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Abstract
A class D amplifier creates, next to the desired signal, also a PWM frequency ripple at the
output. This ripple can radiate from the speaker wires as electromagnetic radiation, which is
undesirable. Feedback models are designed to reduce the amplitude of the output ripple and
the magnitude at 620 kHz (lowest ripple frequency). In this report, two feedback models are
analyzed and optimized. One feedback model from the output voltage to a controlled current
source and another feedback model from the inductor voltage to a controlled current source.
The feedback models use a first or second order high pass filter. Both options are analyzed
and optimized for each feedback model.

The optimal parameter values of the feedback models are found by restricting the magnitude
of the audio frequencies and the characteristics of the frequency response of the feedback
model. The characteristics were found by analyzing the transfer function of the feedback model
via a method that reduces the size of the transfer function at specific frequencies, to find the
characteristics easier.

The results were that the feedback model from the output voltage with a first order high
pass filter did not reduce the voltage ripple, however the other feedback models did. The model
with feedback from the inductor voltage with a second order high pass filter reduced the output
voltage ripple amplitude from 60.8 mV to 4.65 mV (reduction of 92.4%) and the magnitude at
620 kHz (lowest PWM frequency) from -53.7 dB till -87.8 dB (decrease of 64.7%). The inductor
feedback model with a first order filter reduced the ripple from 60.8 mV to 6.21 mV (reduction
of 89.8%) and the magnitude at 620 kHz from -53.7 dB to -73.3 dB (decrease of 37.5%). The
inductor feedback model with a second order filter reduced the ripple from 60.8 mV to 3.29 mV
(reduction of 94.6%) and the magnitude at 620 kHz from -53.7 dB to -78.4 dB (decrease of
47.1%). The best feedback model is the model with feedback from the inductor voltage with a
second order high pass filter.

The conclusion is that the output feedback model with the second order filter reduces the
ripple the most, as it has the lowest magnitude at 620 kHz.
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Introduction
A class D amplifier consists of a PWM modulator, a switch and a second order low pass filter,
see Figure 1. An audio signal is modulated by the PWM modulator to a high-frequency pulse
signal with a varying duty cycle, depending on the audio signal. The pulse signal switches the
switch between ground and a voltage supply to enlarge the pulse signal. The low pass filter
recovers the original signal by filtering out the switching frequency. A second order low pass
filter consists of an inductor and a capacitor, where the inductor is connected to the output of the
switch [1]. The switch changes the voltage over the inductor. The current through the inductor is
the integral of the inductor voltage (VL = L · diLdt ), which means that a triangular inductor current
will be created. The current increases when the inductor voltage is positive and decreases
when the inductor voltage is negative. The inductor current contains a signal current and a
ripple current. The signal current flows through the load and the ripple current divides between
the capacitor and the load. The final current through the load is shown in Figure 2 (blue). The
high frequency ripple can radiate from the speaker wires as electromagnetic radiation [2]. This
is undesirable.

Figure 1: Class D amplifier with an active filter feedback

Figure 2: Red : signal current. Blue: signal current with the ripple current.
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There are several solutions to reduce the ripple current flowing through the speaker wires.
One solution is to compensate the ripple with an active feedback filter, which is a solution with
relatively low cost and small board space. Last year, Lucas Timmermans tried to reduce the
ripple by using active filters. The solutions were promising, but they can be improved [3].

The goal of this report is to find the limitations and improve the solutions of Lucas Timmer-
mans. The limitations will be found by a more thorough analysis: by looking at the transfer
function, stability, and characteristics and limitations of the frequency response. The optimal
parameters values will be determined from the findings of the limitations.

This paper has been divided into four chapters. It begins by analyzing a class D amplifier
without feedback. It will then go on with analyzing the first solution of Lucas Timmermans, a
feedback loop from the output voltage to a controlled current source at the output node. The
output voltage is filtered and amplified in the feedback loop. Chapter three analyzes a solution
with a feedback loop from the inductor voltage to a controlled current source at the output node.
In the feedback loop, the inductor voltage signal is transformed to a inductor current signal, and
then filtered and amplified. The final chapter compares the findings of the research, focusing
on the reduction of the output ripple voltage.
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Chapter 1

Basic model of a class D amplifier
This chapter begins by analyzing the basic model of a class D amplifier, shown in Figure 1.1.
The analysis is done by looking at the transfer function, frequency response and stability. During
the analysis, the parameter values of the basic model are determined. The parameters values
will be summarized in a table. At the end, the output voltage will be analyzed in frequency
domain, and the output ripple voltage in time domain.

Figure 1.1: Circuit model of a class D amplifier

1.1 Model analysis
This section starts by deriving the transfer function from the circuit model, shown in Figure
1.1. The transfer function gives several insights, which determines the parameter values of
the second order filter. Next, the frequency response and stability of the circuit model will be
visualized in a Bode and pole-zero plot.

1.1.1 Transfer function
The voltage transfer function is derived from the circuit model that represented the class D
amplifier. Equation 1.1a shows the voltage transfer function H(s)basic, which represent the
relationship between the output and input voltage. The transfer function gives insights into the
steepness of the decrease in dB after the cut-off frequency, the cut-off frequency, quality factor,
poles and zeros. The respective expressions are shown in Equations 1.2 till 1.5b (note that this
transfer function does not have zeros).

H(s)basic =
Vout
Vin

=
R

s2LCR+ sL+R
(1.1)

−20 · n dB/decade (1.2)

fc =
wc
2π

=
1

2π
√
CL

(1.3)

asee A.1 for the derivation
bsee A.2 for the derivation
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Q =

√
CR2

L
(1.4)

poles =
−L±

√
L2 − 4CLR2

2CLR
(1.5)

The dependent parameters of Equations 1.2 till 1.5 are the order, load-resistor, inductor
value and capacitor value. The order of the transfer function is determined by the highest
exponent of s, so the order is two [4]. The load resistor is the resistor in a speaker, normally
4 Ω [1]. The value of the inductor and capacitor can be chosen such that the right cut-off
frequency, quality factor and poles are achieved. The cut-off frequency must be above 20kHz,
because the human hearing range is between 20 Hz and 20 kHz [5]. The amplitude of the PWM
frequency must be as low as possible, such that the undesirable ripple is as small as possible.
This means that the cut-off frequency must be as low as possible. The quality factor must be
in the range between 0.6 and 0.8 to avoid underdamped or overdamped behavior [6]. The real
value of the poles must be lower than zero, such that the system is stable [7]. Concluding,
the facts and requirements indicates that the order is 2, load-resistor 4 Ω, inductor 32 µH and
capacitor 1 µF .

Results of Equations 1.2 till 1.5:

• roll-off:−40dB/decade
• fc = 28kHz → wc = 176krad/sec

• Q = 0.707
• poles = −125000± j123527

1.1.2 Frequency response
The frequency response of the basic model is visualized in the Bode plot of Figure 1.2. The
steepness after the cut-off frequency is -40dB/decade, the cut-off frequency is around 25kHz
and Q around 0.7. These values are approximately the same as the calculated values.

Figure 1.2: Bode plot of the transfer function of the model in Figure 1.1
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1.1.3 Stability
The system is stable if all the poles are at the left side of the pole-zero plot (the real pole values
are lower than zero). The pole-zero diagram for the basic model is shown in Figure 1.3. The
poles of the diagram are -1.25e5+1.25e5i and -1.25e5-1.25e5. Approximately the same as the
calculated poles. All poles are at the left side, so the system is stable [7].

Figure 1.3: Pole-Zero plot of the model in Figure 1.1 (represented in angular frequency)

1.2 Overview parameters
The parameters of the circuit are summed up in Table 1.1. These parameters are explained in
Appendix E.2. All other models use the same parameter values.

Table 1.1: Parameters of the basic model
Parameter Symbol Value
Input sine amplitude Ain 1 V
Input frequency (between 20 -20000 Hz) fin 5 kHz
Sample frequency fs 44.1 kHz
PWM carrier frequency (16 bit) fpwm−carrier fs · 16 = 706 kHz
PWM amplitude Apwm 1 V
Gain of system Gsys 30
Inductor L 32 µH
Capacitor C 1 µF
Load-resistor R 4 Ω

1.3 Output voltage analysis
In this section, the output ripple voltage of the basic model is analyzed in the time domain,
to get the voltage amplitude of the ripple signal. Furthermore, the output voltage of the basic
model is analyzed in the frequency domain, to find the lowest PWM frequency.
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1.3.1 Output ripple voltage in time domain
The voltage amplitude of the output ripple signal can be found from a time domain graph that
shows the output ripple voltage. The voltage amplitude of the ripple signal will be used to easily
compare to the ripple amplitudes of the feedback model, and see if the amplitudes are reduced.
The output ripple voltage of the basic model is found by subtracting the ideal output from the
real output, see Equation 1.6. The output ripple voltage in time domain is shown in Figure 1.4.
The ripple does not have a constant amplitude, because the duty cycle in the PWM generator
changes and the inductor ripple current is related to the duty cycle [8]. The ripple looks like
an AM signal. For other input frequencies, the amplitude is the same. Only the shape is more
stretched out (lower then 5 kHz) or compressed (higher then 5 kHz). The time domain figure
shows that the maximum voltage amplitude is 60,8 mV.

Vripple = Vout − Videal = Vout − VinGsysH(s)basic (1.6)

Figure 1.4: Time domain plot of the output ripple voltage with input frequency 20 kHz. Shows
that the maximum amplitude of the output ripple voltage is 60.8 mV

1.3.2 Output voltage in frequency domain
The lowest PWM frequency (ripple frequency) can be determined from the frequency domain
of the voltage output. To identify from which moment the Bode plot has to be as low as pos-
sible, the lowest PWM frequency is needed. Figure 1.5 shows the output voltage in frequency
domain for different input frequencies in the range of the human ear. Note that the figure is
zoomed in at the y-axis, otherwise the ripple magnitude would be too small to recognize. The
amplitude of the fundamental frequency (input frequency) is shown at the top of each diagram.
For high frequencies, the amplitude of the fundamental frequency is lower than 30V, because
the magnitude of the filter for these frequencies is below 0 dB. The sum of all ripple magnitude
around the center frequency of the ripple stays the same, which results in the total harmonic
distortion (THD) being higher for high frequencies. In addition, the figure shows that the input
frequency and the ripple frequency are more spread around there center frequency when the
input frequency is high. The PWM frequency has a maximum range around the PWM carrier
of 85 kHz. This means that the lowest PWM frequency is 620 kHz.

It is interesting to know how large the magnitude of the lowest PWM frequency is. The Bode
plot of Figure 1.2 shows that the magnitude of the lowest PWM frequency is -53.7 dB.
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Figure 1.5: Frequency domain of the output voltage with input frequency 20, 500, 5000 and
20000 Hz. Shows that the lowest PWM frequency is 620 kHz
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Chapter 2

Feedback from the output voltage
In this chapter, the design with feedback from the output voltage to a controlled current source,
shown in Figure 2.1, is analyzed and optimized. In the feedback loop, the output voltage is
high pass filtered, such that the PWM frequencies are left over, amplified with gain g, and then
amplified with a transconductance gm. For this report, two kinds of high pass filter are used, a
first and a second order. The feedback model with a first and second order feedback filter are
separately analyzed and optimized. The analysis is done by looking at the transfer function,
frequency response and stability. From the analysis, the characteristics can be found, which
will help to find the limitations. The limitations show how the parameters values influence the
characteristics. With this knowledge, the optimal parameters can be determined. At the end,
the optimal output and ripple voltage will be analyzed.

The feedback model is designed to reduce the output ripple voltage as follows. It is desired
to make the controlled current source equal to the ripple current, such that the ripple current of
the inductor does not flow to the load-resistor. That way, the output voltage will not contain a
ripple voltage. The controlled current source is controlled via the feedback loop from the output
voltage. The output voltage is filtered such that the PWM frequencies (ripple frequencies) are
left over. The left over ripple frequency is amplified with a gain g, such that the source current is
equal to the ripple current. This g must be chosen, such that the feedback system is still stable.
Note that the feedback signal is also amplified with a transconductance gm of the controlled
current course, which is chosen to be 1 A/V.

Figure 2.1: Circuit model of design with feedback from the output voltage
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2.1 First order high pass filter feedback
2.1.1 Analysis
In this section, the feedback from the output voltage with a first order high pass filter is analyzed.
Starting with describing the first order high pass filter via a transfer function and determining the
first order high pass filter parameters. Next, the total feedback model is analyzed by determining
the transfer function, checking the stability and visualizing the frequency response. Finally, the
frequency response will be characterized such that the limitations of the model will be found.

Describing the first order high pass filter
The transfer function of the first order high pass filter is shown in Equation 2.1, which depends
on τ . From Section 1.3.2, it is known that the lowest frequency of the PWM is 620 kHz. This
means that the cut-off frequency of the high pass filter must be lower than 620 kHz. In addition,
the cut-off frequency must be as high as possible, because the output signal will be attenuated
as well. The cut-off frequency is chosen to be 200 kHz. Now a question may rise: why is the
cut-off frequency so low? It was chosen to have the magnitude at 620 kHz above -0.5 dB, such
that gain g does not have to be increased to compensate. Which makes τ = 800nsa.

H(s)1eHP =
sτ

sτ + 1
(2.1)

Analysis of total feedback model
The analysis is done by looking at the transfer function, Bode plot and pole-zero plot. The
transfer function is derived from the Kirchhoff’s rules and Laplace functions, see Appendix
C.1 for the derivation. The transfer function of the circuit model with a first order high pass
filter, H(s)out−1eHP , is shown in Equation 2.2. The Bode and pole-zero plots with different
feedback gains are shown in Figures 2.2 till 2.4. The Bode plot shows that the cut-off frequency
and Q factor is changed because of the feedback. Besides, the steepness changes from -
40 dB/decade to -20 dB/decade to -40 dB/decade. The phase is also changed; the phase is
quicker steep, steeper and it has a hill at the end. The hill is caused by the zero and pole at
the real axis being farther apart, see pole-zero plot. The farther away, the higher the hill. The
pole-zero plot shows that the feedback model with different gains g is stable; all real pole values
are at the left side of the plot [7].

H(s)out−1eHP =
Vout
Vin

=
sRτ +R

s3LCRτ + s2(LCR+ Lτ + LRτggm) + s(L+Rτ) +R
(2.2)

asee B for the Bode plot
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Figure 2.2: Bode plot of transfer function of model 2.1 with a first order filter and different
feedback gains 0,1,10 and 50

Figure 2.3: Pole-zero plot of the model in Figure 2.1 with first order filter and different feedback
gains 0,1,10 and 50 (represented in angular frequency)
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Figure 2.4: Zoomed in pole-zero plot of the model in Figure 2.1 with first order filter and differ-
ent feedback gains 0,1,10 and 50 (represented in angular frequency)

Characteristics
The dominant pole method was tried to determine the characteristics of the frequency re-
sponse [9]. This method did not work for both feedback models with a second order filter.
The new transfer function did not have the same frequency response as the total frequency
response. To overcome this problem, it was chosen to use a method which based on a video
from Prof. Dr. Hanspeter Schmid (Professor for Microelectronics and Signal Processing, In-
stitute of Microelectronics FHNW). The video is called Hanspeter’s Tools of the Trade [10]. It
was chosen to use the same method throughout the whole report to avoid confusion about the
approach to find the characteristics. The method is explained below.

If a transfer function has a order higher than two, the transfer function is difficult to charac-
terize. This is the case with the transfer function of Equation 2.2. To make the characterization
easier the transfer function can be reduced to several smaller transfer functions that describe
the transfer function of Equation 2.2 at certain frequencies. The smaller transfer functions are
derived by identifying which parts of the denominator and numerator are dominant at certain
frequencies. Parts are dominant if they are at least ten times bigger than the other parts [11].
Some of the smaller transfer functions can be neglected, because an other smaller transfer
function describes the same frequency response at those frequencies. For example a transfer
function H(s) = 10 + 0.1s+ 0.00001s2 + 0.000001s3 consist of the following parts: ”10”; ”0.01s”;
”0.00001s2”; ”0.00001s2”;”0.000001s3”. Around 1 rad/s the part ”10” is dominant, which forms a
transfer function of H1(s) = 10. Around 10 rad/s the parts ”10” and ”0.01s” are dominant, which
forms a transfer function of H2(s) = 10 + 0.01s. Note that the transfer function H2 has the
same characteristics around 1Hz as H1. The transfer function H1 can be neglected, because
H2 describes the characteristics of H1. The residual smaller transfer functions can characterize
the transfer function of Equation 2.2 if they have less than three poles or zeros.

The transfer function of Equation 2.2 is characterized by the smaller transfer functions of
Equation 2.3. See Appendix F.1 for all smaller transfer function and why other smaller transfer
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functions are neglected. The Bode plot of the smaller transfer functions which describe the
transfer function of Equation 2.2 is shown in Figure 2.5. The residual smaller transfer functions
can characterize the transfer function of Equation 2.2 if they have less than three poles or
zeros. This is the case, so the smaller transfer functions can characterize the transfer function
of Equation 2.2.

G3 =
sRτ +R

s2(LCR+ Lτ + LRτggm) + s(L+Rτ) +R
(2.3a)

G6 =
sRτ

s3LCRτ + s2(LCR+ Lτ + LRτggm)
=

Rτ

s(sLCRτ + LCR+ Lτ + LRτggm)
(2.3b)

The interesting characteristics of the total frequency response are circled in the Bode plot,
shown in Figure 2.5. These characteristics are interesting, because after these positions the
steepness of the frequency response changes. After the first cut-off the steepness change from
0 dB/decade to -60 dB/decade, after the second the steepness changes to -20 dB/decade and
after the third to -40 dB/decade.

The moment these changes take place are crucial to get the magnitude at the lowest PWM
frequency (620 kHz) as low as possible. The circled characteristics are determined from Equa-
tion 1.1, if gain g is zero, or from Equation 2.3, if gain g is greater than zero. The circled
characterisitcs are shown in Equation 2.4. Note that the second and third cut-off frequency and
Q factor do not exist when gain g is zero.

Figure 2.5: Bode plot of smaller transfer function which describe the transfer function of Equa-
tion 2.2(total) with a gain g of 10
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wc1 =


1√
CL

g = 0√
R

LCR+Lτ+LRτggm
g > 0

(2.4a)

Q1 =


√

CR2

L g = 0√
R(LCR+Lτ+LRτggm)

(L+Rτ)2 g > 0

(2.4b)

wc2 =

{
− g = 0
1
τ g > 0

(2.4c)

wc3 =

{
− g = 0

CR+τ+Rτggm
CRτ g > 0

(2.4d)

Limitations
The limitations can be found with the knowledge of the found characteristics. Table 2.1 shows
how the parameters influence the characteristics. If the parameters increase,the value of the
characteristics is this displayed with ”+”, otherwise with ”−”. If the characteristics do not
change, the cell is empty. To illustrate what kind of effect a parameter change has on the
frequency response, the Bode plot of Figure 2.5 is used. The first cut-off frequency is below
20 kHz at that moment. This is undesirable, because the input signal is in the range of 20 till
20000 Hz. By decreasing the capacitor, the first cut-off frequency is increased, the Q factor
decreases and the third cut-off frequency increases. The increase of the third cut-off frequency
is undesirable, because this implicates that the steepness after the second cut-off frequency
stays for an extend period -20 dB/decade which means that the magnitude of the lowest PWM
frequency is higher.

Table 2.1: Parameters influencing characteristics of the model in Figure 2.1 with first order filter
Characteristics g=0: Characteristics g>0:
wc1 Q1 wc2 wc3 wc1 Q1 wc2 wc3

Increase:
C - + - + -
L - - - -
τ - - - -
g - + +

2.1.2 Optimal result
To find the optimal values of the variables that minimize the transfer magnitude at the lowest
PWM frequency (620 kHz), a model is created and solved using an solver tool. The solver uses
a ”NEOS using Bonmin” algorithm. This algorithm is a heuristic algorithm: an approximated
solution. This algorithm is chosen, because it can solve this complex non-linear problem [12].

The solver model consists of an objective, parameters, variables and restrictions. The ob-
jective is to minimize the transfer magnitude at 620 kHz. The parameters are predefined inputs
to the solver model. The predefined inputs for this solver model are the load-resistance of 4 Ω
and the transconductance gm of 1 A/V. The values of the variables are changed by the solver
to find the objective. The variables are the inductor value L, the capacitor value C, τ , the first
cut-off frequency, the magnitude at 16 kHz and the magnitude at 20 kHz. The restrictions de-
fine the variables and the characteristics of the frequency response. The restrictions for the
inductor value L, capacitor value C and τ are based on common values for these variables.
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For gain g,the restriction is chosen such that the feedback model is stable. The first cut-off
frequency must be higher than 20 kHz. It was chosen that the magnitude at 16 kHz must be
between -0.5 dB and 0.5 dB, and the magnitude at 20 kHz between -1 dB and 1 dB. The range
of the magnitude is chosen to ensure that audio signal is correctly passed through. Without
these restrictions the outcome would not be feasible. Once the model is fully defined, the
solver uses the aforementioned algorithm to find the values of the variables that minimize the
objective. The output of the solver are the values of the variables that together minimize the
transfer magnitude, as well as the value of the objective itself: the minimum transfer magnitude
at 620 kHz [13].

The optimal result is -55.7dB. The respective values and restrictions for the model are
shown in Table 2.2. Note that the value τ does not matter, because g is zero. This feed-
back loop is not used. This is logical, because if gain g is not zero the cut-off is lower and the Q
factor is increased (see Table 2.1). Thefore, the other parameters have to change such that the
cut-off frequency is greater and the restrictions of the magnitude at the 20 kHz are satisfied. If τ
is lowered, the second and third cut-off frequency would be greater (see Table 2.1). It could be
seen as if the frequency response with a gain g of 10 in Figure 2.2 is shifted to the right till the
restrictions of the magnitude at 20 kHz are satisfied. It will show that the magnitude at 620 kHz
would be lower. If τ stayed the same and other parameters would decrease, the third cut-off
frequency would be greater, which means that the steepness stays longer -20 dB/decade after
the second cut-off frequency. The magnitude at 620 kHz would be lower. With all other options,
the magnitude at 620 kHz would be lower. This can be seen in Table 2.1. The optimal solution
is to not use the feedback loop.

The optimal Bode and pole-zero plot are shown in Figures 2.6 and 2.7. It is shown that the
magnitude at the frequency 620kHz is the magnitude -55.7 dB and that the model is stable. The
output ripple voltage can be found by subtracting the ideal output (input signal times the system
gain and feedback transfer function) from the real output. In Figure 2.8, the ripple voltage is
shown in time domain. The amplitude of the ripple voltage is 48.9 mV.

Concluding, the magnitude at 620 kHz changes from -53.7 dB to -55.7 dB and the output
voltage ripple amplitude is reduced from 60.8 mV to 48.9 mV. Note that the feedback loop is
not used. The basic model parameters are optimized, such that the output ripple voltage is
reduced.

Table 2.2: Optimal values and restrictions of the model in Figure 2.1 with first order filter

Symbol Restriction Optimal values
R 4 Ω
gm 1 A/V
L 1 nH ≤ L ≤ 10 mH 31.4 µH
C 1 pF ≤ C ≤ 10 mF 1.28 µF
g 0 ≤ g ≤ 1000 0
τ 100 ns ≤ τ ≤ 1 s -
fc1 fc1 > 20 kHz 28kHz
20log(|H(j20000)|) -1 dB ≤ 20log(|H(j20000)|) ≤ 1 dB -0.557 dB
20log(|H(j16000)|) -0.5 dB ≤ 20log(|H(j16000)|) ≤ 0.5 dB 0.111 dB
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Figure 2.6: Optimal Bode plot of the model in Figure 2.1 with first order filter. The magnitude
at 620 kHz is decreased from -53.7 dB till -55.7 dB .

Figure 2.7: Optimal pole-zero plot of the model in Figure 2.1 with first order filter (represented
in angular frequency)
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Figure 2.8: Optimal time domain plot of the model in Figure 2.1 with first order filter. The
output voltage ripple amplitude is reduced from 60.8 mV (ripple basic) till 48.9 mV
(ripple out1) .

2.2 Second order high pass filter feedback
2.2.1 Analysis
In this section, the feedback from the output voltage with a second order high pass filter is
analyzed. The structure from the first order high pass filter is used in this section: describing
second order filter, analyzing total feedback model, characterization of frequency response,
finding the limitations and analyzing the optimal solution of the feedback model.

Describing the first order high pass filter
The transfer function of the feedback second order high pass filter is shown in Equation 2.5.
The cut-off frequency must be below 620 kHz and as high as possible, see argumentation in
section 2.1.1. The Q factor between 0.6 and 0.8 to avoid over- or underdamping. It was chosen
to make wc = 2Mrad/s (cut-off frequency of 320 kHz) and Q = 0.707 b.

H(s)2eHP =
s2

s2 + swcQ + w2
c

(2.5)

Analysis of total feedback model
The analysis is done by looking at the transfer function, Bode plot and pole-zero plot. The
transfer function of the circuit model with a first order high pass filter, H(s)out−2eHP , is shown
in Equation 2.6. The derivation is derived from the Kirchhoff’s rules and Laplace functions,
see Appendix C.1 for the derivation. The Bode and pole-zero plots with different feedback
gains are shown in Figures 2.10 till 2.9. The Bode plot has the same characteristics, but more
extreme than the Bode plot of the first order filter, Figure 2.2. The pole-zero plot shows that the
feedback model with different gains g is stable. Except for g is 50, some poles are in the right
half plane [7].

H(s)out−2eHP = Vout
Vin

⇒

H(s)out−2eHP =
s2R+swc

Q R+w2
cR

s4LCR+s3(LCRwc
Q +L+LRggm)+s2(LCRw2

c+Lwc
Q +R)+s(w2

cL+Rwc
Q )+Rw2

c

(2.6)

bsee B for the Bode plot
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Figure 2.9: Bode plot of transfer function of model 2.1 with a second order filter and different
feedback gains 0,1,10 and 50

Figure 2.10: Pole-zero plot of the model in Figure 2.1 with second order filter and different
feedback gains 0,1,10 and 50 (represented in angular frequency)
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Figure 2.11: Zoomed in pole-zero plot of the model in Figure 2.1 with second order filter and
different feedback gains 0,1,10 and 50 (represented in angular frequency)

Characteristics
The characterization uses the method from Section 2.1.1. The transfer function is reduced
to smaller transfer functions such that it can be characterized. The smaller transfer functions
derivation and Bode plot are shown in Equation 2.7c and Figure 2.12. Note that the denominator
of H3 has three poles, so the transfer function of Equation 2.6 can not be totally characterized.
The Bode plots shows four interesting characteristics. After the first cut-off frequency the steep-
ness is -60 dB/decade, second -40 dB/decade, third 0 dB/decade and fourth -40 dB/decade.
The interesting characteristics are shown Equation 2.8. It is unknown what the first cut-off
frequency and Q factor are when gain g is not zero.

H3 =
swcQ R+ w2

cR

s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R) + s(w2
cL+Rwc

Q ) +Rw2
c

(2.7a)

H4b =
s2R+ swcQ R+ w2

cR

s4LCR+ s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R)
(2.7b)

cSee Appendix F.2 for the detailed description and all results at specific frequencies.
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Figure 2.12: Bode plot of smaller transfer function which describe the transfer function of Equa-
tion 2.6(total) with a gain g of 10

wc1 =

{
1√
CL

g = 0

X g > 0
(2.8a)

Q1 =


√

CR2

L g = 0

X g > 0
(2.8b)

wc2 =

{
− g = 0
Qwc g > 0

(2.8c)

wc3 =

{
− g = 0
wc g > 0

(2.8d)

Q3 =

{
− g = 0
QR g > 0

(2.8e)

wc4 =

 − g = 0√
LCRw2

c+Lwc/Q+R
LCR g > 0

(2.8f)

Q4 =

 − g = 0√
(LCRw2

c+Lwc/Q+R)LCR
(LCRwc/Q+L+LRggm)2 g > 0

(2.8g)
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Limitations
The characteristics of the frequency response are dependent on the parameter values of the
model. Table 2.3 shows how the parameters influence the characteristics. ” ” means that the
characteristic will not change, ”+” means that the characteristic is increased, ”-” means that the
characteristic is decreased and ”x” means that the characteristic is unknown. Note that the
first cut-off frequency and Q factor are unknown, when g is above zero. However, the Bode
plot of Figure 2.9 shows that gain g influence the first cut-off frequency and Q factor. If gain
g increases, the cut-off frequency decreases and the Q factor increases. There is not enough
evidence to describe the limitations for the total frequency response.

Table 2.3: Parameters influencing characteristics of feedback output voltage second order
Characteristics g=0: Characteristics g>0:

wc1 Q1 wc2 wc3 Q3 wc4 Q4 wc1 Q1 wc2 wc3 Q3 wc4 Q4

Increase:
C - + x x - +
L - - x x - -
wc x x + + + -
Q x x + + + -
g - + -

2.2.2 Optimal result
To find the optimal values of the variables that minimize the transfer magnitude at the lowest
PWM frequency (620 kHz), the method using the solver is applied (Section 2.1.2). The objective
is again to minimize the transfer magnitude at 620 kHz. The used variables, parameters and
restrictions are the same as in Section 2.1.2. Only the restriction of gain g is smaller, otherwise
the system is not stable. Also, τ is not a variable, and wc and Q are a variable.

Figures 2.13 till 2.15 show: the magnitude at the 620 kHz is -87.8 dB; the model is stable;
the amplitude of the output ripple voltage is 4.65 mV. Table 2.4 shows the optimal parameter
values and restrictions of the model. It is difficult to check whether the algorithm finds the correct
values, because the formula for the first cut-off frequency is not known. However, Figure 2.9
shows that the gain g will not be zero, because when gain g is 10 frequency response satisfies
the restrictions and the magnitude at 620 kHz is lower than the original basic model.

Table 2.4: Optimal values and restrictions of the model in Figure 2.1 with second order filter

Symbol Restriction Optimal values
R 4 Ω
gm 1 A/V
L 1 nH ≤ L ≤ 10 mH 31.4 µH
C 1 pF ≤ C ≤ 10 mF 1.28 µF
g 0 ≤ g ≤ 20 0
wc 1 · 106 ≤wc≤1 · 1015 -
Q 0.1≤wc≤10 -
20log(|H(j20000)|) -1 dB ≤ 20log(|H(j20000)|) ≤ 1 dB -0.557 dB
20log(|H(j16000)|) -0.5 dB ≤ 20log(|H(j16000)|) ≤ 0.5 dB 0.111 dB
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Figure 2.13: Optimal Bode plot of the model in Figure 2.1 with second order filter. Magnitude
at 620 kHz is decreased from -53.7 dB till -87.8 dB.

Figure 2.14: Optimal pole-zero plot of the model in Figure 2.1 with second order filter (repre-
sented in angular frequency)
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Figure 2.15: Optimal time domain plot of the model in Figure 2.1 with second order filter. Out-
put ripple voltage amplitude is reduced from 60.8 mV (ripple basic) till 4.65 mV
(ripple out2).
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Chapter 3

Feedback from the inductor voltage
This chapter has the same structure as Chapter 2. The feedback model is the basic model with
feedback from the inductor voltage to a controlled current source, shown in Figure 3.1. In the
feedback loop the inductor voltage is transformed to a current signal high pass filtered (such
that only the PWM frequencies are passed through) and amplified with gain g, and then ampli-
fied with a current source amplifier gcs. This model will be analyzed by looking at the transfer
function, frequency response, stability, characteristics and limitations. Finally, the optimal re-
sults will be determined and analyzed. The analysis and optimization is done for the model with
a first and second order high pass filter.

The feedback model is designed to reduce the output ripple voltage as in Chapter 2. The
difference is that the current source is controlled via a feedback loop from the inductor voltage.
The inductor voltage is transformed to a current signal by integrating and dividing the signal
with the inductor. Then the inductor current is filtered such that the ripple frequencies are left
over. The same first and second order high pass filters as in Chapter 2 are used: τ is 800 ns, wc
is 2Mrad/sec and Q 0.707. After the filtering, the signal is amplified with a gain g. The optimal
gain g value will be probably one, because the current ripple is directly found via the feedback
model. However, the dividing with the exact inductor value is hard. To make it more realistic the
gain g will vary around 1. After amplifying with gain g, the feedback signal is amplified with a
current source amplifier gcs of the controlled current course, which is chosen to be 1.

Figure 3.1: Circuit model of design with feedback from the inductor voltage
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3.1 First order high pass filter feedback
3.1.1 Analysis
This section analyzes the feedback from the output voltage with a first order high pass filter
by determining the total feedback transfer function, visualizing the frequency response with a
Bode plot and checking the stability via pole-zero plot. Next, the characteristics will be identified,
which will help to find the limitations of the model.
Analysis of total feedback model
The total feedback model is analyzed by looking at the transfer function, Bode plot and pole-zero
plot. The transfer function of the circuit model with a first order high pass filter, H(s)L−1eHP , is
shown in Equation 3.1, see Appendix D.1 for the derivation. Figures 3.2 and 3.3 show the Bode
and pole-zero plot with different feedback gains around one. The Bode plot shows that the
optimal gain is one, because the inductor voltage is transformed to the current by integrating
and dividing with the inductor value (iL = VL/(sL)), so the controlled current source takes the
total ripple current. The Bode plot also shows that the cut-off and Q factor stay the same for
different gains, only the steepness changes from -40 dB/decade to -60 dB/decade. The pole-
zero plot shows that the feedback model is stable for different gains g; all real pole values are
at the left side of the plot [7].

H(s)L−1eHP =
Vout
Vin

=
sRτ(1− ggcs) +R

s3CRLτ + s2(Lτ + CRL) + s(L+Rτ −Rτggcs) +R
(3.1)

Figure 3.2: Bode plot of the transfer function of the model in Figure 3.1 with first order filter and
different feedback gains g 0, 0.5, 1, 1.5 and 2
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Figure 3.3: Pole-zero plot of the model in Figure 3.1 with first order filter and different feedback
gains 0,1,10 and 50 (represented in angular frequency)

Characteristics
The characterization uses the method from Section 2.1.1. The transfer function is reduced
to multiple smaller transfer functions such that it can be characterized. The Bode plot of the
smaller transfer functions that describe the transfer function of Equation 3.1 are shown in Figure
3.4a. Interesting characteristics are circled in the Bode plot, because after these positions the
steepness of the frequency response changes. After the first cut-off the steepness changes
from 0 dB/decade to -40 dB/decade, after the second the steepness changes to -60 dB/decade
and after the third it depends on whether the gain g is 1 or not. If gain g is 1, the steepness
stays -60dB/decade and if gain g is not 1 the steepness changes to -20 dB/decade. The smaller
transfer function has the same first order function in the numerator. This is why the steepness
is increased by +40 dB/decade, instead of +20 dB/decade. In the Bode plot of Figure 3.4, the
third cut-off frequency is not visible because gain g is 1. The interesting characteristics are
shown in Equation 3.3.

K2b =
sRτ(1− ggcs) +R

s2(Lτ + CRL) + s(L+Rτ −Rτg) +R
(3.2a)

K4 =
sRτ(1− ggcs) +R

s3CRLτ + s2(Lτ + CRL)
(3.2b)

aSee Appendix F.3 for the detailed description and all results at specific frequencies.
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Figure 3.4: Bode plot of smaller transfer function which describe the transfer function of Equa-
tion 3.1(total) with a gain g of 1

wc1 =


1√
CL

g = 0√
R

Lτ+CRL g > 0
(3.3a)

Q1 =


√

CR2

L g = 0√
R(Lτ+CRL)

(L+Rτ(1−ggcs))2 g > 0

(3.3b)

wc2 =

{
− g = 0

τ+CR
CRτ g > 0

(3.3c)

wc3 =


− g = 0
− g = 1
1

|τ(1−ggcs)| else
(3.3d)
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Limitations
The insights in the characteristics, which are shown in Equation 3.3, help to find the limitations
of the characteristics. Table 3.1 shows the influence of parameter values on the characteristics.
”+” means that the characteristic is increased, ”-” means that the characteristic is decreased
and ” ” means that the characteristic will not change.

Table 3.1: Parameters influencing characteristics of the model in Figure 3.1 with first order filter
Characteristics g=0: Characteristics g>0:
wc1 Q1 wc2 wc3 wc1 Q1 wc2 wc3

Increase:
C - + - + -
L - - - -
τ - - (+ if g=1) - - (” ” if g=1)
g + (” ” if g=1) - (+ if g>2)

3.1.2 Optimal result
The optimal parameter values of the feedback model that minimize the transfer function at the
lowest PWM frequency (620 kHz)are found using the method with the solver, as described in
Section 2.1.2. The objective is to minimize the transfer magnitude at 620 kHz.

The optimal parameter values and restrictions of the feedback model are shown in Table
3.2. It is logical that the gain g is one, this is the best value as shown in Figure 3.2. If the gain g
is one, the third cut-off frequency do not exist. Only the first and second cut-off frequency and
Q factor are adjusted such that the minimum magnitude at 620 kHz is achieved.

The minimum magnitude of the lowest PWM frequency is -69.2 dB. The Bode and pole-zero
plot are shown in Figures 3.5 and 3.6. The figures shown that the magnitude of the model is
-73.3dB and the model is stable. The output ripple voltage can be found by subtracting the ideal
output (input signal times the system gain and feedback transfer function) from the real output.
The amplitude of the output ripple voltage can be read from the time domain plot in Figure 3.7,
6.21 mV.

The conclude, the magnitude at 620 kHz is decreased from -53.7 dB to -73.3 dB and the
output voltage ripple amplitude is reduced from 60.8 mV to 6.21 mV. The output ripple is re-
duced by the feedback model.

Table 3.2: Optimal values and restrictions of the model in Figure 3.1 with first order filter

Symbol Restriction Optimal values
R 4 Ω
gcs
L 1 nH ≤ L ≤ 10 mH 38 µH
C 1 pF ≤ C ≤ 10 mF 714 nF
g 0 ≤ g ≤ 2 1
τ 100 ns ≤ τ ≤ 1 s 2.85 µs
fc1 fc1 > 20 kHz 24.4 kHz
20log(|H(j20000)|) -1 dB ≤ 20log(|H(j20000)|) ≤ 1 dB -0.608 dB
20log(|H(j16000)|) -0.5 dB ≤ 20log(|H(j16000)|) ≤ 0.5 dB -0.199 dB
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Figure 3.5: Optimal Bode plot of the model in Figure 3.1 with first order filter. The magnitude
at 620 kHz decreases from -53.3 dB to -73.3 dB .

Figure 3.6: Optimal pole-zero plot of the model in Figure 3.1 with first order filter (represented
in angular frequency)
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Figure 3.7: Optimal time domain plot of the model in Figure 3.1 with first order filter. The
output voltage ripple amplitude is reduced from 60.8 mV (ripple basic) to 6.21 mV
(ripple ind1) .

3.2 Second order high pass filter feedback
3.2.1 Analysis
In this section,the feedback from the inductor voltage with a second order high pass filter is
analyzed. Starting by analyzing the total feedback model by determining the transfer function,
checking the stability and visualizing the frequency response. Then, the frequency response
will be characterized. At the end, the limitations of the model will be given.

Analysis of total feedback model
The analyzing is done by looking at the transfer function, Bode plot and pole-zero plot. The
transfer function of the circuit model with a second order high pass filter, H(s)L−2eHP , is shown
in Equation 3.4b. The Bode and pole-zero plot with different feedback gains around 1 is shown
in Figures 3.8 and 3.9. From the Bode plot it can been seen that the optimal gain is 1 (as
in Section 3.1.1), and the cut-off and Q factor stays the same for different gains g, only the
steepness changes from -40 dB/decade to -60 dB/decade. The pole-zero plot shows that the
feedback model is stable for different gains g [7].

H(s)L−2eHP =
VoutL−2eHP

Vin
⇒

H(s)L−2eHP =
s2R(1−ggcs)+sRwc

Q
+Rw2

c

s4CRL+s3(L+CRLwc
Q

)+s2(Lwc
Q

+R+CLRw2
c−ggcsR)+s(Lw2

c+R
wc
Q

)+w2
cR

(3.4)

bsee Appendix D.1 for the derivation
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Figure 3.8: Bode plot of the transfer function of the model in Figure 3.1 with second order filter
and different feedback gains g 0, 0.5, 1, 1.5 and 2

Figure 3.9: Pole-zero plot of the model in Figure 3.1 with second order filter and different feed-
back gains 0,1,10 and 50 (represented in angular frequency)
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Characteristics
The characterization of the frequency response is done by reducing the transfer function of
Equation 3.4 into several smaller transfer function, see Section 2.1.1 for the detailed description.
The smaller transfer functions that describe the transfer function of Equation 3.4 are shown in
Figure 2.5. The smaller transfer function are shown in Equation 3.5c. Figure F.8 shows the
Bode plot of the smaller transfer functions and transfer function of Equation 3.4. From Equation
3.5 it is shown that there are four interesting characteristics. Both smaller equation have in the
numerator and denominator a higher order than one, which indicates that there are four cut-off
frequencies. The interesting characteristics are circled in the Bode plot. After the first cut-off,
the steepness change from 0 dB/decade to -40 dB/decade. After the second cut-off frequency
the steepness changes to -20 dB/decade because gain g is 1, which implicates that the fourth
cut-off is at the same cut-off frequency as the second. The third cut-off frequency changes the
steepness to -60 dB/decade. If gain g was not 1, the steepness would change after the second
cut-off frequency to -40 dB/decade, the third to -80 dB/decade and the fourth to -40 dB/decade.
In Equation 3.6 the characteristics are shown.

L3 =
sRwc

Q +Rw2
c

s2(LwcQ + CLRw2
c +R(1− ggcs)) + s(Lw2

c +Rwc
Q ) + w2

cR
(3.5a)

L4b =
s2R(1− ggcs) + sRwc

Q +Rw2
c

s4CRL+ s3(L+ CRLwcQ ) + s2(LwcQ + CLRw2
c +R(1− ggcs))

(3.5b)

wc1 =


1√
CL

g = 0√
w2

cR
Lwc

Q +CLRw2
c+R(1−ggcs) g > 0

(3.6a)

Q1 =


√

CR2

L g = 0√
w2

cR(Lwc
Q +CLRw2

c+R(1−ggcs))
(Lw2

c+Rwc
Q )2 g > 0

(3.6b)

wc2 =

{
− g = 0
wcQ g > 0

(3.6c)

wc3 =

 − g = 0√
Lwc

Q +CLRw2
c+R(1−ggcs)

CRL g > 0
(3.6d)

Q3 =


− g = 0√

CRL(Lwc
Q +CLRw2

c+R(1−ggcs))
(L+CRLwc

Q )2 g > 0
(3.6e)

wc4 =


− g = 0
wcQ g = 1√
| w2

c

(1−ggcs)| else

(3.6f)

Q4 =


− g = 0
− g = 1√

|w
2
cR

2(1−ggcs)
(Rwc

Q )2 | = √|Q2(1− ggcs)| else

(3.6g)

csee Appendix F.4 for the detailed description and all results at specific frequencies
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Figure 3.10: Bode plot of smaller transfer function which describe the transfer function of Equa-
tion 3.4(total) with a gain g of 1

Limitations
The limitations of the characteristics are found with the help of Equation 3.6. Table 3.3 shows
the influence of parameter values on the characteristics. ”+” means that the characteristic is
increased, ”-” means that the characteristic is decreased and ” ” means that the characteris-
tic will not change. Note that when g is 1 or larger than 2 the some influence changes. To
illustrate how changing parameters influences the frequency response, wc is decreased. The
decrease increases the third cut-off frequency, which causes the change of the steepness,
from -20dB/decade to -60dB/decade, to start earlier. This makes the magnitude at the lowest
PWM frequency lower (620 kHz). Unfortunately, the first cut-off frequency also decreases. This
causes the class d amplifier to be unable to amplify the total audible frequency range, which is
undesirable.

Table 3.3: Parameters influencing characteristics of the model in Figure 3.1 with second order
filter

Characteristics g=0:
wc1 Q1 wc2 wc3 Q3 wc4 Q4

Increase:
C - +
L - -
wc

Q
g

Characteristics g>0:
wc1 Q1 wc2 wc3 Q3 wc4 Q4

Increase:
C - + - -
L - - - -
wc + - + + - +
Q - + + - + (+ if g=1) + (” ” if g=1)
g + - - - + (- if g>2) - (+ if g>2)
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3.2.2 Optimal result
The optimal parameter values of the feedback model that minimize the transfer function at the
lowest PWM frequency (620 kHz)are found using the method with the solver, as described in
Section 2.1.2. The objective is to minimize the transfer magnitude at 620 kHz.

The used optimal values and restrictions are shown in Table 3.4. It is logical that the gain
g is one, otherwise the fourth cut-off frequency and Q factor exist, which changes the roll-off at
the end -40 dB/decade, instead of -60 dB/decade. Furthermore, the third cut-off frequency will
be minimized, such that the steepness of -20 dB/decade after the second cut-off frequency is
as small as possible or does not exist. Figure 3.11 shows that the steepness does not exist.

Figures 3.11 till 3.14 show:the magnitude at 620 kHz is decreased from -53.7 dB to -78.4
dB; the system is stable;the ripple amplitude is reduced from 60.8 mV to 3.29 mV. The feedback
model reduces the output ripple.

Table 3.4: Optimal values and restrictions of the model in Figure 3.1 with second order filter
Symbol Restriction Optimal values
R 4 Ω
gcs
L 1 nH ≤ L ≤ 10 mH 32µH
C 1 pF ≤ C ≤ 10 mF 1.3 µF
g 0 ≤ g ≤ 2 1
wc 1 · 106 ≤wc≤1 · 1015 1Mrad/sec
Q 0.3≤wc≤10 10
fc1 fc1 > 20kHz 28 kHz
20log(|H(j20000)|) -1 dB ≤ 20log(|H(j20000)|) ≤ 1 dB -0.872 dB
20log(|H(j16000)|) -0.5 dB ≤ 20log(|H(j16000)|) ≤ 0.5 dB 0.109 dB

Figure 3.11: Optimal Bode plot of the model in Figure 3.1 with second order filter. The magni-
tude at 620 kHz is decreased from -55.3 dB to -78.4 dB .
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Figure 3.12: Optimal pole-zero plot of the model in Figure 3.1 with second order filter (repre-
sented in angular frequency)

Figure 3.13: Optimal pole-zero plot of the model in Figure 3.1 with second order filter zoomed
in (represented in angular frequency)
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Figure 3.14: Optimal time domain plotof the model in Figure 3.1 with second order filter. The
output voltage ripple amplitude is reduced from 60.8 mV (ripple basic) and 3.29
mV (ripple ind2)
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Chapter 4

Compare designs
In this chapter, all models are compared in a Bode plot and an overview of the results is given
in a table.

4.1 Bode plot
In Figure 4.1, all optimal frequency responses are shown in a Bode plot. The frequency re-
sponse of feedback output voltage with a first order filter and basic model lie almost at the
same line. This is because the magnitude of the lowest PWM frequency (620 kHz) is the lowest
when the feedback loop is not used, gain g is zero. The difference is that the feedback model
from the output voltage with a first order filter has the optimal basic parameter values. The
Bode plot shows that the feedback model from the output voltage with a second order filter has
the lowest magnitude of the lowest PWM frequency.

Figure 4.1: Optimized frequency responses. Basic = basic model. Out1 = model with feedback
from the output voltage with first order filter. Out2 = model with feedback from
the output voltage with second order filter. Ind1 = model with feedback from the
inductor voltage with first order filter. Ind2 = model with feedback from the inductor
voltage with second order filter.
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4.2 Overview results
Table 4.1 gives an overview of the results: the magnitude of the lowest PWM frequency from
the Bode plot; percentage of decrease of the magnitude; output ripple amplitude; percentage
of reduction of the amplitude. The percentage of decrease of the magnitude and reduction of
the amplitude are calculated with Equations 4.1 and 4.2.

The amplitude of the output ripple is higher for Out2 than for Ind2. Figure 4.2 shows both
output ripples. Ind2 looks like an AM signal and Out2 looks like an AM signal with peaks.
These peaks create the higher amplitude. Although the feedback model Out2 has a higher
output ripple amplitude, the feedback model is the best feedback model, as it has the lowest
magnitude at 620 kHz.

percentage = 100% · (
Magfeedback
MagBasic

− 1) (4.1)

percentage = 100% · (1−
Aripple−feedback
Aripple−Basic

) (4.2)

Table 4.1: Overview results

Model Magnitude [dB]
Percentage
decrease of
magnitude [%]

Ripple
amplitude [mV]

Percentage
reduction of
amplitude [%]

Basic -53.7 0 60.8 0
Output voltage first
order filter (Out1)

-55.7 4.5 48.9 19.6

Output voltage second
order filter (Out2)

-87.8 64.7 4.65 92.4

Inductor voltage first
order filter (Ind1)

-73.3 37.5 6.21 89.8

Inductor voltage second
order filter (Ind2)

-78.4 47.1 3.29 94.6

Figure 4.2: Output voltage ripple of Out2 and Ind2
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Conclusions and recommendations
Conclusions
The goal of the this report was to find the limitations and improve the feedback models of Lucas
Timmermans. These feedback models are designed to reduce the output voltage ripple. The
limitations were found via the characteristics of the feedback model transfer function. Using
these limitations, the model parameters were optimized, such that the model was improved.
The model with feedback from the output voltage with a first order filter did not reduce the
ripple. From the results, it seemed like the feedback model reduced the output voltage ripple
amplitude from 60.8 mV to 48.9 mV (reduction of 19.6%) and the magnitude at 620 kHz (lowest
PWM frequency) from -53.7 dB till -55.7 dB (decrease of 4.5%). However, this was not the
case, because the gain g in the feedback loop was zero. The model with feedback from the
inductor voltage with a second order high pass filter reduced the output voltage ripple amplitude
from 60.8 mV to 4.65 mV (reduction of 92.4%) and the magnitude at 620 kHz (lowest PWM
frequency) from -53.7 dB till -87.8 dB (decrease of 64.7%). The inductor feedback model with
a first order filter reduced the ripple from 60.8 mV to 6.21 mV (reduction of 89.8%) and the
magnitude at 620 kHz from -53.7 dB to -73.3 dB (decrease of 37.5%). The inductor feedback
model with a second order filter reduced the ripple from 60.8 mV to 3.29 mV (reduction of
94.6%) and the magnitude at 620 kHz from -53.7 dB to -78.4 dB (decrease of 47.1%). The best
feedback model is the model with feedback from the inductor voltage with a second order high
pass filter, as it has the lowest magnitude at 620 kHz: -87.7 dB.

Recommendations
The first recommendation of improvement is the method of characterization of the frequency
response. This method is not a peer-reviewed method, however, it does generate valid out-
comes. The biggest uncertainty of the method is the impact of neglecting one or more smaller
transfer functions. Smaller transfer functions can be neglected if they have overlap with other
smaller transfer functions. Furthermore, in one case the residual smaller transfer function had
an order higher than two in the denominator, which meant that the characteristics of the total
frequency response could not be fully characterized. It was tried to use a known method to
determine the characteristics of the frequency response: the dominant pole method. However,
this method did not work for both feedback models with a second order filter, because the new
transfer function did not have the same frequency response as the original frequency response.
The recommendation is to validate the used method or find a peer-reviewed method that works
for these feedback models.

The second recommendation is regarding the optimization of the feedback models. Opti-
mization is a specialized mathematical field, which means that someone with more expertise in
this area could find an algorithm and restrictions that potentially are satisfied a better solution
than the one presented here.

This research used a sine input. For further studies, it would be interesting to analyze what
would happen to the output ripple when an audio signal is used as input instead.

Another interesting study is to increase the order of the high pass filter. Especially the high
pass filters of the model with feedback from the inductor current. Theoretically it seems like
that the magnitude of the transfer function at 620 kHz would decrease if the order of the filter
increases. This would be interesting to analyze.
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A question that comes to mind is how much the efficiency of the class D amplifier with the
feedback model from the inductor voltage decreases. The class D amplifier is popular because
of its high efficiency. If the implementation of the feedback model decreases the efficiency too
much, the model would lose its practicality.

If the feedback models are efficient enough, it would be interesting to construct and sim-
ulate the feedback model with non-ideal components,such that performance in practice can
be predicted more accurately. If with non-ideal components the model remains promising, the
feedback could be constructed physically, to verify whether the model works in practice.
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Appendix A

Math derivations of basic model
A.1 Transfer function
The transfer function of the basic model, Figure A.1, is derived from the Kirchhoff’s rules, Equa-
tions A.1, and Laplace functions, Equations A.2. By combining the equations is the output volt-
age derived, shown in Equation A.3. The transfer function, shown in Equation A.4, is derived
by dividing the ouput voltage with the input voltage.

Figure A.1: Circuit model of a class D amplifier

iL = iC + iR (A.1a)
VC = VR = Vout (A.1b)
Vin = VL + VC (A.1c)

siL =
VL
L

=
Vin − Vout

L
⇒ iL =

Vin − Vout
sL

(A.2a)

sVC =
iC
C

= sVout ⇒ iC = sVoutC (A.2b)

Vout = RiR (A.2c)

Vout = RiR = R(iL − iC) = R(Vin−VoutsL − sVoutC) ⇒
Vout(1 + R

sL + sCR) = Vin
R
sL ⇒

Vout = Vin
R

sL(1+ R
sL

+sCR)
= Vin

R
s2LCR+sL+R

(A.3)

H(s)basic =
Vout
Vin

=
R

s2LCR+ sL+R
(A.4)
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A.2 Cut-off frequency, quality factor, poles and zero’s
From the standard low pass filter transfer function the cut-off frequency and quality factor could
be determined, Equation A.5. The zeros are the roots of the numerator of the transfer function.
The poles are the roots of the denominator of the transfer function. The poles and zeros are
determined in Equation A.6. Note that the numerator doesn’t have roots, so no zeros.

H(s) =
w2
c

s2 + swcQ + w2
c

=
R

s2LCR+ sL+R
=

R

s2LCR+ sL+R
=

1
LC

s2 + s 1
CR + 1

LC

(A.5a)

w2
c =

1

LC
⇒ wc = 2πfc =

1√
LC

⇒ fc =
1

2π
√
LC

(A.5b)

wc
Q

=
1

CR
⇒ Q = wcCR =

CR√
LC

=

√
CR2

L
(A.5c)

N(s) = R (A.6a)

D(s) = s2LCR+ sL+R ⇒ s =
−L±

√
L2 − 4CLR2

2CLR
(A.6b)
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Appendix B

Feedback filters
The Bode plots of the first and second order feedback filter are shown in Figure B.1 and Figure
B.2.

Figure B.1: Bode plot of first order filter
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Figure B.2: Bode plot of second order filter
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Appendix C

Math derivations of output feedback
C.1 Transfer function
The transfer function of the model with feedback from the output voltage, Figure C.1, is derived
with the following equations; Kirchhoff’s Equation C.1, Laplace Equation C.2 and current source
Equations C.3 and C.4. Note that the current of the current source is different for the first and
second order high pass filter. Combining the equations solves the equation for the output
voltage, Equations C.5 and C.6. The transfer functions are the output voltage divided with the
input voltage, shown in Equations C.7 and C.8.

Figure C.1: Circuit model of design 1

iL = iC + iR + isc (C.1a)
VC = VR = Vout (C.1b)
Vin = VL + VC (C.1c)

siL =
VL
L

=
Vin − Vout

L
⇒ iL =

Vin − Vout
sL

(C.2a)

sVC =
iC
C

= sVout ⇒ iC = sVoutC (C.2b)

Vout = RiR (C.2c)

isc1eHP = Vout
τs

τs+ 1
ggm (C.3)

isc2eHP = Vout
s2

s2 + swcQ + w2
c

ggm (C.4)
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Vout1eHP = RiR = R(iL − iC − isc1eHP ) ⇒
Vout1eHP = R(

Vin−Vout1eHP
sL − sVout1eHPC − Vout

sτggm
τs+1 ) ⇒

Vout1eHP (1 + R
sL + sCR+ sRτggm

τs+1 ) = Vin
R
sL ⇒

Vout1eHP = Vin
R

sL(1+ R
sL

+sCR+ sRτggm
τs+1

)
= Vin

R(τs+1)
sL(τs+1)+R(τs+1)+s2LCR(τs+1)+s2LRτggm

⇒

Vout1eHP = Vin
sRτ+R

s3LCRτ+s2(LCR+Lτ+LRτggm)+s(L+Rτ)+R

(C.5)

Vout2eHP = RiR = R(iL − iC − isc2eHP ) ⇒
Vout2eHP = R(

Vin−Vout2eHP
sL − sVoutC − Vout2eHP

s2ggm
s2+swc

Q
+w2

c
) ⇒

Vout2eHP (1 + R
sL + sCR+ Rs2ggm

s2+swc
Q

+w2
c
) = Vin

R
sL ⇒

Vout2eHP = Vin
R

sL(1+ R
sL

+sCR+ Rs2ggm
s2+swc

Q
+w2

c
)

⇒

Vout2eHP = Vin
R(s2+swc

Q
+w2

c )

s2LCR(s2+swc
Q

+w2
c )+s(s

2+swc
Q

+w2
c )L+R(s2+swc

Q
+w2

c )+s
3LRggm

⇒

Vout2eHP = Vin
s2R+swc

Q
R+w2

cR

s4LCR+s3(LCRwc
Q

+L+LRg)+s2(LCRw2
c+L

wc
Q

+R)+s(w2
cL+R

wc
Q

)+Rw2
c

(C.6)

H(s)out−1eHP =
Vout1eHP

Vin
= sRτ+R

s3LCRτ+s2(LCR+Lτ+LRτggm)+s(L+Rτ)+R
(C.7)

H(s)out−2eHP =
Vout2eHP

Vin
⇒

H(s)out−2eHP =
s2R+swc

Q
R+w2

cR

s4LCR+s3(LCRwc
Q

+L+LRggm)+s2(LCRw2
c+L

wc
Q

+R)+s(w2
cL+R

wc
Q

)+Rw2
c

(C.8)
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Appendix D

Math derivations of inductor feedback
D.1 Transfer function
The transfer function of the model with feedback from the inductor voltage, Figure D.1, is derived
from the Kirchhoff’s Equation D.1, and Laplace Equation D.2 and current source Equations D.3
and D.4. The current of the current source is different for the first and second order high pass
filter. The output voltage is derived by combining Equations D.1 till D.4, shown in Equations D.5
and D.6. Dividing the output voltage with the input voltage gives the transfer function, Equations
D.7 and D.8.

Figure D.1: Circuit model of design 4

iL = iC + iR + isc (D.1a)
VC = VR = Vout (D.1b)
Vin = VL + VC (D.1c)

siL =
VL
L

=
Vin − Vout

L
⇒ iL =

Vin − Vout
sL

(D.2a)

sVC =
iC
C

= sVout ⇒ iC = sVoutC (D.2b)

Vout = RiR (D.2c)

iscL−1eHP
= (Vin − Vout)

1

sL

τs

τs+ 1
ggm =

τ(Vin − Vout)ggm
L(τs+ 1)

(D.3)
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iscL−2eHP
= (Vin − Vout)

1

sL

s2

s2 + swcQ + w2
c

ggm =
sggm(Vin − Vout)
L(s2 + swcQ + w2

c )
(D.4)

VoutL−1eHP
= RiR = R(iL − iC − iscL−1eHP

) ⇒
VoutL−1eHP

= R(
Vin−VoutL−1eHP

sL − sVoutC −
τ(Vin−VoutL−1eHP

)ggm

L(τs+1) ) ⇒
VoutL−1eHP

(1 + R
sL + sCR− τRggm

L(τs+1)) = Vin( RsL −
τRggm
L(τs+1)) = Vin

R(τs+1−sτggm)
sL(τs+1) ⇒

VoutL−1eHP
= Vin

R(τs+1−sτggm)

sL(τs+1)(1+ R
sL

+sCR− τRggm
L(τs+1)

)
⇒

VoutL−1eHP
= Vin

R(τs+1−sτggm)
sL(τs+1)+R(τs+1)+s2CRL(τs+1)−sτRggm ⇒

VoutL−1eHP
= Vin

sRτ(1−ggm)+R
s3CRLτ+s2(Lτ+CRL)+s(L+Rτ−Rτggm)+R

(D.5)

VoutL−2eHP
= RiR = R(iL − iC − iscL−2eHP

) ⇒
VoutL−2eHP

= R(
Vin−VoutL−2eHP

sL − sVoutC −
sggm(Vin−VoutL−2eHP

)

L(s2+swc
Q

+w2
c )

) ⇒

VoutL−2eHP
(1 + R

sL + sCR− sggmR
L(s2+swc

Q
+w2

c )
) = Vin( RsL −

sggmR
L(s2+swc

Q
+w2

c )
) ⇒

VoutL−2eHP
(1 + R

sL + sCR− sggmR
L(s2+swc

Q
+w2

c )
) = Vin

R(s2+swc
Q

+w2
c )−s2Rggm

sL(s2+swc
Q

+w2
c )

⇒

VoutL−2eHP
= Vin

R(s2+swc
Q

+w2
c )−s2Rggm

(1+ R
sL

+sCR− sggmR

L(s2+swc
Q

+w2
c )

)sL(s2+swc
Q

+w2
c )

⇒

VoutL−2eHP
= Vin

R(s2+swc
Q

+w2
c )−s2Rggm

sL(s2+swc
Q

+w2
c )+R(s2+swc

Q
+w2

c )+s
2CRL(s2+swc

Q
+w2

c )−s2ggmR
⇒

VoutL−2eHP
= Vin

s2R(1−ggm)+sRwc
Q

+Rw2
c

s4CRL+s3(L+CRLwc
Q

)+s2(Lwc
Q

+R+CLRw2
c−ggmR)+s(Lw2

c+R
wc
Q

)+w2
cR

(D.6)

H(s)L−1eHP =
VoutL−1eHP

Vin
= sRτ(1−ggm)+R

s3CRLτ+s2(Lτ+CRL)+s(L+Rτ−Rτg)+R (D.7)

H(s)L−2eHP =
VoutL−2eHP

Vin
⇒

H(s)L−2eHP =
s2R(1−ggm)+sRwc

Q
+Rw2

c

s4CRL+s3(L+CRLwc
Q

)+s2(Lwc
Q

+R+CLRw2
c−ggmR)+s(Lw2

c+R
wc
Q

)+w2
cR

(D.8)
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Appendix E

Matlab and simulink
E.1 Measured models and used tools
The basic and feedback models (Figure E.1 till E.5) are simulated as follows:
• Bode and pole-zero plot with the tool Linear Analysis.
• Time domain ripple plot by subtracting the output with the ideal output (amplified transfer

function (GpwmH(s)) of circuit model). The plot is shown and compared with previous
measurements in Simulation Data Inspector.
• Frequency domain output plot is shown with the Continuous Powergui tool FFT Analysis.

The transfer function of each model is checked via the tool linear Analysis. The input pertur-
bations are placed at the input of the transfer function and at the output of the PWM generator
block. The output measurement are placed at the output of the transfer function and at output
of the PS-Simulink converter Vout. If the Bode plots are equal, the transfer function is correct.

Figure E.1: Measured circuit model of a basic class D amplifier
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Figure E.2: Measured circuit model of first order output feedback

Figure E.3: Measured circuit model of second order output feedback
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Figure E.4: Measured circuit model of first order inductor feedback

Figure E.5: Measured circuit model of second order inductor feedback

E.2 PWM generator and basic model values explained
The basic model, shown in Figure E.1, uses several components and blocks in Simulink. One
of the blocks is a PWM generator. The PWM generator will be explained in this section. Fur-
thermore, all input values will be discussed.

E.2.1 Explanation of PWM generator block
How a PWM generator works is shown with Figure E.9. If the triangle signal is above the input
signal, the PWM signal is low. When the triangle signal is below the input signal, the PWM
signal is high. Inside the PWM generator block is the input signal compared with a triangle
wave, shown in Figures E.6 and E.7. The triangle wave is made from a pulse generator. The
pulse generator creates a pulse from zero to 2·Apwm (Apwm=PWM amplitude). The pulse signal
is subtracted with Apwm, multiplied with fpwm · 4 and integrated. The initial condition starts at
−Apwm. Such that the right triangle will be made, Equation E.1. The comparator creates the
PWM signal of the input signal, shown in Figure E.8. This is done by subtracting the input and
triangle, multiplying the outcome with a big value (1000), limit the signal to the upper (Apwm)

52



and lower (−Apwm) saturation values, and multiply the limited signal with the PWM amplitude.
The multiplying with the big value must be big enough, such that the signal will be limited in the
saturation component which create the PWM signal.

Figure E.6: PWM generator

Figure E.7: Triangle wave

Figure E.8: Comparator

Figure E.9: How a PWM generator works
shown with signals [14]

A∧∧k =

 −Ain +
∫ t
0+ k

fpwm

4Ainfpwm , 0 + k
fpwm

≤ t ≤ 1
2fpwm

+ k
fpwm

Ain −
∫ t

1
2fpwm

+ k
fpwm

4Ainfpwm , 1
2fpwm

+ k
fpwm

≤ t ≤ 1
fpwm

+ k
fpwm

(E.1a)

A∧∧k =

{
−Ain + 4Ainfpwmt− 4Aink , 0 + k

fpwm
≤ t ≤ 1

2fpwm
+ k

fpwm

3Ain − 4Ainfpwmt+ 4Aink , 1
2fpwm

+ k
fpwm

≤ t ≤ 1
fpwm

+ k
fpwm

(E.1b)

E.2.2 Basic values
All input values of the basic model are the input amplitude Ain, input frequency fin, PWM
carrier frequency fpwm, PWM amplitude Apwm, system gain Asys, inductor L, capacitor C and
load-resistor R. The input is a sine with an amplitude Ain and frequency fin. The amplitude is
chosen to be 1V, because this is a common value. The frequency must be a frequency between
20 and 20000 Hz, human hearing range [5]. So there is chosen to have a input frequency of
5 kHz. If a PWM generator with 16 times oversampling, then is the PWM frequency 16 · fs. A
common sample frequency fs for audio signals is 44.1 kHz. This makes that the PWM carrier
frequency is 706 kHz. The PWM amplitude (is used for the pulse and triangle height, and PWM
components) must be higher or equal to the input amplitude, otherwise the PWM generator
produce a wrong signal. It is chosen to make the PWM amplitude 1V. The system gain is how
much the input signal will be amplified. It is chosen to make this gain 30. The inductor and
capacitor are derived in Section 1.1: 32 µH and 1 µF. A common load-resistor is 4 Ω.
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Appendix F

Transfer function expression
reduction
F.1 Feedback output voltage first order
The total transfer function of the feedback model from the output voltage with a first order filter,
shown in Equation F.1, has a too high order to characterize easily. The dominant parts of the
transfer functions at certain frequencies are shown in Table F.1. The dominant parts form the
smaller transfer functions, Equation F.2. The Bode plot of all smaller transfer functions and
total transfer function is shown in Figure F.1. Not all small parts are needed, some can be
neglected. The smaller transfer function G1 and G2 will be neglected, because transfer G3
describes the same characteristics at their specific frequency. Transfer G3 and G6 together
describe the same characteristics as G4 and G5. The numerator as G3 till G5 is the same and
the combination as G3 and G6 have the same denominator. So the smaller transfer functions
G4 and G5 can be neglected. This makes that G3 and G6 together describe the total transfer
function. The Bode plot of the used smaller transfer function and total transfer function is shown
in Figure F.2. The characteristics of the smaller transfer functions are the same characteristics
of the total transfer function, shown in Equation F.3.

H(s)out−1eHP =
sRτ +R

s3LCRτ + s2(LCR+ Lτ + LRτggm) + s(L+Rτ) +R
(F.1)

Table F.1: Dominant pole zero values of feedback output voltage first order filter
f(kHz)

x(s) 100 101 102 103 104 105 106

R 4 4 4 4 4 4 4

sRτ 5.09 · 10−4 5.09 · 10−3 5.09 · 10−2 5.09 · 10−1 5.09 5.09 · 101 5.09 · 102

R 4 4 4 4 4 4 4

s(L+Rτ) 5.60 · 10−3 5.60 · 10−2 5.60 · 10−1 5.60 5.60 · 101 5.60 · 102 5.60 · 103

s2(LCR+ Lτ

+LRτggm)

(3.89+

2.59g)10−6

(3.89+

2.59g)10−4

(3.89+

2.59g)10−2

(3.89+

2.59g)

(3.89+

2.59g)102
(3.89+

2.59g)104
(3.89+

2.59g)106

s3LCRτ 4.13 · 10−10 4.13 · 10−7 4.13 · 10−4 4.13 · 10−1 4.13 · 102 4.13 · 105 4.13 · 108

54



G1 =
R

R
(F.2a)

G2 =
R

s2(LCR+ Lτ + LRτggm) + s(L+Rτ) +R
(F.2b)

G3 =
sRτ +R

s2(LCR+ Lτ + LRτggm) + s(L+Rτ) +R
(F.2c)

G4 =
sRτ +R

s3LCRτ + s2(LCR+ Lτ + LRτggm) + s(L+Rτ)
(F.2d)

G5 =
sRτ +R

s3LCRτ + s2(LCR+ Lτ + LRτggm)
(F.2e)

G6 =
sRτ

s3LCRτ + s2(LCR+ Lτ + LRτggm)
=

Rτ

s(sLCRτ + LCR+ Lτ + LRτggm)
(F.2f)

Figure F.1: Bode plot of all smaller transfer function of model 2.1 with a first order filter and
gain g of 10
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wc1 =


1√
CL

g = 0√
R

LCR+Lτ+LRτggm
g > 0

(F.3a)

Q1 =


√

CR2

L g = 0√
R(LCR+Lτ+LRτggm)

(L+Rτ)2 g > 0

(F.3b)

wc2 =

{
− g = 0
1
τ g > 0

(F.3c)

wc3 =

{
− g = 0

CR+τ+Rτggm
CRτ g > 0

(F.3d)

Figure F.2: Bode plot of final smaller transfer function of model 2.1 with a first order filter and
gain g of 10

F.2 Feedback output voltage second order
The total transfer function of the feedback model from the output voltage with a second order
filter, Equation F.4, has a too high order to characterize easily. Table F.2 shows which parts of
the transfer functions at certain frequencies are dominant. The dominant parts form the smaller
transfer functions, shown in Equation F.5. The Bode plot of all smaller transfer functions are
shown in Figure F.3. Not all small parts are needed, some can be neglected. The smaller
transfer function H1 and H2 will be neglected, because transfer H3 describes the same charac-
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teristics at their specific frequency. Transfer H3 and H4 together describe the same character-
istics as H5 and H6. But note that H3 and H4 both have a too high order in the denominator to
characterize easily. H4 can be made smaller to H4b, shown in Equation F.6. H4b is determined
by looking at the dominant frequency between 10 MHz and 100 MHz. The smaller transfer
function is checked if it still describes the higher frequencies of the total transfer function via a
Bode plot graph, shown in Figure F.4. H3 can not be made smaller, a smaller transfer function
between with the dominant parts between 10 kHz and 100kHz which had a order two or lower
did not describe the total transfer function around 20kHz correct. This means that the total
transfer function can be described by the smaller transfer function H3 and H4b. Only H4b can
be characterized, so the total transfer function is partly characterized, see Equation F.7.

H(s)out−2eHP =
s2R+ sRwc

Q
+Rw2

c

s4LCR+ s3(LCRwc
Q

+ L+ LCggm) + s2(LCRw2
c + Lwc

Q
+R) + s(Lw2

c +Rwc
Q
) +Rw2

c

(F.4)

Table F.2: Dominant pole zero values of feedback output voltage second order filter
f(Hz)

x(s) 103 104 105 106 107 108 109

Rw2
c 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013

sRwc/Q 1.8 · 109 1.8 · 1010 1.8 · 1011 1.8 · 1012 1.8 · 1013 1.8 · 1014 1.8 · 1015

s2R 1.01 · 105 1.01 · 107 1.01 · 109 1.01 · 1011 1.01 · 1013 1.01 · 1015 1.01 · 1017

Rw2
c 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013

s(Rwc/Q+ Lw2
c) 2.22 · 1010 2.22 · 1011 2.22 · 1012 2.22 · 1013 2.22 · 1014 2.22 · 1015 2.22 · 1016

s2(R+RCLw2
c

+Lwc/Q)
1.54 · 107 1.54 · 109 1.54 · 1011 1.54 · 1013 1.54 · 1015 1.54 · 1017 1.54 · 1019

s3(LCRwc/Q

+L+ LRggm)

(1.59+

0.52g)103
(1.59+

0.52g)106
(1.59+

0.52g)109
(1.59+

0.52g)1012
(1.59+

0.52g)1015
(1.59+

0.52g)1018
(1.59+

0.52g)1021

s4LCR 8.21 · 10−2 8.21 · 102 8.21 · 106 8.21 · 1010 8.21 · 1014 8.21 · 1018 8.21 · 1022

H1 =
w2
cR

Rw2
c

(F.5a)

H2 =
w2
cR

s(w2
cL+Rwc

Q ) +Rw2
c

(F.5b)

H3 =
swcQ R+ w2

cR

s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R) + s(w2
cL+Rwc

Q ) +Rw2
c

(F.5c)

H4 =
s2R+ swcQ R+ w2

cR

s4LCR+ s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R) + s(w2
cL+Rwc

Q )
(F.5d)

H5 =
s2R+ swcQ R

s4LCR+ s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R) + s(w2
cL+Rwc

Q )
(F.5e)

H6 =
s2R

s4LCR+ s3(LCRwc
Q + L+ LRggm)

(F.5f)

H4b =
s2R+ swcQ R+ w2

cR

s4LCR+ s3(LCRwc
Q + L+ LRggm) + s2(LCRw2

c + LwcQ +R)
(F.6)
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Figure F.3: Bode plot of all smaller transfer function of model 2.1 with a second order filter and
gain g of 10

wc1 =

{ 1√
CL

g = 0

X g > 0
(F.7a)

Q1 =


√

CR2

L g = 0

X g > 0

(F.7b)

wc2 =

{
− g = 0

Qwc g > 0
(F.7c)

wc3 =

{
− g = 0

wc g > 0
(F.7d)

Q3 =

{
− g = 0

QR g > 0
(F.7e)

wc4 =

 − g = 0√
LCRw2

c+Lwc/Q+R
LCR g > 0

(F.7f)

Q4 =

 − g = 0√
(LCRw2

c+Lwc/Q+R)LCR
(LCRwc/Q+L+LRggm)2 g > 0

(F.7g)

58



Figure F.4: Bode plot of final smaller transfer function of model 2.1 with a second order filter
and gain g of 10

F.3 Feedback inductor voltage first order
The total transfer function of the feedback model from the inductor voltage with a first order
filter, Equation F.8, has a too high order to characterize easily. Table F.3 shows which parts of
the transfer functions at certain frequencies are dominant. The dominant parts form the smaller
transfer functions, shown in Equation F.9. The Bode plot of all smaller transfer functions and
total transfer function is shown in Figure F.5. Not all small parts are needed, some can be
neglected. The smaller transfer function K1 and K2 will be neglected, because transfer K3
describes the same characteristics at their specific frequency. Transfer K3 and K4 describes
the same characteristics as transfer K5. But note that K3 has a too high order in the denomi-
nator to characterize easily. H3 can be made smaller to K2b, shown in Equation F.10. K2b is
determined by looking at the dominant frequency between 100 kHz and 1 MHz. The smaller
transfer function is checked if it still describes the higher frequencies of the total transfer func-
tion via a Bode plot graph, shown in Figure F.6. Both transfer functions K2b and K4 have two
or lower order denominator and numerator, which means that the total transfer function can be
characterized by the smaller transfer functions, see Equation F.11.

H(s)L−1eHP =
sRτ(1− ggm) +R

s3CRLτ + s2(Lτ + CRL) + s(L+Rτ −Rτg) +R
(F.8)
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Table F.3: Dominant pole zero values of feedback inductor voltage 1e order filter
f(kHz)

x(s) 100 101 102 103 104 105 106

R 4 4 4 4 4 4 4

sRτ(1− ggm)
5.09(1− g)

10−4

5.09(1− g)

10−3

5.09(1− g)

10−2

5.09(1− g)

10−1 5.09(1− g)
5.09(1− g)

101
5.09(1− g)

102

R 4 4 4 4 4 4 4

s(L+Rτ

−Rτggm)

(0.56−
5.09g)10−2

(0.56−
5.09g)10−1

(0.56−
5.09g)

(0.56−
5.09g)101

(0.56−
5.09g)102

(0.56−
5.09g)103

(0.56−
5.09g)104

s2(LCR+ Lτ) 3.89 · 10−6 3.89 · 10−4 3.89 · 10−2 3.89 3.89 · 102 3.89 · 104 3.89 · 106

s3LCRτ 4.13 · 10−10 4.13 · 10−7 4.13 · 10−4 4.13 · 10−1 4.13 · 102 4.13 · 105 4.13 · 108

K1 =
R

R
(F.9a)

K2 =
R

s(L+Rτ −Rτg) +R
(F.9b)

K3 =
sRτ(1− ggm) +R

s3CRLτ + s2(Lτ + CRL) + s(L+Rτ −Rτg) +R
(F.9c)

K4 =
sRτ(1− ggm) +R

s3CRLτ + s2(Lτ + CRL)
(F.9d)

K5 =
sRτ(1− ggm)

s3CRLτ
(F.9e)

K2b =
sRτ(1− ggm) +R

s2(Lτ + CRL) + s(L+Rτ −Rτg) +R
(F.10)

wc1 =


1√
CL

g = 0√
R

Lτ+CRL g > 0
(F.11a)

Q1 =


√

CR2

L g = 0√
R(Lτ+CRL)

(L+Rτ(1−ggm))2 g > 0

(F.11b)

wc2 =

{
− g = 0

τ+CR
CRτ g > 0

(F.11c)

wc3 =

{
− g = 0
1

τ(1−ggm) g > 0
(F.11d)
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Figure F.5: Bode plot of all smaller transfer function of model 3.1 with a first order filter and
gain g of 1

Figure F.6: Bode plot of final smaller transfer function of model 3.1 with a first order filter and
gain g of 1
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F.4 Feedback inductor voltage second order
The total transfer function of the feedback model from the inductor voltage with a second order
filter, Equation F.12, has a too high order to characterize easily. Table F.4 shows which parts of
the transfer functions at certain frequencies are dominant. The dominant parts form the smaller
transfer functions, shown in Equation F.13. The Bode plot of all smaller transfer functions and
total transfer function is shown in Figure F.7. Not all small parts are needed, some can be
neglected. The smaller transfer functions L1 and L2 will be neglected, because transfer L3 de-
scribes the same characteristics at their specific frequency. Transfer L3, L5 and L6 will be also
neglected because the transfer function L4 describes their characteristics. Note that L4 has a
too high order in the denominator to characterize easily. L4 can be made smaller to L4b, shown
in Equation F.14. L4b is determined by looking at the dominant frequency between 10 MHz and
100 MHz. The smaller transfer function is checked if it still describes the higher frequencies of
the total transfer function via a Bode plot graph, shown in Figure F.8. Both transfer functions
L3 and L4b have two or lower order denominator and numerator, which means that the total
transfer function can be characterized by the smaller transfer functions, see Equation F.15.

H(s)L−2eHP =
s2R(1− ggm) + sRwc

Q +Rw2
c

s4CRL+ s3(L+ CRLwcQ ) + s2(LwcQ + CLRw2
c +R(ggm) + s(Lw2

c +Rwc
Q ) + w2

cR

(F.12)

Table F.4: Dominant pole zero values of feedback inductor voltage second order filter
f(kHz)

x(s) 100 101 102 103 104 105 106

Rw2
c 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013

sRwc/Q 1.8 · 109 1.8 · 1010 1.8 · 1011 1.8 · 1012 1.8 · 1013 1.8 · 1014 1.8 · 1015

s2R(1− ggm)
1.01(1− g)

105
1.01(1− g)

107
1.01(1− g)

109
1.01(1− g)

1011
1.01(1− g)

1013
1.01(1− g)

1015
1.01(1− g)

1017

Rw2
c 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013 1.6 · 1013

s(Rwc/Q

+Lw2
c)

2.22 · 1010 2.22 · 1011 2.22 · 1012 2.22 · 1013 2.22 · 1014 2.22 · 1015 2.22 · 1016

s2(R(1− ggm

+CLw2
c)

+Lwc/Q)

(1.54−
0.01g)107

(1.54−
0.01g)109

(1.54−
0.01g)1011

(1.54−
0.01g)1013

(1.54−
0.01g)1015

(1.54−
0.01g)1017

(1.54−
0.01g)1019

s3(LCRwc/Q

+L)
1.59 · 103 1.59 · 106 1.59 · 109 1.59 · 1012 1.59 · 1015 1.59 · 1018 1.59 · 1021

s4LCR 8.21 · 10−2 8.21 · 102 8.21 · 106 8.21 · 1010 8.21 · 1014 8.21 · 1018 8.21 · 1022
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L1 =
Rw2

c

w2
cR

(F.13a)

L2 =
Rw2

c

s(Lw2
c +Rwc

Q ) + w2
cR

(F.13b)

L3 =
sRwc

Q +Rw2
c

s2(LwcQ +R+ CLRw2
c − ggmR) + s(Lw2

c +Rwc
Q ) + w2

cR
(F.13c)

L4 =
s2R(1− ggm) + sRwc

Q +Rw2
c

s4CRL+ s3(L+ CRLwcQ ) + s2(LwcQ +R+ CLRw2
c − ggmR) + s(Lw2

c +Rwc
Q )

(F.13d)

L5 =
s2R(1− ggm) + sRwc

Q

s4CRL+ s3(L+ CRLwcQ ) + s2(LwcQ +R+ CLRw2
c − ggmR)

(F.13e)

L6 =
s2R(1− ggm)

s4CRL+ s3(L+ CRLwcQ )
(F.13f)

L4b =
s2R(1− ggm) + sRwc

Q +Rw2
c

s4CRL+ s3(L+ CRLwcQ ) + s2(LwcQ +R+ CLRw2
c − ggmR)

(F.14)

wc1 =


1√
CL

g = 0√
w2

cR
Lwc

Q +CLRw2
c+R(1−ggm) g > 0

(F.15a)

Q1 =


√

CR2

L g = 0√
w2

cR(Lwc
Q +CLRw2

c+R(1−ggm))

(Lw2
c+Rwc

Q )2 g > 0

(F.15b)

wc2 =

{
− g = 0

wcQ g > 0
(F.15c)

wc3 =

 − g = 0√
Lwc

Q +CLRw2
c+R(1−ggm)

CRL g > 0
(F.15d)

Q3 =


− g = 0√

CRL(Lwc
Q +CLRw2

c+R(1−ggm))

(L+CRLwc
Q )2 g > 0

(F.15e)

wc4 =


− g = 0

wcQ g = 1√
w2

c

(1−ggm) else

(F.15f)

Q4 =


− g = 0

− g = 1√
w2

cR
2(1−ggm)

(Rwc
Q )2 =

√
Q2(1− ggm) else

(F.15g)
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Figure F.7: Bode plot of all smaller transfer function of model 3.1 with a second order filter and
gain g of 1

Figure F.8: Bode plot of final smaller transfer function of model 3.1 with a second order filter
and gain g of 1
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