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Abstract

Introduction: In selection of future pulmologists a differentiation needs to be made

between those who will reach a high performance level and those who will not. By

combining mental workload and performance measures we aimed to get better predictions

of maximal performance individuals will reach.

Methods: Thirteen students participated in training on a 3D-Systems GI-BRONCH

Mentor simulator. The training was split in two sessions consisting of a total of three

tasks teaching basic bronchoscopy skills. Performance was recorded by the simulator and

the NASA-TLX was filled in between the trials. Both measures were to be modeled as

learning curves and their asymptotes correlated.

Results: Due to insufficient representation of NASA-TLX scores as learning curves they

were not compared to performance scores. Based on exploratory plots, data was found to

fit third degree polynomials well.

Discussion: We were not able to answer the initial research question. Even though

shortcomings in the design ask for great caution with interpretation of results, reasonable

explanations for the deviating curvature can be given.
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1 Introduction

One of the major breakthroughs in modern medicine was the development of procedures

that do not require open surgery, so called Minimally Invasive Procedures or Surgery

(MIS). These procedures enable physicians to examine, sample and repair tissue in narrow

tracts of our bodies without causing major injury. At the same time, risk of post-surgical

infections is reduced (Dobson et al., 2011).

The price for reduced risk for patients is higher challenges for physicians. Unlike open

surgery, MIS does not give direct visual and haptic contact with the operation area and

tools. Information not perceived directly has to be filled in from memory or imagination,

processes that put additionally cognitive load on the operator. And indeed a lack of

sensory input has been found to be correlated with higher mental workload (MW) during

several tasks, including MIS (see for example Berguer, Smith, & Chung, 2001; McCarley

& Wickens, n.d.; Yurko, Scerbo, Prabhu, Acker, & Stefanidis, 2010.

But not all persons are alike in what gets the mentally loaded and in how much

they perceive a task as loading. In general, those who are more loaded by a task do also

perform worse, a condition that is maleficent during medical procedures. Through the

combination of performance and MW measures we therefore hoped to differentiate novices

on how good their final training outcome will be.

For training a bronchoscopy simulator was used. We initially planned to analyse the

collected data through a learning curve model - which is discussed below - but exploration

of the MW data was strongly contradicting this model and therefore analysis eventually

was based on another model. A factor that might have caused this unexpected result,

might have been that due to material breakage less data was collected than planned.

Nevertheless, in the following sections our initial expectations will be discussed.

First, we give an introduction to bronchoscopy. Then the model used for analysis will be

described in more detail and it will be explained how measures of MW can be integrated

into it.

1.1 Bronchoscopy and training of pulmologists

Bronchoscopy is a minimally invasive method which is used to inspect the lungs for injuries

or health related changes but also for procedures as obtaining tissue samples or introducing

stents. Starting in the late 19th century, bronchoscopes have developed from rigid tubes
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to flexible endoscopes which can be brought to deep bronchi without causing severe injury

(for a discussion on the history of bronchoscopy see Panchabhai & Mehta, 2015).

To conduct bronchoscopy a pulmologist stands by the head of patients laying on their

back. The bronchoscope is introduce through the mouth or nose using the non-dominant

hand while the control tool is held in the dominant hand. The scope can be moved up

and down by a lever on the tool and rolled left and right by turning of the wrist. During

the process the pulmologist needs to keep track of various motor tasks, like avoiding the

scope from bending and maintain a certain body posture. Additionally, assistants need

to be coordinated and anatomical knowledge has do be retrieved. This factors make the

procedure demanding in several ways.

Special courses are provided for physicians who want to qualify for the procedure.

These courses differ in length and end examination. Konge et al. (2012) reasoned that this

comes through an absence of a valid criterion for expertise.

And indeed there are courses as the one offered by the American College of Chest

Physicians (CHEST) which is not set to an exact duration but all parts need to be finished

within three years (CHEST, 2018). Also, they do not refer to an evaluation form but state

they award a Certificate of Completion to those who “meet the performance, proficiency,

or passing standard for the assessment(s)” (CHEST, 2018, para. 5).

Other countries actually do provide information on training duration and criteria

for proficiency. Training of prospective pulmologists in the Netherlands, for example, is

standardized by the Nederlandse Vereniging van Artsen voor Longziekten en Tuberculose

(NVALT). The complete specialisation process is set to take six years and is organized

in modules, that focus on different aspects of the work as a pulmologist and different

procedures used. (NVALT, 2017). The final evaluation of the bronchoscopy module is

done using the Bronchoscopy Skills and Tasks Assessment Tool (BSTAT). On the BSTAT

a maximum of 100 points can be achieved whereof 19 account for scope handling; the rest

is given for orientation and identification ability (Bronchoscopy International, 2010).

But even though through the usage of the BSTAT proficiency scores can be provided,

it yields two other problems. One is that the points given for the categories of scope

handling are not further subdivided. For example one can get either 5 or no points for

keeping the scope centered to the lumen. This shortcoming gets even more serious in

combination with the second problem. That is that the rating is done through human
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examinators who have differing standards; one might give the 5 points when the scope is

centered most of the time, another might not give them even if centering was not kept for

only a short time.

Another approach to standardisation was examined by Konge et al. (2012). They

aimed to identify the number of surgeries needed to reach proficiency and found 80 surgeries

to be sufficient. Still, there is the possibility that trainees will not have reached proficiency

after that time - in this study that was the case for 1 in 28 physicians - or reach proficiency

earlier (also 1 in 28). As time and money may be wasted on additional training it seems

more fruitful to determine how much training is necessary early on in training.

Both of these problems, lack of objective rating and differences in training sessions

needed, can be approached through the usage of simulators in examination. It already

has become good practice to use simulators during the training process since they can be

used for self-administered practice (Gopal et al., in press) and can be used to train single

aspects of a procedure (Schreuder, Oei, Maas, Borleffs, & Schijven, 2011). But simulators

do also record performance data which can be used to provide objective feedback. This

feature is already being used in the training of CHEST (Simbionix, n.d.).

Predicting the right amount of training proves to be a harder challenge. Through

the usage of simulator output learning curves can be calculated. But, when only based

on performance data, predictions have a high degree of uncertainty, especially early in

training. Through integration of measures as MW- which will be discussed shortly - we

hope to gain certainty earlier. But first we will turn to the learning curve model.

1.2 Predicting future performance from learning curves

To establish an efficient selection method for those who will reach proficiency in MIS,

learning curves from prospects completing simple tasks on simulators can be analysed.

This has the advantage that less repetitions are needed than the 80 as proposed by Konge

et al. (2012) and therefore time is saved. Also the same simulators as those used in training

can be used for selection and therefore no additional costs incur.

Learning curves can take different shapes depending on the task demands. Those

relevant when looking at motor tasks are exponential like the one shown in Figure 1. Its

shape can be described by three variables: the amplitude, the curvature’s rate of change

and the asymptote. The amplitude indicates how much the initial performance differed
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Figure 1 . Learning curve of Participant 6 on Task 3. The rate of curvature describes the
maximal change, the asymptote the maximal level of performance that will be reached
and the amplitude the difference between initial performance and asymptote.

from the best expected performance or in other words: how much someone learns. The rate

of change indicates the speed of learning; a high rate of change means that the individual

was quicker in reaching the final performance than someone with a low rate of change.

Finally, there is the asymptote. This is the value corresponding to the best performance

that will be reached by a person and therefore is what we are interested in when predicting

whether someone will reach proficiency.

Dissenting from traditional statistics the focus during analysis of learning curves

clearly lies on individual performance (Brown & Heathcote, 2003). After all, we want to

know whether individuals will be good pulmologists and not whether the group on average

will be good pulmologists, risking a wide spread between very good ones and very bad

ones.

The less data we have the higher is the uncertainty of the outcome. Therefore

analysis of individuals might lead to more uncertainty about the final level of performance

than the analysis of groups. So to narrow the prediction in either more trials can be

performed or, as mentioned before, other measures can be included in analysis. In earlier

studies at the University of Twente this has for example been tried through the inclusion

of motor ability as measured through dexterity tasks (Arendt, 2017) and measurement of

cognitive ability (Groenier, Schmettow, Huijser, & Gallagher, n.d.). As results by now
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have not been of strong support for any of these assessment methods it is still being looked

for a measure that helps to predict performance. With this study we want to give it

another try to tackle the question by the use of mental workload measures.

1.3 Mental Workload and Task Performance

Mental Workload is a factor that is deeply interrelated with performance, experience and

learning. It determines performance by allocating resources, but also does performance

determine mental workload as bad performance calls for adaptation (Parasuraman &

Hancock, 2010).

According to Wickens’s (1980) influential Multiple Resources theory each of our

senses has a finite amount of cognitive resources available to one process (e.g. object

recognition) at a time. Several objectives might involve usage of one resource in conflicting

ways (Wickens, 2002). During bronchoscopy conflicts may for example be caused by the

need to identify the distance to the next airway junction as well as estimating space left

to the sides of the scope. Both of these objectives involve distance inference but one in

depth, the other in width.

When conflicts arise processing is delayed or imprecise, causing unforeseen events that

ask for responses that do not belong to the main workflow. These off-task responses lead

to a sudden increase in information to be processed which according to Parasuraman and

Hancock (2010) is what is actually perceived as high load and interferes with performance.

For example, in the task used for the study at hand contact between the bronchoscope

and the airway walls caused auditory and visual feedback that prompted the operator

to reject the scope, an activity contrary to the main task of inserting the scope. These

spontaneous actions are less proficient in execution and therefore can lead to more injuries

being caused to the patient (Yurko et al., 2010).

As high MW causes stress one tries to find more efficient ways of processing (Baldwin

& Reagan, 2009). By integrating information from earlier trials one gets to know what

kinds of events can be expected (e.g. a sound telling one that the airway wall is being

touched) and how to handle them (e.g. rejecting the scope). The more often events are

encountered the less processing of the situation is needed and the less cognitive resources

are needed (i.e. the processing is automatized). Simultaneously, performance will become

better as better responses can be made quicker. This results externally in learning (i.e.



9

increase of performance scores) and internally in automatization (i.e. decrease of mental

workload; Zheng, Cassera, Martinec, Spaun, & Swanström, 2010).

In a good learning process we should should expect automatization and learning to

develop parallelly; techniques that cause good performance should be automatisized. And

Stefanidis, Scerbo, Montero, Acker, and Smith (2012) actually found that performance

was better when the goal of training was reaching automatization gather than reaching

proficiency. Therefore the level of automatization can also be used as a measure of

performance. If this is true, performance scores and mental workload scores handed to

a learning curve model give more precise predictions of the asymptote as either of the

two on their own. This should become visible as a high correlation of their asymptotes

(Arendt, 2017).

1.4 Measuring Mental Workload

Even though there has been an increase of physiological methods to measure MW as for

example heart rate variability which are reliable (Jorna, 1992), subjective measurement

is still often the method of choice. Especially in environments where subjects need to

perform a physical task the instrument might interfere with task performance. Two

instruments used often are the Subjective Workload Assessment Technique (SWAT; Reid

& Nygren, 1988) and the National Aeronautics and Space Administration Task Load Index

(NASA-TLX; Hart, 1986).

In a meta-analysis de Winter (2014) found that the SWAT has been used 825 times

and the NASA-TLX almost 7,000 times in published papers. So both have a sufficient

amount of results for comparison and validation (see for example Hill et al., 1992). But de

Winter (2014) uttered concerns that the NASA-TLX only came to be used that often due

to its high popularity and not due to advantages as found by Hill et al. (1992). Still, we

are concerned that the SWAT lacks sensitivity for the given situation as it only uses Time

Load, Mental Effort and Psychological Stress but does not include physical aspects of the

performed task (Reid & Nygren, 1988). Also scales are not continuous but using a three

level design, from high to low.

As every task has its own demands Wilson et al. (2011) developed a task load index

for surgery, which is called SURG-TLX. It was constructed it from the NASA-TLX and

validated it through laparoscopy tasks, and could have served as an alternative instrument.
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Unfortunately, the tool has not been used often at the moment of writing and validity

might not be sufficient. Because we used a new design, we wanted to avoid eventual effects

caused by an invalid instrument. For the given reasons we prefer the NASA-TLX over the

other two.

Within the field of MIS several studies exist that used the NASA-TLX. Within this

research two different goals can be identified. The first is the development of supportive

technologies. By employing the NASA-TLX it was shown, for instance, that three-

dimensional displaying is less stressing for physicians than traditional two-dimensional

displaying (Foo et al., 2012; Gómez-Gómez et al., 2015).

A second goal is to improve selection and training of physicians. For example, Yurko

et al. (2010) found NASA-TLX scores to significantly correlate with performance scores

measured at three moments of training and O’Connor, Schwaitzberg, and Cao (2008)

showed that providing results and instruction helps to lower MW for trainees. The study

at hand belongs to this latter field of research with the novelty of linking NASA-TLX

scores to concurrent performance to get better insight in its relation to learning of MIS.

2 Methods

2.1 Design

The study was designed two measure performance, as Time on Task (ToT), and MW,

as NASA-TLX scores. Those to measures were collected on three times 15 data points.

Scores were to be correlated.

2.2 Procedure

All tests were conducted at the Experimental Centre for Technical Medicine at the

University of Twente. After being guided to the room, the purpose and basic procedure

was explained and the participants were asked for informed consent. When agreement was

given the participants filled in the demographics questionnaire and were given a written

summary of the procedure. In preparation for the task they were then shown a video

explaining bronchoscope handling. If there were no more questions the participant was

handed the scope and they tested handling the lever and turning the scope, before starting

the first task.
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The first task taught basic scope manoeuvres. The scope was to be moved through

a virtual reality (VR) tube system while keeping an indicator at the middle of the screen

(Figure A1). If the scope touched the walls participants were warned by visual and

auditory feedback. Fifteen tracks were followed in total. Beginning from the first trial, the

NASA-TLX was filled in every second trial. Participants needed an average of 33 minutes

to fulfil the first task.

After a break of five minutes the participants continued to the second task. Now

they needed to perform a lung inspection by searching for light bulbs which were situated

at the major airway junctions (Figure A2). Of the 28 light bulbs available 10 needed to be

found and matched to an on-screen indicator. Again this was repeated 15 times and the

procedure for the NASA-TLX as in Task 1 was followed. The second task took on average

47 minutes.

After the training was finished the participants were thanked for attending and asked

whether they had any more questions and whether they were willing to participate in a

second session. The first session was set to last for a maximum of two hours.

For the second session the participants returned on another day. Upon arrival they

were shown a video explaining the usage of sampling tools. Again participants had the

chance to ask questions and then started with the third task. This time they had to

perform a tissue sampling task. The spot of interest was marked in a purple colour in

the simulated lung (Figure A3). To obtain the sample the tool was handed over by the

researcher and then had to be introduced through the bronchoscope’s working channel.

At a certain level of insertion the simulator prompted to choose one of several sampling

tools from the screen. First, the participant had to choose a forceps. After doing so, they

were handed the tool handle to their non-dominant hand. The sample was obtained by

either pushing the handle up or down while holding the scope at the sampling area.

When the sampling was successful the tool needed to be rejected until the selection

panel would be shown again. Then the sampling brush had to be chosen. A second sample

was obtained by moving the tool back and forth in the working channel. After this second

sampling was successful the trial was finished. The third task was also repeated 15 times

and the NASA-TLX again was filled in after every second trial. This resulted in an average

time of 47 minutes.

The participants were again thanked for taking the time and were then released from
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the experiment. The second session was set to a maximum time of one hour. Neither for

the first nor the second session was maximum time exceeded.

Pre- and pilot test. Prior to writing the protocol used, the tasks were pretested

by the researchers. The goal hereof was to find out how long each trial of the simulator

tasks will take and to get comfortable with the apparatus used. Also it was concluded to

provide stools for smaller participants since the table’s height could not be changed and

was considerably high.

The resulting protocol was pilot tested on a 21 years old male, Dutch student of

Medical Healthcare and Technologies. The procedure did not exceed the set maximum

time of two hours and proofed to be expedient. Analysis of the data recorded during

the pilot test indicated that completion of the NASA-TLX after every second trial was

sufficiently resembling its progress. So this was preferred in order to cut down session

time.

2.3 Measures

Simulator. As the simulator used is designed for education and not for research

the recorded data did not satisfy our criteria. Therefore it was decided to include the

following measures in the analysis.

For Task 1 the ToT as measured by the simulator was used. Because routes were

drawn at random from a list of 8 routes, also the corresponding route number was recorded.

This enabled us later to check for eventual differences in difficulty of routes.

For Task 2 and 3 also ToT was used in the analysis but the output from the simulator

differed from the actual times. Therefore times were manually stopped by the researchers,

starting at the moment of scope insertion and stopping when the final criterium - for Task

2 identification of the tenth light bulb and for Task 3 finishing sampling with the brush -

was met. Additionally, during Task 2 the times were recorded between the single light

bulbs and during Task 3 the time needed for both of the sampling procedures. Full lists of

variables measured by the simulator are provided in Appendix B.

NASA-TLX. Mental Workload was measured using an adapted version of the

NASA-TLX (Hart, 1986). The first part of the NASA-TLX consists of six indicators: Men-

tal Demand, Physical Demand, Temporal Demand, Performance, Effort and Frustration.

As participants could see a performance indicator at the end of each trial the Performance
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Table 1
Prompts to the different item as provided on-screen

Item Prompt
Mental Demand How mentally demanding was the task
Physical Demand How physically demanding was the task?
Temporal Demand How stressed were you by the speed of the task?
Own Effort How hard did you have to work to achieve your result?
Frustration How frustrated were you about the task or parts of it?
Note. Questions adapted from Hart (1986, Appendix A).

item was omitted. The other five were displayed as continuous scales ranging 0 to 100 (see

Figure C1).

At the beginning of both sessions on-screen information was provided on how the

survey should be taken. Participants were asked to judge from intuition and focus on the

preceding trial and not the overall performance. Also prompts to the items as provided in

Table 1 were given.

Hart (1986) included a card sorting task through which it can be measured which

factor subjectively impacts MW the most. We implemented the card sorting as a drag-

and-drop ranking which was done after finalizing all trials of each task (see Figure C2).

Each item was assigned a rank from 1 to 5. No rank could be assigned two times. For the

ranking participants were asked to judge all trials they performed.

2.4 Data analysis

As well performance scores as NASA-TLX data were analysed using an adapted version

of the model proposed by Heathcote, Brown, and Mewhort (2000). The basic model is

represented by Equation 1. Before performing analysis scores were transformed to lay

within an interval from 0 to 1, as it is good practice. Finally, correlations between the

asymptotes of performance and NASA-TLX were to be calculated, to answer our research

question.

Performance = exp(Amplitude − exp(Rate) × NT rial) + exp(Asymptote) (1)

The total score of the NASA-TLX was calculated for every measurement moment

using Equation 2, where i corresponds to the five subscales.
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TLX =

5∑
i=1

Scorei × Ratingi

15 (2)

The analysis was conducted using the statistics-focused programming language R

and the Bayesian Regression Models engine (brms; Bürkner, 2017). The code is given in

Appendix D.

2.5 Material

Simulator. The simulator used was a GI-BRONCH Mentor produced by 3D-

Systems. It consists of a hard-plastic body with openings for as well bronchoscopy as

gastrointestinal endoscopy. The system was connected to a touchscreen that was placed

just above the body and could be turned to face the operator.

The bronchoscope was controlled using a handle as shown in Figure A4a. The scope’s

tip could be bowed by pushing the lever up or down. Side ward rotation was achieved by

rotation of the whole handle from one’s wrist. The tool shown in Figure A4b could be

introduced through the scopes working channel and used by the attached handle.

The tasks were included in the BronchMentor training curriculum for prospective

pulmologists (Simbionix, n.d.). Also was a video included in the MentorLearn software1

used to explain basic bronchoscope handling. For explanation of the third task a self-

produced video was used2.

Laptop. The NASA-TLX as well as the demographics survey were displayed on

the researchers’ laptops. They were accessible online at Qualtrics using an anonymous

link.

Intake Questionnaire and Informed Consent. Basic demographic data of

participants was collected. In addition it was asked for weekly gaming time in accor-

dance with studies showing a positive correlation between gaming and MIS performance

(Enochsson et al., 2004). Also participants were asked to indicate whether they had any

visual or motor disabilities which would hinder them from proper performance. The

questions used are shown in Appendix E. Informed consent was given on a paper form as

presented in Appendix F.
1Included as “Posture and Scope Maneuvering”
2The video can be accessed at https://tinyurl.com/y76yljgd.

https://tinyurl.com/y76yljgd
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2.6 Participants

We initially aimed at a sample size of 25 but due to breakage of the bronchoscope we had

to stop data collection early. Eventually, twelve students of the University of Twente and

one of the Saxion University of Applied Sciences participated in the study, resulting in a

total sample of 13. Five participants attended both sessions.

Nine of the students were recruited using the university’s research pool and received

two European Credit Points as a reward of the first session and one more for the second

session. The other four participants were a convenience sample.

The convenience sample consisted of three male and one female Dutchmen. Two ma-

jored in Mechanical Engineering, the other in Applied Physics and Industrial Engineering,

respectively. The sample from the research pool consisted of one male and eight females.

Again eight were German and the other Bulgarian. Six were majoring in Psychology and

three in Communication Studies.

The total sample’s age average was 20.2 years ranging from 19 to 23. Two out of

thirteen described themselves to be left-handed. Three of the participants indicated to be

playing video games on a regular basis with an average of 11.3 hours of gaming per week.

None of the participants needed to be excluded from analysis due to impairments.

3 Results

Performance was found to be learning curves (Appendix G), but our expectation that the

NASA-TLX scores also take that shape and, thus, their asymptotes correlate with those

of the performance learning curves did not hold. Instead we observed the NASA-TLX

scores best to be fit by a polynomial of third degree. As through this development MW

was not compared to performance scores, the latter is not described here, but analysis can

be found in the thesis of Marlise Westerhof (In Progress).

Through the first analysis of the total scores of the NASA-TLX it turned out that they

did not take a shape resembling a learning curve when mapped against the trials (Figure

2). While participants 6, 10 and 13 show a clear decrease of MW and participants 8,9

and 12 show irregular progression, the rest remains at the initial level of MW. Participant

2 was excluded from this first analysis since due to technical problems they could not

complete the ranking.

In further analysis of the TLX scores we focused on the unranked scores, as subscales
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Figure 2 . Total NASA-TLX scores as calculated from Equation 2. Each subfigure
corresponds to one participant. Lines are smoothed using locally weighted scatterplot
smoothing (LOESS).

showed a high consistency (α = 0.84). Task 3 was excluded from further analysis as only

little data was collected. Through analysis of plots like the one shown in Appendix H,

three types of development could be identified. It could be found that some individuals

show a decrease in MW while others maintain their initial level. But for most participants

workload increased after an initial decrease.

Taking into account that most scores increased towards the end of the tasks it was

decided that the data could not be expressed by a exponential function as the one given

in Equation 1 to a satisfying degree. Therefore polynomials were tested against the data

and a third degree polynomial function was found to fit the data sufficiently. The function

of the NASA-TLX scores could thus best be expressed by Equation 3.
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TLX =
3∑

i=0
aix

i = a0 + a1x + a2x
2 + a3x

3 (3)

Applying the polynomial model resulted in the curves shown in Figure 3. From

these curves it seemed that the model better matches data from the second task than

from the first task. Those of the first task did not yield the characteristic maximum in the

beginning. This difference is very good visible for Participant 2 and 13.

Figure 3 . Representation of the NASA-TLX scores as third degree polynomials. Task 3
was excluded from analysis due to small sample size.

To test how well the model fits both of the tasks residuals were calculated. The

corresponding plot can be seen in Appendix I. For both tasks residuals had an average
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mean of Mr < 0.00. Confirming our observation made from the model plots Figure 3, Task

2 was fitted slightly better than Task 1 (r2 = 0.21; r2 = 0.29, respectively).

From the given plots it can also be observed that minima and maxima are positioned

similar across all participants (see Figure 3). For Task 1 the point of change can be found

at about 11 trials; for Task 2 the maximum lies at about 4 trials and the minimum at

about 12 trials. What actually differs between individuals is the range of scores. A very

prominent example hereof is Participant 6 whose scores have a range of about 20 points

for both tasks.

4 Discussion

It was expected that mental workload as measured by the NASA-TLX can be used together

with performance data measured by a training simulator for bronchoscopy, to give improved

predictions of maximal performance individuals can reach. This would have been possible

if as well performance as mental workload had taken a learning curve shape. Unfortunately,

no such shape was found. We rather found that, after a short period of increase, scores

would decrease, to finally increase again. Following this observation we modeled the data

to a third degree polynomial.

This shape of curvature might be interpreted as phases corresponding to the different

uses of MW measurement (see Figure 4). This does not mean that each of these phases is

limited to a certain time; rather these processes happen in parallel but one prevails at a

certain time resulting in the curvature.

The first phase is overload or stress. The novelty of the task causes inefficient filtering

of information, interference of cognitive processes and erroneous choice of response. This

phase matches to the classical notion of MW as Wickens (1980) used. The second phase

can be described as automatization, the process we were initially interested in. In this

phase efficient methods for handling and cognitive processing are chosen to lower the initial

stress (Parasuraman & Hancock, 2010). For the third phase we found two competing

explanations with crucially different implications. They will be discussed in turn.

The first interpretation for the increase of MW after a certain number of repetitions

is fatigue of the participant. Fatigue is stress caused through “extended and repeated

operations which imply low and unchanging levels of stimulation” (P. Hancock & Verwey,

1997, pp. 498-499). and is strongly related to boredom (e.g. through monotony of a task).
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Figure 4 . Polynomial curve of NASA-TLX scores of Participant 1 on Task 2 with the
phases discussed. The first phase is interpreted as stress, the second as automatization,
and for the third arguments for an interpretation as either fatigue or increased effort is
provided.

In conditions were vigilance has to be maintained performance is starting to decrease

through fatigue after about 30 minutes (Mizuno et al., 2011). Based on the measured times

(see subsection 2.2) this would indicate that as off the tenth repetition fatigue was setting

in for our participants, but through the data it seems that automatization prevails for 2

more trials. As a state of fatigue is associated with lowered ability to maintain motivation

and lowered cognitive ability which will be restored after a period of rest (Mizuno et al.,

2011), this interpretation implicates that a break should be given to trainees when mental

workload rises.

Another explanation might be that after the process is automatized more effort is

put into the task to increase performance. Fairclough (2010) argued that the uppermost

goal of a human performing a task is to perform good. The will to do so is restricted by

the need to maintain a comfortable level of MW. This means that if stress is above one’s

level of comfort when learning a new task, one needs to wait for the stress to decrease

through automatization before being able to put more effort in it to reach ones actual

goal (i.e. perform good). From this perspective it would be logical to focus training on

the third phase because this is the phase where the trainee is striving for perfection.

After all, consent exists that mental workload should take a hyperbolic shape (see

for example P. A. Hancock & Chignell, 1988). But Reid and Nygren (1988), the inventors
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of the SWAT, actually used polynomials to model their data but eventually found an

additive model to better fit their data.

We did not expect to find these results and have to consider that they are caused

by major deficits in the design. Especially, the low number of participants that causes

high uncertainty of the model but also the missing data for every second trial can be

considered contributing factors. Still, the deviation of the expected model is so essential

that a replication of the study without these shortcomings would be interesting.

Another point regarding the method that needs to be discussed is the usage of

the NASA-TLX. Our analysis showed that for the tasks performed all subscales of the

NASA-TLX showed a high correlation. It can be recommended for similar studies to use

single item tools like the Overall Workload (OW) scale developed by Vidulich and Tsang

(1987) which shows similar validity and usability as the NASA-TLX (Hill et al., 1992) with

the advantage of decreased time demand and less effort asked of the participant. Through

the usage of a one-item scale it would even be reasonable to ask for response after every

trial. This would still result in a decrease of asked responses by more than 60 %.

Even though the study at hand clearly failed to answer whether MW measures can be

included in performance scales to make better predictions of maximal performance a trainee

can reach, it could have a wide range of implications for research and training. Considering

our initial expectation, questions for subsequent research, besides the replication of

the results, could be directed to whether level of automatization is related to maximal

performance. Should progress of MW really be polynomials training could be adapted

to it. According to the given interpretations performance enhancement is mainly taking

place in a very specific time frame which can be used to define length of training sessions.
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Appendix A

Detail images of the GI-BRONCH Mentor and MentorLearn Software

Figure A1 . Screenshot of the first task. The blue dot has to be kept centered on the
screen. From http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/
bronch-bronchoscopy/. Copyright 2017 by Simbionix USA.

http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/bronch-bronchoscopy/
http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/bronch-bronchoscopy/
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Figure A2 . Screenshot of the second task. The light bulb shape has to be matched
with light bulbs found in the air way junctions. From http://www.beidestar.com/Item/
Show.asp?m=1&d=911. Copyright 2018 by Beijing Beijing Beidestar Technology and
Development Ltd.

Figure A3 . Screenshot of the third task. Samples have to be taken from the purple
areas. From http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/
bronch-bronchoscopy/. Copyright 2017 by Simbionix USA.

http://www.beidestar.com/Item/Show.asp?m=1&d=911
http://www.beidestar.com/Item/Show.asp?m=1&d=911
http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/bronch-bronchoscopy/
http://simbionix.com/simulators/bronch-mentor/bronch-library-of-modules/bronch-bronchoscopy/
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(a) Handle used to control the scope. (b) Sampling tool.

Figure A4 . Physical control units for the bronchoscopy simulator.
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Appendix B

Variables measured by the simulator

Variables for task 1

Number of wall contacts in wide lumen
Number of wall contacts
Number of wall contacts in medium lumen
Number of wall contacts in narrow lumen
Total time on task
Relative time at mid-lumen
Relative time in wall contact

Variables for task 2

Total time on task
Relative time at mid-lumen
Relative time with clear visibility
Relative time in wall contact
Unidentified light bulbs (skipped carinas)
Carinas where light bulbs were identified on the first attempt
Carinas where light bulbs were identified on the second attempt
Carinas where light bulbs were identified on the third or higher attempt
Carinas where light bulbs identification was attempted but not satisfactory

Variables for task 3

Total time on task
Details about the sample obtained using the forceps
Details about the sample obtained using the brush
Number of times that scope was flexed while tool was passed
Name of tool that was passed while scope was flexed
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Appendix C

Online forms for the NASA-TLX

Figure C1 . Tool used to administer the NASA-TLX.

Figure C2 . Tool used to administer the alternative card sorting of the NASA-TLX. Scales
could sorted by drag-and-drop.
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Appendix D

R code for data preparation and analysos 3

Libraries

library(tidyverse)
library(readxl)
library(stringr)
library(brms)
options(mc.cores = 6)
library(mascutils)
library(asymptote)
library(bayr)
library(psych)
library(gridExtra)

load("MISTA18.Rda")

Data preparation

sim_files_MW_task1 <-
dir(path = "raw_data/MW/",

pattern = "^Participant\\d{2}_Participant\\
d{2}_Essential Bronchoscopy_columns.csv",

full.names = T)

time_files_MW_task23 <-
dir(path = "raw_data/MW/",

pattern = "Participant\\d{2}_task[23]_time.xlsx",
full.names = T)

MW_task1 <-
set_names(sim_files_MW_task1) %>%
map_df(read_csv) %>%
mutate(Part = str_extract(`Last Name`, "\\d+"),

Task = 1,
trial = as.integer(Repetition),
ToT = as.numeric(Text4)/60,
Route = as.factor(Text5),
Setup = "Sim") %>%

select(Setup, Part, Task, Route, trial, ToT) %>%
print()

read_time <- function(x) {

3Code written by Martin Schmettow
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read_excel(x) %>%
mutate(Participant = as.character(Participant))

}

MW_task23 <-
set_names(time_files_MW_task23) %>%
map_df(read_time) %>%
mutate(Part = str_extract(Participant, "\\d+"),

trial = as.integer(Repetition),
ToT = if_else(Task == 2, TimeOnTask, Time_Task3_Total),
ToT = ToT/60,
Route = NA,
Setup = "Sim") %>%

select(Setup, Part, Task, Route, trial, ToT) %>%
print()

MW18 <- bind_rows(MW_task1, MW_task23) %>%
mutate(Task = as.factor(Task)) %>%
filter(!is.na(ToT)) %>%
mascutils::as_tbl_obs()

save(MW18, file = "MISTA18.Rda")

# tlx_files <-
# dir(path = "raw_data/MW/unr/",
# pattern = "Participant.*.csv",
# full.names = T)
#
# LW18 <-
# set_names(tlx_files) %>%
# map_df(read_csv) %>%
# select(Part, Task, trial, UnrankedTotals) %>%
# rename(tlx_total = UnrankedTotals) %>%
# as_tbl_obs() %>%
# print()

LW18 <-
read_csv("raw_data/MW/set2.csv") %>%
rename(tlx_total = UnrankedTotals,

tlx_mental = MentalDemand,
# tlx_physical = PhysicalDemand,
# tlx_temporal = TemporalDemand,

tlx_effort = OwnEffort,
tlx_frust = Frustration) %>%

mutate_at(vars(starts_with("tlx")), function(x) x/100) %>%
mutate(Part = as.factor(Part),

Task = as.factor(Task)) %>%
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as_tbl_obs() %>%
print()

save(LW18, file = "LW18.Rda")

Data exploration

load("MISTA18.Rda")

Number of observations.

MISTA18 %>%
group_by(Setup, Part, Task) %>%
summarize(N_trials = n()) %>%
ungroup() %>%
group_by(Setup, Task) %>%
summarize(N_Part = n(),

min(N_trials), median(N_trials), max(N_trials), sd(N_trials)) %>%
knitr::kable()

Plotting of raw data.

MISTA18 %>%
filter(Setup == "Sim") %>%
ggplot(aes(x = trial, color = Task, y = ToT)) +
facet_wrap(~Part, ncol = 3) +
geom_point() +
geom_smooth(se = F)

Boxplots of ToT per Route of Task 1.

MISTA18 %>%
filter(Setup == "Sim", !is.na(Route)) %>%
ggplot(aes(x = Route, y = ToT)) +
geom_boxplot()

Analysis of Performance

Setting up the LARY model.

lazyeval::f_lhs(LARY) <- quote(ToT)
LARY

# Random effects and correlations
F_ef_lary_1 <- list(
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formula(ampl ~ 0 + Task + (0 + Task|corr1|Part)),
formula(rate ~ 0 + Task + (0 + Task|corr2|Part)),
formula(asym ~ 0 + Task + (0 + Task|corr3|Part)))

# Including difficulty of Route (Asymptote and Amplitude only)
F_ef_lary_2 <- list(

formula(ampl ~ 0 + Task + Route + (0 + Task|corr1|Part)),
formula(rate ~ 0 + Task + (0 + Task|corr2|Part)),
formula(asym ~ 0 + Task + Route + (0 + Task|corr3|Part)))

# Log scale weak priors
F_pr_lary_1 <- c(set_prior("normal(1, 5)", nlpar = "ampl"),

set_prior("normal(-1, 5)", nlpar = "rate"),
set_prior("normal(0.5, 5)", nlpar = "asym"))

M_1: LARY exgaussian.

M_1 <-
brm(bf(LARY,

flist = F_ef_lary_1, nl = TRUE),
prior = F_pr_lary_1,
family = exgaussian(),
data = MW18,
iter = 0, warmup = 0,
init = "0")

M_1 <-
brm(fit = M_1,

data = MW18,
iter = 11000, warmup = 10000, chains = 6,
control = list(adapt_delta = 0.95,

max_treedepth = 12),
init = "0")

save(M_1, file = "M_1.Rda")

M_2: LARY gamma.

M_2 <-
brm(bf(LARY,

flist = F_ef_lary_1, nl = TRUE),
prior = F_pr_lary_1,
family = Gamma(link = identity),
data = MW18,
iter = 0)

M_2 <-
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brm(fit = M_2,
data = MW18,
iter = 17000, warmup = 15000, chains = 5,
init = "0",
control = list(adapt_delta = 0.999,

max_treedepth = 12))

save(M_2, file = "M_2.Rda")

M_3: LARY gamma with routes.

M_3 <-
brm(bf(LARY,

flist = F_ef_lary_2, nl = TRUE),
prior = F_pr_lary_1,
family = Gamma(link = identity),
data = MW18,
iter = 0)

M_3 <-
brm(fit = M_2,

data = MW18,
iter = 17000, warmup = 15000, chains = 5,
init = "0",
control = list(adapt_delta = 0.999,

max_treedepth = 12))

save(M_3, file = "M_3.Rda")

ARY parameters by task:

# load("M_1.Rda")
load("M_2.Rda")

P_2 <- posterior(M_2)
fixef(P_2)

Individual differences as standard deviations by task and ARY parameters.

grpef(P_2)

Correlations between tasks.
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P_2 %>%
filter(type == "cor") %>%
group_by(parameter) %>%
summarize(center = median(value),

lower = quantile(value, .025),
upper = quantile(value, .975)) %>%

separate(parameter, into = c("type", "level", "nonlin",
"Cor_1", "X", "Cor_2")) %>%

select(nonlin, Cor_1, Cor_2, center, lower, upper) %>%
knitr::kable()

Estimated curves.

PP_2 <- post_pred(M_2)
thin<-1
newdata<-NULL
T_pred_2 <-

PP_2 %>%
filter(!is.na(ToT)) %>%
mutate(resid = ToT - center)

T_pred_2 %>%
ggplot(aes(x = trial, y = ToT, color = Task)) +
facet_wrap(~Part, ncol = 3) +
geom_point() +
geom_line(aes(y = center))

M_4, M_5: SCOR.

lazyeval::f_lhs(SCOR) <- quote(ToT)
SCOR

F_ef_scor_1 <- list(
formula(scale ~ 1 + Task + (1|Part)),
formula(rate ~ 1 + Task + (1|Part)),
formula(offset ~ 1 + Task + (1|Part)))

F_ef_scor_2 <- list(
formula(scale ~ 0 + Task + (1|Part)),
formula(rate ~ 0 + Task + (1|Part)),
formula(offset ~ 0 + Task + (1|Part)))

F_ef_scor_3 <- list(
formula(scale ~ 0 + Task + (0 + Task|Part)),
formula(rate ~ 0 + Task + (0 + Task|Part)),
formula(offset ~ 0 + Task + (0 + Task|Part)))



36

SCOR original scale weak priors.

F_pr_scor_1 <- c(set_prior("normal(0, 100)", lb = 0, nlpar = "scale"),
set_prior("normal(0, 10)", lb = 0, nlpar = "rate"),
set_prior("normal(0, 10)", lb = 0, nlpar = "offset"))

M_4 <-
brm(bf(SCOR,

flist = F_ef_scor_1, nl = TRUE),
prior = F_pr_scor_1,
family = Gamma(link = identity),
data = MW18,
iter = 0)

M_4 <-
brm(fit = M_4,

data = MW18,
iter = 2000, warmup = 1000, chains = 4,
init = "0",
control = list(adapt_delta = 0.9,

max_treedepth = 12))

save(M_4, file = "M_4.Rda")

M_5 <-
brm(bf(SCOR,

flist = F_ef_scor_3, nl = TRUE),
prior = F_pr_scor_1,
family = Gamma(link = identity),
data = MW18,
iter = 0)

M_5 <-
brm(fit = M_5,

data = MW18,
iter = 8000, warmup = 7000, chains = 6,
init = "0",
control = list(adapt_delta = 0.999,

max_treedepth = 12))

save(M_5, file = "M_5.Rda")

PP_4 <- post_pred(M_4)
PP_5 <- post_pred(M_5)

T_pred_4 <-
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MW18 %>%
filter(!is.na(ToT)) %>%
bind_cols(predict(PP_4)) %>%
mutate(resid = ToT - center)

T_pred_5 <-
MW18 %>%
filter(!is.na(ToT)) %>%
bind_cols(predict(PP_4)) %>%
mutate(resid = ToT - center)

T_pred_5 %>%
ggplot(aes(x = trial, y = ToT, color = Task)) +
facet_grid(Part~Task, scale = "free_y") +
geom_point(size = .2) +
geom_line(aes(y = center, linetype = "SCOR_AGM")) +
geom_line(data = T_pred_4, aes(y = center, linetype = "SCOR_CGM")) #+
#geom_line(data = T_pred_2, aes(y = center, linetype = "LARY"))

Is scale parameter really equivalent with amplitude? Do we get the same
rates?

load("M_2.Rda")
load("M_4.Rda")
load("M_5.Rda")

P_4 <- posterior(M_4)
P_5 <- posterior(M_5)

fixef(M_2) %>%
mutate_at(vars(center:upper), exp) %>%
select(nonlin, fixef, center, lower, upper)

fixef(M_4)

Offset does not have a useful interpretation. We convert to asymptote:

scor_to_ary <- function(posterior) {
posterior_offset <-

posterior %>%
filter(nonlin %in% c("offset"),

type %in% c("ranef", "fixef")) %>%
rename(offset = value)

posterior_scale <-
posterior %>%
filter(nonlin %in% c("scale"),
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type %in% c("ranef", "fixef")) %>%
rename(scale = value)

posterior_asym <-
left_union(posterior_offset, posterior_scale) %>%
dplyr::mutate(value = scale * offset,

nonlin = "asym",
parameter = str_replace(parameter, "offset", "asym"),
order = order + 100) %>%

select(-scale, -offset) %>%
posterior()

bind_rows(posterior, posterior_asym)
}

P_4 <- scor_to_ary(P_4)
P_5 <- scor_to_ary(P_5)

bind_rows(P_4, P_5) %>% fixef()

loo(M_2) # 360, 44
loo(M_4) # 352, 43
loo(M_5) # 347, 43

T_ranef_wide <-
ranef(P_5) %>%
filter(nonlin != "offset") %>%
mutate(parameter = str_c(nonlin, fixef, sep = "_")) %>%
select(parameter, Part = re_entity, center) %>%
spread(key = parameter, value = center)

T_ranef_wide %>%
select(-Part) %>%
GGally::ggpairs()

Analysis of Workload

load("LW18.Rda")

LW18 %>%
gather(key = Scale, value = score, tlx_total:tlx_frust) %>%
ggplot(aes(x = trial, y = score, color = Scale, group = Part)) +
facet_grid(~Scale) +
geom_smooth(se = F, span = 2)
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LW18 %>%
gather(key = Scale, value = score, tlx_total:tlx_frust) %>%
ggplot(aes(x = trial, y = score, color = Scale)) +
facet_grid(Task~Part) +
geom_point() +
geom_smooth(se = F, span = 2)

LW18 %>%
ggplot(aes(x = trial, y = tlx_total, color = Task)) +
facet_grid(~Part) +
geom_point(se = F, span = 2)+
geom_smooth(se = F, span = 2)

M_6: LARY.

lazyeval::f_lhs(LARY) <- quote(tlx_total)
LARY

M_6 <-
brm(bf(LARY,

flist = F_ef_lary_1, nl = TRUE),
prior = F_pr_lary_1,

# family = Beta(link = identity),
data = LW18)

M_6 <-
brm(fit = M_6,

data = LW18,
iter = 35000, warmup = 30000, chains = 6,

# init = "0",
control = list(adapt_delta = 0.9999,

max_treedepth = 14))

save(M_6, file = "M_6.Rda")

M_7: SCOR beta.

lazyeval::f_lhs(SCOR) <- quote(tlx_total)
SCOR

M_7 <-
brm(bf(SCOR,

flist = F_ef_scor_2, nl = TRUE),
prior = F_pr_scor_1,

# family = Beta(link = identity),
data = LW18)
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M_7 <-
brm(fit = M_7,

data = LW18,
iter = 16000, warmup = 15000, chains = 6,

# init = "0",
control = list(adapt_delta = 0.999,

max_treedepth = 14))

save(M_7, file = "M_7.Rda")

Polynomial regression. Hypothesis: Learning and fatigue cause a curvilinear associ-
ation between trials and workload. Task 3 has only be observed at 4 participants, we
exclude it for a simpler model

load("LW18.Rda")

LW18_1 <-
na.omit(LW18) %>%
filter(Task != "3") %>%
as_tbl_obs() %>%
print()

filter(LW18_1,Part==10)

Square polynomial.

M_8 <- brm(tlx_total ~ Task * poly(trial,2) + (Task*poly(trial,2)|Part),
data = LW18_1, chains = 1, iter = 100)

M_8 <- brm(fit = M_8,
data = LW18_1, chains = 6, iter = 3000, warmup = 2000)#,

# control = list(adapt_delta = 0.99, max_treedepth = 14))

save(M_8, file = "M_8.Rda")

Cubic polynomial.

M_9 <- brm(tlx_total ~ Task * poly(trial,3) + (Task*poly(trial,2)|Part),
data = LW18_1, chains = 1, iter = 100)

M_9 <- brm(fit = M_9,
data = LW18_1, chains = 6, iter = 3000, warmup = 2000,
control = list(adapt_delta = 0.9, max_treedepth = 12))

save(M_9, file = "M_9.Rda")



41

M_8 <- add_loo(M_8)
M_9 <- add_loo(M_9)

loo(M_8)
loo(M_9)

fixef(M_9)

T_predict_9 <-
predict(M_9)%>%
left_join(LW18_1)

T_predict_9 %>%
ggplot(aes(x = trial, y = tlx_total, color = Task)) +
facet_wrap(~Part, ncol = 5) +
geom_point(size = .4) +
geom_line(aes(x = trial, y = center))+
geom_line(aes(x = trial, y = upper))+
geom_line(aes(x = trial, y = lower))

res <- T_predict_9$tlx_total - T_predict_9$center
T_res <- add_column(T_predict_9,res)

T_res %>%
filter(Task==2)%>%
select(res)%>%
sapply(function(x) x^2)%>%
sum()

T_res %>%
ggplot(aes(x = trial, y = res))+
facet_wrap(~Task)+
geom_point() +
geom_smooth(method = lm)

LW18%>%
select(tlx_mental:tlx_frust)%>%
alpha()

Data visualisation.
Figure 2.

g <- LW18 %>%
filter(Part == 1 | Part == 3 | Part == 4 | Part == 5)%>%
ggplot(aes(x = trial, y = tlx, color = Task)) +
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theme(axis.title.x = element_text(size = 11, face = "bold"),
axis.title.y = element_text(color=alpha("red",0)),
legend.title = element_text(size = 11, face = "bold"),
legend.position = "none") +

ylab("Score") +
xlab(NULL) +
facet_grid(~Part) +
scale_y_continuous(limits = c(0,100)) +
geom_point() +
geom_smooth()

h <- LW18 %>%
filter(Part == 6 | Part == 7 | Part == 8 | Part == 9)%>%
ggplot(aes(x = trial, y = tlx, color = Task)) +
theme(axis.title = element_text(size = 11, face = "bold"),

legend.position = "none") +
ylab("Score") +
xlab(NULL) +
scale_y_continuous(limits = c(0,100))+
facet_grid(~Part) +
geom_point() +
geom_smooth()

i <- LW18 %>%
filter(Part == 10 | Part == 11 | Part == 12 | Part == 13)%>%
ggplot(aes(x = trial, y = tlx, color = Task)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(color = alpha("red", 0)),
legend.title = element_text(size = 11, face = "bold"),
legend.background = element_rect(fill = "gray90", size = .5),
legend.position = "bottom") +

ylab("Score") +
xlab("Trial") +
scale_y_continuous(limits = c(0,100)) +
scale_color_continuous(breaks = c(1,2,3),

labels = c("1","2","3")) +
facet_grid(~Part) +
geom_point() +
geom_smooth()

j <- arrangeGrob(grobs = list(g,h,i), ncol = 1, nrows = 3,
heights = unit(c(4,4,6.5), c("cm","cm","cm")))

Figure 3.

label_tlx <- c(
tlx_effort = "Own Effort",
tlx_frust = "Frustration",
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tlx_mental = "Mental Effort",
tlx_physical = "Physical Effort",
tlx_temporal = "Temporal Effort",
tlx_total = "Total")

a <- LW18 %>%
filter(Part == 2|Part == 7|Part == 6|Part == 13)%>%
filter(Task == 2)%>%
gather(key = Scale, value = score, tlx_total:tlx_frust)%>%
ggplot(aes(x = trial, y = score*100, color = Scale, group = Part)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(color = alpha("red", 0)),
legend.title = element_text(size = 11, face = "bold"),

axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
legend.position = "none") +

ylab("Score") +
xlab(NULL) +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Scale,labeller = labeller(Scale = label_tlx)) +
geom_smooth(se = F, span = 2)

b <- LW18%>%
filter(Part == 3 | Part == 4 | Part == 5 | Part == 8 | Part == 9 | Part == 12)%>%
filter(Task==2)%>%
gather(key = Scale, value = score, tlx_total:tlx_frust)%>%
ggplot(aes(x = trial, y = score*100, color = Scale, group = Part)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(size = 11, face = "bold"),
legend.title = element_text(size = 11, face = "bold"),

axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
legend.position = "none") +

ylab("Score") +
xlab(NULL) +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Scale, labeller = labeller(Scale = label_tlx)) +
geom_smooth(se = F, span = 2)

c<-LW18%>%
filter( Part == 1 | Part == 10 | Part == 11)%>%
filter(Task == 2) %>%
gather(key = Scale, value = score, tlx_total:tlx_frust)%>%
ggplot(aes(x = trial, y = score*100, color = Scale, group = Part)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(color = alpha("red", 0)),
legend.title = element_text(size = 11, face = "bold"),
legend.position = "none") +
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ylab("Score") +
xlab("Trial") +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Scale, labeller = labeller(Scale = label_tlx)) +
geom_smooth(se = F, span = 2)

grid.arrange(a,b,c)
d <- arrangeGrob(grobs = list(a,b,c), ncol = 1, nrows = 3,

heights = unit(c(4,4,4.75), c("cm","cm","cm")))
ggsave("I:/Meine Ablage/Bachelor/Latex/res3.png",d)

Figure 4.

q <- T_predict_9 %>%
filter(Part == 1 | Part == 2 | Part == 3 | Part == 4 | Part == 5)%>%
ggplot(aes(x = trial, y = tlx_total*100, color = Task)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(color = alpha("red", 0)),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
legend.position = "none") +

ylab("Score") +
xlab(NULL) +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Part) +
geom_point() +
geom_line(aes(x = trial, y = center*100))

r <- T_predict_9 %>%
filter(Part == 6 | Part == 7 | Part == 8 | Part == 9 | Part == 10)%>%
ggplot(aes(x = trial, y = tlx_total*100, color = Task)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(size = 11, face = "bold"),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
legend.position = "none") +

ylab("Score") +
xlab(NULL) +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Part) +
geom_point() +
geom_line(aes(x = trial, y = center*100))

s <- T_predict_9 %>%
filter(Part == 11 | Part == 12 | Part == 13)%>%
ggplot(aes(x = trial, y = tlx_total*100, color = Task)) +
theme(axis.title.x = element_text(size = 11, face = "bold"),

axis.title.y = element_text(color = alpha("red", 0)),
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legend.title = element_text(size = 11, face = "bold"),
legend.background = element_rect(fill = "gray90", size = .5),
legend.position = "right") +

xlab("Trial") +
ylab("Score") +
scale_y_continuous(limits = c(0,100)) +
facet_grid(~Part) +
geom_point() +
geom_line(aes(x = trial, y = center*100))

lay <- rbind(c(1,1,1,1,1,1,1,1,1,1,1),
c(2,2,2,2,2,2,2,2,2,2,2),
c(NA,NA,4,4,4,4,4,4,4,4,NA))

t <- arrangeGrob(grobs = list(q,r,s),
layout_matrix = lay,
heights = unit(c(6,6,6), c("cm","cm","cm")))

Figure 5.

T_res %>%
ggplot(aes(x = trial, y = res,color = Task))+
theme(axis.title = element_text(size = 11, face = "bold"),

legend.title = element_text(size = 11, face = "bold"),
legend.background = element_rect(fill = "gray90", size = .5),
legend.position = "none") +

xlab("Trial")+
ylab("Residual")+
scale_color_manual(values = pal) +
facet_wrap(~Task)+
geom_point() +
geom_smooth(method = lm)+
png("I:/Meine Ablage/Bachelor/Latex/res5.png")
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Appendix E
Intake questionnaire

What is your gender? [Male/Female]
How old are you?
What is your nationality? [Dutch/German/Other, namely...]
Which program are you majoring in? [Psychology/Communication Studies/Other,
namely...]

Do you regularly play computer games? [Yes. On average how many hours per week do
you spend on gaming?/No]

What is your preferred hand? [Right/Left]
Are you color blind? [No/Yes]
Do you have any other impairments regarding your vision (e.g. strong, uncorrected

refractive error) or impairments limiting the motions of your hands? [No/Yes]
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Appendix F
Informed Consent

Title Research: Learning bronchoscopy on the simulator 

Doctor(s) Directing Research: Dr. Martin Schmettow, Dr. Marleen Groenier 

Undergraduate students conducting experiments: Marlise Westerhof, Luise Warnke 

 

‘I hereby declare that I have been informed in a manner which is clear to me about the                  

nature and method of the research. My questions have been answered to my satisfaction. I               

agree of my own free will to participate in this research. I reserve the right to withdraw this                  

consent without the need to give any reason and I am aware that I may withdraw from the                  

experiment at any time. If my research results are to be used in scientific publications or                

made public in any other manner, then they will be made completely anonymous. My              

personal data will not be disclosed to third parties without my express permission. If I request                

further information about the research, now or in the future, I may contact Marlise              

Westerhof (m.w.westerhof@student.utwente.nl). 

If you have any complaints about this research, please direct them to the secretary of the 

Ethics Committee of the Faculty of Behavioural Sciences at the University of Twente, Drs. L. 

Kamphuis-Blikman P.O. Box 217, 7500 AE Enschede (NL), telephone: +31 (0)53 489 3399; 

email: l.j.m.blikman@utwente.nl).  

 

Signed in duplicate: 

 

……………………………  …………………………… …………………………… 

Name subject          Signature Date 

 

I have provided explanatory notes about the research. I declare myself willing to answer to 

the best of my ability any questions which may still arise about the research.’ 

 

……………………………  ……………………………   …………………………… 

Name researcher    Signature   Date 
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Appendix G
Learning curves based on the simulator performance data

Figure G1 . Learning curves of participants 1 to 11 on the simulator tasks.
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Appendix H
Scores of the subscales of the NASA-TLX

Figure H1 . Scores on the second task without ranking on all subscales and in total.
Each line represents one participant’s score smoothed using LOESS. Participants in the
first row showed a plain decrease. Those in the second row reverted to higher scores
after the decrease. The last row shows participants whose score increased over the trials.
Participants in the first row: 2, 6, 7 and 13; participants in the second row: 3 - 5, 8, 9 and
12; participants in the third row: 1, 10 and 11.
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Appendix I
Residuals of the polynomial model

Figure I1 . Residuals of NASA-TLX scores compared to a polynomial model. Plot is split
by task.
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