W ROBOTICS

MFCHATRONICS

Visual puppeteering using the Vizualeyez
3D motion capture system

M. (Mark) van Holland

BSc Report

Committee:

Dr.ir. E.C. Dertien
Prof.dr.ir. G.J.M. Krijnen
Dr.ir. R.W. van Delden

July 2018

017RAM2018

Robotics and Mechatronics
EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

MIRA CTIT

UNIVERSITY OF TWENTE° BIOMEDICAL TECHNOLOGY

AND TECHNICAL MEDICINE

ii

Visual puppeteering using the Vizualeyez 3D motion capture system.

Mark van Holland University of Twente

iii

Summary

The goal of this report is to find a method which can be employed to puppeteer robots. The
main thing that have to be kept in mind is that the movements made by the robot have to
mimic the movement of the puppeteer.

To accomplish this goal two methods which should be able to do this are described and com-
pared to eachother. One of the methods involves kinematics and inverse kinematics. This
method has the puppeteer hold a target which is measured and from which the necessary vari-
ables are determined, which are used to calculate the needed motor positions. The second
method involves measuring the angles of the movements of the puppeteer and use these to
control the robot.

The puppeteer will be measured using the VZ4000 3D motion capture system. This system will
communicate with MATLAB using the software provided. To test the methods, simulations will
be done with the help of MATLAB. A robot desk light will be used as puppet and the methods
will be used with this robot in mind. The robot will also be controlled real time by the puppet-
eer.

The method which had the puppeteer hold a target worked for the most part, it had the robot
move to the desired point. The problem was however that that the orientation measurement of
the target did not work completely as intended. The other method worked as intended for two
of the four used angles. Out of the other two, one was influenced by two of the other angles,
while the other angle of these two had problems in the definition of the positive and negative
values.

The results of both methods show that both methods have potential to achieve the goal of this
paper. The method involving the angle measurements is better suited for robot with less de-
grees of freedom, while the other method is expected to work better for robots with more de-
grees of freedom.

Robotics and Mechatronics Mark van Holland

iv

Visual puppeteering using the Vizualeyez 3D motion capture system.

Mark van Holland University of Twente

Contents

Summary
1 Introduction

2 Theory

2.1 Endeffector
2.2 Angle mapping . . .

2.3 Communicationwiththerobot

3 Experiments

3.1 Set-up.........
3.2 Testone........
3.3 Testtwo........
3.4 Testthree

3.5 Comparingthemethods

3.6 Comunicationtotherobot e

3.7 Sensor performance
4 Conclusion
5 Recommendations

A Transformation matrix

iii

12
12
12
16
20
24
24
24

25

25

26

Robotics and Mechatronics

Mark van Holland

vi

Visual puppeteering using the Vizualeyez 3D motion capture system.

Mark van Holland University of Twente

1 Introduction

Making robots mimic human movements is a subject that is already explored by some, but
making the robot be able to convey emotions is a subject that is less explored. Mimicking hu-
man movements by robots is most often achieved by hardcoding, or using rigorous controllers,
using this way of programming it is possible to try and give the robot some emotion in the
way it moves. The problem with hardcoding, or the often used controllers, is that these are not
intuitive to use and it often takes lots of time to make the robot do what you want.

In theatres the art of puppeteering is often used to bring inanimate objects to live and give
them emotions an feelings. This is something that is not often used in robotics, but can prove
useful to intuitively program a robot with movements that can convey emotion, or messages,
with only movements.

There are some studies who looked at puppeteering as a way to program robots. One of these
studies is by Guy Hoffman et all. [1] In this study they made a program that allowed the users to
move a robot in front of a webcam and record a routine for the robot this way. The main issue
with this is that the webcam can only record in 2D, meaning that bigger, more advanced robots
can not be programmed this way.

In another study [2] they used the Kinect in combination with the Baxter robot to mimic the
human movements. They were able to recreate human movements using one of their methods,
while the other method failed to recreate human like movements. The problem with this first
method however was that one of the movements was influenced by another movement, which
should have been independent.

The goal of this paper is to find a method which can be used to do puppeteering on a robot. To
achieve this goal the Visualeyez VZ4000, a 3D motion capture device will be used. In this paper
two methods are proposed to achieve this goal. One method will measure the desired end point
and orientation and use inverse kinematics to obtained the desired motor angles. The second
method will measure the angles of the joints of the puppeteer and map these to the joints of
the robot. These methods will also be compared to eachother.

Robotics and Mechatronics Mark van Holland

2 Visual puppeteering using the Vizualeyez 3D motion capture system.

2 Theory

The Visualeyes is used in tetherd mode. Meaning that the target LEDs are operated by a target
control module (TCM), which is connected via a wire to the sensor. The combination of the
LED connection and TCM ID gives a unique number to all the LEDs. Using this target ID, it is
possible to separate the markers from one another, which means that when two markers move
behind one another, it is still possible to tell which is which. Since the LEDs can be identified
individually it is possible to recognize the positions of the places the markers are placed by
using the looking at these marker id’s and the locations these are at.

The Visualeyes can be used to record the movement of the markers and safe these recordings
for further use. The other manner of operating the sensor allows for real time streaming of the
data. This is what the end result should eventually be able to do. This method has MATLAB
requesting frames from the sensor, which then sends the last recorded frame to MATLAB, using
the MATLAB plugin, which are provided with the software of the system.

The vizualeyes will output it’s the coordinate information in millimetres, so also the lengths
used in the calculations will be expressed in millimetres. The axis of the Visualeyes can be set
to how the user wants it, this is done by following a procedure as explained in the manual [3].
This step is done whenever the Visualeyes is set up, to make the positioning of the Visualeyez
not influence the measurements.

The robot that will be used is the desk light which found here [4] (see also figure 2.1). This
robot has five degrees of freedom (DOF). The software available on the site [4] will be used to
control the robot, small adjustments have to be made however to have a working communic-
ation between the lamp and MATLAB. This way of controlling the robot is chosen because the
software has a recording mode for the lamp, which can be altered to have MATLAB control the
lamp over a serial connection.

The motor limits are: from -0.698 to 0.698 rad for the first motor, from 0 to g rad for the second
motor, from 0 to 1.570 rad for the third motor, from -1.064 to 1.396 rad for the fourth motor, and
from -1.047 to 0.785 rad for the fifth motor.

In the frame worked with in this paper, the x-axis is sideways, the y-axis is the towards the back,
and the z-axis is sideways. (This is also shown in figure 2.3)

Figure 2.2: Target with marker place-
ments.

Figure 2.1: Robot desk light.

Mark van Holland University of Twente

CHAPTER 2. THEORY 3

2.1 End effector

For this method a target will be designed, which is held by the puppeteer and which is used
to puppeteer the robot. Using the Visualeyez the position of the markers on the target can be
measured and from the way the markers are placed the orientation and position of the centre
of the target can be calculated. From this data the desired position and orientation of the end
effector of the robot can be determined. This method will then calculate the motor angles
needed to get the end effector to the desired position with the desired orientation. To make
this possible the forward, and inverse, kinematics of the robot needs to be determined. One last
thing needed is a scaling factor, which scales the things the puppeteer does to the appropriate
dimensions of the robot.

2.1.1 Designing the target

The target needs to be designed in such a way that the position and orientation of it can be
calculated, in a way that does not require much computing power, to minimize delays induced
by these calculations. One other thing to keep in mind, is that some markers can be hidden
from the sight of the sensor. Keeping the above mentioned aspects in mind, the target is chosen
to be in the form of a cube, with markers placed on each of the corners, see figure 2.2. This
way always four markers can be seen from the sensor, if nothing is obstructing the view of
the sensor. The benefit of this placement is also that vectors pointing from one marker to a
neighbouring marker are always along one of the axis.

From the obtained 3D coordinates of the markers the orientation can be calculated using
the known placement of the markers. Figure 2.2 shows that the distance between markers
M4&M1, M3&M2, M8&M5, and M7&ME6 is only in the direction of the x-axis, markers M2&M],
M3&M4, M6&M5, and M8&M?7 in the direction of y, and markers M5&M1, M6&M2, M7&M3,
and M8&M4 in the direction of z. From the set of coordinates received from the measurements,
one or more of each set mentioned above will be looked for. Because of the way the target is
designed, it is possible to find at least one pair out of two of the sets. The distance vector point-
ing from one to the other marker of each of these detected pairs will be calculated. If only
pairs were found out of two of the sets, a vector along the last axis can be obtained by the cross
product of the two known vectors. (This step will be done after normalizing the vectors.)

Because all the vector lengths are equal to the length of the ribs of the cube, it is possible to
normalize the vectors by dividing them by the rib length. This results in vectors which are of
length one and that have their direction along one of the axis of the cubes frame, expressed in
the reference frame.

The above calculated vectors, can also be calculated by multiplying the rotation matrix R, the
rotation matrix from the cubes frame to the reference frame, with the vectors along the axis of
the cube in the cubes frame:

1 0 0
0| for the cubes x-axis, |1| fory,and |0] forz.
0 0 1
This results in the following vectors expressed in the reference frame:
[R1,1 Ry Rz,
R; > | for the vectors along the cubes x-axis, | Rz | for the vectors alongy, and | R3 2 [for the
| R1,3 Ro3 R33

vectors along z.
Using both ways of calculating the vectors along the cube ribs, the rotation matrix can be cal-
culated.

Robotics and Mechatronics Mark van Holland

4 Visual puppeteering using the Vizualeyez 3D motion capture system.

From the rotation matrix the angles v, 8, and ¢ can be calculated with equations 2.1, to 2.3. [5]

Y =atan2(Ry1,R1,1) (2.1
6 = atan2(Rs1,\/ RS - R5 ;) 2.2)
(P = dtdl’lZ(ngg,R:),,g) 2.3)

Where atan2 represents the 4 quadrant inverse tangent: [6]

tan™'(%), x>0
n+tan'(¥), y=0,x<0
-7+ tan_l(%), y<0,x<0

atan2(x,y) =« (2.4)
Y Z y>0,x=0
% y<0,x=0
0, y=0,x=0

Now that the orientation is known, the position of the centre of the cube can be calculated by
multiplying the inverse of the rotation matrix with the known marker, positions on the cube,
in the cubes reference frame. This value will then be subtracted from the measured marker
position to obtain the position of the centre of the cube.

2.1.2 The scaling factor

The scale factor between the robot and the puppeteer can be found by the use of a calibration
step. This step will require the puppeteer to straighten the part of the body that will be used for
the puppeteering, which in this paper will be the lower arm. When the puppeteer does this, the
position of the target can be measured, and using a marker on the stationary part connected to
the moving part, in this case the elbow, the distance between these locations can be calculated.
This is the maximum distance the puppeteer can reach during the puppeteering. This distance
is than divided by the distance the robot reaches when it is also stretched out to gain the scaling
factor, which in this case is 414 mm. The maximum distance is set to 400 in the system to have
some margin for errors. The marker on the base will also be seen as the origin. This means that
the position of the target with respect to this marker is calculated and used in the rest of the

paper.

2.1.3 Forward kinematics

The goal in this part is to find a formula, using which the position and orientation of the end
effector can be determined.

P=f(g) (2.5)

Where P is a vector which denotes the end effector position, and orientation, and 4 is the vector
of the motor angles. Using joint space a transformation matrix will be calculated, from which
the end-effector position and orientation can be determined.

The transformation matrix from the end effector frame to the base frame can not be determ-
ined in a single step if the robot consists of multiple bodies. To get the transformation the chain
rule is used, which states that the transformation from frame n to frame 0 equals the transform-
ation matrixes between the separate bodies multiplied with each other: [7]

HY=HYH)..H{"™D (2.6)

Where HY describes the transformation matrix from frame n to frame 0.

Mark van Holland University of Twente

CHAPTER 2. THEORY 5

Figure 2.3: Drawing of the lamp with the different frames.

Before the transformations between the bodies of the robot are determined, it is necessary to
find out what type of joints are between the bodies. In this case all the joints are rotational
joints which only rotate around one axis. To get the transformation from one body to the other
it is assumed that the origin of the first body’s axis is located in the joint between the first and
zeroth body. The second body’s axis in the joint between the first and the second body etc. The
zeroth body is the stationary part of the robot and acts as the base. See figure 2.3. Using this
it is possible to determine the transformation matrixes, which only depend on the angle of the
joints and the distance between the frames. For the robot used in this paper this is done as
follows.

The zeroth body is connected via a rotational joint, which rotates around the first body’s z-axis,
to the first body. The distance from the bottom of the zeroth body to the first joint, expressed
in the zeroth frame is 0 mm in x, 0 mm in y, and 96 mm in the z direction, this results in the
matrix: [8]
cos(qy) —sin(q1)) 0 O
_|sin(q1) cos(qr) 0 O
Hy = 0 0 1 96
0 0 0 1

The fist body is the connected to the second body via a rotational joint, which rotates in around
the second body’s y-axis. The distance from the first joint to the second expressed in the first
frame is (-15; 0; 30). The second body is connected to the third body via a rotational joint,
which rotates around the third body’s y-axis. The distance from the second and third joint is
(78; 0; 1).

cos(qz) 0 sin(qy) -15 cos(qs) O sin(qs) 78

oo 0 10 0 | o_ 0 10 0
2 —sin(g2) 0 cos(q2) 30 3 —-sin(gs) 0 cos(qs) 1
0 0 0 1 0 0 0 1

Robotics and Mechatronics Mark van Holland

6 Visual puppeteering using the Vizualeyez 3D motion capture system.

The third body is connected to the fourth body via a rotational joint which rotates around the
fourth body’s x-axis. The distance from the third to the fourth joint is (68; 0; 0).
1 0 0 68
7 = 0 cos(qy) -—sin(qs) O
4 0 sin(qy) cos(qy) O
0 0 0 1

Lastly the fourth body is connected to the fifth body via a rotational joint which rotates around
the fifth bodys y-axis and the distance is (48.5; 0; 0).
cos(qs) 0 sin(gs) 485

Ll 0o 1 o 0
5 |-sin(gs) 0 cos(qgs) O
0 0 0 1

Using these transformation matrices the transformation matrix from the last body to the base
can be calculated (see appendix A). The end effector is located on the last body (point p, in
figure 2.3), which means that the end effector is a fixed point in the frame of the last body.
Using the end effector position in the last body’s frame, the position in the reference frame can
be calculated using the transformation matrix from the last frame to the reference frame: [10]
93.5

0

0

1

Op, = HY -5 P,, where ° P, is the homogenous coordinate of P, in the fifth fame. 5P, =

The end effector in this case also has the same orientation as the last body, meaning that the
orientation of the end effector can be calculated from Hg. To get the orientation from the trans-
formation matrix, equations 2.1 to 2.3 can be used.

Now that the position and the orientation can be calculated from the motor positions, the in-
verse kinematics has to be done.

2.1.4 Inverse kinematics

The goal here is to find the set of angles § which result in P = T, where T is the target location
and orientation of the end effector, which was calculated in section 2.1.1. Here the damped
least squares method is used to obtain the desired motor angles.

Finding the set of angles that results in P = T is often not possible by simply inverting f, since
this function is often highly non-linear. [9] Because of this another method is needed to find
the desired angle values. To achieve this a numerical solution using the Jacobian matrix can be
used. The Jacobian is a function of changing joint angles around the current joint angles and
how these relate to a change in the end effector:

op o op,
SN N
b, 0P, 0P,

e L 2z

J@=|" @7
oqp O0qz " 0qn

where n is the amount of DOF of the mechanism.

This matrix can be obtained by taking the partial derivatives, with respect to the different joint
angles, from the transformation matrix calculated earlier. During each iteration step only the
current motor angles need to be filled in this way. If it is not possible to take the partial derivat-
ives of the transformation matrix, it is also possible to approximate the individual values of the

Jacobian by numerical approximations by taking g—Zi =lima_¢ i—si. This approximation how-

Mark van Holland University of Twente

CHAPTER 2. THEORY 7

Figure 2.4: The resulted targed.

ever, requires to be calculatd again for every iteration step. The Jacobian still relates a change
in angles to a change in end effector position P=]J () - c;’ . The Jacobian can be computed for
the current joint angles J=J(§) and the next set of joint angles, is equal to the current set plus
an update value: G(t*) = §(t) + Aq. Let é denote the error between the desired position of the
end effector, and the current position of the end effector é = T - P. Using this, the following
equation can be obtained:

é=JAG 2.8)

This shows that if the inverse of the current Jacobian can be obtained, the necessary change in
the joint angles can be calculated by using the error é. [9]

Since the Jacobian is not always a square matrix it can not be directly inversed. There have been
proposed several methods to calculate an inverse of the Jacobian, all with their pro’s and con’s.

One of these methods is the pseudo inverse Jacobian. This method has the problem however
that when the matrix is near singularity, that the method will not converge. One other method
simply transposes the Jacobian. This method is computationally fast, but this method can
not reach the desired position with the same accuracy the pseudo inverse method can. The
method that is used here is the damped least squares method (DLS). This method avoids the
problem the pseudo-inverse method has with singularities. One thing DLS does different from
the pseudo inverse method is the fact that it wants to give a best solution to (2.8), instead of a
minimum vector Ag [9].

The DLS uses the equation:

AG=UT7+22D Yy Te=JTgtj+ %D te 2.9)

Here A is the damping factor, which needs to be large enough as for the equation to be well
behaved near singularities, but when it becomes too large the convergence rate will be slow. [9]

2.1.5 Implementation

The target is made from carboard, and the LED markers are taped to the corners of it. (see
figure 2.4) The ribs of the cube are all 40 mm in length, this length is chosen to have some
distance between the markers, so inaccuracies in the measurements have less influence on the
calculations, but the target is also still not too big to hold.

Each face of the cube is numbered from 1 to 6. The LED-IDs of the LEDs on the corner of each
Face are denoted, to know what marker on what corner. Face number 2 is seen as the front of
the cube, with face 1 as the top.

Robotics and Mechatronics Mark van Holland

8 Visual puppeteering using the Vizualeyez 3D motion capture system.

The calibration step will be the puppeteer holding the cube upright, with face 1 facing to the
sensor, and face 2 facing down. This way the orientation of the target is —7, which also the
orientation of the end effector when the lamp is up right.

For the calculations a MATLAB script is made, which uses the marker coordinates and the way
they are arranged and determines first the target’s orientation and using this the position, like
explained in section 2.1.1. The calculated transformation matrix is used to calculate the end
effector position and orientation of the robot, using measured motor data, and determines the
error é. The partial derivatives needed to calculate the Jacobian are implemented as functions,
so only the current motor angles are needed to get the derivatives for the current iteration.

Using these values for €, and] the new motor angles are calculated according to formula 2.9,
these angles are then communicated using the serial connection to the robot. After this the
program starts again from the point of calculating the error.

The value of 1 is determined by running a series of simulation, where the only change between
them is the vale of A. This resulted in the value for A being: 100.

Since the error of the orientation is a value between —m and 7 and the error of the position can
be between -400 and 400, a weighing factor is implemented so both types of errors contribute
equally in the calculation of the angles:

Ty— Py

TJ’_PJ’

T, P,
100+ (Tyy — Py)
100 (Ty — Pp)
[100+ (T — Py) |

o
Il

(2.10)

2.2 Angle mapping

This method will try to see what the angels the joints of the puppeteer make are and map these
to the DOF of the robot. Meaning the amount of DOE and the type of joints need to be taken
into account when placing the markers on the puppeteer. Placing the markers at specific loc-
ation will make it possible to calculate the angles the joints make from the coordinates off the
markers. This information can then be used to map these angles one on one to the joints of the
robot.

2.2.1 Placement the markers

Markers need to be places at appropriate places, so that all the desired angles can be calculated
and the markers are always be visible for the sensor. For bending angles, markers need to be
placed at the joint itself and both body parts connected to it. The further these are placed
from the joint, the greater the accuracy of the measurement can be, since small errors in the
measurements will then have less of an influence on the lengths between the markers. The
marker on the not moving body part can be left out when the movements are of the joint that is
stationary in the reference frame, in this case a virtual point can be calculated on one of the axis
of the frame. For twisting joints multiple markers will be placed at the moving joint, at equal
distance from the centre of rotation.

When placing the markers the placement of the sensor will also be taken into account, because
every place mentioned above must have at least one marker visible for the sensor.

Mark van Holland University of Twente

CHAPTER 2. THEORY 9

d1

Figure 2.5: Trangle used in the law of cosines.

2.2.2 Calculation of the angles

To calculate the angles the joints make the law of cosines is going to be used: [2]

_,,dg*+d2? - ds?
/ACB = cos (W) (211)

Where A,B,C,d1,d2 and d3 are depicted in figure 2.5 the distances d1, d2, d3 can be calculated
using:

d=\/ (- 212+ (2 - y)? + (22— 21)? (2.12)

When calculating the angles one must keep in mind what the rest position is, or what the axis
is from which the joint makes an angle. The distances between the tree points of interest for
one angle can be calculated, and the law of cosines can be used to calculate the angle the joint
makes. The angle that is calculated is not always the angle that is of interest. Think of the
elevation of the lower arm, the markers would then be placed at the shoulder, elbow, and the
wrist, so the angle is calculated with respect to the shoulder and not with the position which is
considered the rest position, which is when the arm is resting on the table. In this case the angle
calculated need to be subtracted from the value of the angle when the arm is in rest position.

Calculating the twist of a joint, the fact that there are multiple markers used is going to be used.
The transformation matrix from the main body, to the body part of interest is calculated, in
this case this is used to transform the markers to a frame which is looking’ from the arm at the
wrist. From this frame the angle between one of the markers, and the centre can be calculated.
The centre will be calculated by using the two outermost markers that can be seen.

2.2.3 Mapping the angles to the robot joint

When mapping the DOF the human can have, to the DOF the robot has, also see if the robot
is over defined (DOF human < DOF robot), properly defined (DOF human = DOF robot), or
under defined (DOF human > DOF robot). One other thing to look at are similarities between
the human movements, and the robot movements. Think about the bending of the elbow, and
a (rotating) joint that moves the robot body up and down.

When the robot is over defined it is possible to map some movement to multiple robot joints.
Depending on the users preference this could be done, or some robot joints can otherwise not
be used and kept in the same position.

With proper, and underdefined robots it is more likely to encounter a movement of the hu-
man, which can not be mapped on the robot. In this case the puppeteer must not use these
movements when puppeteering just to be safe, so that it can not influence the other calculated
angles.

Robotics and Mechatronics Mark van Holland

10 Visual puppeteering using the Vizualeyez 3D motion capture system.

schematically

J Figure 2.7: Place-
ments of the mark-
ers on the wrist and
the hand.

Figure 2.6: Movement options of the lower arm and the placement of the
markers.

2.2.4 Implementation

The puppeteer uses his/her lower arm, and hand to puppeteer the robot. The types of move-
ments the puppeteer can make are the bending of the elbow, the rotating of the elbow around
the point that rests on the table, the bending of the wrist in two directions, and the twisting of
the wrist. (see figure 2.6) The robot can rotate at the base, bend at 2 points after each other,
rotate at the end, and bend the lamp. (see figure 2.3)

The bending of the elbow can be directly mapped to the second motor of the robot, this could
also be divided over the second and third motor but here it is chosen not to do so, so that the
movements made by the robor looks more like the movements of ans arm. The rotating of the
elbow can be directly mapped to the first motor of the robot. The bending of the wrist in the
direction of the hand palm can be mapped to the fifth motor of the robot. The twisting of the
wrist to the fourth motor. Lastly the bending of the wrist in the direction normal to the hand
palm can not be mapped directly to any one (or two) motor of the robot.

To measure the angles, markers are placed at all the joints of the lower arm, meaning at the
elbow and the wrist. Because the wrist also has a twisting motion, also two more markers are
placed at the end of the wrist. Markers are also placed at the end of the moving bodies, meaning
again at the wrist, which are already there, and on the hand. Since the hand can turn away
from the sensor 2 more markers are places here so the end of the hand can always be seen. The
placements of the LED markers is also shown in figure 2.6 and also shown in figure 2.7 with the
exception of the marker at the wrist.

The transformation matrix used to calculate the twist of the elbow is:
cos(qz) sin(qz) 0 elx

—cos(qr)sin(qz) cos(qi)cos(qz) sin(q) ey
—sin(qi)sin(qe) -—sin(qi)cos(qz) cos(q1) eiz
0 0 0 1

Mark van Holland University of Twente

CHAPTER 2. THEORY 11

For all the angles It needs to be determined when they are negative. For the bending of the
elbow, the angle would be negative if the marker on the wrist would be lower than the marker
of the elbow. The turning angle of the elbow is considered negative when the wrist crosses the
x-axis. The twisting of the elbow is seen as negative when the end points of the wrist cross the
y-axis of the frame calculated using the transformation matrix mentioned above. The bending
of the elbow is seen as negative when the markers on the hand pass the line that goes through
the marker of the elbow and the marker on the wrist.

2.3 Communication with the robot

The communication with the robot will be done using the serial object in MATLAB. MATLAB
will connect to the COM-port the robot is connected to. Using this port the functions scanf
and fwirte can be used to read from the serial port and write to it respectfully. The robot is
controlled using an Arduino ADK, the code of which is provided on the site. [4] This code is
altered to communicate to MATLAP. The record of the program is used to make the connection
with MATLAB. In this function a loop is made that has the code wait till there is serial data
available. When it is available this data is read and used to set the motor angles. When this is
done it sends back the angles the motors should have.

The data is sent starting with the angle of motor one, then two, and so on till motor five. After
this three more values are sent which are not motor angles. The speed at which the Arduino
code runs is set to 5 Hz, this is because when it ran faster there was a mismatch in the commu-
nication of the motor angles. (Motor angle two became motor angle one among other errors.)

\ &

VZ4000

——
L ey " '-_iiq -

Figure 2.8: The Visualeyez VZ4000.

Robotics and Mechatronics Mark van Holland

12 Visual puppeteering using the Vizualeyez 3D motion capture system.

3 Experiments

3.1 Set-up

The visualeyes is used in the streaming mode explained in the theory, this is done because the
whole system should work in the streaming mode and to get the most appropriate impression
of the performance this mode should then also be used for the measurements. First when the
Visualeyes is set up the reference frame is defined using method described in the manual. [3]
The signal flow of the whole system is seen in figure 3.1. The sensor itself is show in figure 2.8.

marker

marker is turned on ﬁ

Visualeyez

marker position is

sent back desk-light
last recorded frame is motor ?cmgles Is se.nt over
sent the serial connection

VZsoft matlab

frame is requested

light of the marker is
picked up

<

VZsoft requests a
marker position

—————
il —

Figure 3.1: Signal flow diagram of the system

The first tests are used to see if the orientation, and location of the target can be correctly cal-
culated by the system. The second test will involve the end effector method and have the pup-
peteer preform pre-defined routines, and one improvised routine. During this test the sensor
will be oposite of the puppeteer. The third test will involve the angle method and has the pup-
peteer preform some pre-defined routines, and an improvised routine. During this last test the
visualeyez will be positioned next to the puppeteer.

3.2 Testone
3.2.1 Results

To see if the orientation detection worked as intended, the target was hold above the marker
that signified the origin in different orientations. The results of these measurements are shown
in figures 3.2 to 3.5. In figure 3.2 the orientation of the target was (0, 0, 0), in figure 3.3 it was (0;
%; 0), in figure 3.4 (—%; 0; 0), and lastly in figure 3.5 the orientation was (0; 0; g).

Figures 3.6 to 3.8 show how the position, and orientation, of the target that is determined by
the system. In figure 3.6 the target was placed at (-100; 0; 20), in figure 3.7 at (0; 100; 20), and
in figure 3.8. at (0; 0; 100) again the distances are given in millimetres. The first two positions
also have a non-zero z element, because the cube was put on top of the table and the distance
from the surface of the cube to its centre is 20 mm. The position is scaled by the scaling factor
that is calculated at the beginning of the program, which means that the expected values are:
(-392; 0; 78), (0; 392; 78), and (0; 0; 400). The scaling factors were calculated to be 4.06, 4.06,
and 4.01. For the first measurement, the values that coordinates that are obtained are (395;
16; 100). Scaling this back to the original scale using the scaling factor gives (97; 4, 25). For
the second measurement (-59; 400; 99), which leads to (10; 99; 24), and for the third the values
ranged between (0; 12; 400) to (15; 30; 432), so the scaled version would be between (0; 3; 100)
and (4; 7; 108).

Mark van Holland University of Twente

CHAPTER 3. EXPERIMENTS

psi theta phi
0nq 0.06 0.04
k=)
— m
— b= S
= -0.02 B 0.04 W 0.03
= w 2
L] 0.04 B [
%ﬂ- c 0.02 0.02
-0.06 M 0 0.01
-0.08 -0.02 0
framesED 100] frames 50 100 0 frames20 100

Figure 3.2: Measured orientation when the real orientation was (0;0;0).

: theta phi

4 pst 2 0
E 2 15 05
)
]
w 0 1 -1
c
m

-2 0.5 -15

W
-4] -2
E'frames 50 100 o frames 50 100 0 frames 50 100

Figure 3.3: Measured orientation when the real orientation was (0;7;0).

si hi
0 - 0.15 theta 0.1 i
5
5 05 [)
E —_ m
1z 2 0.1 £0.05
3 5 B
z 5
0.05 0
15
<2 0 -0.05
0 frames 50 100 0 frames 50 100 0 frames 50 100

Figure 3.4: Measured orientation when the real orientation was (- 7;0;0).

-3 psi A
15 »* 107 P 0.08 theta 2 phi
5 10 0.06 e
)
w 5 0.04 1
c
m
] 0.02 0.5
-5 0 0
0 frames 50 100 0 frames 50 100 0 frames 50 100

Figure 3.5: Measured orientation when the real orientation was (0;0;%).

Robotics and Mechatronics Mark van Holland

14

Visual puppeteering using the Vizualeyez 3D motion capture system.

z
0 . ®
30 150
E -200
,E, 20 100
E 400 [RN I
b 10 50
° 500
®ow KX 0 0
-800
0 50 100 0 50 100 0 20 40 60D BO
frame frame frame
0.4 - 0.08 thete 0 phi
= 0.3 0.06
® -0.02
o
® 0.2 0.04
i -0.04
0.1 0.02
L. W‘M—’"‘
0 0 -0.06
0 50 100 0 50 100 0 50 100
frame frame frame

Figure 3.6: Measured position and orientation when the scaled position was (-400;0;20) and the real

orientation (0;0;0).

¥ z
0% * 400 100 | e
E-20 300
£
v
c 40 200 50
m
@
T g [eRRRReanRaE ()
-80 0 0
0 50 100 0 50 100] 50 100
frame frame frame
psi theta phi
0 0.03]
002
-0.05 0.02
m -0.04
E 01 0.01
= -0.06
m
0.15 0 -0.08
0 50 100 0 50 100 0 50 100
frame frame frame

Figure 3.7: Measured position and orientation when the scaled position was (0;400;20) and the real

orientation (0;0;0).

Mark van Holland

University of Twente

CHAPTER 3. EXPERIMENTS 15

¥ z
0x * 400 [100 [e

E -20 300

E

o

2 40 200 50

m

E

_ () | MR)

-80] 0
0 50 100 0 50 100 0 50 100
frame frame frame
psi theta phi
0 0.03 0
-0.02
-0.05 0.02
B -0.04
2041 0.01
2 -0.06
m
0.15 0 008 —————
0 80 100 0 50 100 o 50 100
frame frame frame

Figure 3.8: Measured position and orientation when the scaled position was (0;0;400) and the real ori-
entation (0;0;0).

3.2.2 Discussion of the results
Figure 3.2 shows that the orientation within 0.1 rad from the value it should be at.

Figure 3.3 shows that when the target is turned around the y-axis, the orientation is not accur-
ately determined. The value of 6 is within 0.1 of the of Z,which is where it should be. The value
of ¥ is jumping form 7 to —n, which would mean the target is completely turned the other
way around around the z-axis, also the value for ¥ is wrong at -1.91. This means that when
the orientation of the target changes in 8 the measured results of the total orientation will be
effected.

Figure 3.4 shows that the value of ¥ is 1.70 rad, which is an error of 0.13 rad from the desired
7. The values for 6, and ¢ within 0.1 rad from the desired position. This means that when the
target turns around the z-axis, the orientation can be measured with an accuracy of +0.13 rad.

Figure 3.5 shows that the orientation can be measured within the accuracy considered human
error.

Figure 3.6 shows that the measurement data obtained sometimes contains a faulty data point
resulting in the orientation, and position detection giving a often drastically different value.
The results of the position detection show that the position can be determined within 10 mm
of the actual value.

Considering all the results mentioned above, the system works for detecting the position of the
target, but the orientation is faulty when the orientation contains a rotation around the y-axis
of the target. This effects the total system for it looks at both the position, and the orientation
to determine the required motor angles.

Robotics and Mechatronics Mark van Holland

16 Visual puppeteering using the Vizualeyez 3D motion capture system.

3.3 Testtwo
3.3.1 Results

Figures 3.9 to 3.14 show the results of test two, where the second method was used. During
all these measurements the puppeteer holds his elbow still on the table. In figures 3.9 to 3.14
the blue line is the target location and orientation, the red line is the end effector location and
orientation of the robot, and the green line is the error between these two. Table 3.1 gives the
RMS values and the scaling factors of the different measurements.

For the first measurements, shown in figure 3.9, the puppeteer was asked to hold the target
diagonally towards the sensor. The end effector of the robot can be seen to move to the value
of the set point, until it converges to some value. When the robot can not reach the desired end
point value it still mimics the changes that occur in the target position to some point. This can
be best seen in the y position in figure 3.9. The RMS values for this measurement can be seen
in table 3.1.

For the second measurement, shown in figure 3.10, the puppeteer was asked to first hold the
target in the calibration position, and then move to the same position as the first measurement.
In figure 3.9 it can be seen that the target changes position, and orientation. The orientation of
0 and ¢ seem to change yet another time when the target was already in the second position.
Just like in the first measurement the end effector tends to the target, till it converges to some
value. The RMS values for this measurement are shown in table 3.1.

For the third measurement, shown in figure 3.11, the puppeteer was asked to hold the calibra-
tion position. Figure 3.9 shows that the value for the y position of the robot converges to the
target y position, while the x, and z positions have a, marginally, constant error with the target
position. The RMS values, and scaling factor, for this measurement can be seen in table 3.1.

For the fourth measurement, shown in figure 3.12, the puppeteer was asked to after the calib-
ration step, move the target forward, and down, and from this position rotate his arm left and
right. The left and right movement can be seen to be happening from frame 30, till the end
of the measurement. The same observations as in the previous measurements can be made
about the position of the end effector. The orientation of the end effector seem to converge to
a value closer to the target orientation in the case of 8 and ¢, but not for . The values for the
RMS, and scaling factor can be seen in table 3.1.

For measurement five, seen in figure 3.13, the puppeteer was asked to do the same as in the
second measurements, with the only difference that the position he moved the target to was
closer to the origin. As can be seen in figure 3.13, this made it so that the position of the end
effector converged to the position of the target. The orientation of the end effector also con-
verged, with the exception of the value for v to the target orientation, but with a slower rate
than the position. The RMS values, and the scaling factor, are shown in table 3.1.

For the sixth measurement, shown in figure 3.14, the length of the program was increased and
the puppeteer was improvising the movements. The value of ¢ of the end effector follows that
value of the target. The position of the end effector converges to the position of the target, but
when it can not reach this the end effector converges to the value closest to it, while still able to
mimic the changes in the target position.

Mark van Holland University of Twente

CHAPTER 3. EXPERIMENTS

17

distane (mm)

angle (rad)

& 500
" W . P“
I 300 — ———
“
E E
£ — A N Em
sl ||| TV w :
K J 8 100
2
(o
ot || 3
|
o t -200
) 2) E) w0 100 2 w0 E) %
frames frames
theta phi
15 4
3
1
2
0s
- 1
L I £ L
s 30
B o5l | 2°7 \
] T e E 1\
ab [
| |
Al ||
Il 2 -
| \
15t U a
2 “
) 2) E) w0 100 o 2 w0 E) %
frames frames

Figure 3.9: Measured position and orientation of the first measurements. Here the blue line is the targed,
the red line is the end effector, and the green line is the error between the two.

distane (mm)
8

3

frames

psi

angle (rad)

frames

distane (mm)

angle (rad)

distane (mm)
8

frames

theta

angle (rad)

20 0) & 100
frames

frames

frames

Figure 3.10: Measured position and orientation of the second measurements. Here the blue line is the
targed, the red line is the end effector, and the green line is the error between the two.

A Cw A
5 z £
£ : £ H
s PR, S s % s 20
g o p H]
3 x L2 20
"
- 0
o
20 ©
50 o oL
s a0 5
s) P w s) w0 w w o P o w w
frames frames frames
psi theta phi
> 02 s
— o
1 M~ 25 |
/ 02 \
of o 2 \
g B s g
g, H £]
g || 208 — i
—_—
af || 4 '
Lr 12 | Y e -
-3 05 (/
e J
4 16 o -
o) m o w0 o © PR o P w w w
e i T

Figure 3.11: Measured position and orientation of the third measurements. Here the blue line is the
targed, the red line is the end effector, and the green line is the error between the two.

Robotics and Mechatronics

Mark van Holland

18 Visual puppeteering using the Vizualeyez 3D motion capture system.

x y z
20 . 20 s00
2 TR L) x
Fiand Fiale ™ P— P
20 x 150
M&W*MW foy— 400
e o PV .
\/ e
100 ¥ 300
= = o -
g fe 3 g
E s | £ E
° px | e g 0
B[I 2 2
2 2 o 2
50 100
100
100 |
3
. 150
200 200 100
E)) E) % 0 o E) = w w 100
frames frames frames
psi theta phi
N 25 4

Enle rac) .

(

\
~—

/

)

(

_

-
(
angle (rad)
3
/
angle (rad)
=
3
A—?‘
Y,
L
\]
J
(/7

frames. frames frames

Figure 3.12: Measured position and orientation of the fouth measurements. Here the blue line is the
targed, the red line is the end effector, and the green line is the error between the two.

x v :
- © o
W - © N
® # N
©
p \
o v B \
g i g H e ————
£ * En Eam
= o x 5 P N s
g xx g0 e - £l |
3 » i \/ i
w25 Y
o i 0 Al
g, 0
- 20 100
mu a0 i
) o o m o » o = o ™ s » o W
(e o e
tota o
) s ‘
A 2) ‘
2
N 2
o
_ . .
B H H
s S 05 U < o~
3. o s
2 £ —_—— —— H ~
g g, - £, L
3 /
ost | A~ | /
/~ 2 /
+ A/ |
I o LV
B sl U -
s 2 4
o) o w o w o » PG o w o »)) o W
frames frames frames

Figure 3.13: Measured position and orientation of the fifth measurements. Here the blue line is the
targed, the red line is the end effector, and the green line is the error between the two.

x y z

250 g&wﬁ -

e %mﬂ«ﬂm

distane (mm)
distane (mm)
distane (mm)

o w w w w0 @ we e w w w0 @ @ m e m @
s o o
psi theta phi
. s .
\ ORI ol |
: i 1 ey A y
‘ !/ w’\ \ | 2 M s
: |
0s N S
) vqk,w— m/ | A . J 1]
v | I I y
o0 " | A | = NN a I = N [e [
T NN LN e N) U AT R W g o U/ J [
E N (N |~/ £ ~ . £ | L
<o\ | g ‘ 4 o ||
2 2 21 |
£, | g g {
2 |
. | "
3 f
LA UOR I B O A B R . \
§ 2 s
0w w w m @ e T m w w w0 @ o ®m wm wm @ @
rames frames rames

Figure 3.14: Measured position and orientation of the sixth measurements. Here the blue line is the
targed, the red line is the end effector, and the green line is the error between the two.

Mark van Holland University of Twente

CHAPTER 3. EXPERIMENTS 19

Table 3.1: RMS values, and factor value for the measurements of test 2.

Measurement | x y zZ v 0 [0 factor
1 (figure 3.9) 1.208-103 | 220.1 | 228.7 | 27.363 | 5.0753 | 20.199 | 1.0468
2 (figure 3.10) | 475.98 172.66 | 105.44 | 27.980 | 3.8143 | 19.785 | 0.9216
3 (figure 3.11) | 161.04 95.967 | 86.891 | 31.653 | 6.3265 | 10.730 | 0.9077
4 (figure 3.12) | 549.72 374.67 | 277.45 | 29.423 | 12.163 | 10.705 | 0.9680
5 (figure 3.13) | 269.79 169.66 | 347.04 | 13.018 | 8.850 | 10.310 | 0.8911
6 (figure 3.14) | 787.64 426.23 | 484.44 | 55.81 | 12.105 | 16.787 | 0.9062

3.3.2 Discussing the results

The value of the orientation in the first measurement is measured to be (3.085; -0.06929; 2.659)
while the actual orientation should have been (0; (— 327”) ; 0). This means that the orientation of
the robot tends to a different value than the puppeteer desired. This error can be contributed
to the what was determined during test one, which was that when the value for 8 changes, so
does the values for 1, and ¢ in the measurements. The positioning part of the system seems to
work as intended.

The RMS values, for the position, are lower in the second measurement than in the first meas-
urement. This is because the factor in the second measurement is lower than it was during the
first measurement, see table 3.1. Because of this the target point is of the same point in space,
is placed closer to the origin in the scaled space, while the robot is unchanged in the scaled
space. This means the robot can reach closer to the target point in measurement two, than it
could in measurement one.

In the third measurement the z position of the robot is constantly lower than the target z po-
sition, this is caused by the fact that the robot also has to meet the target x and y position,
which have a length more than the 16 mm that the robot can reach because of the placement
of the second motor, so the robot has to bend a little, making its height less, this also effects its
orientation.

The RMS value for the x position is better in the fifth experiment when compared to the second
experiment, while the RMS value for y stays roughly the same, and the value for z increases.
The reduction in the RMS value for the comes from the fact that the target is this time placed
in a position that the end effector can actually reach. The increase in the RMS value for the z
position seem to be caused by the fact that in the second experiment the end value for the z
position was around 300 mm and in the fifth experiment this was around 200 mm, making the
convergence to the value to take longer and the error at points larger. The rate at which the
angles converges changes when the position of the end effector closes on the target position.
Meaning that the position error weighs more than the orientation error.

The sixth measurement gives the best picture of how the system reacts to someone using it,
since it has the puppeteer do whatever he likes. From this measurement it can be seen that the
positioning of the end effector works as is intended. For the orientation no clear conclusion can
be drawn as to the performance of it. This is caused by the error in the measured orientation
measured in test one. What can be said about the orientation is that the value for ¢ for the end
effector follows the same value for the target. The end effector value for y seem to be affected
by the target orientation, since similar changes occur in both the end effector and target, look
at frames 130 till 140.

Robotics and Mechatronics Mark van Holland

20 Visual puppeteering using the Vizualeyez 3D motion capture system.

3.4 Test three
3.4.1 Results

Figures 3.15 to 3.21 show the measurements, where 3.21 is the improvised routine. In these
figures the red line represents the elevation angle of the arm, this is mapped to the second
motor, the blue line is the turning angle of the arm, which is mapped to the first motor, the
green line is the angle of the twist of the wrist, which is mapped to the fourth motor, and lastly
the black line represents the bending angle of the wrist, which is mapped to the fifth motor.

The first measurement had the puppeteer start with his arm straight up, and move it flat on the
table and back up again, while keeping everything else still. The angles that are calculated are
shown in figure 3.15. This shows that the angle measured when the arm was in the up right
position was: 1.092 rad and when the arm was completely flat on the table it was: 0.099 rad.
The actual angles the arm had during this routine was 0 rad for the rotation of the arm, -7
rad for the twist in the wrist, and 0 rad for the bending of the wrist, while the bending of the
arm was between 0.146 rad, and % rad. The angle for the rotation is measured to be 0.420 rad,
the angle with which the wrist is bend is measured to be 0. The angle that is the twist of the
elbow changes during this routine in the same direction of the bending angle, except when its
motor limit is reached, and when the elevation angle goes over 0.691 rad, when the twist angle
changes in the opposite direction of the elevation angle.

The second measurement, shown in figure 3.16, had the puppeteer move his arm from left to
right only changing the rotation angle of the arm. The rotation angle changes between the
values of 0.698 rad (which is the motor limit of motor one) and -0.374 rad. The actual angles
were 0.352 rad for the elevation angle, —7 rad for the twist, and 0 rad for the bending of the
wrist. The measured angles for these were on average 0.305 rad for the elevation angles, and
-0.065 rad for the bending of the wrist. The rotation angle made by the puppeteer was from 7
rad to -0.3906 rad. Also here the angle that is the twist of the wrist changes, this time it changes
in the same direction as the turning angles, but stops when it reaches its motor limit. The angle
that is the bending of the wrist is mostly constant, except at two peaks. The elevation angle also

changes a during this routine, although with less amplitude that the twist angle.

The third measurement, shown in figure 3.17, had the puppeteer rotate its wrist while he was
holding his arm up right. The angle of the twist variated between —x and 0 rad. The calcu-
lated twist angle changes in value between -0.328 rad and -1.396 rad. (Which is the motor limit
of motor four)The actual elevation angle was 7 rad, the rotation angle 0 rad, and the wrist
bending was 0 rad. The actual measured angles were 0.248 rad for the rotation angle, 1.162
rad on average for the elevation angle, and 0.049 rad on average for the bending of the wrist.
The angles for the elevation, and the rotation of the arm variate little during this measurement.
The angle for the elevation is however slowly decreasing, and it is higher than during the first
routine, when the arm was also uptight at points. The angle of the bending of the wrist changes
more than the other two angles during this measurement.

The fourth measurement, shown in figure 3.18, had the puppeteer bend his wrist, while keeping
everything else still. The angle changed between 0.962 rad and -0.950 rad. The other angles
were 0 rad for the turning angle, 7 rad for the elevation angle, and —7 rad for the twist of the
wrist. The measured angles were 0.214 rad for the rotation angle, 1.277 rad for the elevation
angle, and the value for the twist of the wrist clipped against its motor limit at -1.396 rad. The
angle for the bending of the wrist variated between 0.808 rad, and -0.799 rad. The results show
that the change between the positive and negative angle is not a smooth transition in this case.

measurements five and six were the same as three and four, but with the difference that now the
elevation angle is supposed to be § rad. The results of this are shown in figures 3.19 and 3.20
respectfully. The measured values for the elevation angles were 0.700 rad and 0.863 rad respect-
fully.

Mark van Holland University of Twente

CHAPTER 3. EXPERIMENTS

21

angle (rad)

motor

Figure 3.15: Measured angles of measurement one. Here the red line is the elevation angle, the blue line
is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist bending

angle.

motor angle (rad)

05

| Y aa\ / \ / \ N\

| \ \ / \ \ o

| /{ J‘/} *“% ~ - | \;\ s ,/ \\) / \. ,j/

[N , A | S—
I v AN g () e W

L N AR v AN

| S __/ =/

50
frames

Figure 3.16: Measured angles of measurement two. Here the red line is the elevation angle, the blue line
is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist bending

angle.

motor angles (rad)

- | | | |

frames

Figure 3.17: Measured angles of measurement three. Here the red line is the elevation angle, the blue
line is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist

bending angle.

Robotics and Mechatronics Mark van Holland

22 Visual puppeteering using the Vizualeyez 3D motion capture system.

ngle (rad) .,

otor a

m

Figure 3.18: Measured angles of measurement four. Here the red line is the elevation angle, the blue line
is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist bending
angle.

motor angle (rad)

frames

Figure 3.19: Measured angles of measurement five. Here the red line is the elevation angle, the blue line
is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist bending
angle.

motc gle (rad)

Figure 3.20: Measured angles of measurement six. Here the red line is the elevation angle, the blue line
is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist bending
angle.

Mark van Holland University of Twente

CHAPTER 3. EXPERIMENTS 23

\

M/n 1 ﬂm\“ peal | N k
S g J\ Ao tn m
Y‘N\\ J ,/ ‘

MM A

motor angle (rad)
B .

E

C;S

Figure 3.21: Measured angles of measurement seven. Here the red line is the elevation angle, the blue
line is the rotation angle, the green line is the angle of the wrist twist, and the black line is the wrist
bending angle.

3.4.2 Discussing the results

The results of the third test show that the elevation angle can be measured as the value is in the
range of 0.099 rad to 1.277 rad with a deviation of + 0.1 rad. The elevation angle changed when
the rotation angle changed. This is explained by the fact that the markers are on the surface
of the puppeteers arm and elbow. When the puppeteer moved his arm from left to right, the
marker on the elbow tended to moved up and down with this motion. The marker moved up
when the rotation angle was positive and down when it was negative, causing this change.

The rotation angle had a static deviation of 0.2 rad, double that during the first measurement.
The transitions between positive to negative had no stutter, and the movement of this angle
behaved as it should, al be it with a standard error. This error is explained by the fact that the
markers are placed on the surface of the arm. The elbow is wider than the wrist is, so the marker
of the wrist already has an angle with the marker on the elbow. Also during the rotational action
the marker of the elbow moves, which lead to errors in the angle calculations.

The twist of the wrist is dependant on the elevation angle, and inversely on the rotation angle.
This could be explained, by the fact that the transformation matrix uses the elevation, and
rotation angles. These measured angles have some errors with the actual angles, so that the
transformation is effected by this. The angle of the wrist does change when the wrist is changes,
in the same direction as the twist.

The bending of the wrist does change how it is expected, but the change between what is pos-
itive and what is negative with varying efficiency. It works the best when the arm was held in
an up right position, and when the arm was lowered the border between positive and negative
becomes less efficient. This is best seen in figure 3.20, where the third time the angle becomes
positive.

Robotics and Mechatronics Mark van Holland

24 Visual puppeteering using the Vizualeyez 3D motion capture system.

3.5 Comparing the methods

Looking at the results of both methods, both methods can be used to puppeteer the robot. In
both methods the robot was being moved close to the places/angles the program calculated.
Comparing the methods in terms of scalability can be done by looking at different aspects.

One aspect would the amount of markers that are needed. Looking from this angle it would
mean that the end effector method would be more scalable to more complicated robots, since
the same amount of markers are needed independent of the complexity of the robot. For the
angle method more markers are needed for every joint in the human body that is going to be
used and even more if the view of the marker can be obstructed.

An other way of looking at how scalable the methods are would be looking at the amount of
calculations that need to be done. This would mean that the angle method would be the more
scalable one. This is because every angle can be calculated with just one calculation for each
angle and maybe one or two more calculations, depending on how the negatives are defined
and if the calculated angle need to be changed in some way. The end effector method requires
the Jacobian, inverse of the Jacobian, the error, and the motor angle for every single motor.
Only the amount of calculations of the error, does not depend on the amount of motors here.

Looking at the speed the program can reach the end effector method would be more favourable
for more complicated robots. This is because the angle method would need more markers
when the robot becomes more complicated, this means the sensor can not output the same
frame rate. For less complicated robots the angle method is faster since the calculations done
by the angle method are faster than the calculations of the end effector method.

Looking at these aspects it can be seen that the angle method is better suited for the less com-
plicated robots, while the end effector method is better suited for more complex ones.

3.6 Comunication to the robot

Using the MATLAB performance analyser the performance of both programs was investigated.
The program of method one ran for a total time of 23.800 s. The majority of this time was caused
by the serial communication between MATLAB and the robot, this serial communication took
22.514 s. The same was analysis was done for the second program. This program had a total run
time of 23.650 s. Here again the majority of the time was spend in the serial communication,
which took 21.794 s.

There was a noticeable delay between the moment the puppeteer moved to the moment the
robot moved to match this movement. Also the motor angles of the robot and the motor angles
MATLAB calculated were not the same.

The noticeable lag between the puppeteer and the robot, is caused by the speed of the serial
communication between MATLAB and the robot. It is also possible for the error in the motor
angles to come from the serial communication between the two, but this can not be concluded
completely with the data available.

3.7 Sensor performance

The sensor ran at a frame rate of 120 frames per second. This was faster than the amount of
frames MATLAB requested per second. This means that when MATLAB requests a new frame,
anew frame was always available.

One obstacle encountered during the tests was that it was possible for the puppeteer to hide
markers from the sensor during operation, by moving in such a way that a body part came
between the sensor and the markers of one place. This meant that the sensor could not find
these markers and this position could then not be used in the calculation of the angle it was
involved in.

Mark van Holland University of Twente

25

4 Conclusion

From the measurements of the target was able to give the position of the target within a range
of 10 mm. The orientation was being calculated correctly if the target only rotated around its x
and z axis, but when the target rotates around its y axis the calculation of the orientation was
incorrect. This also means that whenever there is a rotation around the y axis of the target, the
orientation can be calculated wrongly.

The end effector method works as intended in the position aspect of the end effector. The
orientation aspect seem to work as intended, the ¢ angle of the end effector followed that of the
target. All the angles converged towards the orientation of the target if they were able to. It can
not be concluded if the orientation was doing what it was supposed to, because the orientation
of the target can be calculated wrongly.

The angle method did not completely work the way it was intended. The elbow rotation and
elevation angles did what they were supposed to do in the measurements. The rotation of
the wrist did react to the wrist rotating, but it also reacted to the elbow rotation and elevation
angles. This makes the control of the fourth motor difficult for the puppeteer. The wrist bend-
ing angle does calculate like it should, but the way the negative of the angles is defined makes
the motor angle behave differently than the puppeteer does. This all means that the method
can work correctly if the twist angles are calculated in a better way and if the negative of the
wrist bending is implemented in a way that works better.

5 Recommendations

One of the main issues of the first method was that the twist angle of the wrist was dependent on
the rotation and elevation angles. For this issue another method could be sought for. Another
thing that could be investigated would be to see if a glove was made for the puppeteer, so that
all the markers are always at the same position, and using the known position of the elbow
marker with respect to the actual rotation point of the elbow, the transformation matrix can be
improved do that these dependencies could be improved, or even fixed. Using such a glove the
fact that the elbow marker moves as the puppeteer moves can also be improved, by calculating
the actual turning point of the elbow and using this point in the calculations.

The target had problems when the orientation involved a change in 8. One thing to investigate
would be to see if instead of extracting the values of ¥, 8, and ¢ from the rotation matrix, using
the rotation matrix itself could solve this problem, or at least improve the performance.

In the second method, only one end effector is used in the inverse kinematics. It can be prefer-
able, especially when the robot becomes more complex, to use multiple end effectors and place
these at joint positions of the puppeteer. This could help the robot to more closely mimic the
puppeteer. Using multiple end effectors it would be possible to only use the positions of these
end effectors, meaning the error in the orientation detection of the target would be less of an
issue.

The communication between MATLAB and the robot need improving, since this slows the
whole system down and introduces lag. One way of doing this would be to use an input buffer
for the robot and increase the speed at which the robot runs its program, which was set to 5Hz
in this paper.

Robotics and Mechatronics Mark van Holland

26 Visual puppeteering using the Vizualeyez 3D motion capture system.

A Transformation matrix

511 =
cos(q1)-cos(qz)-cos(qs)-cos(qs)—cos(qr)-sin(qz)-sin(qs)-cos(qs)—sin(qy)-sin(qq)-sin(qs)—
cos(qi)-cos(qo) - sin(qs) - cos(qa) - sin(qgs) — cos(qr) - sin(gz) - cos(gz) - cos(qs4) - sin(gs);

512 =
—sin(q1) - cos(qq) + cos(qy) - cos(q2) - sin(qs) - sin(qy) + cos(q1) - sin(qq) - cos(qs) - sin(qy);
HgIS =
cos(qr1)-cos(qr)-cos(qs)-sin(qs)—cos(qr)-sin(qz)-sin(qs)-sin(qs)+sin(qy)-sin(qq)-cos(qs) +

cos(qr)-cos(q2) - sin(qs) - cos(qy) - cos(qs) + cos(qr) - sin(q) - cos(qs) - cos(qq) - cos(qs);

Hgl4 =

(cos(q1) - cos(qz) - cos(gs) — cos(q1) - sin(qz) - sin(gs)) - (r5(1) + r4(1)) — sin(q1) - (cos(qs) - 75(2) -
sin(qq) - r5(3)+ra(2)) + (cos(qy) - cos(qr) - sin(qgs) + cos(qr) - sin(qz) - cos(qs)) - (sin(qq) - r5(2) +
cos(qq)-r5(3)+1r4(3))+cos(qr)-cos(qz)-r3(1)—sin(q1)-r3(2)+cos(q1)-sin(q2)-r3(3)+cos(qy)-
r2(1) —sin(qy) - r2(2) +r1(1);

O =
52,1

sin(qy)-cos(qr)-cos(qs)-cos(qs)—sin(qr)-sin(qq)-sin(qs)-cos(qs)+cos(qr)-sin(qq)-sin(gs)—
sin(qi) - cos(qz) - sin(qs) - cos(qa) - sin(qs) — sin(qi) - sin(qz) - cos(gs) - cos(qa) - sin(qs);

O =
52,2

cos(qr)-cos(qq) +sin(qr) - cos(q) - sin(qs) - sin(qq) + sin(qy) - sin(qo) - cos(qz) - sin(qa);

523
sin(qy)-cos(qz)-cos(qs)-sin(qs)—sin(qi)-sin(qz)-sin(qs)-sin(qs)—cos(q1)-sin(qq)-cos(qs) +

sin(qy)-cos(q) - sin(qs) - cos(qq) - cos(gs) + sin(qr) - sin(qz) - cos(qs) - cos(qa) - cos(gs);

524
(sin(q1)-cos(qge2)-cos(qs) —sin(qy)-sin(q2)-sin(qs)) - (r5(1) +r4(1)) + cos(q1) - (cos(qq) - 75(2) —
sin(qy) -r5(3) +1r4(2)) + (sin(qy) - cos(qr) - sin(qs) + sin(qy) - sin(gz) - cos(qs)) - (sin(qs) - r5(2) +
c0s(qq)-r5(3)+ra(3))+sin(qy)-cos(qz) - r3(1)+cos(q1) - r3(2)+sin(qy)-sin(qz2)-r3(3)+sin(q1):
r2(1) +cos(qy) - r2(2) + r1(2);

Hg =
—si'n(qz)-cos(qg) -c0s(qs)—cos(q2)-sin(qs)-cos(gs)+sin(qgz)-sin(qs)-cos(qs)-sin(gs)—cos(gz)-

cos(qgs) - cos(qa) - sin(gs);

532 =
—sin(qq) - sin(qs) - sin(qq) + cos(q2) - cos(qs) - sin(qy);
HE(-’)SS =
—sin(qq2)-cos(gz)-sin(qs)—cos(qr)-sin(qs)-sin(gs)—sin(qgz)-sin(qs)-cos(qs)-cos(gs)+cos(g)-

cos(qs) - cos(qs) - cos(gs);

H;,, =

(=sin(qz) - cos(qz) — cos(qz) - sin(qz)) - (r5(1) + r4(1)) + (=sin(qz) - sin(gs) + cos(qz) - cos(qs)) -
(sin(qq) - r52) + cos(qy) - r5(3) + r4(3)) — sin(qz) - r3(1) + cos(gz) - r3(3) + r1(3) + r2(3);

HY =0
04,1
Hy ,=0
HY =0
4,3
=1
4,4

Mark van Holland University of Twente

27

Bibliography

[1] R. Slyper, G. Hoffman, A. Shamir,, “Mirror puppeteering: Animating toy robots in front of
awebcam,” 2015. [Online]. Available: http://guyhoffman.com/publications/SlyperTEI15.
pdf

[2] H. Reddivari, C. Yang, Z. Ju, PLiang, Z.Li and B.Xu. (2014) Teleoperation control of baxter
robot using body motion tracking. [Online]. Available: https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6997722

[3] Phoenix Thechnologies Incorporated, “Visualeyez user manual,” pp. 58-59, 2004.

[4] E.Dertien, “Desklight,” last visited 26-06-2018. [Online]. Available: http://wiki.
edwindertien.nl/doku.php?id=projects:desklight

[5] B.Siciliano, “Industrial robotics,” page 16. [Online]. Available: http://www.master-ris.
unina.it/custom-php/materiale_didattico/bruno_siciliano_1297463044.pdf

[6] MathWorks, “atan2,” last visited 26-6-2018. [Online]. Available: https://nl.mathworks.
com/help/fixedpoint/ref/atan2.html

[7] S.Stramigioli, “Multibody dynamics & control.” [Online]. Avail-
able: https://blackboard.utwente.nl/bbcswebdav/pid-981319-dt-content-rid-2219104_
2/courses/2016-201500061-1A/MBDC-HC3%281%29.pdf

[8] MathWorks. Matrix rotations and transformations. Last visited 26-06-
2018. [Online]. Available: https://nl.mathworks.com/help/symbolic/examples/
rotation-matrix-and-transformation-matrix.html

[9] A. Aristidou and J. Lasenby, “Inverse kinematics: a review of existing techniques
and introduction of a new fast iterative solver,” pp. 11-16. [Online]. Available: http:
/ Iwww.andreasaristidou.com/publications/papers/ CUEDF-INFENG, %20TR-632.pdf

[10] S.Stramigioli. Multibody dynamics & control. [Online]. Avail-
able: https://blackboard.utwente.nl/bbcswebdav/pid-976690-dt-content-rid-2181424_
2/courses/2016-201500061-1A/MBDC-HC1.pdf

Robotics and Mechatronics Mark van Holland

http://guyhoffman.com/publications/SlyperTEI15.pdf
http://guyhoffman.com/publications/SlyperTEI15.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6997722
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6997722
http://wiki.edwindertien.nl/doku.php?id=projects:desklight
http://wiki.edwindertien.nl/doku.php?id=projects:desklight
http://www.master-ris.unina.it/custom-php/materiale_didattico/bruno_siciliano_1297463044.pdf
http://www.master-ris.unina.it/custom-php/materiale_didattico/bruno_siciliano_1297463044.pdf
https://nl.mathworks.com/help/fixedpoint/ref/atan2.html
https://nl.mathworks.com/help/fixedpoint/ref/atan2.html
https://blackboard.utwente.nl/bbcswebdav/pid-981319-dt-content-rid-2219104_2/courses/2016-201500061-1A/MBDC-HC3%281%29.pdf
https://blackboard.utwente.nl/bbcswebdav/pid-981319-dt-content-rid-2219104_2/courses/2016-201500061-1A/MBDC-HC3%281%29.pdf
https://nl.mathworks.com/help/symbolic/examples/rotation-matrix-and-transformation-matrix.html
https://nl.mathworks.com/help/symbolic/examples/rotation-matrix-and-transformation-matrix.html
http://www.andreasaristidou.com/publications/papers/CUEDF-INFENG,%20TR-632.pdf
http://www.andreasaristidou.com/publications/papers/CUEDF-INFENG,%20TR-632.pdf
https://blackboard.utwente.nl/bbcswebdav/pid-976690-dt-content-rid-2181424_2/courses/2016-201500061-1A/MBDC-HC1.pdf
https://blackboard.utwente.nl/bbcswebdav/pid-976690-dt-content-rid-2181424_2/courses/2016-201500061-1A/MBDC-HC1.pdf

	Summary
	Contents
	1 Introduction
	2 Theory
	2.1 End effector
	2.2 Angle mapping
	2.3 Communication with the robot

	3 Experiments
	3.1 Set-up
	3.2 Test one
	3.3 Test two
	3.4 Test three
	3.5 Comparing the methods
	3.6 Comunication to the robot
	3.7 Sensor performance

	4 Conclusion
	5 Recommendations
	A Transformation matrix
	Bibliography

