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Abstract

Approximate computing techniques reduce the cost (in terms of among others area and power consumption)
of computing units in exchange for a reduced accuracy. These techniques are not optimized for Multiply-
Accumulate (MAC) processing elements. This leaves a lot of room for improvement as the integrator part
of a MAC allows for error balancing.
In this work, designs for an 8× 8 bit MAC are sought that have optimal quality compared to their area cost
for FPGA. To achieve this, different error balancing techniques are considered and combined with existing
approximate computing techniques. An algorithm is proposed to perform an exhaustive search for the
optimal designs, using an error balancing technique within a multiplier to achieve an average error close to
0. The designs found by the algorithm have a much higher quality compared to conventional approximate
computing techniques for a small increase in area on the FPGA and the overall quality-cost tradeoff is
improved.
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Introduction

Multiply-Accumulate (MAC) circuits are a type of circuit that calculates the dot product of two input vec-
tors. MAC circuits are widely used in many different applications. One use of MAC circuits is for example
radio astronomy[1].
Figure 1 shows a diagram of a MAC processing element. The elements of the two input vectors are multi-
plied, and the results added together using an integrator. The output of the MAC is given in equation (1).
Here O is the output of the MAC. M is the number of elements in the input vectors. An and Bn are the
nth elements of the input vectors ~A and ~B.

~A
~B

MUL + O

Figure 1: MAC processing element diagram

O = ~A · ~B =

M∑
n=1

(An ∗Bn) (1)

In this work the use of approximate computing techniques[2][3] is explored to reduce the cost, in terms
of area for FPGA, while keeping the accuracy of the computation as high as possible. The multiplier of
the MAC can be replaced by an approximate multiplier and the integrator can make use of approximate
adders. In this work the adders will be kept accurate and the focus will lie on approximating the multipliers
efficiently. The inputs are assumed to be uncorrelated. The goal is to find an approximate design of an 8 bit
MAC processing element which has the lowest cost for a given quality or the best accuracy for a given cost.
The cost considered is the area used on an FPGA.
In the first chapter, Approximate multipliers, a known method of creating approximate multipliers is dis-
cussed. Next in chapter 2 the difference the integrator part of a MAC operation makes for the approximate
multiplier is explained and options to use these differences are explored. In chapter 3 a Matlab model is
introduced to calculate the quality of a given design and a method of computing the area of the designs
using Quartus is discussed. The 4th chapter explains the design space and an algorithm is proposed to ex-
plore it. In the final chapter, chapter 6, the algorithm is used to find designs and checked using the methods
discussed in chapter 3. The results will be discussed and a few recommendations for future work are made.
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Chapter 1

Approximate multipliers

In this chapter existing techniques for creating an approximate multiplier are introduced. Also the method
to calculate the average error of a multiplier is discussed.

1.1 Creating a multiplier
An existing technique of creating approximate multipliers is to make a small and efficient 2 × 2 bit ap-
proximate multiplier and use multiple of them to create a larger n × n multiplier[4]. To create a 4 × 4 bit
multiplier, the two 4 bit inputs, A and B, are divided into two 2 bit parts each. These are called AH , AL,
BH and BL. The H indicates the most significant part of the inputs and L the least significant part. To
calculate the 8 bit output of the 4 × 4 bit multiplier, O4×4, the input parts will first be multiplied using
2 × 2 bit multipliers. The 2 bit partial inputs from A are then multiplied with the 2 bit partial inputs of
B in all possible combinations. The resulting four outputs are then shifted, where a more significant input
means more shifting for the output. This process is shown in equation (1.1) and illustrated in Figure 1.1.

O4×4 = 16AHBH + 4AHBL + 4ALBH +ALBL (1.1)

AH·BH
AH·BL
AL·BH

AL·BL

0
0
0

0
0
0

0
0
0

0
0
0

00

0 0
+

b7 b6 b5 b4 b3 b2 b1 b0

b3 b2 b1 b0A: {

ALAH

{ {b3 b2 b1 b0B: {

BLBH

{

O4×4

Figure 1.1: A 4× 4 bit multiplier using 2× 2 bit multiplier elements

This process can be repeated to create a 8×8 bit multiplier using four of the created 4×4 bit multipliers.
This way the 8 × 8 bit multiplier is made up entirely of adders and 2 × 2 bit multipliers and can easily be
made approximate by replacing some or all 2× 2 elements with approximate versions. The equation of the
8× 8 bit multiplier is shown as (1.2) and the diagram in Figure 1.2. This process can be repeated again to
create larger multipliers. For each doubling of input bits the needed 2× 2 bit multipliers is increased with
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a factor of 4. For a n× n multiplier, where n = 2k, there are 4k−1 of the 2× 2 multipliers needed.

O8×8 = 4096AHHBHH + 1024(AHLBHH +AHHBHL)

+ 256(AHLBHL +AHHBLH +ALHBHH)

+ 64(AHHBLL +AHLBLH +ALHBHL +ALLBHH)

+ 16(ALLBHL +AHLBLL +ALHBLH)

+ 4(ALHBLL +ALLBLH)

+ALLBLL

(1.2)

ALH·BLH
ALH·BLL
ALL·BLH

ALL·BLL
+

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4A: {
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{ b3 b2 b1 b0{

ALLALH

{

b3 b2 b1 b0{
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{ {b7 b6 b5 b4B: {

BHLBHH

{

O8×8
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Figure 1.2: An 8× 8 bit multiplier using 2× 2 bit multiplier elements

1.2 Existing 2× 2 bit multiplier elements
As discussed in section 1.1, to create an 8×8 bit approximate multiplier, 16 approximate 2×2 bit multiplier
elements are needed. An accurate design of a 2×2 multiplier is shown in Figure 1.3 and the corresponding
truth table in Table 1.1. In Figure 1.4 existing approximate designs[4][5] of 2 × 2 multipliers are shown
and their corresponding truth tables in Table 1.2. The errors in the truth table are indicated by the coloured
cell. The design in Figure 1.4(a) is the multiplier introduced in [4]. This design does not calculate the
least significant bit and makes its output equal to the most significant bit. This creates a multiplier that has
three errors with a magnitude of +1 as shown in the truth table 1.2(a). In Figure 1.4(b) the state of the art
approximate design of [5] is shown. This design does not calculate the most significant bit, resulting in a
much smaller multiplier having only a single error when calculating 3 ∗ 3. The multiplier then outputs 7
instead of 9. This means the multiplier has only one error with a magnitude of −2.
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A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

Figure 1.3: Accurate 2× 2 bit multiplier design

Table 1.1: Accurate 2× 2 multiplier design truth table

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1001

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(a) M1

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M2

Figure 1.4: Approximate 2× 2 bit Multiplier Designs

Table 1.2: Approximate 2× 2 multiplier designs truth tables
(a) M1

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0000 0010 0010
10 0000 0010 0100 0110
11 0000 0010 0110 1001

(b) M2

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0111
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1.3 Calculating the average error
A figure of the quality of an approximate multiplier can be the average error of the multiplier. To get the
maximum quality, the average error should be as small as possible. The average error of the multiplier
can be calculated by multiplying the probability of an error occurring with the weighted error magnitude.
Here the weighted magnitude is the error magnitude of the 2 × 2 multiplier, multiplied with the shift due
to the location of the 2× 2 multiplier as shown in (1.2). Each of the 16 approximate 2× 2 multipliers (for
8 × 8 bit) has its own error probability and weighted magnitude. For example the multiplier calculating
AHH∗BHH usingM2 has a much bigger weighted error magnitude (|4096∗−2| = 8192) than for example
ALLBLL (|1 ∗ −2| = 2). The probability of the error occuring at each multiplier is dependent on the input
distribution. For a uniform distribution the probability of each input is equally likely and therefore the
probability for en error in every multiplier using M2 is 1/16 which is the amount of errors divided by the
number of (equally likely) options in the truth table in Figure 1.4(b). For other distributions, calculating
the probability is much harder. For example with a normal distribution, if the probability for the highest
numbers is much lower, the most significant bits of the input are more likely to be 0 and therefore the
probability of the 2× 2 bit calculation being 3 ∗ 3, where the error occurs for M2, is much lower.
To calculate the average error, the probability needs to be multiplied by the weighted magnitude of the
error for each of the 16 multipliers and added up. This can be generalised for a n × n multiplier. This is
shown in equation (1.3). Here E is the average error of the whole multiplier. Si is the shift of the output of
the 2× 2 multiplier seen in equation (1.2). Ei is the error magnitude and P (E)i the probability of an error
occuring for the ith 2× 2 multiplier.

E =

4k−1∑
i=1

(Si ∗ |Ei| ∗ P (E)i) (1.3)
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Chapter 2

Approximate multipliers for MAC

There is a distinct difference between creating an approximate multiplier for a MAC as opposed to just an
approximate multiplier in general. When calculating the outcome of a multiplication every result counts.
It does not matter if the errors made are sometimes negative and sometimes positive. For a MAC however
the multiplier gets followed up by an integrator which sums all the results of the multiplier. The individual
multiplications do not matter as much as the end result of the addition. If in the multiplications sometimes
a negative error is made and sometimes a positive error, the errors add up in the integrator and compensate
eachother, resulting in a lower error of the total MAC operation.

2.1 Average error for MAC
To calculate the average error of the MAC, equations (1) and (2.1) are used to create equation (2.2). Note
that equation (2.1) is a slight variation on equation (1.3). This is because for the calculation of the average
error of a MAC the sign of the error does matter. Therefore the absolute operation is removed and the new
variable is called E′

O = ~A · ~B =

M∑
n=1

(An ∗Bn) (1 revisited)

E′ =

4k−1∑
i=1

(Si ∗ Ei ∗ P (E)i) (2.1)

EMAC =

∣∣∣∣∣
M∑
n=1

E′

∣∣∣∣∣
=

M∑
n=1

∣∣∣∣∣∣
4k−1∑
i=1

(Si ∗ Ei ∗ P (E)i)

∣∣∣∣∣∣
=M

∣∣∣∣∣∣
4k−1∑
i=1

(Si ∗ Ei ∗ P (E)i)

∣∣∣∣∣∣

(2.2)

Because the errors may cancel each other, the absolute value is taken after the addition of the errors of
each of the 2× 2 multipliers instead of before addition.

2.2 Error balancing methods
To get the best quality the average error should be as low as possible. This can be done in a couple of ways.
One way is to balance a single 8 × 8 bit multiplier using a combination of different 2 × 2 bit elements.
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Figure 2.1: Internal error balancing of an 8× 8 bit multiplier

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(a) M3

A(0)

A(1)

B(0)

B(1)

O(0)

O(1)

O(2)

O(3)

(b) M4

Figure 2.2: 2× 2 bit Multiplier Designs for error balancing purposes

An example is shown in Figure 2.1. The +δ and −δ are the errors of the 2 × 2 multiplier elements. +δ
indicates an overall positive error and−δ a negative error. For the purpose of creating a balanced multiplier
two new 2× 2 multipliers are introduced in Figure 2.2. Their truth tables can be found in Table 2.1.

M3 in Figure 2.2(a) is a multiplier made to directly balance M2. It has the same error probability but
the opposite error magnitude. To more precisely balance the multiplier to get an average error closer to 0,
M4 is introduced. The only difference between this multiplier and M2 is that an OR-gate is replaced by
an XOR-gate resulting in a larger error and simular area for FPGA as will be shown in chapter 3. These
multipliers can used in conjunction with the ones introduced in chapter 1 to create a single set of 16 multi-
pliers creating both negative and positive errors which cancel each other out as close to 0 as possible.

Another way of reducing the average error is to work with a mirror pair. For example, two multipliers
with the same error probability and magnitude but opposing signs, like M2 and M3, can be used to create
two 8× 8 bit multipliers. When the output of these multipliers are added up as shown in Figure 2.3 the av-
erage errors add up to become exactly 0. This does double the area requirements, as it uses two multipliers
as well as additional adders but it also doubles the throughput and therefore is acceptable in a lot of cases.

These two methods can also be combined. A design which is internally balanced towards a positive
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Table 2.1: Approximate 2× 2 multiplier designs truth tables
(a) M3

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 1011

(b) M4

B
A

00 01 10 11

00 0000 0000 0000 0000
01 0000 0001 0010 0011
10 0000 0010 0100 0110
11 0000 0011 0110 0101

~A
~B

MUL

~A
~B

MUL
+ + O

+δ

−δ

EMAC = 0

Figure 2.3: Two 8× 8 bit multipliers used as mirror pair in a MAC

error of A can be mirrored with the second method, using a design balanced towards −A. For this work
however the focus will be on balancing a single multiplier towards an average error of 0.
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Chapter 3

Quality and computational cost analysis

In this chapter the methods of calculating the quality and computational cost of the designs is discussed.
The quality is calculated using a Matlab model and the computational cost is calculated using Quartus.

3.1 Matlab model of a MAC
The code for the Matlab model of a MAC can be found in Appendix A. The model calculates the accurate
and the approximate outcomes of a generated set of inputs.
Three sets of random inputs with different input distributions are generated using Matlab. The inputs range
from 0 to 255 (8 bit). The input vector size of the MAC, M , will be chosen as 10000 and the result of the
MAC will be computed 1000 times. One input set is a uniform distribution, generated using the Matlab
function randi. The other two sets are normal distributions with an average of 128 and a standard deviation
of 40 and 50 respectively. The resulting distributions are shown in the histograms in Figure 3.1.

The accurate result of the MAC is calculated using the built-in dot function of Matlab. The approxi-
mate version is calculated by first separating the 8 bit inputs into the 2 bit inputs of each of the 16 2× 2 bit
multiplier elements. Next, the accurate products of those 2 bit inputs are calculated. Dependent on which
multiplier is used for which of the inputs, the 4 bit outputs are adjusted to include the errors. For example,
for multiplier M2 every 9 in the output is replaced with a 7. The results are summed using equation (1.2)
from chapter 2 to get the output of the total approximate multiplier and finally summed to get the result of
the MAC.
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Figure 3.1: Histrograms of the generated inputs
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Table 3.1: MSE and MAE for different distributions for 8× 8 MAC with a single type of 2× 2 multiplier
each

Multiplier
Distribution Uniform Normal σ = 40 Normal σ = 50

MSE MPE MSE MPE MSE MPE
Accurate 0.00 0.00% 0.00 0.00% 0.00 0.00%
M1 1.83 ∗ 1014 8.33% 2.95 ∗ 1014 10.48% 2.79 ∗ 1014 10.21%
M2 8.16 ∗ 1013 5.55% 2.41 ∗ 1012 0.95% 6.94 ∗ 1012 1.61%
M3 8.16 ∗ 1013 5.55% 2.41 ∗ 1012 0.95% 6.94 ∗ 1012 1.61%
M4 3.26 ∗ 1014 11.1% 9.65 ∗ 1012 1.89% 2.78 ∗ 1013 3.22%

3.2 Quality analysis using the Matlab model
The resulting MAC outputs are compared to get a figure of quality. A commenly used metric of quality
is the Mean Square Error[6][7]. The Mean Square Error (MSE) is calculated by calculating the square of
the difference (or error) between each of the 1000 accurate and approximate MAC results. That result is
divided by the total amount of MAC results, in this case 1000, to get the mean. This is shown in equa-
tion (3.1). Here α is the result of the accurate MAC calculation and β the result of the approximate. n is
the amount of calculations.

MSE =
(α1 − β1)2 + (α2 − β2)2 . . .+ (αn − βn)2

n
(3.1)

The MSE can be used to compare different designs with eachother, but the values for MSE do not mean
much on their own. The values are dependent on the actual outcome of the MAC and since we have a
large input vector (M = 10000) the values for MSE will become very large. To get a better idea of the
actual meaning of the error, a second metric is used. The Mean Percentage Error (MPE) is a relative error
calculated as shown in equation (3.2). Instead of calculating the square of the error, the absolute value is
taken and is divided by the accurate result to get a relative indication of the error.

MPE = 100

|α1−β1|
α1

+ |α2−β2|
α2

. . .+ |αn−βn|
αn

n
(3.2)

A few examples of resulting values for MSE and MPE are shown in Table 3.1. These are the values for
MSE and MPE for each of the input sets when all sixteen 2 × 2 bit elements are the same. The MSE and
MPE values forM2 andM3 are identical as expected since they are a mirror pair where the only difference
is the sign of the error. The error of M4 is relatively big. This does not matter as it is not made to be a
multiplier on its own but rather to compensate the positive errors of other multipliers.
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Table 3.2: Area Cost of 2× 2 bit elements and MAC using a single type of 2× 2 bit element
Multiplier Used Area 2× 2 [LE] Area MAC [LE]
Accurate 4 174
M1 3 166
M2 3 136
M3 4 175
M4 3 136

3.3 Cost analysis for FPGA using Quartus
To calculate the area cost of the designs on an FPGA, Quartus is used. The used VHDL code can be seen
in appendix B. Quartus is used for synthesis for FPGA. An area cost is expressed for the designs as the
number of Logic Elements (LE) used in the FPGA. In appendix C the register transfer level (RTL) view of
the synthesis of the MAC is shown. Table 3.2 shows the computed area of the individual 2× 2 bit elements
and the complete MAC made using only a single type of 2× 2 bit multiplier each.

In Table 3.2 the cost result for M3 stands out as it uses a larger area than the accurate one. Since this
multiplier makes large positive errors, the output does not always fit within 16 bits but will overflow into a
17th bit. This overflow also happens with the intermediate 4 × 4 bit calculations in the multiplier. Larger
adders are needed to account for this which makes the multiplier a lot bigger. Not all cases allow for a
17th bit to be output. This makes a multiplier made solely of M3 elements inefficient. The M3 2 × 2
multiplier is only used for partial products where it does not result in overflow.
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Chapter 4

Design space exploration of
approximate multipliers for MAC

In this chapter the complexity of the design space for approximate multipliers for a MAC operation is
explained. Then an algorithm to explore this design space is proposed and discussed.

4.1 Complexity of the design space
For an 8 × 8 bit multiplier sixteen 2 × 2 bit multipliers are needed. This means that even with only a few
options of 2 × 2 bit multipliers the design space to explore gets large really fast. For example when only
using three different 2 × 2 bit elements the number of possible designs (permutations with repetition) is
already 316 = 43046721.

4.2 Algorithm for design space exploration
To explore this design space an algorithm (Appendix D) is proposed. The algorithm computes the average
error of each of the designs and estimates the cost. The cost and error of each of the designs are compared
and the optimal designs are chosen. A flowchart of the algorithm can be seen in Figure 4.1.

Input
The algorithm has 3 inputs: Input data for a MAC in the wanted distribution, the error magnitudes and cost
estimations for each of the 2× 2 bit multipliers.

Error probability computation
Using the input data the probability of an error occurring is calculated. The algorithm only includes M2,
M3 and M4 of the aforementioned multipliers which means the probability of an error occurring in the
2×2 bit multiplier is always equal to the probability the inputs of that multiplier are both 3. The probability
of each of the inputs being 3 is computed with equation (4.1). The probability the input for the given 2×2 bit
multiplier is 3 is the amount of times it was 3 in the distribution sample (MA=3) divided by the total amount
of generated numbers (Mtotal). Then to get the probability of an error occurring for each multiplier the
correct input probabilities are multiplied as shown in equation (4.2). This is done for each of the multipliers
and a vector containing the 16 values for the error probability is output to the next step.

P (A = 3) =
MA=3

Mtotal
(4.1)
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Figure 4.1: Flowchart of the Design Space Exploration algorithm
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Table 4.1: Example of a few sets of permutations
design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X1 M2 M2 M2 M2 M3 M4 M2 M2 M3 M2 M2 M2 M3 M2 M3 M2

X2 M2 M2 M2 M2 M3 M4 M2 M2 M3 M2 M2 M2 M3 M2 M3 M3

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

Table 4.2: Example of a few sets of error magnitudes
design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X1 -2 -2 -2 -2 +2 -4 -2 -2 +2 -2 -2 -2 +2 -2 +2 -2
X2 -2 -2 -2 -2 +2 -4 -2 -2 +2 -2 -2 -2 +2 -2 +2 +2
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

P (A = 3 and B = 3) =
MA=3 ∗MB=3

M2
total

(4.2)

Multiply with shift
The 16 probability values are multiplied with the needed shift for the outputs of the 2×2 multipliers shown
in equation (1.2).The shifted probability values, Si ∗ P (E)i in equation (2.1), are the output.

Calculate Permutations
The number of different 2 × 2 bit multipliers is used to generate all different design permutations. In
the current configuration it calculates for 3 different multipliers. They are permutations with repetition
which results as mentioned in 316 = 43046721 different designs. This block outputs 43 million sets of
16 numbers representing each multiplier in each design. Table 4.1 shows an example of a few of those 43
million sets. Here is X1 the index of the designs and the numbers in the top row represent the sixteen 2×2
multiplier locations in the MAC.

Calculate Error magnitude
The numbers representing the multipliers are replaced with the error magnitude of each of the multipliers
resulting in 43 million sets of 16 error magnitudes. Table 4.2 shows an example of a few of those 43 million
sets.

Calculate Average Error for each design
Each set of 16 error magnitudes is multiplied with the shifted probability (Si ∗ P (E)i) to get the average
error each of the multipliers contributes to the whole 8×8 bit multiplier. These are then added up to get the
average error of the whole multiplier. The output is a vector with an average error for each of the designs.

Calculate Cost for each design
The generated numbers representing all design permutations are replaced with the estimations for cost.
These costs are added up to get an estimated cost for each of the 43 million designs.

Sort designs by cost
With two lists available, one with the average error for all designs and one with all costs, the optimal
designs need to be picked out. To do this first both lists are sorted based on the costs. The output of this
block contains the sorted lists of the average error and cost of the designs.
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Pick out best design
From the sorted lists the designs with both the lowest cost and best quality (lowest average error) are taken
and output to be used in the next steps.

Design has best quality so far?
In this block a check is done if the chosen optimal designs have the best quality so far. The algorithm
checks the design space in order, from lowest to the highest cost. If the new design has a lower quality it
means that both the cost is higher and the quality worse than it’s predecessors and it can be removed from
the design space.

Does the design overflow?
As discussed in chapter 3, the M3 multiplier makes positive errors which can cause the output to exceed
16 bits. This can also happen with the designs containing some M3 multipliers. This is not wanted and
these designs will be removed from the design space. Normally the overflow can be checked by calculating
255 ∗ 255 for this is the largest number and will contain all the positive errors. However because M4 has
such a large error, the biggest number is actually 2 ∗ 3 = 6 instead of 3 ∗ 3 = 5. This means there is a
chance the multiplier will not overflow calculating 255 ∗ 255 but will overflow calculating a lower sum.
This makes checking for overflow a lot more complicated. It can be checked by just checking all possible
8 × 8 multiplications. However when this has to be done for a lot of designs it will take a lot of time. To
speed up the algorithm, a few logic steps are done first, specific to the multipliers used in this work. For
example the 4 × 4 bit multiplications will never overflow if the most significant multiplier is not the M3
multiplier. The other logic steps can be seen in the algorithm in appendix D. The last few designs that did
not get filtered out using these logic steps are tested by calculating all possibilities.

Add design to output list
When the designs do not overflow and have the best quality so far they are added to the output list of the
algorithm.

Design Space Reduction
If the design overflows, that specific design will be removed from the design space. Otherwise all designs
with the same cost as that design will be removed from the design space.

Are there designs left in the design space?
If there are designs left in the design space the algorithm loops back to find the optimal designs again.
Otherwise, the algorithm outputs the sorted design list containing designs with ascending cost and quality.
The designs have the lowest cost for each quality and the highest quality for each cost.
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Chapter 5

Results

In this chapter the design space exploration algorithm is run and the results are discussed. Then a few
reccomendations for future work are made.

5.1 Results of design space exploration
The algorithm discussed in the last chapter was used to find the optimal designs using the 2×2 bit elements
M2, M3 and M4. The corresponding error magnitudes are −2, +2 and −4 respectively. The estimations
of the costs are based on the values in Table 3.2 in chapter 3. The values are 136

16 = 8.5, 17016 = 10.6 and
136
16 = 8.5. Here the value for the M3 multiplier differs from the one gained in the cost chapter because

the 17th bit is not taken into account. The algorithm removes designs with overflow so this will not be a
problem. The algorithm was run for the uniform distribution, a normal distribution where σ = 40 and a
normal distribution with σ = 50. The results are shown in Figure 5.1. The left side shows the total explored
design space and the right side a zoomed version that is focused on the part with the lowest average errors.
The black dots represent the 43 ∗ 106 designs and their calculated average errors and cost estimations. The
red dots represent the designs removed by the overflow handling of the algorithm. Finally, the blue line
connects the chosen designs with optimal average error for each cost.

The resulting optimal designs were checked with the methods discussed in chapter 3. The results can
be found in Figure 5.2.

The designs found by the algorithm can be seen in Table 5.1 and the corresponding cost and quality
values are shown in Table 5.2. The cost and quality are in ascending order.
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(a) Uniform Distribution (left: Total design space, right: Zoomed version at low average errors)

135 140 145 150 155 160 165 170
Estimated Cost

0

50

100

150

200

250

300

350

A
ve

ra
ge

E
rr

or

142 144 146 148 150 152 154 156 158 160
Estimated Cost

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

A
ve

ra
ge

 E
rr

or
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Figure 5.1: Design space exploration results
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Figure 5.2: Cost and Quality of optimal designs found by the algorithm
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Table 5.1: Found Designs
(a) Uniform Distribution

designs D1 D2 D3 D4 D5 D6 D7 D8 D9

AHHBHH M2 M3 M3 M3 M3 M3 M3 M3 M3
AHLBHH M2 M2 M2 M2 M2 M4 M4 M4 M4
AHHBHL M2 M4 M4 M4 M4 M4 M4 M4 M4
AHLBHL M2 M2 M3 M2 M2 M3 M3 M3 M3
AHHBLH M2 M2 M2 M2 M2 M2 M2 M2 M3
AHHBLL M2 M2 M4 M2 M2 M2 M2 M3 M2
AHLBLH M2 M2 M2 M3 M3 M2 M2 M4 M4
AHLBLL M2 M2 M2 M2 M4 M2 M4 M3 M4
ALHBHH M2 M2 M4 M2 M2 M3 M3 M3 M2
ALHBHL M2 M2 M4 M4 M4 M4 M4 M4 M4
ALLBHH M2 M2 M4 M2 M2 M3 M3 M2 M3
ALLBHL M2 M4 M2 M2 M4 M2 M4 M2 M3
ALHBLH M2 M4 M2 M2 M3 M2 M3 M3 M3
ALHBLL M2 M2 M4 M2 M4 M4 M4 M4 M3
ALLBLH M2 M2 M4 M2 M4 M4 M4 M4 M2
ALLBLL M2 M2 M2 M3 M3 M3 M3 M3 M3

(b) Normal Distribution σ = 40

designs D1 D2 D3 D4 D5 D6 D7 D8 D9

AHHBHH M2 M2 M2 M2 M2 M4 M2 M2 M2
AHLBHH M2 M2 M2 M3 M3 M3 M2 M3 M3
AHHBHL M2 M2 M3 M3 M3 M3 M3 M4 M4
AHLBHL M2 M3 M3 M3 M3 M3 M3 M2 M3
AHHBLH M2 M2 M2 M2 M2 M2 M3 M3 M3
AHHBLL M2 M2 M2 M4 M4 M2 M3 M2 M2
AHLBLH M2 M2 M2 M4 M4 M3 M2 M3 M3
AHLBLL M2 M2 M2 M2 M4 M4 M3 M4 M4
ALHBHH M2 M2 M2 M2 M2 M4 M3 M3 M3
ALHBHL M2 M2 M2 M4 M4 M2 M2 M3 M3
ALLBHH M2 M2 M2 M4 M4 M2 M4 M2 M4
ALLBHL M2 M2 M2 M4 M4 M4 M2 M3 M3
ALHBLH M2 M2 M2 M2 M2 M4 M2 M2 M4
ALHBLL M2 M2 M2 M4 M2 M2 M2 M2 M3
ALLBLH M2 M2 M2 M4 M3 M4 M2 M2 M3
ALLBLL M2 M2 M2 M4 M4 M3 M2 M2 M3

(c) Normal Distribution σ = 50

designs D1 D2 D3 D4 D5 D6

AHHBHH M2 M3 M2 M2 M2 M2
AHLBHH M2 M4 M3 M3 M3 M3
AHHBHL M2 M2 M3 M3 M3 M3
AHLBHL M2 M2 M2 M3 M3 M3
AHHBLH M2 M2 M2 M2 M2 M4
AHHBLL M2 M2 M2 M2 M2 M2
AHLBLH M2 M2 M2 M2 M2 M3
AHLBLL M2 M2 M2 M2 M2 M2
ALHBHH M2 M2 M2 M2 M4 M4
ALHBHL M2 M2 M2 M2 M3 M3
ALLBHH M2 M4 M2 M2 M2 M4
ALLBHL M2 M2 M2 M2 M2 M2
ALHBLH M2 M2 M2 M2 M4 M4
ALHBLL M2 M2 M2 M2 M2 M4
ALLBLH M2 M2 M2 M2 M4 M4
ALLBLL M2 M2 M2 M2 M4 M2

20



Table 5.2: Design results
(a) Uniform Distribution

designs Average Error
Estimated
Cost [LE] MSE MPE Cost [LE]

D1 9.03 ∗ 102 136 8.16 ∗ 1013 5.55% 136
D2 1.12 ∗ 101 138.1 5.35 ∗ 1010 0.11% 137
D3 1.30 ∗ 10−1 140.2 3.80 ∗ 1010 0.10% 140
D4 8.62 ∗ 10−2 142.3 3.79 ∗ 1010 0.09% 145
D5 8.52 ∗ 10−2 144.4 3.79 ∗ 1010 0.10% 143
D6 6.63 ∗ 10−2 146.5 4.07 ∗ 1010 0.10% 150
D7 6.52 ∗ 10−2 148.6 4.08 ∗ 1010 0.10% 151
D8 6.42 ∗ 10−2 150.7 4.09 ∗ 1010 0.10% 150
D9 6.34 ∗ 10−2 152.8 4.08 ∗ 1010 0.10% 153

(b) Normal Distribution σ = 40

designs Average Error
Estimated
Cost [LE] MSE MPE Cost [LE]

D1 1.55 ∗ 102 136 2.41 ∗ 1012 0.95% 136
D2 9.12 ∗ 101 138.1 8.34 ∗ 1011 0.56% 139
D3 3.43 ∗ 101 140.2 1.21 ∗ 1011 0.21% 140
D4 1.33 ∗ 10−2 142.3 3.41 ∗ 109 0.03% 143
D5 1.31 ∗ 10−2 144.4 3.40 ∗ 109 0.03% 148
D6 2.15 ∗ 10−3 146.5 1.00 ∗ 1010 0.05% 148
D7 1.70 ∗ 10−3 148.6 3.29 ∗ 109 0.03% 150
D8 4.56 ∗ 10−5 152.8 5.43 ∗ 109 0.04% 158
D9 7.60 ∗ 10−6 157.0 5.42 ∗ 109 0.04% 160

(c) Normal Distribution σ = 50

designs Average Error
Estimated
Cost [LE] MSE MPE Cost [LE]

D1 2.63 ∗ 102 136 6.94 ∗ 1012 1.61% 136
D2 1.61 ∗ 102 138.1 2.59 ∗ 1012 0.98% 137
D3 6.44 ∗ 101 140.2 4.24 ∗ 1011 0.39% 142
D4 8.18 ∗ 10−1 142.3 8.55 ∗ 109 0.05% 143
D5 2.52 ∗ 10−2 144.4 8.77 ∗ 109 0.05% 145
D6 2.25 ∗ 10−3 146.5 9.12 ∗ 109 0.05% 149
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5.2 Conclusion and discussion
The goal of this work is to find an approximate design of an 8 bit MAC which has the lowest cost for a given
quality or the best accuracy for a given cost. The algorithm achieves this and outputs the optimal designs
for each cost. Compared to conventional multipliers like M1 and M2, the designs found by the algorithm
have a much lower error for a small increase in cost and the overall quality-cost tradeoff is improved. For
example, the uniform distribution has a value of MPE that is 5.44% lower for an increase of only 1 logic
element in area (D2 in Table 5.2(a)) over the multiplier made with 2 × 2 bit element M2 (Table 3.1 and
Table 3.2).
When taking a closer look at the results and comparing the results from the algorithm with the result of the
Quality and Cost Analysis tests, the algorithm seems to come reasonably close with its estimations. When
looking at the zoomed version of the normal distribution with σ = 50 in Figure 5.1(c) the line connecting
the chosen optimal designs suddenly stops. This means the algorithm did not find any designs with lower
average error at a higher cost.
The values of MPE and MSE in Table 5.2 are mostly in descending order since the designs are sorted on the
calculated average error of the algorithm. There are a few values that stand out however, for they are not
in order like the rest. For example D4 of the uniform designs has the lowest error according to the Quality
Analysis while not at the lowest spot. In the same way D6 from the normal distribution with σ = 40 has a
higher error. The error is really small however and these differences are most likely the result of estimation
in the algorithm. Also the inputs used to test the quality are random and therefore the errors not always
perfectly cancel eachother.
When comparing the estimated and actual cost of the designs the values seem to come close. However a
important part of the goal is that the actual cost should be in ascending order like the estimated costs. When
looking at D5 and D8 of the uniform distribution it can be seen that this is not always the case. They have
a lower cost than the designs D4 and D7 respectively and are therefore (theoretically) objectively better
designs as they have a lower error and lower cost. This indicates that the area is not only dependent on the
used multipliers and that the estimation based on this assumption is not accurate enough. The difference in
cost is most likely caused by the fact that M2 and M4 only output 3 bits instead of 4. This can change the
size of the adders needed within each 4×4 bit multiplier segment depending on the location ofM2 orM4.
This makes the total area of the MAC differ between two multiplier designs using the same multipliers but
in a different configuration. The algorithm is reasonably fast and completes a single run in a few minutes.
When the algorithm is adjusted to take into account 4 instead of 3 different multipliers the needed memory
to run the algorithm increases exponentially. This is the result of the algorithm calculating the quality and
cost for every permutation of which there are 416 = 4.3 billion for 4 multipliers instead of the 43 million
with 3 multipliers. The algorithm is therefore not suited for a large variety of 2× 2 multipliers.
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5.3 Future work
• As discussed in the Discussion, the cost estimation is inaccurate. The effect of the configuration of

the multipliers on the area should be investigated and the results can be implemented in the estimation
of the cost. The algorithm should then be able to more accurately find the optimal designs.

• The cost estimation of the algorithm can also be rewritten to express something completely different,
for example the energy consumption of the multiplier. These different properties of the multiplier
can also be combined to form an abstract cost value to find optimal designs.

• The algorithm only works with 2×2 bit multiplier elements creating an error when calculating 3×3.
This can be changed to add in, for example, multiplier M1 by rewriting the probability calculation
and error magnitude parts of the algorithm.

• The algorithm is not suited for a high number of approximate 2×2 multiplier variants. This is because
all permutations are considered. An algorithm can be written which can in a more intelligent way
search for optimal designs. Since this algorithm does not have to consider all permutations it would
need a lot less memory and therefore be able to handle more multiplier elements.
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Appendix A

Matlab code to model a MAC and test
for quality

A.1 MAC Model

A.1.1 MacSpeed

function [ res ] = macSpeed(I1,I2,mul)
%This function first calculates the product using the FullMulSpeed function and
%then adds the results.

res = sum(FullMulSpeed(I1,I2,mul),2);

end

A.1.2 FullMulSpeed

function [ r ] = FullMulSpeed( I1, I2, mul )
%FULLMULSPEED Matlab model of a 8x8 bit Multiplier. I1 and I2 are the input vectors and
%mul is a 16 element vector describing which 2x2 bit multiplier to use in
%which location. The 2x2 bit multipliers are defined in TwoBitMulSpeed

d1 = I1;
d2 = I2;

a1 = mod(d1,4); %mod will give the leftovers of the input divided by 4 which ranges from
0 - 3

a2 = mod(d2,4); %this is the least significant 2 bits of the input.

d1 = d1 - a1; %the leftovers are substracted from the inputs
d2 = d2 - a2;

b1 = mod(d1,16); %this gives the next 2 bits of the input
b2 = mod(d2,16);

d1 = d1 - b1;
d2 = d2 - b2;

c1 = mod(d1,64);
c2 = mod(d2,64);

d1 = (d1 - c1)/64; %The output is divided by the shift of the multiplier
d2 = (d2 - c2)/64; %this is to get all the 2bit inputs in a range of 0-3
c1 = c1/16;
c2 = c2/16;
b1 = b1/4;
b2 = b2/4;
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x1 = TwoBitMulSpeed(a1,a2,mul(1)); %the 16 multiplications are done using
TwoBitMulSpeed

x2 = TwoBitMulSpeed(a1,b2,mul(2)).*4; %the input mul(x) defines the correct 2x2 bit
multiplier used

x3 = TwoBitMulSpeed(b1,a2,mul(3)).*4; %The output is multiplied with the needed shift.
x4 = TwoBitMulSpeed(b1,b2,mul(4)).*16;

x5 = TwoBitMulSpeed(a1,c2,mul(5)).*16;
x6 = TwoBitMulSpeed(a1,d2,mul(6)).*64;
x7 = TwoBitMulSpeed(b1,c2,mul(7)).*64;
x8 = TwoBitMulSpeed(b1,d2,mul(8)).*256;

x9 = TwoBitMulSpeed(c1,a2,mul(9)).*16;
x10 = TwoBitMulSpeed(c1,b2,mul(10)).*64;
x11 = TwoBitMulSpeed(d1,a2,mul(11)).*64;
x12 = TwoBitMulSpeed(d1,b2,mul(12)).*256;

x13 = TwoBitMulSpeed(c1,c2,mul(13)).*256;
x14 = TwoBitMulSpeed(c1,d2,mul(14)).*1024;
x15 = TwoBitMulSpeed(d1,c2,mul(15)).*1024;
x16 = TwoBitMulSpeed(d1,d2,mul(16)).*4096;

r = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16
; % the outputs of all multiplications are added together to get the total output.

end

A.1.3 TwoBitMulSpeed

function [ r ] = TwoBitMulSpeed( I1, I2, mul )
%TWOBITMULSPEED This function calculates I1 * I2 and then changes the
%output to match the error made by the approximate 2x2 multiplier defined
%in mul.

switch(mul)
case 1 %accurate

r = I1.*I2;
case 2 %M1

r = I1.*I2; %calculate the exact result of 2x2 multiplier
r(r==3) = 2; %add the errors in
r(r==1) = 0;

case 3 %M2
r = I1.*I2;
r(r==9) = 7;

case 4 %M3
r = I1.*I2;
r(r==9) = 11;

case 5 %M4
r = I1.*I2;
r(r==9) = 5;

end

end

A.2 Quality test

A.2.1 QualityCheck

function [ Q ] = QualityCheck( I1,I2,di )
%QUALITYCHECK This function calculates both the MPE and MSE for given input
%samples I1 and I2. di is a matrix containing a list of designs with 16 values for 2x2

multipliers for each design.

mpe = [];
mse = [];
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h = waitbar(0,'Calculating Quality'); %progress bar
Accdot = dot(I1,I2,2); %calculating accurate dot product.
for i=1:size(di,1) %for each design in the list di

waitbar(i/size(di,1),h); %update progress bar
mul = di(i,:); %select ith design in the list

Macdot = macSpeed(I1,I2,mul); %perform inaccurate mac operation

mpe = [mpe; MPE(Accdot,Macdot)]; %calculate MPE
mse = [mse; MSE(Accdot,Macdot)]; %calculate MSE

end
Q = [mse mpe]; %output list
delete(h)
clearvars h

end

A.2.2 MSE

function [ Error ] = MSE( Acc, Ax )
%MSE This function calculates the Mean Square Error. Acc are the accurate MAC
%results and Ax the approximate results.
Error = sum((Acc-Ax).ˆ2)/size(Acc,1);

end

A.2.3 MPE

function [ Error ] = MPE(Acc, Ax)
%MPE This function calculates the Mean Percentage Error. Acc are the accurate MAC
%results and Ax the approximate results.
Error = 100*sum(abs(Acc-Ax)./Acc)/size(Acc,1);
end
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Appendix B

VHDL code of the MAC

B.1 MAC

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
USE work.ALL;

entity AccMAC is
port( i1, i2: in unsigned(7 downto 0);

CLK: in std_logic;
result: out unsigned(22 downto 0)

);
end AccMAC;

architecture bhv of AccMAC is
COMPONENT eightbitmultiplier is

port( i1, i2: in std_logic_vector(7 downto 0);
result: out std_logic_vector(15 downto 0)

);
end COMPONENT;
signal mul: std_logic_vector(15 DOWNTO 0);
signal total, Rtotal: unsigned(22 downto 0) := (others => '0');

begin

--eight bit multiplier:
Mult: eightbitmultiplier PORT MAP(i1 => std_logic_vector(i1) , i2 =>

std_logic_vector(i2) , result => mul);

--sum up all inputs:
total <= Rtotal + resize(unsigned(mul), 23);

PROCESS(CLK)
BEGIN
IF rising_edge(CLK) THEN
Rtotal <= total; --next clock cycle update output
END IF;
END PROCESS;
result <= Rtotal;
end architecture;

B.2 eightbitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
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USE IEEE.numeric_std.ALL;
USE work.ALL;

entity eightbitmultiplier is
port( i1, i2: in std_logic_vector(7 downto 0);

result: out std_logic_vector(15 downto 0)
);

end eightbitmultiplier;

architecture eighttofour of eightbitmultiplier is

COMPONENT fourbitmultiplier is
port( i1, i2: in std_logic_vector(3 downto 0);

result: out std_logic_vector(7 downto 0)
);

end COMPONENT;

signal temp1, temp2, temp3, temp4: std_logic_vector(7 downto 0);
begin

mul1: fourbitmultiplier PORT MAP(i1 => i1(3 downto 0) , i2 => i2(3 downto 0) ,
result => temp1); --LSB

mul2: fourbitmultiplier PORT MAP(i1 => i1(3 downto 0) , i2 => i2(7 downto 4) ,
result => temp2); --MidSB

mul3: fourbitmultiplier PORT MAP(i1 => i1(7 downto 4) , i2 => i2(3 downto 0) ,
result => temp3); --MidSB

mul4: fourbitmultiplier PORT MAP(i1 => i1(7 downto 4) , i2 => i2(7 downto 4) ,
result => temp4); --MSB

result <= std_logic_vector(resize(unsigned(temp1), 16) + shift_left(resize(
unsigned(temp2), 16),4) + shift_left(resize(unsigned(temp3), 16),4) +
shift_left(resize(unsigned(temp4), 16),8)); --shift the results and add up

end architecture;

B.3 fourbitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;
USE work.ALL;

entity fourbitmultiplier is
port( i1, i2: in std_logic_vector(3 downto 0);

result: out std_logic_vector(7 downto 0)
);

end fourbitmultiplier;

architecture fourtotwo of fourbitmultiplier is

COMPONENT twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end COMPONENT;

signal temp1, temp2, temp3, temp4: std_logic_vector(3 downto 0);
begin
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mul1: twobitmultiplier PORT MAP(i1 => i1(1 downto 0) , i2 => i2(1 downto 0) ,
result => temp1); --LSB

mul2: twobitmultiplier PORT MAP(i1 => i1(1 downto 0) , i2 => i2(3 downto 2) ,
result => temp2); --MidSB

mul3: twobitmultiplier PORT MAP(i1 => i1(3 downto 2) , i2 => i2(1 downto 0) ,
result => temp3); --MidSB

mul4: twobitmultiplier PORT MAP(i1 => i1(3 downto 2) , i2 => i2(3 downto 2) ,
result => temp4); --MSB

result <= std_logic_vector(resize(unsigned(temp1), 8) + shift_left(resize(
unsigned(temp2), 8),2) + shift_left(resize(unsigned(temp3), 8),2) +
shift_left(resize(unsigned(temp4), 8),4)); --shift the results and add up

end architecture;

B.4 Accurate twobitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

entity twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end twobitmultiplier;

architecture accurate of twobitmultiplier is
signal temp: std_logic_vector(3 downto 0);

begin

temp(0) <= i1(0) and i2(1);
temp(1) <= i1(1) and i2(0);
temp(2) <= i1(1) and i2(1);
temp(3) <= temp(0) and temp(1);

result <= (temp(3) and temp(2)) & (temp(3) xor temp(2)) & (temp(0) xor temp(1))
& (i1(0) and i2(0)); --gate logic of the 2x2 multiplier

end architecture;

B.5 M1 twobitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

entity AM1twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end AM1twobitmultiplier;

architecture approx1 of AM1twobitmultiplier is
signal temp: std_logic_vector(3 downto 0);

begin

temp(0) <= i1(0) and i2(1);
temp(1) <= i1(1) and i2(0);
temp(2) <= temp(0) and temp(1);
temp(3) <= i1(1) and i2(1);
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result <= temp(2) & (temp(2) xor temp(3)) & (temp(0) xor temp(1)) & temp(2); --
gate logic of the 2x2 multiplier

end architecture;

B.6 M2 twobitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

entity AM2twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end AM2twobitmultiplier;

architecture approx1 of AM2twobitmultiplier is
signal temp: std_logic_vector(1 downto 0);

begin

temp(0) <= i1(0) and i2(1);
temp(1) <= i1(1) and i2(0);

result <= '0' & (i1(1) and i2(1)) & (temp(0) or temp(1)) & (i1(0) and i2(0)); --
gate logic of the 2x2 multiplier

end architecture;

B.7 M3 twobitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.numeric_std.ALL;

entity AM3twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end AM3twobitmultiplier;

architecture approx1 of AM3twobitmultiplier is
signal temp: std_logic_vector(3 downto 0);

begin

temp(0) <= i1(0) and i2(0);
temp(1) <= i1(0) and i2(1);
temp(2) <= i1(1) and i2(0);
temp(3) <= i1(1) and i2(1);

result <= (temp(3) and temp(0)) & (temp(3) and (not temp(0))) & (temp(1) or temp
(2)) & temp(0); --gate logic of the 2x2 multiplier

end architecture;

B.8 M4 twobitmultiplier

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
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USE IEEE.numeric_std.ALL;

entity AM4twobitmultiplier is
port( i1, i2: in std_logic_vector(1 downto 0);

result: out std_logic_vector(3 downto 0)
);

end AM4twobitmultiplier;

architecture approx1 of AM4twobitmultiplier is
signal temp: std_logic_vector(1 downto 0);

begin

temp(0) <= i1(0) and i2(1);
temp(1) <= i1(1) and i2(0);

result <= '0' & (i1(1) and i2(1)) & (temp(0) xor temp(1)) & (i1(0) and i2(0));
--gate logic of the 2x2 multiplier

end architecture;
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Appendix C

RTL view of the MAC synthesised by
Quartus
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Appendix D

Design space exploration Matlab
algorithm

D.1 FindDesign

function [de,Era,Ba,Co] = FindDesign( I1,I2, E, C)
%FINDDESIGN This function finds the optimal design for given input
%distributions, error magnitudes and cost estimations.
%I1 and I2 are the input samples. E is the error magnitude of the 2x2
%multiplier and C is the estimation for cost for each multiplier.
%outputs are: de - a list of the designs
% Era - the removed designs due to overflow
% Ba,Co - a list of all average errors and cost estimations

h = waitbar(0,'Calculating Weight and Chance of each multiplier'); %progress bar
W = FindWeight(I1,I2); %function for calculating weighted chance. (chance of error times

the shift of the multiplier location.

waitbar(0.115,h,'Loading permutations');
load('../Variables/Per.mat'); %loading the permutations variable.

waitbar(0.123,h,'Calculating Cost');
Co = sum(C(Per(1:20000000,:)),2); %Calculating cost estimations by summing up costs for

each design.
Co = [Co; sum(C(Per(20000001:end,:)),2)]; %Calculation divided in 2 for better memory

management (some memory troubles occured)

waitbar(0.246,h,'Calculating Balance');
Er = int8(E); %making sure the error magnitudes are in int8 format to prevent memory

overload.
Er = Er(Per); %inputing the errors into the permutations matrix
clearvars Per %clearing Per variable to clear up some memory

waitbar(0.38,h);
Ba = abs(double(Er)*W'); %calculating the average error for each design by multiplying

and adding up with the weighted chance.

de = [];
Era = [];
c = unique(Co); %make a list of all different costs present
bd = 1000; %value of the current lowest average error, initialised at a high value

(1000)

waitbar(0.5,h,'Sorting and Overflow handling');
for i=1:size(c,1) %for each unique cost

waitbar((i/size(c,1))/2+.5,h);
a = find (Co==c(i)); %get all designs wih the smallest cost
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b = Ba(a); %get the corresponding average errors of those designs
if min(b) < bd %if the lowest average error of those designs is lower then

the lowest average error so far
e = Er(a,:); %Make a list of the designs

end
while min (b) < bd %while the lowest average error of the list is still lower

then the previous lowest
o = find(b == min(b)); %find the designs with the lowest average error
K = []; %empty list K - a list of designs that do not overflow
R = []; %empty list R - a list of designs that do overflow
[K,R] = FindOverflowFast(e(o,:)); %fill lists K and R
if isempty(K) ==0 %if list K is not empty

e=e(o,:); %get a list of the designs
de = [de;double(e(K,:)) ones(size(K,1),1)*c(i) ones(size(K,1),1)*min(b)]; %

add the designs and their cost and average error to the output list
bd=min(b); %update new lowest average error

else
b(o) = []; %remove designs from the list.
e(o,:)= [];

end
if isempty(R) ==0 %if list R is not empty

Era = [Era;min(b) c(i)]; %add designs to the list of designs that overflow
end

end
end

waitbar(1,h,'Done');
delete(h)
end

D.2 FindWeight

function [ W ] = FindWeight( I1,I2 )
%FINDWEIGHT This function finds the weighted chance of an error occuring
%I1 and I2 are the input samples.

d1 = I1;
d2 = I2;

a1 = mod(d1,4); %mod will give the leftovers of the input divided by 4 which ranges from
0 - 3

a2 = mod(d2,4); %this is the least significant 2 bits of the input.

d1 = d1 - a1; %the leftovers are substracted from the inputs
d2 = d2 - a2;

b1 = mod(d1,16); %this gives the next 2 bits of the input
b2 = mod(d2,16);

d1 = d1 - b1;
d2 = d2 - b2;

c1 = mod(d1,64);
c2 = mod(d2,64);

d1 = (d1 - c1)/64; %The output is divided by the shift of the multiplier
d2 = (d2 - c2)/64; %this is to get all the 2bit inputs in a range of 0-3
c1 = c1/16;
c2 = c2/16;
b1 = b1/4;
b2 = b2/4;

A = (size(a1(a1==3),1)/(size(a1,1)*size(a1,2)) + size(a2(a2==3),1)/(size(a2,1)*size(a2
,2)))/2; %for each 2bit part of the 8bit input the chance is calculated that it is
3.
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B = (size(b1(b1==3),1)/(size(b1,1)*size(b1,2)) + size(b2(b2==3),1)/(size(b2,1)*size(b2
,2)))/2;

C = (size(c1(c1==3),1)/(size(c1,1)*size(c1,2)) + size(c2(c2==3),1)/(size(c2,1)*size(c2
,2)))/2;

D = (size(d1(d1==3),1)/(size(d1,1)*size(d1,2)) + size(d2(d2==3),1)/(size(d2,1)*size(d2
,2)))/2;

S=[1 4 4 16 16 64 64 256 16 64 64 256 256 1024 1024 4096]; %a list of the shifts needed
W= S.*[Aˆ2 A*B A*B Bˆ2 A*C A*D B*C B*D A*C B*C A*D B*D Cˆ2 C*D C*D Dˆ2]; %the

shifts are multiplied with the chance an error occurs(3*3 happens).
end

D.3 FindOverflowFast

function [ O, E ] = FindOverFlowFast( D )
%FINDOVERFLOW This function uses some logic steps to speed up the overflow
%check. This only works with the multipliers with error -2 +2 and -4 !!
% D are the designs that need to be checked O is the list that does not
% overflow and E the ist of designs that does.
O = [];
E = [];
for i=1:size(D,1) %for all designs in list D

o=0; %start with the assumption the design does not overflow
for j=1:4 %for each set of 4 multipliers

if D(i,4*j)==2 %check if the most significant is M3 (3*3=11)
if nnz(D(i,(4*(j-1)+1):(4*j))==2)>2 %check if there are more then 2 M3 in

the set of 4
if (D(i,4*(j-1)+2) + D(i,4*(j-1)+2)) > (-2) %check if sum of specific

locations is higher then -2
o=1; %if all these statements are true the individual 4x4

multiplier does overflow.
end %otherwise the 4x4 multiplier does not overflow

end
end

end

%It is possible that no individual 4x4 multipliers overflow but the 8x8
%does. The following code deals with that
if o==0 %if the 4x4 already overflows there is no need to check

if D(i,16) == 2 %if the most significant 2x2 multiplier is M3 (3*3=11)
if nnz([D(i,12:15) D(i,8)] == -4) == 0 %if there are no M4 multipliers

present the design overflows.
o=1;

else
o=FindOverflowSlow(D(i,:)); %if there are the rest is checked with an

exhaustive check
end

end
end

if o==0 %if it does not overflow
O = [O;i]; %add it to the list

else
E = [E;i]; %else add it to the overflowing list

end
end
end

D.4 FindOverflowslow

function [ o ] = FindOverflowSlow(D)
%FINDOVERFLOWSLOW this function does an exhaustive search on a design to see if it

overflows
%D is the design to check, o is 1 if it overflows and 0 otherwise
a = D;
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a(a==-4)=5; %change the designs indication from error magnitude (as worked with in
FindDesign)

a(a==2)=4; %to a number (as worked with in the MAC model)
a(a==-2)=3;

k = [0:1:255]; %creating a matrix with all inputs
o = ones(1,256);
i1 = k;
i2 = zeros(1,256);

for i = [1:255]
i1 = [i1 k];
i2 = [i2 i*o];

end

R = FullMulSpeed(i1,i2,a); %calculate all outputs with all inputs using the design D

o=0; %assume design does not overflow
if max(R)> 65535 %change it to overflow if the output exceeds 65535 (16 bits)
o=1;
end

end
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