
Applying machine learning to the
prediction of defaults in loans

June 8, 2018

Author:
Michiel Cornelissen BSc.
s1229532

Supervisors:
University of Twente
drs. ir. Toon de Bakker
dr. Mannes Poel

Accenture
Paul Weiss MSc.

University of Twente
Drienerlolaan 5
7522 NB Enschede

Accenture
Gustav Mahlerplein 90
1082 MA Amsterdam

iii

Management summary

The goal of this thesis is to compare the predictive performance of several machine
learning algorithms in their capability to predict defaults in loans. This is done to
come up with valuable information about which algorithms are most suitable for this
task. Such information is required before machine learning can be implemented in
practice to predict defaults. To determine the performance, several algorithms that
can be used to classify samples have been implemented. Those are used to predict
the defaults and the performance of each of the algorithms is measured.

The loans used in this thesis come from two data sets of which it is known which
loans went into default. The choice has been made to use two data sets in order to
be able to determine if the same results are found for both sets. The first data set,
from the UCI Machine Learning Repository (Yeh and Lien, 2009), consists of 30,000
Taiwanese credit lines. The second data set, after preparation, is comprised of 85,964
peer to peer loans that have been originated using the Prosper platform (Prosper,
2017).

The main question of this thesis is:

What is the predictive performance of machine learning when applied to the
prediction of defaults in loans?

Model performance

The Area Under the Curve has been used as the primary performance indicator. The
measure ranges from 0.0 to 1.0, with the latter being a perfect predictor. A value of
0.5 indicates that a model performs equal to one that classifies by random guesses.
Table 1 shows which algorithms have been used and what the corresponding per-
formance is. Aside from the AUC, the precision and recall are also shown.

TABLE 1: Performance of the different algorithms when trained and
validated on the original data set.

Taiwan Prosper
Algorithm AUC Precision Recall AUC Precision Recall
Logistic regression 0.77 0.48 0.58 0.77 0.16 0.73
Neural network 0.78 0.45 0.62 0.81 0.17 0.77
Naive Bayes 0.74 0.40 0.63 0.66 0.10 0.77
k Nearest neighbors 0.76 0.44 0.61 0.75 0.15 0.66
Decision tree 0.76 0.45 0.60 0.77 0.15 0.78
Random forest 0.77 0.44 0.63 0.80 0.15 0.83
ADABoost 0.77 0.41 0.67 0.80 0.17 0.73
Gradient boosting 0.78 0.45 0.61 0.81 0.16 0.83
Support Vector Machine 0.76 0.47 0.59 - - -

In the Taiwan data set the AUC of all algorithms is similar. Naive Bayes has the
lowest performance with an AUC of 0.74, the highest AUC, 0.78, is shared by two
algorithms, Neural Network and Gradient Boosting. Aside from the Naive Bayes

iv

algorithm, the performances are so close together that it is difficult to draw conclu-
sions based solely on the AUC. The performances achieved with the Prosper data set
show more variation. Naive Bayes again has the lowest performance. The highest
performance is achieved by the same two algorithms, Neural Network and Gradient
Boosting. When one takes the explainability into account, the view on which of the
algorithms is most suitable changes. For the Taiwan data set, the Decision Tree has
a decent AUC which is 0.02 below the highest value, in the Prosper data set it is 0.04
below the highest value. Clearly a choice between explainability and performance
has to be made.

For the Prosper data set, it is interesting to see how good the models are in pre-
dicting which loans don’t go into default. The best algorithms, Random Forest and
Gradient Boosting, have a negative predictive value of 97,9% and even the worst
algorithm, Naive Bayes, has 95,9%. This makes it interesting to use the algorithms
not as default predictors, but to define a group of low risk loans.

Finally, both of the data sets have been split according to certain characteristics.
The goal of such a modification is to find differences in performances on specific
parts of the data set. With the Taiwan data set a positive effect was observed in
two occasions. Some algorithms with the Prosper data set showed an increase up to
0.03. However, with both data sets a decrease in performance was observed in most
situations. The last modification was winsorization of the numerical features. This
led to no substantial changes.

Based on the above mentioned findings the following conclusions are drawn.
Both Gradient Boosting and Neural Network seem to be the best performing algo-
rithms. They both have the highest AUC for both of the data sets. The disadvantages
of those algorithms is that they tend to become a black box , making it difficult to
explain why a classification is made. Furthermore, an increase in performance can
be achieved by splitting the data sets by some characteristics, but this should be
examined case-by-case.

Resampling

The data sets used in this research project where imbalanced. The Taiwan data set
had 22% of the samples in the minority class, the Prosper data set even less, only
8%. To remove the imbalance the following methods have been used: random un-
dersampling, random oversampling, SMOTE (regular, borderline1 and borderline2)
and ADASYN (2, 5 and 10 neighbors).

After using those methods on both data sets, it is concluded that resampling can
have a positive effect, but it should not be applied without reservation. Especially
the more complex methods, SMOTE and ADASYN, are practically never the best
choice with these two data sets. Random undersampling is the algorithm that has
been used the most in this research project, mainly because its positive effect on the
performance, but also due to its effect of decreasing the computation times.

v

Preface

I proudly present you my master’s thesis, which is the result of more than half a year
of research. This thesis is written in order to graduate from the master Industrial
Engineering and Management at the University of Twente. Meaning that this thesis
marks the end of my life as a student, after seven years, which feel more like three
of four.

The majority of this thesis has been written during my internship at Accenture.
During this time I have been able to get to know Accenture and some of its peo-
ple. From whom I appreciate their willingness to discuss the dry matter of machine
learning while enjoying a cup of coffee. I want to especially thank my external su-
pervisor, Paul Weiss, for the opportunity to write my thesis at Accenture which gave
me the possibility to get to know the company from within and for his advice and
comments on my thesis.

I also thank my supervisors from the university, Toon de Bakker and Mannes
Poel for guiding me through the process of writing a thesis. Your advice and com-
ments on my research were most useful and helped me to create the result you are
reading now.

My parents have supported me throughout all my years as a student, for which
I am most grateful and want to thank them. I also thank all my friends I met during
my study in Enschede, for all the good times we had and will have in the future.
Finally, I want to thank my girlfriend for her support and patience. Even when too
much time went into writing my thesis.

Amsterdam, June 2018

Michiel Cornelissen

vii

Contents

Management summary iii

Preface v

1 Introduction 1
1.1 Organization . 1
1.2 Project context . 1
1.3 Problem description . 2
1.4 Research objective . 2
1.5 Report outline . 3

2 Theoretical framework 5
2.1 Current state of the literature . 5
2.2 Credit risk . 6
2.3 Machine learning . 6
2.4 Working with imbalanced data sets . 10
2.5 Model performance measures . 12
2.6 Cross-validation . 15
2.7 Ensemble models . 16
2.8 Model descriptions . 17

3 Methodology 29
3.1 Research framework . 29
3.2 Data preparation . 30
3.3 Model training and testing . 31

4 Data description and preparation 35
4.1 Credit data - Taiwan . 35
4.2 Peer to peer lending - Prosper . 47

5 Model training 55
5.1 Credit data - Taiwan . 55
5.2 Peer to peer lending - Prosper . 71
5.3 Data influences . 83

6 Conclusions 89

7 Limitations and further research 93

Bibliography 95

A Prosper data set summary 99

B Experiment results 107

1

Chapter 1

Introduction

In this chapter the research is introduced to the reader. First Accenture is introduced,
the company where this research project is performed. This is followed by a descrip-
tion of the project context, after which the problem is described and the research
objective is given. Based on the research objective several questions are defined to
which this research project will give an answer. Finally, this chapter is concluded
with an outline of the rest of the report.

1.1 Organization

Accenture is a global management consulting firm with over 400,000 employees.
The history of the company goes back to 1953, but it has been working under its own
name since 1989 as Andersen Consulting. Since 2001 the current name, Accenture, is
used. In that same year the company had its initial public offering at the New York
Stock Exchange.

The company has divided its business into several categories: strategy, consult-
ing, digital, technology and operations. This research project is carried out within
the consulting branch and more specific the banking industry. This department is
specialized in supporting banks with a broad range of services. To stay up to date
with new technologies there is large interest in research focused at financial innova-
tions.

1.2 Project context

One of the core functions of a bank is to give out loans to consumers and companies.
For each loan, the bank is at risk of not receiving back the entire principal. The
amount of risk usually has an influence on interest the bank will receive. For a
lender it is valuable to be able to estimate the risk associated with each client, it
can help a bank in two ways. First, it can be used in the loan origination process.
This is the process consisting of all the steps a borrower and lender go through to
process the application of a new loan. During the loan origination, the lender has
to make a decision whether or not to accept the loan and on which terms. By being
able to accurately estimate the risk associated with accepting the loan, the bank can
make better decision on the terms, for example interest, and might also decline the
application. The second situation where risk estimation is crucial, is in monitoring
the already accepted loans. If a bank is capable of estimating which loans are likely
to default, those loans can be handled with more attention. This can be done with
the aim of increasing the recovered amount after a default, or preventing the loan
from going into default at all. The accuracy of determining the risk of individual
loans is crucial to the profit of a bank (Blöchlinger and Leippold, 2006). Therefore,

2 Chapter 1. Introduction

financial institutions are always working on methods to improve their possibility to
estimate risk.

Turing (1950) explored the topic of computing intelligence. In his article, he
asked the question “can machines think?”, by asking that question he was years
ahead of his time. The term machine learning was first used in Samuel (1959) about
learning a machine to play checkers. It took until the 90’s before machine learn-
ing started to flourish as its own field of research (Langley, 1995). This came with
a shift of paradigm: from achieving artificial intelligence towards tackling practical
and solvable problems. Since then machine learning has slowly evolved into a more
mature technology. In 2015 several tech giants open-sourced their machine learning
tools, among which where Microsoft, Facebook and Google (Thomas, 2015; Chin-
tala, 2015; Dean, 2015). With the widespread availability of tools, enterprises across
industries start to experiment with machine learning. To be able to implement ma-
chine learning, it is necessary to have a thorough understanding of the available
algorithms. Knowing which algorithm is most suitable for a task is a part of that
understanding.

1.3 Problem description

As mentioned before, estimating the risk of a loan is an important task within bank-
ing. This makes it interesting to research the possible improvements that can be
reached by applying machine learning. Several scientific papers have been written
about the expected benefits of using machine learning in default prediction (Abellán
and Mantas, 2014; Harris, 2015; Huang, Chen, and Wang, 2007). These show that
machine learning can lead to a higher in accuracy default prediction, compared to
conventional methods. However, most of these papers are limited in the number
of algorithms compared. Moreover, the observation is that nearly all papers use a
different data set, making the results difficult to compare. This creates an interest-
ing opportunity to determine the performance of a broad range of algorithms on the
same data sets.

1.4 Research objective

Now that the problem has been described, an objective for this research project is
defined. The objective is to develop knowledge about the predictive performance of
different machine learning algorithms when used to predict defaults in loans. This is
done by implementing different machine learning algorithms which can be used to
classify samples. These different algorithms will be used to predict the defaults on
loans. The loans come from two data sets with loans of which it is known whether
or not they went into default. The final part of the objective is to compare the per-
formance of the used algorithms and to determine which is most suitable for this
task.

To fulfill the research objective, several questions have to be answered. These
questions are separated into a main question and sub questions. The sub questions
must collectively form an answer to the main question.

1.5. Report outline 3

1.4.1 Main question

The main question of this thesis is defined as:

What is the predictive performance of machine learning when applied to the
prediction of defaults in loans?

1.4.2 Sub questions

Which machine learning algorithms are suitable for making binary classifica-
tions?

The first step of this research project is to determine what types of machine learning
and which algorithms exist. Based on the findings from that analysis a selection of
algorithms has to be made that will be used in this research project. This question
will be answered using relevant literature.

What criteria should be used to objectively and accurately measure the perfor-
mance of different machine learning algorithms?

The goal of this research project is to make a comparison of the performance of dif-
ferent machine learning algorithms. To be able to do so in a objective way, it is
necessary to accurately measure the predictive performance. The measure that will
be used in the experiments is based on a literature review.

What is the performance of the different machine learning algorithms when used
to predict defaults?

The final subquestion is to actually determine the performance of the different al-
gorithms. The answers of the previous questions are required to configure the al-
gorithms and prepare the data. This answer will be answered by implementing the
algorithms and using them in combination with the prepared data sets.

1.5 Report outline

The last section of the introduction contains an outline for the rest of this thesis. In
the next chapter the Theoretical Framework is described. This consists of the back-
ground required to perform and understand the experiments. The main topics of the
Theoretical Framework are a necessary background about machine learning, sev-
eral methods of data preparation and a background about the different algorithms
which can be used to classify data. The theoretical framework is followed by Chap-
ter 3, Methodology. This chapter describes how the objective of this research will
be achieved. In the next chapter the data is prepared to be used in machine learn-
ing, this is Chapter 4. After the data has been prepared the different models can
be trained on the prepared data in Chapter 5. Here the settings of the models are
determined and the performance is measured. Now all the results are known, con-
clusions can be drawn in Chapter 6. The conclusions will answer the main question
of this research project. Finally, the paper is concluded with Chapter 7, Limitations
and Further Research.

5

Chapter 2

Theoretical framework

The theoretical framework contains the necessary background to answer the re-
search questions defined in the previous chapter. The chapter starts with a section
about relevant research on the same topic, to provide a context for this thesis. A
brief description of credit scoring will be given next. This subject is followed by a
section about machine learning and goes in depth about the different forms of ma-
chine learning. This is followed by a section on the impact of an imbalance between
classes in data sets, after which several performance measures are treated. To get to
a reliable performance measure, cross-validation is required. It is therefore the next
topic. After cross-validation it will be discussed how several models can be com-
bined into so-called ensemble models. Finally the different algorithms used in this
research project will be discussed in detail.

2.1 Current state of the literature

In this section of the Theoretical Framework some relevant literature will be de-
scribed. The goal is to make the purpose and added value of this research project
clear.

To find the beginning of artificial intelligence in scientific literature, one has to go
back to 1950, the year in which Turing (1950) wrote his paper Computing Machinery
and Intelligence. Since then, and particularly in recent years, the topic has gotten
a lot of attention. According to Jordan and Mitchell (2015) machine learning has
become the technology of choice within artificial intelligence to achieve practical so-
lutions. They mention the rapid decrease in the cost of computational power and the
availability of online data as two factors that have driven the rapid development of
machine learning. As an important financial application of machine learning Jordan
and Mitchell mention the detection of credit-card fraud. Their paper is concluded
by mentioning it is necessary that society begins to consider how to maximize the
benefits of machine learning.

This research project is not the first about using machine learning to predict de-
faults in loans. Using machine learning to score credit has been done since before
2000, for example Langley (1995) already mentioned it as a possible use case for
machine learning. Since then a lot has happened in the field of machine learning,
among other reasons due to the increasing computational power. In more recent
years multiple scholars have performed research into the accuracy of machine learn-
ing when used for default prediction. However, most often the research is about a
single new algorithm which is compared to a few benchmarks.

Several projects have been carried out to research the possibilities of machine
learning in credit scoring (Abellán and Mantas, 2014; Harris, 2015; Huang, Chen,

6 Chapter 2. Theoretical framework

and Wang, 2007). These projects show that machine learning can lead to a high ac-
curacy in credit scoring. However most of these projects are limited in the number
of models compared and are based on different data sets which make the results in-
comparable. One of the early papers in which machine learning is applied to default
prediction is about Support Vector Machines (Shin, Lee, and Kim, 2005), but no com-
parison is made. Alaraj, Abbod, and Hunaiti (2014) use a nearal network to make
default prediction, but again no comparison is made with other techniques. Khan-
dani, Kim, and Lo (2010) use machine learning to make default predictions and do
make a comparison. However this is only between three algorithms, where in this
research project a more broad comparison will be made.

Now that machine learning is slowly becoming a more mature technology that
is starting to be used in practice another type of research is needed. Before making
the choice on which algorithm should be implemented it is required to make a broad
comparison between algorithms. For this comparison it is important that the same
data set is used, otherwise the results cannot be compared.

Only summing up research projects with a positive conclusion would give a bi-
ased expectation of this project. Recently some critical reports have been published.
According to a report by Gartner (2016) machine learning is currently on the top of
a hype cycle and thus too high expectations exist. When a technology passes the top
of the hype cycle, expectations will drop considerably. If machine learning moves to
through the hype cycle as expected, it will get mainstream adoption in two to five
years.

2.2 Credit risk

As mentioned before the goal of this research project is to determine if machine
learning can be used to make better loan decisions. The reason for chasing this goal
is to minimize the credit risk the bank is exposed to.

Credit risk arises from the possibility that borrowers, bond issuers, and counter parties in
derivatives transactions may default (Hull, 2015).

In this project the focus is on the credit risk that arises from the possible defaults
of borrowers. The formula for the expected loss from defaults is given in Equation
(2.1). EAD is the expected exposure at the time of default, LGD is the fraction lost
given default and PD is the probability of default.

∑
i

EADi × LGDi × PDi (2.1)

When the customer of a bank is unable to repay a loan, it goes into default. The
goal of the bank in such a situation is damage mitigation, it will try to minimize the
amount that has to be written off due to the default. When accepting a customer
for a loan the risk is determined. Part of this process is determining the expected
amount that has to be written off, if the loan goes into default. The expected fraction
that has to be written off, is the loss given default.

2.3 Machine learning

Machine learning is a field of computer science focused on giving computers the
capabilities to learn. The goal of machine learning is to create algorithms that can

2.3. Machine learning 7

learn and make predictions based on data and feedback. An important characteristic
of machine learning is that it is not explicitly programmed to follow certain decision
rules to create results. Instead it has the capability of creating those rules based on
data and feedback.

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E (Mitchell, 1997).

By applying this definition to the goal of credit scoring it figures that information
about historical loans and their default status is required to train a model into learn-
ing to predict defaults.

2.3.1 Features

In machine learning, a feature is a single measurable property of the phenomenon
that is being studied. All the features describing a single entry usually form the
feature vector. Features have one of the four following data types.

– Nominal features are labels without any quantitative value and the labels do not
have a specific order. Examples of such a feature are gender or color.

– Ordinal features are labels without a quantitative value but with a specific order.
An example is satisfaction (unhappy, neutral, happy).

– Interval features are numeric values of which the order is known and also the
difference between the values. An example of such a label is the Celsius scale, the
difference between the values is known. The problem with interval scales is that
they do not have a true zero. This makes it impossible to calculate ratios, 10 ◦C is
not twice as warm as 5 ◦C.

– Ratio features are similar to interval features but in addition have an absolute
zero. This makes it possible to multiply and divide the values. Weight and length
are examples of ratio features.

2.3.2 Learning methods

Machine learning problems are subdivided into different categories. The most used
method of categorizing machine learning tasks is by learning method. In this sec-
tion, the most used learning methods are described. Each category has a textual
description, an example and a mathematical representation.

Supervised learning

The first method is supervised learning, this method is used when there is an input
and a known output and the task is to learn the mapping form input to output (Al-
paydın, 2010). This task can be described as to infer a function from label training
data, which can be used to classify future unlabeled data.

This typically means that in a supervised learning scenario, a training set is
given. This set consists of multiple cases, each containing features with a value and
the resulting class. For example, a data set describing the color, trunk capacity and
top speed of a few hundred cars and classification based on the car being a family
car or not. A supervised learning algorithm uses the examples in the training set to

8 Chapter 2. Theoretical framework

infer a function relating the features to the car being a family car or not. The goal of
inferring this function is to determine for future cars whether the car is a family car
or not.

Given a set S, containing N training samples, s, {(x1, y1), ..., (xN , yN)} with xi
being the feature vector of the i-th example and yi being the corresponding label, the
goal is to determine a function g : X → Y. g is a function that maps the input space
X (the features) to the output space Y (the labels). The performance of the function
g is crucial in the performance of the machine learning model. It is usually assumed
that the values in a feature vector xi, are generated randomly and independently
according to a fixed and unknown random distribution (Maimon and Rokach, 2005).

Semi-supervised learning

Semi-supervised learning considers the problem of classification when only a small
subset of the observations have corresponding class labels (Kingma et al., 2014).
Such a learning algorithm lies between supervised learning and unsupervised learn-
ing, the latter of which is discussed later in this section. At first it might seem strange
that unlabeled data has any use and one might expect to discard the unlabeled data
and regard the task as if being supervised learning. In Figure 2.1, the left image
shows a situation with four labeled data points, the line shows a classifying border
that is a good fit. The right image shows the same data points, but now unlabeled
data is added. By analyzing the newly added unlabeled data, a pattern arises in the
data. This pattern is only visible by taking the unlabeled data into account.

FIGURE 2.1: Graphs showing the possible added value of unlabeled
data.

(A) Classification boundary based on
labeled data only.

2 4 6 8 10

2

4

6

8

10

x

y

(B) Classification boundary based on
labeled and unlabeled data.

2 4 6 8 10

2

4

6

8

10

x

y

Situations in which semi-supervised learning is practical, usually have a high
cost of determining labels in the training set. An example of such a situation is image
recognition in which lots of data is available but adding labels is manual work and
thus expensive.

The following notations are based on Zhu, Ghahramani, and Lafferty (2003). In
semi-supervised learning l labeled points are given, (Xl , Yl) = {(x1, y1), ..., (xl , yl)},
and u unlabeled points are given, Xu = {xl+1, ..., xl+u}. In semi-supervised learning,
on usually has l � u. Due to the complexity of semi-supervised learning further
details are limited to the general idea. Which is to find functions f : V → R, with
V corresponding to the l + u data points and to assign labels based on f . These

2.3. Machine learning 9

functions f must agree with the labeled data Xl and should be smooth regarding the
unlabeled data Xu.

Reinforcement learning

A learning algorithm that works by means of reinforcement does not receive any la-
bels at first. Such a system learns by interacting with its environment by producing
actions which affect the environment. The effect on the environment returns a re-
ward or punishment. The goal of the algorithm is to produce actions in such a way
that the reward is maximized or the punishment is minimized.

In recent times attention has been going out to cars autonomously driving a
route. Learning a car to traverse such a route without violating any laws or caus-
ing accidents can be done by applying reinforcement learning. For example, an al-
gorithm in a simulated environment must learn how to drive a car along a certain
route without violating any traffic rules. At first the algorithm will simply perform
random actions, by punishing traffic violations the algorithm will start to learn how
to drive according to the rules. By repeating this process for many runs and reward-
ing the algorithm for reaching the end of the route it will slowly start to learn how
to safely drive a car.

The notations used in this explanation are based on Maimon and Cohen (2009).
Reinforcement learning is usually based on the Markov Decision Process, or MDP.
Such a process contains all possible states S, actions A, rewards R and state-transitions
P. State-transitions specify the resulting state of applying a certain action to the cur-
rent state. The sets of states and actions can theoretically be both finite and infinite.
The learning algorithm starts at time t in a certain environment st ∈ S and reacts
by selecting an action at ∈ A. This leads to the algorithm getting a reward rt deter-
mined by the reward function R(st, at). The result of selecting an action is a tran-
sition of the environment to a state st+1 with probability P(st, at, st+1) determined
by the state-transition function. The algorithm starts performing actions within this
MDP without knowing anything about the reward function or the state-transition
function. The goal of the algorithm is to find a policy that maximizes the achieved
reward within the MDP.

Unsupervised learning

The last learning method discussed is unsupervised learning. In this method, the
algorithm is trained using just an input set, no output, desired results or feedback is
given. The algorithm must find structure in the data by itself. Unsupervised learning
can be seen as finding patterns in data that are different from pure unstructured
noise (Ghahramani, 2004).

A promising use of unsupervised learning is in the behavior-based detection of
network security (Engel, 2017). Due to the amount of data generated it is impossible
for a human to analyze all the data. An algorithm based on unsupervised learning
could detect anomalies in the data without being learned what a breach looks like.
When such an anomaly is detected, IT security could be notified.

2.3.3 Weak and strong learners

One of the ways to group similar machine learning models is by separating weak
and strong learners. Weak learners are simple and fast trainable models that perform

10 Chapter 2. Theoretical framework

slightly better than random guessing (Freund and Schapire, 1997). Strong learners
are all more complicated models.

2.4 Working with imbalanced data sets

In real-world data sets the number of ’interesting cases’ is often small in comparison
to the total number of instances. Consider for example a data set with loans and
defaults, since in normal situations a small fraction of loans go into default the data
set is imbalanced. This causes problems in training and evaluating machine learning
models. Machine learning models can be evaluated by their predictive accuracy. In
imbalanced data sets this measure is often misleading. Consider a data set with 99%
of non-interesting (negative) instances, a model that classifies nothing as interesting
(positive) will have a predictive accuracy of 99%. This accuracy is useless since it is
unable to find any interesting case. Such a result is often seen with imbalanced data
sets because the set contains too few interesting cases for the model to learn their
characteristics. A method to mitigate this problem that received ample attention is
over and under-sampling (Chawla, Japkowicz, and Kotcz, 2004).

2.4.1 Over-sampling by replication and under-sampling

The most simple and straightforward method to balance imbalanced data sets is by
using over-sampling by replication or under-sampling. The first of these is simply
to replicate random samples of the under represented case until the data set is bal-
anced. This results in a data set with multiple identical samples which might lead to
specific and small decision regions which may cause over-fitting. Under-sampling
is a method to balance the data set by ignoring a certain part of the over represented
class. The issue with this method is that it leads to a loss of information and might
cause under-fitting. It also decreases the size of the data set, which might result in a
too small data set to still be able to train an algorithm.

2.4.2 Synthetic minority over-sampling technique

In the previous section, over-sampling by use of replication and under-sampling
were introduced. Since that method replicates existing cases, the model trains on
more but identical positive cases, this can cause over-fitting. To counter this issue
Chawla et al. (2002) developed a technique to generate synthetic samples: synthetic
minority over-sampling technique (SMOTE). Using synthetic samples, the classifier
creates a larger and less specific decision area, this leads to better generalization of
the decisions. Blagus and Lusa (2013) found that SMOTE does not always perform
well on high dimensional data sets.

The method works by selecting the k nearest neighbors for each sample in the
under represented class. Synthetic samples are generated on the line segments con-
necting neighbors. New samples are generated by calculating the difference between
the feature vectors of a base sample and a neighbor. This difference is multiplied by
a random number between 0 and 1, and is added to the feature vector of the base
sample. The resulting vector is the feature vector of a newly generated sample. De-
pending on the required amount of over-sampling, neighbors are selected randomly
from the k nearest neighbors. A graphical representation of the SMOTE process is
given in Figure 2.2.

2.4. Working with imbalanced data sets 11

FIGURE 2.2: (a) The original distribution of data. (b) The border-
line minority samples. (c) The borderline synthetic minority samples

(Han, Wang, and Mao, 2005).

Borderline-SMOTE

Han, Wang, and Mao (2005) propose two alternatives on SMOTE in which only sam-
ples near the border between classes are over-sampled. They show that their pro-
posed methods achieve a higher true positive rate and F-value. The philosophy of
focusing on the borderline is that samples near the border are more apt to be mis-
classified and thus should get more attention.

The first proposed alternative is borderline-SMOTE1, it works as follows. As-
sume a set, S, is given containing training samples, si = (xi, yi), with xi being the
feature vector of the i-th sample and yi being the corresponding label. The set S is
split, positive samples are a part of Sp and negative samples of Sn. For this expla-
nation it is assumed the positive samples are under-represented. For all samples in
the minority class, Sp, the k nearest neighbors are determined, these neighbors can
belong to either class. The number of samples from the majority class among the
nearest neighbors is denoted by k′, for which 0 ≤ k′ ≤ k. If the number of majority
class neighbors equals k for a sample, it is regarded as being noise. If the sample
has more neighbors in the majority class as in the minority class (k/2 < k′ < k), the
sample is added to a set D (danger). The result will be a set D ⊆ S with samples
along the borderline of the classes. Finally the SMOTE algorithm is performed upon
the set D as explained in the previous section.

The other proposed method is borderline-SMOTE2. In addition to the proce-
dure for borderline-SMOTE1, a synthetic sample is calculated on the line segment
between each sample in D and its nearest negative neighbor. In borderline-SMOTE1
the synthetic samples are generated by multiplying the difference between two sam-
ples with a random number between 0 and 1. For borderline-SMOTE2 the difference
is multiplied with a random number between 0 and 0.5. This results in a synthetic
sample closer to the positive sample.

2.4.3 Adaptive synthetic sampling

Adaptive synthetic sampling (ADASYN) is a method proposed by He et al. (2008)
to balance data sets. The philosophy of ADASYN is to use a weighted distribution
which gives higher weights to minority samples that are difficult to learn (close to
the borderline). Samples with a large weight are used more often as base sample

12 Chapter 2. Theoretical framework

for generating a synthetic sample. Resulting in a greater focus on difficult regions
which should lead to better predictions.

ADASYN is started by determining the number of synthetic samples that have to
be generated, G. This is done by calculating the difference between Nn, the number
of majority samples, and Np, the number of minority samples, as shown in Equation
2.2. It follow that Nn > Np and thus G > 0. β is a parameter to specify the desired
balance, with β ∈ [0, 1]. A value of 1 means a perfectly balanced data set.

G =
(

Nn − Np
)
× β (2.2)

The next step is to calculate a measure for the learning difficulty for each minority
sample. This measure is based on the number of samples in its close vicinity that are
majority samples. For the calculation, the k nearest neighbors are taken for consider-
ation. k is a predetermined model parameter. The number of neighbors that belong
to the majority class is denoted as k′. The relative learning difficulty for sample i is
calculated as given in Equation 2.3. Finally the relative difficulty for each minority
sample is normalized in such a way that the sum of all difficulties equals one.

ri = k′i/k (2.3)

Using the normalized difficulty measure, r̂i, the number of synthetic samples to gen-
erate per specific minority sample can be determined:

gi = r̂i × G (2.4)

The samples are generated using the same method as in SMOTE.

2.5 Model performance measures

Since the goal of this research project is to compare several methods of machine
learning, it is required to define criteria on which the methods are to be compared.
In this section several statistics to assess the performance are discussed.

2.5.1 Confusion matrix

The first method to analyze the performance of a classification algorithm is by us-
ing a confusion matrix. It is a method to visualize the accuracy using a table, an
example is shown in Table 2.1. For the purpose of explaining the confusion matrix
a classifier that classifies instances as positive or negative is assumed. Four fields
have to be calculated to fill in the matrix, true positive, false positive, true negative
and false negative. These fields are simple to calculate. For example, true positive is
the number of occurrences correctly classified as positive and false negative are the
occurrences incorrectly classified as negative.

TABLE 2.1: Confusion matrix of a two-class problem.

Predicted positive Predicted negative
Positive (P) True positive (TP) False Negative (FN)

Negative (N) False positive (FP) True Negative (TN)

For the following example, assume a classifier that classifies every instance as pos-
itive. This would result in 100% of the actual positive instances being classified as

2.5. Model performance measures 13

positive. If the accuracy would be purely evaluated on the actual positive instances
being classified as positive such an algorithm appears to be performing perfect. To
prevent this situation, the confusion matrix can be used. Since the column with the
negative predictions is empty, it is clear that the algorithm is not working,

2.5.2 Accuracy

Using the values calculated for the confusion matrix it is possible to calculate sev-
eral interesting statistical measures. The first of which is the accuracy, shown in (2.5).
The abbreviations used in this section are identical to those given in 2.1 The accu-
racy is used to calculate the fraction of total predictions that is correctly classified.
A random classifier will get on average half of the classifications correctly. Values
above 0.5 indicate the model has a higher accuracy as random guessing. A perfect
prediction has accuracy 1.0.

accuracy =
TP + TN

P + N
(2.5)

A drawback of using the accuracy to assess the performance of a classifier is the
so-called accuracy paradox. This paradox states that a model with a higher accuracy
may have a lower predictive power. To explain this paradox assume a situation in
which insurance fraud has to be detected. Two different models are available, the
performance of both models is given in Table 2.2. The model belonging to the left
table detects 100 out of 150 cases of fraud and has an accuracy of:

100 + 9, 700
150 + 9, 850

= 0.980

The model belonging to the right table, is not able to detect any fraudulent activity,
it has no predictive power. Its accuracy is:

0 + 9, 850
150 + 9, 850

= 0.985

Even though the second model has no predictive power, it has a higher accuracy.
This disadvantage of accuracy is important to keep in mind when evaluating the
performance of different models. To avoid this paradox several other statistics have
been developed to quantify model performance.

TABLE 2.2: Two confusion matrices showing the accuracy paradox.
The right example has a higher accuracy but is a worse predictor.

Prediction
Positive Negative

Positive 100 50
Negative 150 9,700

Prediction
Positive Negative

Positive 0 150
Negative 0 9,850

2.5.3 Precision and recall

Precision, or positive predictive value, is the fraction of positive classified instances
that is true positive.

Precision =
TP

TP + FP
(2.6)

14 Chapter 2. Theoretical framework

Recall, also called sensitivity or true positive rate, is the fraction of true positive
instances that are classified as positive.

Recall =
TP

TP + FN
=

TP
P

(2.7)

These two statistics are usually used together. Either both are given, or the statis-
tics are combined in a different statistics, for example the F1-score which is discussed
later in this chapter.

2.5.4 F1-score

As mentioned in the previous section, precision and recall are often combined. One
of the statistics resulting from such a combination is the F1-score. As can be seen in
Equation 2.8, the F1-score is equal to the harmonic mean of the recall and precision.
A disadvantage of the F1-score is that it does not take the true negatives into account.

F1-score =
2

1
precision + 1

recall

= 2× precision× recall
precision + recall

(2.8)

2.5.5 Area under the curve

To understand the details of the area under the curve, it is required to first explain
the receiver operating characteristics (ROC) curve. It is used for visualizing classifier
performance and has long been used in signal detection theory to depict the trade
off between true and false positive rates of classifiers (Fawcett, 2006).

An ROC curve is created by plotting the true positive rate (TP/P) against the
false positive rate (FP/N) for different thresholds. Since classifiers calculate a score
between 0.0 and 1.0, a threshold has to be chosen as border between positive and
negative classifications. The calculated score, x, can be can be seen as being sampled
from a continuous random distribution X. An instance is classified as positive if
x > T, with T being the chosen threshold. Different thresholds will result in different
true and false positive rates.

Figure 2.3 shows three examples of an ROC curve: a random model and two
models with predictive capabilities. The ROC curve of a random model approaches
the line stretching from (0, 0) to (0, 1). The reason behind this behavior is best ex-
plained with an example. Assume that a random fraction K is classified as positive,
then a fraction K of the instances that should be classified as positive will be correctly
classified, and the same fraction K of values that should be negative will be correctly
classified as negative. For models that perform better than random guessing, the
true positive rate will be higher than the false positive rate and thus the model will
have a ROC curve above the diagonal.

The area under the curve, AUC, is a measure that tries to summarize the ROC
curve in a single number. It is important to note that it is impossible to summarize
the curve in a single number without loss of information. The name of the AUC is
very accurate, it is the area under the ROC curve. For the ROC curve of the random
model graphed in Figure 2.3, the AUC is exactly 0.5, for Model B the AUC is approx-
imately 0.67. Models that are better than a random classifier have an AUC above 0.5,
a perfect classifier has an AUC of 1.0.

2.6. Cross-validation 15

FIGURE 2.3: Graph containing the ROC of a random classifier and
two better performing classifiers.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Random model
Model A
Model B

2.6 Cross-validation

When training models to make predictions, it is needed to have a method for esti-
mating how accurately the model will make predictions in practice. In cross-validation
the data is split in a set used to train the model, the training set, and a set against
which the models is tested, the test set. Many types of cross-validation rely on mul-
tiple iterations to reduce variability. In the following sections several methods are
discussed.

2.6.1 Holdout method

The holdout method randomly splits the data set into two sets, d0 and d1, the train-
ing set and test set, respectively. The model is trained using d0 and validated using
d1. Usually a majority of the samples is assigned to d0. Typical splits in data min-
ing applications range from 30:70 to 10:90 (Zhang, 2009). The disadvantage of this
method is the usage of a single train/test split, this makes the method susceptible to
random variations.

2.6.2 Repeated random sub-sampling validation

This method works by repeating the holdout method. Because of this repetition, it
is also known as Monte Carlo cross-validation. In each replication the data set is
randomly split into a training and test set. The results are averaged over all itera-
tions. The disadvantage of this method is that some samples may never be used as
validation whereas other may be selected multiple times.

2.6.3 k-fold cross-validation

In k-fold cross-validation the data set is shuffled and split into k equally sized sub
sets. Of these k sets, a single set is retained to be used as test set, the remaining k–1
sets are used as training set. This process is repeated k times, with each of the sub
sets being used as test set once. The performance is averaged over all iterations to
get an accurate estimation of model performance. Rodríguez, Pérez, and Lozano
(2010) used a sensitivity analysis to determine that k should usually be 5 or 10 when
the method is used for error estimation.

16 Chapter 2. Theoretical framework

2.7 Ensemble models

The basic idea of ensemble models is to combine several individual classifiers into
a single composite classifier (Rokach, 2009). The goal of creating such a composite
classifier is to obtain a model performing better than would be possible with a sin-
gle classifier. Rokach (2009) has determined four factors to describe the differences
between ensemble models.

– Ensemble size - The number of classifiers in the ensemble.

– Combining method - In an ensemble model each classifier makes a prediction. To
come to a final classification the separate results have to be combined according
to a certain method.

– Diversity generator - Combining classifiers into an ensemble only has an effect if
the individual classifiers are not identical. Most methods to create diversity are
based on differences in input data or differences in model design.

– inter-classifiers relationship - Ensemble models can be divided in sequential and
concurrent models based on whether the individual models influence each other.

Several ensemble models are described in Section 2.8.

2.7.1 Combining method

The most simple form of combining classification is hard voting. This method allows
each classifier to cast one vote, it assigns the instance to the class which received most
votes (Ali and Pazzani, 1996). In case of a draw the instance is assigned randomly to
one of the classes with the most votes.

In soft voting the individual classifiers all determine the probabilities of the in-
stance belonging to each class. These probabilities are summed for each class and
the instance is assigned to the highest probability class. This method limits the clas-
sifiers in the ensemble to those that base classifications on a probability.

2.7.2 Diversity generator

Diversity in an ensemble model can be generated in several ways. The first approach
is to train each of the models in the ensemble on a different part of the data set. In
most of these approaches the data is separated randomly, but other more structured
approaches exist. Another approach is to use different algorithms, this method can
be combined with randomly selected data. Many algorithms are used, for example
one that changes the weight of the samples at each iteration based on the difficulty
the algorithm has with classifying that sample.

2.7.3 Inter-classifiers relationship

As mentioned before ensemble models can be categorized based on if and how the
individual classifiers have an influence on each other. Concurrent ensemble models
have no interaction between the individual classifiers, each classifier is calculated
independently. A major advantage of concurrent models is the high computational
speed, because the classifiers are not influenced they can be calculated simultane-
ously. With modern multi-core processors this reduces the computation time com-
pared to sequential calculating.

2.8. Model descriptions 17

The other group consists of the sequential ensemble models, these all have some
kind of interaction between individual classifiers. An important group of sequential
models comes in the form of boosting models. These models work by repeatedly
training a weak learner on various selections of training data. The data selection is
based on the results of previously trained weak learners. After reaching a prede-
termined stop criterion all weak learners are grouped and can be used to make a
classification.

2.8 Model descriptions

In this section several machine learning algorithms are discussed. Of these algo-
rithms a description will be given in combination with a mathematical formulation.

2.8.1 Logistic Regression

The first of the machine learning algorithms discussed, is Logistic Regression. It
has been proposed by Cox (1958), making it one of the older machine learning algo-
rithms. The primary idea of Logistic Regression is to use techniques developed for
linear regression to model the probability of a sample belonging to a certain class.
This is done using a linear predictor function, Equation 2.9, which is a linear combi-
nation of m feature values and m + 1 regression coefficients.

f (i) = β0 +
m

∑
i=1

βixi (2.9)

Logistic regression is different from other forms of regression due to the way the
linear predictor is linked to the probability of a certain outcome. It transforms the
output of the linear predictor using the logit function, depicted in Figure 2.4, which
is the natural log of the odds. An advantage of using the logit function, is that it
takes any real value as input and returns a value between zero and one.

logit(p) = ln
(

pi

1− pi

)
= f (i) (2.10)

FIGURE 2.4: The standard logistic function.

−6 −4 −2 0 2 4 6
0

0.5

1

Using the above transformation of the linear predictor, the following equation for
the probability of a positive sample can be determined.

p(x) = (1 + eβ0+∑m
i=1 βixi)−1 (2.11)

What remains now, is to describe a method that can be used to determine the
coefficients. Unlike in linear regression, it is not possible to determine a closed form

18 Chapter 2. Theoretical framework

equation to determine the coefficients. Instead other methods like maximum likeli-
hood estimation are used. In this method an iterative process is used during which
in each iteration the coefficients are slightly changed to try to improve the maximum
likelihood. In this research project two methods to fit the model are taken in to ac-
count. These methods will not be discussed in depth since it is not within the scope
of this research project. The first method is Liblinear, it used a coordinate descent al-
gorithm to find suitable values for the coefficients. The second method is saga which
uses a stochastic average gradient descend. The second method usually is faster on
large data sets.

In the loss function that is minimized it is usual to include a regularization term.
Such a term is to penalize complex models and favor models which are simpler.
With Logistic Regression two types of regularization are commonly used, L1 and
L2. The first of these is a regularization that favors sparse models, or models where
a large fraction of the coefficients is zero. L2 is used as regularization term when a
sparse model is not suitable. When the data set contains highly correlated features,
L1 should be used as regularization term. It picks a single of the correlated features
and sets the coefficient of the other features to zero. L2 would simply shrink the
coefficient of all correlated features. Usually a parameters is added to the algorithm
which can be used to determine the strength of the regularization.

2.8.2 k Nearest Neighbors

Nearest Neighbors classification is a method that bases a classification on the k sam-
ples closest to the instance that has to be classified (Larose, 2005). This algorithm
does not attempt to induce a model, it simply stores instances of the training data,
making it a so-called lazy algorithm.

The basic Nearest Neighbors classification uses the same weight for each of the
k selected neighbors. In some situations it might be better to differ the weight of the
neighbors based on the distance to the sample that has to be classified. Meaning the
weight will be inverse to the distance, so the closest samples will get the greatest
weight.

Brute-force

The most basic computation method for the Nearest Neighbor classification is brute-
force. This algorithm simply calculates the distances between all points in the data
set and uses those to determine which points are closest. For small sample sizes this
algorithm can return accurate result. Due to its naive nature, brute-force quickly
becomes an unfeasible approach when sample size increases.

k-d tree

To counter the issue of the brute-force method being unfeasible for larger sample
sizes, a more efficient method has been developed by Bentley (1975). This method
used a decision tree to efficiently store distance information requiring less computa-
tions. Assume three points A, B and C, of these points A and B are very distant and
C and B are close. From this information it follows that points A and C are also very
distant.

A k-d tree is constructed by iterating over several steps. In each iteration a (not
previously used) feature is selected at random, on which a decision will be based.

2.8. Model descriptions 19

The median value of the selected feature is calculated, values larger than this median
are separated from the smaller values. Now two branches have been created, each
with approximately half of the samples. On both branches these steps are repeated.
This process continues until the number of samples in a branch drops below a certain
threshold. An example of the result of this process is shown in Figure 2.5.

After a tree has been generated, the approximately closest neighbors can easily
be determined. All nodes of the tree are applied on the new instance, the branch
where the new instance ends up in, contains samples that are close. For all of these
samples the distance to the new instance is calculated to find nearest ones.

FIGURE 2.5: Schematic overview of a k-d tree.

Ball tree

In high dimensional space it becomes computationally expensive to create a k-d tree.
In those situations it is computationally favorable to create a ball tree (Bhatia, 2010).
Omohundro (1989) describe a ball tree as a binary tree of which each node represents
a hypersphere called a ball. Each node of the tree splits the data into two disjoint sets,
each set is contained by the smallest ball containing all points. The hyperspheres are
allowed to cross, data points are assigned to the sphere of which the center is closest.

2.8.3 Naive Bayes

The Naive Bayes classifier is based on statistical theory, more specific on Bayes’ the-
orem, Equation 2.12. Using Bayes’ it is possible to calculate the probability that a
certain hypothesis is true given observed evidence. The naive part comes from the
fact that in Naive Bayes, it is assumed that all of the features are independent from
each other.

P(A|B) = P(B|A)P(A)

P(B)
(2.12)

A clear example of a use for Bayes’ theorem can be found in drug testing. Sup-
pose 0.5% of people are users of a certain drug and a drug test produces 99% true
positives and 99% true negatives. Using Bayes’ theorem it is possible to calculate the
probability that a random person who tests positive is a drug user.

20 Chapter 2. Theoretical framework

P(U|+) =
P(+|U)P(U)

P(+)

P(U|+) =
P(+|U)P(U)

P(NU)P(+|NU) + P(U)P(+|U)

P(U|+) =
0.99× 0.005

0.995× 0.01 + 0.005× 0.99
= 33.2%

The above calculations show that the aforementioned probability equals 33.2%. Even
though the intuitive answer would be 99%.

Since Bayes’ theorem can be used to calculate the probability that something is
true given evidence, it can be used to calculate the probability that a new sample
belongs to a certain class given the evidence. Classification is done by calculating the
probability that the sample belongs to a class, for each class. The sample is assigned
to the class with the highest probability. In the above example P(U|+) = 33.2%
so P(NU|+) = 66.8%, therefore the drug tested person is assigned to the ’no drug
user’ class. In the calculations for the different classes the evidence, or sample, is
identical, therefore it is possible to discard the denominator of Bayes’ theorem and
still make the same classification.

2.8.4 Decision Tree

A Decision Tree probably is one of the best known classifiers due to its logic struc-
ture. Decision Tree classifiers are extensively described by Rokach and Maimon
(2009). A Decision Tree consists of connected nodes which form a rooted tree, mean-
ing that the tree has a single root node as starting point. All following nodes have
a single incoming edge, if the node also has outgoing edges it is called an internal
node. Each of the internal nodes splits the data set according to a certain logic. In
classification this split is usually based on the value of a certain feature. Nodes that
do have incoming edges but no outgoing edged are called leaves. Leaves are as-
signed to a label based on which label is most appropriate. After a tree has been
constructed, the classification is done by starting at the root node and following
through the internal nodes until a leave has been reached

Constructing an optimal Decision Tree is only feasible for small problems due
to computational requirements (Hancock et al., 1996). This results in the need for
heuristic algorithms. In this research the CART algorithm will be used. A Decision
Tree is trained on a feature set containing X = xi, ..., xn and corresponding labels
Y = yi, ..., yn. At each node m the relevant part of the set is represented by Qm. The
construction algorithm tries to find a split θ = (j, tm), with feature j and threshold tm,
that splits Q into Qle f t(θ) and Qright(θ) with a minimized impurity. Several measures
can be used to calaculate the impurity of which Gini and Entropy are widely used.
Equation 2.13 shows how the Gini is calculated, pmk is the probability of a sample
with label k being in node m and I(yi = k) is one if y1 = k and otherwise zero.

2.8. Model descriptions 21

pmk =
1

Nm
∑

i∈Rm

I(yi = k)

H(Xm) = ∑
k

pmk(1− pmk) (2.13)

By combining the weighted impurity of Qle f t and Qright a measure for the split is
constructed, Equation 2.14. The goal is to find θ∗ that minimizes this measure.

G(Qm, θ) =
nle f t

Nm
H(Qle f t(θ)) +

nright

Nm
H(Qright(θ)) (2.14)

This process is executed in a recursive manner. After each iteration the process is
repeated for Qle f t and Qright until a stop criterion is reached. This criterion can be a
maximum depth or a minimum number of remaining samples.

2.8.5 Artificial Neural Network

An Artificial Neural Network is is a network of interconnected neurons. This sec-
tion is based on Zhang (2009). Each neuron receives an input, processes these signals
and produces an output signal. A Neural Network consists of several layers of neu-
rons, see Figure 2.6 for a schematic overview. The leftmost layer consists of the input
neurons, the rightmost neurons are the output neurons. The layers in between are
called hidden layers. The neurons are connected in such a way that the output of
one neuron is the input of all neurons in the next layer. The exceptions are the input
and output neurons. Input neurons have no predecessor and are used as input for
the network. Output neurons have no successor and function as network output.
In classification problems with two classes only a single output neuron is used. De-
pending on the value of the output neuron the sample is assigned to either class.
When more then two classes exist, each class has a corresponding output neuron
and the sample is assigned to the output neuron with the highest value.

FIGURE 2.6: Schematic overview of a Neural Network.

Figure 2.7 shows a schematic overview of how an artificial neurons operates. A
neuron receives inputs xij with weights wij. With i being the neuron from which the
signal is the output and j the neuron which receives the signal as input. The input
signals are multiplied with their corresponding weights and summed. The weights

22 Chapter 2. Theoretical framework

are usually given as a matrix Wl , containing all weights for layer l. The weights are
changed repeatedly during the training process and do not have to sum to 1.

pj = ∑
i

wijxij (2.15)

Since a neuron has to output a signal, the next step is to transform the calculated
input using a transformation function. Such a function can be of any form, but most
used are logistic sigmoid, hyperbolic tangent or rectified linear unit (Schmidhuber,
2015).

FIGURE 2.7: Schematic overview of a sin-
gle artificial neuron.

FIGURE 2.8: Three different activation
functions.

−4 −3 −2 −1 1 2 3 4

−1

−0.5

0.5

1

pj

oj

Sigmoid
Hyperbolic
ReLU

The equation of the logistic sigmoid is given as Equation 2.16 and drawn in Fig-
ure 2.8 as a black line. The function has a minimum value of 0 and a maximum of
1. The equation of the logistic sigmoid is shown below. An advantage of using the
sigmoid as activation function is its bounded nature. This causes the network itself
to be bounded, if pj � 1, the transformation function will never result in a value
higher than 1. In many cases this is a desirable characteristic, because it prevents a
single neuron from dominating the network. However, it also has a disadvantage,
all input values have to be normalized (µ = 0, σ = 1) in order to have a meaningful
impact on the output.

f (x) =
1

1 + e−x (2.16)

The second transformation function is the hyperbolic tangent, it is drawn as the
red line in Figure 2.8 according to Equation 2.17. The hyperbolic tangent has a shape
similar to the logistic sigmoid. The biggest difference are the bounds, where the lo-
gistic sigmoid returns values between 0 and 1, the hyperbolic tangent returns values
between -1 and 1. Due to its bounds it also requires input values to be normalized.
The two advantages of using the tangent over the logistic sigmoid arise from its
symmetry across the x-axis (LeCun et al., 1998). The first advantage is faster con-
vergence in comparison with the logistic sigmoid. The second advantage is that the
output will on average be closer to zero due to the possibility of negative values.
Since the output of a neuron is often the input for a next neuron having an average
output of zero is preferable (remember how that input data is normalized).

f (x) = tanh(x) (2.17)

2.8. Model descriptions 23

The last transformation function taken into account for this research is the rec-
tified linear unit (ReLU). It is a function with a lot of recent attention, according to
Ramachandran, Zoph, and Le (2017) it is the most used activation function as of
2017. The equation of the ReLU is given in Equation 2.18 and is graphed in blue in
Figure 2.8. The ReLU has a completely different shape compared to the previous
functions, it is simply the positive part of the input pj. This activation function was
first proposed by Hahnloser et al. (2000) based on biological motivations. According
to Glorot, Bordes, and Bengio (2011), networks using the ReLU activation function
outperform networks using the logistic simoid function.

f (x) = x+ = max(0, x) (2.18)

As mentioned before in this section the input for the transformation is the weighted
sum of the input signals pj as shown in Equation 2.15. However, this is not necessar-
ily true in most models. Usually a bias bj is added to the input value. This bias shifts
the activation function to the left or right, as can be seen in Figure 2.9. The bias is a
value that can be changed during the learning process.

oj = f (pj + bj) (2.19)

FIGURE 2.9: Impact of three different bias values on the hyperolic
tangent activation function.

−4 −3 −2 −1 1 2 3 4

−1

−0.5

0.5

1

pj

oj

b = 0
b = −2
b = 2

Network training

Now that the components of a Neural Network are known, the mechanics to train
the network have to be made clear. First a broad description of the training process
is given and then the mathematical formulation is discussed.

Training a network for classification is a form of supervised learning (2.3.2), the
network is presented with samples and their known label. At first the weights wij
of the signal traveling from neurons i to j are chosen at random. The network is
then presented with the training samples and the resulting classifications are stored.
The predicted classes are compared to the real classes, the difference is expressed in
some measure for the error. The first order derivative of the error with respect to
the weights is calculated. Based on this derivative the weights are changed in such
a way that the error decreases fastest. These steps are repeated many times until the
improvement drops below a certain threshold.

As mentioned in the previous paragraph a measure has to be used to express the
difference between the real and predicted results. Such a measure is called a loss

24 Chapter 2. Theoretical framework

function. For classification problems a loss function based on cross-entropy is used.
Cross-entropy is commonly used to quantify the difference between probability dis-
tributions. For binary distributions cross-entropy is expressed as:

− y ln ŷ− (1− y) ln(1− ŷ) (2.20)

with 0 ≤ ŷ ≤ 1 being the predicted value and y ∈ {0, 1} the real value. The cross-
entropy tends to zero when the model makes a good prediction. For example assume
y = 1 and ŷ ≈ 1, the first term, y ln(ŷ), approaches zero and the second term,
(1 − y) ln(1 − ŷ), equals zero, thus the cross-entropy is close to zero. The cross-
entropy also approaches zero when y = 0 and ŷ ≈ 0. When the prediction of the
network gets less accurate, the cross-entropy increases. Figure 2.10 shows the cross-
entropy for different values of y and ŷ.

FIGURE 2.10: Value of cross-entropy for different values of y and ŷ.

0.2 0.4 0.6 0.8 1

2

4

ŷ

Cross entropy y = 1
y = 0

The loss-function used for training a Neural Network is the average cross-entropy
over all training samples including a penalty for complex models.

L = − 1
N

N

∑
n=1

[y ln ŷ + (1− y) ln(1− ŷ)] + α‖W‖ (2.21)

α‖W‖ is a regularization term that penalizes complex models. The exact formulation
of the regularization is not within the scope of this research and not required to
understand the topic. The importance given to the complexity penalty is controlled
by α > 0. The justification of penalizing complex models can be found in Occam’s
Razor. The theorem states that when having two theories with identical outcomes,
the simpler one is the better.

The next step in the training process is to change the weights and biases based on
the loss calculated using Equation 2.21. Updating the parameters happens according
to the following equation.

wnew
i,j = wold

i,j + η
δL

δwi,j
(2.22)

From the equation, the new weight is determined by updating the old weight with
the partial derivative of the loss with respect to the weight under consideration. This
method is called the gradient steepest descent, because it uses the derivatives to
determine the direction of the weights that decreases the error most. At first it might
seem strange that it is possible to calculate the derivative of the error. But since each

2.8. Model descriptions 25

neuron in the network transforms the input values using a predefined formula, the
entire network can be expressed as a single formula using the following approach.

oj = f (pj + bj)

oj = f (∑
i

wijxij + bj)

oj = f (∑
i

wijoj−1 + bj)

oj = f (∑
i

wij f (pj−1 + bj−1) + bj)

The exact calculation of the derivative is not within the scope of this research.
The derivation can be very complex and depends on the activation function. To
understand the general idea of the approach is enough to keep track of the research
project.

The derivative is multiplied with a factor η before being added to the weight.
This factor is called the learning rate and determines the size of the steps when up-
dating the weights. A small learning rate might cause the optimization to get stuck
in a local optimum and a high learning rate can result into overshooting. Usually a
value between 0.0001 and 1 is chosen.

Equation 2.22 seems to have no variables representing the biases in the network,
meaning the biases will not be updated. However, using a trick it is possible to treat
the biases as weights in the training process. Substituting Equation 2.15 into 2.19
results in Equation 2.23. From this it is clear that the bias can be assumed to be the
weight of a signal always equaling 1.

oj = f (∑
i
(wijxij) + bj)

oj = f (∑
i
(wijxij) + bj × 1) (2.23)

After the biases and weights have been updated the same steps are repeated.
Each iteration of the training process is called an epoch. When between two epochs
the loss decreases less than a certain threshold, training stops.

2.8.6 Support Vector Machines

The next type of model discussed in this chapter is the Support Vector Machine, or
SVM (Shmilovici, 2009). This model will only be discussed on a high level, it is one
of the more complex models, the exact mathematical derivation falls not within the
scope of this research project. SVM works by constructing a hyperplane in a high
dimensional space. It is constructed in such a way that it splits the classes of the
training samples in such a way that the distance to the closest sample of either class
is maximized. The plane is used as a separation border for classifying new samples.
A hyperplane is a plane whose dimension is one less than its ambient space. In
other words, points in a three dimensional space are separated by a two dimensional
plane. Points in a two dimensional space are separated by a one dimensional line.
An example of the application of SVM is shown in Figure 2.11. As can be seen in the
graph, the dashed line splits the classes in such a way that the distance to the closes
sample of either class is maximized.

26 Chapter 2. Theoretical framework

FIGURE 2.11: SVM generated maximum margin hyperplane in a two
class two dimension problem.

2 4 6 8 10

2

4

6

8

10

The above description clearly has a large flaw, what will happen when the sam-
ples are not linearly separable? Without deviating from linearity, the solution is to
add a penalty for samples on the wrong side of the separation. This penalty is mul-
tiplied with a certain weight to determine the trade-off between the margin around
the hyperplane and the samples on the wrong side. This weighted penalty is added
to the hyperplane margin and finally minimized.

Later a more advanced method was created to separate samples using a non-
linear classifier. This method is achieved by applying the so called ’kernel trick’.
The general idea of the method is to map the samples to a higher dimensional space.
An example showing the benefit of this transformation is shown in Figure 2.12. By
mapping data from a {x, y} space to three dimensions, {x, y, y2}, it becomes possible
to separate the two classes with a line. Each type of transformation is called a kernel,
some examples are polynomial, Gaussian and hyperbolic.

FIGURE 2.12: Mapping data to a higher dimension to achieve linear
separability.

(A) Two dimensional {x, y} space.

x

y

(B) Two dimensions of the {x, y, y2}
space.

x

y2

2.8.7 Random Forest

Another popular ensemble model is the random forests classifier. The basic principle
of this classifier is to train multiple Decision Trees and have those together make
a classification (Breiman, 2001). Each of those trees is trained on a subset of the

2.8. Model descriptions 27

training data drawn with replacement. The training procedure is similar to how a
normal Decision Tree is trained except for one difference. At each split in the tree
a random selection of features is selected, from which the feature for the split is
selected. Usually the square root of the number of available features is used for
how many features have to be drawn (Hastie, Tibshirani, and Friedman, 2009). The
reason for this random feature selection is to decrease the correlation between the
individual trees.

Given a feature set X = xi, ..., xn and corresponding labels Y = yi, ..., yn, for each
tree in the random forest a random subset Xr and Yr is drawn with replacement.
To each of the sets of random samples a Decision Tree is fitted. At each split in the
tree a random subset of features is selected on which the split can be based. For a
classification with p features the most used number of features considered for a split
is
√

p or log2(p). This tree construction process results in N separate Decision Trees
which are combined in a single classifier. This can be done either by letting each
classifier cast a vote or by averaging the probabilistic predictions.

2.8.8 AdaBoost

AdaBoost is a popular ensemble model developed by Freund and Schapire (1997). It
is a sequential model that works by combining multiple weak learners into a strong
learner. The algorithm works by adding a weak learner to the classifier in each itera-
tion, until a certain criterion has been met, usually the amount of weak learners. The
weak learners are trained using a weighted training set in which weights are based
on the performance of the ensemble model so far. Misclassified training samples are
assigned a greater weight, this weight is incorporated in the equation used to calcu-
late the error of a weak learner. The result is that a greater importance is given to
samples with a large weight. A weight is also given to each of the weak learners.
This weight is based on the performance of the weak learner in such a way that it
minimizes the training error of the ensemble model so far.

In theory an AdaBoost classifier can be constructed using any type of classifier
that is able to calculate probabilities. However, AdaBoost is most often used with
single level Decision Trees, called decision stumps.

A more formal definition of AdaBoost follows. The algorithm combines T weak
learners into an ensemble. At each iteration t = 1, 2, ..., T a new weak learner is
added to the ensemble. These weak learners are trained using a set, containing m
samples, in which each sample has a weight wi. At the start of the algorithm, each
sample is given an equal weight, 1/m. The samples all have a label that is based on
the true classification, it denoted as−1 or 1. Using this training set a weak learner ht
is trained of which the error εt is calculated.

εt =
∑yi 6=ht(x) wi

∑ wi

In each iteration a weight has to be determined for the newly generated classifier. It
can be shown that the error of AdaBoost is minimized if the weight for the classifier
ht is defined as follows.

αt = 0.5 ln
1− εt

εt
(2.24)

28 Chapter 2. Theoretical framework

Aside from the weight for the weak learner, the weights for the samples also have to
be updated in each iteration. This is done in such a way that misclassified samples
receive a greater weight and thus more importance in following iterations.

w(t+1)
i = w(t)

i × e−αtyiht(xi)

The final model A(x) is reached when the algorithm has run for T iterations.
Each weak learner ht(x) makes a classification of −1 or 1, if the weighted sum of
these classifications is positive then A(x) = 1, if the weighted sum is negative then
A(x) = −1. The signum function returns 1 or -1 based on the input value being
positive or negative.

A(x) = signum

(
T

∑
t=1

αtht(x)

)
(2.25)

2.8.9 Gradient Boosting

Gradient Boosting is another classification algorithm based on an ensemble of De-
cision Trees, it is proposed by Friedman (1999). The difference with ADABoost is
in the way the new trees are trained. In this algorithm each new tree is trained on
the so called residual. This is the difference between the actual value and the value
computed by the model. The goal is to get a smaller residual after each time a new
tree is added, logically this should lead to a better prediction.

Assume that a feature set X = xi, ..., xn and corresponding labels Y = yi, ..., yn
are given. The algorithm starts by training a single Decision Tree, this results in
the model Fm(x). As with the previous ensemble model this model is improved by
adding an additional Decision Tree h(x), resulting in the improved model Fm+1(x).

Fm+1(x) = Fm(x) + h(x)

In the hypothetical situation with a perfect predictor, Fm+1(x) will be equal to y:

Fm+1(x) = Fm(x) + h(x) = y

and thus:

h(x) = y− Fm(x).

The goal of Gradient Boosting is to fit the additional tree, h(x), to the residual y−
Fm(x). The idea is that adding predictors for the residual will decrease the residual
and thus let the algorithm predict a value closer to the true value.

One of the problems of Gradient Boosting is that it is vulnerable to overfitting.
Therefore a learning rate is usually added to the algorithm which shrinks the con-
tribution of each next tree. This slows down the speeds with which the algorithm
learns and makes it easier to let the learning stop before it starts to overfit.

29

Chapter 3

Methodology

Now that the required theoretical background has been discussed, the next step is to
describe in more detail how the objectives of this research project will be achieved.
This experiment design consists of a combination of topics discussed in the previous
chapter. The design is split into two stages, the first stage is the data preparation, the
second stage is the model training and testing.

3.1 Research framework

In this section, the approach to achieve the research objectives will be discussed.
This approach forms the research framework and is summarized as a visual repre-
sentation in Figure 3.1.

The first step in the research framework is to gather and read current scientific lit-
erature on three topics. These topics are machine learning theory, credit risk theory
and statistical theory. The machine learning theory is used to create different models
that are capable of classifying credit based on the likelihood of default. These mod-
els are first confronted with a data set to train the models and then confronted with
a data set to get the model results. All three sources of literature are used to cre-
ate assessment criteria to objectively compare the performance of the models. Part
of the assessment criteria is the performance of a benchmark method representing
the currently used credit scoring method. For this benchmark logistic regression is
used. The last step in the research framework is to draw conclusions based on the
confrontation between the model results and the assessment criteria.

FIGURE 3.1: Graphical representation of the research framework.

30 Chapter 3. Methodology

3.2 Data preparation

As mentioned above, the first stage in conducting the experiment is to prepare the
data for usage in machine learning. This stage is schematically shown in Figure
3.2. Logically, the data preparation starts with the original data set as retrieved from
the source. To make the data set ready for machine learning three steps have to be
performed.

FIGURE 3.2: Schematic overview of the data preparation.

The first step in the data preparation process is feature engineering. In this step
the features will be analysed and changed to better represent the information in the
data set. Feature engineering is not a static approach that is identical for each data
set, it is a dynamic process that is highly dependent on the features in the original
data set. It might consist of merging, splitting or adding features. An example could
be to split a feature that contains information about two characteristics. In one of
the data sets used in this research, a single feature contains information about late
payments and about no use of available credit. It might be a good idea to represent
the data more logically by splitting the feature. The effect of the engineered features
should be tested by training and testing the algorithms on the altered data set. An-
other possible operation can be to divide to features to get a ratio, for example how
close a balance is to its limit.

Feature engineering is followed by the vectorization of categorical features. Vec-
torizing is the process of making a separate feature for each of the possible values
the original feature can take. The new columns are binary and thus can only take
values of zero or one. The reason for vectorization is to make the feature easier to
"understand" for machine learning algorithms. Assume for example a data set that
includes a feature for the gender of clients. The feature has a value of 1 if the client
is male and a value of 2 if female. Due to the nature of machine learning algorithms
an order will be assumed in the values, the feature will be treated as being numer-
ical. This clearly leads to a misrepresentation of the feature in the learning process.
To counter this issue, the feature has to be vectorized into separate binary features.
This process will result in two separate gender features, one for male and one for
female.

The goal of normalization is to transform the values of a feature in such way that
it has a mean of zero and a standard deviation of one. Normalization of the values
is done using Equation 3.1, where z is the normalized value, X the original value, µ
the average of the feature and σ the standard deviation of the feature.

z =
X− µ

σ
(3.1)

3.3. Model training and testing 31

The reason for this transformation is to change all numerical features so that they
have the same mean and standard deviation. If features are on a different scale,
one might have a bigger influence than the other. This difference in influence does
not necessarily occur, but on average machine learning models learn faster and more
accurate with normalized features (Zhang and Qi, 2002). This transformation should
also be applied to newly generated numerical features during feature engineering.

After these three steps have been completed, the data set is ready to be used for
machine learning. The preparation of the different data sets is discussed in detail
in the next chapter, Chapter 4. The effects on model performance are determined in
that chapter to come to conclusions on the impact of data preparation.

3.3 Model training and testing

The next phase of the experiment is the training and testing phase. The data set
constructed in the previous phase is used to train and test the different algorithms.
An overview of this phase is schematically shown in Figure 3.3. As can be seen in
the figure, this phase can roughly be split in two separate processes, training and
testing.

FIGURE 3.3: Schematic overview of the training and testing phase.

3.3.1 Cross-validation

Before either training or testing can start, the data set first has to be split in a training
and testing set, which will respectively be used for training and testing the algo-
rithms. The reason for this split is to test the final algorithm settings on an unseen
data set, this is explained in more detail in Section 2.6. In this experiment a split
of 25:75 will be used, with the latter being the training set. Figure 3.4 shows how a
fraction of the initial data set is separated and only used in the last phase to test the
model.

32 Chapter 3. Methodology

FIGURE 3.4: Schematic overview of how cross-validation is used.

3.3.2 Training

The training phase is more than simply training the models on the data set. It is
an iterative process to update the model parameters with the goal to increase the
predictive performance. The input of this phase is the training set created in the
previous phase. In each iteration the parameters of the algorithm are changed and
the performance is determined using k-fold cross-validation. This form of validation
has been explained in detail in Section 2.6. In short, it is a repeated process where
an algorithm is trained and validated repeatedly with the same settings. In each
iteration a different part of the training set is used for training, the remainder of
the training set is used for validation of the trained model. The performance of
the model with the chosen parameter settings is the average of the performances
achieved in each individual iteration. Figure 3.4 shows how k-fold cross-validation
is applied to the data set without the test fraction of the data set. It are the steps
between the first and last row.

The computations are done using an Intel Core i5-4690K CPU running at 3.50GHz.
The algorithms are implemented using Scikit-learn (Pedregosa et al., 2011). This is a
widely used machine learning library for the Python programming language.

After an iteration of the training is complete, the parameters will be changed
and the performance will again be determined using k-fold cross-validation. This
is repeated until a good understanding of the influence of the different settings is
reached. To keep computation times realistic, it is not possible to calculate all possi-
ble combinations of all possible parameter values. Therefore the parameters will be
analysed individually. After a good understanding of the individual parameters has
been reached, combinations can be made by changing multiple parameters.

The following models will be analyzed in this experiment:

– Logistic Regression

– Neural Network

– Naive Bayes

– k Nearest Neighbors

– Decision Tree

– ADABoost

– Random Forest

– Gradient Boosting

– Support Vector Machine

3.3. Model training and testing 33

3.3.3 Performance measure

In the process described in this chapter it is often required to accurately determine
the predictive performance of an algorithm. In Section 2.5 several measures are dis-
cussed, a selection has to be made of which measure will be used in the experi-
ments. The selected measure should provide an accurate indication of the model
performance. It is important that the measure are not susceptible for problems like
the accuracy paradox or imbalance. This results in the more simple measures to be
excluded. For this project the AUC has been selected as the measure to express the
performance. The theoretical background of the area under the curve is described
in Section 2.5. Aside from using the AUC, in some situation like resampling and
assessing the final tested performance, a confusion matrix will be used to make it
possible for the reader to calculate other measures.

In machine learning, logistic regression is often used as a benchmark algorithm
(Dumitrescu et al., 2018). The theoretical background of logistic regression is rela-
tively simple and the output is understandable and explainable. It is also an algo-
rithm with widespread usage. If a more complex model performs equal to logistic
regression it is often seen as a lesser algorithm.

3.3.4 Model testing

The last step of the model training and testing phase is testing. In this step the final
model performance is determined. The goal is to determine the performance using a
part of the data set that has not yet been seen by the model. This makes it impossible
for over fitting to result in a high performance measure. Since a part of the data set
has been separated during the first phase of the experiment, that part can now be
used. This step is shown in Figure 3.4 as the last row. The held back part of the
data set is used to make predictions and the rest is used to train the model. Finally
the results of this step will be used to draw conclusion about the performance of the
different machine learning algorithms when used to predict defaults.

35

Chapter 4

Data description and preparation

In this research project two different data sets will be used. Each of the data sets
will be discussed separately. For each set a short summary will be given and the
different features are described. Next the data sets will be prepared as described in
the previous chapter. After the data set has been prepared, the performance of the
different resample methods is measured. The reason for using multiple data sets is
to decrease the influence of the individual data sets. If a finding is supported by all
two data sets it is more reliable.

4.1 Credit data - Taiwan

4.1.1 Data description

The first data set contains details of 30,000 Taiwanese credit lines (Yeh and Lien,
2009). The set is a combination of revolving credit and instalment credit. Features
in this set can be split into two categories, personal and financial. The personal
features consist of education, marriage, age and gender. The financial features are
the credit limit, the amount paid per month and the amount on the bill statement
per month. All individual features are concisely described in Table 4.1 and the types
of the features in Table 4.2. A statistical summary with mean, standard deviation,
percentiles and possible values is given in Table 4.3. A summary of the categorical
features is given in Table 4.4 and 4.5, finally a correlation matrix for the numerical
features is given in Table 4.8. It is important to note that this data set has no missing
values.

TABLE 4.1: Description of the features in the Taiwan credit data set.

Feature Description
LIMIT_BAL Maximum of the credit given to the consumer.
GENDER Gender of the consumer.
EDUCATION Education level of the consumer.
MARRIAGE Marital status of the consumer.
AGE Age of the consumer.
PAY_1 Payment status in Sep 2005. No consumption, on time or how late.
... ...
PAY_6 Payment status in Apr 2005. No consumption, on time or how late.
BILL_AMNT1 Amount of bill statement in Sep 2005.
... ...
BILL_AMNT6 Amount of bill statement in Apr 2005.
PAY_AMNT1 Amount paid by consumer in Sep 2005.
... ...
PAY_AMNT6 Amount paid by consumer in Apr 2005.
DEFAULT Whether or not the consumer went into default.

36 Chapter 4. Data description and preparation

TABLE 4.2: Data types of the features in the Taiwan data set.

Feature Type
LIMIT_BAL Numerical Ratio
GENDER Categorical Nominal
EDUCATION Categorical Nominal
MARRIAGE Categorical Nominal
AGE Numerical Ratio
PAY_1 Categorical Ordinal
...
PAY_6 Categorical Ordinal

Feature Type
BILL_AMT1 Numerical Ratio
...
BILL_AMT6 Numerical Ratio
PAY_AMT1 Numerical Ratio
...
PAY_AMT6 Numerical Ratio
default Categorical Nominal

TABLE 4.3: Statistical summary of the numerical features in the Tai-
wan data set.

Feature Mean Standard
deviation min 25% 50% 75% max

LIMIT_BAL 167,484 129,747 10,000 50,000 140,000 240,000 1,000,000
AGE 35.5 9.2 21 28 34 41 79
BILL_AMT1 51,223 73,635 -165,580 3,558 22,381 67,091 964,511
BILL_AMT2 49,179 71,173 -69,777 2,984 21,200 64,006 983,931
BILL_AMT3 47,013 69,349 -157,264 2,666 20,089 60,165 1,664,089
BILL_AMT4 43,263 64,333 -170,000 2,327 19,052 54,506 891,586
BILL_AMT5 40,311 60,797 -81,334 1,763 18,105 50,191 927,171
BILL_AMT6 38,872 59,554 -339,603 1,256 17,071 49,198 961,664
PAY_AMT1 5,664 16,563 0 1,000 2,100 5,006 873,552
PAY_AMT2 5,921 23,041 0 833 2,009 5,000 1,684,259
PAY_AMT3 5,226 17,607 0 390 1,800 4,505 896,040
PAY_AMT4 4,826 15,666 0 296 1,500 4,013 621,000
PAY_AMT5 4,799 15,278 0 253 1,500 4,032 426,529
PAY_AMT6 5,216 17,777 0 118 1,500 4,000 528,666

TABLE 4.4: Summary of the categorical features, gender, marriage
and education in the Taiwan data set.

(A) Gender

Value Meaning n %
1 Male 11,888 39.63%
2 Female 18,112 60.37%

(B) Marriage

Value Meaning n %
0 Other 54 0.18%
1 Married 13,659 45.53%
2 Single 15,964 53.21%
3 Divorced 323 1.08%

(C) Education

Value Meaning n %
0 Other 14 0.05%
1 Graduate school 10,585 35.28%
2 University 14,030 46.77%
3 High school 4,917 16.39%
4 Other 123 0.41%
5 Other 280 0.93%
6 Other 51 0.17%

4.1. Credit data - Taiwan 37

TA
B

L
E

4.
5:

Su
m

m
ar

y
of

ca
te

go
ri

ca
lf

ea
tu

re
s,

PA
Y

_1
,.

..,
PA

Y
_6

.

PA
Y

_1
PA

Y
_2

PA
Y

_3
PA

Y
_4

PA
Y

_5
PA

Y
_6

V
al

ue
M

ea
ni

ng
n

%
n

%
n

%
n

%
n

%
n

%
-2

N
o

co
ns

um
pt

io
n

2,
75

9
9.

20
%

3,
78

2
12

.6
1%

4,
08

5
13

.6
2%

4,
34

8
14

.4
9%

4,
54

6
15

.1
5%

4,
89

5
16

.3
2%

-1
Pa

id
in

fu
ll

5,
68

6
18

.9
5%

6,
05

0
20

.1
7%

5,
93

8
19

.7
9%

6,
68

7
18

.9
6%

5,
53

9
18

.4
6%

5,
74

0
19

.1
3%

0
R

ev
ol

vi
ng

cr
ed

it
14

,7
37

49
.1

2%
15

,7
30

52
.4

3%
15

,7
64

52
.5

5%
16

,4
55

54
.8

5%
16

,9
47

56
.4

9%
16

,2
86

52
.2

9%
1

O
ne

m
on

th
la

te
3,

68
8

12
.2

9%
28

0.
09

%
4

0.
01

%
2

0.
01

%
0

0.
00

%
0

0.
00

%
2

Tw
o

m
on

th
s

la
te

2,
66

7
8.

89
%

3,
92

7
13

.0
9%

3,
81

9
12

.7
3%

3,
15

9
10

.5
3%

2,
62

6
8.

75
%

2,
76

6
9.

22
%

3
T

hr
ee

m
on

th
s

la
te

32
2

1.
07

%
32

6
1.

09
%

24
0

0.
80

%
18

0
0.

60
%

17
8

0.
59

%
18

4
0.

61
%

4
Fo

ur
m

on
th

s
la

te
76

0.
25

%
99

0.
33

%
76

0.
25

%
69

0.
23

%
84

0.
28

%
49

0.
16

%
5

Fi
ve

m
on

th
s

la
te

26
0.

09
%

25
0.

08
%

21
0.

07
%

35
0.

12
%

17
0.

06
%

13
0.

04
%

6
Si

x
m

on
th

s
la

te
11

0.
04

%
12

0.
04

%
23

0.
08

%
5

0.
02

%
4

0.
01

%
19

0.
06

%
7

Se
ve

n
m

on
th

s
la

te
9

0.
03

%
20

0.
07

%
27

0.
09

%
85

0.
19

%
58

0.
19

%
46

0.
15

%
8

Ei
gh

tm
on

th
s

la
te

19
0.

06
%

1
0.

00
%

3
0.

01
%

2
0.

01
%

1
0.

00
%

2
0.

01
%

38 Chapter 4. Data description and preparation

To get a better feeling of the data set, several features will be more extensively
described and some interesting relations between features are researched. First of all
the relation between the balance limit and several other features will be analyzed.
Figure 4.1 shows how the balance limit differs between the different education cate-
gories. The figure clearly shows that a higher education level leads to a higher limit.
This effect is expected since higher education usually also means a higher income.
Furthermore it is remarkable how compact the values in the "other" category are dis-
tributed. This is probably caused by the small number of occurrences, only 1.56% of
the feature belongs to this category. A similar plot is shown for the marital status in
Figure 4.2. It also shows a clear difference between the different categories.

FIGURE 4.1: Boxplots showing the
balance limit for the different educa-

tion statuses.

Ot
he

r

Gr
ad

ua
te

sc
ho

ol

Un
iv

er
sit

y

Hi
gh

sc
ho

ol

0

200

400

600

800

1,000

Ba
la

nc
e

lim
it

(k
 N

T$
)

FIGURE 4.2: Boxplots showing the
balance limit for the different marital

statuses.

Ot
he

r

M
ar

rie
d

Si
ng

le

Di
vo

rc
ed

0

200

400

600

800

1,000

Ba
la

nc
e

lim
it

(k
 N

T$
)

More information about both features is given in Table 4.6 and 4.7. Those two
tables shows the average age and default rate for the different categories. It is in-
teresting to see that for both features the "other" categories have a very low default
rate. This leads to the probable conclusion that it contains high income or net worth
individuals. The remaining categories also show some clear differences, clients in
the graduate school category have a lower default rate. For the marital feature it
is the divorced category which has different default rate, it is higher than the other
categories. Furthermore, the age of the "single" category is lower.

TABLE 4.6: Average age and default
rate for the education categories.

Education Average age DR
Other 36 7%
Graduate school 34 19%
University 35 24%
High school 40 25%

TABLE 4.7: Average age and default
rate for the marital status categories.

Relationship Average age DR
Other 38 9%
Married 40 23%
single 31 21%
Divorced 43 26%

For a better understanding of the data set, the influence of the age of the client
will be more thoroughly analyzed. The previous figures and tables already show
differences in age between the different categories. To get a grip of the impact of
age, all clients have been separated in groups of a similar age. Figure 4.3 shows
the result of this analysis. From the figure it is clear that the group with the lowest
age have a low balance limit and a high default rate. Up until the group starting

4.1. Credit data - Taiwan 39

at age 30, the limit increases and the default rate decreases. This is expected since
income increases with age and thus the risk decreases. However, from 35 until 55
older clients pose a greater risk, this outcome was unexpected. The balance limit
start increasing again from 55 onwards. In that section the trend of the default rate
gets less clear due to the small amount of data points in those categories, only 3.51%
of the clients is age 55 or older.

FIGURE 4.3: Average balance limit and default rate per age group,
starting at the label value up to the next label.

20 25 30 35 40 45 50 55 60 65 70 75

100

200

Age

Ba
la

nc
e

lim
it

(k
N

T
$)

0.2

0.25

0.3

D
ef

au
lt

ra
te

(%
)

Balance limit
Default rate

4.1.2 Correlations

To further analyze the data set, the correlations between the different features have
been calculated and are shown in Table 4.8. From the correlations given in the men-
tioned table, the correlations between the bill amount features are the highest. They
range from 0.8 up to 0.95. Since the values of those features change respectively to
the value in the previous period, the correlation with the previous and next period
is the highest.

The limit of the balance also shows some strong positive correlations with the
other features. This is logical, since a higher balance means that the borrower can
take out larger loans. The balance limit also has a positive correlation with age. This
is probably caused by people with a higher age on average having a higher income
and thus can borrow larger amounts.

The payment amounts show less strong correlation than the bill amounts. This is
probably caused by the fact that the payments amount are not relative to the amount
of the previous period.

40 Chapter 4. Data description and preparation

TA
B

L
E

4.
8:

C
or

re
la

ti
on

be
tw

ee
n

th
e

di
ff

er
en

tn
um

er
ic

al
fe

at
ur

es
in

th
e

fir
st

da
ta

se
t.

LIMIT_BAL

AGE

BILL_AMT1

BILL_AMT2

BILL_AMT3

BILL_AMT4

BILL_AMT5

BILL_AMT6

PAY_AMT1

PAY_AMT2

PAY_AMT3

PAY_AMT4

PAY_AMT5

PAY_AMT6

LI
M

IT
_B

A
L

-
0.

14
0.

29
0.

28
0.

28
0.

29
0.

30
0.

29
0.

20
0.

18
0.

21
0.

20
0.

22
0.

22
A

G
E

0.
14

-
0.

06
0.

05
0.

05
0.

05
0.

05
0.

05
0.

03
0.

02
0.

03
0.

02
0.

02
0.

02
BI

LL
_A

M
T1

0.
29

0.
06

-
0.

95
0.

89
0.

86
0.

83
0.

80
0.

14
0.

10
0.

16
0.

16
0.

17
0.

18
BI

LL
_A

M
T2

0.
28

0.
05

0.
95

-
0.

93
0.

89
0.

86
0.

83
0.

28
0.

10
0.

15
0.

15
0.

16
0.

17
BI

LL
_A

M
T3

0.
28

0.
05

0.
89

0.
93

-
0.

92
0.

88
0.

85
0.

24
0.

32
0.

13
0.

14
0.

18
0.

18
BI

LL
_A

M
T4

0.
29

0.
05

0.
86

0.
89

0.
92

-
0.

94
0.

90
0.

23
0.

21
0.

30
0.

13
0.

16
0.

18
BI

LL
_A

M
T5

0.
30

0.
05

0.
83

0.
86

0.
88

0.
94

-
0.

95
0.

22
0.

18
0.

25
0.

29
0.

14
0.

16
BI

LL
_A

M
T6

0.
29

0.
05

0.
80

0.
83

0.
85

0.
90

0.
95

-
0.

20
0.

17
0.

23
0.

25
0.

31
0.

12
PA

Y
_A

M
T1

0.
20

0.
03

0.
14

0.
28

0.
24

0.
23

0.
22

0.
20

-
0.

29
0.

25
0.

20
0.

15
0.

19
PA

Y
_A

M
T2

0.
18

0.
02

0.
10

0.
10

0.
32

0.
21

0.
18

0.
17

0.
29

-
0.

24
0.

18
0.

18
0.

16
PA

Y
_A

M
T3

0.
21

0.
03

0.
16

0.
15

0.
13

0.
30

0.
25

0.
23

0.
25

0.
24

-
0.

22
0.

16
0.

16
PA

Y
_A

M
T4

0.
20

0.
02

0.
16

0.
15

0.
14

0.
13

0.
29

0.
25

0.
20

0.
18

0.
22

-
0.

15
0.

16
PA

Y
_A

M
T5

0.
22

0.
02

0.
17

0.
16

0.
18

0.
16

0.
14

0.
31

0.
15

0.
18

0.
16

0.
15

-
0.

15
PA

Y
_A

M
T6

0.
22

0.
02

0.
18

0.
17

0.
18

0.
18

0.
16

0.
12

0.
19

0.
16

0.
16

0.
16

0.
15

-

4.1. Credit data - Taiwan 41

4.1.3 Vectorization and normalization

In Chapter 3 the processes of vectorization and normalization are described. In the
methodology this phase is said to be performed after feature engineering. This is
done because new or changed features should also be vectorized and normalized.
In this chapter the order of the phases is switched, this is done to determine whether
or not the impact of the engineered features has to be analyzed with or without
vectorization and normalization.

First of all it is required to determine the performance when the algorithms are
trained and validated using the original data set. This is given in Table 4.9. The
results achieved with the default settings of the algorithm on the default data set
varies greatly between algorithms. It is clear that the four algorithms based on trees
perform better.

TABLE 4.9: Performance of the different algorithms when trained and
validated on the original data set.

Algorithm AUC
Logistic Regression 0.65
Neural Network 0.62
Naive Bayes 0.67
k Nearest Neighbors 0.60
Decision Tree 0.73
Random Forest 0.73
ADABoost 0.75
Gradient Boosting 0.77
Support Vector Machine 0.51

To make this data set better usable for the machine learning, some preparations
have to be performed. Two important preparation are vectorization and normaliza-
tion. The first of these has to do with categorical features. Most machine learning
models assume a certain order in the value of the features. When a categorical fea-
ture is used as input in its original form, the model is likely to have difficulties with
distinguishing the gender. To solve this issue the feature is vectorized, as has been
mentioned in the previous chapter. An example of the vectorization of the gender
feature is given in Table 4.10. Vectorization is applied to all of the categorical fea-
tures; gender, education, marriage and possible a later engineered feature. To deter-
mine the resulting number of columns after vectorization, it is necessary to know all
different values the feature can have. As mentioned before the possible values are
given in Appendix A.

TABLE 4.10: Vectorization of the gender feature.

Id Gender
0 1
1 1
2 2
3 1
4 2

Id Female Male
0 0 1
1 0 1
2 1 0
3 0 1
4 1 0

Next to the vectorization of categorical features, numerical features also have to
be prepared, this is done by normalization. It is the process of manipulating the
values of a feature in such a way that the average will be zero and the standard

42 Chapter 4. Data description and preparation

deviation will be 1. The reason to normalize features is to transform them in such
a way they all have the same mean and standard deviation. The goal is to mini-
mize different levels of influence between features. A few samples before and after
normalization are shown in Table 4.11.

TABLE 4.11: Normalization of the balance limit feature.

Id Balance limit
80 470,000
81 360,000
82 60,000
83 400,000
84 50,000
85 160,000
86 360,000
87 160,000
88 130,000

Id Balance limit
80 1.55
81 0.81
82 -1.2
83 1.08
84 -1.26
85 -0.53
86 0.81
87 -0.53
88 -0.73

Now that both vectorization and normalization have been applied to the origi-
nal data set, it is possible to determine the impact on the performance. The results of
training and validating the algorithms with the vectorized and normalized original
data set are shown in Table 4.12. The AUC of all algorithms is higher or identical, so
it is a good idea to sue normalization and vectorization. Especially the Neural Net-
work and Support Vector Machine show a large increase in performance, the AUC
increased respectively from 0.62 to 0.77 and from 0.51 to 0.73. Naive Bayes and k
Nearest Neighbors both also show a decent increase in performance. The Decision
Tree and algorithms that are an ensemble of Decision Trees show no increase in per-
formance. This was expected, because decision trees do not rely on the scale of a
feature.i

TABLE 4.12: Performance of the different algorithms when trained
and validated on the original features that are vectorized and nor-

malized.

Algorithm AUC Change
Logistic Regression 0.72 +0.07
Neural Network 0.77 +0.15
Naive Bayes 0.73 +0.06
k Nearest Neighbors 0.70 +0.10
Decision Tree 0.73 +0.00
Random Forest 0.73 +0.00
ADABoost 0.75 +0.00
Gradient Boosting 0.77 +0.00
Support Vector Machine 0.73 +0.22

4.1.4 Feature engineering

The next step in preparing the data set, is to see if the model performance can be
further increased by using feature engineering. The goal of this process is to change
the features in such a way that they are easier to "understand" for the algorithms.
The results of the previous section show that vectorizing and normalizing have a
positive influence on the performance. Therefore that performance will be used as
baseline, the changes made through feature engineering will also be vectorized and
normalized where possible.

4.1. Credit data - Taiwan 43

In Appendix A, it is given that the education feature can take seven different val-
ues of which four mean "other". No information is available to distinguish between
the four types of "other". To stay consistent with the other categorical features, 4,
5 and 6 will be changed to belong to category 0. To make sure this change does
not result in information loss, all algorithms are tested with their default settings on
the data set before and after the change. The results are given in Table 4.13. It is
clear that grouping the "other" types of education has no large impact on the model
performance. Since it makes the education feature more logical and it has no large
impact, the "other" categories are indeed grouped together.

TABLE 4.13: Performance of the different algorithms when the differ-
ent "other" education values are grouped.

Algorithm AUC Change
Logistic Regression 0.72 -
Neural Network 0.77 -
Naive Bayes 0.73 -
k Nearest Neighbors 0.70 -
Decision Tree 0.73 -
Random Forest 0.73 -
ADABoost 0.75 -
Gradient Boosting 0.77 -
Support Vector Machine 0.73 -

The group of PAY_n features might be interesting to adjust, these categorical
features contain a lot of information. It shows whether the credit is revolving or
instalment, paid on time or paid late and if there has been no consumption. Since all
this information is mapped onto values ranging from -2 to 8, it might be difficult for
some machine learning algorithms to extract the information. To make the data set
more logical, three separate characteristics might be separated into different features.
The current meaning of the different values the feature can take are given in Table
4.4. The first new feature is for the lateness of the payment, each of the values from 1
to 8 indicate that the payment is respectively one to eight months late. This can easily
be mapped to a new feature, as shown in Table 4.14. The two other new features are
also shown in the table, they are for consumption and for the credit type.

TABLE 4.14: Newly created features based on the PAY_n features.

(A) Lateness

Value Meaning
0 On time
1 One month late
2 Two months late
3 Three months late
4 Four months late
5 Five months late
6 Six months late
7 Seven months late
8 Eight months late

(B) Consumption

Value Meaning
0 No consumption
1 Consumption

(C) Revolving

Value Meaning
0 Instalment
1 Revolving

Just as with education the effect of this operation will be analyzed by running the
different algorithms in their default settings on the old and new data set. The results

44 Chapter 4. Data description and preparation

of the analysis are shown in Table 4.15. Splitting the feature has a large positive effect
on Logistic Regression and a small positive effect on Naive Bayes and k Nearest
Neighbors. The change has no negative effect on any of the algorithms. Therefore
it is a good choice to apply this modification to the data set when using Logistic
Regression, Naive Bayes, k Nearest Neighbors or Support Vector Machine.

TABLE 4.15: Performance of the different algorithms when PAY_n
features are separated as shown in 4.14.

Algorithm AUC Change
Logistic Regression 0.76 +0.04
Neural Network 0.77 -
Naive Bayes 0.74 +0.01
k Nearest Neighbors 0.71 +0.01
Decision Tree 0.73 -
Random Forest 0.73 -
ADABoost 0.75 -
Gradient Boosting 0.77 -
Support Vector Machine 0.73 -

Another possibility for feature engineering is to use the ratio of two features. In
this data set the candidates for creating ratios are the monetary values. Deciding
which, is primarily based on logical reasoning and experimenting. For example the
amount on the bill statement might have an influence on the likelihood of default-
ing. But the bill statement (BILL_AMNTn) relative to the credit limit might have a
bigger influence. This is also valid for the payment amount (PAY_AMNTn) feature
relative to the limit. Some examples of calculating this ratio are shown in Table 4.16.
It is logically that the table shows that samples closer to the balance limit have a
higher ratio. In the previous section it was found that vectorization and normaliza-
tion have a positive effect on model performance, therefore the calculated ratio’s are
also normalized.

TABLE 4.16: Calculating the ratio of two features.

Id Balance limit Bill amount
30 230,000 16,646
31 50,000 30,518
32 100,000 93,036
33 500,000 10,929
34 500,000 13,709
35 160,000 30,265

Id Ratio
30 0.072
31 0.610
32 0.930
33 0.022
34 0.027
35 0.189

When ratio’s are calculated a decision has to be made on whether or not to keep
the original feature. To support that decision the performance will be determined for
both situations, the results are shown in Table 4.17. The first impression of the results
is that adding ratio’s is not very influential with this data set. Only adding a ratio
involving the bill statement has a positive performance on one of the algorithms,
k Nearest Neighbors. All other ratio’s and algorithms either show no change in
performance of a decrease in performance. Therefore, the choice has been made to
only add the ratio in the combination where it is beneficial.

4.1. Credit data - Taiwan 45

TABLE 4.17: Performance when ratio’s are calculated. Performance
is with respect to the benchmark performance. Both ratio’s have

LIMIT_BAL as denominator.

BILL_AMNT PAY_AMNT Both
Original Keep Delete Keep Delete Keep Delete
Logistic Regression - - - - - -
Neural network - - - - - -
Naïve bayes -0.01 -0.01 - - -0.01 -0.01
k Nearest neighbors +0.01 +0.01 - - - -
Decision tree - - - -0.01 - -
Random forest - - - - - -
ADABoost - - - - - -
Gradient boosting -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Support Vector Machine - - - - - -

4.1.5 Resampling

As mentioned in Chapter 2, data sets often have an imbalance in the number of
samples per class. This problem is often present in data sets with default events,
this is logically caused by the rareness of a default. In this data set the number of
defaults is 6,636 from a total of 30,000 clients. This clearly is an imbalance in the data
set but not so large that resampling is guaranteed to improve performance.

In Chapter 2, several methods have been discussed to balance a data set. It is
necessary to decide which method is most suitable to be used in this data set. To
make this decision, each of the resampling methods will be used on the training
subset. The resulting training sets will be used to train and validate the different
algorithms. Testing the machine learning algorithms in their default settings will
give an indication of the impact of the different resampling algorithms. In total nine
different methods of resampling will be tested:

– No resampling

– Random undersampling

– Random oversampling

– SMOTE

– SMOTE borderline1

– SMOTE borderline2

– ADASYN 2 neigbors

– ADASYN 5 neigbors

– ADASYN 10 neigbors

For this decision, the size of the data set is crucial. For small data sets under-
sampling usually is a bad choice because it decreases the size of the data set even
further. Undersampling this data set will result in a set with 13,272 (2× 6, 636) samples.
This is sufficient to use for machine learning, so it is possible to use undersampling.
As described before, a disadvantage of undersampling is that some data is lost due
to ignoring a large part of the majority samples. When using random oversampling
that problem does not occur. Instead of removing samples from the majority class it
adds the same minority samples multiple times until balance is restored in the data
set. The resulting data set will consist of 46,728 (2× 23, 364) samples.

The results of applying the different resample methods are shown in Table 4.18.
The results are given relative to the performance of the normalized and vectorized
data set, the exact AUC values are given in Appendix B. From the results it is clear
that in most cases resampling has a negative impact on the performance. Especially
the more complex resample methods like SMOTE and ADASYN almost always have

46 Chapter 4. Data description and preparation

a negative impact. A few exception can be seen in the results. The first exception is
the performance of Logistic Regression, all SMOTE and ADASYN variants improve
its performance slightly. The second exception is the Decision Tree algorithm which
performs better when random under or oversampling is used. During further exper-
imenting all algorithms except the two with increased performance should be run
on the data set without resampling. For the other two the corresponding algorithms
should be used.

TABLE 4.18: The average AUC of 25 folds for different algorithms
and resample methods.

Algorithm

N
on

e

R
an

do
m

un
de

rs
am

pl
in

g

R
an

do
m

ov
er

sa
m

pl
in

g

Sm
ot

e
re

gu
la

r

Sm
ot

e
bo

rd
er

lin
e1

Sm
ot

e
bo

rd
er

lin
e2

A
D

A
SY

N
_2

A
D

A
SY

N
_5

A
D

A
SY

N
_1

0

Logistic Regression - - - +0.01 +0.01 +0.01 +0.01 +0.01 +0.01
Neural Network - - -0.01 -0.02 -0.04 -0.03 -0.03 -0.03 -0.04
Naïve Bayes - - - - - -0.01 - - -
k Nearest Neighbors - - -0.03 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03
Decision Tree - +0.01 +0.01 - - - - - -
Random Forest - - - - - -0.01 -0.01 -0.01 -0.01
ADABoost - - - - -0.01 -0.02 -0.01 -0.01 -0.01
Gradient Boosting - -0.01 - -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Support Vector Machine - +0.03 +0.03 +0.03 +0.03 +0.02 +0.03 +0.03 +0.03

4.1.6 Conclusions

Now all steps of the data preparation have been researched it is possible to deter-
mine the best approach for each individual algorithm. The first part of this section
was about increasing the performance of the algorithms by vectorization and nor-
malization. For all non tree based algorithms it resulted in a major performance
increase, Neural Network performance increased the most, from 0.62 to 0.77. The
tree based algorithms showed no change in performance at all.

The next step in the preparation was feature engineering, the process of changing
the features to better represent the information it contains. The first change had to
do with the education feature, it had four different values with meaning "other". It
was not possible to prove an explanation for that difference, therefore they should
be merged if it does not result in a major performance decrease. After running all
algorithms on the changed data set no difference in performance occurred and thus
the "other" values are merged together.

The next proposed change concerned the group of payment status features. These
features each contain several different characteristics, they contain information about
the lateness of payment, type of credit and whether or not credit has been used. To
represent this information in a better way it has been proposed to split each of the
payment status features in three separate features. This change has a positive in-
fluence on Logistic Regression, Naive Bayes and k Nearest Neighbors. The AUC of
Logistic Regression increased by 0.04, the other two increased by 0.01. The other
algorithms showed no change in performance. Since this change only has positive
impacts it will indeed be applied to the data set.

4.2. Peer to peer lending - Prosper 47

The third proposed change is to calculate ratio’s of several monetary features.
Two different ratio’s have been calculated, the first ratio is the bill statements over
the balance limit and the second ratio is the payment amount over the balance limit.
The results show that adding the ratio’s has no large impact on performance. The
only increase in performance is seen for k Nearest Neighbors when the ratio of the
bill statements over the balance limit is added to the data set. In all other situation it
has no influence or a negative one. Ratio’s will only be added for the algorithm that
showed an increase in performance.

Finally the impact of the different resample methods has been researched. The
most important conclusion is that the more complex methods, SMOTE and ADASYN
have almost no positive influence. Logistic Regression is the exception, it is the only
algorithm that performs better when SMOTE or ADASYN is applied. The Decision
Tree algorithm performs better when random under- or oversampling is applied.

4.2 Peer to peer lending - Prosper

The second data set that will be used in this experiment contains peer2peer loans
(Prosper, 2017). These type of loans are not given out by a bank but are arranged
between private parties. Prosper is a platform that facilitates this process by bring-
ing lenders and borrowers together. The platform also provides a wide range of
measures to support the lend decision. Prosper publishes their data to provide the
possibility for investors to create models they can use to decide which loan to accept.
For this data set the data preparation will be discussed more concise because it is the
second time this process is applied. The vectorization and normalization section will
be left out for this data set. In the previous section and literature it was shown that
is has a positive effect and thus will be applied to this data set.

4.2.1 Data description

The data set contains 81 features and thus is high dimensional. The table with the
features, their descriptions and statistical summaries are due to their size presented
in Appendix A Table A.1 up to Table A.6. Of the 81 features, 45 are used in the final
data set, the majority of the removed features are taken out because of one of the
following two reasons. Prosper implemented a new system to score loans within
the timeframe of the used data set. This change came with several new features,
which where blank for loans started before the new method. Since 84,848 out of the
113,932 loans use the new method, only those are used for the final data set. The
table in Appendix A describing the features can be used to see which features where
removed as a result of this split. The second major reason to remove features is data
leakage.

Just as with the previous data set, several of the features will be analyzed to get
a better understanding of the data set. The loans in the data set are split up into 21
categories, as can be seen at the ListingCategory feature. For each of the categories
the average loan amount and the default rate has been determined. The details are
graphed in Figure 4.4. The debt consolidation category has the highest average loan
with a value above 10,000. Student use is the lowest category with just above 2,500.
Even though student use has the lowest average value, it is the category with the
highest default rate. Other high risk categories are green loans (15.3%), business
(13.2%) and other (12.4%). The most safe categories are RV (1.9%), motorcycle (2.6%)
and engagement ring (2.7%).

48 Chapter 4. Data description and preparation

FIGURE 4.4: Graph showing the average loan amount per category
on the left axis (gray) and the default rate on the right axis.

De
bt

 C
on

so
lid

at
io

n
Ba

by
&A

do
pt

io
n

Bu
sin

es
s

W
ed

di
ng

 L
oa

ns
La

rg
e

Pu
rc

ha
se

s
Bo

at
Gr

ee
n

Lo
an

s
Ho

m
e

Im
pr

ov
em

en
t

RV
En

ga
ge

m
en

t R
in

g
Ta

xe
s

M
ed

ica
l/D

en
ta

l
Ot

he
r

Co
sm

et
ic

Pr
oc

ed
ur

e
M

ot
or

cy
cle

Va
ca

tio
n

Ho
us

eh
ol

d
Ex

pe
ns

es
Au

to
St

ud
en

t U
se

0

2500

5000

7500

10000

Lo
an

Or
ig

in
al

Am
ou

nt
 ($

)

0.00

0.05

0.10

0.15

0.20

DR
 (%

)

The next part that will be analyzed is the impact of the monthly income of the
borrower. In Figure 4.5 the relation between the stated monthly income and the
loan amount is given, dark areas indicate a high concentration of loans. To make
the relation between the two features clear, a linear trend line has been added. It
clearly shows that borrowers with a higher income will on average borrow a higher
amount. Figure 4.6 shows the relation between the debt to income and the stated
monthly income. This graph shows that higher income borrowers will on average
take out a loan that is smaller in comparison with their income, even though they
loan a higher amount on average.

FIGURE 4.5: Heatmap showing the re-
lation between the stated income and

amount loaned.

0 5000 10000 15000 20000 25000
StatedMonthlyIncome

5000

10000

15000

20000

25000

30000

35000

Lo
an

Or
ig

in
al

Am
ou

nt

FIGURE 4.6: Heatmap showing the rela-
tion between the stated income and the

debt to income ratio.

0 5000 10000 15000 20000 25000
StatedMonthlyIncome

0.2

0.4

0.6

0.8

De
bt

To
In

co
m

eR
at

io

The last graph about the monthly income is Figure 4.7, it shows the default rate
for different levels of income. It shows a relation between the features that is ex-
pected, borrowers with a higher income are less likely to default. However, this
effect is only clearly visible up to a monthly income of $7,500. After that, a higher
income does not lead to a lower default rate. The last feature related to income that
is analyzed is IncomeVerifiable, this binary feature shows whether or not the stated
income can be verified. The expectation is that this feature is important, because if
the income can not be verified it might not have been filled in truthfully. Figure 4.8
shows that the default rate for non verifiable income loans is double that of loans

4.2. Peer to peer lending - Prosper 49

with a verifiable income. From the figure it is also clear that the loans without a
verified income are for lower amounts.

FIGURE 4.7: Default rate for different levels of income. Bins start at
the axis value, up to the next axis value.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Monthly income (x1,000$)

0.00

0.05

0.10

0.15

DR
 (%

)

FIGURE 4.8: Comparison of the loans based on if the stated income is
verifiable.

0 5 10 15 20 25 30 35
LoanOriginalAmount (x1,000$)

Yes (DR=0.07)

No (DR=0.14)

The next feature that will be analyzed is the IsBorrowerHomeOwner feature.
This feature is either true of false depending on whether the borrower owns a house.
Figure 4.9 shows two boxplots that describe the amount loaned by both groups. The
default rate is also given for both groups. The figure makes it clear that home owners
borrow on average a higher amount. It also shows that home owners have a slightly
lower default rate. In Figure 4.10 the income of both groups is described, it clearly
shows that home owner have a higher average income. Since it is known form the
previous section that borrowers with a higher income loan more on average, it might
also explain the differences in the loan amount between the home owners.

The last feature is the credit score obtained from a scoring agency. In the data set
the scores are divided into bins with a width of 20. The lowest range is 600-620 and

FIGURE 4.9: Comparison of the loan
amount based on if the borrower owns a

home.

0 5 10 15 20 25 30 35
LoanOriginalAmount (x1,000$)

Yes (DR=7%)

No (DR=9%)

FIGURE 4.10: Comparison of the stated
income based on if the borrower owns a

home.

0 5 10 15 20 25
StatedMonthlyIncome (x1,000$)

Yes

No

50 Chapter 4. Data description and preparation

the highest range is 860-880. Figure 4.11 shows per bin what the default rate is for
the loans in that bin. From the table it becomes clear that the credit score indeed has
a large impact on the default rate.

FIGURE 4.11: Graph showing the default rate per credit score bin.
Bins start at the axis value, up to the next value.

60
0

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

Credit score - lower bin boundary

0.0
0.05
0.1

0.15
0.2

0.25
DR

 (%
)

4.2.2 Correlations

Finally, the correlations between the different features will be analyzed. Due to the
high number of features not all correlations will be given. Most of the higher correla-
tion can be easily explained, for example the correlation between the ’TotalProsper-
Loans’ and the ’OnTimeProsperPayments’ or between the monthly payments and
principal of the loan. Therefore, not all high correlation will be given, but only those
with an interesting characteristic.

First the correlation between the homeownership and the other features will be
analyzed, one expects that being a homeowner has a positive effect on the borrower.
This is verified by looking at the correlations, the ’IsBorrowerHomeowner’ has a
correlation of 0.28 with the credit score and a -0.06 correlation with the number of
delinquencies in the last 7 years. It is also interesting to see that it has a correlation of
0.29 with the number of trades, this is probably caused by homeowner being better
in paying off their loans and thus can easier take out multiple loans.

The data set contains a feature that specifies how many friends have invested in
a loan. One might expect that if more friends invest, someone is more likely to pay
on time. However, the correlations show no such relation. The correlation between
the number of friends that invested and the current delinquencies to be 0.00.

The correlations can also be used to verify the correctness of the creditscore. If
the credit score is a good indicator of the creditworthiness of the borrower, it should
for example have a negative correlation with the number of delinquencies and a
positive correlation with the loan amount. Luckily, these expectations are confirmed
by the correlations. The correlation between the credit score and number of current
delinquencies is -0.16 and the correlation with the amount loaned is 0.28.

4.2.3 Missing and strange values

Where the Taiwan data set did not have a single missing value, this data set has
several. In this section handling the missing data will be described. Luckily the
majority of the missing values are from the period where the old scoring system was
used. After the date on which the new system went live, the missing values are not

4.2. Peer to peer lending - Prosper 51

present as much. The total number of missing values per feature is given in Table
4.19. After the changes discussed below, 86,964 samples remain.

TABLE 4.19: The number of missing values per incomplete feature.

Feature Missing values
Occupation 1,333
EmploymentStatusDuration 19
DebtToIncomeRatio 7,307
TotalProsperLoans 65,128
TotalProsperPaymentsBilled 65,128
OnTimeProsperPayments 65,128
ProsperPaymentsLessThanOneMonthLate 65,128
ProsperPaymentsOneMonthPlusLate 65,128
ProsperPrincipalBorrowed 65,128
ProsperPrincipalOutstanding 65,128
ScorexChangeAtTimeOfListing 68,285

The first non usable values are found in the LoanStatus feature. This feature can
take several different values, including ’Canceled’. Since canceled loans cannot go
into default they cause noise in the data set. Only 25 loans are canceled, therefore
they are all removed from the data set.

The ’Occupation’ feature has a large number of blank values, in total 1,333. This
value is after the samples from the old scoring system where removed. The missing
values have been changed to be a part of the "Other" category since that is the most
broad category.

The next feature that needs correction is ’EmploymentStatusDuration’, it con-
tains 7,625 blank values. The majority of these samples are from the period the old
scoring system are used and thus are already removed, only 19 remain. As the name
states, the feature gives the duration the current employment status has been the
same. Since no information is available on how long the borrowers is in the same
employment status, a neutral value will be used. Just as with the previous feature
this neutral value is the mean of the non-blank values.

The feature with the most missing values is ’DebtToIncome’, with 7,307 blanks.
First it was attempted to reconstruct the feature from the given income and loan.
However it did not result in the exact values shown in the ’DebtToIncome’ feature.
Therefore it has been decided that the blanks will be filled with a neutral value. The
value that will be used is calculated by taking the mean of the samples that do have
a value.

The ’TotalProsperLoans’ feature is the first of the features with a very large num-
ber of missing values, 65,128. Luckily this can easily be explained. This feature gives
the total number of Prosper loans the borrower previously had. If the borrower had
no previous loans at Prosper, the feature is blank. This can easily be solved by chang-
ing the blank values to zero. This same situation is present at the features with the
same number of missing values, this can be seen in Table 4.19. For those features the
missing values will also be replaced with zeroes.

The ’ScorexChangeAtTimeOfListing’ feature shows the difference in credit score
between the listing of a previous loan and the listing of the current loan. If no previ-
ous loan has been taken out through Prosper, the value is blank. Clearly this situa-
tion is similar to the above features. For this feature the missing values will also be
changed to zero.

52 Chapter 4. Data description and preparation

4.2.4 Feature engineering

Just as with the previous data set, some features will be changed. This can either be
because is necessary or it might improve predictive performance. In the previous
data set quite a lot of feature engineering was applied. For this data set it will be
limited. The data set is already very extensive and high dimensional. This limits the
potential benefit of feature engineering and computation time should be taken into
account.

The first feature to add is the ’default’ feature. Where the previous data set al-
ready had such a feature, it has to be created in this data set, it will be based on
the ’LoanStatus’ feature. That feature can take several different values: chargedoff,
completed, current, defaulted, finalPaymentInProgress and pastDue. To create the
default feature, the samples that have the status chargedoff or defaulted are set to 1
and the other status are set to 0. The resulting data set has 6,350 defaults in a total of
84,964 loans.

Another small step that has to be carried out has to do with the boolean fea-
tures. In the original data set these are given in text as ’true’ or ’false’. However the
implementation of the algorithm expects boolean features to be integers. Thus, the
boolean features have to be mapped to ones and zeroes.

4.2.5 Resampling

The last step of the data preparation process is to determine the most suitable re-
sampling method for each of the algorithms. Just as with the previous data set this
is done by applying the resample methods and determining the performance. With
the previous data set it was found that the more complex resample methods, SMOTE
and ADASYN, do not perform well. Those more complex resample algorithms take
more time to run, especially for the Prosper data set since it is a few times larger.
Therefore, the choice has been made to apply one kind of SMOTE and one kind of
ADASYN. The results of using the different resample methods is shown in Table
4.20.

TABLE 4.20: The average AUC of 25 folds for different algorithms
and resample methods.

Algorithm

N
on

e

R
an

do
m

un
de

rs
am

pl
in

g

R
an

do
m

ov
er

sa
m

pl
in

g

Sm
ot

e
re

gu
la

r

A
D

A
SY

N
_5

Logistic Regression - - - - -
Neural Network - +0.01 -0.01 -0.02 -0.02
Naïve Bayes - - - -0.08 -0.09
k Nearest Neighbors - +0.09 - +0.07 +0.07
Decision Tree - -0.01 - -0.02 -0.03
Random Forest - +0.06 +0.03 +0.03 +0.02
ADABoost - +0.02 +0.01 +0.02 +0.02
Gradient Boosting - - - -0.01 -0.02

4.2. Peer to peer lending - Prosper 53

As mentioned before, one of the risks of working with an imbalanced data set is
a high accuracy but low predictive performance. This is caused by the model dis-
regarding the minority class and assigning every sample to the majority class. This
leads to a seemingly high accuracy but the model is a bad predictor. To prevent this
from happening the confusion matrices of the experiments are taken into account.
In three cases the confussion matrix looks like the one shown in Table 4.21. Since
none of the samples is classified as positive, it is clear that ADAboost, Decision Tree
and Gradient Boosting require at least a form of resampling.

TABLE 4.21: Confusion matrix of ADABoost without any form of re-
sampling.

Predicted Predicted
positive negative

Positive 0 4,743
Negative 0 59,027

4.2.6 Conclusions

Now that a lot more is known about the data set and how it should be prepared,
several conclusions about it can be drawn.

Where the first data set had no missing values, this data set did have those. Most
of the missing values occurred in a part of the data set that was generated in a period
with an older and different system. Since the the data set originated for 74.4% from
the period with the new system, the samples generated by the old system can be
removed without losing to much data. Also some smaller problem where found in
the data, which where easily solved.

Since the second data set did not have a default feature, it had to be created.
Adding this new feature has been done based on the ’LoanStatus’ feature. Samples
that have the status chargedoff or defaulted are regarded as defaulted.

The last subject which will be discussed in this section, is the different resample
methods that are applied to the data set. In the first data set 22,1% of the sam-
ples results in a default, with this data set only 7,5%. This makes the usage of a
resample technique more important. This was verified by the fact that several of
the algorithms classified all samples as negative, if no resampling was performed.
For none of the algorithms, the more complicated resample algorithms, SMOTE and
ADASYN, improved the performance. This was also observed with the first data
set. For all of the algorithms, random undersampling either improved the perfor-
mance with the greatest amount or had no influence. Since that method reduced
computation times, it can be used in combination with all of the algorithms.

55

Chapter 5

Model training

In this chapter, the parameters of the different machine learning algorithms will be
determined. This is done in two sections, first the parameters will be determined for
use with the first data set, then for use with the second data set. Note that all of the
model training happens on the training set only. The testing set will only be used to
determine the final performance.

5.1 Credit data - Taiwan

The parameters of all the algorithms will first determined in combination with the
Taiwanese credit data set. In the previous chapter the data preparation has been
examined, the results will be used here. For all of the algorithms the data set will
be normalized and vectorized. Several different forms of feature engineering have
been applied with different results per algorithms. The "other" education values will
be grouped together for all algorithms, since it had no negative effect but makes the
feature more logical. Separating the payment features and calculating ratio’s will
only be done if it has a positive effect. Finally, the used resample method is also
based on the results found in the previous chapter. The exact data preparation is
discussed with each of the algorithms.

5.1.1 Logistic regression

The first algorithm of which the influence of the model parameters are explored is
Logistic Regression. In the previous chapter it is determined that the model per-
forms best, on this data set, when the payment features are separated and the data
set is resampled using SMOTE. The following parameters will be examined:

– Regularization: Two types of regularization are available, l1 and l2. The first of
these tries to create a sparse classifier.

– Solver: Two solvers are taken into account, saga and liblinear. Both solvers are
explained in Chapter 2.

– C: Regularization term, smaller values indicate more generalization.

First the regularization and the solver are examined together. The performance
is determined for each of the four possible combinations, the result is shown in Ta-
ble 5.1. The different settings have no influence on the performance, the AUC is
steady at 0.76. Since sag takes the least amount of time, it will be used for the next
experiments.

The last parameter that has to be analyzed is C. This variable is used to specify
how strong the generalization is, smaller values indicate a stronger regularization.

56 Chapter 5. Model training

TABLE 5.1: Performance and computation time of different solvers
and regularizations.

AUC Computation time (MM:SS)
saga - l1 0.76 02:25
saga - l2 0.76 01:45

liblinear - l1 0.76 00:52
liblinear - l2 0.76 00:18

To determine a good value for C, the performance will be determined for values
ranging from 0.1 up to 10.0, the default value is 1.0. These different values have
been used in combination with liblinear and both a l1 and l2 regularization, there
is no difference in performance. Thus the choice has been made to keep the value
at 1.0 since it is the default value. A summary of the selected values for each of the
parameters is given in Table 5.2.

TABLE 5.2: Settings selected for the Logistic Regression algorithm

Parameter Selected value
Regularization l2

Solver liblinear
C 1.0

5.1.2 Artificial Neural Network

The next algorithm which will be analyzed is the Artificial Neural Network. In the
previous chapter the different resample methods where tested on this data set in
combination with Neural Networks. It was found that no resampling or random
undersampling both show the best results. Since random undersampling decreases
computation times, without impacting performance, it will be used here. It was also
found that adding ratio’s or separating the payment status features has no impact
on the performance and it will therefore not be applied for this algorithm. The fol-
lowing parameters have to be analyzed for this algorithm.

– Solver: Two solvers are taken into account, sgd and adam. Both solvers are ex-
plained in Chapter 2.

– Hidden layers: The number and size of the layers between the input and output
layers.

– Activation function: The shape of the function used to transform the input signals
of the neurons.

– Learning rate: Size of the step with which weights are changed. It can be a con-
stant or adaptive rate.

– Regularization term: A term that can be used to penalize complex models. This
can be used to counter overfitting.

– Tolerance: If the decrease in loss during training is smaller than this threshold for
two consecutive epochs, training is stopped.

– Max iterations: The maximum number of iterations to reach convergence.

For the Neural Network, determining the parameters will be split in two phases.
First the parameters will be determined for the sgd solver, followed by the adam

5.1. Credit data - Taiwan 57

solver. For both solvers, first the shape of the hidden layers will be determined
followed by the activation functions and finally the learning rate. The tolerance
and maximum number of iterations will be determined simultaneously since it is
required when training stops too early or too late.

Sgd solver

As mentioned above, the parameters for the Neural Network will first be determined
in combination with the sgd solver. The first parameter which will be analyzed is the
size and number of the hidden layers. To determine the shape of the hidden layers
it is important to know the number of input nodes, for this data set that is 30. The
number of nodes in each of the hidden layers is almost always chosen to be equal to
or less than the number of input nodes. When multiple hidden layers are added to
the model, the size usually decreases with each consecutive layer. Since the number
of hidden layers has a large impact on the computation time of the training process,
it will be added to the results. Several settings for the hidden layers are taken into
account. These range from no hidden layers to three hidden layers. The impact on
the performance of each of the settings is shown in Table 5.3 in combination with
the different activation functions. The conclusion drawn form these results is that
it is necessary to add a hidden layer. Regardless of the used activation function,
the auc is a lot lower without hidden layer. This is caused by the fact that a Neural
Network without hidden layers can only make linear separations. The results also
shows that adding more than a single hidden layer does not lead to a performance
increase. In the case of three hidden layers in combination with the logistic activation
function it results in a low AUC of only 0.59. This is probably caused by overfitting.
Furthermore, using a ReLu or tanh activation function leads to a slightly higher AUC
in comparison with a logistic activation function. However, the difference is small
that all activation functions will be taken into account in the next steps. Since the
number of hidden layers has no influence, if at least a single hidden layer is added,
a single hidden layer will be used based on the computation time. The size of the
hidden layer is chosen to be 20.

TABLE 5.3: Neural Network performance for several different forms
of hidden layers with different activation functions. All networks are

trained with the sgd solver.

Nodes per layer Logistic ReLu Tanh
First Second Third AUC Time AUC Time AUC Time

30 20 10 0.59 04:00 0.77 05:39 0.77 06:05
30 20 - 0.76 14:38 0.77 05:46 0.77 06:21
30 10 - 0.76 18:13 0.77 04:57 0.77 05:52
20 10 - 0.76 15:16 0.77 03:54 0.77 05:29
30 - - 0.76 08:12 0.77 03:35 0.77 05:51
20 - - 0.76 09:01 0.77 02:55 0.77 04:54
10 - - 0.76 08:34 0.77 02:36 0.77 04:21

- - - 0.72 00:15 0.72 00:18 0.72 00:17

The next parameter of the Neural Network that will be analyzed is the Learning
rate. This rate determines the step size with which the loss is attempted to decrease.
A too high learning rate can lead to overshooting which caused the training process
to stop too early. The learning rate can be constant or adaptive. When the latter is
used the learning rate is decreased each time the stopping criteria is reached instead

58 Chapter 5. Model training

of stopping the training process. This leads to the training process making big steps
in the beginning and increasingly small steps later on. When the learning rate drops
below a certain minimum value, training will stop. In this experiment an adaptive
learning rate will begin at 0.1 and end at 0.0001. First the constant learning rate will
be analyzed by selecting different values for it. Then the adaptive learning rate will
be examined, this is done with a single high value for the learning rate since smaller
values will be automatically passed during training.

The results of using a constant learning rate is shown in Table 5.4. Clearly the
effect of the learning rate on the performance is very small. The small differences are
probably caused by random variation. However, the required computation time is
heavily influenced by the learning rate. It ranges from several seconds up to almost
an hour. The results of using an adaptive learning rate are shown in Table 5.5. The
performance is similar to that when using a constant learning factor. An advantage
of using an adaptive learning rate is the short computation time.

TABLE 5.4: Neural Network performance for several different con-
stant learning rates and several activation functions.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
0.1 0.77 00:19 0.76 00:12 0.76 00:19
0.01 0.77 01:15 0.77 00:32 0.77 00:45
0.001 0.76 08:10 0.77 02:57 0.77 04:35
0.0001 0.76 55:31 0.77 21:15 0.77 34:46

TABLE 5.5: Neural Network performance with an adaptive learning
rate and several activation functions.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
0.1 -> 0.0001 0.77 00:49 0.77 00:50 0.76 01:02

The next parameter is the generalization term, or alpha as it is called in the used
implementation. Higher values of this term will lead to a more general model and
thus reduce overfitting. To determine the influence of the generalization term it has
been varied from 0 up to 10. Values up to 1 had no influence on the performance
whatsoever. A value of 10 leads to a decrease in performance. This is probably
caused by the model being to general. Since lower values have no impact on the
performance, the default value of 0.0001 will be selected. Since a higher general-
ization term leads to a more general model, it was expected that the deviation of
performance between folds would decrease with higher generalization terms. How-
ever, no such effect is found in the data.

The final two parameters are the tolerance and the maximum number of itera-
tions. Both of these parameters are used to determine when training should stop.
These are most important when computation times are long since they can be used
to determine the stopping moment. With this data set, computation times are limited
to several minutes in most cases. Therefore, it has been chosen to keep the stopping
criteria very loose. The threshold has been set to zero, so that training will continue
until the loss decreases or the maximum number of iterations has been reached. The
maximum iterations have been set to a value of 20,000 so that is will not easily be
reached.

5.1. Credit data - Taiwan 59

Adam solver

Just as with the sgd solver, the first parameter to be analyzed is the shape of the
hidden layers. In Table 5.6 the same shapes are taken into account as with the sgd
solver. From the table it becomes clear that it again has no added value to add more
than a single layer. More layers do not increase performance yet lead to a longer
computation time. Therefore, the choice has been made to add a single layer consist-
ing of 20 nodes. A small difference in performance between the different activation
functions is seen. Using a logistic function seems to lead to a higher performance,
however the difference is quite small.

TABLE 5.6: Neural Network performance for several different forms
of hidden layers with different activation functions. All networks are

trained with the adam solver.

Nodes per layer Logistic ReLu Tanh
First Second Third AUC Time AUC Time AUC Time

30 20 10 0.77 01:42 0.76 01:19 0.76 01:33
30 20 - 0.77 01:29 0.76 01:09 0.76 01:34
30 10 - 0.77 01:25 0.77 01:02 0.76 01:18
20 10 - 0.78 01:24 0.77 00:53 0.77 01:03
30 - - 0.78 01:34 0.77 00:40 0.77 01:14
20 - - 0.78 01:32 0.77 00:35 0.77 00:55
10 - - 0.78 01:28 0.77 00:33 0.77 00:49

- - - 0.72 00:08 0.72 00:10 0.72 00:10

The next parameters that will be analyzed is the learning rate. The same learning
rates are taken into account as with the sgd solver. However, adam does not support
adaptive learning rates. As expected the learning rate has a large influence on the
computation time. With the sgd solver the relation between performance and learn-
ing rate was not very clear. With a logistic activation function a smaller learning rate
even led to a decrease in performance. With the adam solver the relation between
the learning rate and performance is more clear. A smaller learning rate increases
performance at the cost of a longer computation time. From Table 5.7 it can be con-
cluded that a logistic activation function in combination with a learning rate of 0.001
is a good choice. It has a high performance without increasing the computation time
to much.

TABLE 5.7: Neural Network performance for several different con-
stant learning rates and several activation functions.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
0.1 0.76 00:08 0.76 00:04 0.76 00:07
0.01 0.77 00:25 0.77 00:10 0.76 00:19
0.001 0.78 01:32 0.77 00:34 0.77 04:56
0.0001 0.78 09:51 0.77 03:38 0.77 06:33

The regularization term shows similar behavior as when used in combination
with the sgd solver. It has no influence on the performance until very high values
are used. Then the performance is negatively impacted by regularization.

The last two parameters are the maximum number of iterations and the toler-
ance. The approach to determine their values is identical as used with the sgd solver.
Since computation times are still feasible, both parameters will be set very loose so

60 Chapter 5. Model training

that performance is increased as long as possible. The parameters are set to the same
values as for the sgd solver, with maximum iterations being 20,000 and the tolerance
set to zero.

Comparison

Now that the performance of both solvers has been analyzed, they can be compared
to make a decision on which one to use. The most important measure is logically
the performance. The difference between the algorithms is not large, nevertheless,
adam has a slightly higher performance. Aside from the performance, adam also
has a computation time that is shorter. The conclusion is that adam will be used a
solver for this algorithm. The following settings have been selected for the Artificial
Neural Network.

TABLE 5.8: Settings for the Artificial Neural Network algorithm

Parameter Selected value
Solver Adam

Hidden layers Single layer with 20 nodes
Activation function Logistic

Learning rate 0.001
Regularization term 0.0001

Tolerance 0
Max iterations 20,000

5.1.3 k Nearest Neighbors

k Nearest Neighbors is the next algorithm for which the parameters will be deter-
mined. This algorithm works by making a classification based on the classes of the
closest samples, the nearest neighbors. In the previous chapter is has been deter-
mined that this algorithm should be used in combination with no resampling or ran-
dom undersampling. Since random undersampling decreases computation times it
will be used for this algorithm. It is also shown that splitting the payment status
features and calculating the bill statement as ratio of the balance limit increases the
performance. This algorithm has the following parameters that have to be deter-
mined.

– Algorithm: Three different algorithms are compared, k − d Tree, Ball Tree and
Brute Force.

– Leaf size: Number of samples per leaf, only used when the k− d Tree or Ball Tree
algorithm is used

– n Neighbors: The number of neighbors on which the classification is based.

– Weights: The weights of the individual n neighbors used for classification. These
can be based on the distance of the neighbor or can all be the same, uniform.

The algorithm is the first parameter which is analyzed. Three different algo-
rithms can be used to run k Nearest Neighbors, each of these algorithms is used
with several values for n neighbors. This is done to examine if any interaction ef-
fects are present between the parameters. The results are shown in the table below,
clearly the algorithms perform equally accurate. However the calculation times are

5.1. Credit data - Taiwan 61

vastly different, as shown in Table 5.10. The Ball Tree algorithm is several times
faster than the other algorithms. This is related to the size of the data set, kd Tree
and Ball Tree both construct a tree during the training process, Brute force does not
do this and simply compares each sample. Constructing a tree saves time in large
data sets, but clearly this set is small enough to make Brute Force the better choice.
Since this algorithm does not create a tree, it is not necessary to determine the leaf
size.

TABLE 5.9: Performance of different k
Nearest Neighbors algorithms for several

n.

kd Tree Ball Tree Brute Force
1 0.62 0.62 0.62
5 0.71 0.71 0.71
10 0.73 0.73 0.73
20 0.75 0.75 0.75

TABLE 5.10: Calculation time of different
k Nearest Neighbors algorithms for sev-

eral n.

kd Tree Ball Tree Brute force
1 01:35.3 02:38.6 00:17.0
5 02:00.9 02:41.5 00:24.2
10 02:08.4 02:44.9 00:24.3
20 02:16.6 02:46.1 00:24.3

Now that the most suitable algorithm has been selected, the next parameter to be
analysed is the number of neighbors taken into account. Since the computation time
for this algorithm is very short, it is possible to calculate the performance for a lot
of different values. In Figure 5.1 the results are shown for experiment ranging from
n = 1 up to n = 35. The performance clearly increases when a high n is used up until
a value of approximately 35, after which the performance increase is unsubstantial.
From the analysis of the different algorithms it is known that computation time does
not increase substantially for n greater than five. Therefore a value of 35 seems a
good choice.

FIGURE 5.1: Impact of using different number of neighbors in combi-
nation with uniform or distance based weights.

5 10 15 20 25 30 35 40
0.6

0.65

0.7

0.75

0.8

n Neighbors

A
U

C

Uniform
Distance

The last parameter analyzed for this algorithm is the weight, or the importance
of the different neighbors. Two different settings can be used, uniform or distance. If
the first of these is chosen all n neighbors get an identical weight. When distance is
used, the closest of the n neighbors gets the highest weight. With increasing distance,
the weights of the neighbors decreases. The performance of both possibilities for
different values of n is given in Figure 5.1. The performance of both weights is
similar, therefore uniform will be used since it is the less complex option.

62 Chapter 5. Model training

TABLE 5.11: Settings selected for the k Nearest Neighbors algorithm

Parameter Selected value
Algorithm Brute force

Leaf size Not applicable
n Neighbors 35

Weights Uniform

5.1.4 Naive Bayes

The Naive Bayes classifier has no parameters which can be analyzed. The only pa-
rameters it he type of distribution, this can be Gaussian, Multinomial and Bernoulli.
However, Bernoulli requires binary features and is thus not applicable. Multinomial
is only suitable for non-negative features which makes it not usable for this data set.
Therefore the conclusion is that only Gaussian can be used.

5.1.5 Decision Tree

The next algorithm that is analyzed is the Decision Tree. The decision tree works by
constructing a branching tree, at each branch the data set is split according to a fea-
ture value. If a branch does not split any further, it is called a leaf. Each leaf belongs
to a certain class. In the previous chapter it has been determined that this algorithm
works best with random undersampling or oversampling. Since oversampling in-
creases computation times and undersampling decreases them, the choice has been
made to apply random undersampling. It was also determined that performance is
not increased by applying additional feature engineering.

The following parameters have to be determined for this algorithm.

– Criterion: What measure of impurity to use to base the split on.

– Max depth: The maximum depth of the constructed tree.

– n Features: The number of features taken into account at each split.

The first parameter that is analysed is the split criterion. This criterion is a value
to express the impurity in a data set, at each split the goal is to minimize the impurity.
For Decision Trees two criteria are widely used, Gini and Entropy. To determine the
best suitable criterion for this data set, both have been used in an experiment. To get
a better view on the performance it has been combined with the experiment for the
max depth. The results are shown in Figure 5.2, the difference between the criteria
is small, but entropy clearly is performing slightly better for almost all values of the
maximum depth.

The second parameter of the Decision Tree algorithm is the max depth, it is used
to specify the maximum size of the constructed tree. On first sight it might be ex-
pected that a deeper decision tree performance better than a less deep one. Figure
5.2 confirms this expectation, but only up to a max depth of five, higher values lead
to a decrease in performance. This is caused by overfitting to the training set. A
deep tree can fit itself to the exact data set, instead of to the underlying structure of
the data.

The final parameter is the number of features taken into account at each split. The
goal of decreasing the number of features to consider is to decrease overfitting. The
features are randomly selected from all available features. Three different settings

5.1. Credit data - Taiwan 63

FIGURE 5.2: Performance of the decision tree for different impurity
criteria and max depth values.

2 4 6 8 10 12 14
0.6

0.65

0.7

0.75

0.8

Max depth

A
U

C

Gini
Entropy

are taken into account, n,
√

n and log2 n. These three are used in combination with
different max depth values to determine their performance. The results are shown
in Figure 5.3. Due to the randomness of the feature selection process, the number of
folds is increased to 50 in order to get a good estimation of the real performance. The
expected decrease in overfitting does indeed return in the results. It starts to have a
clear impact for a maximum depth of eight or greater instead of five. However, this
does come at the cost of a lower maximum performance. Based on these finding the
choice has been made to keep the number of available features at n. The required
computation time with the selected parameters is 3 seconds.

FIGURE 5.3: Performance of the decision tree for different number of
features and max depth values.

2 4 6 8 10 12 14
0.6

0.65

0.7

0.75

0.8

Max depth

A
U

C

n√
n

log2 n

TABLE 5.12: Settings selected for the Decision Tree algorithm

Parameter Selected value
Criterion Entropy

Max Depth 5
n Features n

5.1.6 Random Forest

The Random Forest classifier is another ensemble model constructed from several
individual Decision Trees. In this algorithm each of the individual trees is trained
on a random subset of the training data, drawn with replacement. At each of the

64 Chapter 5. Model training

splits a subset of the features can be selected out of which one is selected to base
the split on. After the training process the output of all individual trees is combined
to determine the classification. In the previous chapter it has been determined that
no resample method increases performance. Random undersampling will be used
since it decreases computation times without negatively impacting algorithm per-
formance. Any feature engineering aside from the default changes has no positive
impact and will not be applied.

The following parameters will be analyzed for the Random Forest classifier.

– Max depth: The maximum number of layers the individual trees can contain.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Max features: The number of features considered at each split.

The first parameter for the Random Forest algorithm that will be determined is
the maximum depth of the individual trees. For the maximum depth two strate-
gies are taken into account. The first strategy is to use decision stumps, which are
trees with a depth of one. When using those trees, the number of estimators has to
be high. The second option is to use trees with a maximum depth of five, this is
the value determined for the Decision Tree classifier. Using this value will lead to
a lower number of individual estimators and a better performance per tree. Figure
5.4 shows the performance of both strategies for different values of n estimators. As
expected, performance increases when the number of estimators increases. Perfor-
mance increases fast with trees of depth five and slower with trees of depth one.
The exception is when trees with a depth of one are used in combination with n fea-
tures available at each split. This causes the performance to never increase. Which
is probably caused by the same split being made in each of the decision stumps in
the ensemble.

FIGURE 5.4: Performance of the Random Forest classifier for different
numbers of estimators.

(A) Max depth = 1

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C

√
n

log2 n
n

(B) Max depth = 5

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C

√
n

log2 n
n

Using the aforementioned figure, the two strategies can be compared and for
each a suitable number of estimators can be selected. When decision stumps are
used, the performance increases until the ensemble consists of approximately twenty

5.1. Credit data - Taiwan 65

trees. As mentioned before, having n features available for the split leads to a con-
stant low performance. The other two possibilities,

√
n and log2 n, show no substan-

tial difference. When trees with a depth of five are used, the performance increases
faster. Performance stops increasing after approximately ten estimators, depending
on the number of features available for a split. Performance increases fastest when
all n features are available. The maximum performance reached with the deep trees
is higher than is reached when using decision stumps.

To verify that a maximum depth of five is a good value for the deeper tree, sev-
eral other values will be examined. In Figure 5.5, maximum depth values of 1 up
to 30 are used in combination with five and ten estimators. It clearly shows a de-
crease in performance when the maximum depth goes beyond a certain threshold.
Just as with the Decision Tree classifier, this is caused by overfitting. The problem
decreases when the number of estimators increases. However, this does lead to an
increase in computation time and still does not perform better than maximum depth
values around five. Therefore it is a good choice to keep the maximum depth of
the individual trees at five. The computation time with the selected parameters is 8
seconds.

FIGURE 5.5: Performance of the Random Forest classifier for different
max depth values.

(A) 5 estimators

5 10 15 20 25 30
0.7

0.72

0.74

0.76

0.78

0.8

Max depth

A
U

C

√
n

log2 n
n

(B) 10 estimators

5 10 15 20 25 30
0.7

0.72

0.74

0.76

0.78

0.8

Max depth

A
U

C

√
n

log2 n
n

TABLE 5.13: Settings selected for the Random Forest algorithm

Parameter Selected value
Max depth 5

n Estimators 10
Max features n

5.1.7 ADABoost

The ADABoost algorithm is an ensemble model consisting of multiple Decision
Trees. The classifier is constructed by adding a new tree per iteration until a pre-
determined number of trees is reached. Each of the trees is trained using a weighted
training set. In the weighted set, the samples that are most often incorrectly clas-
sified are given the highest weight. The trees are most often chosen to be decision

66 Chapter 5. Model training

stumps but can also be deeper trees. In the previous chapter is has been determined
that resampling does not lead to a performance increase for ADABoost. Random
undersampling has no influence on the performance but does decrease computation
times, therefore it will be used for this algorithm. It was also determined that addi-
tonial feature engineering does not lead to an increased performance, thus only the
default changes will be used. The following parameters will be taken into account
to determine the ADABoost performance.

– Max depth: The maximum number of layers the individual trees can contain.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Learning rate: The speed with which the weight of each next tree decreases.

– Criterion: The criterion used to determine the split for branches.

The first parameter is the number of estimators contained in the ADABoost clas-
sifier. The effect of the number of estimators is highly dependent on the settings of
the individual trees. Therefore this test will be performed with two different individ-
ual classifiers. Since ADABoost is often used in combination with decision stumps,
trees with a depth of one will be used. The second type of tree is the one with the
settings found in the above section about Decision Trees, a depth of five. The results
of this analysis are shown in Figure 5.6. Clearly the type of tree has a large im-
pact on the performance of the model, especially for a small number of estimators.
When the individual trees are chosen to be more elaborate, the ADABoost algorithm
leads to a small performance increase. This is logical since each of the individual
trees has a good predictive capability. For the decision stumps, ADABoost leads to
a larger increase in performance. Up until ten estimators the performance increases
sharply and even thereafter the performance keeps increasing slowly. Concluding,
if the more complex tree is used five estimators is sufficient, for decision stumps the
number of estimators should be increased to at least 25.

FIGURE 5.6: Performance of the decision tree for different number of
features and max depth values.

5 10 15 20 25
0.65

0.7

0.75

0.8

n estimators

A
U

C

Stumps
Full tree

The next parameter under consideration is the learning rate. This settings de-
termines how fast the weight of the next tree decreases. The learning rate is closely
related to the number of estimators. A high number of estimators does not work
well in combination with a high learning rate because the later trees have practically

5.1. Credit data - Taiwan 67

no impact on the prediction. Therefore the learning rate shall also be analysed to-
gether with the number of estimators. Figure 5.7a shows the resulting performance
for different learning rates. The most important conclusion from this figure is that a
higher learning rate leads to a faster increasing performance. However the different
settings all approach approximately the same final performance. The performance
of the algorithm with a learning rate of 0.6 seems to be the highest, but it is question-
able if this difference is significant.

FIGURE 5.7: Relation between n estimators and two parameters.

(A) Learning rates

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C

0.2 0.4
0.6 0.8
1.0

(B) Split criteria

5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C
Stumps - Entropy
Deep - Entropy
Stumps - Gini
Deep - Gini

The last parameter for the ADABoost algorithm is the criterion. Just as with the
Decision Tree algorithm, two criteria are taken into account, entropy and gini. Fig-
ure 5.7b shows the results of the comparison between the criteria. Since the plots of
the different criteria are almost overlapping there is no substantial difference in per-
formance. The computation time of 25 folds with the selected settings is 33 seconds.

TABLE 5.14: Settings selected for the ADABoost algorithm

Parameter Selected value
Max depth 5

n Estimators 10
Learning rate 0.6

Criterion Entropy

5.1.8 Gradient Boosting

The last algorithm that is analyzed is Gradient Boosting. Just as the previous two
algorithms this is an ensemble of multiple Decision Trees. It differs from the other
ensemble models in the way that the trees are constructed. Instead of doing this by
introducing random variation or weighting samples, it determines a gradient of the
loss function and used that to generate supporting trees. In the previous chapter it
has been determined that this algorithm can be best used with random oversampling
or no resampling. Since random oversampling increases the computation time, no
resampling will be used. It was also found that additional feature engineering has no
positive effect, thus only the default engineering will be applied. Below the param-
eters are given that will be analyzed. One might expect the loss function to be one
of the parameters that has to be determined. Gradient Boosting can be used in com-
bination with two loss function, Entropy and Deviance. When Gradient Boosting

68 Chapter 5. Model training

is used with an exponential loss function, the algorithm is identical to ADABoost.
Therefore, a Deviance loss function will be used.

– Learning rate: The speed with which the impact of each next tree decreases.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Max depth: The maximum number of layers the individual trees can contain.

– Criterion: The criterion used to determine the split for branches.

The learning rate is the first parameter that will be analysed. Figure 5.8 shows
the performance of Gradient Boosting for several learning rates and number of esti-
mators. The left graph shows the performance when Decision Stumps are used, the
right graph for when the selected depth (five) of the Decision Tree classifier is used.
From the graph about the Decision Stumps, it can be concluded that the learning
rate has a small influence, only for very small values the performance stays low. An
exception occurs when using a learning rate of 0.1, it shows an interesting pattern.
It has several horizontal sections, between which the performance jumps up very
sudden. The influence of the learning rate in combination with deeper trees is more
interesting. In the right graph it can be seen that the performance actually decreases
when a learning rate of 0.5 or higher is used. Thus for the larger trees it is a good
choice to use a learning rate of 0.1. The highest AUC is slightly higher when trees
with a depth of five are used.

FIGURE 5.8: Performance of the Gradient Boosting classifier for dif-
ferent numbers of estimators.

(A) Max depth = 1

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C

η = 0.1
η = 0.3
η = 0.5
η = 0.7
η = 0.9

(B) Max depth = 5

5 10 15 20 25 30
0.6

0.65

0.7

0.75

0.8

n estimators

A
U

C

η = 0.1
η = 0.3
η = 0.5
η = 0.7
η = 0.9

The last parameter for the Gradient Boosting algorithm is the Criterion used
to determine a good split in the trees. Three different criteria are available, mean
squared error, Friedman improved mean squared error and mean absolute error.
During the comparison it became clear that mean absolute error is not a realistic op-
tion due to the high computation time. In Figure 5.9 the other two criteria are com-
pared. Clearly the difference between the criteria is negligible. Therefore the default
value will be used, which is the Friedman improved mean squared error. With the
selected parameters, the required computation time for 25 folds is 42 seconds.

5.1. Credit data - Taiwan 69

FIGURE 5.9: Impact of using differ-
ent number of neighbors in combination
with uniform or distance based weights.

2 4 6 8 10 12 14 16 18 20 22 24

0.76

0.78

0.8

n Neighbors

A
U

C

Friedman
MSE

TABLE 5.15: Settings selected for the Gra-
dient Boosting algorithm

Parameter Selected value
Learning rate 0.1
n Estimators 20
Max depth 5
Criterion Friedman improved

mean squared error

5.1.9 Support Vector Machine

The last algorithm for which the parameters have to be determined is the Support
Vector Machine. In the previous chapter it has been determined that a Support Vec-
tor Machine requires a form of resampling, which method makes no large difference.
The choice has been made to use random undersampling since it decreases compu-
tation times. It has also been determined that doing additional feature engineering
has no beneficial effect. For this algorithm, the following parameters have to be
determined.

– Kernel: The type of kernel to use in the algorithm.

– Error term (C): Size of the penalty given to samples on the wrong side of the
decision boundary.

– Gamma: Measure to specify the similarity between data points. Influences the
standard deviation used in the kernel.

– Degree: The degree of the polynomial, when a polynomial kernel is used.

The first parameter which will be analyzed is the kernel which will be used. The
available kernels are: linear, rbf and poly. Table 5.16 shows the performance of the
different kernels when used with the corresponding default values. Rbf and poly
have a similar performance, using a linear kernel results in a lower performance.
Before a choice can be made on which kernel is most suitable, the parameters of the
kernels have to be determined.

TABLE 5.16: Performance of Support Vector Machine in combination
with different kernels and default settings.

Kernel Performance
linear 0.71
rbf 0.75
poly 0.75

First the linear kernel, which has a single parameter that has to be set, the error
term. Values from 0.1 up to 100 are used to determine the performance. The results
are given in Table 5.17 and show that the performance is the same for all settings.

The next kernel to be analyzed is rbf. It has two parameters which can be changed,
the error term and gamma. The same values of the error term are taken into account

70 Chapter 5. Model training

as with the previous kernel. For gamma values ranging from 0.001 up to 10 are used.
The results are shown in Table 5.18. It is clear that a too small or too high value of
gamma, leads to a decrease in performance. A value of 0.01 seems to lead to the
highest performance. This highest value is reached in combination with an error
term of 10 or 100.

TABLE 5.17: Performance of a Support
Vector Machine with a linear kernel and

varying error terms.

Performance
C=0.1 C=1 C=10 C=100

0.71 0.71 0.71 0.71

TABLE 5.18: Performance of a Support
Vector Machine with a rbf kernel and
varying error terms and gamma values.

Performance
Gamma C=0.1 C=1 C=10 C=100
0.001 0.69 0.73 0.74 0.74
0.01 0.74 0.75 0.76 0.76
0.1 0.74 0.75 0.71 0.71
1 0.61 0.66 0.64 0.64
10 0.47 0.55 0.54 0.54

The last of the kernels for which the parameters will be determined is the polyno-
mial kernel. This algorithm has three parameters, the firs two are gamma and error
term, just as with the rbf kernel. The third parameters is the degree of the polyno-
mial. A degree of 1 leads to linear kernel and is not taken into account. The highest
degree taken into account is three, higher values will probably lead to overfitting.
The results are shown in Table 5.19. With those results, the computation time for 25
folds is 54 seconds.

TABLE 5.19: Performance of a Support Vector Machine
with a polynomial kernel and varying degrees and error

terms.

Performance
Degree Gamma C=0.1 C=1 C=10 C=100
2 0.01 0.70 0.74 0.74 0.74
2 0.1 0.74 0.74 0.73 0.72
2 1 0.73 0.72 - -
3 0.01 0.67 0.73 0.74 0.75
3 0.1 0.74 0.73 0.63 -
3 1 0.56 - - -
4 0.01 0.54 0.67 0.71 0.73
4 0.1 0.71 0.57 0.53 -
4 1 0.51 - - -

TABLE 5.20: Settings
selected for the Sup-
port Vector Machine al-

gorithm

Parameter Selected value
Kernel rbf
Error term 10
Gamma 0.01
Degree Not applicable

5.1.10 Tested result

The final step in determining the performance of the different algorithm is to verify
the performance with the test data set. As mentioned in Chapter 3, 25% of the data
set has been kept separated until now. This is done to be able to verify the models
on data that was not accessible before. First the algorithms are trained using the 75%
that has been used until now. The trained algorithm is then applied to the test data
set, and the performance is determined. The table below shows the results of testing
the models. To be able to make a more in depth comparison between the algorithms,
the precision and recall of all algorithms is also added. In Appendix B, Table B.3, the
confusion matrices of the results are given.

5.2. Peer to peer lending - Prosper 71

TABLE 5.21: Performance of the different algorithms when deter-
mined using the test set.

Algorithm AUC Precision Recall
Logistic regression 0.77 0.48 0.58
Neural network 0.78 0.45 0.62
Naive Bayes 0.74 0.40 0.63
k Nearest neighbors 0.76 0.44 0.61
Decision tree 0.76 0.45 0.60
Random forest 0.77 0.44 0.63
ADABoost 0.77 0.41 0.67
Gradient boosting 0.78 0.45 0.61
Support Vector Machine 0.76 0.47 0.59

5.2 Peer to peer lending - Prosper

For the second data set the parameters of the algorithms have to be determined
separately from the first data set. Since each data set is different it might be beneficial
to use other settings. However, since this is the second iteration of determining
the parameters it will be discussed more concise. In graphs showing the result of
running an experiment, the results of the same experiment with the previous data
set will be shown as a dashed line. This is done to be able to see the differences and
similarities between the data sets. Please note that Naive Bayes has been left out
since it has no parameters that can be changed, see Section 5.1.4 for more details.

5.2.1 Logistic regression

Just as with the previous data set, Logistic Regression is the first algorithm which
will be analyzed. In the previous chapter the different resample methods have been
applied to this data set. From that experiment it was concluded that the choice of
resample method has no impact on the performance of the machine learning algo-
rithm. Therefore the choice has been made to use random undersampling since it
decreases computation times.

– Regularization: Two types of regularization are available, l1 and l2. The first of
these tries to create a sparse classifier.

– Solver: Two solvers are taken into account, sag and saga. Both solvers are ex-
plained in Chapter 2.

– Regularization term (C): smaller values indicate more generalization.

The first parameters which will be analyzed are the solver and regularization.
Since both have two possible values, four experiments have to be ran. The results
are shown in Table 5.22. The table shows a similar pattern as with the previous data
set, the performance difference between the two solvers and regularization terms
is minimal, but the computation time shows a large difference. Thus, based on the
computation time, liblinear will be used in combination with L1.

The next parameters is the regularization term, it will be analyzed from 0.1 up
to 10.0. Those values will be used in a combination with Liblinear and L1 regular-
ization. The results are shown in Table 5.23, just as with the previous data set, this
variable has almost no impact on the performance and thus the default value of 1.0
will be used. Only when a high value of 10.0 is used, does the performance decrease
a small amount.

72 Chapter 5. Model training

TABLE 5.22: Performance and
computation time of different

solvers and regularizations.

AUC Computation time
saga - l1 0.78 02:02
saga - l2 0.77 01:16

liblinear - l1 0.78 00:12
liblinear - l2 0.78 00:14

TABLE 5.23: Performance for differ-
ent values of the regularization term

C.

C AUC
0.1 0.78
0.5 0.78
1.0 0.78
2.0 0.78
5.0 0.78

10.0 0.77

TABLE 5.24: Settings selected for the Logistic Regression algorithm

Parameter Selected value
Regularization L1
Solver Liblinear
Regularization term 1.0

5.2.2 Artificial Neural Network

The next algorithm for which the parameters will be determined is the Artificial
Neural Network. Preparing the data for a Neural Network can best be done us-
ing random undersampling as resample method. For this algorithm, the following
parameters have to be determined.

– Solver: Two solvers are taken into account, sgd and adam. Both solvers are ex-
plained in Chapter 2.

– Hidden layers: The number and size of the layers between the input and output
layers.

– Activation function: The shape of the function used to transform the input signals
of the neurons.

– Learning rate: Size of the step with which weights are changed. It can be a con-
stant or adaptive rate.

– Regularization term: A term that can be used to penalize complex models. This
can be used to counter overfitting.

– Tolerance: If the decrease in loss during training is smaller than this threshold for
two consecutive epochs, training is stopped.

– Max iterations: The maximum number of iterations to reach convergence.

The parameters will be examined in the same order as has been used with the
previous data set. First the parameters will be determined for use with the sgd
solver followed by the parameters for the adam solver. Fist the shape of the hid-
den layers and the different activation functions will be analyzed, then the learning
rate, followed by the regularization term and finally the tolerance and maximum
iterations.

5.2. Peer to peer lending - Prosper 73

Sgd solver

The first parameter that will be analysed is the shape of the hidden layer. As dis-
cussed with the previous data set, the shape usually depends on the number of in-
put nodes. With this data set the model has 182 input nodes and is clearly high
dimensional. The number of nodes in a hidden layer is usually chosen to be smaller
than the input layer, or a previous hidden layer. Due to the size of the data set com-
putation time where long with at least 15 minutes per experiment. With the many
experiments that have to be run this caused the total computation time to become
unfeasible. Therefore, the choice has been made to increase the learning rate from
the default value of 0.001 up to 0.01. The different shapes of the hidden layer that
are taken into account and the corresponding performances are shown in Table 5.25.
From the results it can be concluded that adding more than a single hidden layer has
no positive effect on the performance or computation times. From the three settings
with a single hidden layer, the one with thirty nodes seems to lead to the highest
performance, but the difference is small. For now the Logistic activation function
leads to the highest performance, but this might change with the learning rate.

TABLE 5.25: Neural Network performance for several different forms
of hidden layers with different activation functions. All networks are

trained with the Sgd solver.

Nodes per layer Logistic ReLu Tanh
First Second Third AUC Time AUC Time AUC Time
120 60 30 0.63 01:08 0.76 04:21 0.76 40:52
120 60 - 0.76 06:20 0.77 07:01 0.75 32:21

60 30 - 0.79 09:33 0.76 03:52 0.75 13:36
120 - - 0.77 06:27 0.77 12:53 0.76 51:13

60 - - 0.79 13:55 0.78 05:10 0.75 18:23
30 - - 0.80 08:48 0.79 02:38 0.77 04:36

- - - 0.77 00:24 0.77 00:27 0.77 00:24

The next parameters of the Neural Network that will be determined is the learn-
ing rate. In Table 5.26, the performance is shown for several values of the learning
rate and the different activation functions. The table shows that the learning rate has
a large influence on the computation time required, but also on the performance.
Smaller values for the learning rate lead to a higher performance at the cost of an
increased computation time. An adaptive learning rate has also been taken into ac-
count, as shown in Table 5.27. The results show that it has no beneficial effect to
make the learning rate adaptive. A constant learning rate of 0.01 will be selected.

TABLE 5.26: Neural Network performance for several different learn-
ing rates.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
1 0.76 01:02 0.76 00:28 0.72 00:43
0.1 0.76 03:22 0.78 00:51 0.74 00:51
0.01 0.80 08:48 0.79 02:38 0.77 05:36

Now a learning rate has been selected, alpha will be determined for use with the
sgd solver. The results of using alpha values ranging from 0.001 to 1 are shown in
Table 5.28. When a ReLu or tanh activation function is used, performance increases

74 Chapter 5. Model training

TABLE 5.27: Neural Network performance with an adaptive learning
rate and several activation functions.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
1 -> 0.0001 0.75 18:24 0.76 14:05 0.73 19:41
0.1 -> 0.0001 0.76 07:12 0.78 06:48 0.76 01:02

with higher values for alpha. This effect is reversed when a logistic activation func-
tion is used. The best performance is achieved when ReLu is used in combination
with an alpha of 1, this results in an AUC of 0.81 and also a low computation time of
1:35. It is interesting to see that alpha has a larger influence on the computation time
when a logistic activation function is used in comparison with the other activation
functions.

TABLE 5.28: Neural Network performance for several different alpha
values

Logistic ReLu Tanh
Alpha AUC Time AUC Time AUC Time
1 0.77 01:22 0.81 01:35 0.80 01:43
0.1 0.80 04:23 0.80 02:17 0.79 03:34
0.01 0.80 08:36 0.80 02:43 0.77 05:03
0.001 0.80 08:48 0.79 02:38 0.77 04:36

Finally, the maximum iterations and tolerance have to be determined. These
parameters are used to determine when the algorithm should stop training. When
they are chosen to strict, it will result in the performance not being as high a it can
be. Since using a small decrease in learning rate lead to feasible computation times it
was not necessary to define a strict threshold or low number of maximum iterations.
The choice has been made to set the threshold to zero, this leads to the algorithm
continuing training until the loss does not decrease for two consecutive epochs. The
maximum number of iterations has been set to 20,000, a value which will almost
never be reached.

Adam solver

Applying the algorithm with its default settings, except for the learning rate and
varying the hidden layer shape results in the performance given in Table 5.29. These
results are remarkable since the model without any hidden layers seems to perform
best regardless of the chosen activation function. This should only happen if the
data set is linearly separable, which is unlikely in a high dimensional data set. One
of the possible reasons for this behavior is overfitting, in Neural Network this can be
countered by increasing the regularization term. By varying the regularization term
it was found that it indeed has the expected impact on the performance. The highest
performance is found with a term of 0.1, the results are shown in Table 5.30. This
confirms that the model is overfitted to the training set.

With the generalization term increased, the results look very different. Now the
experiments where a hidden layer is added clearly show a higher performance, as is
expected with data sets that are not linearly separable. Just as with the previous data
set, the results show that it is not necessary to add more than a single hidden layer.
Adding more layers does not increase performance, using three hidden layers even

5.2. Peer to peer lending - Prosper 75

TABLE 5.29: Neural Network performance for different forms of hid-
den layers and activation functions. These networks are trained with

the adam solver and use a regularization term of 0.001.

Nodes per layer Logistic ReLu Tanh
First Second Third AUC Time AUC Time AUC Time
120 60 30 0.75 03:11 0.76 02:21 0.75 02:23
120 60 - 0.76 03:47 0.76 01:45 0.74 03:55

60 30 - 0.74 01:50 0.75 01:06 0.74 01:50
120 - - 0.77 03:57 0.76 01:36 0.74 03:37

60 - - 0.75 02:47 0.75 01:11 0.74 02:08
30 - - 0.74 02:33 0.76 00:56 0.72 01:37

- - - 0.77 00:09 0.77 00:09 0.77 00:09

leads to the same performance as no hidden layers. Using a single hidden layers
with thirty nodes, leads to the highest performance and the lowest computation
time of the single hidden layer variants. Thus the choice has been made to use a
single hidden layer with thirty nodes.

TABLE 5.30: Neural Network performance for different forms of hid-
den layers and activation functions. These networks are trained with

the adam solver and use a regularization term of 0.1.

Nodes per layer Logistic ReLu Tanh
First Second Third AUC Time AUC Time AUC Time
120 60 30 0.77 01:07 0.77 02:28 0.77 03:08
120 60 - 0.79 01:40 0.77 02:04 0.77 02:17

60 30 - 0.80 01:23 0.77 01:10 0.77 01:24
120 - - 0.79 01:48 0.79 01:22 0.77 01:46

60 - - 0.80 01:14 0.79 00:50 0.77 01:04
30 - - 0.80 00:50 0.79 00:35 0.78 00:41

- - - 0.77 00:09 0.77 00:09 0.77 00:07

Table 5.31 shows the impact of changing the learning rate. As seen with the
previous experiments concerning the learning rate, it again has a large impact on
the computation time. When a learning rate of 1 is used, computation times are very
short, but the performance is very low. Decreasing the learning rate to 0.1 still results
in a short computation time, but a higher performance. Using a learning rate greater
than 0.01, does not lead to an increased performs, only to a longer computation time.
Therefore, a learning rate of 0.01 will be selected.

TABLE 5.31: Neural Network performance for several different learn-
ing rates.

Logistic ReLu Tanh
Learning rate AUC Time AUC Time AUC Time
1 0.68 00:15 0.60 00:12 0.67 00:07
0.1 0.78 00:15 0.77 00:14 0.76 00:07
0.01 0.80 00:47 0.79 00:32 0.78 00:42
0.001 0.80 03:50 0.79 02:51 0.78 03:25

The maximum number of iterations and the tolerance are set to the same values
as used with the sgd solver.

76 Chapter 5. Model training

Comparison

Now that the performance for both of the solvers has been determined, they can
be compared. The core of this comparison is the performance and the computation
time. Using the sgd solver, the highest performance is 0.81. This is achieved by
using a single 30 node hidden layer, a ReLu activation function with a learning rate
of 0.01 and an alpha of 1. The computation time is feasible with 01:35. The best
performance with the adam solver is 0.80. This is performance is reached with a
single hidden layer consisting of 30 nodes and a logistic activation function. The
learning rate is set to 0.01 and alpha is set to 0.1.

The performance of the sgd solver is higher than the performance of the adam
solver. However, the computation time when using adam is lower. The difference
in computation time is small, 00:47 for the adam solver and 1:35 with the sgd solver.
Based on the performance, the choice has been made to select the sgd solver.

TABLE 5.32: Settings selected for the Artificial Neural Network algo-
rithm

Parameter Selected value
Solver Sgd

Hidden layers Single layer with 30 nodes
Activation function Relu

Learning rate 0.01
Regularization term 1

Tolerance 0
Max iterations 20,000

5.2.3 k Nearest Neighbors

k Nearest Neighbors is the next algorithm that will be experimented with. In the
previous chapter it has been determined that this algorithm in combination with
this data set returns the best results when used with random undersampling. For
this algorithm, the following parameters have to be determined.

– Algorithm: Three different algorithms are compared, k − d Tree, Ball Tree and
Brute Force.

– Leaf size: Number of samples per leaf, only used when the k− d Tree or Ball Tree
algorithm is used

– k Neighbors: The number of neighbors on which the classification is based.

– Weights: The weights of the individual n neighbors used for classification. These
can be based on the distance of the neighbor or can all be the same, uniform.

The first parameter to analyze is the algorithm used to construct the tree. Three
different algorithms can be used k − d Tree, Ball Tree and Brute Force. For each of
these the performance is determined for several values of k, the computation time
is also taken into account. Applying Nearest Neighbor with different algorithms to
this data set shows the same results as with the previous data set. The performance
is similar, but the computation time differs. The brute force construction algorithm
is substantially faster and thus chosen to be used from now on. This results in the
leaf size not being necessary to determine.

5.2. Peer to peer lending - Prosper 77

TABLE 5.33: Performance of different k
Nearest Neighbors algorithms for several

n.

kd Tree Ball Tree Brute Force
1 0.62 0.62 0.62
5 0.72 0.72 0.72
10 0.74 0.74 0.74
20 0.75 0.75 0.75

TABLE 5.34: Calculation time of different
k Nearest Neighbors algorithms for sev-

eral n.

kd Tree Ball Tree Brute force
1 05:34.4 04:28.8 00:45.6
5 05:46.9 04:30.4 00:52.8
10 05:52.2 04:28.7 00:52.7
20 05:54.8 04:30.9 00:24.3

The next step in determining the parameters for the k Nearest Neighbors algo-
rithm is to determine a suitable number of neighbors taken into account during clas-
sification. In Figure 5.10 values from 1 up to 40 are displayed. The performance
clearly increases with the number of neighbors. The increase becomes less when
the number of neighbors gets larger, at approximately 25 neighbors, the increase in
performance becomes negligible.

FIGURE 5.10: Impact of using different number of neighbors in com-
bination with uniform or distance based weights.

5 10 15 20 25 30 35 40
0.6

0.65

0.7

0.75

0.8

n Neighbors

A
U

C

Uniform
Distance

The last parameters of this algorithm is the weights with two possible settings,
uniform and distance. When uniform is chosen, each of the n neighbors are given
an equal weight. If distance weights are used, the weight of each of the n neighbors
is based on the distance from the sample that has to be classified. The figure used
for the number of neighbors, shows the performance for both of the types of weight.
The difference in performance between the two settings is negligible. Therefore the
choice has been made to use uniform weights, since it is the less complex setting.

TABLE 5.35

Setting Selected value
Algorithm Brute force
Leaf size Not applicable
n Neighbors 25
Weights Uniform

5.2.4 Decision Tree

The next algorithm for which the parameters will be determined is the Decision Tree.
During the resample experiment it was determined that this algorithm performs

78 Chapter 5. Model training

the highest when random oversampling is used. For this algorithm the following
settings are taken into account.

– Criterion: What measure of impurity to use to base the split on.

– Max depth: The maximum depth of the constructed tree.

– n Features: The number of features taken into account at each split.

The first experiments are to determine a good value for the maximum depth of
the decision tree. For the previous data set it was found that a too deep tree will lead
to overfitting. The expectation is that this problem will be less visible for this data set
since the number of features is substantially higher. Figure 5.11 shows the results of
the experiments. Clearly overfitting does still become a problem for deep trees, how-
ever it does occur at a relatively large depth. With the entropy criterion overfitting
only start happening at a max depth of nine. When overfitting start deteriorating the
predictive performance, the trees constructed with the entropy criterion show less
deterioration. Since performance is otherwise equal, entropy will be selected as the
criterion.

FIGURE 5.11: Performance of the deci-
sion tree for different impurity criteria

and max depth values.

5 10 15
0.6

0.65

0.7

0.75

0.8

Max depth

A
U

C

Gini Entropy

FIGURE 5.12: Performance of the Deci-
sion Tree algorithm for different number
of features and max depth values. All
have been constructed with the entropy

criterion.

5 10 15
0.6

0.65

0.7

0.75

0.8

Max depth

A
U

C

n √
n log2 n

Now that the criterion is determined, the maximum depth of the trees has to be
chosen. Since the choice of the maximum depth depends on the number of feature
available per split, they will be determined together. Figure 5.12 shows the per-
formance of Decision Trees with varying maximum depth and available features.
The results are very similar to those seen with the previous data set. Making n fea-
tures available at each split leads to the highest performance, but it also leads to the
greatest influence of overfitting.The other two possibilities do not come close to the
performance of having all n features available. Therefore the choice is made to select
n features in combination with a maximum depth of 7. The required computation
time for 25 folds with the selected parameters is 01:06.

5.2.5 Random Forest

Random Forest is the next algorithm which will be analyzed in combination with
the second data set. In Chapter 4 this algorithm has been used in combination with

5.2. Peer to peer lending - Prosper 79

TABLE 5.36: Parameters selected for the Decision Tree algorithm.

Parameter Selected value
Criterion Entropy
Max Depth 7
n Features n

several resample methods. From those experiments it was concluded that Random
Forest has to be used in combination with random undersampling. The following
parameters have to be determined for this algorithm

– Max depth: The maximum number of layers the individual trees can contain.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Max features: The number of features considered at each split.

The first Random Forest experiment with the Prosper data set is to determine the
influence of the maximum depth of the trees. Just as with the previous data set, two
strategies for the maximum depth will be used. The first strategy is to use decision
stumps and try to get a high performs by adding many trees. The second strategy
uses the maximum depth determined as the best value for a single Decision Tree.
The goal is to make each individual tree a good predictor. Figure 5.13 shows the per-
formance of both strategies for different values for the n estimators parameter. The
performance when using decision stumps in combination with n features available
for a split, leads to a constant low performance. When not all features are avail-
able for a split, the performance does show the expected increase when the number
of estimators is increased. The highest performance is approximately 0.74 which is
reached with 25 estimators and

√
n features available for a split. The performance

when using the deeper trees with a depth of 7 is higher. The performance reaches
approximately 0.80, when 20 estimators are used in combination with n features
available per split.

FIGURE 5.13: Performance of the Random Forest classifier for differ-
ent numbers of estimators.

(A) Max depth = 1

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

n estimators

A
U

C

√
n

log2 n
n

(B) Max depth = 7

5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

n estimators

A
U

C

√
n

log2 n
n

To be sure that seven is a good value for the maximum depth, several other val-
ues will be examined. in combination with 20 estimators and n features available. In

80 Chapter 5. Model training

Figure 5.14 the performance is shown for a maximum depth of 1 up to 30. The figure
shows how the performance increases at first when the maximum depth increases.
After the depth has reached approximately 12, the performance starts to deteriorate
due to overfitting. The maximum depth selected up to now is seven, from the figure
it can be concluded that performance does increase with a higher maximum depth.
A value of 10 is more suitable. The required computation time for 25 folds with the
selected parameters is 01:18.

FIGURE 5.14: Performance of the Ran-
dom Forest classifier for different max

depth values and 20 estimators.

5 7 10 15 20 25 30
0.7

0.75

0.8

0.85

Max depth

A
U

C

TABLE 5.37: Settings selected for the Ran-
dom Forest algorithm

Parameter Selected value
Max Depth 10
n Estimators 20
n Features n

5.2.6 ADABoost

The next algorithm also is also an ensemble of Decision Trees, ADABoost. In the pre-
vious chapter the impact of the different resample methods has been determined. It
was found that random undersampling is a suitable method for use with this algo-
rithm. In this section the following parameters will be analyzed.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Learning rate: The speed with which the impact of each next tree decreases.

– Max depth: The maximum number of layers the individual trees can contain.

– Criterion: The criterion used to determine the split for branches.

The first three of the parameters mentioned above will be analyzed together. For
the maximum depth of the trees, two values are taken into account. The first maxi-
mum depth take into account is one, this results in using Decision Stumps. The sec-
ond value is seven, the optimal depth determined for the Decision Tree algorithm.
Figure 5.15a shows the performance when Decision Stumps are used in combina-
tion with several learning rates and number of estimators. Figure 5.15b shows the
same information but for ADABoost based on full tress. Both graphs clearly show
that performance increases with the number of estimators. Performance increases
slower when the number of estimators gets larger. When using Decision Stumps the
AUC approaches 0.78, a learning rate of 0.8 or 1.0 seems to make the performance
increase the fastest. For those two learning rates, the highest performance is reached
at approximately 40 estimators. When using trees with a depth of seven, the results
are different. Now the higher learning rates actually lead to lower performance.
When using a learning rate of 0.2 or 0.4, an AUC of 0.80 is reached. Based on these
numbers, the choice has been made to use trees with a depth of seven, 15 estimators
and a learning rate of 0.4.

The last parameter that has to be determined is the criterion on which the split
is based. To determine the criterion, both possibilities will be used in combination

5.2. Peer to peer lending - Prosper 81

FIGURE 5.15: Performance of the ADABoost algorithm for different
learning rates and different numbers of estimators.

(A) Decision stump

10 20 30 40

0.7

0.72

0.74

0.76

0.78

0.8

0.82

n estimators

A
U

C

η = 0.2 η = 0.4
η = 0.6 η = 0.8
η = 1.0

(B) Full tree

5 10 15 20

0.7

0.72

0.74

0.76

0.78

0.8

0.82

n estimators
A

U
C

η = 0.2 η = 0.4
η = 0.6 η = 0.8
η = 1.0

with the above determined values for the other parameters. The results are shown
in Figure 5.16. From this graph the conclusion can be drawn that entropy leads to a
higher AUC across a wide range of n estimators. The required computation time for
25 folds with the selected parameters is 01:15.

FIGURE 5.16: Influence of the criterion on
the performance of the ADABoost algo-

rithm.

5 10 15 20
0.7

0.72

0.74

0.76

0.78

0.8

0.82

n estimators

A
U

C

Entropy
Gini

TABLE 5.38: Settings selected for the AD-
ABoost algorithm

Parameter Selected value
n Estimators 15

Learning rate 0.4
Max depth 7

Criterion Entropy

5.2.7 Gradient Boosting

The last of the algorithm for which the parameters have to be determined is the
Gradient Boosting classifier.

– Learning rate: The speed with which the impact of each next tree decreases.

– n Estimators: The number of individual trees out of which the classifier is con-
structed.

– Max depth: The maximum number of layers the individual trees can contain.

– Criterion: The criterion used to determine the split for branches.

82 Chapter 5. Model training

The first parameter to be analysed is the learning rate. The performance of the
algorithm will be determined for several different learning rates in combination with
two possible values for the maximum depth. The first value is one, which leads to
the usage of Decision Stumps. The second value is seven, which is the maximum
depth selected for the Decision Tree classifier. In Figure 5.17 the performance is
plotted against the number of estimators. The left graphs shows the performance
when Decision Stumps is used, the right graph when deeper trees are used. For
Decision Stumps it is clear that a higher learning rate leads to a higher performance.
The lowest learning rate shows a similar pattern as with the previous data set, the
performance shows several flat section between which it suddenly jumps up. For
Decision Stumps a learning rate of 0.7 or 0.9 is a good choice. Looking at the figure
for the trees with a maximum depth of seven, the influence of the learning rate is
reversed. For the deeper trees a larger learning rate leads to a lower performance. A
learning rate of 0.1 is selected to be used in combination with deeper trees.

FIGURE 5.17: Performance of the Gradient Boosting classifier for dif-
ferent numbers of estimators.

(A) Depth = 1

5 10 15 20 25 30
0.65

0.7

0.75

0.8

n estimators

A
U

C

η = 0.1
η = 0.3
η = 0.5
η = 0.7
η = 0.9

(B) Depth = 7

5 10 15 20 25 30
0.65

0.7

0.75

0.8

n estimators

A
U

C

η = 0.1
η = 0.3
η = 0.5
η = 0.7
η = 0.9

The next parameter that has to be determined for the Gradient Boosting algo-
rithm is the criterion. Three possible criteria can be used, mean squared error, Fried-
man improved mean squared error and the mean absolute error. Using all three of
the possibilities resulted in the same performances. Therefore the choice has been
made to use the default settings, Friedman improved mean squared error. The re-
quired computation time for 25 folds with the selected parameters is 01:53.

TABLE 5.39: Settings selected for the Gradient Boosting algorithm

Parameter Selected value
Learning rate 0.1
n Estimators 20

Max depth 7
Criterion Friedman improved mean squared error

5.2.8 Tested result

Now that the parameters have been determined for each of the algorithm, the final
performance can be determined. To do so, each of the algorithms will be used to

5.3. Data influences 83

predict the class of the samples in the test set. The models used to make these pre-
dictions are trained using the training set. The result is that samples are classified
that have never been used before. The results are given in Table 5.40. For the reader
to be able to assess the performance in more detail, the confusion matrix of each test
is shown in Appendix B, Table B.4.

TABLE 5.40: Performance of the different algorithms when deter-
mined using the test set.

Algorithm AUC Precision Recall
Logistic regression 0.77 0.16 0.73
Neural network 0.81 0.17 0.77
Naive Bayes 0.66 0.10 0.77
k Nearest neighbors 0.75 0.15 0.66
Decision tree 0.77 0.15 0.78
Random forest 0.80 0.15 0.83
ADABoost 0.80 0.17 0.73
Gradient boosting 0.81 0.16 0.83

5.3 Data influences

Now that it is known which parameters are suitable for each of the algorithms, some
further experimenting will be done. The experiments in this section will mainly be
about separating the data set before using it with the algorithms. Such a separation
could for example be based on the education level. The goal of these experiments
is to determine if any differences between the groups exist which influence the al-
gorithm performance. This separation is only applied to the testing set. This leads
to the algorithms being fully trained on the training set, and used to classify only a
subset of the testing set.

Aside from separating the data set, winsorizing will also be experimented with.
In this section not all of the algorithms will be used. Since in the previous sections of
this chapter the performance of the different algorithms has been determined, only
the ones with a relatively high performance will be used here. Just as in the rest of
the report, the data set with the Taiwanese credit lines will be used first, followed by
the second data set.

5.3.1 Credit data - Taiwan

The first feature which will be used to split the data set with the Taiwanese credit
lines is the ’education’ feature. As described in Chapter 4, this feature can take four
different values, ’graduate school’, ’high school’, ’university’ and ’other’. In Table
5.41, some info is shown about the different categories. Both the ’other’ and ’high
school’ categories have a low amount of samples.

The results of applying the selected algorithms to the different education cate-
gories are given in Table 5.42. They clearly show that the ’other’ category performs
worst of the different categories. This is probably caused by the low number of
samples in that category. It can also be the result of the ’other’ category containing
hard to classify samples. The ’high school’ category also seems to perform less than
’graduate school’ and ’university’. However, it is difficult to determine the exact
cause. The category has 16.39% of the samples, which should be sufficient. Another
possible reason is that the category simply has less structure, which leads to accurate

84 Chapter 5. Model training

TABLE 5.41: Possible values for the ’education’ feature in the first
data set and the number of occurrences.

Category n %
Other 468 1.56%
Graduate school 10,585 35.28%
University 14,030 46.77%
High school 4,917 16.39%

predictions being difficult. The largest two categories, ’graduate school’ and ’univer-
sity’, both show a good performance similar to when all samples are used together.
’university’ does perform slightly better, this might be caused by the samples in this
category being easier to predict. However, it might also be due to random variation.

TABLE 5.42: Performance of the selected algorithms, when only the
samples belonging to the stated education category are used.

Value LR NN DT GB RF
Original 0.77 0.78 0.76 0.78 0.77
Other 0.72 0.70 0.68 0.68 0.70
Graduate school 0.76 0.77 0.75 0.78 0.77
University 0.77 0.79 0.76 0.78 0.78
High school 0.74 0.76 0.74 0.76 0.75

The next feature which will be analyzed is the ’marriage’ feature. This feature
can take four different values, ’other’, ’married’, ’single’ and ’divorced’. In Table
5.43 some information is shown about the different categories. Just as with the ’ed-
ucation’ feature, this feature also has some categories with a very small number of
samples. The ’other’ category is the smallest with just 54 samples. Since the number
of samples is so low, it is difficult to determine the performance of classifying those
samples and thus it will not be taken into account. The second category with a small
number of samples is the ’divorced’ category, with 323 samples.

TABLE 5.43: Possible values for the ’marriage’ feature in the first data
set and the number of occurrences.

Meaning n %
Other 54 0.18%
Married 13,659 45.53%
Single 15,964 53.21%
Divorced 323 1.08%

The results of separating the samples based on the marital status is shown in
Table 5.44. The ’married’ and ’single’ categories show almost no deviation in per-
formance, only the Decision Tree algorithm has a change of 0.01. The ’divorced’
category does show a large change in performance, across all of the algorithms the
AUC is a lot lower. This is probably caused by the size of the category, but it might
also be caused by the category having less structure.

The last modification that will be made, is to winsorize the data set. By applying
winsorization to a data set, its extreme values are limited to a certain value. The
limit is usually chosen as a certain percentile. The effect of winsorizing the ’balance
limit’ feature can be seen in Figure 5.18. Both 98% and 90% winsorization will be

5.3. Data influences 85

TABLE 5.44: Performance of the selected algorithms, when only the
samples belonging to the stated marriage status category are used.

Value LR NN DT GB RF
Original 0.77 0.78 0.76 0.78 0.77
Married 0.77 0.78 0.75 0.78 0.77
Single 0.77 0.78 0.76 0.78 0.77
Divorced 0.73 0.73 0.72 0.77 0.72

used on all of the numerical features in the data set. 98% winsorization means that
the smallest 1% and largest 1% of the values will be changed to the value of the 1st

and 99th percentile respectively. The results of doing so are shown in Table 5.45. As
only very small differences in performs occur, it can be concluded that winsorization
has a very limited influence on this data set.

FIGURE 5.18: Effect on the ’balance limit’ feature when winsorization
is applied at the 1st and 99th percentile.

(A) Original

0 200000 400000 600000 800000 1000000

(B) Winsorized

0 200000 400000 600000 800000 1000000

TABLE 5.45: Possible values for the ’education’ feature in the first
data set and the number of occurrences.

Value LR NN DT GB RF
Original 0.77 0.78 0.76 0.78 0.77
Winsorized (98%) 0.77 0.77 0.75 0.78 0.77
Winsorized (90%) 0.77 0.77 0.75 0.78 0.77

5.3.2 Peer to peer lending - Prosper

The first feature which will be used to split the second data set is the ’ListingCat-
egory’. This feature is used to specify the reason for which the loan is taken out.
Twenty different categories exist, of which a few have the majority of the samples.
To prevent the creation of very small data sets, only the categories with more than
2,000 samples will be used. Five of the twenty categories meet that criterion. In Table
5.46 the different categories, their meaning and the number of samples in each of the
categories is given.

The performance of each of the separate categories is given in Table 5.47. It is
interesting to see the high performance when only category one is used. With a
Neural Network or Gradient Boosting algorithm an AUC of 0.83 is achieved, the

86 Chapter 5. Model training

highest value seen so far. All the other categories show a lower performance than
when the entire data set is used. This can be caused by the size of the category,
however since they all have at least 2,000 samples, this is unlikely. It would be more
logical if the difference in performance is caused by the structure of the samples in
the different categories.

TABLE 5.46: Amount of samples in
the selected listing categories and their

meaning.

Category Meaning n
1 Debt consolidation 53,246
2 Home improvement 6,812
3 Business 5,315
6 Auto 2,244
7 Other 9,242

TABLE 5.47: Performance of the selected
algorithms when used in combination
with only homeowner or only not home-

owners.

Category LR NN DT GB
Original 0.77 0.81 0.77 0.81
1 0.80 0.83 0.80 0.83
2 0.73 0.72 0.66 0.70
3 0.70 0.75 0.67 0.74
6 0.69 0.73 0.62 0.69
7 0.70 0.73 0.69 0.74

The next feature on which a split of the data is based is the term of the loan.
Three different terms occur in the data set, 12, 36 and 60 months. Of these categories
the group of 12 months is the smallest with only 1,614 samples. 58,806 loans have a
term of 36 months and 24,544 a term of 60 months.

The results of using the selected models on the separate terms is shown in Table
5.49. The category with loans of a term of 12 months has the lowest performance
for all the tested algorithms. Again the category with the lowest number of samples
has the worst performance, since this is a returning observation, the size probably
has a large influence. From the other two categories, the loans with a term of 36
months perform best with a performance equal to or slightly lower than the original
performance.

TABLE 5.48: Amount of samples
per term length category.

Term n
12 months 1,614
36 months 58,806
60 months 24,544

TABLE 5.49: Performance of the selected al-
gorithms when used in combination with only

homeowner or only not homeowners.

Term LR NN DT GB
Original 0.77 0.81 0.77 0.81
12 0.67 0.66 0.62 0.55
36 0.77 0.80 0.77 0.80
60 0.75 0.78 0.73 0.78

The next change in the data set is made based on if the borrower is a homeowner.
This is a binary feature, so it is either true of false. Of all the loans, 40,065 are taken
out by homeowners. The remaining 44,899 belong to borrowers that do not own a
home.

Just as with the previous splits, the selected algorithms have been used in com-
bination with both of the newly created data sets. The result of doing so is given in
Table 5.51. Logistic Regression shows no difference in performance at all. The other
algorithms only shows minor differences. The differences in performance are such
that it cannot be concluded that one of the categories leads to a better performance.

The last modification that will be analyzed is to winsorize the data set. As men-
tioned before, this is the process of limiting extreme values to a certain percentile.

5.3. Data influences 87

TABLE 5.50: Amount of samples in the
homeowner and not homeowner cate-

gory.

Homeowner n
Yes 40,065
No 44,899

TABLE 5.51: Performance of the selected
algorithms when used in combination
with only homeowner or only not home-

owners.

Homeowner LR NN DT GB
Original 0.77 0.81 0.77 0.81
Yes 0.77 0.80 0.76 0.80
No 0.78 0.81 0.76 0.81

Two different limits will be used for the extreme values. The first test will limit val-
ues to be between the 1st and 99th percentile. The second winsorization limits values
below the 5th and above the 95th percentile. An example of applying winsorization
to the ’LoanOriginalAmount’ is shown in Figure 5.19.

FIGURE 5.19: Effect on the ’LoanOriginalAmount’ feature when win-
sorization is applied at the 1st and 99th percentile.

(A) Original

0 5000 10000 15000 20000 25000 30000

(B) Winsorized

0 5000 10000 15000 20000 25000 30000

The results of applying winsorization are given in Table 5.52. They show that it
probably has a small positive influence on Logistic Regression, the AUC increases
from 0.77 to 0.78. The other algorithms are not positively influenced, some show a
small decrease in performance.

TABLE 5.52: Performance of the selected algorithm when used with
a winsorized data set.

Homeowner LR NN DT GB
Original 0.77 0.81 0.77 0.81
Winsorized (98%) 0.78 0.81 0.77 0.80
Winsorized (90%) 0.78 0.80 0.77 0.81

89

Chapter 6

Conclusions

This research project has shed a light on the performance of different machine learn-
ing algorithms when used to predict defaults. This is done by applying the models
to two data sets consisting of loans, and trying to predict which of the loans will
default. The first data set consists of 30,000 Taiwanese credit lines. The second data
set is comprised of 85,964 (after preparation) peer to peer loans that have been orig-
inated using the Prosper platform.

Model performance

The primary part of these conclusions is about the performance of the different ma-
chine learning algorithms used in this research project. This is where the main ques-
tion will be answered by examining the performances, which are given in Table 6.1.
In this research project, the Area Under the Curve has been used as the primary indi-
cator. To make a better comparison possible, the precision and recall have also been
added to the table with performances. Logistic Regression is used as a benchmark
model due to its widespread usage, fast computation and descent results.

TABLE 6.1: Performance of the different algorithms when trained and
validated on the original data set.

Taiwan Prosper
Algorithm AUC Precision Recall AUC Precision Recall
Logistic regression 0.77 0.48 0.58 0.77 0.16 0.73
Neural network 0.78 0.45 0.62 0.81 0.17 0.77
Naive Bayes 0.74 0.40 0.63 0.66 0.10 0.77
k Nearest neighbors 0.76 0.44 0.61 0.75 0.15 0.66
Decision tree 0.76 0.45 0.60 0.77 0.15 0.78
Random forest 0.77 0.44 0.63 0.80 0.15 0.83
ADABoost 0.77 0.41 0.67 0.80 0.17 0.73
Gradient boosting 0.78 0.45 0.61 0.81 0.16 0.83
Support Vector Machine 0.76 0.47 0.59 - - -

In the first data set the performances are all quite similar. Naive Bayes has the
lowest performance with an AUC of 0.74, the highest AUC of 0.78 is shared by two
algorithms, Neural Network and Gradient Boosting. Aside from the Naive Bayes
algorithm, the performances are so close together that it is difficult to draw conclu-
sions based solely on the AUC.

The performances achieved with the second data set show more variation. Naive
Bayes has again the lowest performance with an AUC of 0.66. The highest perfor-
mance is also achieved by the same two algorithms, Neural Network and Gradient
Boosting. The difference between those two best performing algorithms and Logistic
Regression is 0.04, a lot more as with the previous data set. Relative to the other data

90 Chapter 6. Conclusions

set, precision is low and recall is high for each of the algorithms. The highest pre-
cision is achieved by the Neural Network and ADABoost algorithms. The highest
recall by Random Forest and Gradient Boosting.

When one takes the explainability into account, the view on which of the algo-
rithms is most suitable changes. From the algorithms used in this research project,
Decision Trees are the most explainable. Decision Trees can be easily graphed and
their classifications explained. For the Taiwan data set, the Decision Tree has a de-
cent AUC which is 0.02 below the highest value, in the Prosper data set it is 0.04
below the highest value. Clearly a choice between explainability and performance
has to be made. Depending on the situation it might be worth it to settle for a lower
performance and be able to exactly explain how a decision is made. This might for
example be required when working with a regulator.

Looking at the precision and recall instead of the AUC changes some of the find-
ings. When the goal of the algorithm is maximize recall, ADABoost is the best choice
for the Taiwan data set. However, it has one of the lower recalls in the Prosper data
set. For that data set it is a better choice to use Random Forest or Gradient Boosting
instead. Precision is highest with Logistic Regression on the Taiwan data set. With
the Prosper data set it is highest for Neural Network and ADABoost.

For the Prosper data set, it is interesting to see how good the models are in pre-
dicting which loans don’t go into default. The best algorithms, Random Forest and
Gradient Boosting, have a negative predictive value of 97,9% and even the worst
algorithm, Naive Bayes, has 95,9%. This makes it interesting to use the algorithms
not as default predictors, but to define a group of low risk loans.

Finally, both of the data sets have been split according to certain characteristics,
for example the education level of the borrower. The goal of such a modification
is to find differences in performances on specific parts of the data set. With the
Taiwan data set it was found that nearly every applied split lead to a decrease in
performance, in two cases the performance improved by 0.01. The Prosper data set
did show a more positive result, by splitting it by the listing category of the loan,
the performance of one of the new data sets increased with up to 0.03, an AUC of
0.83 was reached. All other splits did not lead to an increase in performance. The
last modification was winsorization of the numerical features. This led to a decrease
in performance with the Taiwan data set and small increase of the performance of
Logistic Regression with the second data set.

Based on the above mentioned findings the following conclusions are drawn.
Both Gradient Boosting and Neural Network are the best performing algorithms
based. They both have the highest AUC for both of the data sets. The disadvantages
of those algorithms is that they tend to become a black box, making it difficult to
explain why a classification is made.

Resampling

The data sets used in this research project where imbalanced, less than half of the
loans went into default. The Taiwan data set had 22% of the samples in the minority
class, the Prosper data set even less, only 8%. This can pose a problem for machine
learning and thus different methods to remove the imbalance have been applied and
analyzed. The following methods have been examined: random undersampling,
random oversampling, SMOTE (regular, borderline1 and borderline2) and ADASYN
(2, 5 and 10 neighbors).

Chapter 6. Conclusions 91

For the Taiwan data set, the influence of applying resampling to the data set was
small. Only the Support Vector Machine algorithm had a substantial increase in
performance. The other algorithms had either no substantial change or a decrease
in performance. Especially the more complex methods, SMOTE and ADASYN, had
a negative impact more often than not. These results of resampling or not great, this
is probably caused by the fact that the data set does not have a large imbalance.

The results of applying resampling to the Prosper data set are quite different.
With this data set in its original balance, some of the algorithms would classify
all samples as not defaulting. By doing so they would seem to perform well due
the high accuracy of 92%. However, it is not what is expected from a predictive
model. Therefore, resampling was more important than with the Taiwan data set.
After applying the different methods, random undersampling, random oversam-
pling, SMOTE (regular) and ADASYN (5 neighbors), the performance of some of the
algorithms increased substantially. The largest increase was reached with a combi-
nation of k Nearest Neighbors and random undersampling, its AUC increased with
0.09. Each of the resample methods lead to the algorithm no longer classifying all
sample to a single class. Random undersampling has the beneficial effect to decrease
computation times and this is an interesting method. Random oversampling on the
other hand, can be used when a data set is relatively small.

After using different resample methods on both data set, it can be concluded
that it can have a positive effect, but it should not be applied without reservation.
Especially the more complex methods, SMOTE and ADASYN, are practically never
the best choice in these two data sets. Random undersampling is the algorithm that
has been used the most in this research project, mainly because its positive effect on
the performance, but also due to its effect on the computation times.

93

Chapter 7

Limitations and further research

As is customary in a scientific project, the limitations will be discussed and several
possibilities for interesting further research will be discussed.

The first limitation is caused by the method used to determine the parameters of
the different machine learning algorithms. A step-by-step process has been used, in
most cases, to determine the parameters. The disadvantage of using such a method,
is that interaction effects between the parameters are not fully taken into account.
Not taking those effects into accounts means that the performance might be lower
in comparison with a training process in which they are take into account.

Another limitation is the result of the in some cases long computation times.
Especially the Support Vector Machine and the Neural Network tend to become in-
defeasible with certain configurations in combination with the hardware used in this
research project. During the model training with the Taiwan data set, the Support
Vector Machine algorithms has not been used with the settings originally planned.
Nine of the experiments took so long that they where stopped. This has an influ-
ence on how likely a better performing combination of parameters could have been
found. Since the Prosper data set is substantially larger than the Taiwan data set and
computation time for Support Vector Machines is at least quadratic, the computation
time was even more of a problem. After running the algorithm for several hours in a
low computation time setting, no noticeable progress was made and thus the choice
has been made to not take Support Vector Machines into account with the Prosper
data set.

Recently, a lot of discussion is happening about the ethics behind machine learn-
ing. This discussion is closely related with a lot of the algorithms working like a
’black-box’. It is hard to determine why and how a certain decision is made. This
makes it prone to making unwanted decision, for example based on ethnicity. This
is a subject that has to be thoroughly researched before this type of model can be
implemented.

Now that the limitations have been discussed, the recommendations for further
research are discussed. The first recommendation is to look into the the possibil-
ity of combining different algorithms together. This does happen for example in
the Random Forest classifier. But this recommendation is based on more high level
combinations. In this research project, the Neural Network and Gradient Boosting
classifier are two of the top performing algorithms. Is it possible to further increase
the classifying accuracy by combining those algorithms? Further research can be
conducted into combining different types of algorithm into an ensemble.

Another interesting recommendation is to look into the explainability of the dif-
ferent algorithms. In this thesis it has been mentioned that Decision Tree might be

94 Chapter 7. Limitations and further research

favorable due to its decision being explainable. For most of the other used algo-
rithms, it is more difficult to explain why a classification is made. This has several
disadvantages, for example that a regulator will not approve a ’black-box’ algorithm
or that it is not possible to tell a client why its loan is declined. Further research into
the algorithms might result in variations that have a better explainability or methods
that make the current models more intuitive to understand.

95

Bibliography

Abellán, Joaquín and Carlos J. Mantas (June 2014). “Improving experimental studies
about ensembles of classifiers for bankruptcy prediction and credit scoring”. In:
Expert Systems with Applications 41.8, pp. 3825–3830. ISSN: 0957-4174. DOI: 10.
1016/j.eswa.2013.12.003. URL: http://www.sciencedirect.com/science/
article/pii/S0957417413009676 (visited on 11/23/2017).

Alaraj, Maher, Maysam Abbod, and Ziad Hunaiti (Jan. 2014). “Evaluating Consumer
Loans Using Neural Networks Ensembles”. en. In: International Institute of En-
gineers. ISBN: 978-93-82242-63-5. DOI: 10.15242/IIE.E0114084. URL: http://
iieng.org/siteadmin/upload/6437E0114084.pdf (visited on 04/05/2018).

Ali, Kamal M. and Michael J. Pazzani (1996). “Error reduction through learning mul-
tiple descriptions”. In: Machine Learning 24.3, pp. 173–202.

Alpaydın, Ethem (2010). Introduction to machine learning. eng. 2. ed. Adaptive com-
putation and machine learning. OCLC: 699516236. Cambridge, Mass.: MIT Press.
ISBN: 978-0-262-01243-0.

Bentley, Jon Louis (Sept. 1975). “Multidimensional Binary Search Trees Used for As-
sociative Searching”. In: Commun. ACM 18.9, pp. 509–517. ISSN: 0001-0782. DOI:
10.1145/361002.361007. URL: http://doi.acm.org/10.1145/361002.361007
(visited on 01/30/2018).

Bhatia, Nitin (2010). “Survey of nearest neighbor techniques”. In: arXiv preprint arXiv:1007.0085.
Blagus, Rok and Lara Lusa (Mar. 2013). “SMOTE for high-dimensional class-imbalanced

data”. In: BMC Bioinformatics 14, p. 106. ISSN: 1471-2105. DOI: 10.1186/1471-
2105-14-106. URL: https://doi.org/10.1186/1471-2105-14-106 (visited on
01/02/2018).

Blöchlinger, Andreas and Markus Leippold (2006). “Economic benefit of powerful
credit scoring”. In: Journal of Banking & Finance 30.3, pp. 851–873.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Chawla, Nitesh V., Nathalie Japkowicz, and Aleksander Kotcz (2004). “Special issue

on learning from imbalanced data sets”. In: ACM Sigkdd Explorations Newsletter
6.1, pp. 1–6.

Chawla, Nitesh V. et al. (2002). “SMOTE: synthetic minority over-sampling tech-
nique”. In: Journal of artificial intelligence research 16, pp. 321–357.

Chintala, Soumith (Jan. 2015). FAIR open sources deep-learning modules for Torch. (Vis-
ited on 05/04/2018).

Cox, D. R. (1958). “The Regression Analysis of Binary Sequences”. en. In: Journal of
the Royal Statistical Society. Series B (Methodological) 20. URL: http://www.jstor.
org/stable/2983890.

Dean, Jeff (Nov. 2015). TensorFlow - Google’s latest machine learning system, open sourced
for everyone. (Visited on 05/04/2018).

Dumitrescu, Elena et al. (2018). “Machine Learning for Credit Scoring: Improving
Logistic Regression with Non Linear Decision Tree Effects”. PhD thesis. Paris
Nanterre University, University of Orleans.

Engel, Giora (Nov. 2017). 3 Flavors of Machine Learning: Who, What & Where. URL:
https : / / www . darkreading . com / threat - intelligence / 3 - flavors - of -

https://doi.org/10.1016/j.eswa.2013.12.003
https://doi.org/10.1016/j.eswa.2013.12.003
http://www.sciencedirect.com/science/article/pii/S0957417413009676
http://www.sciencedirect.com/science/article/pii/S0957417413009676
https://doi.org/10.15242/IIE.E0114084
http://iieng.org/siteadmin/upload/6437E0114084.pdf
http://iieng.org/siteadmin/upload/6437E0114084.pdf
https://doi.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
http://www.jstor.org/stable/2983890
http://www.jstor.org/stable/2983890
https://www.darkreading.com/threat-intelligence/3-flavors-of-machine-learning--who-what-and-where/a/d-id/1324278
https://www.darkreading.com/threat-intelligence/3-flavors-of-machine-learning--who-what-and-where/a/d-id/1324278

96 Bibliography

machine - learning -- who - what - and - where / a / d - id / 1324278 (visited on
11/21/2017).

Fawcett, Tom (June 2006). “An introduction to ROC analysis”. en. In: Pattern Recog-
nition Letters 27.8, pp. 861–874. ISSN: 01678655. DOI: 10.1016/j.patrec.2005.10.
010. URL: http://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
(visited on 12/12/2017).

Freund, Yoav and Robert E Schapire (Aug. 1997). “A Decision-Theoretic General-
ization of On-Line Learning and an Application to Boosting”. In: Journal of Com-
puter and System Sciences 55.1, pp. 119–139. ISSN: 0022-0000. DOI: 10.1006/jcss.
1997.1504. URL: http://www.sciencedirect.com/science/article/pii/
S002200009791504X (visited on 01/30/2018).

Friedman, Jerome H (1999). “Greedy Function Approximation: a Gradient Boosting
Machine”. en. In: The Annals of Statistics, p. 44.

Gartner (Aug. 2016). Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies
Three Key Trends That Organizations Must Track to Gain Competitive Advantage. URL:
https://www.gartner.com/newsroom/id/3412017 (visited on 11/28/2017).

Ghahramani, Zoubin (2004). “Unsupervised Learning”. en. In: Advanced Lectures on
Machine Learning. Lecture Notes in Computer Science. Springer, Berlin, Heidel-
berg, pp. 72–112. ISBN: 978-3-540-23122-6 978-3-540-28650-9. DOI: 10.1007/978-
3-540-28650-9_5. URL: https://link.springer.com/chapter/10.1007/978-
3-540-28650-9_5 (visited on 11/21/2017).

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Deep sparse rectifier
neural networks”. In: Proceedings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics, pp. 315–323.

Hahnloser, Richard H. R. et al. (June 2000). “Digital selection and analogue amplifi-
cation coexist in a cortex-inspired silicon circuit”. En. In: Nature 405.6789, p. 947.
ISSN: 1476-4687. DOI: 10 . 1038 / 35016072. URL: https : / / www . nature . com /
articles/35016072 (visited on 01/10/2018).

Han, Hui, Wen-Yuan Wang, and Bing-Huan Mao (2005). “Borderline-SMOTE: a new
over-sampling method in imbalanced data sets learning”. In: Advances in intelli-
gent computing, pp. 878–887.

Hancock, Thomas et al. (1996). “Lower bounds on learning decision lists and trees”.
In: Information and Computation 126.2, pp. 114–122.

Harris, Terry (Feb. 2015). “Credit scoring using the clustered support vector ma-
chine”. en. In: Expert Systems with Applications 42.2, pp. 741–750. ISSN: 09574174.
DOI: 10.1016/j.eswa.2014.08.029. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0957417414005119 (visited on 11/23/2017).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Sta-
tistical Learning - Data Mining, Inference and prediction. en. Springer. URL: //www.
springer.com/us/book/9780387848570 (visited on 02/01/2018).

He, Haibo et al. (2008). “ADASYN: Adaptive synthetic sampling approach for imbal-
anced learning”. In: Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on. IEEE, pp. 1322–
1328.

Huang, Cheng-Lung, Mu-Chen Chen, and Chieh-Jen Wang (Nov. 2007). “Credit scor-
ing with a data mining approach based on support vector machines”. en. In: Ex-
pert Systems with Applications 33.4, pp. 847–856. ISSN: 09574174. DOI: 10.1016/j.
eswa.2006.07.007. URL: http://linkinghub.elsevier.com/retrieve/pii/
S095741740600217X (visited on 11/23/2017).

https://www.darkreading.com/threat-intelligence/3-flavors-of-machine-learning--who-what-and-where/a/d-id/1324278
https://www.darkreading.com/threat-intelligence/3-flavors-of-machine-learning--who-what-and-where/a/d-id/1324278
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
http://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.gartner.com/newsroom/id/3412017
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://link.springer.com/chapter/10.1007/978-3-540-28650-9_5
https://link.springer.com/chapter/10.1007/978-3-540-28650-9_5
https://doi.org/10.1038/35016072
https://www.nature.com/articles/35016072
https://www.nature.com/articles/35016072
https://doi.org/10.1016/j.eswa.2014.08.029
http://linkinghub.elsevier.com/retrieve/pii/S0957417414005119
http://linkinghub.elsevier.com/retrieve/pii/S0957417414005119
//www.springer.com/us/book/9780387848570
//www.springer.com/us/book/9780387848570
https://doi.org/10.1016/j.eswa.2006.07.007
https://doi.org/10.1016/j.eswa.2006.07.007
http://linkinghub.elsevier.com/retrieve/pii/S095741740600217X
http://linkinghub.elsevier.com/retrieve/pii/S095741740600217X

Bibliography 97

Hull, John (2015). Risk management and financial institutions. eng. Fourth edition. Wi-
ley finance series. Hoboken, New Jersey: Wiley. ISBN: 978-1-118-95594-9 978-1-
118-95596-3 978-1-118-95595-6.

Jordan, M. I. and T. M. Mitchell (July 2015). “Machine learning: Trends, perspec-
tives, and prospects”. en. In: Science 349.6245, pp. 255–260. ISSN: 0036-8075, 1095-
9203. DOI: 10.1126/science.aaa8415. URL: http://science.sciencemag.org/
content/349/6245/255 (visited on 11/23/2017).

Khandani, Amir E., Adlar J. Kim, and Andrew W. Lo (Nov. 2010). “Consumer credit-
risk models via machine-learning algorithms”. en. In: Journal of Banking & Finance
34.11, pp. 2767–2787. ISSN: 03784266. DOI: 10.1016/j.jbankfin.2010.06.001.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0378426610002372
(visited on 04/05/2018).

Kingma, Diederik P. et al. (2014). “Semi-supervised learning with deep generative
models”. In: Advances in Neural Information Processing Systems, pp. 3581–3589.

Langley, Pat (1995). “Applications of Machine Learning and Rule Induction”. en. In:
p. 20.

Larose, Daniel T. (2005). Discovering knowledge in data: an introduction to data mining.
eng. OCLC: 265634768. Hoboken, NJ: Wiley-Interscience. ISBN: 978-0-471-66657-
8.

LeCun, Yann et al. (1998). “Efficient BackProp”. en. In: Neural Networks: Tricks of the
Trade. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 9–50.
ISBN: 978-3-540-65311-0 978-3-540-49430-0. DOI: 10.1007/3- 540- 49430- 8_2.
URL: https://link.springer.com/chapter/10.1007/3- 540- 49430- 8_2
(visited on 01/09/2018).

Maimon, Oded and Shahar Cohen (2009). “A Review of Reinforcement Learning
Methods”. en. In: Data Mining and Knowledge Discovery Handbook. Springer, Boston,
MA, pp. 401–417. ISBN: 978-0-387-09822-7 978-0-387-09823-4. DOI: 10.1007/978-
0-387-09823-4_20. URL: https://link.springer.com/chapter/10.1007/978-
0-387-09823-4_20 (visited on 11/21/2017).

Maimon, Oded and Lior Rokach (2005). “Introduction to supervised methods”. In:
Data Mining and Knowledge Discovery Handbook. Springer, pp. 149–164.

Mitchell, Tom M. (Mar. 1997). Machine learning. eng. International ed., [Reprint.]
McGraw-Hill series in computer science. OCLC: 846270128. New York, NY: McGraw-
Hill. ISBN: 978-0-07-042807-2.

Omohundro, Stephen M. (1989). Five balltree construction algorithms. International
Computer Science Institute Berkeley.

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine learning in Python”. In: Jour-
nal of Machine Learning Research 12.Oct, pp. 2825–2830.

Prosper (Nov. 2017). Download Analysis Data - Prosper. en. URL: https://www.prosper.
com/invest/download.aspx (visited on 11/27/2017).

Ramachandran, Prajit, Barret Zoph, and Quoc Le (2017). “Searching for Activation
Functions”. en. In: URL: https://research.google.com/pubs/pub46503.html
(visited on 01/10/2018).

Rodríguez, Juan, Aritz Pérez, and J.A. Lozano (Apr. 2010). Sensitivity Analysis of k-
Fold Cross Validation in Prediction Error Estimation. Vol. 32.

Rokach, Lior (2009). “Ensemble Methods in Supervised Learning”. en. In: Data Min-
ing and Knowledge Discovery Handbook. Springer, Boston, MA, pp. 959–979. ISBN:
978-0-387-09822-7 978-0-387-09823-4. DOI: 10.1007/978- 0- 387- 09823- 4_50.
URL: https://link.springer.com/chapter/10.1007/978-0-387-09823-4_50
(visited on 01/30/2018).

https://doi.org/10.1126/science.aaa8415
http://science.sciencemag.org/content/349/6245/255
http://science.sciencemag.org/content/349/6245/255
https://doi.org/10.1016/j.jbankfin.2010.06.001
http://linkinghub.elsevier.com/retrieve/pii/S0378426610002372
https://doi.org/10.1007/3-540-49430-8_2
https://link.springer.com/chapter/10.1007/3-540-49430-8_2
https://doi.org/10.1007/978-0-387-09823-4_20
https://doi.org/10.1007/978-0-387-09823-4_20
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_20
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_20
https://www.prosper.com/invest/download.aspx
https://www.prosper.com/invest/download.aspx
https://research.google.com/pubs/pub46503.html
https://doi.org/10.1007/978-0-387-09823-4_50
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_50

98 Bibliography

Rokach, Lior and Oded Maimon (2009). “Classification Trees”. en. In: Data Mining
and Knowledge Discovery Handbook. Springer, Boston, MA, pp. 149–174. ISBN: 978-
0-387-09822-7 978-0-387-09823-4. DOI: 10.1007/978-0-387-09823-4_9. URL:
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_9 (visited
on 11/21/2017).

Samuel, Arthur L (1959). “Some studies in machine learning using the game of
checkers”. In: IBM Journal of research and development 3.3, pp. 210–229.

Schmidhuber, Juergen (Jan. 2015). “Deep Learning in Neural Networks: An Overview”.
In: Neural Networks 61. arXiv: 1404.7828, pp. 85–117. ISSN: 08936080. DOI: 10.
1016/j.neunet.2014.09.003. URL: http://arxiv.org/abs/1404.7828 (visited
on 11/20/2017).

Shin, Kyung-Shik, Taik Soo Lee, and Hyun-jung Kim (Jan. 2005). “An application of
support vector machines in bankruptcy prediction model”. en. In: Expert Systems
with Applications 28.1, pp. 127–135. ISSN: 09574174. DOI: 10.1016/j.eswa.2004.
08.009. URL: http://linkinghub.elsevier.com/retrieve/pii/S095741740400096X
(visited on 04/05/2018).

Shmilovici, Armin (2009). “Support vector machines”. In: Data mining and knowledge
discovery handbook. Springer, pp. 231–247.

Thomas, George (Nov. 2015). Microsoft open sources Distributed Machine Learning Toolkit
for more efficient big data research. (Visited on 05/04/2018).

Turing, Alan M. (1950). “Computing machinery and intelligence”. In: Mind 59.236,
pp. 433–460.

Yeh, I-Cheng and Che-hui Lien (Mar. 2009). “The comparisons of data mining tech-
niques for the predictive accuracy of probability of default of credit card clients”.
en. In: Expert Systems with Applications 36.2, pp. 2473–2480. ISSN: 09574174. DOI:
10.1016/j.eswa.2007.12.020. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0957417407006719 (visited on 12/19/2017).

Zhang, G. Peter (2009). “Neural Networks For Data Mining”. en. In: Data Mining
and Knowledge Discovery Handbook. Springer, Boston, MA, pp. 419–444. ISBN: 978-
0-387-09822-7 978-0-387-09823-4. DOI: 10.1007/978-0-387-09823-4_21. URL:
https://link.springer.com/chapter/10.1007/978- 0- 387- 09823- 4_21

(visited on 12/21/2017).
Zhang, G Peter and Min Qi (2002). “Predicting consumer retail sales using neural

networks”. In: Neural Networks in Business: Techniques and Applications, Smith, K.
and Gupta, J. eds. Hershey: Idea Group Publishing, pp. 26–40.

Zhu, Xiaojin, Zoubin Ghahramani, and John D. Lafferty (2003). “Semi-supervised
learning using gaussian fields and harmonic functions”. In: Proceedings of the 20th
International conference on Machine learning (ICML-03), pp. 912–919.

https://doi.org/10.1007/978-0-387-09823-4_9
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_9
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828
https://doi.org/10.1016/j.eswa.2004.08.009
https://doi.org/10.1016/j.eswa.2004.08.009
http://linkinghub.elsevier.com/retrieve/pii/S095741740400096X
https://doi.org/10.1016/j.eswa.2007.12.020
http://linkinghub.elsevier.com/retrieve/pii/S0957417407006719
http://linkinghub.elsevier.com/retrieve/pii/S0957417407006719
https://doi.org/10.1007/978-0-387-09823-4_21
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_21

99

Appendix A

Prosper data set summary

TABLE A.1: Summary of the categorical ’EmploymentStatus’ feature.

Meaning n Percentage
Employed 67,306 79.22%

Full-time 8,030 9.45%
Not employed 648 0.76%

Other 3,805 4.48%
Part-time 262 0.31%

Retired 371 0.44%
Self-employed 4,542 5.35%

TABLE A.2: Summary of the categorical ’ListingCategory’ feature.

Meaning n Percentage
1 Debt Consolidation 53,246 62.67%
2 Home Improvement 6,812 21.48%
3 Business 5,315 21.34%
4 Personal Loan 0 0.00%
5 Student Use 280 1.43%
6 Auto 2,244 11.62%
7 Other 9,242 54.15%
8 Baby and Adoption 199 2.54%
9 Boat 85 1.11%

10 Cosmetic Procedure 91 1.21%
11 Engagement Ring 217 2.91%
12 Green Loans 59 0.82%
13 Household Expenses 1,996 27.82%
14 Large Purchases 876 16.92%
15 Medical/Dental 1,522 35.38%
16 Motorcycle 304 10.94%
17 RV 52 2.10%
18 Taxes 885 36.51%
19 Vacation 768 49.90%
20 Wedding Loans 771 100.00%

100 Appendix A. Prosper data set summary

TABLE A.3: Summary of the categorical ’BorrowerState’ feature.

State n Percentage State n Percentage State n Percentage
0 166 0.20% 16 888 1.05% 32 3375 3.97%
1 1187 1.40% 17 842 0.99% 33 733 0.86%
2 768 0.90% 18 1832 2.16% 34 1215 1.43%
3 1359 1.60% 19 2239 2.64% 35 2679 3.15%
4 10777 12.68% 20 2625 3.09% 36 410 0.48%
5 1734 2.04% 21 1721 2.03% 37 997 1.17%
6 1498 1.76% 22 1797 2.12% 38 189 0.22%
7 330 0.39% 23 675 0.79% 39 1540 1.81%
8 268 0.32% 24 221 0.26% 40 5652 6.65%
9 5408 6.37% 25 2442 2.87% 41 521 0.61%

10 3352 3.95% 26 556 0.65% 42 2779 3.27%
11 343 0.40% 27 443 0.52% 43 172 0.20%
12 403 0.47% 28 2728 3.21% 44 2159 2.54%
13 4270 5.03% 29 331 0.39% 45 1522 1.79%
14 1654 1.95% 30 1024 1.21% 46 310 0.36%
15 855 1.01% 31 5852 6.89% 47 123 0.14%

TABLE A.4: Summary of the categorical ’Occupation’ feature.

Meaning n Percentage Meaning n Percentage
Accountant/CPA 2,577 3.03% Nurse’s Aide 382 0.45%
Administrative As... 2,713 3.19% Other 22,674 26.69%
Analyst 2,743 3.23% Pharmacist 225 0.26%
Architect 149 0.18% Pilot - Private/Com... 154 0.18%
Attorney 866 1.02% Police Officer/Corr... 1,278 1.50%
Biologist 95 0.11% Postal Service 486 0.57%
Bus Driver 251 0.30% Principal 262 0.31%
Car Dealer 143 0.17% Professional 10,561 12.43%
Chemist 109 0.13% Professor 452 0.53%
Civil Service 1,141 1.34% Psychologist 118 0.14%
Clergy 157 0.18% Realtor 253 0.30%
Clerical 2,116 2.49% Religious 93 0.11%
Computer Progr... 3,245 3.82% Retail Management 2,003 2.36%
Construction 1,326 1.56% Sales - Commission 2,350 2.77%
Dentist 56 0.07% Sales - Retail 2,032 2.39%
Doctor 393 0.46% Scientist 294 0.35%
Engineer - Chemical 176 0.21% Skilled Labor 2,183 2.57%
Engineer - Electrical 900 1.06% Social Worker 575 0.68%
Engineer - Mechanical 1,138 1.34% Student - Freshman 17 0.02%
Executive 3,472 4.09% Student - Graduate 114 0.13%
Fireman 320 0.38% Student - Junior 27 0.03%
Flight Attendant 87 0.10% Student - Senior 71 0.08%
Food Service 839 0.99% Student - Sophomore 16 0.02%
Food Service Man... 1,008 1.19% Community College 10 0.01%
Homemaker 57 0.07% Technical School 2 0.00%
Investor 201 0.24% Teacher 2,893 3.40%
Judge 22 0.03% Teacher’s Aide 200 0.24%
Laborer 1,217 1.43% Tradesman - Carpenter 85 0.10%
Landscaping 172 0.20% Tradesman - Electrician 386 0.45%
Medical Technician 891 1.05% Tradesman - Mechanic 797 0.94%
Military Enlisted 825 0.97% Tradesman - Plumber 74 0.09%
Military Officer 253 0.30% Truck Driver 1,369 1.61%
Nurse (LPN) 415 0.49% Waiter/Waitress 294 0.35%
Nurse (RN) 2,161 2.54%

Appendix A. Prosper data set summary 101

TA
B

L
E

A
.5

:S
ta

ti
st

ic
al

su
m

m
ar

y
of

th
e

fe
at

ur
es

in
th

e
Pr

os
pe

r
da

ta
se

t,
th

at
ar

e
us

ed
fo

r
m

ac
hi

ne
le

ar
ni

ng
.

Fe
at

ur
e

M
ea

n
St

an
da

rd
de

vi
at

io
n

m
in

25
%

50
%

75
%

m
ax

Te
rm

42
.4

8
11

.6
4

12
36

36
60

60
Em

pl
oy

m
en

tS
ta

tu
sD

ur
at

io
n

10
3

97
.0

4
0

30
74

14
7

75
5

Is
Bo

rr
ow

er
H

om
eo

w
ne

r
0.

53
0.

5
0

0
1

1
1

C
re

di
tS

co
re

R
an

ge
Lo

w
er

69
9.

41
47

.1
1

60
0

66
0

70
0

72
0

88
0

C
re

di
tS

co
re

R
an

ge
U

pp
er

71
8.

41
47

.1
1

61
9

67
9

71
9

73
9

89
9

C
ur

re
nt

C
re

di
tL

in
es

10
.5

1
5.

32
0

7
10

13
59

O
pe

nC
re

di
tL

in
es

9.
53

4.
93

0
6

9
12

54
To

ta
lC

re
di

tL
in

es
pa

st
7y

ea
rs

27
.6

5
13

.2
6

2
18

26
35

12
5

O
pe

nR
ev

ol
vi

ng
A

cc
ou

nt
s

7.
39

4.
52

0
4

7
10

50
O

pe
nR

ev
ol

vi
ng

M
on

th
ly

Pa
ym

en
t

43
0.

53
42

5.
74

0
15

6
31

1
56

3
13

,7
65

In
qu

ir
ie

sL
as

t6
M

on
th

s
0.

96
1.

4
0

0
0

1
27

To
ta

lI
nq

ui
ri

es
4.

29
3.

83
0

2
3

6
78

C
ur

re
nt

D
el

in
qu

en
ci

es
0.

32
1.

11
0

0
0

0
51

A
m

ou
nt

D
el

in
qu

en
t

95
0.

19
7,

41
5.

7
0

0
0

0
46

3,
88

1
D

el
in

qu
en

ci
es

La
st

7Y
ea

rs
3.

66
9.

35
0

0
0

2
99

Pu
bl

ic
R

ec
or

ds
La

st
10

Ye
ar

s
0.

28
0.

65
0

0
0

0
38

Pu
bl

ic
R

ec
or

ds
La

st
12

M
on

th
s

0.
01

0.
13

0
0

0
0

20
R

ev
ol

vi
ng

C
re

di
tB

al
an

ce
17

,9
31

.8
6

31
,3

51
.7

7
0

3,
82

2
9,

32
1

20
,3

34
99

9,
16

5
Ba

nk
ca

rd
U

ti
liz

at
io

n
0.

56
0.

3
0

0.
33

0.
6

0.
83

2.
5

A
va

ila
bl

eB
an

kc
ar

dC
re

di
t

11
,4

05
.4

3
18

,6
11

.3
3

0
1,

14
8

4,
57

9
13

,9
19

49
8,

37
4

102 Appendix A. Prosper data set summary

Fe
at

ur
e

M
ea

n
St

an
da

rd
de

vi
at

io
n

m
in

25
%

50
%

75
%

m
ax

To
ta

lT
ra

de
s

23
.9

2
11

.6
1

1
15

23
31

12
2

Tr
ad

es
N

ev
er

D
el

in
qu

en
t

0.
91

0.
12

0.
08

0.
85

0.
95

1
1

Tr
ad

es
O

pe
ne

dL
as

t6
M

on
th

s
0.

73
0.

99
0

0
0

1
20

D
eb

tT
oI

nc
om

eR
at

io
0.

26
0.

3
0

0.
16

0.
24

0.
31

10
.0

1
In

co
m

eV
er

ifi
ab

le
0.

91
0.

28
0

1
1

1
1

St
at

ed
M

on
th

ly
In

co
m

e
5,

93
0.

14
8,

23
5.

35
0

3,
43

3.
33

5,
00

0
7,

08
3.

33
1,

75
0,

00
2.

92
To

ta
lP

ro
sp

er
Lo

an
s

0.
34

0.
73

0
0

0
0

8
To

ta
lP

ro
sp

er
Pa

ym
en

ts
Bi

lle
d

5.
68

14
.0

3
0

0
0

0
14

1
O

nT
im

eP
ro

sp
er

Pa
ym

en
ts

5.
51

13
.6

7
0

0
0

0
14

1
Pr

os
pe

rP
ay

m
en

ts
Le

ss
Th

an
O

ne
M

on
th

La
te

0.
15

1.
27

0
0

0
0

42
Pr

os
pe

rP
ay

m
en

ts
O

ne
M

on
th

Pl
us

La
te

0.
01

0.
28

0
0

0
0

21
Pr

os
pe

rP
ri

nc
ip

al
Bo

rr
ow

ed
20

43
.5

5,
19

3.
7

0
0

0
0

72
,4

99
Pr

os
pe

rP
ri

nc
ip

al
O

ut
st

an
di

ng
68

0.
31

2,
21

4.
26

0
0

0
0

23
,4

50
.9

5
Sc

or
ex

C
ha

ng
eA

tT
im

eO
fL

is
ti

ng
-0

.8
9

22
.5

3
-2

09
0

0
0

28
6

Lo
an

O
ri

gi
na

lA
m

ou
nt

9,
07

6.
71

6,
28

7.
17

1,
00

0
4,

00
0

7,
50

0
13

,5
00

35
,0

00
M

on
th

ly
Lo

an
Pa

ym
en

t
29

1.
73

18
6.

67
0

15
7.

18
25

1.
76

38
8.

28
2,

25
1.

51
Pe

rc
en

tF
un

de
d

1
0.

02
0.

7
1

1
1

1.
01

R
ec

om
m

en
da

ti
on

s
0.

02
0.

19
0

0
0

0
19

In
ve

st
m

en
tF

ro
m

Fr
ie

nd
sC

ou
nt

0.
01

0.
11

0
0

0
0

9
In

ve
st

m
en

tF
ro

m
Fr

ie
nd

sA
m

ou
nt

4.
39

11
8.

38
0

0
0

0
11

,0
00

In
ve

st
or

s
68

.4
1

95
.3

1
1

32
97

1,
18

9

Appendix A. Prosper data set summary 103

TA
B

L
E

A
.6

:D
es

cr
ip

ti
on

of
th

e
or

ig
in

al
fe

at
ur

es
in

th
e

Pr
os

pe
r

da
ta

se
t.

V
ar

ia
bl

e
D

es
cr

ip
ti

on
Li

st
in

gK
ey

U
ni

qu
e

ke
y

fo
r

ea
ch

lis
ti

ng
.

Li
st

in
gN

um
be

r
U

ni
qu

e
pu

bl
ic

ke
y

fo
r

ea
ch

lis
ti

ng
.

Li
st

in
gC

re
at

io
nD

at
e

Th
e

da
te

th
e

lis
ti

ng
w

as
cr

ea
te

d.
C

re
di

tG
ra

de
Th

e
C

re
di

tr
at

in
g

th
at

w
as

as
si

gn
ed

at
th

e
ti

m
e

th
e

lis
ti

ng
w

en
tl

iv
e.

(O
nl

y
pr

e-
20

09
)

Te
rm

Th
e

le
ng

th
of

th
e

lo
an

ex
pr

es
se

d
in

m
on

th
s.

Lo
an

St
at

us
Th

e
cu

rr
en

ts
ta

tu
s

of
th

e
lo

an
.

C
lo

se
dD

at
e

D
at

e
on

w
hi

ch
th

e
lo

an
is

cl
os

ed
.

Bo
rr

ow
er

A
PR

Th
e

Bo
rr

ow
er

’s
A

nn
ua

lP
er

ce
nt

ag
e

R
at

e
(A

PR
)f

or
th

e
lo

an
.

Bo
rr

ow
er

R
at

e
Th

e
Bo

rr
ow

er
’s

in
te

re
st

ra
te

fo
r

th
is

lo
an

.
Le

nd
er

Yi
el

d
Th

e
Le

nd
er

yi
el

d
on

th
e

lo
an

,e
qu

al
to

th
e

in
te

re
st

ra
te

on
th

e
lo

an
le

ss
th

e
se

rv
ic

in
g

fe
e.

Es
ti

m
at

ed
Ef

fe
ct

iv
eY

ie
ld

Es
ti

m
at

ed
ef

fe
ct

iv
e

yi
el

d.
(O

nl
y

af
te

r
20

09
)

Es
ti

m
at

ed
Lo

ss
Es

ti
m

at
ed

lo
ss

is
th

e
es

ti
m

at
ed

pr
in

ci
pa

ll
os

s
on

ch
ar

ge
-o

ff
s.

A
pp

lic
ab

le
fo

r
lo

an
s

or
ig

in
at

ed
af

te
r

Ju
ly

20
09

.
Es

ti
m

at
ed

R
et

ur
n

Es
ti

m
at

ed
re

tu
rn

is
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

Es
ti

m
at

ed
Ef

fe
ct

iv
e

Yi
el

d
an

d
th

e
Es

ti
m

at
ed

Lo
ss

R
at

e.
(O

nl
y

af
te

r
20

09
)

Pr
os

pe
rR

at
in

g
(n

um
er

ic
)

Th
e

Pr
os

pe
r

R
at

in
g

as
si

gn
ed

at
th

e
ti

m
e

th
e

lis
ti

ng
w

as
cr

ea
te

d.
(O

nl
y

af
te

r
20

09
)

Pr
os

pe
rR

at
in

g
(A

lp
ha

)
Th

e
Pr

os
pe

r
R

at
in

g
as

si
gn

ed
at

th
e

ti
m

e
th

e
lis

ti
ng

w
as

cr
ea

te
d.

(O
nl

y
af

te
r

20
09

)
Pr

os
pe

rS
co

re
A

cu
st

om
ri

sk
sc

or
e

bu
ilt

us
in

g
hi

st
or

ic
al

Pr
os

pe
r

da
ta

.(
O

nl
y

af
te

r
20

09
)

Li
st

in
gC

at
eg

or
y

Th
e

ca
te

go
ry

of
th

e
lis

ti
ng

th
at

th
e

bo
rr

ow
er

se
le

ct
ed

w
he

n
po

st
in

g
th

ei
r

lis
ti

ng
.

Bo
rr

ow
er

St
at

e
Th

e
tw

o
le

tt
er

ab
br

ev
ia

ti
on

of
th

e
st

at
e

of
th

e
ad

dr
es

s
of

th
e

bo
rr

ow
er

at
th

e
ti

m
e

th
e

Li
st

in
g

w
as

cr
ea

te
d.

O
cc

up
at

io
n

Th
e

O
cc

up
at

io
n

se
le

ct
ed

by
th

e
Bo

rr
ow

er
at

th
e

ti
m

e
th

ey
cr

ea
te

d
th

e
lis

ti
ng

.
Em

pl
oy

m
en

tS
ta

tu
s

Th
e

em
pl

oy
m

en
ts

ta
tu

s
of

th
e

bo
rr

ow
er

at
th

e
ti

m
e

th
ey

po
st

ed
th

e
lis

ti
ng

.
Em

pl
oy

m
en

tS
ta

tu
sD

ur
at

io
n

Th
e

le
ng

th
in

m
on

th
s

of
th

e
em

pl
oy

m
en

ts
ta

tu
s

at
th

e
ti

m
e

th
e

lis
ti

ng
w

as
cr

ea
te

d.
Is

Bo
rr

ow
er

H
om

eo
w

ne
r

A
Bo

rr
ow

er
is

a
ho

m
eo

w
ne

r
if

th
ey

ha
ve

a
m

or
tg

ag
e

or
pr

ov
id

e
do

cu
m

en
ta

ti
on

co
nfi

rm
in

g
th

ey
ar

e
a

ho
m

eo
w

ne
r.

C
ur

re
nt

ly
In

G
ro

up
Sp

ec
ifi

es
w

he
th

er
or

no
tt

he
Bo

rr
ow

er
w

as
in

a
gr

ou
p

at
th

e
ti

m
e

th
e

lis
ti

ng
w

as
cr

ea
te

d.
G

ro
up

K
ey

Th
e

K
ey

of
th

e
gr

ou
p

in
w

hi
ch

th
e

Bo
rr

ow
er

is
a

m
em

be
r

of
.

D
at

eC
re

di
tP

ul
le

d
Th

e
da

te
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

C
re

di
tS

co
re

R
an

ge
Lo

w
er

Th
e

lo
w

er
va

lu
e

re
pr

es
en

ti
ng

th
e

ra
ng

e
of

th
e

bo
rr

ow
er

’s
cr

ed
it

sc
or

e
as

pr
ov

id
ed

by
a

co
ns

um
er

cr
ed

it
ra

ti
ng

ag
en

cy
.

C
re

di
tS

co
re

R
an

ge
U

pp
er

Th
e

up
pe

r
va

lu
e

re
pr

es
en

ti
ng

th
e

ra
ng

e
of

th
e

bo
rr

ow
er

’s
cr

ed
it

sc
or

e
as

pr
ov

id
ed

by
a

co
ns

um
er

cr
ed

it
ra

ti
ng

ag
en

cy
.

Fi
rs

tR
ec

or
de

dC
re

di
tL

in
e

Th
e

da
te

th
e

fir
st

cr
ed

it
lin

e
w

as
op

en
ed

.
C

ur
re

nt
C

re
di

tL
in

es
N

um
be

r
of

cu
rr

en
tc

re
di

tl
in

es
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

104 Appendix A. Prosper data set summary

V
ar

ia
bl

e
D

es
cr

ip
ti

on
O

pe
nC

re
di

tL
in

es
N

um
be

r
of

op
en

cr
ed

it
lin

es
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

To
ta

lC
re

di
tL

in
es

pa
st

7y
ea

rs
N

um
be

r
of

cr
ed

it
lin

es
in

th
e

pa
st

se
ve

n
ye

ar
s

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
O

pe
nR

ev
ol

vi
ng

A
cc

ou
nt

s
N

um
be

r
of

op
en

re
vo

lv
in

g
ac

co
un

ts
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

O
pe

nR
ev

ol
vi

ng
M

on
th

ly
Pa

ym
en

t
M

on
th

ly
pa

ym
en

to
n

re
vo

lv
in

g
ac

co
un

ts
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

In
qu

ir
ie

sL
as

t6
M

on
th

s
N

um
be

r
of

in
qu

ir
ie

s
in

th
e

pa
st

si
x

m
on

th
s

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
To

ta
lI

nq
ui

ri
es

To
ta

ln
um

be
r

of
in

qu
ir

ie
s

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
C

ur
re

nt
D

el
in

qu
en

ci
es

N
um

be
r

of
ac

co
un

ts
de

lin
qu

en
ta

tt
he

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

A
m

ou
nt

D
el

in
qu

en
t

D
ol

la
rs

de
lin

qu
en

ta
tt

he
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
D

el
in

qu
en

ci
es

La
st

7Y
ea

rs
N

um
be

r
of

de
lin

qu
en

ci
es

in
th

e
pa

st
7

ye
ar

s
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

Pu
bl

ic
R

ec
or

ds
La

st
10

Ye
ar

s
N

um
be

r
of

pu
bl

ic
re

co
rd

s
in

th
e

pa
st

10
ye

ar
s

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
Pu

bl
ic

R
ec

or
ds

La
st

12
M

on
th

s
N

um
be

r
of

pu
bl

ic
re

co
rd

s
in

th
e

pa
st

12
m

on
th

s
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

R
ev

ol
vi

ng
C

re
di

tB
al

an
ce

D
ol

la
rs

of
re

vo
lv

in
g

cr
ed

it
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

Ba
nk

ca
rd

U
ti

liz
at

io
n

Th
e

pe
rc

en
ta

ge
of

av
ai

la
bl

e
re

vo
lv

in
g

cr
ed

it
th

at
is

ut
ili

ze
d

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
A

va
ila

bl
eB

an
kc

ar
dC

re
di

t
Th

e
to

ta
la

va
ila

bl
e

cr
ed

it
vi

a
ba

nk
ca

rd
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

To
ta

lT
ra

de
s

N
um

be
r

of
tr

ad
e

lin
es

ev
er

op
en

ed
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

Tr
ad

es
N

ev
er

D
el

in
qu

en
t

N
um

be
r

of
tr

ad
es

th
at

ha
ve

ne
ve

r
be

en
de

lin
qu

en
ta

tt
he

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

Tr
ad

es
O

pe
ne

dL
as

t6
M

on
th

s
N

um
be

r
of

tr
ad

es
op

en
ed

in
th

e
la

st
6

m
on

th
s

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.
D

eb
tT

oI
nc

om
eR

at
io

Th
e

de
bt

to
in

co
m

e
ra

ti
o

of
th

e
bo

rr
ow

er
at

th
e

ti
m

e
th

e
cr

ed
it

pr
ofi

le
w

as
pu

lle
d.

Th
is

va
lu

e
is

ca
pp

ed
at

10
.0

1
In

co
m

eR
an

ge
Th

e
in

co
m

e
ra

ng
e

of
th

e
bo

rr
ow

er
at

th
e

ti
m

e
th

e
lis

ti
ng

w
as

cr
ea

te
d.

In
co

m
eV

er
ifi

ab
le

Th
e

bo
rr

ow
er

in
di

ca
te

d
th

ey
ha

ve
th

e
re

qu
ir

ed
do

cu
m

en
ta

ti
on

to
su

pp
or

tt
he

ir
in

co
m

e.
St

at
ed

M
on

th
ly

In
co

m
e

Th
e

m
on

th
ly

in
co

m
e

th
e

bo
rr

ow
er

st
at

ed
at

th
e

ti
m

e
th

e
lis

ti
ng

w
as

cr
ea

te
d.

Lo
an

K
ey

U
ni

qu
e

ke
y

fo
r

ea
ch

lo
an

.T
hi

s
is

th
e

sa
m

e
ke

y
th

at
is

us
ed

in
th

e
A

PI
.

To
ta

lP
ro

sp
er

Lo
an

s
N

um
be

r
of

Pr
os

pe
r

lo
an

s
th

e
bo

rr
ow

er
ha

s
at

th
e

ti
m

e
th

ey
cr

ea
te

d
th

is
lis

ti
ng

.
To

ta
lP

ro
sp

er
Pa

ym
en

ts
Bi

lle
d

N
um

be
r

of
on

ti
m

e
pa

ym
en

ts
th

e
bo

rr
ow

er
m

ad
e

on
Pr

os
pe

r
lo

an
s

at
th

e
ti

m
e

th
ey

cr
ea

te
d

th
is

lis
ti

ng
.

O
nT

im
eP

ro
sp

er
Pa

ym
en

ts
N

um
be

r
of

on
ti

m
e

pa
ym

en
ts

th
e

bo
rr

ow
er

ha
d

m
ad

e
on

Pr
os

pe
r

lo
an

s
at

th
e

ti
m

e
th

ey
cr

ea
te

d
th

is
lis

ti
ng

.
Pr

os
pe

rP
ay

m
en

ts
Le

ss
Th

an
O

ne
M

on
th

La
te

N
um

be
r

of
pa

ym
en

ts
th

e
bo

rr
ow

er
m

ad
e

on
Pr

os
pe

r
lo

an
s

th
at

w
er

e
le

ss
th

an
on

e
m

on
th

la
te

.
Pr

os
pe

rP
ay

m
en

ts
O

ne
M

on
th

Pl
us

La
te

N
um

be
r

of
pa

ym
en

ts
th

e
bo

rr
ow

er
m

ad
e

on
pr

ev
io

us
lo

an
s

th
at

w
er

e
gr

ea
te

r
th

an
on

e
m

on
th

la
te

.
Pr

os
pe

rP
ri

nc
ip

al
Bo

rr
ow

ed
To

ta
lp

ri
nc

ip
al

bo
rr

ow
ed

on
Pr

os
pe

r
lo

an
s

at
th

e
ti

m
e

th
e

lis
ti

ng
w

as
cr

ea
te

d.
Pr

os
pe

rP
ri

nc
ip

al
O

ut
st

an
di

ng
Pr

in
ci

pa
lo

ut
st

an
di

ng
on

Pr
os

pe
r

lo
an

s
at

th
e

ti
m

e
th

e
lis

ti
ng

w
as

cr
ea

te
d.

Sc
or

ex
C

ha
ng

eA
tT

im
eO

fL
is

ti
ng

C
re

di
ts

co
re

ch
an

ge
re

la
ti

ve
to

th
e

la
st

Pr
os

pe
r

lo
an

at
th

e
ti

m
e

th
e

cr
ed

it
pr

ofi
le

w
as

pu
lle

d.

Appendix A. Prosper data set summary 105

V
ar

ia
bl

e
D

es
cr

ip
ti

on
Lo

an
C

ur
re

nt
D

ay
sD

el
in

qu
en

t
Th

e
nu

m
be

r
of

da
ys

de
lin

qu
en

t.
Lo

an
Fi

rs
tD

ef
au

lt
ed

C
yc

le
N

um
be

r
Th

e
cy

cl
e

th
e

lo
an

w
as

ch
ar

ge
d

of
f.

If
th

e
lo

an
ha

s
no

tc
ha

rg
ed

of
ft

he
va

lu
e

w
ill

be
nu

ll.
Lo

an
M

on
th

sS
in

ce
O

ri
gi

na
ti

on
N

um
be

r
of

m
on

th
s

si
nc

e
th

e
lo

an
or

ig
in

at
ed

.
Lo

an
N

um
be

r
U

ni
qu

e
nu

m
er

ic
va

lu
e

as
so

ci
at

ed
w

it
h

th
e

lo
an

.
Lo

an
O

ri
gi

na
lA

m
ou

nt
Th

e
or

ig
in

at
io

n
am

ou
nt

of
th

e
lo

an
.

Lo
an

O
ri

gi
na

ti
on

D
at

e
Th

e
da

te
th

e
lo

an
w

as
or

ig
in

at
ed

.
Lo

an
O

ri
gi

na
ti

on
Q

ua
rt

er
Th

e
qu

ar
te

r
in

w
hi

ch
th

e
lo

an
w

as
or

ig
in

at
ed

.
M

em
be

rK
ey

Th
e

un
iq

ue
ke

y
th

at
is

as
so

ci
at

ed
w

it
h

th
e

bo
rr

ow
er

.
M

on
th

ly
Lo

an
Pa

ym
en

t
Th

e
sc

he
du

le
d

m
on

th
ly

lo
an

pa
ym

en
t.

LP
_C

us
to

m
er

Pa
ym

en
ts

Pr
e

ch
ar

ge
-o

ff
cu

m
ul

at
iv

e
gr

os
s

pa
ym

en
ts

m
ad

e
by

th
e

bo
rr

ow
er

on
th

e
lo

an
.

LP
_C

us
to

m
er

Pr
in

ci
pa

lP
ay

m
en

ts
Pr

e
ch

ar
ge

-o
ff

cu
m

ul
at

iv
e

pr
in

ci
pa

lp
ay

m
en

ts
m

ad
e

by
th

e
bo

rr
ow

er
on

th
e

lo
an

.
LP

_I
nt

er
es

ta
nd

Fe
es

Pr
e

ch
ar

ge
-o

ff
cu

m
ul

at
iv

e
in

te
re

st
an

d
fe

es
pa

id
by

th
e

bo
rr

ow
er

.
LP

_S
er

vi
ce

Fe
es

C
um

ul
at

iv
e

se
rv

ic
e

fe
es

pa
id

by
th

e
in

ve
st

or
s

w
ho

ha
ve

in
ve

st
ed

in
th

e
lo

an
.

LP
_C

ol
le

ct
io

nF
ee

s
C

um
ul

at
iv

e
co

lle
ct

io
n

fe
es

pa
id

by
th

e
in

ve
st

or
s

w
ho

ha
ve

in
ve

st
ed

in
th

e
lo

an
.

LP
_G

ro
ss

Pr
in

ci
pa

lL
os

s
Th

e
gr

os
s

ch
ar

ge
d

of
fa

m
ou

nt
of

th
e

lo
an

.
LP

_N
et

Pr
in

ci
pa

lL
os

s
Th

e
pr

in
ci

pa
lt

ha
tr

em
ai

ns
un

co
lle

ct
ed

af
te

r
an

y
re

co
ve

ri
es

.
LP

_N
on

Pr
in

ci
pa

lR
ec

ov
er

yp
ay

m
en

ts
Th

e
in

te
re

st
an

d
fe

e
co

m
po

ne
nt

of
an

y
re

co
ve

ry
pa

ym
en

ts
.

Pe
rc

en
tF

un
de

d
Pe

rc
en

tt
he

lis
ti

ng
w

as
fu

nd
ed

.
R

ec
om

m
en

da
ti

on
s

N
um

be
r

of
re

co
m

m
en

da
ti

on
s

th
e

bo
rr

ow
er

ha
d

at
th

e
ti

m
e

th
e

lis
ti

ng
w

as
cr

ea
te

d.
In

ve
st

m
en

tF
ro

m
Fr

ie
nd

sC
ou

nt
N

um
be

r
of

fr
ie

nd
s

th
at

m
ad

e
an

in
ve

st
m

en
ti

n
th

e
lo

an
.

In
ve

st
m

en
tF

ro
m

Fr
ie

nd
sA

m
ou

nt
D

ol
la

r
am

ou
nt

of
in

ve
st

m
en

ts
th

at
w

er
e

m
ad

e
by

fr
ie

nd
s.

In
ve

st
or

s
Th

e
nu

m
be

r
of

in
ve

st
or

s
th

at
fu

nd
ed

th
e

lo
an

.

107

Appendix B

Experiment results

Credit data - Taiwan

TABLE B.1: Performance of two different ratio’s, both have
LIMIT_BAL as denominator. These ratio’s are applied to the Taiwan

data set.

BILL_AMNT PAY_AMNT Both
Original Keep Delete Keep Delete Keep Delete
Logistic Regression 0.72 0.72 0.72 0.72 0.72 0.72
Neural network 0.77 0.77 0.77 0.77 0.77 0.77
Naïve bayes 0.72 0.72 0.73 0.73 0.72 0.72
k Nearest neighbors 0.71 0.71 0.70 0.70 0.70 0.70
Decision tree 0.73 0.73 0.73 0.72 0.73 0.73
Random forest 0.73 0.73 0.73 0.73 0.73 0.73
ADABoost 0.75 0.75 0.75 0.75 0.75 0.75
Gradient boosting 0.76 0.76 0.76 0.76 0.76 0.76

TABLE B.2: The average AUC of 25 folds for different algorithms and
resample methods when used on the Taiwan data set.

Algorithm

N
on

e

R
an

do
m

un
de

rs
am

pl
in

g

R
an

do
m

ov
er

sa
m

pl
in

g

Sm
ot

e
re

gu
la

r

Sm
ot

e
bo

rd
er

lin
e1

Sm
ot

e
bo

rd
er

lin
e2

A
D

A
SY

N
_2

A
D

A
SY

N
_5

A
D

A
SY

N
_1

0

Logistic Regression 0.72 0.72 0.72 0.73 0.73 0.73 0.73 0.73 0.73
Neural Network 0.77 0.77 0.76 0.74 0.73 0.74 0.74 0.74 0.73
Naïve Bayes 0.73 0.73 0.73 0.73 0.73 0.72 0.73 0.73 0.73
k Nearest Neighbors 0.71 0.71 0.68 0.69 0.68 0.68 0.68 0.68 0.68
Decision Tree 0.73 0.74 0.74 0.74 0.73 0.73 0.73 0.73 0.73
Random Forest 0.73 0.73 0.73 0.72 0.73 0.72 0.72 0.72 0.72
ADABoost 0.75 0.75 0.75 0.75 0.74 0.73 0.74 0.74 0.74
Gradient Boosting 0.77 0.76 0.77 0.76 0.76 0.76 0.76 0.76 0.76

108 Appendix B. Experiment results

TABLE B.3: Confusion matrices of applying the algorithms on the
Taiwan test set with the in Chapter 5 determined parameters.

(A) Logistic Regression

Predicted Predicted
positive negative

Positive 921 670
Negative 1,007 4,902

(B) Neural Network

Predicted Predicted
positive negative

Positive 986 605
Negative 1,193 4,716

(C) Naïve Bayes

Predicted Predicted
positive negative

Positive 995 596
Negative 1,465 4,444

(D) k Nearest Neighbors

Predicted Predicted
positive negative

Positive 960 631
Negative 1,236 4,673

(E) Decision Tree

Predicted Predicted
positive negative

Positive 953 638
Negative 1,156 4,753

(F) Random Forest

Predicted Predicted
positive negative

Positive 1,008 583
Negative 1,274 4,635

(G) ADABoost

Predicted Predicted
positive negative

Positive 1,067 524
Negative 1,512 4,397

(H) Gradient Boosting

Predicted Predicted
positive negative

Positive 973 618
Negative 1,180 4,729

Appendix B. Experiment results 109

Peer2peer loans - Prosper

TABLE B.4: Confusion matrices of applying the algorithms on the
Prosper test set with the in Chapter 5 determined parameters.

(A) Logistic Regression

Predicted Predicted
positive negative

Positive 1,141 426
Negative 6,188 13,486

(B) Neural Network

Predicted Predicted
positive negative

Positive 1,203 364
Negative 5,747 13,927

(C) Naïve Bayes

Predicted Predicted
positive negative

Positive 1,213 354
Negative 11,113 8,561

(D) k Nearest Neighbors

Predicted Predicted
positive negative

Positive 1,024 525
Negative 5,871 13,803

(E) Decision Tree

Predicted Predicted
positive negative

Positive 1,223 344
Negative 6,956 12,718

(F) Random Forest

Predicted Predicted
positive negative

Positive 1,304 263
Negative 7,412 12,262

(G) ADABoost

Predicted Predicted
positive negative

Positive 1,148 419
Negative 5,699 13,975

(H) Gradient Boosting

Predicted Predicted
positive negative

Positive 1,292 275
Negative 6,852 12,822

	Management summary
	Model performance
	Resampling

	Preface
	Introduction
	Organization
	Project context
	Problem description
	Research objective
	Report outline

	Theoretical framework
	Current state of the literature
	Credit risk
	Machine learning
	Working with imbalanced data sets
	Model performance measures
	Cross-validation
	Ensemble models
	Model descriptions

	Methodology
	Research framework
	Data preparation
	Model training and testing

	Data description and preparation
	Credit data - Taiwan
	Peer to peer lending - Prosper

	Model training
	Credit data - Taiwan
	Peer to peer lending - Prosper
	Data influences

	Conclusions
	Limitations and further research
	Bibliography
	Prosper data set summary
	Experiment results

