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Abstract 

Introduction. Creating learning curves based on virtual reality simulators seems to be 

a promising new method to tackle the challenges minimally invasive surgery has raised. 

Nevertheless, is it currently unclear how future training and assessment with virtual reality 

simulators can be designed. A question of interest is if the latent abilities necessary in the real 

procedure occur in simulator training as well. One aspect could be that simulator training 

elicits more repetitive behaviour. Therefore, MSL might play a role in simulator training. 

MSL is a form of open-loop learning in which sequences of actions are implicitly learned and 

automatized over time. The impact of MSL on simulator tasks might be assessed based on a 

two-part learning curve following the LARARY model. The current research will focus on 

finding out the general proportion MSL in laparoscopic simulator task performance and if 

there is a variance in the proportion MSL between individuals. Additionally, it will be 

assessed if the chosen tasks may serve as psychometric tools.  

Method. It has been chosen for a time series as design. In total, there were 15 people 

practicing with the laparoscopic virtual reality simulator. Participants were required to carry 

out 40 trials of two different simulator tasks. The first 20 trials were in a variable 

configuration, the second 20 trials were configured in a fixed sequence. Afterwards, a non-

linear multilevel regression model with a gamma-distributed random component has been 

fitted the data. The proportion of MSL has been calculated on a population and a participant 

level. Additionally, the correlation between the chosen tasks has been estimated.  

Results.  A relatively high proportion of MSL has been found in both tasks with MSL 

being even higher in the easier task. Also, there was mentionable inter-individual variance in 

the proportion MSL from participant to participant. The correlation between both tasks has 

been mediocre. Uncertainty was very high for all results.  

Discussion. The current study showed that MSL indeed makes up a part of the chosen 

tasks in laparoscopic simulator training. Also, there was individual variance in the proportion 

MSL. When the amount of MSL varies from person to person, simulator training would mean 

an unfair assessment and an inadequate training method. Therefore, needs MSL to be kept at a 

minimum when designing simulator based training and assessment. The study showed that the 

nature of the tasks play a role in the proportion of MSL. Easier tasks seem to trigger MSL 

faster than more complex ones. Also, it needs to be taken into consideration that the 

configurations in sequential training need to be varied. In comparison with other studies, did 

the chosen task have a relatively high correlation and therefore could have been taken into 

consideration as psychometric tools. Nevertheless, no fixed judgements should be made based 
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on the current study, as there were some major limitations. The study mainly served as a 

proof of concept and future research should focus increasing the sample size significantly. 

Also, the amount of trials has not been sufficient. It should be taken into consideration to 

redistribute the amount of trials and to do less trials in the variable and more in the fixed part, 

as the asymptote level in contrast to the variable part has not been reached in the fixed part for 

most participants.  

 Keywords: Minimally invasive surgery, laparoscopy, simulator training, learning 

curve, motor sequence learning 
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Introduction 

Since its emergence, minimally invasive surgery (MIS) has been adopted at a fast rate 

(Tsui, Klein & Garabrant, 2013). MIS tries to keep the trauma of an operation as small as 

possible. Essentially, MIS is about replacing long incisions necessary for conventional 

surgery with incisions that are only few centimetres long or even to completely avoid them 

(Kantonsspital Aarau, 2011). Most of the general surgeons consider MIS as the gold standard 

for many gastrointestinal (GI) diseases, because it includes reduced postoperative pain, 

recovery time and cost-effectiveness (Tsui, Klein & Garabrant, 2013, Lacy, García-

Valdecasas, Delgado, Castells, Taurá, Piqué & Visa, 2002, Darzi & Munz, 2004).  

Laparoscopy is one of these minimally invasive techniques executed in the abdominal 

area of the patient. Small incisions are made in the abdominal wall and specially designed 

endoscopes are inserted (Gao & MacKenzie, 1996). Nevertheless, did the introduction of MIS 

like laparoscopy mean a huge paradigm shift for many surgeons for their regular operating 

procedures. Laparoscopy is a complex procedure that requires the surgeon to carry out precise 

movements in a restricted area while observing ones actions on a monitor which requires 

adjusted visual-spatial motor orientation (Dakin & Gagner, 2003). Not being able to touch or 

see the areas in which they operate requires a three-dimensional orientation in a two-

dimensional depiction of the procedure which has resulted in the need for a completely new 

man-machine environment (Mack, 2001, Van Dongen, Tournoij, Van der Zee, Schijven & 

Broeders, 2007).  

Due to these challenges, it is currently uncertain how to provide valid training and 

assessment methods for laparoscopy. The prevailing master-apprentice model is no longer 

suitable due to factors like increased costs and ethical issues (Seymour, Gallagher, Roman, 

O’brien, Bansal, Andersen & Satava, 2002). Virtual reality (VR) simulators seem to be a 

promising new training and assessment method (van Dongen, Tournoij, van der Zee, Schijven 

& Broeders, 2007). Although literature (cf. Seymour et al., 2002 & Dongen, Tournoij, van der 

Zee, Schijven & Broeders, 2007) showed that laparoscopic simulator training can improve 

surgical performance, it is still unclear how to design training and assessment with VR 

simulators in terms of the nature of tasks, repetitiveness and configurations. Learning curves 

have been proposed to estimate a surgeons skill and to track an individual’s progress. A 

question of interest is if the latent abilities which are necessary in the real procedure are 

transferrable to training with a simulator. One aspect could be that simulator training might 

promote more repetitive movements which is not the case in real surgery. When people are 

highly engaged in repetitive behaviour, motor sequence learning (MSL) occurs. MSL in turn, 
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involves executing segments of a movement automatically. Therefore, MSL encompasses 

carrying out a motor sequence without engaging in shifts of attention or intentional executive 

control (Rhodes, Bullock, Verwey, Averbeck & Page, 2004). MSL is, amongst other things, 

characteristically unintentional and inflexible (D’Angelo, Milliken, Jiménez & Lupiáñez, 

2013). If MSL would make a great impact in a training and assessment method, it would not 

be transferrable to the real procedure, as in real life, every body on which is operated is 

different. Therefore, an automated, inflexibly learned motor sequence would not be applicable 

on individually different patients.  

In the current study, we will deal with the specific question concerning laparoscopic 

simulator training and assessment, namely to what extend repetition of trials matters in terms 

of MSL, with the purpose of finding out how to create valid tasks for laparoscopic simulator 

training.  

Background 

Training minimally invasive surgery. Because the skills required for laparoscopy are 

different from the skills necessary for traditional surgery, adequate training and assessment 

are crucial factors in the education of surgeons. For a long period of time, training has been 

performed on a master-apprentice basis within the operating room (Hyltander, Liljegren, 

Rhodin & Lönroth, 2002). In this mentor-trainee model, the trainee first of all observes the 

mentor operating and afterwards performs the procedure himself under guidance of his 

mentor (Shalhav, Dabagia, Wagner, Koch & Lingeman, 2002). Although skill development in 

the operating room seems no longer to be appropriate due to cost factors, limited work hours 

and ethical issues, has laparoscopic surgery training remained highly unstructured and 

restrained to this same mentor-apprentice model (Seymour et al., 2002). Despite the extensive 

adoption of laparoscopic operations, very little has developed in the way of teaching 

laparoscopic procedures (Korndorffer, Stefanidis & Scott, 2006). Therefore, innovative and 

efficient new training and assessment methods are necessary to balance the complexity of 

new surgical demands.  

Earlier research by Seymour et al. (2002) tried to build on the paradigm of flight 

simulation and projected the idea to surgical training with the help of virtual reality (VR). 

Nowadays, VR surgery simulators are readily available to be used as a new training and 

assessment method for future surgeons. In order to test the quality of VR simulator training, 

Seymour et al. (2002) assigned 16 surgeons to either a group that received VR in addition to 

their standard training and a control group who only received the standard training. In the 

course of the study it has been found out, that the use of VR simulators in surgery actually 
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improved the surgical performance during laparoscopy. The study by Seymour et al. (2002) 

therefore seems to validate the transfer of skill acquisition between VR and the original 

surgical procedure.  

Another study which seemed to confirm the resemblance between training with a 

laparoscopic VR simulator (LapSim) and the real procedure has been the study by van 

Dongen, Tournoij, van der Zee, Schijven and Broeders (2007). The aim of this research has 

been to examine if training surgical procedures with a VR simulator would deliver construct 

validity and therefore, suggest skill acquisition of the trainee. For this purpose, van Dongen, 

Tournoij, van der Zee, Schijven and Broeders (2007) recruited 48 participants with different 

surgical experience and measured their performance in the simulator training. They found out 

that the higher the level of experience, the higher the score in the simulator training. 

Therefore, they concluded that the LapSim simulator can be integrated in a training 

programme as construct validity has been confirmed (van Dongen, Tournoij, van der Zee, 

Schijven & Broeders, 2007). 

The above described studies suggest that, VR simulators, like the LapSim simulator 

for laparoscopy might be used as an innovative and indispensable part in the preparation and 

assessment of surgeons (Van Dongen et al., 2007). However, when assessing construct 

validity and validating the transfer between VR training and the operation room, earlier 

studies did not take into consideration latent abilities such as the nature of learning which 

occurred when training with a VR simulator. It is questionable if an increased performance 

can actually be attributed to skill acquisition or if it is attributable to motor sequence learning 

(MSL) due to a high repetitiveness of the same movements in simulator training. In order to 

assess the question on which role MSL plays in laparoscopic simulator performance, the term 

learning first needs to be elaborated in more detail. 

Introducing Learning. One can be concerned about the validity of sim training under 

various aspects. One particular issue regards in what way it promotes open- or closed-loop 

learning. When initially engaging in a specific motor behaviour, closed-loop learning occurs 

in which error detection and corresponding correction of the behaviour happens (Adams, 

1971). When engaging in a motor behaviour, the desired outcome is specified beforehand. 

The result is then referred back, reflected for any error detection and if demanded improved 

(Adams, 1971). With more practice, motor skills are performed more automatically 

(Ehrlenspiel, Wei & Sternad, 2010). This is attributable to open-loop learning, in which there 

is no response-adjusting feedback is given.  
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MSL is a form of open-loop learning in which sequences of actions are implicitly 

learned and stabilized over time, which makes MSL less susceptible to interferences or 

adjusting responses (Meissner, Keitel, Südmeyer & Pollok, 2016). MSL involves the 

repetitive execution of a series of motor sequences in a fixed order which leads to the 

development of memory representations of this sequence, the so called motor chunks. With 

practice, those chunks can be executed collectively, in an open-loop manner as if it was one 

single response (Verwey, 2001). When learning a motor sequence, its execution does neither 

require shifts in attention nor is intentional executive control necessary. In other words, when 

MSL occurs, segments are executed automatically (Rhodes, Bullock, Verwey, Averbeck & 

Page, 2004). In terms of explaining the mechanisms necessary for MSL, associative chaining 

and parallel response activation have been suggested as responsible mechanisms. On the one 

hand, associative chaining involves that one element of a sequence is active at one point in 

time, which will in turn cause the activation of the next element. Parallel response activation 

on the other hand states, that the different elements of a sequence are represented 

simultaneously (Rhodes et al., 2004). 

MSL might be favourable in a multitude of situations as a learned motor sequence can 

be executed at a fast rate. However, when it comes to training for surgery, a great proportion 

of MSL would be problematic, as the training would not be transferable to the real procedure. 

In real life, the circumstances of every laparoscopy vary from operation to operation as every 

patient is individual. Performance predictions from simulators are not valid if they are 

contaminated with MSL, because executing a learned motor sequences is not only 

unintentional, but inflexible as well (D’Angelo, Milliken, Jiménez & Lupiáñez, 2013). This is 

likely to happen, when tasks are highly repetitive in nature. Research by Toni, Krams, Turner 

and Passingham (1998) has even shown decreased brain activity in the premotor and motor 

areas when a task has become overlearned. Additionally, MSL prevents stimulus guidance 

and deliberative choice which are both crucial necessities in laparoscopic surgery (Rhodes et 

al., 2004).  

Consequently, if VR simulator performance should be considered a valid training and 

assessment method, it needs to be designed in a way that keeps MSL at a minimum. The 

question of interest is now: how can we find out what the general impact of MSL is in 

laparoscopic simulator tasks? 

Learning curves. A VR simulator is able to measure certain performance parameters 

such as time on task, movement economy or damage rate, based on which learning curves can 

be created. Learning curves are a way of statistically representing learning a motor skill. 
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Performance data from training with a VR simulator for example could be used to make valid 

statements about an individual’s learning curve concerning laparoscopic simulator training. 

By estimating individual learning curves, assessment of the inter-individual variability of 

trainees can be made. Also, individual predictions about probable future skill acquisition of a 

surgeon is possible (Pusic et al., 2017). Additionally, previous selection for individuals which 

are suitable for being a surgeon would be possible based on learning curves of simulator 

performance. Momentarily, the integration of simulators into the training of surgeons is 

delaying mostly due to financial factors (Palter, Orzech, Reznick & Grantcharov, 2013). 

Because simulators have not yet established as a training method, learning curves are 

currently not used as an evaluation method either. Therefore, more research on the validation 

of simulator training is necessary.  

Commonly, learning curves consist of three parameters (Figure 1). The initials of the 

three parameters are why the model is labelled as the ARY-model. The first parameter is 

called the amplitude (A) and describes the amount of learning. The second parameter 

describes the speed of learning of a person and is called the rate (R). The last parameter is 

called the asymptote (Y) which indicates the maximum learning capacity of a person. (David, 

2018).  

In order to be able to measure the impact of MSL in laparoscopic simulator training, a 

new, experimental paradigm has been developed by Schmettow and Groenier. It is a two-part 

learning curve, which includes two additional parameters. In figure two it is shown that the x-

axis in the new paradigm can be subdivided in a part in which learning is attributed to the 

skill (S) of the individual and a part that is attributed to MSL (M). The learning curve of S can 

be established by using many variable configurations of a simulator task. M on the other hand 

can be assessed by letting the trainee do a large number of fixed configurations of a simulator 

task. With the help of this model, the magnitude of actual skill acquirement as well as the 

extent to which MSL is present in simulator training can be estimated.  

It is therefore a further development of the ARY-model and in the following it will be 

labelled the LARARY-model. The term also consists of the initials of its components, namely 

the logarithm link function (L) and the five parameters included in the extended learning 

curve: the amplitude (A) and the rate (R ) of the skill acquisition part, the amplitude (A) and 

the rate (R ) of the MSL part and the asymptote (Y).  
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The formula1 to calculate performance with the help of this paradigm, is described as 

the following (David, 2018): 

performance = 𝜔 + 𝛿𝑆𝑒
−𝜌𝑆𝑡𝑆 + 𝛿𝑀𝑒

−𝜌𝑀𝑡𝑀 

 

 
Figure 1. An exemplary learning curve. The x-axis represents an index of the learning 

effort (e.g. trials)  and can be plotted against the y-axis, which gives an index of the 

performance of the individual (e.g. time on task). The y-intercept indicates the individual’s 

prior knowledge. The slope of the learning curve is a proportional representation of the rate 

and the efficiency of learning. Additionally, given endless repetitions of a training, the 

maximal learning potential is plotted as the asymptote (Pusic et al., 2017). 

 

                                                
1 The amplitude and rate with regard to skill (S) acquisition of an individual are labelled in the formula as 
amplitudeS (δS) and rateS (ρS). The additional parameters which have been included to estimate MSL are the 
amount of learning (δM) and speed of learning (ρM). ω describes the asymptote parameter oft he learning curve.  
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Figure 2. Paradigm describing an experimental learning curve paradigm developed by 

Schmettow and Groenier. It includes the skill (S, left part) and MSL (M, right part) of the 

individual on the x-axis. On the y-axis, the amplitude of S and M as well as the asymptote 

level are given. Retrieved from David, Schmettow and Groenier (2018).  

 

Conclusion and research questions. In summary, the use of laparoscopic simulator 

training seems to be a promising new method for training and assessing surgeons. 

Nevertheless, it is still unclear how to construct simulator training in a way that it resembles 

the real procedure sufficiently. A factor that might prevent simulator training from having a 

high level of resemblance with the real procedure is MSL. MSL is not practicable in real 

surgery and therefore should not be enhanced by the training procedure. Consequently, the 

aim of the current research is to find out the extent to which MSL is present in simulator 

based laparoscopy training. With the help of the above described paradigm, the following 

general question can be answered: What is the proportion MSL in laparoscopic simulator task 

performance on a population level? However, it is not only important to come to know if 

MSL is part of simulator training for everybody, but also if there is inter-individual variance 

in the proportion MSL. Therefore, the second question that needs to be answered  in order to 

assess if simulator training is a fair assessment method is: What is the individual variance in 

the proportion MSL in laparoscopic simulator task performance? 

 Even though the main focus of the current research will be put on the just described research 

questions, it will also be assessed, if the tasks used are suitable as psychometric tools for 

educating surgeons in laparoscopy.  
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Method 

Design 

All participants started with 20 variable trials, followed by 20 fixed trials of each task. 

Therefore, we chose for a time series as basic design. Tasks have been handled as a within-

subject design. The two different parts of the tasks (variable and fixed) were both within-

subject and within-task. Based on the study by David, Schmettow & Groenier (2018), each 

task consisted of 40 trials with 20 variable and 20 fixed trials in order to prohibit fatigue but 

on the same time to ensure that the asymptote level can be reached and stabilized. Within the 

variable phase, trials differed in that a gallstone (in the instrument navigation task) or a blood 

vessel (grasping task) reappeared in a completely different position than in the trial before. 

After having done all the variable configurations of the task once, participants engaged in the 

fixed part of the session. Here, participants were required to do another 20 trials of each task, 

but with the exception, that there was no variation in the position of the gallstone or blood 

vessel. They appeared in the same two positions for all the trials. One for being reached with 

the right instrument and in another position for the left instrument. 

Procedure 

Location. The procedure and instructions were the same for every participant. 

Because of the fixed position of the LapSim, the advanced simulation room 1 in the 

Experimental Centre of Technical Medicine of the University of Twente served as a location 

for the data gathering. The baseline questionnaire and the informed consent have been filled 

out in the same location, as the room was comparatively quiet and there were no major 

distractions. Therefore, participants had the possibility to ask questions without feeling 

disturbed. 

 Instructions. After having welcomed and thanked participants, an oral explanation 

about the aim, the content and duration of the study has been given. Then, two printed 

versions of the informed consent (see Appendix A) were handed out. Participants were asked 

if they had fully understood everything and if they would like to keep a copy of the informed 

consent. Both forms were then signed by the participant as well as the researcher. 

 Preparation phase. Before starting with the actual data gathering, participants filled 

in the baseline questionnaire on their own laptop. Afterwards, the researcher introduced the 

simulator to the participants. Instructions about the handling of the simulator and the tasks 

were given. Next, participants were told to try out the first configuration of the instrument 

navigation task once to get a first impression on how the simulator works. Finally, it was 

asked if the participant had any questions left.  
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 Data gathering. With the LapSim, it has been possible to practice with different kinds 

of tasks and procedures. To achieve the goal of the current study, it has been chosen for two 

basic tasks. The task ‘Instrument Navigation’ has been chosen because it is one of the easiest 

tasks of the LapSim. Correspondingly, if applying, MSL might be triggered earlier than with a 

more complex task. To ensure, that there is a task included in which there is more skill 

learning required and which is complex enough to actually show a learning curve, the 

‘Grasping’ task has been chosen as a more challenging task. For the aim of the current study, 

one course for each task has been configured, each one consisting of 20 variable and 20 fixed 

trials. 

Course one: instrument navigation. The first course focussed on the instrument 

navigation (IN) task. The IN task involved carefully approaching a virtual gallstone (see 

figure 3) with the ends of the endoscopes. The gallstone has been surrounded by abdominal 

tissue which must not be touched with the instruments to avoid tissue damage. The 

endoscopes, in this task, did not have forceps as it was sufficient to touch the gallstone with 

the instrument. In the bottom, left corner it has been indicated if the gallstone had to be 

approached with the left or the right instrument. The approximate time for the first course was 

35 minutes.  

 

 
Figure 3. Example of the IN task with the gallstone in the centre, abdominal tissue around it 

and instructions about which instrument to use in the bottom, left corner.  

 

Course two: grasping. When doing the grasping task, participants were asked to 

approach a blood vessel which was reaching out of the tissue (see figure 4) with either the 

right or the left forceps of the endoscope. When the blood vessel had been grasped, it needed 
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to be hold on and pulled out of the tissue. Next, it had to be put into a surgical bag. When the 

blood vessel was moved there close enough, the bag lighted up in yellow and the blood vessel 

had to be released by opening the forceps carefully.  

The procedure of the second course was the same as for the first one. First, 

participants were required to do 20 trials in which the position of the blood vessel varied from 

trial to trial, followed by 20 trials in which the blood vessel stayed in a fixed position and 

alternated only in position for the right or the left instrument. Executing the second course 

took participants about 45 minutes.  

 
Figure 4. Example of the grasping task. A blood vessel is sticking out of the abdominal tissue 

which needs to be placed in the white bag. Instructions are given in the bottom, left corner.  

 

Debriefing. After finishing the second session, participants were asked what their 

overall impression of the training was. Furthermore, it was suggested if they want to receive 

their results via email. Participants received their version of the informed consent. It has been 

emphasized, that the informed consent included the contact data of the researcher in the case 

of questions or remarks.  

Measurements 

 As the current study served as a proof-of-concept, we chose to use only one parameter 

as simulator task performance measurement. Van Dongen et al. (2007) proposed the amount 

of time needed to complete a task as being indicative of the participant’s skill. Hence, total 

time was selected as performance parameter. In terms of measurement, the total time has been 

assessed in seconds. With the help of this parameter, a learning curve for the variable part as 

well as for the fixed part of the two tasks can be developed.  
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Data Analysis 

A non-linear multilevel regression model with a gamma-distributed random 

component served to carry out the regression analysis. This multilevel model considered 

participants as a grouping variable themselves and thus estimated individual parameters. 

Additionally, participants were seen as part of a population. These two assumptions make up 

the so called random factors of the model (Schmettow, 2018). A population is hereby seen as 

a set of individuals that bundle around a representative value but nevertheless do vary 

(Schmettow, 2018). The deviation of individuals from the population mean (random effects) 

were of interest for the current study. Despite the fact that the population average (fixed 

effects) of tasks been assessed as well, has the used model been purely a random effects 

model. 

The ARARY parameters, are bounded at zero. This is similar to the so called link 

functions in Generalized Linear Models (Schmettow, 2018). The logarithm served as a link 

function to restrain the values to realistic, natural boundaries.  

As time on task (ToT) measures are typically skewed, it has been chosen for a gamma 

random component (Schmettow, 2018).   

 Initially, a non-parametric, exploratory data-analysis has been carried out to get a first 

impression of the learning curves. The statistical analysis (Appendix C) was aimed at finding 

out the proportion of MSL in the two chosen tasks. As described above, regression was run 

with the help the LARARY model that linearized parameters of the model. Fixed and random 

effects were calculated on the log-scale, ranging between -∞ and +∞. As an inverse function, 

the exponent of the values had to been taken.  

The actual proportion of MSL was not inherent in the model, it had to be calculated posterior 

by the following formula: 

Pi = δM : (δS + δM) 

 

This has been done on both, population and participant level. In the end, correlations between 

the tasks have been analysed in order to estimate the internal consistency of the tasks.  

Material 

 Baseline questionnaire. The baseline questionnaire (Appendix B) has been created 

and filled in via the ‘SurveyMonkey’ website. It included questions concerning the age, 

gender, occupation and nationality of the participant. Furthermore, it has been asked for any 

physical disabilities. It is explicitly asked for any visual impairments.  
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 LapSim. The LapSim (figure 4) is a virtual reality simulator which serves as a training 

and assessment tool for various laparoscopic procedures. With the LapSim it is possible to 

practice with more basic skills like grasping, cutting, clip applying and more and it is possible 

to execute procedure modules in which operations like a cholecystectomy or appendectomy 

are simulated (surgicalscience.com, 2018).  

 

 
Figure 5. Showing the LapSim VR-Simulator including two ball-shaped elements with 

inserted endoscopes. On the display, the grasping task is shown.  

 

Participants 

 In total, there were 15 people participating in the current study. The age of the 

participants ranged from 18 to 29 (M = 20.67, SD = 2.94). Eleven women and four men were 

included. All of the participants were students and of German nationality. Participants were 

recruited via the SONA test subjects pool of the University of Twente. There were no people 

with physical or major visual impairments and therefore, no one had to be excluded from the 

study. Every participant signed an informed consent (Appendix A). The current study has 



 
MOTOR SEQUENCE LEARNING IN SIMULATOR PERFORMANCE 
 

16 

been ethically approved by the Ethics Committee of the Faculty of Behavioural Science of the 

University of Twente.  

Results 

In the current section, results of the above described analysis will be discussed. A first 

analysis has been made on the fixed effects in order to find if MSL is in general part of 

laparoscopic simulator training. A second analysis focussed on the random effects to 

determine the inter-individual variance in the proportion MSL. A correlation analysis has 

been carried out on the correlation of the chosen tasks to establish the psychometric value of 

the chosen tasks.  

Population-level 

 Estimates on a population level were calculated with 95% credibility limit. Overall, 

the proportion of MSL learning in the instrument navigation (IN) task (0.25, 95% CI [0.06; 

0.53]) was almost twice as large as the proportion MSL in the grasping task (0.14, 95% CI 

[0.06; 0.28]. Based on the data, MSL made up 25% of the learning in the IN task and 14% of 

the grasping task. However there was a high level of uncertainty in both tasks. We can be 

95% certain that the true value of the proportion MSL in the instrument navigation lies 

somewhere between 6% and 53% and between 6% and 28% in the grasping tasks.  

Participant-level 

 Learning curves per participant. Figure 5 shows the learning curves of each 

participants for the IN (left) and for the grasping task (right). An initial investigation of the 

graphs showed that around half of the participants, displayed a visible step in the learning 

curve. Nevertheless, it needs to be mentioned, that nearly half of the participants did not show 

a visible step in the learning curve. Some of the graphs also seem just like a regular one-part 

learning curve. Although in general confirming the two-part learning curve concept, do the 

learning curves vary significantly from participant to participant. Therefore, there seemed to 

be individual differences in the proportion of MSL in simulator training. The visualized data 

confirms what has been stated above: in the IN task, learning curves show the assumed two-

part paradigm more clearly and in more participants than the grasping task. While doing a 

visual inspection of the data, it stood out, that the asymptote level has not been reached in the 

fixed part of the task for most of the participants. In the variable part, however, the asymptote 

level has been reached earlier and by the great majority of both tasks. 
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Figure 6. Individual learning curves for each participants of the IN task (left) and the grasping 

task (right). The x-axis represents the number of trials and the y-axis displays the time spent 

on the task (ToT). 

 

 Proportion MSL per participant. Figure 7 shows the estimated proportion of MSL 

per participant and per task. It should be noted, that MSL made up relevant a proportion in a 

number of participants. However, individual differences need to be stressed as values ranged 

from 8% (95% CI [0.02; 0.16]) to 25% (95% CI [0.04; 0.77]) in the grasping task. In the IN 

task, the lowest value of MSL was 22% (95% CI [0.05; 0.51]) and the highest value 32% 

(95% CI [0.08; 0.69]). Uncertainty was very high for all proportions, which is probably 

attributable to a combination of the small sample size and the relatively low amount of trials. 

The data showed, that MSL made up a proportion in every participant but nevertheless, there 

were a relatively high levels of inter-individual variance.  
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Figure 7. Random effects for the proportion MSL per participants, divided by the two tasks 

grasping (left) and instrument navigation (right).  

 
Correlations between tasks 

Table 3 describes the correlation between the two tasks for each of the five model 

parameters. For the current study, the correlation of the asymptote parameter is of greatest 

interest. The asymptote showed the highest correlation between tasks (0.40, 95% CI [-

0.84;0.96]) of all five parameters. Again, values are highly uncertain.  

 

Table 3 

Correlation between tasks for the five model-parameters 

nonlin Correlation1 Correlation2 center lower upper 

δM Grasping Instrument 

Navigation 

0.06 -0.92 0.93 

δS Grasping Instrument 

Navigation 

0.17 -0.90 0.95 

ω Grasping Instrument 

Navigation 

0.40 -0.84 0.96 
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ρM Grasping Instrument 

Navigation 

0.16 -0.90 0.92 

ΡS Grasping Instrument 

Navigation 

0.30 -0.76 0.90 

Estimates with 95% credibility limits 

Discussion 

The main purpose of the current study has been to find out the proportion MSL on a 

population and on an individual level in order to be able to assess whether it is relevant for 

designing simulator tasks. MSL making up a significant proportion would mean, that training 

with a laparoscopic simulator would not be transferrable to the real procedure, as in real life, 

no fixed sequence can be applied to individual patients. As Seymour et al. (2002) state it, 

increasing the skill acquisition that resembles the real procedure is the most important goal of 

any training. Furthermore, Wong and Matsumoto (2008) proposed that a good assessment 

method would closely link to the learner’s actual skill. Therefore, it is important to have a 

look at the general amount of MSL in laparoscopic simulator training, but also to understand 

individual differences in the proportion MSL in order to be able to configure simulator 

training which resembles the real procedure best.  

Interpretation of Results 

In order to interpret the above described results, it is necessary to define if the 

proportion of MSL is high or low and to have a look at the variance as well. In case of a low 

variance in the individual results, interpretation would differ when MSL is high or low. Low 

variance and low MSL would be unproblematic as MSL would not be significantly present. If 

the variance would be low and MSL would be high, this would mean, that simulator training 

under investigation would indeed trigger MSL but at least would be a fair assessment, as the 

proportion remains about the same for everyone. The problematic part would be, if the data 

showed high variance across individuals. Having high individual differences within the data 

would mean that the chosen tasks in the simulator training would be an unfair assessment 

method, no matter if MSL is high or low.  

On a population level, the proportion MSL has been relatively high in both tasks. 

Nevertheless, the difference in the proportion MSL between the IN and the grasping task is 

noticeable. The proportion MSL was nearly twice as high for the IN task as for the grasping 

task. Therefore, the nature of the tasks seems to have an influence on the proportion MSL as 

officially, the IN task is estimated as an easier task than the grasping task by the simulator 
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programme itself. So easier tasks seem to trigger MSL more than difficult tasks. This will 

probably not be problematic, as real trainings will more likely have complex tasks, rather than 

the chosen ones from the ‘basic skill module’ of the LapSim.  

Another explanation might be that the IN task was more fluent in general. It involved 

one movement, while the grasping task required to approach an object, to move the forceps 

with the fingers and to open the forceps very carefully. Therefore, different types of 

coordinating movement where involved which might have inhibited automatization and 

therefore restrained MSL.  

On a participant level, variance in the IN task was higher than in the grasping task and 

in general, there were relatively high individual differences. Accordingly, not only the nature 

of the task seems to trigger MSL differently, but individual characteristics seem to have an 

influence as well. Some individuals seem to be more prone to learning a motor sequence than 

others.  

The third research question focussed on the psychometric value of the two tasks. A 

correlation of 40% is in theory not sufficient. Nevertheless, in practice can be seen, that 40% 

is a rather high correlation when comparing the current study to similar ones (cf. David, 

Schmettow & Groenier, 2018; Arendt, Schmettow & Groenier, 2017; Katschub, Schmettow 

& Groenier, 2016). So the tasks seem to have a comparably high internal consistency and 

therefore, psychometric value.  

In general, all values where prone to a high uncertainty. Therefore, no definite 

judgements should be made based on these findings. In order to validate the results of the 

current study, more observations in terms of increased number of trials and a larger sample 

size are necessary. 

Relation to Existing Research 

A study with the topic of the role of MSL in mastering complex motor procedures 

(David, Schmettow & Groenier, 2018) is mainly confirmative of the above mentioned 

interpretations. In their study, David, Schmettow and Groenier (2018) as well found out that 

there are general differences between the tasks being tested. In the case of their study, it was 

not about simulator task performance, but it had been chosen for two dexterity tasks. 

Nevertheless, the nature and difficulty of the task played a significant role in both studies.  

In replication of the mirror drawing task with longer sequences and a larger sample, the MSL 

proportion was estimated as 12% [9%, 16%], which is less than the proportion of the 

simulator tasks (even though uncertainty needs to be put into consideration). When it comes 

to interpreting the results, this difference does not really matter when considering another 
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similarity to the study. Both researches showed that the population mean was not transferrable 

to every individual. David, Schmettow and Groenier found out as well that there are 

prominent individual differences in the acquisition of MSL. As mentioned above, with a high 

individual variance, simulator tasks would be an unfair assessment method, no matter if the 

proportion MSL was high or low. In the end, another difference to the study of David, 

Schmettow and Groener (2018) has been the psychometric value of the two chosen tasks, 

which has been higher in the current study. This might have to do with the nature of the tasks: 

in the current research, participants had to do two tasks which were intended to follow each 

other by the simulator programme itself. Both tasks involved a similar movement 

(approaching an object) but with increasing challenge and difficulty in the second task. In the 

study by David, Schmettow and Groenier, however, two dexterity tasks have been chosen 

which address fine motor skills, but which still demand rather differing movements. All in all, 

both studies seem to be comparable in their results and strengthen two important findings: 

first, the proportion MSL seems to differ across tasks and second, the proportion MSL is 

dependent on individual differences.  

A fact which was striking in the current research has been the speed at which the 

asymptote level has been reached. Most of the participants reached the asymptote level 

relatively quickly in the variable part but not in the fixed part of the task. This is remarkable 

because it might be assumed that learning a fixed sequence would be achieved quicker than a 

variable order. Rhodes, Bullock, Verwey, Averbeck and Page (2004) in their study tested the 

learning and production of movement sequences. They had chosen for five different sequence 

learning tasks: immediate serial recall, typing, 2xN, discrete sequence production, and serial 

reaction time (Rhodes, Bullock, Verwey, Averbeck & Page, 2004). The study proposed that 

people indeed have the ability to process short sequences as chunks. These chunks are then 

used collectively and automatically. Rhodes, Bullock, Verwey, Averbeck and Page (2004) 

found out that segments from their chosen tasks were coded in a way that enabled a way more 

rapid administration of the task. They further defined levels of practice necessary for this 

phenomenon to occur. More than 300 trials have been evaluated as moderate to extensive 

levels of practice, depending on the task. They further mentioned that moderate to extensive 

levels of practice leads to the disappearance of the sequence length effect on latency, which is 

an indicator for MSL (Rhodes, Bullock, Verwey, Averbeck & Page, 2004). This indicates that 

MSL is a process which occurs only with extensive practice and therefore later than regular 

skill learning. It might be assumed, that the 40 trials used in the current study were simply not 

enough to fully trigger MSL and that this might be an explanation why the asymptote level 
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has not been reached for many participants in the fixed part. As a consequence for simulator 

training, this would mean that tasks should not involve doing an extensive amount of trials in 

the same configuration, as this would trigger MSL.  

Limitations and future research 

The current research mainly served as a proof of concept, with the intention of getting 

a first impression on the topic of the proportion MSL in simulator task performance. This also 

means, that there are still a lots of shortcomings and therefore implications for future research 

on the topic of MSL.  

Level of Uncertainty. A major limitation of the current study has been the enormous 

levels of uncertainty in the data. Uncertainty was so high, that it is basically impossible to 

make any valid judgements based on the data. The true value of the proportion MSL often 

was between two values that ranged between being a relatively low (e.g. 6% in instrument 

navigation) and being a very high (e.g. 53% in instrument navigation) proportion of MSL. 

This shortcoming of the study is closely linked to another limitation. Another limitation 

which has at the same time been the reason for the insufficient levels of uncertainty have been 

the small sample size and the small amount of trials. As the study mainly served as a proof of 

concept, there were neither enough participants, nor enough trials to restrain the uncertainty to 

a minimum. With reference to future research, the current research would have to be 

elaborated. In general, more observations would be necessary to decrease the overall level of 

uncertainty and to be able to make more stable judgements in general. For future research, a 

larger sample size would be proposed.  

Distribution of trials. A factor which has already been discussed above and which 

was striking referred to the speed with which the asymptote level has been reached in most 

participants. In many individuals, the learning curves showed, that the asymptote level had 

been reached relatively early in the variable part. In the fixed part, however, many 

participants did not reach the asymptote level at all. This might be due to the fact that MSL 

requires more extensive practice to occur. 

An implication for this would be to redistribute the trials. For future research it might 

have a greater added value to not only configure more trials in general but less of them in the 

variable part and more in the fixed part to ensure that the asymptote level is reached in both 

configurations.  

Performance Parameter. Because the study served as a proof of concept, there has 

been chosen for time on task (ToT) as the only parameter to measure performance. However, 

when having a look at existing literature, it can be found that Van Dongen et al. (2007) 
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proposed the amount of time needed to complete a task and additionally the damage rate as 

indicative of the participant’s skill. Kundhal and Grantcharov (2009), found a correlation of 

these two parameters and the procedure in the operating room. Additionally, they found a 

correlation between movement economy and the surgical procedure (Kundhal & Grantcharov, 

2009).  

Therefore, future research, should make use of the existing functions of the LapSim. 

The LapSim does not only record the time on task but also the path length of both instruments 

and the caused tissue damage. In addition to ToT, damage rate and movement economy 

should be included in the statistical analysis to base performance on more than one parameter. 

Further use of the paradigm. Another aspect which might be interesting for future 

research concerns the use of the experimental paradigm of the current study. The two-step 

learning curve can also be used to test other assumptions in terms of simulator training. It 

would for example be interesting to use the paradigm in order to find out the impact of haptic 

feedback in simulator training. The first part of the study would then involve doing a task 

without receiving haptic feedback. In the second part, haptic feedback would be turned on. It 

could be assumed that in this study design, there would also be a visible step in the learning 

curves.  

Conclusions 

Considering the above mentioned limitations of the current research and mainly the 

enormous uncertainty which should not be despised, it would be rash to make any firm 

assumptions based on the data. Nevertheless, did the current research serve as a proof of 

concept and showed, that the assumed two-part learning curve indeed seems to occur when 

doing laparoscopic simulator training in a variable-fixed order. Future research might now 

build up on the study to make more secure predictions.  

From a psychometric point of view, were the two chosen tasks relatively suitable as 

assessment method. If, however, the results of the current study can be verified, this would 

mean that using laparoscopic simulator training should be treated carefully as a training and 

assessment method for future surgeons. It still needs to be carefully evaluated which tasks 

might be included in a simulator training, as some show critically higher proportions MSL 

than others. It also needs to be taken into account that some tasks seem to have a higher 

variance in individual proportion MSL than others. A high variance in MSL would be 

synonymous with an unfair assessment method. When designing simulator training, MSL 

should therefore be kept at a minimum. For this purpose it should be noted, that easy tasks 

trigger MSL faster than more complex tasks. Also, doing tasks in a fixed configuration 
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apparently leads to MSL. Concluding, simulator training should be designed in a way that 

tasks are sufficiently complex. Retrospectively, have the chosen tasks (especially the 

instrument navigation task) been too simple to perform to suit real simulator training and 

assessment. Also did the current study show that there is a need to vary the configurations in 

sequential trainings in order to prevent the impact of MSL in simulator training. 
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Appendix A 

Informed Consent 

Project Title: Discovering the Proportion of Motor Sequence Learning in Laparoscopic 

Simulator Task Performance. 

Investigator:  Saskia Henrichs - Undergraduate student psychology 

Supervisor:  Dr. M. Schmettow - Cognitive Psychology & Ergonomics  

  Dr. M. Groenier – Technical Medicine, Psychology & Educational Science 

 

Participant Number:………………………  Participant Name: ……………………… 

 

Welcome! 

First of all, thank you for your interest in participating in this study. In the following, a more 

detailed description about the nature and purpose of the study is given and what makes up your 

contribution to it. Do not hesitate to ask questions at the researcher during all parts of the 

process! 

 

What it is all about? Nature and Purpose of the Research 

To start from the beginning, the overall topic of the research is about learning minimally 

invasive surgery (MIS). MIS has many advantages towards traditional, open surgery such as a 

reduction in pain and recovery time. This has led to a rapid increase in the usage of MIS. 

Laparoscopy for example is a special technique of MIS which focusses on treating 

gastrointestinal diseases (so in the area of the abdomen). Besides the many advantages of MIS, 

it proposes new challenges to surgeons and therefore, demands new forms of training and 

assessment. Training and assessing surgeons with the help of a virtual reality simulator has 

been proven to highly resemble the real procedure (Van Dongen et al., 2007). Motor sequence 

learning, however is a factor that has not yet been tested in validating simulator training. Motor 

sequence learning involves executing a series of motor sequences as a single response after an 

excessive amount of practice (Verwey, 2001). This leads to an automatized, unintentional and 

inflexible execution of the motoric sequence. In MIS, however, learned motor sequences cannot 

be applied due to the fact, that circumstances differ from operation to operation and from patient 

to patient. Consequently, if MSL would make up a great part of learning how to use the virtual 

reality simulator, it would neither be a valid training nor a valid assessment method for MIS. 

Therefore, the purpose of the current research is to find out 
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what the exact proportion of motor sequence learning in laparoscopic simulator task 

performance is.  

 

What exactly will happen if you take part in this research? 

First of all, you will be asked to fill in a so called ‘baseline questionnaire’. This mostly includes 

your demographic data and questions about physical impairments. In the following, you will 

be given verbal instructions about the LapSim Simulator for laparoscopy. You will be able to 

try out the simulator once to get a first impression of it. Then, you will start doing the first task 

(grasping) in a variety of different configurations. Afterwards, you will execute the same task 

for about XX. When you have finished the grasping task, you will repeat the procedure with a 

new task, namely cutting. The exact workwise of the two tasks will be explained to you later 

by the researcher.  

 

Important Information  

When participating in this study you will be asked to serve as a trainee in laparoscopic simulator 

training. This will take about XX hours. With your participation, you make a great contribution 

not only in finalising a bachelor thesis, but in the validation of an innovative and efficient way 

of training and assessing surgeons for MIS. Improving the education of surgeons of course, 

makes up a great advantage for everyone in the society, as everybody might be in the situation 

of needing a competent surgeon at some point. Taking part in the study should not put you in 

any situations of risk or discomfort. Nevertheless, if you do not feel comfortable, you can stop 

your participation at any time without justification or consequences. It is hereby stressed, that 

your participation is completely voluntary.  

 

What is Going to Happen to your Data? 

Results will be used in terms of a bachelor thesis and to a corresponding degree public. This 

does not mean, that anyone can see your data. All the data that might lead to your identification 

will be anonymised (e.g. your name will be replaced by a number). Data will be treated strictly 

confidential by the researcher.  

 

Contact Information  

If you have any questions left, or if you want to receive the results of the study via email, you 

can always contact the researcher: 
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Saskia Henrichs 

s.henrichs@student.utwente.nl 

 

Agreement 

I hereby agree to take part in this study. I have read all the information above and I been 

sufficiently provided with all the information I needed to know so far. I declare to have fully 

understood the content and purpose of the study and what is demanded with my participation. 

I have been sufficiently informed about the voluntary nature of my participation and the 

confidentiality of my data. I received a signed copy of the informed consent.  

 

 

…………………………………………..  …………………………………………… 

Date, Signature Participant    Date, Signature Researcher 

 

Appendix B 

Baseline Questionnaire via SurveyMonkey
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Appendix C 

R Syntax 

Data  analysis  BT  Saskia  Henrichs  

Martin  Schmettow  

06  juni,  2018  

knitr::opts_knit$set(warning  =  F,  message  =  F)  

purp.data  =  F  
purp.mcmc  =  F  
  
library(tidyverse)  

##  -‐-‐  Attaching  packages  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐  tidyv
erse  1.2.1  -‐-‐  

##  v  ggplot2  2.2.1          v  purrr      0.2.4  
##  v  tibble    1.4.2          v  dplyr      0.7.4  
##  v  tidyr      0.8.0          v  stringr  1.3.0  
##  v  readr      1.1.1          v  forcats  0.3.0  

##  -‐-‐  Conflicts  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐  tidyverse_c
onflicts()  -‐-‐  
##  x  dplyr::filter()  masks  stats::filter()  
##  x  dplyr::lag()        masks  stats::lag()  

library(readxl)  
library(brms)  

##  Warning:  package  'brms'  was  built  under  R  version  3.4.4  

##  Loading  required  package:  Rcpp  

##  Warning:  package  'Rcpp'  was  built  under  R  version  3.4.4  

##  Loading  'brms'  package  (version  2.2.0).  Useful  instructions  
##  can  be  found  by  typing  help('brms').  A  more  detailed  introduction  
##  to  the  package  is  available  through  vignette('brms_overview').  
##  Run  theme_set(theme_default())  to  use  the  default  bayesplot  theme.  

options(mc.cores  =  6)  
library(mascutils)  
library(bayr)  

##    
##  Attaching  package:  'bayr'  

##  The  following  objects  are  masked  from  'package:brms':  
##    
##          fixef,  ranef  



 
MOTOR SEQUENCE LEARNING IN SIMULATOR PERFORMANCE 
 

33 

##  The  following  object  is  masked  from  'package:stats':  
##    
##          predict  

library(asymptote)  

##    
##  Attaching  package:  'asymptote'  

##  The  following  objects  are  masked  from  'package:mascutils':  
##    
##          inv_logit,  logit  

load("SH18.Rda")  
  
if(!purp.mcmc){  
    load("M_SH_1.Rda")  
    #  load("M_SH_2.Rda")  
    #  load("M_SH_3.Rda")  
    #  load("M_SH_4.Rda")  
}  

Data preparation 

SH18  <-‐  
    bind_rows(  
        read_excel("raw_data/SH/Raw_Data.xls",    
                              sheet  =  "Instrument  Navigation",  skip  =  6),  
        read_excel("raw_data/SH/Raw_Data.xls",    
                              sheet  =  "Grasping",  skip  =  6)  
    )  %>%  
    mutate(ToT  =  (`Left  Instrument  Time  (s)`+  `Right  Instrument  Time  (s)`)/6
0,  
                  path  =  `Left  Instrument  Path  Length  (m)`  +  `Right  Instrument  Path  
Length  (m)`)  %>%    
    rename(Part  =  Login,  TaskName  =  `Task  Name`)  %>%    
    mutate(TaskName  =  str_replace(TaskName,  "Instrument  Navigation",  "InstrN
av"),  
                  TaskName  =  str_remove(TaskName,  "\\["),  
                  TaskName  =  str_remove(TaskName,  "\\]"))  %>%    
    separate(col  =  TaskName,  
                      into  =  c("Task",  "Condition"),  sep  =  "  ")  %>%    
    group_by(Part,  Task)  %>%    
    mutate(trialS  =  row_number(),  
                  trialM  =  if_else(Condition  ==  "variable",  1,  trialS  -‐  20))  %>%    
    ungroup()  %>%    
    select(Part,  Task,  Condition,  trialS,  trialM,  score  =  Score,  path,  ToT)  
%>%    
    as_tbl_obs()  
      
SH18  
  
save(SH18,  file  =  "SH18.Rda")  
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Descriptives  
load("SH18.Rda")  

Number  of  observations  

SH18  %>%    
    group_by(Part,  Task,  Condition)  %>%    
    summarize(N_trials  =  n())  %>%    
    knitr::kable()  

Part   Task   Condition   N_trials  
PP01   Grasping   fixed   20  
PP01   Grasping   variable   20  
PP01   InstrNav   fixed   20  
PP01   InstrNav   variable   20  
PP02   Grasping   fixed   20  
PP02   Grasping   variable   20  
PP02   InstrNav   fixed   20  
PP02   InstrNav   variable   20  
PP03   Grasping   fixed   20  
PP03   Grasping   variable   20  
PP03   InstrNav   fixed   20  
PP03   InstrNav   variable   20  
PP04   Grasping   fixed   20  
PP04   Grasping   variable   20  
PP04   InstrNav   fixed   20  
PP04   InstrNav   variable   20  
PP05   Grasping   fixed   20  
PP05   Grasping   variable   20  
PP05   InstrNav   fixed   20  
PP05   InstrNav   variable   20  
PP06   Grasping   fixed   20  
PP06   Grasping   variable   20  
PP06   InstrNav   fixed   20  
PP06   InstrNav   variable   20  
PP07   Grasping   fixed   20  
PP07   Grasping   variable   20  
PP07   InstrNav   fixed   20  
PP07   InstrNav   variable   20  
PP08   Grasping   fixed   20  
PP08   Grasping   variable   20  
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PP08   InstrNav   fixed   20  
PP08   InstrNav   variable   20  
PP09   Grasping   fixed   20  
PP09   Grasping   variable   20  
PP09   InstrNav   fixed   20  
PP09   InstrNav   variable   20  
PP10   Grasping   fixed   20  
PP10   Grasping   variable   20  
PP10   InstrNav   fixed   20  
PP10   InstrNav   variable   20  
PP11   Grasping   fixed   20  
PP11   Grasping   variable   20  
PP11   InstrNav   fixed   20  
PP11   InstrNav   variable   20  
PP12   Grasping   fixed   20  
PP12   Grasping   variable   20  
PP12   InstrNav   fixed   20  
PP12   InstrNav   variable   20  
PP13   Grasping   fixed   20  
PP13   Grasping   variable   20  
PP13   InstrNav   fixed   20  
PP13   InstrNav   variable   20  
PP14   Grasping   fixed   20  
PP14   Grasping   variable   20  
PP14   InstrNav   fixed   20  
PP14   InstrNav   variable   20  
PP15   Grasping   fixed   20  
PP15   Grasping   variable   20  
PP15   InstrNav   fixed   20  
PP15   InstrNav   variable   20  
Exploratory  Data  Analysis  
SH18  %>%    
    filter(Task  ==  "Grasping")  %>%    
    ggplot(aes(x  =  trialS,  y  =  ToT))  +  
    facet_wrap(~Part,  ncol  =  3,  scales  =  "free_y")  +  
    geom_vline(xintercept  =  20,  linetype  =  2,  col  =  "red")  +  
    geom_point(size  =  .2)  +  
    geom_smooth(se  =  F)  

##  `geom_smooth()`  using  method  =  'loess'  
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SH18  %>%    
    filter(Task  ==  "InstrNav")  %>%    
    ggplot(aes(x  =  trialS,  y  =  ToT))  +  
    facet_wrap(~Part,  ncol  =  3,  scales  =  "free_y")  +  
    geom_vline(xintercept  =  20,  linetype  =  2,  col  =  "red")  +  
    geom_point(size  =  .2)  +  
    geom_smooth(se  =  F)  

##  `geom_smooth()`  using  method  =  'loess'  
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Regression 

Estimation  

Setting  up  the  LARARY  model:  

#  Effects  
  
#  absolute  means  
  
F_ef_1  <-‐  list(  
    formula(asym  ~  0  +  Task  +  (0  +  Task|corr1|Part)),  
    formula(rateS  ~  0  +  Task  +  (0  +  Task|corr2|Part)),  
    formula(amplS  ~  0  +  Task  +  (0  +  Task|corr3|Part)),  
    formula(rateM  ~  0  +  Task  +  (0  +  Task|corr4|Part)),  
    formula(amplM  ~  0  +  Task  +  (0  +  Task|corr5|Part)))  
  
  
#  treatment  contrasts  
  
F_ef_2  <-‐  list(  
    formula(asym  ~  1  +  Task  +  (1  +  Task|corr1|Part)),  
    formula(rateS  ~  1  +  Task  +  (1  +  Task|corr2|Part)),  
    formula(amplS  ~  1  +  Task  +  (1  +  Task|corr3|Part)),  
    formula(rateM  ~  1  +  Task  +  (1  +  Task|corr4|Part)),  
    formula(amplM  ~  1  +  Task  +  (1  +  Task|corr5|Part)))  
  
#  LARARY  
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lazyeval::f_lhs(LARARY)  <-‐  quote(ToT)  
LARARY  

##  ToT  ~  exp(amplS  -‐  exp(rateS)  *  trialS)  +  exp(amplM  -‐  exp(rateM)  *    
##          trialM)  +  exp(asym)  
##  <environment:  namespace:asymptote>  

F_pr_larary_1  <-‐  c(set_prior("normal(0,  10)",  nlpar  =  "asym"),  
                                  set_prior("normal(0,  10)",  nlpar  =  "amplS"),  
                                  set_prior("normal(0,  10)",  nlpar  =  "rateS"),  
                                  set_prior("normal(0,  10)",  nlpar  =  "amplM"),  
                                  set_prior("normal(0,  10)",  nlpar  =  "rateM"))  
  
  
#  ARARY  
  
lazyeval::f_lhs(ARARY)  <-‐  quote(ToT)  
ARARY  

##  ToT  ~  asym  +  amplS  *  exp(-‐rateS  *  trialS)  +  amplM  *  exp(-‐rateM  *    
##          trialM)  
##  <environment:  namespace:asymptote>  

F_pr_arary_1  <-‐  c(set_prior("normal(0.2,  10)",  nlpar  =  "asym",  lb  =  0),  
                                  set_prior("normal(0.2,  10)",  nlpar  =  "amplS",  lb  =  0),  
                                  set_prior("normal(0.5,  10)",  nlpar  =  "rateS",  lb  =  0),  
                                  set_prior("normal(0.1,  10)",  nlpar  =  "amplM",  lb  =  0),  
                                  set_prior("normal(0.5,  10)",  nlpar  =  "rateM",  lb  =  0))  

M_SH_1  <-‐    
    brm(bf(LARARY,    
                  flist  =  F_ef_1,  nl  =  TRUE),  
            prior  =  F_pr_larary_1,  
            family  =  Gamma(link  =  "identity"),  
            data  =  SH18,  
            iter  =  1000,  warmup  =  500,  
            init  =  "0")  
  
M_SH_1  <-‐    
    brm(fit  =  M_SH_1,  
            data  =  SH18,  
            iter  =  22000,  warmup  =  20000,  chains  =  6,  
            control  =  list(adapt_delta  =  0.99,  
                                            max_treedepth  =  12),  
            init  =  "0")  
  
save(M_SH_1,  file  =  "M_SH_1.Rda")  

M_SH_1  

##  Warning:  There  were  4  divergent  transitions  after  warmup.  Increasing  ad
apt_delta  above  0.99  may  help.  
##  See  http://mc-‐stan.org/misc/warnings.html#divergent-‐transitions-‐after-‐w
armup  
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##    Family:  gamma    
##      Links:  mu  =  identity;  shape  =  identity    
##  Formula:  ToT  ~  exp(amplS  -‐  exp(rateS)  *  trialS)  +  exp(amplM  -‐  exp(rateM
)  *  trialM)  +  exp(asym)    
##                    asym  ~  0  +  Task  +  (0  +  Task  |  corr1  |  Part)  
##                    rateS  ~  0  +  Task  +  (0  +  Task  |  corr2  |  Part)  
##                    amplS  ~  0  +  Task  +  (0  +  Task  |  corr3  |  Part)  
##                    rateM  ~  0  +  Task  +  (0  +  Task  |  corr4  |  Part)  
##                    amplM  ~  0  +  Task  +  (0  +  Task  |  corr5  |  Part)  
##        Data:  SH18  (Number  of  observations:  1200)    
##  Samples:  6  chains,  each  with  iter  =  22000;  warmup  =  20000;  thin  =  1;    
##                    total  post-‐warmup  samples  =  12000  
##          ICs:  LOO  =  NA;  WAIC  =  NA;  R2  =  NA  
##      
##  Group-‐Level  Effects:    
##  ~Part  (Number  of  levels:  15)    
##                                                                                        Estimate  Est.Error  l-‐95%  CI  
##  sd(asym_TaskGrasping)                                                    0.18            0.13          0.01  
##  sd(asym_TaskInstrNav)                                                    1.07            2.05          0.11  
##  sd(rateS_TaskGrasping)                                                  0.65            0.30          0.11  
##  sd(rateS_TaskInstrNav)                                                  1.58            0.79          0.09  
##  sd(amplS_TaskGrasping)                                                  0.73            0.28          0.27  
##  sd(amplS_TaskInstrNav)                                                  0.51            0.37          0.03  
##  sd(rateM_TaskGrasping)                                                  3.04            2.80          0.18  
##  sd(rateM_TaskInstrNav)                                                  1.78            1.40          0.40  
##  sd(amplM_TaskGrasping)                                                  0.53            0.45          0.08  
##  sd(amplM_TaskInstrNav)                                                  0.44            1.51          0.01  
##  cor(asym_TaskGrasping,asym_TaskInstrNav)              0.30            0.49        -‐0.84  
##  cor(rateS_TaskGrasping,rateS_TaskInstrNav)          0.24            0.43        -‐0.76  
##  cor(amplS_TaskGrasping,amplS_TaskInstrNav)          0.12            0.53        -‐0.90  
##  cor(rateM_TaskGrasping,rateM_TaskInstrNav)          0.10            0.53        -‐0.90  
##  cor(amplM_TaskGrasping,amplM_TaskInstrNav)          0.03            0.53        -‐0.92  
##                                                                                        u-‐95%  CI  Eff.Sample  Rhat  
##  sd(asym_TaskGrasping)                                                    0.46                431  1.01  
##  sd(asym_TaskInstrNav)                                                    7.63                239  1.02  
##  sd(rateS_TaskGrasping)                                                  1.29              1774  1.00  
##  sd(rateS_TaskInstrNav)                                                  3.23                243  1.03  
##  sd(amplS_TaskGrasping)                                                  1.39              1454  1.00  
##  sd(amplS_TaskInstrNav)                                                  1.43              1707  1.00  
##  sd(rateM_TaskGrasping)                                                10.32                559  1.01  
##  sd(rateM_TaskInstrNav)                                                  4.98                256  1.02  
##  sd(amplM_TaskGrasping)                                                  1.35              1047  1.00  
##  sd(amplM_TaskInstrNav)                                                  1.23                368  1.02  
##  cor(asym_TaskGrasping,asym_TaskInstrNav)              0.96                908  1.01  
##  cor(rateS_TaskGrasping,rateS_TaskInstrNav)          0.90                778  1.01  
##  cor(amplS_TaskGrasping,amplS_TaskInstrNav)          0.95              1054  1.01  
##  cor(rateM_TaskGrasping,rateM_TaskInstrNav)          0.92                205  1.02  
##  cor(amplM_TaskGrasping,amplM_TaskInstrNav)          0.93              2603  1.00  
##    
##  Population-‐Level  Effects:    
##                                        Estimate  Est.Error  l-‐95%  CI  u-‐95%  CI  Eff.Sample  Rhat  
##  asym_TaskGrasping          -‐1.09            0.12        -‐1.30        -‐0.86              1118  1.00  
##  asym_TaskInstrNav          -‐4.16            5.03      -‐19.77        -‐1.57                132  1.05  
##  rateS_TaskGrasping        -‐1.01            0.32        -‐1.61        -‐0.36              1394  1.00  
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##  rateS_TaskInstrNav        -‐0.62            0.90        -‐2.43          1.05                167  1.03  
##  amplS_TaskGrasping          0.19            0.30        -‐0.44          0.74              1705  1.00  
##  amplS_TaskInstrNav        -‐0.96            0.75        -‐1.88          0.59                307  1.02  
##  rateM_TaskGrasping        -‐1.99            1.50        -‐4.53          1.19              1817  1.00  
##  rateM_TaskInstrNav        -‐2.22            2.21        -‐5.80          0.33                  86  1.08  
##  amplM_TaskGrasping        -‐1.61            0.38        -‐2.40        -‐1.10                745  1.01  
##  amplM_TaskInstrNav        -‐2.06            0.48        -‐2.81        -‐1.44                520  1.02  
##    
##  Family  Specific  Parameters:    
##              Estimate  Est.Error  l-‐95%  CI  u-‐95%  CI  Eff.Sample  Rhat  
##  shape        11.54            0.49        10.59        12.52            12000  1.00  
##    
##  Samples  were  drawn  using  sampling(NUTS).  For  each  parameter,  Eff.Sample    
##  is  a  crude  measure  of  effective  sample  size,  and  Rhat  is  the  potential    
##  scale  reduction  factor  on  split  chains  (at  convergence,  Rhat  =  1).  

P_SH  <-‐  posterior(M_SH_1)  
  
P_fixef  <-‐  P_SH  %>%    filter(type  ==  "fixef")  
P_ranef  <-‐  P_SH  %>%    filter(type  ==  "ranef")  
  
fixef(P_SH)  

Estimates  with  95%  credibility  limits  

nonlin   fixef   center   lower   upper  
asym   TaskGrasping   -‐1.1012111   -‐1.3038474   -‐0.8575067  
asym   TaskInstrNav   -‐1.9352263   -‐19.7669042   -‐1.5719620  
rateS   TaskGrasping   -‐1.0320117   -‐1.6051316   -‐0.3565804  
rateS   TaskInstrNav   -‐0.5805124   -‐2.4335006   1.0502639  
amplS   TaskGrasping   0.2062430   -‐0.4432238   0.7391546  
amplS   TaskInstrNav   -‐1.0378439   -‐1.8820776   0.5944062  
rateM   TaskGrasping   -‐2.0367764   -‐4.5336853   1.1935872  
rateM   TaskInstrNav   -‐1.9377433   -‐5.8016892   0.3345496  
amplM   TaskGrasping   -‐1.5510129   -‐2.4017132   -‐1.1013971  
amplM   TaskInstrNav   -‐2.1147340   -‐2.8059237   -‐1.4425346  
Estimated  curves  
PP_SH  <-‐  post_pred(M_SH_1)  
  
  
T_pred  <-‐  
    SH18  %>%    
    filter(!is.na(ToT))  %>%    
    bind_cols(predict(PP_SH))  %>%    
    mutate(resid  =  ToT  -‐  center)  
  
T_pred  %>%    
    filter(Task  ==  "Grasping")  %>%    
    ggplot(aes(x  =  trialS,  y  =  ToT))  +  
    facet_wrap(~Part,  ncol  =  3,  scales  =  "free_y")  +  
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    geom_point(size  =  .2)  +  
    geom_line(aes(y  =  center))  

  
T_pred  %>%    
    filter(Task  ==  "InstrNav")  %>%    
    ggplot(aes(x  =  trialS,  y  =  ToT))  +  
    facet_wrap(~Part,  ncol  =  3,  scales  =  "free_y")  +  
    geom_point(size  =  .2)  +  
    geom_line(aes(y  =  center))  
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Estimated  parameters  

Individual  differences  as  standard  deviations  by  task  and  ARY  parameters:  

ranef(P_SH)  %>%    
    rename(Task  =  fixef)  %>%    
    group_by(nonlin,  Task)  %>%    
    mutate(Part_ordered  =  rank(center))  %>%    
    ungroup()  %>%    
    arrange(nonlin,  Task,  Part_ordered)  %>%    
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    ggplot(aes(x  =  Part_ordered,  y  =  center,  ymin  =  lower,  ymax  =  upper))  +  
    facet_grid(nonlin~Task,  scale  =  "free_y")  +  
    geom_point()  +  
    geom_errorbar()  

  

The ratio of amplitudes directly answers the question of what relative impact motor sequence 
learning has. The proportion of MSL on overall learning is not directly represented in the 
model, but can be created on the posterior. 
T_prop_fixef  <-‐  
    P_fixef  %>%    
    select(chain,  iter,  fixef,  nonlin,  value)  %>%    
    filter(nonlin  %in%  c("amplS",  "amplM"))  %>%    
    mutate(value  =  exp(value))  %>%    
    spread(nonlin,  value)  %>%    
    mutate(propM  =  amplM/(amplS  +  amplM))  %>%    
    group_by(fixef)  %>%    
    summarize(center  =  median(propM),  
                        lower  =  quantile(propM,  .025),  
                        upper  =  quantile(propM,  .975))  
    
knitr::kable(T_prop_fixef,  digits  =  2)  

fixef   center   lower   upper  
TaskGrasping   0.14   0.06   0.28  
TaskInstrNav   0.25   0.06   0.53  
P_scores  <-‐    
    left_join(P_ranef,  P_fixef,    
                        by  =  c("model",  "chain",  "iter",  "fixef",  "nonlin"),    
                        suffix  =  c("",  "_fixef"))  
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P_scores$value  =  exp(P_scores$value  +  P_scores$value_fixef)  
  
  
T_scores  <-‐  
    P_scores  %>%    
    group_by(fixef,  nonlin,  re_entity)  %>%    
    summarize(center  =  median(value),  
                        lower  =  quantile(value,  .025),  
                        upper  =  quantile(value,  .975))  %>%    
    select(Task  =  fixef,  nonlin,  Part  =  re_entity,  center,  lower,upper)  %>%    
    ungroup()  
  
T_prop_ranef  <-‐  
    P_scores  %>%    
    select(chain,  iter,  fixef,  nonlin,  re_entity,  value)  %>%    
    filter(nonlin  %in%  c("amplS",  "amplM"))  %>%    
    spread(nonlin,  value)  %>%    
    mutate(propM  =  amplM/(amplS  +  amplM))  %>%    
    group_by(fixef,  re_entity)  %>%    
    summarize(center  =  median(propM),  
                        lower  =  quantile(propM,  .025),  
                        upper  =  quantile(propM,  .975))  %>%    
    ungroup()  %>%    
    rename(Task  =  fixef,  Part  =  re_entity)  
  
  
  T_prop_ranef  %>%    
      group_by(Task)  %>%    
      mutate(Part_ordered  =  rank(center))  %>%  
      ungroup()  %>%    
    ggplot(aes(x  =  Part_ordered,  y  =  center,  ymin  =  lower,  ymax  =  upper))  +  
      facet_grid(~Task,  scale  =  "free_y")  +  
      geom_point()  +  
      geom_errorbar()  
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Correlations between tasks 
P_SH  %>%    
    filter(type  ==  "cor")  %>%    
    group_by(model,  parameter)  %>%    
    summarize(center  =  median(value),  
                        lower  =  quantile(value,  .025),  
                        upper  =  quantile(value,  .975))  %>%    
    separate(parameter,  into  =  c("type",  "level",  "nonlin",  "Cor_1",  "X",  "C
or_2"))  %>%    
    select(model,  nonlin,  Cor_1,  Cor_2,  center,  lower,  upper)  %>%    
    knitr::kable(digits  =  2)  

model   nonlin   Cor_1   Cor_2   center   lower   upper  
M_SH_1   amplM   TaskGrasping   TaskInstrNav   0.06   -‐0.92   0.93  
M_SH_1   amplS   TaskGrasping   TaskInstrNav   0.17   -‐0.90   0.95  
M_SH_1   asym   TaskGrasping   TaskInstrNav   0.40   -‐0.84   0.96  
M_SH_1   rateM   TaskGrasping   TaskInstrNav   0.16   -‐0.90   0.92  
M_SH_1   rateS   TaskGrasping   TaskInstrNav   0.30   -‐0.76   0.90  

 
 


