Although the demand per individual product can differ, the aggregated global 

demand for fish products is increasing, and predicted to increase in the coming years with 1.1% per 

year. Beside this, the production is predicted to stay stable (The World Bank, 2013). Therefore, the 

assumption that all fish can be sold is justified.  

We take only the three most purchased species into account, which are Cod, Haddock, and Pollock. 

These three species account for 96% of total production in 2017. We assume that the production of the 

other 4%, that consists of 7 remaining species, can be planned easily when the planning is made for the 

three main species.  

Also, we assume the processing times within the facility to be deterministic. The filleting and freezing of 

the fish is completely deterministic, since this is automated. We justify the assumption that the 

processing time of the cutting process is also deterministic by providing the fact that the cutting 

department is occupied by more than 1 cutter simultaneously. This means that, although the variance of 

the processing time of each cutter on itself might have a high Coefficient of Variation (CoV), the CoV of 

the whole process (summation of all the individual cutters) decreases, when the number of cutters 

increases. Besides this, the layout in the processing plants is production oriented, resulting in an already 

low variation of processing times (Slack, 2008). 
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5.1.2 Assumptions because of the lack of data 
Since LNS cannot provide us with all the required data, we make reasonable assumptions to make up for 

the lack of data. First, LNS could not provide us with historical data about which ships are visiting the 

processing plant. Therefore, we assume that the distribution of the ship characteristics in Båtsfjord is 

equal to the distribution in Troms, where the forecast model is based upon. Second, LNS could not 

provide us with accurate data about the costs and planned capacity in the processing plant. Therefore, it 

is not possible to determine the current costs levels in the processing plants and make comparisons. In 

Chapter 6, we create our own scenario with respect to the current costs situation at the processing 

plant.     

5.2 Choice of the modelling approach  
To decide which modelling approach we consider best, we must consider the complexity of the model 

and the quality of the solution. The first determines the running time, the second determines if the 

solution is optimal or how close the solution is to optimality. Section 5.2.1 starts with explaining the 

variables that are present in the model, after which we continue in Section 5.2.2 with explaining the 

modeling approach.  

5.2.1 Variables in the model 
Chapter 2 states that the processing times of the filleting and freezing department are deterministic 

since they are automatized. We justified in Section 5.1 why we consider the processing times in the 

cutting department to be deterministic. We consider all the variables in the model to be continuous, 

since we plan the capacity at each department in time, and not in the number of workers.  

We also saw in Chapter 2 that the age and quality of the raw material is important. The quality does not 

change when the fish gets older, but the age of the raw material impacts the production matrix. Fish 

older than 6 days is always sold. Hence, we have for each specie 3 different qualities and 6 days of age.  

Table 5.1 shows the decision variables of the model together with the unit in which they are measured 

and the number of elements each variable consists of. We need this information in the next section. 

Table 5.1: Variables with their units and elements 

Variable Produced 
products 

Used raw material to 
production 

used raw material 
to sell 

Planned 
capacity 

Unit kg kg kg hours 

Elements consist of 9 products 3 species, 3 qualities, 6 
days 

3 species, 3 
qualities, 6 days 

5 work stations 

Total number of 
elements 

9 54 54 5 

 

5.2.2 Modelling approach: Rolling planning horizon 
Exact algorithms give the optimal solution, in contrast to heuristics (Trevisan, 2011). We also must 

consider the complexity of our model. Therefore, we prefer exact algorithms if the running time is 

polynomial or less. Given the fact that we only have continuous variables and that LNS does not share 

workers between working departments (Section 2), we conclude that we can model the deterministic 

capacity problem in the processing plant as a Linear Programming Problem (LPP).  
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An LPP can be solved in polynomial running time (Trevisan, 2011). With the deterministic capacity 

problem, we mean the situation where all the supply of raw material is known. When observing the 

number of elements of all the variables of Table 5.1 we see why it is important that we only have 

continuous variables. Integer variables mean we need a Mixed Integer Linear Programming Problem 

(MILPP). These algorithms do not have a polynomial running time, meaning the running time explodes 

when the number of variables increase.  

We also must take into consideration that the solution of day T depends on the solution of day T-1, since 

the age of the remaining inventory on day T-1 is one day older at day T; we call this a recursion. Figure 

5.1 shows this process schematically for the first two days. The symbols between brackets denotes the 

notation we use in this research.  We explain the notation further in Section 5.3 Note that from day T=1 

onwards, LNS can only change the capacity for day T+3. The capacity of days T, T+1, and T+2 comes from 

the planning made in day T-1. Because of the recursion, it is not possible to solve the problem with 

closed formulae for only one day, but we can formulate the problem as a rolling planning horizon 

(Kimms, 1997).  

In Section 2.1 we explained that LNS must plan the capacity three days in advance and that LNS knows 

three days in advance how many, and which ships are coming to deliver fish. Therefore, we choose 3 

days as our planning horizon. This means that on day T, given that T is bigger than 0, we can only change 

the capacity for day T+3, since the other days have been planned on day T-1 and cannot be changed 

anymore. To see the result of the planned capacity at day T-1, we optimize the production plan by 

producing the products that result in the highest profit, given the amount of delivered raw material and 

planned capacity. The planned supply comes from the forecasting model of Chapter 4.  
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Figure 5.1: Recursion in the calculations  
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Taking into consideration that we use a stochastic variable into the model (planned supply of raw 

material) we must adjust the LPP model to cope with this uncertainty.  Since we have a prediction for 

the catch we can use stochastic programming to solve the planning problem each day. Section 3.1 

explains this method and literature uses this method to solve capacity planning problems with uncertain 

supply. An extra benefit of using SPP is that it is formulated as a Linear Programming Problem and that 

we therefore obtain a dual solution. The dual values tell us how much the profit function increases or 

decreases when relaxing the right-hand side of a constraint marginally. We use this dual solution to 

analyze the quality of the planning. Section 5.4.3 explains this in more detail.  

5.3 Modelling the processing plant in Båtsfjord 
We present the Stochastic Programming Problem (SPP) in this section. This problem is the base of our 

rolling horizon planning, since this creates the capacity planning each day. We base the model on the 

information that we gave in Chapter 2, which explains the processes in the processing plant in Båtsfjord. 

To model the processing plant, we need to know which parameters and variables are of interest and 

which ones we can omit.  

The capacity planning is made in Båtsfjord three days in advance. Our forecast horizon is thus three 

days. We name the deterministic day in our model day T. Each day of the planning horizon we solve the 

model, which we present in this section. The model optimizes the production planning, given the 

planned capacity of the previous day, and plans the capacity for day T+3.   

We need different scenarios for the prediction of the fish catch. This is because the actual catch differs 

from the forecast. When capacity is cheap in comparison with the sales prices of the products, it is 

optimal to plan more capacity than the expectation of the forecast of the catch and vice versa (Begen, 

2003). We call this the opportunity costs. When we plan the 

capacity only based on the expected forecast, we do not take this 

phenomenon into account. In Chapter 4 we saw that we have a 

normal distribution for the forecast of the catch size. The SPP 

needs discrete inputs for the catch forecast. Since the normal 

distribution is a continuous distribution, we need to discretize the 

probabilities to generate the different forecast scenarios. 

Research shows that three scenarios, as shown in Table 5.2, yields an optimal result (Pflug, 2001). The Z-

value of Table 5.2 corresponds with the Z-value of the used normal distribution of the catch forecast. For 

example, a catch forecast of 70,000 kg Cod with a standard deviation of 4,000 yields three forecast 

scenarios: 

1. High: 70,000+4,000*1.029=74,116 kg with probability 0.3035 

2. Normal: 70,000+4,000*0=70,000 kg with probability 0.393 

3. Low: 7,000+4,000*-1.029=65,884 kg with probability 0.3035 

First, we present all the variables, indices and parameters in Table 5.3, Table 5.4, and Table 5.5 

respectively. The product numbers correspond with the products of Table 2.3. The working stations with 

the work station of Table 2.6.  

 

Scenario  Z-value Probability  

High 1.029 0.3035 

Normal 0 0.393 

Low -1.029 0.3035 

Table 5.2: Scenarios with their probabilities  
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 Table 5.3: Indices of the SPP    Table 5.4: Variables of the SPP 

Table 5.5: Parameters of the SPP 

Parameters Indices Explanation  

SP s,o Selling price product per kilogram  

K s,l Buying price raw material per kilogram 

H d Wages per hour per employee per department  

Utcut k,l,o Percentage product that can be cut out of each 
age/quality combination of the raw material 

PT o,d Product time per kilogram raw material in 
department d 

q p Probability of scenario p  

CT i,d Planned capacity in the solution of day T-1 

IT s,k,l Inventory of the deterministic day in the 
solution of day T-1 

Next, we formulate the SPP as we solve it for each day of the planning horizon. We omit the explanation 

of the variables and indices in the model, as we gave them already.  
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Variable  indices of 
variable  

Explanation  

P i,s,o,p Kilogram produced of product o, in scenario p 

F i,s,k,l,p Raw material used for production   

S i,s,k,l,p Raw material used to sell  

I i,s,k,l,p Inventory raw material in scenario p end the 
end of day i 

EI i,s,k,l Expected inventory at the end of day i 

C i,d Planned capacity on day T 

B i,s,l,p Planned delivery of raw material in scenario p 
if i={1,2,3}, bought raw material if i=0 

Index  Explanation  Values  

 i Day  4 

s Specie 3 

k Age of raw 
material 

6 

l Quality of raw 
material  

3 

p Scenario  3 

o Product 7 

d Work station 5 
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The goal function takes the weighted average of the profits in each scenario of 4 days, where day T is 

the deterministic day and thus has only one scenario. The profit in each scenario is determined by all the 

produced product multiplied with the product prices, minus the total price of all the bought fish, minus 

the planned capacity multiplied with the wages per hour. We note that Bi,s,l,p does not depend on the 

age of the raw material, as the processing plant in Båtsfjord only buys fish from coastal vessels. They 

deliver fish at the same day. Therefore, all the purchased fish is one day old when delivered to LNS.  

Constraints 1 and 2 ensure that in each scenario of the deterministic day, there cannot be more raw 

material used than available. For fish of 1 day old, this available raw material is equal to the delivered 

fish on day T. For fish older than 1 day, the available raw material is equal to the rest inventory of the 

deterministic day of day T-1. Since the inventory constraints in day 1 until 3 depend on the actual catch 

scenario, which is not certain yet, we take the expected inventory to compensate for this lack of 

knowledge. Literature applies this solution as well. Constraint 3 calculates the expected inventory. Note 

that in constraints 1 and 2, we take the expected inventory directly, as the inventories are not uncertain 

at day T. Constraint 4 and 5 make sure that the inventories each day in each scenario equal the expected 

inventory of the previous day minus all the used fish for production and selling. When the fish is one day 

old we add the purchased raw material to the right-hand side.  

Constraint 6 and 7 ensure the usage of raw material is sufficient to produce all the products. Since we 

use a lower or equal sign here, it is not mandatory to produce all the products that are possible. This is 

because it might be optimal to only cut out fresh products when there is no more freezing capacity 

available. Constraint 8 and 9 make sure that there is enough capacity planned in all the work stations to 

produce all the products. Constraint 10 sets the maximum production capacity for the filleting and 

cutting department. We do not know the maximum capacity of the other station, but we showed in 

Section 2.3.3 that the capacity of the other stations is bigger than the filleting station. Finally, constraint 

11 ensures that the capacity in the coming 3 days is equal to the planned capacity of day T-1 in the 

rolling planning horizon.  

The model does not use information of the solution of day T-1 to forecast the catch in day T, something 

we expect LNS to do. Due to our limited time and scope, we choose not to research this further.  

5.4 Evaluating the planning model  
This section focusses on testing the quality of the solution of the model that we constructed in Section 

5.3. We stated in Section 5.2.2 that there is a recursion between the days of the rolling planning horizon. 

Since it is not possible to evaluate the model using simple closed formulae, we use simulation. Section 

5.4.1 explains how the supply information is generated. Section 5.4.2 focusses on the simulation process 

and how we collect the output. Finally, Section 5.4.3 finishes with the explanation of the warmup 

period, the number of runs, and how we use the output of the model.  

5.4.1 Generating planned and realized supply  
In Section 5.3 we created a model for the processing plant. Now we implement the supply information 

of Chapter 4 into this model to generate a supply and a forecast for each day of the rolling planning 

horizon. We need this information for the variable Bi,s,p,l (see Equation 5.1) where we must make a 

forecast for day T+1, T+2, T+3. We made a forecast model for the number of tones of Cod with head 

caught by an individual fishing vessel, given a vessel size and age as vessel characteristics and the 
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visibility and western wind as weather characteristics. The catch per individual vessel is not dependent 

on the time of the year, as we showed the day of the year was not a significant variable in the model.  

We observed in Section 2.3 that the total delivered fish to LNS varies per month. It is important to take 

these fluctuations into account since the capacity planning depends on the amount of raw material.  

To simplify the analysis, we apply cluster analysis to create clusters with a comparable amount of 

bought fish per month. In this way we do not have to analyze each month individually. We want as few 

clusters as possible and we consider a cluster acceptable when each observation within a cluster does 

not significantly differ from the average within that cluster. We test this difference by applying a 1-

sample t-test within each cluster, where we test on the biggest outlier in each group. When the biggest 

outlier is not statistically different from the mean, the other values are also not statistically different.  

We start with 2 clusters, when one of the clusters is not acceptable, we increase the number of clusters 

with 1, until all the clusters are acceptable. We obtain 4 clusters, which are shown in Table 5.6. We also 

apply an ANOVA test to see if the average values between the groups are significant different. The P-

value of this test is 0.000. Appendix 13 shows the summaries of all the tests.  

Table 5.6: Clusters for analysis  

Cluster Months Average kilogram 
per month raw fish  

P-value 1-sample 
T-test on biggest 
outlier 

1 July, August, September  773,258 0.190 

2 February, June, October, December 1,291,547 0.058 

3 January, March, April, May 1,530,826 0.117 

4 November 2,177,315 - 

Since our forecasting model provides a forecast per fishing vessel we need to determine how many 

fishing vessels are delivering fish on an average day in each cluster. The amount of fishing vessels 

determines how much raw material LNS receives, which influences the amount of required capacity. To 

determine the average number of fishing vessels per day, we look at the average amount of delivered 

raw material in each cluster and divide this number by the expected number of kilograms per fishing 

vessel.  

As we only made the prediction model for Cod, we need a method to forecast the other two species as 

well. We assume that the prediction for Haddock and Pollock is as accurate as our forecasting model for 

Cod. Because of this assumption we forecast the 

amount of delivered Haddock and Pollock as a 

fixed fraction of the amount of forecasted Cod in 

each cluster. We forecast the number of kilograms 

Cod per fishing vessel and assume that each fishing 

vessel consist of these fractions of delivered fish. 

For example, in cluster 1 the total bought fish 

consisted on average of 80% Cod, 9% Haddock, and 

11% Pollock. If we forecast a vessel to have 50 tons 

of Cod, we assume this vessel brings in 50 tons of 

Cod, 5.8 tons of Haddock, and 7 tons of Pollock.  We use the distribution of the weather data and ship 

information to draw the predictors for the forecasting model, using a random number. 

Predictor Expected 
value 

Standard 
deviation  

Vessel length  13.58 5.97 

Vessel age 26.11 14.26 

Visibility  8.3 1.85 

Wind speed 
from the west 

5.98 4.13 

Table 5.7: Predictors and their distribution 
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Table 5.7 shows the expected values 

and standard deviations of the 

prediction variables. 

Since LNS could not provide historical 

data about the number of ships visiting 

the plant, we must make an estimate of 

this number. In Section 4.4 we read that 

the expected catch of Cod for a random 

vessel is 11,028 kg. We calculate the 

expected amount of daily fish delivered 

per specie.  

With this we calculate the fractions of 

each specie and the expected daily number of ships coming to Båtsfjord. This number is the expected kg 

Cod delivered divided by the 11,028 kg, which is the expected delivery Cod for a random vessel.  

Next, we want to know how many fishing vessels we have to generate each day in our evaluation model. 

Although we do not have historical data about the number of vessels visiting LNS, we expect that there 

are fluctuations in this number. Since we cannot find a probability distribution for the number of vessels, 

we have to make an assumption about this. A Poisson distribution is used to count the number of events 

within a time period. This describes the number of boats visiting the plant per day. Therefore, we 

choose to draw random numbers out of a Poisson distribution where the expected value is equal to the 

expected daily shipments of Table 5.8 within each cluster.  

Finally, we need the probability of delivering good, regular, and bad quality fish by a random fishing 

vessel. The quality is always graded for the whole shipment of a vessel. In Section 2.3.1 we showed for 

2,597 shipments the quality ratings. We calculate the probability of a good quality shipment to be 0.50, 

regular quality 0.46 and the probability for a bad quality shipment 0.04. 

Then we program the module so that it does the following steps, until the simulation stops:  

1. Generate 4 random values out of the corresponding distributions for the visibility, vessel age, 

wind speed from the west and vessel length.  

2. If T<4: Generate a three-day forecast for day T+1, T+2, and T+3 for the fish catch on day T, 

generate 3 forecast scenarios for each forecasted day. We now have 9 forecasts.  

3. If T<4: Generate a realized catch for each day, based on the different standard deviation for 

each forecasting day of Section 4.7.  

4. If T>3: Move up all the realized catches one day, from day T to day T-1. Since the standard 

deviation for the catch is lower at day T-1 than at day T (see Section 4.6), we make a new 

forecast for each day, and generate a new realized catch for day T+3 together with a forecast.  

5.4.2 The simulation process explained and collecting the output 
We explained the first two modules of the model in Section 5.3.1 and 5.3.2. We explain in this section 

how we connect all the modules and how we run the simulation. We explain the model, starting from 

T=4. We continue from step 4 of the prediction module of Section 5.3.2, where we generated a catch 

forecast and a realized catch for day T=0 until day T=3.  

Cluster Expected kg 
Cod 

Expected kg 
Haddock 

Expected kg 
Pollock 

Expected 
daily 
shipments 

1 43,169.36293 
 

4,994.63545 
 

6,046.469 
 

3.91 

2 70,697.12319 
 

12,942.20064 
 

7,451.711 
 

6.41 

3 67,539.7343 
 

13,514.89127 
 

2,142.456 
 

6.12 

4 69,233.97498 
 

11,826.47109 
 

30,923.07 
 

6.27 

Table 5.8: Expected daily shipments in each cluster 
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5. Retrieve the planned capacities for day T, day T+1 and day T+2 of the solution of the Stochastic 

Programming Problem for day T-1.  

6. Retrieve the remaining inventories of the deterministic day of the solution of the SPP for day T-

1.  

7. Construct the SPP for day T, with the realized and forecasted catch sizes, the planned capacities 

of the previous day, and the remaining inventory of day T-1.  

8. Solve the SPP, write the end inventory for day T, the planned capacity for day T+1, T+2 and T+3 

to the central database of the optimization module. This information is needed to solve the SPP 

for the next day.  

9. Write the profit of day T (the deterministic day), the capacity planning, and the dual values of 

the solution to the module Results for analysis later.  

10. Increase the day counter with 1 

11. Start at step 1 (Section 5.4.2).  

Figure 5.2 shows the information flows between the modules and the simulation process schematically. 

Appendix 14 shows a detailed explanation of the model, where we show all the matrices that we use in 

the model. We omit the exact code in the appendix, as this takes over 12 pages to show.  

 

Module results

Central database forecast

Day counter

Central database Optimization

Module Optimization 

Catch forecasts

Planned capacity day 0 until 2

Profit day 0

Capacity planning

Production planning

End inventories

Module Forecast 

Values prediction variables

Prediction model

Catch forecast

Inventory day 0

Planned capacity 

Profit deterministic day

Dual values 

Production planning 

Realized catch

Realized catch 

Prediction model

Distributions prediction 
variables

Day in model

Day in modelPK

Day T=Deterministic day

Catch forecast day T+1, T+2, T+3

Realized catch day T

Dual values of solution

Capacity planning 

End inventories

Capacity day T-1

End inventories day T-1

Capacity planning day T, T+1, T+2, T+3

End inventories day T

Dual values day T

Profit day T

Planning day T

Random 
number 

[0,1]

Input in module

Output in module

Temporary storage of information

Final storage of information

 

Figure 5.2: Simulation process schematically explained  

5.4.3 Sensitivity analysis, warmup period, and number of replications  
Finally, we want to know how the model performs with respect to the planned capacity. For this we use 

the dual values of the SPP. The dual values tell us how much we can vary each decision variable until the 

current solution is not optimal anymore.  

We obtain the dual values for restriction 11 of the SPP. This restriction is always binding for the capacity, 

which means the dual value is never 0. When this dual value is lower than 0 it means the model planned 

more capacity than needed. This happens because the real delivery of raw material is lower than 
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forecasted. Higher than 0 means the model planned too little capacity than needed, due to the 

forecasting model forecasts less fish than actual delivered. We give two examples in Table 5.9, taking 

the filleting and cutting station as example. In the first row, the dual values of restriction 9 are positive 

for both stations, meaning the profit increases when more capacity is planned. However, the filleting 

station is already planned at its maximum capacity. In the second row, both duals are negative, meaning 

the profit increases when capacity is reduced (and thus the planned capacity is too high). We look at the 

minimum value of the corresponding dual to see how much we can decrease the capacity. For the 

filleting station this is 1131.63 minutes. Hence, we planned 1164.6-1584=32.97 minutes too much 

capacity. For the cutting station this number is 45.23. To calculate how much reduction in profit this 

planning error incurred, we multiply the planning error with the corresponding dual value of the station.  

Table 5.9: Two examples of output simulation model  

Profit Capacity 
Filleting 

Capacity 
Cutting 

Dual 
Filleting 

From To Dual 
cutting 

From To 

259007.16 1584.00 9088.97 90.93 1584.00 1584.00 0.61 9043.61 9088.97 

164591.68 1164.60 6416.88 -8.33 1131.63 1584.00 -4.17 6371.65 10296.00 

Next, we determine the number of required simulation runs based upon a corrected relative error ( 'y ) 

of output of the model. We set this number at 0.048. We define the output as the result of the goal 

function of the SPP. We find the minimum number of runs with:  
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  (5.2) 

We proof in Appendix 15 that we need a minimum of 182 simulation runs for each cluster. As we 

included data of the warmup period, we expect the actual number of required runs to be even lower, 

but we maintain 182 as a minimum. 

Finally, we need the warmup period for the simulation. The warmup period is necessary since we start 

our simulation model empty. It takes a certain number of runs so that the simulation is at its normal 

state. To determine this number of runs that cannot be used, we use Welch’s graphical method (Law, 

2015). For this method we construct a graph of the moving averages of the outputs of the simulation 

model for 20 replications of each 500 runs. We then must find from which run length the grey dotted 

graph is stable. Figure 5.3 shows the result and we can see that from approximately a run length of 50, 

the graph is stable. We thus set the warmup period at 50 runs. Hence, for each simulation, we discard 

the first 50 results. The full method is explained in Appendix 16. 
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Figure 5.3: Welch’s graphical method for 20 simulation runs of length 500 

 

5.5 Conclusions of the plant model and simulation process  
In this chapter we provided a method to plan the capacity in the processing plant in Båtsfjord given a 

forecasted catch size of the three species we investigate. We consider the processing times 

deterministic, and all the other variables continuous. Therefore, we propose to use Stochastic 

Programming to plan the capacity. As LNS knows three days in advance how many, and which ships 

come to deliver fish, and LNS must plan the capacity three days in advance, we plan the capacity for 

three days in advance.  

As we saw in Section 2, the products that LNS can produce out of the raw material depends on the age 

and quality of the raw material. Therefore, there is a recursion in the days, making it difficult to use 

closed formulae. We solve this by using a rolling horizon planning, where we plan the capacity for day 

T+3 and optimize the production by producing the products that yield the highest profit.  

To analyze the quality of the solution of the Stochastic Programming Problem, we integrate the 

forecasting model of Chapter 4 in the SPP. We use simulation to generate for each day (T) of the rolling 

planning horizon a realized and forecasted catch. Literature tells us we need to generate three different 

scenarios for the forecasted catch, as we do not know the opportunity costs of the capacity.   

We conclude that we need a minimum of 182 simulation runs to make the corrected relative error 

smaller than 0.048. Also, we need 50 simulation runs to warm the model up. Therefore, we need a 

minimum of 182+50=232 simulation runs in each cluster.  

In the next chapter we present and analyze the results of the simulation outputs of the model we 

presented in this chapter.  
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6 Estimating the gains with the new planning method 
In this chapter, we answer research question 5, which asked what savings LNS can expect when using 

the supply information in the capacity planning. To do so, we first give the variables in Section 6.1 that 

measure the gains and let us measure the performance of the model. In Section 6.2 we analyze the 

current situation measured in these variables. Section 6.3 analyzes the situation when the forecasting 

model is implemented in the capacity planning. Section 6.4 continues with the scenario where LNS uses 

variable capacity, against extra costs. Section 6.5 creates a scenario where LNS purchases an extra 

filleting machine, to increase the capacity of the bottleneck. Section 6.6 compares all the scenarios and 

tests whether the differences are significant. Section 6.7 chooses the best scenario and gives the 

calculations of the expected improvement. Finally, Section 6.8 gives the conclusions of this chapter.  

6.1 Analyzing the output of the model: choosing the variables  
We consider six output variables important to analyze the performance of the planning method:  

1. The total error of the forecast hours, over all departments:  

We calculate the forecast error of a department using the values of the dual solution of constraint 

11, which set the capacity of day T until T+2 equal to the planned capacity in day T-1. We calculate 

the forecast hours using: 

 

5

1

: forecast error in hours at department d

d

d

d

Total forecast error e

Where e

=

=

=


  (6.1) 

We set the forecasting error at 0 when the dual value of a department is positive and when the 

maximum available capacity of this department is fully used. This means constraint 10 is the binding 

constraint, which set the planned capacity lower or equal than the maximum capacity.  

2. Total lost profit in NOK:  

We calculate the lost profit because of the forecasting error. When the maximum capacity of a 

workstation is insufficient to produce all available fish and this workstation is used at full capacity, 

we set the lost profit at 0. Otherwise we calculate the lost profit using:  

 

5
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: the dual value of station d

d d

d

d

Lost profit e dual

Where dual

=

=

=


  (6.2) 

3. Percentage lost due to overcapacity:  

We want to know how much of the lost profit is due to overcapacity, and how much is due to under 

capacity. This information is useful when we compare this percentage with the percentage of days 

the maximum capacity is planned in the processing plant. We calculate this number using:  

 
Total lost profit

Percentageovercapacity
Lost profit duetoovercapacity

=   (6.3) 
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4. Kilogram fillet per cutting hour:  

Since this KPI is the only reliable data we have about the current situation in the processing facility 

in Båtsfjord, we use this KPI to compare the output of the models with the current situation. 

Although this variable does not say anything about the profit in the facility, it is useful to see how 

the forecasting models are performing compared with the current situation.  

5. Profit per kilogram fish:  

Since the number of kilogram raw material per simulation run is slightly different, we cannot simply 

compare the models using the generated profit. Therefore, we divide the profit by the amount of 

raw material delivered to see how much profit is generated out of the raw material. We use the 

deterministic profit (the profit of day T of the SPP). We consider this the most important variable, 

since the profit is the goal function of the SPP. Hence, the profit tells us how well the model is 

planning the capacity for LNS as we concluded in Section 2.4.      

We use:  
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  (6.4) 

6. Probability of running at maximum capacity   

Finally, we determine the percentage of days the processing plant is operating at its maximum capacity. 

With maximum capacity we mean that restriction 10 is binding for the solution of the SPP. This can be 

for the filleting or cutting department, as we set constraint 10 for those two departments.  

6.2 Current cost level and cots level with deterministic catch  
LNS could not provide full data about the current capacity planning. We only have the planned capacity 

in the cutting department, which we presented in Section 2.3.4. We use this information to make a base 

scenario for variable 4 of Section 6.1, which is the kilogram fillet per cutting hour. Next to this, we 

simulate the current situation at LNS where the model uses only the information that LNS has available 

now, which is the average catch per fishing vessel. With this scenario, we compare what the impact of 

the forecasting model is on the profit levels. We compare different scenarios of the model using the 

profit per delivered kilogram of raw material.  

Finally, we run the model where we omit constraint 11 from the model, so the model can plan the 

capacity based on the actual delivered raw material, eliminating the uncertainty in supply. We do this to 

verify that the model creates logical output, as we expect the profit to fall within the interval of this 

solution and the solution when taking the average catch per vessel as forecast.  

We only give the mean values of the output of the model in this section. Appendix 17 and Appendix 18 

show the confidence interval per cluster for the kilogram per cutting hour and the profit per kilogram 

raw material respectively.  
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6.2.1 Current productivity levels in each cluster  
We can describe the current productivity levels best with the amount of kilogram produced fillet per 

cutting hour. Section 2.4 explains why. Table 6.1 

shows these numbers together with the confidence 

intervals. We base the information on the full 

production year of 2015. Although the profits are also 

given in this dataset, it is not clear which costs are 

extracted to obtain these profits. We have no 

information about the overhead costs, such as 

electricity, management costs, rent of the processing 

plant etc. Therefore, we use the number of kilograms 

produces fillet per cutting hour as KPI, and compare 

each scenario based on this number.  

6.2.2 Costs levels with deterministic catch  
We create a situation where we remove 

the uncertainty in supply for LNS. With the 

deterministic catch we mean that LNS 

knows exactly how much raw material of 

each quality it gets supplied each day, 

removing the stochasticity of the supply. 

We achieve this situation by simply 

omitting constraint 11 out of the SPP. This 

means that the model plans exactly the 

amount of required capacity, when all the 

supply is known at day T. This means that 

the fluctuations in the delivery of raw material remain, but the model knows exactly how big these 

fluctuations are. Table 6.2 shows the results. Since there is no forecasting error or lost profit due to 

forecasting errors, we only give the kilograms per cutting hour and the profit per kilogram raw material. 

We compare the setups in the coming sections with this situation.  

6.2.3 Costs levels when using average shipment per vessel as forecast  
Since we do not have accurate costs information of the processing plant, we create a base scenario 

using the simulation model. We run the model using the average shipment per vessel as the forecasts 

for each day of the planning horizon. This means that if we expect 3 ships at day T+1 that the forecast 

for Cod for day T+1 is 3*11028 (the average Cod size for a vessel). We calculate the forecast for the 

remaining species and the different forecast scenarios as in Section 5.3.1 and 5.3.2.  

 

 

 

 

  95% Confidence interval 

Cluster Mean kilogram 
fillet per cutting 
hour 

Lower 
bound 

Upper 
bound 

Cluster 1 88.31 80.97 95.65 

Cluster 2 101.80 92.40 111.19 

Cluster 3 127.77 119.02 136.53 

Cluster 4 88.12 78.44 97.81 

 Cluster 

1 2 3 4 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Kilogram fillet per cutting 

hour 

145.87 142.38 151.98 152.50 

Profit per kilogram raw 

material 

6.49 8.45 9.58 8.05 

Table 6.1: Current productivity according to data LNS 

Table 6.2: Summary output deterministic catch  
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Table 6.3 shows the result of the output 

of the model. We see that the forecast 

error in cluster 1 is relatively big compared 

to the other clusters. This is because in 

cluster 2 until 4, LNS gets delivered more 

fish, resulting in a higher occupancy rate of 

the processing plant. In these clusters at 

45% of the days the plant was working at its 

maximum capacity. Hence, when there is 

much more fish available than can be 

produced in a single day, the model simply 

sets the capacity at its maximum. It is not 

important how much more fish is available, 

resulting in a smaller forecasting error. This 

results also in a lower percentage of lost 

profit due to overcapacity.  

We consider this method as a lower bound 

for the profit, as we expect the profits to be 

higher when the model can plan the capacity with more accurate supply information.  

6.3 Solution with forecasting model 
We run the model with the same parameters and setup of the processing plant as in Section 6.2.2. The 

only difference is that we add the forecasting 

model for the fish of Section 2.4, instead of 

forecasting using the average catch for a 

fishing vessel. Table 6.4 shows the result of 

the outputs. We observe that the cutting 

department yields a higher productivity in all 

clusters. Also, the raw material is used better, 

given the increased value in the profit per 

kilogram fish. It seems that in cluster 3 the 

losses are increased, given the higher lost 

profit per day. However, this number is only 

relative to the current solution of the SPP. The 

solutions can be better than the solution in 

Section 6.2.2, while yielding a higher lost 

profit at the same time. The lost profit is for 

100% caused by overcapacity in cluster 1, and 

for 83% to 98% in the other clusters. This tells 

us that the opportunity costs of producing are 

high. As a result, the model plans capacity for 

the scenario with the highest catch (see 

Section 5.3). This also explains the higher forecasting error compared with the solution of Section 6.2.3. 

The model plans, on average, more capacity than needed. This results in higher profits.  

 Cluster 

1 2 3 4 

Mean per 

day 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Total forecast error 

[hours] 

70.67 3.13 3.12 3.12 

Total lost profit [NOK] 20455.82 1552.31 1558.87 1558.87 

Fraction lost profit due 

to overcapacity  

.95 .73 .73 .73 

Kilogram fillet per 

cutting hour 

100.33 148.39 136.60 140.22 

Profit per kilogram 

raw material 

4.12 5.59 6.70 5.73 

Probability of using 

maximum capacity  

.17 .47 .46 .46 

 Cluster 

1 2 3 4 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Total forecast error 

(hours) 

21.21 3.93 15.33 5.05 

Total lost profit (NOK) 5668.34 1001.88 3905.51 1273.23 

Fraction lost profit due 

to overcapacity 

1.00 .83 .98 .92 

Kilogram fillet per 

cutting hour 

137.88 148.89 147.81 147.38 

Profit per kilogram 

raw material 

5.57 8.07 8.37 7.61 

Probability of using 

maximum capacity  

.02 .91 .83 .97 

Table 6.3: Summary output when using average catch as forecast 

Table 6.4: Summary output with forecasting model  
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We further observe that in clusters 2, 3, and 4 the production was restricted due to exceeding of the 

maximum capacity in 83% to 97% of the days. In 77% and 97% of the cases, this is due to the filleting 

station. This supports the conclusions of Section 2.4, where we concluded that the filleting machine is 

the bottleneck.  

We observe that the productivity and profit per kilogram raw material of all clusters lay within the 

deterministic solution and the solution of Section 6.2.3. This is what we anticipated and tells us the 

model is performing as expected.  

6.4 Solution with possibility of overtime  
Given the fact that the maximum capacity of one of the departments restricts the production in cluster 

2, 3, and 4 for more than 80%, we suggest 

producing in overtime hours. When LNS 

uses overtime, it calls in an extra team of 

workers, which is not necessary to plan 

three days in advance. These workers can 

be called in on the beginning of the 

production day.  

The costs of the employee wages are 

higher when producing in overtime, as the 

capacity is more flexible. The costs are 1.5 

times higher than producing in regular 

time (Arbeidstilsynet, 2017). We assume 

that the time that can be produced in 

overtime is the same as in regular time, 

hence the maximum total production 

capacity per day is two times as big than in 

Section 6.3. 

There are two more KPIs we measure with 

this setup. First, we measure the 

percentage of days that overtime 

production is used in at least one 

department. Next, we measure, with the 

help of the sensitivity analysis, how much 

the overtime costs could increase, given 

the current optimal solution. This would mean that if the overtime costs increase more than this 

number, overtime production is not profitable anymore. The probability of using maximum capacity 

gives now the percentage of days that the total capacity, including overtime, is restricting the 

production.  

Table 6.5 gives the results. We observe that in clusters 1, 3, and 4 the profit per kilogram fish has 

increased. Also, the productivity increases in clusters 2, 3, and 4.  

 Cluster 

1 2 3 4 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Mean 

per day 

Total forecast error 

(hours) 

8.80 5.09 4.83 15.70 

Total lost profit (NOK) 2490.42 1355.58 1294.46 4224.43 

Fraction lost profit due 

to overcapacity 

0.99 0.98 0.97 0.97 

Kilogram fillet per 

cutting hour 

137.17 165.41 167.55 178.65 

Profit per kilogram 

raw material 

6.09 8.45 9.80 8.04 

Probability of using 

maximum capacity  

.00 .00 .01 .05 

Probability of using 

overtime 

.06 .84 .90 .93 

Maximum increase 

overtime costs (NOK 

per hour) 

-6.25 -6.31 -6.26 -6.31 

Table 6.5: Summary output with overtime model  
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6.5 Solution with capacity increase of filleting machine 
In Section 6.3 we observe that in most 

of days where production is restricted 

by a work station, the filleting line is the 

bottleneck. In this section we analyze if, 

and how much benefits LNS will have 

when an extra filleting line is installed. We 

keep the possibility of overtime, as this 

increased the average profit per kilogram 

raw material in three of the four clusters.  

Table 6.6 shows the result of this setup. 

We observe that the profit increases in 

cluster 2 and 4. In cluster 1 the profit 

decreases, which is understandable, as 

the extra capacity is unnecessary in this 

cluster. The forecast error increases in all 

clusters.  

 

 

 

 

6.6 Comparison of all the setups and testing the significance  
In this section we compare the results of all setups. We compare both against the scenario where we 

assume LNS uses the average forecast of a vessel as prediction for the raw material, and the productivity 

in the cutting department, derived from actual data of LNS. Section 6.6.1 compares all the average 

values of the cost levels and the productivity. Section 6.6.2 continues with testing on the significance of 

the differences. This section starts answering research question 5. 

6.6.1 Comparison of the costs levels  
We compare the average values of the productivity (kilogram fillet produced per cutting hour) and the 

profit (profit per kilogram raw material) of the different processing plant setups. Only for the first value 

we compare the models with the current situation of the processing plant in Båtsfjord. Figure 6.1 shows 

the productivity of all models in each cluster. To clarify: the current situation corresponds with Section 

6.2.1, the deterministic situation with Section 6.2.2, the average catch with Section 6.2.3, the regular 

forecast with Section 6.3, overtime with Section 6.4, and extra capacity filleting with Section 6.5. 

We observe that the productivity for the overtime setup and the increase capacity setup is higher than 

the deterministic solution in cluster 2, 3, and 4. The explanation for this is that, due to the higher 

capacity, more raw material can be produced.  

 Cluster 

1 2 3 4 

Mean Mean Mean Mean 

Total forecast error 

(hours) 

9.48 7.80 4.97 16.87 

Total lost profit (NOK) 2802.48 2242.09 1428.86 4708.67 

Fraction lost profit due 

to overcapacity 

.99 .96 .94 .98 

Kilogram fillet per 

cutting hour 

137.36 166.48 153.57 176.87 

Profit per kilogram 

raw material 

5.64 9.22 9.79 8.29 

Probability of using 

maximum capacity  

.00 .00 .00 .00 

Probability of using 

overtime 

.06 .84 .90 .93 

Maximum increase 

overtime costs (NOK 

per hour) 

-1.87 -1.91 -1.88 -0.71 

Table 6.6: Summary output with capacity increase model  
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When there is not enough capacity, the model gives priority to Haddock and Pollock, as the whole fish 

prices are lower than for Cod.  The cutting time for Haddock and Pollock is higher, resulting in a lower 

productivity.  

We further observe that in only one of the 4 clusters the extra capacity setup yields the highest 

productivity. It is logical that this setup does not yield the highest productivity in the first cluster, since 

the extra capacity is not necessary in this scenario, given the low percentage of days where the 

maximum capacity is used. We also observe that in clusters 3 and 4 the overtime setup gives better 

results on average than the extra capacity setup. 

 

Figure 6.1: Comparison of average productivity in cutting department  

Figure 6.2 shows the average profits in each cluster. We observe again that in the first cluster the extra 

capacity in the form of overtime, or the extra filleting machines yields the smallest differences 

compared with the regular forecast. In the clusters 3 and 4 these differences are larger. In all clusters all 

methods yield higher profits than using the average catch per vessel as forecast in the model.  

We observe that in cluster 2, 3, and 4 the extra capacity does give the best results. This is logical, since 

more fish can be produced in regular time, due to the higher capacity of the bottleneck. Hence, the 

model uses less fish to sell without processing. As a result, the profits increase since taking the fish into 

production yields higher profit than selling it without processing (see Section 2.3).  
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Figure 6.2: Comparison of average profit per kilogram raw material  

6.6.2 Testing the significance of the differences   
Although the mean values are different in the setups, we must test if these differences are statistically 

significant. We use ANOVA to test the differences between the methods within each cluster with a 

maximum error of 0.05. Appendix 19 shows the full results, including the pairwise comparison for all 

possible combinations in each group.  

We provide the results in Table 6.7, which shows if a difference is significant. We give the results for the 

three methods that are potentially interesting to use: regular forecast, using overtime, and the 

increased filleting capacity in combination with overtime. Red means the difference is not significant, 

blue means the difference is significantly lower, and green means the difference is significantly higher.  

 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Regular 
forecast 

Over-
time 

Extra 
capacity 

Current 
situation 

Over-
time 

Extra 
capacity 

Current 
situation 

Over-
time 

Extra 
capacity 

Current 
situation 

Over-
time 

Extra 
capacity 

Current 
situation 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Over-
time 

Regular 
forecas
t 

Extra 
capacity 

Current 
situation 

Regular 
forecast 

Extra 
capacity 

Current 
situation 

Regular 
forecast 

Extra 
capacity 

Current 
situation 

Regular 
forecast 

Extra 
capacity 

Current 
situation 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Extra     
capacity  

Over-
time 

Regular 
forecast 

Current 
situation 

Over-
time 

Regular 
forecast 

Current 
situation 

Over-
time 

Regular 
forecast 

Current 
situation 

Over-
time 

Regular 
forecast 

Current 
situation 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Deter-
ministic 

Average 
forecast 

Table 6.7: Significance table differences in productivity  
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We observe from Table 6.7 that the overtime method and extra capacity method improve the 

productivity significantly in all clusters, compared with using the average shipment as forecast. When 

compared with the current situation, all methods are significantly better in all clusters, except the 

regular forecast in cluster 4. There are no significant differences in the productivity between overtime 

and extra capacity in cluster 1, 2, and 4. In cluster 3 the extra capacity method is significantly worse than 

using only overtime. As stated in Section 6.6.1 we expected that the extra capacity setup would yield 

significant higher results than the overtime method.  

Next, we show the significance table of the costs levels in Table 6.8. We observe that the overtime and 

extra capacity setups are significantly higher than the average forecast in all clusters. Between the first 

two methods there is no significant difference in any of the clusters, although the mean value of the 

extra capacity is higher than the overtime method (see Section 6.6.1). Appendix 20 shows the ANOVA 

with the pairwise comparisons of all methods.  

Table 6.8: Significance table differences in profit 

 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Regular 
forecast 

Overtime Extra 
capacity 

Overtime Extra 
capacity 

Overtime Extra 
capacity 

Overtime Extra 
capacity 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Overtime Regular 
forecast 

Extra 
capacity 

Regular 
forecast 

Extra 
capacity 

Regular 
forecast 

Extra 
capacity 

Regular 
forecast 

Extra 
capacity 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Extra 
capacity  

Overtime Regular 
forecast 

Overtime Regular 
forecast 

Overtime Regular 
forecast 

Overtime Regular 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

Deterministic Average 
forecast 

 

6.7 Choosing the best setup and determination of the expected improvement  
In this section, we choose the best method based on the average number of kilograms fillets processed 

per cutting hour, and the average profit per kilogram delivered raw material. We compare each method 

with the created base scenario; the method where LNS uses the average shipment as forecast. The extra 

capacity method needs an investment in the form of an extra cutting machine. We take this investment 

into account and analyze if the investment is profitable, using the net present value (NPV) of the 

investment. In Section 6.7.1 we decide which methods are most promising. Section 6.7.2 finalizes with 

analyzing if the extra filleting machine yields a positive NPV. This section finalizes the answer to research 

question 5.  

6.7.1 Choosing between the three potential methods  
We have three potential methods that potentially improve our base scenario. We compare the scenarios 

based on Table 6.8, which shows if the differences in profit per kilogram fish are significant. We observe 

that both the overtime, and the extra capacity method significantly improve the profit, and productivity 

of the cutting station, in all clusters, compared with the base scenario and the current situation. The 

difference for the regular forecast method is not significant in cluster 4. The overtime method does not 

require any extra investments. Also, although not significant, the average profit is higher than for the 

regular forecast method and the productivity is significantly higher in two of the four clusters. Due to 
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these facts, we choose this method over the regular forecast method, given the overtime costs are 

within the range of Table 6.5. 

With one method eliminated, we focus on the remaining two methods. In the next section we analyze 

the NPV of the investment of an extra filleting machine, to see if the investment is profitable.  

6.7.2 Net present values of the remaining methods  
The NPV gives the value of an investment, corrected for the time preference of the cash flows. Money is 

worth more if received now than it is after 1 year. We calculate the NPV using (Wijst, 2012):  
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discount rate (the return that could be made when not investing in this project)
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N
t

t
t

t

R
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i
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i

N

=

=
+

=

=

=



  (6.5) 

We set the discount rate at 0.1, as this value is generally used and reflects the return that could be 

earned when investing the money in the open market (Wijst, 2012). The initial investment in year 0 

consist of the purchase and installation of the extra filleting machine. The cost of a similar used filleting 

machine from 2008 is around 2.1 million NOK (Fishmachinery.com, 2017). We add 900.000 NOK for the 

installation, which makes the total investment 3 million NOK. We assume that the machine has 5 years 

of production time left and that the rest value of the machine is 0.  

The cashflows consist of the cost savings of using the extra filleting line, compared with only using 

overtime. The differences between these methods are not significant in any cluster, which means 0 is in 

the confidence intervals of the differences. To analyze the risk of the investment, we use the distribution 

of the differences of the profits between the situation with the extra filleting line, and the situation 

where only overtime is used. We set the probability such that the NPV of the 5-year project is exactly 0. 

Hence, we look for the probability that the investment will break even. We calculate this using:  
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  (6.6) 

We solve Equation 6.6 and determine the probability of breakeven to be 0.433. Hence LNS has 

approximately 43% change of making less money with buying an extra filleting machine, compared with 

using only overtime. Figure 6.3 shows the probabilities together with the expected NPV.  
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Figure 6.3: Total NPV compared with probabilities  

Next, we calculate the cost saving when using overtime, compared with the base scenario of using the 

average catch as forecast. The expected extra profit, when LNS uses the average shipment as forecast, is 

43.4 million NOK per year. The real cost savings are probably lower in practice, as we expect LNS to use 

a more dynamic, and better planning method than using the average catch per vessel.  

Also, the productivity increases when using overtime. When compared with the current situation at LNS, 

the productivity increases on average with 42%. Compared with the average forecast method this 

increase is 20%. Table 6.9 shows the confidence intervals of the differences of the productivity and the 

profit when comparing all the scenarios we created with the current situation and the average forecast 

method. We observe that the overtime scenario and the extra capacity scenario are indeed better than 

only using the forecasting method. All three methods significantly improve the current situation, as the 

lower bound of the confidence intervals are positive for all comparisons.  

Table 6.9: Confidence interval increase in productivity and profit 
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Min Max Min Max 

Regular forecast Productivity  14% 28% 3% 8% 

Profit  No data 2% 76% 

Overtime Productivity  15% 59% 13% 23% 

Profit  No data 10% 73% 

Extra capacity Productivity  20% 41% 12% 22% 

Profit No data 18% 90% 
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6.8 Conclusions about the gains when using the forecasting method  
In this chapter we showed the potential gains for LNS when using the forecasting method, we created in 

chapter 4 in the capacity planning. For this, we use the model of the processing plant in Båtsfjord we 

showed in Chapter 5. 

We create three scenarios to improve the current situation:  

1. Use the forecasting method in the model of the processing plant;  

2. Use scenario 1 in combination with the possibility of using overtime in the form of flexible 

workers against extra costs;  

3. Use scenario 2 in combination with an extra filleting machine. 

To make a proper analysis we define two important KPIs that we use to compare the different scenarios: 

the profit per kilogram raw material and the kilogram processed filet per cutting hour. We have real 

data of LNS for the last mentioned KPI. To generate the profit KPI we create an own scenario, where LNS 

uses the average catch per vessel as forecast method.   

We compare the differences in the productivity and profit between the three scenarios and the real 

data and average forecast method. We observe that the lower bound of the confidence interval is 

positive in each scenario, meaning both three methods significantly improve both the profit as the 

productivity.  

Although upper bound of the confidence interval of the profit KPI shows high values (from 73% to 90% 

increase) we must be critical about this number. We expect that LNS currently uses a better forecasting 

method than using the average catch per vessel. Since the central planner makes the forecasts based on 

experience, it is not possible for us to simulate this planning method.  

Finally, we conclude that method 2 and 3 perform better than method 1. Method 3 requires an 

investment. We compare the probability of yielding less profit when using scenario 3 compared to using 

scenario 2. This probability is 42%. Further, we conclude that the differences in profits between scenario 

2 and 3 are symmetric, meaning the probability of saving 100 NOK is the same as losing 100 NOK. As LNS 

made losses from 2011 until 2015, we expect the willingness to take risks is low. Therefore, we propose 

to use method 2, as this method does not require investments.   
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7 Conclusions, recommendations, and discussion   
This last chapter finalizes the research by drawing the conclusions, giving the recommendations and 

discussing the results. Section 7.1 draws the conclusions and answers the main research question. 

Section 7.2 continuous with the recommendations to LNS. Section 7.3 finishes with the discussion. 

7.1 Conclusions  
We started this research with our main research question, which was:  

“How can information about the raw material supply be used to improve the capacity planning within 

the processing facilities of LNS to reduce under- and overcapacity of labor and optimize the use of the 

raw material” 

We split this research question in 5 sub questions, which we answered during the research.  

We saw that the production processes at LNS have a production-oriented layout, and that all products 

require the same production steps, with the exception when a product needs to be frozen. Also, we can 

consider the processing times to be deterministic. This helped us modeling the processing plant using an 

exact method. Literature shows us that Stochastic Programming is used before to solve comparable 

problems with uncertain supply. We conclude further that planning the capacity accurately is important 

for LNS, as too much capacity results in lost money due to extra salary, and too little capacity results in 

the delay of production of raw material, deteriorating the raw material and making it less profitable to 

produce. Hence, the profit generated by the raw material reflects the quality of the capacity planning.  

Since the processes are deterministic, we expect the number of kilograms processed fillet per cutting 

hour to be relatively stable. However, we saw big fluctuations in this number, from which we conclude 

that the current capacity planning is not optimal and has room for improvement.  

Out of the three possibilities we derived from the literature to reduce the uncertainty in supply, we 

chose, based on three criteria we used to measure the quality of the possibility, to predict the fish catch 

per vessel based on causal models. We created 1 regression model and 3 machine learning models and 

conclude that the M5P Tree gives the smallest error for our dataset (S is 0.5). Hence, this method is best 

qualified to predict the supply of a vessel.  

We used information of the forecasting model in the Stochastic Programming Model, since this needs 

the expected catch as input. We conclude that the model performs as expected, since the output of the 

different methods we created are logical. To analyze the output, we created three methods; a method 

that uses the average catch of a vessel as forecast, one method that only uses the forecasting model, 

and one method where we eliminate the uncertainty in supply. We expect the last method to give the 

highest profits, as there is no uncertainty in this case. We expect the first method to give the lowest 

profits, as the supply forecasts are the worst in this method. Hence, we expect the performance of the 

method with the forecasting model to fall within the other two methods. This is indeed the case, 

justifying the conclusion that the model performs as expected.  

We also conclude that the raw material supply is significantly different in some months, making it not 

possible to base the analysis on a single month, as the raw material supply influences the production 

planning. Therefore, we create as few clusters as possible, combining months where the raw material 

supply is not significantly different. We conclude that the capacity in three out of the four clusters is 
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insufficient to produce all the fish LNS gets supplied into fillet products. As a result, LNS must sell whole 

fish, or delay the production, resulting in loss in profits. Further we conclude that producing in overtime 

is easier, since too little planned capacity can be solved using overtime hours. Overtime production 

increases the productivity in the cutting department significantly, compared with using only the 

forecasting model and producing in regular time.  

Using overtime production in combination with the forecasting model we created generates an increase 

in profit of 43.4 million NOK. Also, the productivity (kilogram processed filet per cutting hour) in the 

cutting department increased significantly compared with the current situation at LNS, which we 

determined using actual data from the processing plant in Båtsfjord. We conclude that reducing the 

uncertainty in supply, using the forecasting model, is valuable for LNS. We also conclude that using the 

forecasting model is most profitable in situations where the processing plant is not used close to full 

capacity, as the forecasting model yields the best improvements in the first cluster, both for the profit as 

the productivity. This is because when there is more capacity needed than available, it is not necessary 

anymore to accurately plan the supply. LNS can simply plan the capacity to its maximum level.  

7.2 Recommendations  
We saw in the conclusions that the forecasting model improves the current situation when we compare 

the results with the base scenario we created. Both the productivity in the cutting station as the profit 

per kilogram raw material increased significantly. Therefore, we recommend using this forecasting 

model in the capacity planning of the processing stations.  

The case when using an extra filleting line compared with using overtime hours yields the highest 

profits. However, LNS needs to invest in an extra filleting line. We calculated the Net Present Value of 

this investment, over the expected lifetime of the filleting machine, which we determined on five years. 

Although the expected value of the NPV is positive, we do not recommend investing in the extra filleting 

line. The expected NPV is approximately 1 million NOK over five years. However, there is a probability of 

around 40% of losing money on the investment. Since the differences in profit follow a normal 

distribution, the probability of losing a given amount of money, is the same as saving the same amount 

of money. The volatility of the NPV is therefore high, as Figure 6.3 shows. Therefore, we do not 

recommend investing money in the extra filleting capacity. We recommend using the forecasting 

method we developed in Chapter 4 in combination with the use of overtime against a cost increase of 

1.5 times the cost level in regular production time. We showed that this setup increases the productivity 

both in our created base model and in the real situation at LNS.  

When the overtime costs increase with more than 6.25 NOK per hour, compared with the costs of using 

regular time, the current solution is no longer optimal (see Table 6.5). If this is the case, we advise LNS to 

stop using overtime, and produce only in regular time using the forecast model we provided in Chapter 

4.  

7.3 Discussion  
In this research we showed the value of reducing supply uncertainty for LNS. This conclusion matches 

with the information the literature provides us. We showed also that, with our dataset, it is possible to 

forecast the supply of fishing vessels using weather information and ship characteristics. Although 

literature states that it is possible to forecast catch sizes with weather information, not all the predictors 

mentioned in the literature are significant in our model. The moon phase, which the literature considers 
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a significant predictor, is insignificant in our model. The exact values of the predictors can differ when 

applied on a different dataset. However, we have no reasons to doubt the forecast errors of our models, 

as our dataset covered a whole year and there were enough data points to apply a regression model.  

We created the forecasting model based on catch and weather information in Troms. We used the 

forecasting model in the region Finnmark. We did not create or test our forecasting model in the 

Finnmark region. Therefore, we cannot conclude that the forecasting model in the Finnmark region is as 

accurate as in the Troms region. Although the forecasting model could be slightly different in the region 

Finnmark, the goal of our research was to show that it is possible to forecast the catch size and use this 

information to improve the capacity planning. Also, we only forecasted the Cod catch, and assumed the 

forecasts for Haddock and Pollock are as accurate as for Cod. This does not have to be true, as it could 

be possible that Haddock and Pollock are more difficult to predict. We give the same argument as 

before, stating that we showed the value of forecasting the catch sizes for LNS was the goal of our 

research.  

We did not obtain accurate data of LNS considering the capacity planning in the past. Therefore, it was 

not possible for us to compare the outcomes of our model accurately with the current situation at LNS. 

We therefore created an own base scenario, in which we do not use our forecasting model, to compare 

the different setups with. This base scenario uses the average catch per fishing vessel as forecast for the 

raw material supply. Although this creates a scenario where LNS plans the capacity without having 

access to the forecasting model, we expect LNS to use a more effective and accurate way of planning in 

the current situation. We observe an increase in the profit of 10% to 73% using overtime compared with 

the base scenario. Since we do not have accurate information of the profit of LNS we cannot conclude 

that LNS has this potential, but we showed the value of using the forecasting information compared 

with using the average catch size per vessel.  
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Appendix 1 Conversation ratios for different fish types 
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Appendix 2 Kolmogorov-Smirnov test response variable 
To test the catch statistics for normality we use the Kolmogorov-Smirnov test. This test measures the 

maximum distance between the empirical data and the theoretical distribution, which is the normal 

distribution in our case. The test statistic is calculated with:  

 1

1
max ( ) , ( )

: ( ) Theoretical cumulative normal distribution

i i
i N

i

i i
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 The two hypothesizes are then:  

H0: The catch data follows a normal distribution  

H1: The catch data follows another distribution than the normal distribution  

We choose alpha to be 0.05 and execute the test on the catch data. We obtain the result as in Figure 

9.1a We conclude that the p-value is lower than 0.05 and we thus reject the hypothesis that the data is 

normal distributed.  

When taking the natural logarithm of all the data points and executing the test again, we get the result 

as in Figure 9.1b. We observe that the test statistic is lower from which we can conclude the data is 

more normally distributed. However, we still must reject H0 

 

 

 

 

 

  

 Figure 9.1a: Data before transformation  Figure 9.1b: Data after transformation  
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Appendix 3 Box-Cox transformation  
We will try to normalize the data using a transformation. A common used transformation for this is the 
Box-Cox transformation (Sakia, 1992). The transformation is calculated with: 
 

' 1
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Y
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=
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            (9.2) 

 

Since we want to transform the data such that it approximates a normal distribution, we want to choose 

λ such that the correlation between the catch and the normal theoretical quantities is maximized, 

hence: 
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When Equation 9.3 the value of λ tends to converge to 0. This means there is a limit of 0/0 in Equation 

9.3, and we can apply l’Hôpital’s rule to find the value: 

 
'

0

( 1)
1 *ln( )

lim ln( )
1

l Hopital i
i i i

i

d
Y

Y Y Yd Y i
d

d


 




 



→

−
−

= = =    (9.4) 

Hence, the best transformation for the data is to take the natural logarithm from the original data. 
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Appendix 4 Correlations between predictors 
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Appendix 5 Model with all predictors  

Model Summary 

S R2 R2 (adj) R2 (pred) 

0.498663 67.26% 64.71% 60.26% 

 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 0.535 4.67 0.92 0.360    

LENGTH 0.0456 0.0140 3.27 0.001 6.59 

AVGTEMP -0.00252 0.00599 -0.42 0.674 1.95 

RAIN 0.0135 0.0117 1.15 0.251 1.98 

AVGWIND 0.0076 0.0100 0.76 0.447 1.67 

WINDDIR 0.000558 0.000468 1.19 0.235 1.19 

VISIBIL 0.0377 0.0229 1.65 0.100 1.68 

HUMID -0.00524 0.00565 -0.93 0.354 2.46 

PRESSURE -0.00127 0.00442 -0.29 0.774 2.24 

SUNH 0.0016 0.0101 0.15 0.878 1.82 

MOON -0.00611 0.00458 -1.33 0.183 1.27 

WIDTH 0.2287 0.0630 3.63 0.000 7.51 

AGE -0.00711 0.00300 -2.37 0.019 1.74 

HP -0.000010 0.000079 -0.12 0.903 1.06 

MATERIAL                

  KOMPOSITT -0.053 0.212 -0.25 0.802 1.56 

  PLAST -0.051 0.136 -0.38 0.706 4.16 

  STÅL 0.228 0.207 1.10 0.272 4.51 

  TRE 0.055 0.168 0.33 0.745 3.30 
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Appendix 6 Residual tests for normality  
To test if the residuals are normally distributed we use the Chi squared test. With this test we can test if 

observed data follows a different distribution than the one we test on. The higher the p-value of this 

test, the higher the probability that the observed data follows our hypothesized distribution.  

The two hypothesizes are:  

H0: The distribution of the errors follows a normal distribution  

H1: The distribution of the errors follows another distribution than the normal distribution  

The test statistic of this test equals:  
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(9.5) 

 

To determine the number of bins, we use 2 log n , where n denotes the number of observations in our 

dataset. N is equal to 236, which means we use 8 bins if we round the number to the nearest integer. 

That means that we have 8-1 is 7 degrees of freedom. The critical value of a right tailed Chi squared 

distribution with 7 degrees of freedom is 14.07. Hence if our test statistic is higher than 14.07, we reject 

H0 and we conclude that our distribution is not normally distributed.  

9.1 Linear regression  
Figure 9.2 shows the result of the Chi-squared test for the residuals of the linear regression model. We 

observe a p-value of 0.98, meaning we do not reject H0 and there is no reason to assume the residuals 

are not normally distributed.  
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REP Tree 
Figure 9.3 shows the result of the Chi-squared test for the residuals of the REP Tree. The p-value is 

higher than 0.05. As a result, we can conclude that there is no reason to assume the distribution of the 

residuals do not follow a normal distribution.  

 

 

M5P Tree 
The p-value of the Chi squared test on the residuals of the M5P Tree is 0.88, as Figure 9.4 shows. Again, 

we have no reason to doubt that the data does not follow a normal distribution.  

bin from to n*p p(cum) observed contribution to chi squared

1 -100000 -0.58584 29.625 0.125 29 0.013185654

2 -0.58584 -0.34331 29.625 0.25 28 0.089135021

3 -0.34331 -0.16195 29.625 0.375 31 0.063818565

4 -0.16195 0.00045 29.625 0.5 29 0.013185654

5 0.00045 0.162847 29.625 0.625 33 0.384493671

6 0.162847 0.34421 29.625 0.75 29 0.013185654

7 0.34421 0.586737 29.625 0.875 25 0.722046414

8 0.586737 10000 29.625 1 32 0.190400844

Test statistic 1.489451477

Critical value 14.06714045

P-Value 0.982672603

bin from to n*p p(cum) observed contribution to chi squared

1 -100000 -0.59943 29.5 0.125 26 0.415254237

2 -0.59943 -0.3491 29.5 0.25 30 0.008474576

3 -0.3491 -0.1619 29.5 0.375 30 0.008474576

4 -0.1619 0.00572 29.5 0.5 43 6.177966102

5 0.00572 0.173343 29.5 0.625 27 0.211864407

6 0.173343 0.36054 29.5 0.75 20 3.059322034

7 0.36054 0.61087 29.5 0.875 32 0.211864407

8 0.61087 100001 29.5 1 28 0.076271186

Test staistic 10.16949153

Critical value 14.06714045

P-Value 0.179170288

Figure 9.2: Chi-squared test linear regression 

Figure 9.3: Chi-squared test REP Tree 
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Random forest 
Finally, the p-value for the test on the residuals of the random forest is equal to 0.74 as Figure 9.5 

shows. We again draw the same conclusions as for the other algorithms.  

 

 

bin from to n*p p(cum) observed contribution to chi squared

1 -100000 -0.58491 29.625 0.125 26 0.443565401

2 -0.58491 -0.34653 29.625 0.25 27 0.232594937

3 -0.34653 -0.16827 29.625 0.375 33 0.384493671

4 -0.16827 -0.00864 29.625 0.5 38 2.367616034

5 -0.00864 0.150979 29.625 0.625 32 0.190400844

6 0.150979 0.329242 29.625 0.75 30 0.004746835

7 0.329242 0.567624 29.625 0.875 25 0.722046414

8 0.567624 10000 29.625 1 25 4.345464135

Test statistic 8.69092827

Critical value 12.59158724

P-Value 0.739237113

Figure 9.4: Chi-squared test M5P Tree 

bin from to n*p p(cum) observed contribution to chi squared

1 -100000 -0.57637 29.625 0.125 29 0.013185654

2 -0.57637 -0.34585 29.625 0.25 31 0.063818565

3 -0.34585 -0.17346 29.625 0.375 32 0.190400844

4 -0.17346 -0.01911 29.625 0.5 33 0.384493671

5 -0.01911 0.135252 29.625 0.625 32 0.190400844

6 0.135252 0.307636 29.625 0.75 25 0.722046414

7 0.307636 0.538156 29.625 0.875 23 1.481540084

8 0.538156 10000 29.625 1 31 3.045886076

Test statistic 6.091772152

Critical value 12.59158724

P-Value 0.880725179

Figure 9.5: Chi-squared test random forest 
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Appendix 7 Algorithm for the REP Tree  

1. Split data randomly 10 times in training set and test set and set k to 0 

2. Do while k<10   

3. Build a fully-grown decision tree, which optimizes Straining based on training data and 

calculate Stest 

 

4. Do while Stest>Stest’            //do as long as there is an improvement  

5.  Set Stest’ to ∞ and i to the number of the last node in the tree       //start in the last 

 node 

6.   Do for all nodes in the tree  

7.    Pick node i and prune, including all branches below it and calculate                                                              

   Stest’’ 

8.    If Stest’< Stest’’ update Stest’ to the value of  Stest’’ and remember 

   node, update i to i-1           

9.    If all nodes in tree has been examined go to 10, otherwise go to 7 

10.  If Stest’< Stest , update the tree by pruning the node, update Stest to the value of 

 Stest’ and go to 4 

 

11. Construct the smallest possible tree with lowest Stest’, store value in Sk, update k to the 

value of k+1 and go to 2 

 

12. Calculate the estimated error from the model by taking the average of all Sk 
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Appendix 8 REP Tree 
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Appendix 9 Algorithm of the M5P Tree 

  

1. Split data randomly 10 times in training set and test set and set k to 0 

2. Do while k<10 

3. Set i to 1 

4. Create node i, calculate sd(T), set i to 1 

5. Do while (number of nodes)>i                        //do as long there are open nodes 

6.  Set SDR’ to ∞ 

7.  For all available attributes do  

8.   Calculate SDR’ with optimal split for chosen attribute 

9.   If SDR’<SDR, update SDR to the value of SDR’, remember the attribute and  

 calculate sd(Ti) 

10.   If all attributes have been checked, go to 11, otherwise go to 7 

11.  If (number of attributes node i)<5 or sd(Ti)/ sd(T)<0.05,  

12.     Then: make node into a leaf, update i to the value of i+1 and go to 4 

13.     Else: Split node according to attribute from line 8, in optimal way, update i to the     value of i+1 

and go to 4 

//The tree is now built, and the linear models will be constructed from here on 

14. Set i to 1 

15. Do while i<(number of nodes and leaves) 

16.  Create linear regression model based on T which minimizes error in training data 

17.  Store error in value errori 

18.   update i to the value of i+1 and go to 15 

//From here on, the tree will be pruned  

19. Set i to max(nodenumber)   //set i to the last node (ignoring the leaves) 

20. Do while i>0   //do until the most upper node 

21.  If errori > average(errorSk), prune subtree Sk 

22.  Update I to the value of i+1 and go to 20 

//The final tree will be created 

23. Create the smallest tree with the lowest total error, store this value in Sk, update k to the value of k+1 and go to 2 

24. Calculate the estimated error from the model by taking the average of all Sk 
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Appendix 10 M5P Tree 
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Appendix 11 Algorithm of the random forest 

  

1. Split data randomly 10 times in training set and test set and set k to 0 

2. Do while k<10 

3. Take randomly n samples from the training data and set i to 1 

4. While i<n do    //do for every sample 

5.  If no node created in tree i, create node 1 and set m to 0 

6.  If m =|amount of nodes in i| update i to the value of i+1 and go to 4 //check if there are  

 open nodes, if there are not, start with the next tree 

7.  do while |attributes at node t|>1  //continue as long there are attributes at a node 

8.   Select k random attributes and set j to 1 

9.    While j<k do  

10.     Select attribute j, sort values from small to large and call smallest        

    value (i) 1, do for all values 

11.      Calculate SDR and store attribute and splitting value if  

    SDR(i,j)>SDR(i-1,j) 

12.   Split node according to highest SDR(i,j), calculate Straining and keep split   

 if there is a reduction. Name nodes (t+1) and (t+2), update m to the value of   

 m+2and go to 6 

//the random trees are now completed, and the test data will be used from here on  

13. Set i to 1  

14. Do while |number of instances test data|>i 

15.  Do for all n samples  //do for all the generated random trees 

16.   Classify instance i according to random tree and store value (Cj) 

17.  Sum all Cj over j and divide by n //this is the predicted value for instance i  

18.  Calculated the squared error compared to the observed value and store error in ei 

19.  Update i to the value of i+1 

25. Sum ei over i and divide by i, store this value in Sk, update k to the value of k+1 and go to 2 

 //this is the standard deviation of the test data  

20. Calculate the estimated error from the model by taking the average of all Sk 
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Appendix 12 Code Monte Carlo simulation  
We use Excel VBA for the Monte Carlo simulation to estimate the standard deviation of the error when 

the weather variation is considered. First, we provide the Excel sheet where all the information is stored 

in Figure 9.6. 

 

 

First, we provide the code for the linear regression model.  

 

 

Next, we show the code for the M5P Tree.  

 

 

 

 

Figure 9.6: Excel sheet for Monte Carlo simulation  
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Finally, the code for the REP Tree.  
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Appendix 13 Tests for cluster analysis 
To test if the clusters are acceptable, we use the one-sample T test, where we test: 

Null hypothesis H₀: μ = μx 

Alternative hypothesis H₁: μ ≠ μx 

Where μx is the observation that has the greatest deviation from the mean within the cluster. First we 

present all the summary statistics in Table 9.1 

 

 

 

 

 

Next, we perform the 3 T-test on the first three clusters. Since cluster 4 only has one observation it is 

not necessary and not possible to perform a t-test on this cluster.  

 

 

 

 

 

 

 

 

Variable N N* Mean SE 

Mean 

StDev Minimum Q1 Median Q3 Maximum 

Cluster 1 3 0 773258 26657 46172 721271 721271 789009 809493 809493 

Cluster 2 4 0 1291547 18389 36779 1273158 1273158 1273158 1328325 1346715 

Cluster 3 4 0 1530826 84938 169875 1375826 1381328 1515739 1695410 1715997 

Cluster 4 1 0 2177315 * * 2177315 * 2177315 * 2177315 

One-Sample T: Cluster 1 

Descriptive Statistics 

N Mean StDev SE Mean 95% CI for μ 

3 773258 46172 26657 (658560, 887956) 

μ: mean of Cluster 1 

Test 

Null hypothesis H₀: μ = 721271 

Alternative hypothesis H₁: μ ≠ 721271 

T-Value P-Value 

1.95 0.190 

 

One-Sample T: Cluster 2 

Descriptive Statistics 

N Mean StDev SE Mean 95% CI for μ 

4 1291547 36779 18389 (1233024, 1350070) 

μ: mean of Cluster 2 

Test 

Null hypothesis H₀: μ = 1346715 

Alternative hypothesis H₁: μ ≠ 1346715 

T-Value P-Value 

-3.00 0.058 

 

One-Sample T: Cluster 3 

Descriptive Statistics 

N Mean StDev SE Mean 95% CI for μ 

4 1530826 169875 84938 (1260517, 1801135) 

μ: mean of Cluster 1 

Test 

Null hypothesis H₀: μ = 1715997 

Alternative hypothesis H₁: μ ≠ 1715997 

T-Value P-Value 

-2.18 0.117 

 

Table 9.1: Summary statistics clusters 
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Finally, we perform an ANOVA on the clusters to confirm that the mean values between the groups are 

significantly different. The test has p-value of 0.000 and a F-value of 50.94, confirming the mean values 

are different.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

One-way ANOVA: Cluster 1, Cluster 2, Cluster 3, Cluster 4 

Method 

Null hypothesis All means are equal 

Alternative hypothesis Not all means are equal 

Significance level α = 0.05 

Equal variances were assumed for the analysis. 

Factor Information 

Factor Levels Values 

Factor 4 Cluster 1, Cluster 2, Cluster 3, Cluster 4 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Factor 3 1.81256E+12 6.04187E+11 50.94 0.000 

Error 8 94894268643 11861783580       

Total 11 1.90745E+12          

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

108912 95.03% 93.16% * 

Means 

Factor N  Mean StDev 95% CI 

Cluster 1 3  773258 46172 (628256, 918260) 

Cluster 2 4  1291547 36779 (1165971, 1417122) 

Cluster 3 4  1530826 169875 (1405250, 1656401) 

Cluster 4 1  2177315 * (1926164, 2428466) 

Pooled StDev = 108912 
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Appendix 14 Detailed explanation of simulation model  
In this appendix, we provide a detailed explanation of the simulation model and the detailed 

information within the modules. We constructed the model in Delphi.  First, we present the whole 

model again in Figure 9.7. 

 

Module forecast  
The forecast module generates catch sizes for each specie and quality. For this, it uses the forecasting 
model of Section 4, together with the values of the distribution of the prediction variables. These are 
stored in two matrices: 
 

 
 13.58 5.97 26.11 14.26

length length age ageSHIPINFO X S X S

SHIPINFO

 =  

=
  (9.6) 

 
 8.3 1.85 5.98 4.13

visibility visibility windopt windoptWEATHERINFO X S X S

WEATHERINFO

 =  

=
  (9.7) 

To translate the Cod forecast to a realized catch, we need the standard deviation of a ship for day T+1, 

T+2, and T+3. With the standard deviation of the forecast error we can calculate a forecasting error. The 

standard deviations are stored in STDEVSHIP:  

Module results

Central database forecast

Day counter

Central database Optimization

Module Optimization 

Catch forecasts

Planned capacity day 0 until 2

Profit day 0

Capacity planning

Production planning

End inventories

Module Forecast 

Values prediction variables

Prediction model

Catch forecast

Inventory day 0

Planned capacity 

Profit deterministic day

Dual values 

Production planning 

Realized catch

Realized catch 

Prediction model

Distributions prediction 
variables

Day in model

Day in modelPK

Day T=Deterministic day

Catch forecast day T+1, T+2, T+3

Realized catch day T

Dual values of solution

Capacity planning 

End inventories

Capacity day T-1

End inventories day T-1

Capacity planning day T, T+1, T+2, T+3

End inventories day T

Dual values day T

Profit day T

Planning day T

Random 
number 

[0,1]

Input in module

Output in module

Temporary storage of information

Final storage of information

Figure 9.7: Connection of modules within the model 
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0 1 2 3

0 0.459 0.462 0.471

forecast error day forecast error day forecast error day forecast error daySTDEVSHIP S S S S

STDEVSHIP

=

=
  (9.8) 

Next, we need the information about the probability of a ship delivering a good, regular or bad quality. 

We store this information in the matrix: 

 
 0.50 0.45 0.04

good quality regular quality bad qualityQUALPROB P P P

QUALPROB

 =  

=
  (9.9) 

Also, we need the composition of the fishing vessel with respect to the three species. We use the 

fractions of the delivered fish to Båtsfjord.  

 

1 1 1

2 2 2

3 3 3

4 4 4

scenario scenario scenario

scenario scenario scenario

scenario scenario scenario

scenario scenario scenario

Cod Haddock Pollock

Cod Haddock Pollock
FACTOR

Cod Haddock Pollock

Cod Haddock Pollock

FAC

 
 
 =
 
 
  

0.80 0.09 0.11

0.78 0.14 0.08

0.62 0.10 0.14

0.81 0.16 0.03

TOR

 
 
 =
 
 
 

  (9.10) 

 

The module creates a catch size each day together with a forecast for three days. This information is 

stored in the matrix TOTFISH.  

 
[day,specie,prediction day,quality,scenario]

[0..3,1..3,1..3,1..3,1..3]

TOTFISH

TOTFISH

=

=
  (9.11) 

Figure 9.9 shows the information flows within the module forecasting schematically.  
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SHIPINFO

WEATHERI
NFO

Calculate 
forecast Cod

Prediction 
model

TOTFISH

Random 
number 

[0,1]

Random 
number 

[0,1]

Calculate 
realized Cod

STDEVSHIP

Random 
number 

[0,1]

FACTOR
Calculate 

forecast for all 
species

Calculate 
reliazed catch 
for all species

FACTOR

Data matrix 
variable

Random 
number 

Calculation 

QUALPROBQUALPROB

Data matrix 
parameter

 

 

Module Optimization  
After the model creates a forecast, and a realized catch for day T, T+1, T+2, and T+3, we can plan the 
capacity, the production plan, and the inventory levels using the module Optimization. The Stochastic 
Programming Problem (SPP) of Section 5.3.1 solves the problem and sets a value for all the decision 
variables. We present the SPP again in Equation 9.12. 
 

Figure 9.9: Information flows within module forecasting 
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  (9.12) 

 
 First, we present all the matrices that we use in the model as decision variable: 
 

1. Used raw material to production at day T:  

 
 

 0..3 1..3 1..6 1..3 1..3

F day specie age quality scneario

F

=

=
  (9.13) 

 
2. Used raw material to sell at day T: 

 
 

 0..3 1..3 1..6 1..3 1..3

S day specie age quality scneario

S

=

=
  (9.14) 

3. Produced products at day T: 

 
 

 0..3 1..3 1..7 1..3

P day specie product scenario

P

=

=
  (9.15) 

4. Inventory at the end of day T: 

 
 

 0..3 1..3 1..6 1..3 1..3

I day specie age quality scenario

I

=

=
  (9.16)  

5. Expected inventory at the end of day T: 

 
 

 0..3 1..3 1..6 1..3

EI day specie age quality

EI

=

=
  (9.17) 
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6. Planned capacity at day T: 

 
 

 0..3 1..7

C day department

C

=

=
  (9.18) 

7. Bought raw material at day T: 

 
 

 0..3 1..3 1..6 1..3

EI day specie quality scenario

EI

=

=
  (9.19) 

 

Next, we present all the parameters necessary to solve the model.  

1. We need the production times per department. Since the fish species differ in weight, the 

production times are different per specie. The times are stored in the following matrix:  

 

2. There are departments that require more than one employee per production line. For example, 

the filleting line needs to employees per production line. This information is stored in the 

following matrix: 

 

3. The maximum capacity per department is needed to make sure there is no more capacity 

planned than the maximum production capacity. These values are stored in:  

 

4. We need of each age/quality combination of the raw material the possible products that can be 

cut out and the fractions of the total weight of the fillet. The final matrix that contains these 

values is called UTCUT. This matrix is calculated by multiplying the matrices that give the 

possible end products for each age/quality combination, the production matrix and the matrix 

with the weight fraction for each part of the fish (see Section 2.3.2)  
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1 1 1 0 0 1

0 1 1 0 0 1

0 0 1 0 0 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

/

1 3

4

L FL FP T FT B

Fresh Loin

Frozen Loin

POSSIBILITY Frozen Portion

FreshTail

FrozenTail

Block

age quality GOOD REGULAR BAD

until L FL FP B T FT L FL FP B T FT B

PRODUCTIONMATRIX FL FP B

=

+ + + + + + + + + +

= + + +

5

6

0.39 0.14 0.13 0.12 0 0.15

* *

T FT FL FP B T FT B

FP B FT FP B FT B

S S S

CONTAIN L FL FP T FT B

CONTAIN

UTCUT POSSIBILITY PRODUCTIONMATRIX CONTAIN

+ + + + +

+ + + +

=

=

=

 

 (9.20) 

   

5. The selling prices of the products are needed to determine which products should be produced 

of the raw materials. We call this matrix SPRICES and it consist of the following data: 

 

6. We need the purchasing prices to determine the costs of the purchased raw material:  

 
23.65 23.65 17.75

14.

good quality regular quality bad quality

good quality regular quality bad quality

good quality regular quality bad quality

Cod Cod Cod

RPRICES Haddock Haddock Haddock

Pollock Pollock Pollock

RPRICES

 
 

=  
 
 

= 28 14.28 9.49

9.14 9.14 3.91

 
 
 
  

  (9.21) 

Finally, we need matrices to store temporary results, which is necessary to use as input in the next day 

of the rolling horizon.  

1. We need a matrix to store the planned capacity for day T, T+1, T+1, and T+3 after solving the 

Stochastic Programming Problem: 

 
 

 0..3 1..5

CAPACITY day department

CAPACITY

=

=
  (9.22) 
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2. Next, we need a matrix to store the deterministic end inventory after day T, that is the 

deterministic inventory that is needed as input for the next day in the rolling horizon: 

 
 

 1..3 1..6 1..3

ENDINV specie age quality

ENDINV

=

=
  (9.23) 

 

Figure 9.10 shows the information flow between all the matrices. The matrix TOTFISH is also a 

parameter for the SPP and comes from the module Forecasting. After solving the model for day T, where 

the model thus plans the capacity for day 0, 1, and 3, the values of the decision variables of the 

inventory levels of day 0 and the capacities of day 1, 2, and 3 are stored. Then we move up one day to 

day T+1. The values of the matrixes in the Temporary Storage are used as input for day T+1.  

 

F S

P I

EI C

Decision Variables

UTCUT

RPRICES

B

MAXCAP

SPRICES

Parameters Temporary Storage

ENDINV CAPACITY

Day T

Day T

SCEN-
PROB

TOTFISH

Day T

Day T+1

 

 

Module results  

Finally, we need to create a module to store all the information necessary to perform analysis after the 

simulation runs. We create a module that can write all the necessary information to Excel. We extract 

the information each day from after solving the SPP. We write the necessary values of the decision 

variables, together with their dual values to Excel. We do this only for the deterministic day, as we are 

not interested in the planned capacity. We also want to see when the model plants too much, or too 

few capacity. We can see this from the dual solution of the SPP. Figure 9.11 shows the information flow 

between the SPP and Excel.  

Figure 9.10: Information flow between matrices 
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Figure 9.11: Information flow between the SPP and Excel 
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Appendix 15 Determination of the amount of simulation runs 
To determine how many simulation runs we need we use the corrected relative error, which is defined 

as:  

 
'

1

where:y=relativeabsoluteerror

y
y

y
=

=   (9.24) 

We set y to 0.05, and we search for the amount of simulation runs (n) so that:  

 
2

1,1 /2*
* ( ) /

min : '
| |

i a

r

t S n i
n i n y

X

− −
 
 =  
 
 

  (9.25) 

We calculate y’ and set this value at 0.048. We start with 2 simulation runs and determine the Test 

Statistic. If the Test Statistic is bigger than 0.048, we increase the number of simulation runs with 1 and 

repeat the previous step. We do this until the Test Statistic is smaller than 0.048. This is the case from 

182 simulation runs. Hence, the minimum runs we need is 182. Figure 9.12 shows the results, where the 

results from 11 simulation runs until 168 are omitted.  
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Observation Profit XBAR STDEV T Value TEST STATISTIC OK/NOT OK

1 825989 825989 n.a n.a n.a n.a Gama 0.05

2 674294 750141.5 75847.5 6.313752 0.638389248 NOT OK Gamma' 0.047619

3 1213184 904489 160439.2881 2.919986 0.517950365 NOT OK Alpha 0.05

4 919391 908214.5 113508.8628 2.353363 0.294123918 NOT OK

5 369272 800426 139100.3878 2.131847 0.370478614 NOT OK

6 337928 723343 137262.768 2.015048 0.382378923 NOT OK

7 384402 674922.9 125707.6592 1.94318 0.361926762 NOT OK

8 363388 635981 115621.278 1.894579 0.344434188 NOT OK

9 302436 598920.4 108494.4046 1.859548 0.336857022 NOT OK

10 357099 574738.3 100008.0235 1.833113 0.318973003 NOT OK

169 589751 585231.1 17651.99282 1.653974 0.049887882 NOT OK

170 581340 585208.2 17547.86529 1.65392 0.049593911 NOT OK

171 437895 584346.7 17466.2026 1.653866 0.049434286 NOT OK

172 444069 583531.2 17383.50022 1.653813 0.049267401 NOT OK

173 521122 583170.4 17286.49002 1.653761 0.049021214 NOT OK

174 466965 582502.6 17199.82596 1.653709 0.048829844 NOT OK

175 596472 582582.4 17101.44512 1.653658 0.048542389 NOT OK

176 709148 583301.5 17019.19975 1.653607 0.048247903 NOT OK

177 765273 584329.6 16953.97318 1.653557 0.047976977 NOT OK

178 803339 585560 16903.29655 1.653508 0.047731634 NOT OK

179 1057468 588196.4 17014.09406 1.653459 0.047827751 NOT OK

180 477358 587580.6 16930.50886 1.653411 0.047641271 NOT OK

181 352996 586284.5 16886.51986 1.653363 0.047621155 NOT OK

182 471353 585653.1 16805.3494 1.653316 0.047441994 OK

183 543153 585420.8 16714.87809 1.653269 0.047203976 OK

184 693957 586010.7 16634.25021 1.653223 0.04692768 OK

185 563976 585891.6 16544.51974 1.653177 0.046682734 OK

186 481924 585332.6 16464.82122 1.653132 0.046500947 OK

187 592364 585370.2 16376.58053 1.653087 0.04624751 OK

188 485765 584840.4 16297.8521 1.653043 0.046065642 OK

189 478334 584276.9 16221.18218 1.652999 0.045891941 OK

190 582105 584265.4 16135.58572 1.652956 0.045649474 OK

191 518681 583922.1 16054.55635 1.652913 0.045445763 OK

192 576274 583882.2 15970.76965 1.652871 0.045210512 OK

193 585331 583889.7 15887.80583 1.652829 0.044973936 OK

Figure 9.12: Determination of minimum simulation runs 
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Appendix 16 Determination of warmup period 
Since our simulation model starts without any fish in inventory, we need to let the model run for a 

certain number of runs before the output can be considered representative for the real processing 

plant. We determine the number of warmup runs with the help of Welch’s graphical method.    

The method consists of 4 steps:  

1. We make n replications of the simulation, where n should be bigger than 5. Each replication has 

m runs, where m should be bigger than the required number of runs. We choose for m 500 runs.  

2. We calculate for each replication n, the average over all the 500 runs. Hence, we have then 

1 2 499 500, ,.., ,Y Y Y Y  .  

3. We calculate the moving average ( )iY w  with:  

 
1

( 1)

 

if 1,..,
2 1

( )

if 1,..,
2 1
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i s

s w

i i

i s

s i
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Y w
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i w
i
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 
 
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=  
 
 

= 
− 




  (9.26) 

4. We plot the values of ( )iY w for i=1,2,..,m-w. We look when the graph has converged to a stable 

line. We call the value where this stable line starts l. Our warmup period consist of l runs.  

We have to plot ( )iY w  for several values of w. We choose the values of w to be 10, 100, and 250. 

We plot the graphs for n=5, n=10, and n=20. Then we look for where the line is most steady, and we 

choose l. Figures 9.13a until Figure 9.13c show the results of the plots.  

We look at the graph N=20 and look for the value l. We observe that for approximately the 50th 

simulation run, the graph is stable. We thus set the warmup period at 50 simulation runs.  
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Figure 9.13a: Welch’ graphical method for N=5 

Figure 9.13b: Welch’ graphical method for N=10 
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Figure 9.13c: Welch’ graphical method for N=20 
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Appendix 17 Summary statistics kilogram per cutting hour 
  

 
N Mean Std. 

Deviati
on 

Std. 
Error 

95% Confidence Interval 
for Mean 

Minimum Maximum 

Lower 
Bound 

Upper Bound 

Kilogram 
per hour 
cluster 1 

Overtime 238 137.17 11.96 0.78 135.64 138.70 84.68 156.01 

Deterministic 237 145.92 8.94 0.58 144.77 147.06 96.81 158.30 

Extra capacity 238 137.36 12.99 0.84 135.70 139.02 94.53 154.14 

Average forecast 
ship 

238 100.33 38.87 2.52 95.37 105.29 7.14 155.97 

Regular forecast 
ship 

238 137.88 12.97 0.84 136.23 139.54 75.88 154.89 

Current situation 54 88.31 26.90 3.66 80.97 95.65 36.49 166.36 

Total 1243 129.83 27.40 0.78 128.31 131.36 7.14 166.36 

Kilogram 
per hour 
cluster 2 

Overtime 238 165.41 32.51 2.11 161.26 169.56 128.54 261.22 

Deterministic 238 142.38 38.83 2.52 137.42 147.33 0.00 159.43 

Extra capacity 238 166.46 33.47 2.17 162.19 170.74 0.00 280.85 

Average forecast 
ship 

238 148.39 2.86 0.19 148.02 148.75 137.98 153.27 

Regular forecast 
ship 

238 148.89 3.71 0.24 148.41 149.36 134.63 156.77 

Current situation 79 105.22 29.22 3.29 98.68 111.77 57.30 206.87 

Total 1269 151.25 31.24 0.88 149.53 152.97 0.00 280.85 

Kilogram 
per hour 
cluster 3 

Overtime 238 167.50 35.51 2.30 162.97 172.03 0.00 267.12 

Deterministic 238 151.96 6.53 0.42 151.12 152.79 130.31 159.43 

Extra capacity 238 153.57 55.76 3.61 146.45 160.69 0.00 299.49 

Average forecast 
ship 

238 144.06 23.67 1.53 141.04 147.08 0.00 157.81 

Regular forecast 
ship 

233 147.83 4.60 0.30 147.24 148.43 126.58 159.43 

Current situation 80 127.77 39.35 4.40 119.02 136.53 50.59 233.25 

Total 1265 151.41 33.63 0.95 149.55 153.26 0.00 299.49 

Kilogram 
per hour 
cluster 4 

Overtime 238 178.65 39.20 2.54 173.65 183.66 125.19 266.14 

Deterministic 238 152.50 7.44 0.48 151.55 153.45 124.01 159.43 

Extra capacity 238 176.63 39.31 2.55 171.61 181.65 100.06 293.79 

Average forecast 
ship 

238 145.65 17.44 1.13 143.42 147.87 0.00 159.43 

Regular forecast 
ship 

233 147.38 5.59 0.37 146.66 148.10 126.13 158.61 

Current situation 13 140.84 32.46 9.00 121.22 160.45 102.61 199.21 

Total 1198 160.00 30.15 0.87 158.30 161.71 0.00 293.79 
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Appendix 18 Summary statistics profit per kilogram raw 

material  
 

N Mean Std. 
Deviation 

Std. 
Error 

95% Confidence 
Interval for Mean 

Lower 
Bound 

Upper 
Bound 

Profit Cluster 1 Overtime 238 6.10 2.83 0.18 5.74 6.46 

Deterministic 238 6.50 4.47 0.29 5.92 7.07 

Extra capacity 238 5.65 1.88 0.12 5.41 5.89 

Average 
forecast ship 

238 4.12 2.11 0.14 3.85 4.39 

Regular 
forecast ship 

238 5.57 2.94 0.19 5.20 5.95 

Total 1190 5.59 3.09 0.09 5.41 5.76 

Profit Cluster 2 Overtime 238 8.46 6.24 0.40 7.66 9.25 

Deterministic 238 8.33 8.49 0.55 7.24 9.41 

Extra capacity 238 9.23 7.05 0.46 8.33 10.13 

Average 
forecast ship 

238 5.59 5.95 0.39 4.83 6.35 

Regular 
forecast ship 

238 8.07 8.52 0.55 6.98 9.16 

Total 1190 7.94 7.42 0.22 7.51 8.36 

Profit Cluster 3 Overtime 238 9.80 7.29 0.47 8.87 10.73 

Deterministic 238 9.59 11.11 0.72 8.17 11.01 

Extra capacity 238 9.80 8.32 0.54 8.73 10.86 

Average 
forecast ship 

238 6.70 8.21 0.53 5.66 7.75 

Regular 
forecast ship 

238 8.37 9.66 0.63 7.14 9.61 

Total 1190 8.85 9.08 0.26 8.34 9.37 

Profit Cluster 4 Overtime 238 8.05 7.79 0.50 7.05 9.04 

Deterministic 237 8.05 12.92 0.84 6.40 9.71 

Extra capacity 237 8.29 7.02 0.46 7.39 9.19 

Average 
forecast ship 

237 5.74 6.95 0.45 4.85 6.63 

Regular 
forecast ship 

237 7.61 8.42 0.55 6.53 8.68 

Total 1186 7.55 8.93 0.26 7.04 8.06 
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Appendix 19 ANOVA productivity cutting department  
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Appendix 20 ANOVA profit per kilogram raw material 
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