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Abstract— Fully trained convolutional neural networks are
being used nowadays in various applications. But, can we get
an understanding on how they actually work? A small step
in that direction is taken in this paper. The filters of the first
layers seem to be fairly straightforward and mostly are known
and recognizable. If one makes a network with fixed weights
on the filters, how is its performance compared with a fully
trained one? And how is the training time influenced? This
paper, answers this question by experimenting in a verification
style CNN put in three different situations: first a fixed layer
network, second a set layer network and third a fully trained
CNN. It is shown that although similar results can be achieved
with the three networks, a fully trained one still has superior
performance; however, training time is increased as the number
of fixed layers are increased.

I. INTRODUCTION

At present times, biometric recognition, like face recog-
nition, is being used as the main security barrier in various
projects, making the need for it to be as fast and accurate as
possible obvious. The state of the art methods are using a
trained convolutional neural network (CNN) on a huge data
set in order to make it efficient and precise. The problem
introduced, is that the output of the training is not something
that can be analyzed and its workings understood, but has to
be taken as always true. As this is a really important piece in
the security process, understanding how it actually works is
crucial. In this paper a step towards that will be attempted.

If one looks at the first layers of a trained CNN a lot of
the times very common filters can be recognized. Usually,
these layers are made by filters like Gaussian, Gabor, edge
detection or other low order filters. Observing this, the idea
of replacing the trained filters with ones that can easily be
designed comes to mind. But, how much will this affect the
performance of the network? And how does this affect the
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training time? These are the questions raised in this paper
and in order for them to be answered the performance and
training time of such a network will be compared with a
more classical fully trained CNN.

Fig. 1. Common architecture of CNN’s. [10]

II. BACKGROUND THEORY

In this part of the paper a basic introduction in the
workings of CNN will be made. For a more detailed in-
troduction the lectures of the CS231n course from Stanford
University on Convolutional Neural Networks, provide a
clear explanation of convolutional networks and practice [7].

A. Architecture of CNN’s

In this paper the simplest form of CNN’s is used, meaning
sequential models. These networks are an assembly of mul-
tiple layers put one after the other. The input of the network
is put at the start and a form of classification is the output of
the network. The most common layers that these networks
are made of are 2D convolution, max-pooling and dense or
fully connected layers.

1) 2D-Convolution layer: In a convolution layer a set of
small filters, usually 3x3 to 5x5, are set. Each one of these
filters is convolved with the input and the outputs are set
as the channels of the output feature map, which in turn is
the output of the layer. Other than the weights, there are
multiple parameters that need to be set in these layers like
the padding, size of filters and the stride. These will all affect
the output of the layer.

2) Max-pooling layer: In a CNN max-pooling layers are
used to provide a form of rotation and translation invariance.
It reduces the dimensionality of the intermediate layers and
therefore the number of parameters to be trained. Generally,
other types of pooling can also be used but the most common



one is max pooling, meaning a layer that down-samples the
input taking the max from a select region, usually 2x2 to
4x4.

3) Flatten layer: Flatten layers are quite simplistic and
are used in order to extract a feature vector from the output
of the other layers. These layers stack all pixels of all the
channels in a vector and present them as the output.

4) Fully connected / Dense layer: After multiple con-
volution and max-pooling layers, in order to be able to
learn non-linear combinations of the features, one or more
fully-connected layers are added. In these layers all of the
inputs are connected to all of the outputs. The last layer
of a CNN is also usually such a layer but with a different
activation function. Depending on the classification that the
network has to perform, this activation function is set. Most
common activation functions are sigmoid or soft-max. As
last layers of a CNN, other type of classifiers can be added,
for example more classical classifiers like random forest or
nearest neighbor.

5) Training: When the structure of the CNN is made, a
set of images is passed through it and the weights of all
the filters are changed in order for the input to be classified
correctly. This is done for a varied amount of times, called
epochs and the number of images per epoch is the batch size.

B. Common Structure

The most common structure for a CNN is to have multiple
pairs of convolution and max-pooling layers at the start
followed by a dense layer and some activation function like
soft-max (figure 1). These networks are usually used for
multi-class classification or binary classification. This means
that the network is trained in order to get to a result either by
saying which object was the input or identifying the image
as one of two classes.

C. Verification CNN’s

A CNN tuned for verification has a slightly different struc-
ture than that of a classical one. In this setting the network
has an input of two stacked images, or two inputs, and
is trained towards a single output which is the verification
score. This network structure can be seen in figure 2. The
verification score identifies whether the two images are of
the same or different type.

III. METHOD

Here, a model is created using python, and more specifi-
cally Keras with Back-end Theano. Using these tools a verifi-
cation style network is created and different experiments are
run on it. The tutorial that was mostly followed to create
these experiments was [5]; further documentation can be
found in [4]. The code that was used in this paper can be
found in VII-A.

A. Experimental setup

The goal of this work is to research the effect of setting the
filters of a CNN, in training time and performance. In order
to do this three experiments are created. However first the

experimental setup needs to be explained. Figure 3 shows this
setup. This network has the structure explained in section II-
C; more specifically it is composed by four 2D-convolution,
four max-pooling, one flatten and one Dense with a soft-max
activation layers. This size of network was chosen in order
to have a fairly simple experimental setup that can be easily
created and reproduced. A more complicated setup would
require substantially more time and effort in order to be
correctly trained. On the other hand, a much simpler network
could give results that might not be directly related to real
life uses of CNN’s where the network structures are far from
simplistic. The number of filters per layer was chosen to be
as such, 20-40-60-80 for each layer respectively, in order to
be able to compare the results of this work with the results
shown by F.H.J. Hillerström [1]. Her paper also was on
similar topics and showed the difference between different
types of CNNs and the effect of the training dataset size.

Fig. 3. Network architecture used for all three experiments in this paper.
Size of all inputs and outputs of the layers are shown.

The experiments made on these networks involve setting
the weights of some of the filters of the network. For this
paper only the weights of the first two convolution layers are
set. This is done for various reasons. First, by observing the
fact that starting layers of CNN’s usually have recognizable
and simplistic filters, setting these is quite straightforward.
Concurrently the last layer’s filters are usually higher order,
which would make designing filters for these troublesome.
Secondly, in most applications of CNNs the first layers stay
approximately the same whereas the last layers are very
dependent on the use of the CNN. Finally, the number of



Fig. 2. Deep Verification Learning convolutional network. At the input two gray-scale images are presented, each in a separate channel. The network is
directly trained towards a verification score. Network based on the topology proposed by Sun et al. [13] and worked on by F.H.J. Hillerström [1]. Face
images are preprocessed images from the FRGC dataset

filters per layer highly increases from layer to layer making
it very hard to design the amount of filters needed for the
last layers, for instance in the network used the first layer
had 20 filters while the last had 80 filters.

B. Experiments

Three different experiments are done each with different
initial weights on the first layers of the same network. From
these, metrics to measure the performance and time to train
will be saved.

Ex. A: Fixed filter CNN: In this experiment the first and
second layers’ filters are fixed. The filters set in these layers
can be seen in figures 4 and 6. After these filters are set, the
rest of the network, layer 3 and 4, are normally trained while
the first two layers remain intact throughout the training (they
are fixed layers).

Fig. 4. First layer of experiment A: Fixed filters, edge detection filters. In
this image numbers from -1 to 1 are mapped to colors from white to black,
zero being gray one being white and -1 being black.

In the first layer mostly edge detection filters are used; this
is done to extract important features of the face like the shape
of the eyes, nose and mouth. Other important characteristics

of a person like the placement of eyes or nose or the existence
of unique features like moles or scars can also be found by
using edge detection filters. Two of the channels keep the
input intact to the next layer. In figure 5 an example of the
output of the first layer is shown.

Fig. 5. Example of input image passed through filters of the first layer
in experiment A. In this image numbers from -1 to 1 are mapped to colors
from white to black, zero being gray one being white and -1 being black.

Fig. 6. Second layer of experiment A: Fixed filters, Gabor filters. In this
image numbers from -1 to 1 are mapped to colors from white to black, zero
being gray one being white and -1 being black.



In the second layer Gabor filters are mostly used. Addi-
tionally some Gaussian filters are added and some of the
filters are again set to pass the input as is. Gabor filters are
used in order to get the texture of the skin or the edges -
[8]. The code used to create these filters is based on in [9]

To show how complicated the filters of the final layers can
be, figure 7 shows only the third layer of the network and
still the filters are quite complicated even though being only
3x3.

Fig. 7. Filters of the 3rd layer, experiment A, after training the network. In
this image numbers from -1 to 1 are mapped to colors from white to black,
zero being gray one being white and -1 being black.

Ex. B Set filter CNN: In this experiment the first and
second layers are set and then trained. When set the same
filter weights are used as in experiment A and then all
four layer weights are left to freely train on the dataset.
Comparing figure 8,to figure 4 shows easily that the majority
of the structure of the filters are kept the same with only fine-
tuning.

Fig. 8. First layer of experiment B: set layers, edge detection filter after
training. In this image numbers from -1 to 1 are mapped to colors from
white to black, zero being gray one being white and -1 being black.

Ex. C Random filters CNN: In the last experiment, the
weights of all four layers are set randomly, as usually done
in most CNNs; after that all the weights are changed during
the training procedure.

C. Data & Preparation

The training of these networks is done on images taken
from the FRGC dataset [11] and more specifically the
FRGC v2.0 from fall 2003, spring 2003 and spring 2004.
In this dataset pictures are taken from the same people in
these times; this dataset has pictures with various facial
expressions and backgrounds. For these experiments only
pictures in controlled environment and neutral expressions
are chosen. After this selection the face of the each person
is cropped from the image using the function crop-face [12].
This function uses the positions of the eyes and the output
size in order to get the face of the person. From this dataset,
pairs of images are made either with the same person or
two different ones. The total number of pairs used in the
training is 5659, this size of dataset is chosen in order to
get a network that is trained on a medium to small dataset;
this is where setting the filters would make most sense as,
if a very large amount of data is provided, there would be
no need to lessen the training or to speed the process. The
number of ”same” classified images is slightly bigger than
that of the ”different” ones being 52% of the dataset. This
set of images is split in two parts: a training set and a testing
one. The training set in 80% of the whole, while the testing
set is 20%. This split is done in a way that ensures the fact
that there are around 50% ”same” and 50% ”different” pairs
in both the training and the testing set.

D. Expectations

By doing these experiments and looking into the perfor-
mance of the out-coming networks as well as the time and
number of epochs they need to train, some conclusions can
be drawn. The expectations for these are that the performance
of experiment C will be best followed by B and then by A.
This is due to the fact that the third experiment has more
freedom to train on the specific dataset and get the best
results as it has more weights to train. However, this means
that it is also expected to take a longer training time.

E. Performance Metrics

In order to test the workings of a CNN, a number of
metrics are used. The most common ones are accuracy, loss,
receiver operating characteristic(ROC curve) and the Area
under the ROC curve.

Accuracy of a CNN is the percentage of times it classifies
an image, or in this case a pair, correctly. This is calculated
throughout the training of the CNN and presented in a graph.
The accuracy of both the training and the testing dataset is
calculated. Naturally the accuracy of the training dataset is
going to be much higher as the network is trying to classify
images that it has been directly trained on. When training
the network, its accuracy needs to be maximized for both
the training and the validation dataset.

Unlike accuracy, loss is not a percentage. It is a summation
of the errors made for each example in training or validation
sets. Loss shows how well the network is doing in rec-
ognizing images from the specific datasets, testing/training.
This is a general idea what loss is, as the more detailed



mathematical explanation is out of the scope of this paper.
Of most importance is the fact that the loss needs to be kept
as low as possible during the training.

When training and choosing when to stop the training,
the loss and accuracy are mostly taken into account as the
best time to stop is when the loss is as low as possible and
accuracy is maximized. -[3]

The ROC curve shows how well a binary classifier can
distinguish between the two choices. In a classifier there will
always be false positives and false negatives. A threshold
needs to be decided on, in order to choose whether an image
will be classified as ”same” or ”different”. A ROC curve is
made by varying this threshold and plotting the true positive
rate against the false positive rate. For this plot a completely
random classifier would get a line through the middle of the
graph. Generally, the further towards the top left the graph
is, the better the CNN. This is easily shown with the AUC of
the graph which is a calculation of the area under the ROC
curve - so the higher the AUC the better the CNN. The AUC
is an easy way to tell which CNNs are better at classifying a
dataset, as the higher it is the better the CNN with a natural
maximum of 1. -[2]

IV. EXPERIMENTAL DATA AND RESULTS

Ex. A: Fixed filter CNN

Here the results of experiment A, fixed 1st and 2nd layer
CNN, are shown. In figure 9 the accuracy of this network
for the 500 epochs is shown. Figure 10 depicts the loss of
the same network. The optimal time to stop the training is
around the 150th epoch to be certain that the accuracy is at
its highest while the loss is kept low. The lowest ROC curve
of figure 15 is taken from this network at that epoch. The
AUC of that curve is approximately 0.9599.

Fig. 9. Accuracy of Experiment A: Trained Fixed layer CNN

Fig. 10. Loss of Experiment A: Trained Fixed layer CNN

Ex. B Set filter CNN

Here the results of experiment B: set weights of 1st and
2nd layer and then fully train the CNN, are shown. In figure
11 the accuracy of this network for the 500 epochs is shown
and figure 12 depicts the loss of the same network. The
optimal time to stop the training is around the 75th epoch to
be certain that the accuracy is at its highest while the loss
is kept low. The ROC curve of figure 15 is taken from that
epoch, and in that plot it is the middle curve. The AUC in
this case is 0.9641

Fig. 11. Accuracy of Experiment B: Trained set layer CNN



Fig. 12. Loss of Experiment B: Trained set layer CNN

Ex. C Random filters CNN
Finally here the results of experiment C, randomly set

filters and then fully trained CNN, are shown. In figure 13
the accuracy of this network for the 500 epochs is shown and
figure 14 shows the loss of the same network. The optimal
time to stop the training is probably around the 50th epoch
to be more certain that the accuracy is at its highest while
the loss is kept low. The ROC curve of figure 15 is taken
from that epoch, and in that plot is the top curve. The AUC
here is 0.9747

Fig. 13. Accuracy of Experiment C: Fully trained CNN

Fig. 14. Loss of Experiment C: Fully trained layer CNN

Fig. 15. ROC curve of all three experiments. Top one is Experiment C: fully
trained, middle one Experiment B: is set layer and bottom is Experiment A:
fixed layer CNN

V. DISCUSSION

From the results shown in chapter III-E, it is easily seen
that the fully trained CNN, experiment C, gives the best
classification of the dataset when compared with the other
two. At the same time, it takes less epochs to train and
has superior performance. This can easily be recognized
by comparing the AUC of the three experiments and the
stop epoch for each one. Namely the difference in AUC
between the first and third experiment is 0.0148 and it takes
approximately three times longer to train.

However even the fixed layer CNN, experiment A, gives
very good results on its own, having very high accuracy.
This shows that indeed the first layers of CNNs are made by
easily designed filters. If more time had be spent designing
more filters and tuning them, in order to get the best features
out of the fixed layer CNN, then even closer performance
could probably be achieved. This can be easily seen from the
fact that in experiment B the filters were not fundamentally
changed but remained very similar to the fixed layers filters.

When looking at the training time the fact that the fixed
layer takes more epochs to get to a good result seems
questionable. Since it has less weights to train one would
expect it to take less time to train, though as seen that is
not the case. This result can be explained by the fact that
because it has less weights to train these weights need more
training time in order for them to be perfectly tuned to give
the same result. As such the fixed layer network will need
an increasing amount of time to train.

VI. CONCLUSION

Concluding, indeed the layers of a CNN can fixed be one
after another in order to finally get to a network with only
set filters that are fully understood, without compromising its
performance. This would require a lot of testing and research
into what kind of filters are needed to get the optimal features
out of each layer. The training time would increase as the
number of fixed layers is increased. If such a network is



designed it would be a network that we can fully interpret,
giving some understanding in the workings of CNNs as a
whole.

VII. APPENDIX

A. Code

All the code used to get these results can be
found in the git: https://github.com/AlKyrl/BA_
Ass-Fixed-layer-CNN

B. Confusion matrices

Fig. 16. Confusion matrix of Validation data for Experiment A

Fig. 17. Confusion matrix of Validation data for Experiment B

Fig. 18. Confusion matrix of Validation data for Experiment C
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