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Summary

After an incidence of stroke, the motor activity of the patient can be affected. This is perceivable by
the inability to complete simple hand movements. By using wearables, which are suitable for am-
bulatory measurements, home revalidation becomes an option. By implementing a highly sampled
IMU in a wearable device, it becomes possible to detect specific vibrations corresponding to certain
hand movements. As every gesture generates a different movement pattern, it is possible to extract
characteristic features of those movements. These can be used to classify the different gestures to
be able to identify movements made by the user.

The main focus of this research is to evaluate the feasibility of detecting gestures in Activities in
Daily Life (ADL) by evaluating micro-vibrations using a single wrist-worn highly sampled IMU. In order
to determine this feasibility, the research question if the information obtained by a highly sampled
IMU is adequate enough to classify different gestures is answered.

The search to implement the human body as input for electrical devices has been going on for
quite awhile. This ranges from using the skin as input and measuring acoustic energies to using
vibrations generated by the bones to determine which gesture is made. To be able to use this
method in home recovery it is useful to work with a existing product. With the use of wearables (e.g
smartwartches) this can be achieved. These devices use an Inertial Measurement Unit to detect
movements made by the user. By increasing the sampling frequency of these devices it might be
able to detect more detailed movements, such of the fingers of hand to start using it for gesture
recognition.

This research uses a motion logger with the ability to detect acceleration at a sampling frequency
of 2000Hz. However, it is unknown how detailed the detections will be and if recognition is possi-
ble. The data that is extracted of the movements, are analysed using signal processing. First the
complete signal is divided into 30 sets, where each set indicate one gesture. By implementing the
Fast Fourier Transform and determining the power spectrum, it is possible to extract features to char-
acterise the gestures. These features range from the standard deviation and sum to the 5 highest
peaks of each set. After these features are extracted machine learning is used to classify the ges-
tures. The accuracy must be atleast 80% to satisfy the correct characterisation of gestures, as home
revalidation needs a high accuracy while this also takes varieties of human movements into account.

For this research 8 subjects are measured, who are asked to perform 2 sets each consisting of
30 gestures. The gestures are based on the possibility that they can be used in activities in daily life.
The motion logger is placed around the right wrist of every participant to ensure it is possible to com-
pare the results. The IMU measures the acceleration of a set of gestures for each subject, which are
analysed using signal processing techniques like Fast Fourier Transform and power spectrum. To be
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SUMMARY iv

able to classify these gestures, features are extracted from the power spectrum to indicate the char-
acteristics corresponding to each specific movement. Using the classification learner Support Vector
Machines, which applies hyperplanes between the different data points, subject specific models and
generic models are generated. The gestures will be implemented individually and grouped based on
corresponding movements. These models are created using the feature sets obtained of both the
individually and grouped gestures as input. One data set is used to test the model. The results of the
tested model are shown in a confusion matrix to indicate the accuracy of correctly classified gestures.

After some setbacks and troubles with the sensor the following results were found. It was discov-
ered that for subject specific models individually arranged gestures an average accuracy of 53% was
obtained and for grouped gestures 68%. While the generic models generated an accuracy of 35%
individually and 62% grouped. The accuracy of the individually based generic model is significantly
smaller than the other models as it did not have enough input to create a representative model that
takes variations of movements into account. While the accuracy of the subject specific models could
be increase if more measurements were conducted per subject.

When looking at those accuracies it can be stated that for now the method is not adequate enough
to be used in gesture recognition nor is it applicable in home recovery. To be able to meet the goal
of this research some improvements can be done. Firstly, the use of a correct working sensor,
that does not affect the data is needed. Secondly, an increased number of subjects and amount of
measurements is useful. These changes are expected to lead to a better data representation and
more information available for the classifier.
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Chapter 1

Introduction

The introduction gives an inside in the motivation and goals of this research as well as explaining the
global overview of the chapters.

1.1 Motivation

After an incidence of stroke, the motor activity of the patient can be affected. This is perceivable by
the inability to complete simple hand movements. Home monitoring after discharge is necessary to
analyse the recovery process. As wearables are suitable for ambulatory measurements, they have
potential applications in a minimal sensing system. By using a highly sampled Inertial Measurement
Unit (IMU) it is possible to detect the hand movements of such a patient [1]. As highly sampled IMUs,
which work for frequencies above 250 Hz, can detect high frequencies it is able to measure specific
vibrations corresponding to certain hand movements.

Currently, wearable devices are not adequate to detect such detailed movements, as they are
mainly fabricated for a frequency around 100 Hz [1]. By implementing more suitable components
it is an option to start using them in recovery processes, which can be beneficial to give proper
revalidation in a home situation.

This study a prelimitary study based on the ViBand paper, which uses accelerometers for bio-
acoustic sensing and is conducted with the NeuroCIMT project 7 [2].

1.2 Goal of the research

Every gesture generates a different movement pattern resulting in different frequency spectra of
accelerations. Using this knowledge, it is possible to extract features for each gesture, which can be
used to identify the movements made by the user. Classification of different gestures is performed by
training models using machine learning with the extracted features as input. The goal of this research
is to evaluate the feasibility of detecting gestures in Activities in Daily Life (ADL) by evaluating micro-
vibrations using a single wrist-worn highly sampled IMU. The research question to answer this goal
is

• Is the information obtained by a highly sampled IMU adequate enough to classify different
gestures?

1



CHAPTER 1. INTRODUCTION 2

1.3 Report organization

The remainder of this report is organized as follows. In Chapter 2 a global overview of available
researches is given. In Chapter 3, the main theory behind the determination of the gestures will be
explained. Then, in Chapter 4, the application of the IMU, the data analysis and the experiment are
elaborated. The results will be studied in Chapter 5 and discussed in Chapter 6. Finally, in Chapter
7, conclusions and recommendations are given.



Chapter 2

Literature Study

The search to implement the human body as an input for electric devices has been going on for quite
some time. The researches in this field vary from using the skin as an input(eg. [3], [4]) to determining
internal sounds, electrical activity or vibrations(eg. [5], [6]).

Harrison C. et al. [2010] looked at using the skin as an input. This is done by measuring acoustic
energy (e.g. sound waves), which is generated by tapping the skin for example. A sensor was placed
on the skin to detect these waves. A cantilever sensor was used, as it was possible to alter the
resonant frequency and did not have a flat response curve. This resulted in less irrelevant frequency
detection thus a lower Signal-to-Noise Ratio (SNR). The research was conducted for single hand
gestures (touching finger e.g. with only the hand that is connected with the sensor), and finger or
forearm taps, with the sensor being placed underneath the elbow. Eventually the average accuracy
of all these measurements was found to be 87.6%. [3]

Electromyography (EMG) is another important measurement using the skin as input, which reg-
isters electrical activity. These can then be implemented for other uses (e.g Muscle-Computer inter-
faces). Instead of measuring the movement of the skin, electrical potentials generated by the muscle
cells are detected. An advantage of this is that it directly interfaces with the muscle activity. The re-
search looked at the activity of the muscles when lifting, tapping, putting pressure on the fingers and
moving the hand to two positions. The band was placed on the forearm to be connected to muscles
and to decrease discomfort. The accuracy determined for the complete gesture set was 80.5%. [4]

Hambone [5] however uses vibrations generated by the movement of the bones to determine
which gesture is made. These are detected using piezoelectric sensors, as these can notice me-
chanical vibrations thus able to measure bone vibrations. An essential detail is that the attenuation of
bones is lower than of muscles resulting in the necessity to place the sensor as close to the bones as
possible without excessive movement of the skin. The optimal areas are thus the wrist and ankle as
there are the ulnar and radial styloids (bumps of the wrist) and lateral and medial malleoli (bumps of
the ankle) located. The gestures evaluated are focused on these locations, e.g. moving foot up, down
or rotating as well as flicking the air or snapping with the fingers. It was found that the overall accuracy
of both the ankle and wrist combined was around 95% [5]. Amento [6] focused on the sounds made
by the movements of the bones instead of the vibrations. As the bones generate quiet sounds, the
skin passes the sounds on to the piezoelectric microphone, which is placed on the skin. Essential is
that this sensor does not detect airborne sounds, meaning it is not influenced by the surroundings.
For optimal detection the sensor must thus be placed as close to the movement as possible, thus
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giving the wrist as the more favourable position to place the sensor. The main gestures documented
were tapping, flicking and rubbing with the fingers. However some ADL were also evaluated, such as
writing, dialling a phone and grabbing potato chips. This research determined that the accuracy of
bioacoustics is more promising than the use of acoustics generated by muscle activity.

The use of EMG and IMU sensors is an option that is often researched in combination with ges-
ture recognition(e.g. [7], [8], [9]). The bachelor thesis of Joost Herijgers has looked as well at this
application to classify gestures [10]. In this thesis a Myo band was used [11], which is a sensor
band, placed around the forearm, containing eight surface EMG channels and one IMU sensor. Four
types of measurements were conducted, focused around pointing at and grabbing objects. As this
research is in the spirit of optimizing home recovery after a stroke, two type of tests were done to
fit the eventual expectations. First a reference test was conducted to indicate a healthy person and
then a stroke survivor was mimicked to see if it could be applied in practise. The conclusion obtained
in this research is that the accuracies were between 92.2% and 94.3% but that the EMGs had the
least contribution to the classification [10]. The next step to study is to see if it is possible to obtain
accurate data using an IMU alone and if it is satisfiable to implement it in home revalidation after a
stroke.

IMU’s have been used mainly in applications such as unmanned systems, like drones and navi-
gation systems(e.g [12], [13]). Some smartwatches are implemented with them as well as these use
gyroscopes, accelerometers and sometimes magnetometers to detect movements. This enables the
ability to record sleep, track movement or playing sports [14]. The use of the gyroscopes and ac-
celerometers in gesture recognition has been researched quite excessively [15], [16], [17], [18]. The
main goal however is mostly to be able to control mobile devices using regular smartwatches thus
increasing their usability. This is done purely using movements made by hands or fingers, however to
detect micro vibrations more sensitive measuring is necessary. The research of ViBand has looked
at those limitations to determine if it is possible to use a smartwatch to detect bio-acoustics [1]. As
modern smartwatches have a limitation of sampling frequencies around 100Hz a higher sampling
frequency is necessary to be able to use a smartwatch for this purpose. They reprogrammed the
software of the IMU to reach a sampling frequency of 4000Hz to detect bio-acoustics. During the
research three tests were conducted with the altered smartwatch, first was detecting bio-acoustics
to classify hand gestures. Second was detecting and classifying mechanical/powered objects and
last to demonstrate if it is possible to transmit data through the human body. The tests to classify
hand gestures using bio-acoustics was measured for single-hand, two-hands and on-body touches.
Using multiple gestures like, tapping, clapping, rubs and pinches the accuracy of the classification
was determined. This showed a mean accuracy of 94.3%. From this paper it can be concluded that
a high sampling frequency is useful to detect hand gestures [1]. However, the study does not look
at functional gestures used in ADL. The implementation of highly sampled IMU’s to help in home
revalidation is thus a promising lead, especially as hand gestures can be studied in detail.



Chapter 3

Theory

This chapter gives an inside in the theory needed to be able to answer the research question. The
sensor used in the experiments will be explained. The classifiers which are available for implemen-
tation shall be elaborated and the theory behind the used signal processing is explained.

3.1 2M motion logger

The data interesting for the research is focused on the movement of the hand and fingers. This
can be detected using IMU’s, as was discussed in chapter 2. The IMU used for this research is
implemented in the 2M motion logger. It can measure acceleration, angular speed, magnetic field
and altitude. This specific device is used as the sampling frequency can be increased from 250
Hz to a maximum of 2000 Hz. When the sampling rate is 2000 Hz, it can detect oscillations up
to 1000 Hz, as is explained by the Nyquist theorem. This research is based on the ViBand study,
who used a sampling frequency of 4000 Hz, which was able to detect detailed vibrations [1]. With a
sampling frequency of 2000 Hz it is unknown how detailed the detections will be and if recognition
is a possibility. The gestures made by the participant will be detected using the acceleration data
of the IMU. This accelerometer measures in g-units, with a range of ± 16g. Here g represents the
gravitational unit where 1g is equal to 9, 81m/s2. It can detect accelerations in the x-, y- and z-axis.
The device axes of the 2M motion logger can be seen in figure 3.1.

Figure 3.1: Device orientation of a 2M motion logger [19]
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3.2 Signal Processing

In order to analyse the data obtained by the motion logger, it is necessary to apply some signal
processing. This ensures the possibility to compare characteristics of the data obtained.

Fast Fourier Transform

The Fast Fourier Transform (FFT) decomposes a time domain signal into a frequency spectrum.
First the signal, which consists of N points, is decomposed into N signals. A useful rule to apply is
that there are log 2(N) stages necessary to decompose the signal. Then the frequency spectrum is
obtained for each separate point and the signal is combined again to realize a complete frequency
spectrum of the whole signal. In figure 3.2 a graphical explanation of the FFT can be seen. It shows
how a signal in the time domain can be represented in peaks in the frequency domain.

Figure 3.2: Graphical explanation of the FFT [20]

Window Function

Windowing is used to reduce the discontinuity of the signal near the edges. This is necessary as
a FFT can contain discontinuities which influences the spectrum. Using the windowing technique it
helps to reduce the influences of these discontinuities, as it flattens the outer ends of the spectrum.

There are many window functions that can be used, depending on the type of signal that needs to
be processed. Most common are the Hanning, which is satisfying in most of the cases and Hamming.
They are useful as they have an adequate frequency range and have low side lobes [21], which can
be seen in figure 3.3.

Figure 3.3: Hanning and Hamming window [21]
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Statistical Features

To increase the amount of information available for a classifier learner statistical features are ex-
tracted of the data. This will make the classifier more adequate as there is more information available
per gesture to compare. The statistical features that will be computed are the power spectra, mean,
standard deviation, maximum and minimum of the signal, the highest peaks, sum, range, median, the
first derivative and the band ratio. The advantage of these extractions is that they are characterstic
for each signal, making it possible to apply a classifier to the data. They are chosen as the main
features to ensure the results of this research are comparable with the ViBand paper [1].

The power spectra is used to find the density per frequency for that signal. This is calculated
using equation 3.1:

SN (ejΩ) =

N−1∑
n=−N+1

rN [n]ejΩn (3.1)

The Ω indicates the discrete-time frequency, n ranges from 0..N-1,where N the length of the signal
is and r[k] represents the autocorrelation function of a finite-length sequence x[n], shown in equation
3.2.

r[k] = Ex(n)x(nk). (3.2)

By combining equation 3.1 and 3.2 and using the autocorrelation property of
∑∞

k=−∞ x[k]∗x[k+n]↔∣∣χN (ejΩ
∣∣2 it results in an equation also used by function Periodogram in MATLAB

SN (ejΩ) =
1

N

∣∣χN (ejΩ
∣∣2 (3.3)

The mean determines the average value of the data using mean = µ =
∑N

k=1 x[k]

N .
The standard deviation indicates how the data is spread compared to the mean. This is calculated

using equation 3.4, which is a combination of σ =
√
var(X) and var(X) = E(X2) − µ2 where the

variance knows how far the values are spread out compared to the mean.

SD = σ =

√∑
|x− µ|2

N
(3.4)

The peaks are found by extracting the n-highest values of the data. This is done by comparing
each value to the next, sort them by size and extract the n-first values.

The sum adds all the values of data together to reach the total value, equation 3.5.

sum =
∑

x[k] (3.5)

The maximum and minimum work with the same method as the peaks, except the maximum only
takes the highest value extracted and minimum looks for the lowest value.

The median determines the middle value of the set. This is done by first arranging the values
in ascending order, then determine the total amount of values, take the middle one which gives the
median. If the amount is even the halfway point between the two middle values will be the median
and for an uneven set the middle number is taken as median.

The range on the other hand shows the difference between the highest and lowest value of the
set. It can be misleading however as one erratic sample can alter the whole range, which is why the
standard deviation is calculated as well.

The first derivative is useful to indicate where certain peaks and troughs are located of the signal.
This is calculated by taking the derivative of the signal after the power spectrum is applied, equation
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3.6. As it determines the peaks and troughs it is also possible to extract the value of a certain point
in the signal and subtract that of one point above in the signal.

d

dt
(St+1) = St+1 − St (3.6)

The band ratios are calculated to describe the shape of the total FFT and the power distribution
of the signal. As most features look at the edges of the signal the band ratio shows the effects in the
regions. This is done by dividing one region by the previous one, equation 3.7, which shows small
differences between the two regions. k and j each indicate a region here that is explored.

Bj,k =
Sj

Sk
(3.7)

3.3 Classification Application

The features obtained in the data analysis will be used as input for the classification application in
MATLAB. This application is based on the theorems of classifiers and validation, which are elaborated
in the subsections below.

3.3.1 Classifiers

In order to be able to classify the data and determine the type of gesture made by the participant,
it is necessary to build classification models. This can be done using the classification learner in
MATLAB. This application is useful as it automatically trains different models to recognize the data.
There are multiple classifiers which can be used. The most optimal one depends on the data that is
analysed. All the classifiers will be explained and eventually a final decision will be made on which
classifier is most suitable for the analysis.

Decision Trees

The decision trees have the advantage that their prediction speed is fast, while using little memory
and is easy to interpret. One disadvantage however is the low accuracy it has when using predic-
tion [22]. The decision tree is in essence a boolean classification, as it is typically a true-or-false
comparison. The input is compared to a statement in the node and depending on the outcome (yes
or no) a decision is what the next node will be. This will continue until it has reached a type and thus
a classification of the input. [23] An example of a decision tree can be seen in figure 3.4.

Figure 3.4: Example decision tree

Logistic Regression

Logistic regression is based on linear regression, which uses the assumption that an outcome can
only be true or false. But instead of comparing it to statements like decision trees do, it uses the
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probability to select a class. As it is only uses 0 and 1 (false or true) it is possible to have losses
in the data. Logistic regression reduces those hard thresholds to decrease the losses and find the
optimal value. An advantage of this classifier type is the prediction is fast, memory usage medium
and the ablility to predict easy. However the disadvantages overrule, as it is not possible to set any
options to control the class nor is it optimal to use when there are more than two classes. [22]

Linear Discriminant Analysis

Linear discriminant analysis resembles the logistic regression classifier. If there are more than two
classes, the linear discriminant analysis is preferred. It uses statistical features of the data to make
predictions about the generated information. These features are the mean, which gives the average
value of the data, and variance, which shows how far the data is spread out around the mean value.
To extract these features the linear discriminant analysis classifier must assume that the data is of
equal length and that it has a Gaussian distribution. Meaning that the data is shaped like a parabola
when plotted. Due to this it comes with a few limitations. The classifier is dependent on the amount of
classes the data has, as it can not generate more data groups to show the features than the number
of classes available. Thus reducing the amount of data, which can lead to losses and a decreased
accuracy. The flexibility of the model is thus low [22] [24].

Support Vector Machines (SVM)

The support vector machine tries to separate the classes by applying hyperplanes between the dif-
ferent data points. It is able to do this in multiple dimensions to create the optimal separation. The
support vector machine classifier uses four types of parameters to obtain the optimal hyperplane and
thus the best accuracy. The kernel ensures the hyperplane can be made in multidimensional planes,
regularization determines the amount of misclassification of the data sets, gamma establishes how
far the influence of the data points reach on the hyperplane and the margin tries to keep all the data
points with their corresponding class. An advantage is that there are many support vector machines
available, thus adabtable to the type of data sets. However, they are all hard to interpret and use a
significant amount of memory, decreasing the usability [22] [25] [23].

k Nearest Neighbour Classifiers

The k nearest neighbour classifiers use the distance to determine the class a data point belongs
too. The classifier takes a certain value k, which determines the amount of neighbours it looks at.
The class with the highest amount of neighbours will be assigned to the new data point. To ensure
there will be no tie, it is not possible for k to be a multiple of the amount of classes available. A
disadvantage is that it results in a classifier that is hard to interpret, uses considerable amount of
memory and takes quite some time to solve the classification [22].

3.3.2 Classification Validation

The data that is given as input into the classifier learners need to be validated before creating a
model. Validation is used to check if the model is built in the correct way. This can be done with
different types of validation. Cross-validation using k-folds divides the data into k samples, called
folds. Each one of these folds will be used once to test the model while the rest, k-1 folds, are used to
create the model. The last test will always be conducted using the complete data set. An advantage
of this validation is that each subset is used for both creating and validating the model. Another useful
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features is that it reduces the chance of overfitting. This happens when there are more data points
in the model than can be explained by the data set. By using all the folds the chance of overfitting
is exceptionally small. As this type uses the complete data set it is mostly used for smaller sizes of
data [26].

The holdout-validation however takes a percentage of the data and uses this to test the model
created with the rest of the set. The final test is always conducted using the complete set. This
method is an advantage when the data set is quite large and thus training the model might take a
long time. It is especially recommended to try this method when the cross-validation is taking a long
time to create the model. The last option is no validation, which is not advised as the model will not
be checked on its usefulness compared to the input data. It might be quick, but for a model with many
classes it can result in inaccuracies. [26]



Chapter 4

Method

In this chapter the experimental method is elaborated and an inside is given in the procedure.

4.1 Experimental Procedure

As this is an research which conducts experiments with the help of human participants, it is necessary
to keep the ethical side of the research in mind. This is checked by the Ethical Committee of the
University of Twente. The documents can be viewed in appendix A, which consists of the research
proposal, the information brochure for the participant and the consent form that the participant must
sign to be able to participate in the experiments.

The research is conducted with the help of thirteen healthy participants (10 female, 21.8 ± 1 year
of age, 13 right-handed) , who all wore the 2M motion logger on their right wrist in a comfortable
manner resembling figure 4.3. All participants will have two sets of data measured, each consisting
of 30 gestures.

In this research 10 different gestures are defined and will be measured using the 2M motion
logger. The first 3 gestures are similar to the ones in the ViBand paper [1]. The other 7 gestures are
based on the possibility that they can be used in ADL. Each gesture begins and ends in the same
position, which is arm flat on the table, parallel to the participants seated position. The movements
are always conducted using their right hand except for gesture 5 and 9, which uses the left hand
to hold the object. All gestures are shown in figure 4.1 and a written explanation is given after the
visuals.

11



CHAPTER 4. METHOD 12

Figure 4.1: Overview of gestures

1. Pinch: The subject will move their right hand upwards and using the right hand the subject will
pinch their thumb and index finger together.

2. One finger rub: The subject will move their right hand upwards and using the right hand the
subject will rub their thumb along their index finger.

3. Wave down: The subject will move their right hand upwards and will bend the wrist downwards
and up to create a downwards faced wave.

4. Make fist: The subject will move their right hand upwards and using the right hand the subject
will form a fist of their hand.

5. Cut Play-Doh using a knife: The subject will move their right hand to pick up a knife. The
subject will then cut a part of the Play-Doh and place the knife down on the table.

6. Pick up Pen: The subject will move their right hand upwards and using the fingers of the right
hand the subject will pick up the pen lift it in the sky.

7. Touch nose and right ear with index finger: The subject will move their hand hand upwards
in the direction of their face, point their index finger out and touch their nose. Then the subject
will move their index finger to touch their right ear.

8. Grasp Dopper (palmar grasp): The subject will lift their right hand and move it towards the
Dopper. The subject will grasp the Dopper, which is placed on the right side of the subject, with
the palm of their right hand. The Dopper is lifted straight up, hold up and placed on the surface
again.

9. Open Dopper: The subject will lift their left hand and move it towards the Dopper. The subject
will grasp the Dopper with the palm of their left hand. Using their right hand, they will open the
Dopper, take off the cap and puts it back to close the Dopper. After the Dopper is closed the
subject will move their right arm back to the original position to lay flat on the table in front of
them. Then they will let go of the Dopper with their left hand.

10. Give thumbs up: The subject will move their right hand upwards and give thumbs up with their
right thumb.

The participants are asked to perform two sets of ten gestures repeated three times. Between
the two sets the wristband is removed to be able to determine the robustness of the model, after
re-wearing. To ensure all measurements are conducted in the same way some rules were followed.
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• At the start of each measurement the arm with the sensor was position for 5 seconds in the
original position.

• Between each gesture made the button was pushed shortly to indicate a gesture was finished.
• Every participant followed the same order of gestures, which is the same as listed above.

4.2 2M motion logger

The measurements are done using the 2M motion logger, which was explained in section 3.1. The
sensor needs to be configured, which is done using a special program, 9DOF Motion Logger. The
correct settings will be uploaded before the experiment is started, which are based on the interests
of the experiment. The sampling rate is set to 2000 Hz, while the accelerometer is placed on a
boundary of ± 16g, which limits the sensing in this range. The sample rate of the event marker,
gyroscope and magnetometer are not used as it can lead to malfunctions in the sensor and its ability
to measure correctly at the high sampling rate. Figure 4.2 shows the overview of the program used
to set up the sensor.

Figure 4.2: Overview settings for the sensor set-up.

After the sensor is set up, it can placed around the participants wrist. To ensure the measurements
can be compared correctly the sensor is always placed around the wrist facing the same direction,
which can be seen in figure 4.3. Before the start of an experiment the motion logger is turned on.
After each part of the measurement, the sensor is turned off and the data of the measurement is
saved, as the sensor overwrites its data when it is turned on again.

Figure 4.3: Placement of 2M motion logger with wristband on right wrist.
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4.3 Data Analysis

4.3.1 Data Preparation

After the measurements are conducted each participant has two .csv files, containing the information
about the gestures. The files are converted to .mat files to be able to use MATLAB for analysis. An
overview of the general flow behind the analysis can be seen in the flowchart included in appendix
B. Visuals of the steps leading up to the feature extraction can be seen in appendix C along with
troubles in measurements of the sensor.

The data uploaded into MATLAB from the sensor can be seen in figure 4.4. It gives an indication
at which instance the button is pressed, the acceleration of the x-, y- and z-axis, sampling frequency,
amount of data and the total time of the measurement.

Figure 4.4: Example of data uploaded to MATLAB

Since the button is pushed between every gesture, the index can be extracted from the data using
textitbuttonInstances and its corresponding time of the push. After splitting the data in separate axes
a high-pass-filter is applied. This removes the DC components of the signal as these interferes with
the signals low amplitude wanted to analyse the microvibrations. The Butterworth filter is chosen as
the high-pass-filter as this has a flat frequency response in the passband. It is also able to pass the
cut-off frequency without an excessive ripple. The order of the filter is important as it indicates the
trade off made between the advantages and disadvantages of the filter. A higher order leads to a
better response around the cut-off frequency, while it also increases the overshoot. Based on the

signal a 4-order filter is determined to be the best trade off. Along with a frequency of
0.3

2000
∗ 2 Hz,

were 2000 Hz is the sampling frequency and 0.3 Hz the cut off frequency. The 0.3 Hz is chosen as
human movement at standing position is around 10 Hz and small vibrations are thus way below the
10 Hz [27].

After filtering, the excessive spikes during rest and movement of the arm are removed, as these
are not part of the gestures, see appendix C. The signal is separated per gesture using the indexes
found due to the push of the button. The gestures are shifted in the signal frame for 20 steps as can
be interpreted as
Ft,i, Ft−1,i, ..., Ft−w+1,i, where w indicates the steps, i the frequency bin and t the signal frame. The
frequency bins indicate the intervals between the samples. This gives the ability to eventually com-
pute an average of the power spectrum not to miss any important detail.

Next the power spectrum is calculated for each shifted signal. This is done by taking the FFT and
applying Hamming window on each shifted signal for the x-, y-, z-axis. These are both implemented
using the function Periodogram to increase the speed of the analysis. As the signal is still sepa-
rated for all the axes the maximum is taken for each shifted power spectra of the x-, y-, z-axis. The
maximised values are then averaged using the mean. As the movement was originally represented
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by multiple axes, they need to be combined to get the best representation possible. The maximum
makes sure the main influences of each axis are incorporated in the combination especially as this
is done over the 20 shifted samples. By taking the average, all 20 shifted power spectra are sum-
marized into one signal. From this signal the statistical features are extracted, which were explained
in section 3.2. The band ratio is here assumed to look at the ratio between the frequency bins, as
all other features extract mostly specific parts of the signal and this will give information about the
complete signal. Then the indication which gesture corresponds to which measurement is added to
the information and a table is created of all the results as the classifier learner works optimal with a
table as input.

Finally for each participant the extracted data is combined together in one table except for the last
gesture set obtained. This means that per subject of which 6 times the 10 gestures were extracted, 5
are used to train the model and the remaining gesture set is used to test the model, which is done to
test the robustness of the sensor as well. This is called the subject specific model, however the data
will also be tested by creating a generic model. This will be based on 4 subjects, all of their data is
included, and one subject will be used to test the eventual model for its accuracy. Both of these ways
of testing the data will be done as well for creating groups of gestures. The grouping is decided on
the resemblance in specific movements and the model will be recreated to determine if the accuracy
has increased. To keep the confusion matrices comparable all tests will use the same grouping

4.3.2 Data Analysis

The MATLAB application Classifier Learner is used for the classification of gestures. As explained in
section 3.3 there are multiple options available. The table containing the 5x10 gestures is uploaded
in the classifier application. This is the moment where the predictors, features, and the response,
classes, are chosen. The predictors are the independent varying features that are specific for each
type of gesture, where as the response is a fixed value that depends on the predictors, the gesture
types. An example of the input can be seen in figure C.7, where rows indicate a different gesture and
the columns the features. Cross-validation is chosen as validation technique, which is set to 5 folds
as the data set is not quite large. An advantage is that the MATLAB function to convert the extracted
test data of the model into a confusion matrix works automatically with 5-folds-cross-validation.

After the input and output is determined, a model is created. Since there are more than two
classes in the data that have to be analysed linear classifiers are not preferred.The two classifiers
that will be used are decision trees and SVM’s, as there are multiple classes logistic regression and
linear discriminant analyses cannot be used. K nearest neighbour is not useful as there is too much
data that will be implemented thus resulting in limitations of time and memory. The decision tree
model has different subcategories, namely fine tree, medium tree and coarse tree. They indicate
how much splits the tree undergoes to determine the gesture. The fine tree thus has the most splits
while the coarse tree is very simplistic. The settings that can be altered for the decision tree are
the number of splits taken by the tree, the split criterion which indicates what rule the tree should
follow as when to split and an indication to let the model know if there is any data missing. The SVM
is divided over polynomial kernels(linear, quadratic, cubic) and Gaussian kernels. These indicate
the method how the classifier looks at the data. For the SVM it is slightly more complicated as you
can let the model know if it should standardize the data, should look at multi classes one-vs-one or
one-vs-all, if the kernel scaling is done automatically and what the box constraint level should be. All
these settings for both of the types depend on the data and will be a process of trial-and-error.
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The confusion matrix can be designed using three different data indications, section C shows how
these decisions alter the visuals of a confusion matrix. The first possibility is to plot the matrix using
the number of observations (figure C.8). Secondly, it can be implemented using True Positive Rates
(TPR) and False Negative Rates (FNR). Here the TPR indicates the correctly classified gestures
(green percentages) and the FNR the incorrectly classified gestures (red percentages) (figure C.9).
Lastly, it is possible to look at Positive Predictive Rates (PPR) and False Discovery Rates (FDR).
These indicate the correctly (green percentages) and incorrectly predicted gestures in each class
(red percentages). The TPR, FNR, PPR and FDR can be represented by the following equations [28]:

TPR =
TP

TP + FN
(4.1)

FNR =
FN

FN + TP
= 1− TPR (4.2)

PPR =
TP

TP + FP
(4.3)

FDR =
FP

FP + TP
= 1− PPR (4.4)

, where TP is the true positive, FN the false negative and FP the false positive [28]. The accuracy
is determined by the values of the equations above, which results in accuracy = TP+TN

TP+TN+FP+FN ,
where TN indicates the true negative. For this research the TPR and FNR is chosen. It gives a clear
overview which gestures are confused by the model due to the fact that they might resemble each
other. While the other settings indicate the amount of gestures that is correctly recognized or the
accuracy that the gesture is correctly predicted. When the model is created it is exported to MATLAB
to predict the accuracy of the model using the unknown data. This is then converted to a confusion
matrix using a function, which was shared on Mathwork forum [29].

The accuracy is decided to be adequate if it is above 80%. This will make sure that the model is
better than just guessing at dividing the gestures over the different classes. As this method should
eventually be implemented in home recovery the accuracy should be high, while it should leave room
for the probability that the human movements are too divers to predict it almost perfectly.

Grouping

The main models are created using the regular gestures, thus testing for gesture 1 till 10 separately.
To determine if the accuracy for the subject specific model and for the generic model will increase by
combining resembling gestures a second model is created for each subject and generic model. The
gestures are categorised by dividing the gestures in pressure on the fingers, pressure on the palm
and a picking up indication. Table 4.1 shows how each gesture is categorised.
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Table 4.1: Grouping of the gestures based on resembling movements
Gesture Identification

Pressure Fingers Pinch(1) One finger rub(2) 1
Touch nose and right ear with index finger(7)

Pick up Wave down(3) Cut Play-Doh using a knife(5) 2
Pick up pen(6) Open Dopper(9)

Pressure palm Make fist(4) Grasp Dopper(palmar grasp)(8) 3
Give thumbs up(10)

4.4 Explanation of Confusion Matrices

All confusion matrices show the accuracy per gesture in the model. The left matrices show the trained
model, where the y-axis indicates the actual (true) class while the x-axis show the predicted class.
The right matrices show the accuracy of the model tested using an unknown data set. The y-axis
show the predicted (output) class while the x-axis show the actual(target) class.

Figure 4.5 shows an examples of a confusion matrices including coloured lines to explain the use
of the confusion matrices clearly. The matrix without the lines is shown in figure 5.1. The diagonal
(green) is the most favourable result, the percentages indicated here shows the amount of predicted
classes that correspond to their true classes. The matrices(left)using the trained set should be read
horizontally, indicating that everything on one row belongs to one true class. The blue line indicates
how it would look if all the predicted classes correspond to the true class, it would have an accuracy
of 100% as no other predicted class is filled. The red line shows what happens if there are multiple
predicted class for one true class. It can be seen that for true class 8, predicted class 3, 4 and 7 were
found. The 60% indicate that of all gestures found for true class 8, those were predicted to fit class 3.
The rest is divided over class 4, 20%, and 7 , 20%, leaving nothing for class 8 thus remaining empty
in the diagonal.

The right matrices indicate the matrices using the test set and are build in a slightly different way
as the accuracies are vertically represented. The diagonal (green) still resembles the wanted results.
The percentages indicated the amount of the column that are predicted for the target class. The
numbers below the percentages indicate the amount of gestures predicted. The blue line shows how
it looks if the output class and target class are correctly combined, while the red line shows if it is
erroneous. This test model assigned to each target class one output class, which results in a 100%
accuracy as no other output classes are linked to the same target class.
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Figure 4.5: Explanation of an example confusion matrix



Chapter 5

Results

This chapter gives an overview of the results obtained during the analysis of the data. The results
are divided over subject specific models and genetic models. This division is to justify if the sensor
is accurate enough to determine gestures of the same subject. Another possibility is to see if the
sensor is useful to classify gestures when the model is trained with different subjects. In section 5.1
the confusion matrices using the tested set of the subject specific model is described, along with an
explanation of the specific classifier learner that is used per subject. Furthermore, the results are
discussed of the gestures grouped per type of movement. In section 5.2 the generic model is elabo-
rated and the confusion matrices using the tested set of this model are discussed. The model using
grouped gestures is also validated with the help of a confusion matrix mentioned in this section. The
generic model is created multiple times, where each model is based each time one different subject
used as test set. The detailed information per subject, such as time and if it is used in the results, are
listed in appendix C. Appendix D shows the confusion matrices obtained using the training set for all
subjects.

5.1 Subject Specific Model

In figure 5.1 till 5.5 are the confusion matrices, using the test set, shown from the subject specific
models without grouping. Table 5.1 shows per subject the classifier with the highest accuracy and
indicate which are used to build the model using the training set.

Table 5.1: Overview highest accuracy with corresponding classifier learner per normal set gestures
Subject Optimal Classifier Model Accuracy
1 Medium Gaussian SVM 44%
2 Medium Gaussian SVM 60%
3 Medium Gaussian SVM 40%
4 Medium Gaussian SVM 46%
5 Medium Gaussian SVM 40%

Figures 5.6 till 5.10 show the confusion matrices using the tested set with grouping the gestures of
the subject specific models. Table 5.2 shows per subject the classifier with the highest accuracy after
the gestures are categorised and also indicate which are used to build the corresponding models
using the training set.

19
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Table 5.2: Overview highest accuracy with corresponding classifier learner per grouped gestures for
each subject using the training set.

Subject Normal Classifier Model Accuracy
1 Cubic SVM 66%
2 Cubic SVM 70%
3 Medium Gaussian SVM 68%
4 Quadratic SVM 50%
5 Medium Gaussian SVM 52%

Both the accuracies of grouping and normal confusion matrices of the test set are shown in table
5.3 to give a clear overview per subject and how they change if grouping is applied. It can be found
that the average increase is 14% from normal to grouped gestures.

Table 5.3: Comparison of accuracies of normal model and grouped model after using test set
Subject Normal Grouped
1 50.00% 70.00%
2 70.00% 70.00%
3 20.00% 50.00%
4 80.00% 80.00%
5 50.00% 70.00%

Confusion Matrix Overview Subject Specific Models

Regular gestures

Figure 5.1: Confusion matrix of trained model and after testing for subject 1

Figure 5.1 shows the confusion matrices of subject 1. It shows an accuracy of 50% after the test set
is applied to the model.
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Figure 5.2: Confusion matrix of tested set subject 2

Figure 5.2 shows the confusion matrices of subject 2. It shows an accuracy of 70% after the test
set is applied to the model.

Figure 5.3: Confusion matrix of tested set for subject 3

Figure 5.3 shows the confusion matrices of subject 3. It shows an accuracy of 20% after the test
set is applied to the model.
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Figure 5.4: Confusion matrix of tested set for subject 4

Figure 5.4 shows the confusion matrices of subject 4. It shows an accuracy of 80% after the test
set is applied to the model.

Figure 5.5: Confusion matrix of tested set for subject 5

Figure 5.5 shows the confusion matrices of subject 5. It shows an accuracy of 50% after the test
set is applied to the model.
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Grouped Gestures

Figure 5.6: Confusion matrix of grouped gestures of tested set for subject 1

Figure 5.6 shows the confusion matrices of subject 1. It shows an accuracy of 70% after the test set
is applied to the model.

Figure 5.7: Confusion matrix of grouped gestures of tested set for subject 2

Figure 5.7 shows the confusion matrices of subject 2. It shows an accuracy of 70% after the test
set is applied to the model.
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Figure 5.8: Confusion matrix of grouped gestures of tested set for subject 3

Figure 5.8 shows the confusion matrices of subject 3. It shows an accuracy of 50% after the test
set is applied to the model.

Figure 5.9: Confusion matrix of grouped gestures of tested set for subject 4

Figure 5.9 shows the confusion matrices of subject 4. It shows an accuracy of 80% after the test
set is applied to the model.
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Figure 5.10: Confusion matrix of grouped gestures of tested set for subject 5

Figure 5.10 shows the confusion matrices of subject 5. It shows an accuracy of 70% after the test
set is applied to the model.

5.2 Generic Model

The generic model created in figure 5.11 till 5.15 are created using the normal gestures. Figures
5.16 till 5.20 used the categorisation of gestures to create the confusion matrices. Both the models
are based on the medium Gaussian SVM.

Table 5.4 shows the accuracies of each model for different subjects used as test set. This is
done for both the normal model and the grouped model. It used 4 subjects to train the model and 1
subject to test the model.It can be found that the average increase is 24.67% from normal to grouped
gestures.

Table 5.4: Overview accuracies of model using tested set for each test subject, normal and grouped
gestured

Test Subject Normal Grouped
1 28.33% 61.67%
2 28.33% 60.00%
3 28.33% 51.67%
4 30.00% 38.33%
5 35.00% 61.67%
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Regular gestures

Figure 5.11: Confusion matrix of generic model using testing set subject 1

Figure 5.11 shows that the overall accuracy after testing using subject 1 as test set is 28.33%.

Figure 5.12: Confusion matrix of generic model using testing set subject 2

Figure 5.12 shows that the overall accuracy after testing using subject 2 as test set is 28.33%.
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Figure 5.13: Confusion matrix of generic model using testing set subject 3

Figure 5.13 shows that the overall accuracy after testing using subject 3 as test set is 28.33%.

Figure 5.14: Confusion matrix of generic model using testing set subject 4

Figure 5.14 shows that the overall accuracy after testing using subject 4 as test set is 30.00%.
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Figure 5.15: Confusion matrix of generic model using testing set subject 5

Figure 5.15 shows that the overall accuracy after testing using subject 5 as test set is 35%.

Grouped Gestures

Figure 5.16: Confusion matrix of grouped gestures with generic model using subject 1 as test set

Figure 5.16 shows that the accuracy after using subject 1 as test set with grouped gestures is 61.67%.
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Figure 5.17: Confusion matrix of grouped gestures with generic model using subject 2 as test set

Figure 5.17 shows that the accuracy after using subject 2 as test set with grouped gestures is
60.00%.

Figure 5.18: Confusion matrix of grouped gestures with generic model using subject 3 as test set

Figure 5.18 shows that the accuracy after using subject 3 as test set with grouped gestures
51.67%.
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Figure 5.19: Confusion matrix of grouped gestures with generic model using subject 4 as test set

Figure 5.19 shows that the accuracy after using subject 4 as test set with grouped gestures is
38.33%.

Figure 5.20: Confusion matrix of grouped gestures with generic model using subject 5 as test set

Figure 5.20 shows that the accuracy after using subject 5 as test set with grouped gestures
61.67%.
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Discussion

The results of the measurements will be discussed along with the experiments conducted on the
participants. Section 6.1 discusses confusion matrices of the subject specific normal models and
grouped models. Section 6.2 will discuss the confusion matrices of the generic model and grouped
generic model. Both will elaborate what can be extracted from these results. These sections follow
this order as the measurements are conducted in this manner. Section 6.3 links the results back to
the ViBand paper, which was the underlying basis of this research. Section 6.4 will go more in depth
about the limitations experienced in this research, with a focus on the motion logger, features and
classifier learner.

6.1 Subject Specific Model

To be able to state something about the accuracy of the classifier model and algorithms, the accu-
racy found using all gestures is compared with the model based on the grouped gestures (table 5.3).
The used classifiers are determined by their highest accuracies, which can be seen in table 5.1 for
the normal subject specific models and table 5.2 for the grouped gestures subject specific models .
The other classifiers that did not return the highest accuracy were not tried for the tested set. It was
found that the decision trees could not generate a search that was detailed enough to obtain a useful
accuarcy when implementing the test set.

For the normal model it can be seen that a high accuracy in the model using the trained set does
not automatically result in a high accuracy of the same gesture in the model when using the test set.
For example, in figure 5.4 it can be seen that gesture 8 had an accuracy of 80%, while using the
tested data did not recognize gestures 8. This indicates that there is a limitation in the model that is
created or participants are not always as consistent in their movements as the model with the trained
set lets to believe. The model with the test set also shows that the excessive gestures are often con-
fused with others as they combine multiple types, while also the more minimalistic movements are
mixed up between each other. This can indicate that participants use the same type of movements
to make different gestures.

This let to the grouping of gestures to verify if the accuracy would increase if the matching ges-
tures are combined. It can concluded of table 5.3 that the grouped model has an increased accuracy
for all models of the regular division, except the models where the accuracy was already above 70%.
As the categorization of gestures is meant to combine gestures that resemble a lot, for low accura-
cies in the normal model this will help to give a more general overview of the gestures. It will be less

31



CHAPTER 6. DISCUSSION 32

likely that the model will make a mistake in the recognition of a gesture thus increasing the accuracy
of the model. For models with an already high accuracy, the model did not have any trouble catego-
rizing the gestures in the first place and the way the gestures were categorised did not alter these
characteristics per gesture It can be seen that group 1 and 3 are more often confused than any of
them with group 2. This is for both the models with the trained set and the models with the test set. It
indicates indeed that those two groups use the same type of movements but on a different scale, as
group 1 is focused on the finger tips and group 3 on palm of the hand. Group 2 is more focused on
picking up tools, which is a completely different category. Subject 3 however is not taken into account
in this observation, as it behaves differently when comparing to the other subjects. Figure 5.8 shows
that all gestures are almost equally miscategorized, stating that subject 3 has almost no variety in
their movements in their gestures. This might be due to very soft pressure or slow movements that it
might not be detected as excessive as other participants.

One question that arises is where does this difference in accuracy come from. When looking
at table C.1 it shows that time does not influence the accuracy of the models. Subject 4 had a
measurement time of 7:09:7 minutes and an accuracy of 80%, while subject 5 had a total time
of 7:04:6 and an accuracy of 50%. This might indicate that the accuracy depends on how much
strength and speed a gesture is conducted with, as this highlights the characteristics of the gesture.

6.2 Generic Model

The generic model is built using 5 subject sets, resulting in 240 gestures total and one testing set
using 60 gestures in total of the leftover subject. To verify the influence per subject, this generic
model is conducted five times to let each subject once be the test set. When looking at table 5.4
it can be seen that the accuracies of the normal generic model are low compared to table 5.3. It
needs to be kept in mind that the amount of subjects used for the generic model is not high enough
to generate an average model that takes the variability of moving into account. Hence it makes it
increasingly difficult to correctly classify the right gesture, when only 5 different subjects are used for
training. One gesture that is worth mentioning in this context is gesture 6, which represents pick-
ing up a pen. This movement is highly personal and everyone does this in their own way, which
can be seen the accuracy of the tested model. If the tested subject does it completely different than
any of the other 5 subjects it will not be correctly categorized, which can be seen in figure 5.11 till 5.15

To determine if the accuracy of the generic model can be increased a grouped gesture generic
model is generated. There was an increase of 24.67% in accuracy when using the grouped gestures.
It can be seen in the models using the test set, that group 3 is continuously difficult to determine, while
group 2 is fairly accurate. When comparing the accuracies per subject in the subject specific models,
it can be seen that they influence the accuracy in the generic models. For example subject 4 had an
accuracy of 80.00% in the grouped subject specific model, which was the highest accuracy found in
this type. While in the grouped generic model, it had an accuracy of 38.33%, which is significantly
lower than the other tests.

The average accuracy of the subject specific models is 54% for the normal model and 68% for the
grouped model, while generic model had respectively 30.00% and 54.67%. When comparing these
accuracies it can be decided that the generic models are not very useful, as many of the gestures are
not correctly determined. This limitation lays probably within the reason that there were not enough
subjects to train the generic model properly. The subject specific models are also not very accurate,
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but more than halve of the gestures can be recognized.

6.3 Comparison with ViBand

As was stated in chapter 1, this research arose after reading the ViBand paper [1]. There are a few
differences between gesture recognition done by ViBand and this research. First of all, the sam-
pling rate of the sensor was 4000Hz instead of 2000Hz. Second is the amount of measurements
taken per subject and the type of gestures. In ViBand 17 gestures were used in three categories
two-handed gestures, one-handed gestures and on-body touch input, while this research used 10
gestures and focused mostly on pressure and picking up. Thirdly, the features that were used for the
input of the classifier and the type of classifier were dissimilar. A SMO-based SVM was used instead
of the SVM’s in this research, as the SMO-based is not available in the classification application of
MATLAB. ViBand also included the first derivative and band ratios to classify the gestures, which
are not included in this research section 6.4.2. The most important difference was that ViBand had
an average accuracy of 94.3%, while the average accuracy of the subject specific model was 54%
normal and 68% grouped. One of the reasons for the difference in accuracy can be the various in
sample frequency, as it can increase the ability to detect micro-vibrations. However, the high accura-
cies of Viband can also be influenced by the first derivative and band ratios, as these features give
an increased detailed indication of the gestures than the other features. The number of participants
does not contribute to the accuracy as they also used subject specific models for each of them. The
fact that this study also looked at a generic model is not taking into account when comparing the
ViBand paper and this research.

6.4 Limitations

6.4.1 Measurements

The 2M motion logger experienced some irregularities, which let to the believe that the sensor influ-
enced the measurements and the data. The main obstacle was that the 2M motion logger did not
connect to the computer, thus making it impossible to upload the correct settings. To solve this an
updated program was used to upload the settings in the hope that the sensor would start working.
This did not solve the problem and eventually a new firmware was implemented. This resulted in
the inability for the motion logger to measure the gyroscopic and magnetic data as this would make
the motion logger crash and lose the ability to connect to the computer. The decision was made
to only measure the acceleration, with the sampling frequency of the button pre-set on the correct
frequency. However after conducting the experiment it was found not all the data was adequate to
use in the research. As is shown in appendix C, table C.1 of the 13 originally measured subjects
only 5 were eventually useful to extract data from. The problems ranged from no movements mea-
sured to not being able to give a button indication. It is not clear why some measurements did not
register any movements, since there is no constant factor to indicate a reason for this problem. It can
be seen however that mostly the last subjects missed the button indications, so it can be assumed
that some setting was changed or reset in the motion logger. It is unclear when and how this could
have happened as no settings were altered during the experiment. The measurements were useful,
did have unexplainable peaks in the data, which was highlighted in figure C.4. Removing the peaks
made the result more realistic, as a acceleration between -2g till -4g is not realistic. Ignoring the
peaks would result in a incorrect feature set, as the features extracted from the data also include the
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highest peaks. However not all peaks could be removed as essential details of gestures would be
erased as well. It is unsure how much these peaks influenced the analysis, but expected is that it did
play a role in the recognition.

6.4.2 Features

Originally it was intended to extract 10 features and use them all to generate models of the gestures.
Only 8 were eventually determined as it was decided not to include the features first derivative and
band ratio. One of the reasons why these are excluded is because both of the features look at
the whole signal and extract per frequency bin the characteristics. Although it helps increasing the
relevant knowledge for the classifier, it does contain information about the complete spectrum. This
might make it increasingly difficult for the classifier to analyse the input as it will contain significant
amount of data about the signal. The other reason that these characteristics are left out is because
they look at the whole spectrum the data extracted is as long as the spectrum. As the input of the
classifier is a table, each column must have the same size. Thus all the features must be of the size
of the spectrum. This increases the size of the file loaded into the classifier from 9 KB to 82 MB,
increasing the run time from a maximum of 1 minute to around 12 hours. Hence it would be more
useful to extract the general features and leave out the first derivative and band ratio. This would
decrease the computational power of the classifier learner, will increase the training speed and make
the system applicable for general usage.



Chapter 7

Conclusions and recommendations

The conclusion based on the goal of this research, is stated here. Along with recommendations for
improvement for the study and future research.

7.1 Conclusions

The goal of this research was to evaluate the feasibility of detecting gesture in ADL by evaluating
micro-vibrations using a single wrist-worn highly sampled IMU. To determine if this goal is reached
the following question will be answered:

• Is the information obtained by a highly sampled IMU adequate enough to classify different
gestures?

When looking at the subject specific models it can be stated that for normal classification of the ges-
tures the information obtained when wearing a highly sampled IMU is not adequate enough as it
resulted in an average accuracy of 54% over all subjects. The grouped classification of the gestures
did not go beyond an average accuracy of 68%. Hence, the subject specific models did not satisfy
the stated question.

The generic model of this research performed worse than the subject specific models, with an
accuracy of 30.00% for the normal model and 54.67% for the grouped model. This is due to the fact
that there was not enough data input for the generic model to take the variations into account when
testing the model. Based on these findings it can be stated that the generic model is not able to fulfil
the question if the information obtained by the highly sampled IMU was adequate enough to classify
the different gestures.

As both of the models answered negative to the question it can be concluded that the goal of
this research to determine if it is feasible to use micro-vibrations to detect gestures is not met. It is
possible to some extent to measure the gestures, but the results are too limited to state that for now
this goal is feasible.

This research was a preliminary study focused to see if it would be achievable to eventually use
highly sampled IMU’s in home revalidation. As discussed throughout the research it can be con-
cluded that gesture recognition is useful, but it is not optimal enough yet to be used in a revalidating
environment. The averages accuracies all lay below the 80.00%, which is not useful if it is tried to
measure a patient, who is undergoing revalidation. Their movements may vary in strength, speed or
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persistence. This makes a system with an already inadequate accuracy using healthy participants,
not implementable for home revalidation. With the use of the current setting it is likely that it will
not be able to detect all gestures, making correct recognitions difficult. While this is essential when
working in home revalidation. Hence, to be able to use it for this purpose, it will need to undergo
developments.

7.2 Recommendations

To meet the goal of this research some improvements can be done. Most importantly is the use of a
correct working sensor, that will not influence the data. Increasing the accuracy is also an aspect that
can be improved by measuring more participants and an increased number of measurements per
subject. This can increase the accuracy of both the subject specific model and the generic model.
One last possibility is to use a computer with a higher computational power to be able to include
features such as first derivative and band ratios.

To continue the work in this field it is possible to look at a follow-up research to determine if subject
specific models can achieve an accuracy of above 80.00%, thus making it adequate to recognize
gestures properly. As the ultimate goal is to use this technique in home revalidation another future
study could be to determine how this method can be implemented best to gain the optimal results in
home revalidation. Especially in combination with the determination of the optimal model it can lead
to a useful implementation for home recovery after stroke.
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Appendix C

Visuals Conducted Analysis

The errors in the measurements, background information of the measurements per subject, visuals
of the data preparation are elaborated in the next sections.

Errors in Measurements

While conducting the measurements the sensor ran into a few problems. The graphs shown below
give a clear overview of the issues ran into during this research. Figure C.1 shows the difficulty that
the sensor did not always recognized movements made by the participant. The x- and y-axis were
recognized as a value around 0g and the z-axis around 0.9g. However the sensor could also fluctuate
between ± 16 as this was the range programmed for the accelerometer. It would detect movements
around the ± 15g, figure C.2. Why the sensor behaved like this, has not been determined. If the
movements were measured correctly it was not always a guaranty that the data could be extracted.
As can be seen in figure C.3 it sometimes gave as output that the buttonInstances were empty. This
indicates that the button was not activated with a sampling rate, while it was pre-set on a sample rate
of 16 Hz as can be seen in figure 4.4. Especially, since it did not happen after a certain moment in
the experimental phase but random throughout all of the participants. This can also be seen in table
C.1, which shows if the data was used per subject and an explanation if not.

Figure C.1: Sensor without registering movement
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Table C.1: Background information per subject of the measurements.
Subject Total Time of Measurements Working Measurements Comments
1 10:54:8 Yes
2 7:59:3 Yes
3 6:13:1 Yes Was not used due to too many errors in measurements
4 6:05:9 No Measured no movements
5 6:20:2 Yes
6 7:19:4 Partly Only one of the two measurements were correct
7 7:09:7 Yes
8 7:48:6 Partly Second measurement had no button indications
9 7:04:6 Yes
10 11:30:6 No No movement detected
11 8:03:9 No No button indications
12 8:29:4 No No button indications
13 8:28:4 No First no measurement detected and second no button indications

Figure C.2: Fluctuations between the minimum and maximum accelerometer scale

Figure C.3: No recognition of the button of the sensor

Visuals Data Preparation

The process of the data processing in MATLAB has been explained quite elaborate in the section
4.3. The intermediate steps are shown using the plots given below.
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Figure C.4: Acceleration data combined and seperate for x-, y- and z-axis with marked peaks.

Figure C.4 shows the plot of the total signal in time domain, which includes the x-, y- and z-axis
in one graph. The other three graphs indicate where the peaks of the x-, y- and z-axis are located.
It is not known where those excessive peaks come from and removing them resulted in less data
destruction.

Figure C.5: Overview extracted data x-, y- and axis for gesture 2

After the peaks are removes the signal is separated for all the different gestures and a new
acceleration of all the axes are shown in separate graphs in the first column of figure C.5. These
graphs of this figure all show the data of the second gesture of the measurements. As there is



APPENDIX C. VISUALS CONDUCTED ANALYSIS 51

the some influence of the button pressed by the participants the first 0.4
fs seconds is removed at the

beginning and end of each signal. The second column shows the new signal of the second gesture
after the influence of the button is removed. After this the signal is also shifted over the 20 steps
explained in section 4.

Figure C.6: Signal of gesture 2 after applying maximization and averaging

Finally, the PSD of the second gesture first shift is shown in the third column, which is calculated
using the Periodogram function of MATLAB. This includes the FFT, Hamming window and PSD cal-
culation. This is all done for all the thirty gestures made by the participant and the maximum is taken
for the each shift and each x-, y- and z-axis combination. After this maximum is found the average
over each shift is determined. This is all shown in figure C.6.

The features extracted of the power spectrum are combined into a table, where each row indicates
a new gesture. These tables are used as input for the classifier learners. A example is shown in figure
C.7.

Figure C.7: Example set features of gestures.

Examples Confusion matrices

The confusion matrix can have three different settings. The figures below show how this changes the
confusion matrices.
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Figure C.8: Example confusion matrix using number of observations

Figure C.8 show how the confusion matrix will look using the number of observations.
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Figure C.9: Confusion matrix using True Positive Rates and False Negative Rates

Figure C.9 show how the confusion matrix will look using True Positive Rates and False Negative
Rates.
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Figure C.10: Example of confusion matrix using Positive Predictive Values and False Discovery
Rates

Figure C.10 show how the confusion matrix will look using Positive Predictive Values and False
Discovery Rates.



Appendix D

Results of the measurements

This appendix shows the confusion matrices obtained in the measurements. It is divided in subject
specific models in section D and generic model section D.

Confusion Matrix Overview Subject Specific Models

Regular gestures

Figure D.1: Confusion matrix of model using trained set for subject 1
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Figure D.2: Confusion matrix of model using trained set for subject 2
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Figure D.3: Confusion matrix of model using trained set for subject 3
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Figure D.4: Confusion matrix of model using trained set for subject 4
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Figure D.5: Confusion matrix of model using trained set for subject 5
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Grouped Gestures

Figure D.6: Confusion matrix of grouped gestures model using trained set for subject 1
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Figure D.7: Confusion matrix of grouped gestures model using trained set for subject 2

Figure D.8: Confusion matrix of grouped gestures model using trained set for subject 3
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Figure D.9: Confusion matrix of grouped gestures model using trained set for subject 4

Figure D.10: Confusion matrix of grouped gestures model using trained set for subject 5
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Generic Model

Regular Gestures

Figure D.11: Confusion matrix of normal generic model with training set without subject 1
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Figure D.12: Confusion matrix of normal generic model with training set without subject 2
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Figure D.13: Confusion matrix of normal generic model with training set without subject 3



APPENDIX D. RESULTS OF THE MEASUREMENTS 66

Figure D.14: Confusion matrix of normal generic model with training set without subject 4
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Figure D.15: Confusion matrix of normal generic model with training set without subject 5



APPENDIX D. RESULTS OF THE MEASUREMENTS 68

Grouped Gestures

Figure D.16: Confusion matrix of grouped gestures generic model with training set without subject 1
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Figure D.17: Confusion matrix of grouped gestures generic model with training set without subject 2
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Figure D.18: Confusion matrix of grouped gestures generic model with training set without subject 3
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Figure D.19: Confusion matrix of grouped gestures generic model with training set without subject 4



APPENDIX D. RESULTS OF THE MEASUREMENTS 72

Figure D.20: Confusion matrix of grouped gestures generic model with training set without subject 5
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