
A model-driven data-analysis
architecture enabling reuse
and insight in open data

Master's Thesis
Master of Computer Science
Specialization Software Technology

University of Twente
Faculty of Electrical Engineering, Mathematics
and Computer Science

Robin Hoogervorst
July 2018

Supervising committee:
dr. Luis Ferreira Pires
dr.ir. Maurice van Keulen
prof.dr.ir. Arend Rensink

Abstract

The last years have shown an increase in publicly available data, named open
data. Organisations can use open data to enhance data analysis, but tradi-
tional data solutions are not suitable for data sources not controlled by the
organisation. Hence, each external source needs a specific solution to solve
accessing its data, interpreting it and provide possibilities verification. Lack
of proper standards and tooling prohibits generalization of these solutions.

Structuring metadata allows structure and semantics of these datasets to
be described. When this structure is properly designed, these metadata can
be used to specify queries in an abstract manner, and translated these to
dataset its storage platform.

This work uses Model-Driven Engineering to design a metamodel able to
represent the structure different open data sets as metadata. In addition,
a function metamodel is designed and used to define operations in terms
of these metadata. Transformations are defined using these functions to
generate executable code, able to execute the required data operations. Other
transformations apply the same operations to the metadata model, allowing
parallel transformation of metadata and data, keeping them synchronized.

The definition of these metamodels, as well as their transformations are
used to develop a prototype application framework able to load external
datasets and apply operations to the data and metadata simultaneously.
Validation is performed by considering a real-life case study and using the
framework to execute the complete data analysis.

The framework and its structure proved to be suitable. The transfor-
mation structure allows for traceability of the data, as well as automatic
documentation of its context. The framework structure and lessons from the
prototype show many possible improvements for the different metamodels.
These provide more expressiveness for defining models, while maintaining
the interoperability between different datasets.

2

Contents

1 Introduction 5
1.1 The impact of open data . 6
1.2 Project goal . 8
1.3 Project approach . 10
1.4 Structure of the report . 12

2 Background 13
2.1 Data-driven decision making 13
2.2 Sources for data-driven desicion making 17
2.3 Data analysis solutions . 18

2.3.1 Database storage . 20
2.3.2 Pandas . 20
2.3.3 OLAP . 21

2.4 Metadata modeling . 23

3 Case Studies 26
3.1 Case 1: Supply and demand childcare 26
3.2 Case 2: Impact of company investments 29

4 Dataset modeling 32
4.1 Metadata . 32
4.2 Data structures . 33

4.2.1 Dimension and metrics 36
4.2.2 Aggregated vs. non-aggregated data 38
4.2.3 Origin and quality . 38

4.3 Dataset model . 39

5 Function modeling 44
5.1 Functions transformation structure 44
5.2 Metamodel definition and design 48
5.3 Data operations . 52

3

5.3.1 Operations overview 53
5.4 Dataset merge operations . 61
5.5 DSL definition . 64

6 Data transformations 67
6.1 Transformation goal . 67
6.2 Data transformation target . 68
6.3 Function transformation . 70

6.3.1 Transformation example 72
6.4 Dataset transformations . 74

7 Implementation details 76
7.1 EMF and PyEcore . 76
7.2 Text-to-model transformations 77
7.3 Model-to-Model transformations 79
7.4 Model-to-text transformations 81

8 Validation 83
8.1 Case study . 83
8.2 Implementation . 83

8.2.1 Dataset identification 84
8.2.2 Dataset model specification 85
8.2.3 Data loading . 90
8.2.4 Data retrieval . 91

8.3 Results . 97
8.4 Conclusions . 98

9 Conclusion 100
9.1 Research questions . 100
9.2 Prototype implementation . 102

10 Future work 104
10.1 Dataset model mining . 104
10.2 Dataset versioning . 105
10.3 Data quality . 106
10.4 Dataset annotations . 107
10.5 Data typing . 107
10.6 Multiple execution platforms 109
10.7 Function re-usability . 109

4

Chapter 1

Introduction

Data can be used as a foundation for decisions within organisations. De-
creased data storage costs and faster internet speeds have enabled an increase
in data availability. Organisations often collect data they deem valuable and
have software applications like a CRM or ERP that store data about their
customers and operations.

These data hold valuable information, but extracting this information
requires analysis and interpretation. This analysis is costly and requires
technical expertise. Apart from the technical knowledge, domain knowledge
about the information as well as context is needed to properly interpret
the analysis, requiring people with a combination of technical and domain
expertise on the subject of analysis. This provides barriers for effective use
of many different data sources within organisations.

Internal data sources are often well structured and tooling within the
organisation is implemented for this specific structure, lowering the barrier
for use. To enhance this information, external data sources can be used, but
these sources are not under control of the organisation and thus cannot be
used easily. Because more data is becoming publicly available, there is an
increasing need for a solution to lower the barrier for using external data.

By generalizing data structure and metadata, it is possible to decrease
this barrier and use data sources to find knowledge, which can be used to
improve business processes and decisions. The goal of this project is to
provide a solution that eases data analysis on external sources, while being
re-usable and compatible with internal sources.

5

1.1 The impact of open data

Based on the trend of rising data availability and a vision on “Smart growth”,
the European Union has the vision to make its documents and data as trans-
parent as possible. Based on this directive, the Netherlands implemented a
law that makes re-use of governmental data possible [11], as of June 2015.
This law caused governmental organisations to publish more and more data
classified as ’open data’[19].

Open data is a collective name for publicly available data. It is based on
the philosophy that these data should be available for everyone and be used
freely. Because the scope of the law applies to all governmental organisations,
the scope of new available data sources is very large.

These extra data change the way that organisations can use data sources,
as shown in figure 1.1. Traditionally, organisations use the data generated
by themselves, in addition to some data that is gathered from the world
around them (1.1a). These data are structured according to the needs of
the organisation and they have influence on how this is designed. Because
the amount of external data is small, the benefits of such an implementation
outweigh the costs and thus effort is made to import these data into its
internal data sources.

(a) Traditional data flow for an or-
ganisation. Some data is gathered
from the world and data is generated
from applications within the organi-
sation.

(b) Changed situation including open
data. Many different sources can pro-
vide data to the organisation, but not
all are relevant.

Figure 1.1: Overview of changing data flows for an organisation due to the
rise of open data

In the open data situation (1.1b), most data is gathered outside. The

6

amount of data coming originating the organisation is relatively small com-
pared to the complete set.

Organisations do not have influence on how this data is gathered, pro-
cessed and published. This means that every different data source has a
different way of publishing, can have a different level of trust and has dif-
ferent areas of expertise. It becomes a challenge to incorporate these data,
because it is expensive and time-consuming to process the data from all these
different sources by hand. This challenge often means the data is not incor-
porated at all, neglecting the opportunities these data can provide.

To enable effective use, several challenges need to be resolved. First of
all, there are technical challenges. These include different data structures,
different formats, difficult accessibility, etc. Usually, these problems can be
resolved when the data is loaded into a data analysis tool and scripts can be
created that load the cleaned data into the tool. This process often forms a
big part of time spent by data analysts, because it can become very complex.
Because this process takes place before the actual tooling is used, insight in
this process is lost and the transformations (and possible errors during it)
become invisible.

Another challenge concerns the context of the data. Values in themselves
lack any meaning. Their meaning is defined by the context that they are
put into. The number 42 in itself does not mean anything, but when it is
stated that the number represents “the percentage of males”, suddenly it has
meaning. This still is not a complete picture, as asking the question “The
percentage of males in what?”. The context could be further enhanced by
stating it represents the percentage of males within the Netherlands. There
are many questions that can be asked on what the data actually represents.

Then again, even when its exact meaning is known, the context is not
complete. There is no information on, for example, when this measurement
is taken or how it is taken (or calculated). This measurement might be taken
only within a small group and not be representative. The measurement might
be performed by a 4-year old, decreasing the trust in this certain measure-
ment. Or someone might have calculated this number based on personal
records from ten years ago.

More concretely, we state that these open data sources cannot be directly
used within organisations, because:

• Open Data is published in many different formats, e.g. CSV, XML,
(Geo)Json or OData API. These data need to be transformed before
they can be used for analysis and visualisation.

7

• The context of the data (what is measured, how it is measured) is not
present directly in the data itself and harder to interpret because the
source is not directly from the organisation itself.

• The source may be of low quality. This includes missing values, wrong
values, slightly different values that can’t be compared easily or differ-
ent keys to identify different meaning.

1.2 Project goal

We argue that extensive use and structuring of metadata enables the use of
this context during data analysis and generalise analysis methods based on
these metadata structures.

Metadata are used during data analysis to provide meaning. A trivial
example is data stored in a database, where the table in the database is pre-
defined which defines the columns (often including types), and thus structure.
This table provides the context in which data can be retrieved. Usually this
use of metadata is very limited and much information about the analysis
result itself is kept inside the data analysts mind.

By enriching this metadata and creating a structure for it, more extensive
documentation of the context of data retrieval is possible, as well as docu-
menting data results within this enriched context.

This research aims to provide structure for users to be able to specify
and use these metadata, generalized for different sources. Using modeling
techniques allows us to structure metadata properly and take advantages
of these structures during the data analysis. Applying this to the situation
shown in figure 1.1, changes that situation to the new one shown in figure 1.2.
The models should be expressive enough such that users only need this model
to provide all information required. This information includes how data can
be accessed, where data is stored and what the retrieved data actually means.

If well designed, these model abstractions provide possibilities for gener-
alizing queries across different external datasets, without the need to gather
all data into a data warehouse. Only an abstraction of data source is not
sufficient to effectively perform these operations. Hence, a second step is to
design an abstraction for these queries, ensuring compatibility with the data
source models. The combination of these provides all information needed to
execute data retrieval and operations on external sources.

8

Figure 1.2: A schematic overview of data flows for an organisation using data
source models

To be able to properly design these metamodels, we pose the following
research questions.

RQ 1. What elements are necessary to create a metamodel able to represent
existing datasets?

RQ 2. How can we create models for existing datasets efficiently?

RQ 3. What is the best method to define a generalized query in terms of this
data model?

RQ 4. How can the generalized queries be transformed to executables able to
retrieve data?

RQ 5. How can the context of the data be represented and propagated in the
result?

This goal of this project is to define the proper abstractions, and provide
an environment of transformation definitions that make these models usable.
The complete package of metamodels and transformations created during
this research will be referred to as framework. The framework is considered
to be useful, when it

9

1. is able to load open data in a raw form,

2. allows users to put these data into context,

3. eases re-use of analysis methods on datasets

4. enables analysis methods on these data that maintains this context,

5. and allows for easy publishing of results of this analysis to the end user.

1.3 Project approach

The project goals require a method to structure abstractions and properly
define these, which is why we deem Model-Driven Engineering (MDE) to be
a suitable approach for solving this problem. MDE allows us to explicitly
define the structure of required models as meta models. Functionality is de-
fined in terms of these meta models. This allows us to define functionality
for all datasets that have a model defined within the constraints of the meta
model.

With the use of MDE comes the definition of a transformation toolchain,
consisting of metamodel definitions and transformations between them. Trans-
formations are defined in terms of the metamodel, but executed on the mod-
els. These transformations describe the functionality of the framework. This
toolchain defines the inputs, outputs and steps required to generate the out-
puts from the inputs.

To provide an overview to the reader, the transformation toolchain used
in the remainder of this report is introduced now. Figure 1.3 shows this
chain. The most important models and metamodels are shown, as well as
their relation between them.

The top layer represents the metamodel layer and contains metamodels
for the dataset, function and raw data. The middle layer, called model
layer, contains instances of these metamodels and represent actual datasets,
functions and raw data sources. The bottom layer represents the physical
layer. Only here is data transformed, executed and modified and upper layers
only store information about the metadata.

The metamodel layer provides the definitions for the model layer, while
the model layer provides the definitions that provide the base for the lower
level functionality. In this transformation chain, a combination of a dataset
model and function model is converted into executable code on the data.

10

Figure 1.3: A high level overview of the steps of the envisioned solution. The
dataset model forms the center, functions are defined in terms of this model
and a method of converting the data to this model is needed as well. The
bottom layer represents the data-flow that is needed to perform the actual
analysis.

This executable retrieves the results from the data as specified by the func-
tion model.

We defined the metamodels for the dataset and function based on research
on existing data analysis methods and metadata modeling techniques. Then,
transformations based on these metamodels are defined that allows a user to
transform these models into executable code. This executable code retrieves
the data from the desired data source and provides the user with the desired
result.

A prototype is implemented based on the definition of the metamodels
and transformations and present how these cases can be solved in terms using
the prototype. We focus on the metamodels that define the metadata and
operations and deem model-mining of existing datasets out of scope for this
project.

After the research and implementation, we validate usefulness of the
framework, based on two cases representative for a policy-driven data analy-
sis. These cases present challenges that arise during data analysis for policy
questions, which is one of the most important use cases of open data. This
validation shows a complete walk-through of how a user could use this frame-
work.

11

1.4 Structure of the report

The rest of this report is structured as follows. Chapter 2 presents back-
ground information on the use cases for data analysis, as well as modern data
analysis and metadata modeling solutions. This provides the foundation for
decisions made in the modeling process. Chapter 3 presents the cases used
for validation of the framework. Chapters 4 and 5 present the design of the
metamodels and resulting DSLs for the dataset and function respectively.
Chapter 6 provides an overview of the transformations in the framework,
while chapter 7 provides more specific details about the prototype imple-
mentation. When the framework descriptions have been presented, Chapter
8 shows an example case using the framework and uses this as a method of
validation. To conclude, Chapter 9 presents our conclusions and Chapter 10
discusses ideas for improvements.

12

Chapter 2

Background

Data analysis and the use of its results is already often used in businesses.
They use techniques to analyse these data and use them to make better
decisions. This history brought techniques to perform data analysis and
strategies to apply these to policy decisions. These policy strategies are
investigated in this chapter to provide a better view on the requirements of
data analysis.

Similarly, solutions to perform data analysis are investigated. These in-
clude storage solutions like databases, as well as libraries to directly transform
data. The last element required as background is the effort others put into
describing metadata of datasets.

2.1 Data-driven decision making

The huge amounts of data available today enables opportunities for analysis
and extraction of knowledge from data. Using data as a foundation to build
decisions upon is referred to as data-driven decision making. The goal is
to analyse the data in such a way that it provides the right information
for the people that need to make the actual decision. As described in the
introduction, this process changes when open data is added as an additional
source. To support the modeling process, this chapter explores the different
opportunities for using open data within this process.

Because we are creating an abstraction on the queries and data sources, we
need to know the context and possible use cases in which we want to execute
queries. This also puts the cases presented in chapter 3 in perspective. We use
the model of planning and control cycle. There are many different methods
and models, and because it is only used to provide context for the operations
and analysis, we choose a popular one, which is the Lean Six Sigma model.

13

Six Sigma consists of an iterative sequence of five steps: Define, Measure,
Analyze, Improve and Control, as shown in figure 2.1.

Figure 2.1: A schematic overview of the cycle of the six sigma approach

Define Based on an exploratory search through data, problems can be iden-
tified or new problems can be discovered based on new insights provided
by the data.

Measure When a problem has been defined, data can aid in measuring
the scope and impact of the problem, indicating its importance and
priority.

Analyse Analysis on relations between different problems and indicators,
enabling insight on the cause of the problem or methods to solve it.

Improve Using prediction modeling, different solutions can be modeled and
their impacts visualised.

Control Data can provide reporting capabilities to validate actual improve-
ments .

The data used for enhancing these steps usually originate from within
the company. A very basic example can be an observations that sales of
the company have dropped significantly. The following steps will investigate:
how much the sales have dropped, what the cause is, and how it could be
improved. At that point, a decision is made to change something within the
company, e.g. perform more advertising. The time period after that deci-
sion, the control step is in progress to check whether the decision actually
improved the sales again. Once this observation has been made, the cycle

14

starts again.

Open data can improve these steps by providing additional information
that is traditionally outside the data collection scope of the company.

Define Open data can show additional problems that the company did not
consider, because there was no insight. They can also provide informa-
tion on topics that the company needs information for, but has not got
the resources to collect these data.

Measure External sources give unbiased information and can be used to
validate observations made by the organisation.

Analyse The wide scope of open data makes it possible to more extensively
investigate relationships and compare different areas of interest. For
example, a observation is made that sales decreased significantly. Anal-
ysis shows that the market for the sector as a whole dropped, which
may indicate the problem is external rather than internal and changes
the view on the decision to be made.

Improve External prediction numbers can be used to either foresee future
challenges, or incorporate these numbers in models from the company
to improve these.

Control Use the additional information to gain extra measurements on the
metrics that are important.

The additional value of open data is expected to be generally in the define,
measure and analyse steps. Improve and control indications are very specific
to the company itself, and therefore usually measured by the company itself.
The define, measure and analyse steps are also targeted at gaining informa-
tion from outside of the company, which is an area that open data holds
information about. Cases in chapter 3 will show concrete examples of differ-
ent business questions that can be answered within separate steps.

[20] takes another approach and divides qualitative data analysis applied
policy questions into four distinct categories:

Contextual identifying the form and nature of what exists

Diagnostic examining the reasons for, or causes of, what exists

Evaluative appraising the effectiveness of what exists

15

Strategic identifying new theories, policies, plans or actions

These four categories divide the different policy questions arising from
the different steps from the business improvement models.

Insight on a business level is best obtained when insights are visualised
well using the appropriate graph type, like a scatter plot or bar chart. These
visuals directly show the numbers and give insight in the different questions
asked. It is very important to choose the right type of visualisation, because
this choice has impact on how easy it is to draw insight from it. This choice
is based on what needs to be shown, and the type of data. [14] identifies the
following types of visualisation, based on need:

Comparison How do three organisations compare to each other?

Composition What is the age composition of people within Amsterdam?

Distribution How are people within the age range of 20-30 distributed
across the Netherlands?

Relationship Is there a relation between age distribution and amount of
children?

The risk is that the most insightful graphs hide data to avoid clutter.
While this allows the visualisation to convey meaning, it can be misleading
as well. It may be not clear how much of the data is neglected, if there were
any problems during aggregation, if there is missing data, how the data is
collected, etc.

Important to note is that the questions for qualitative data analysis do
not directly correspond to the different graph types. Policy questions are
generally too complex to grasp within a single graph. [18] defines a iterative
visual analytics process that shows the interaction between data visualisation,
exploration and decisions made. They argue that a feedback loop is necessary,
because the visualisations made provide knowledge, which in its turn can be
used to enhance the visualisations made and models underlying them. This
improves the decisions.

This cycle inherently means that questions arise from visualisations, which
can be answered again. When data analysis takes relatively long, this pro-
hibits the lean approach for this data visualisation, because the people per-
forming the data analysis usually do not have the domain expertise to gen-
erate new insights and questions from the analysis. Lowering this barrier
toward non-technical people therefore greatly enhances the decision making
processes.

16

2.2 Sources for data-driven desicion making

Data is the key component for proper data-driven decision making. Organ-
isations often use internal data that they collect based on the metrics they
aim to analyse. These data may be too limited to be able to base conclusions
on, or the use of additional sources might lead to more insights that internal
data alone would be able to.

To increase the amount of data used for the decision, open data can be
freely used to enable new insights. Open data are generally data published by
the government and governmental organisations and are published to increase
transparency within the goverment, and allow other organisations to provide
additional value to society by the use of these data. The main guidelines for
open data are the FAIR principles [3]:

Findable which indicates that there are metadata associated with the data
to make them findable

Accessible in the sense that the data are available in a standardized, open
communications protocol and that the metadata still keeps available,
even if the data are not available anymore

Interoperable data uses a formal, accessible and open format and complies
with the open data ecosystem.

Re-usable which ensures that data are accurate as a clear and accessible
usage license.

These guidelines aim for easiest re-use of data. The vision of the gov-
ernment to actively engage in publishing these data is relatively new, and
publishing organizations themselves are still searching for the right approach
to publish these data. This creates a diversified landscape and makes it
harder to use these data. Although the publishing organisations try to ad-
here to the FAIR principles, the diversified landscape and the barriers it
provides leave many opportunities for the use of these data not used.

Strictly speaking, open data could be open data if it is just a plaintext
file somewhere on a server. This, however, scores very low in every aspect
of the FAIR guidelines. Just publishing some files is generally not enough
to let people reuse the data in an efficient manner. It is important to know
more about the dataset.

Metadata is an essential element when publishing data for reuse. Users
that download the data must be able to know the meaning of the numbers,
they must know who published the data, they must know the structure of the

17

data or possible codes that are used. The knowledge of these elements must
be published alongside the data for it to be actually useful. To facilitate an
open data platform, models have been developed that model these metadata
and generalise it for the users.

Other than just the meaning of data, having multiple data sources brings
additional problems for the data analysis. Different formats, structures and
meaning is difficult to understand. To be able to use the data, data analysts
have two choices. Either they convert all needed data into a format they are
comfortable with, or they use tooling that is able to use these multiple data
sources.

2.3 Data analysis solutions

We investigate data analysis solutions that are widely used nowadays. These
provide the foundation and inspiration for the analysis models that we pro-
vide. In general, there are three distinct problems that a data analysis solu-
tion needs to solve:

Data structure A definition of the data structure is needed to know how
the data is stored and how to access this. This can be very simple,
like an array, or very complex like a full database solution. A con-
sistent structure allows standardisation of operations, while different
structures may be appropriate for different data.

Data operations The analysis consists of a set of operations that are exe-
cuted on the data. Because operations need to access the data, these
can only be defined in terms of the structure of the data itself.

Data loading Data needs to be loaded in the desired sturcture, which is
mostly not the case. To be able to load the data appropriately in
the new structure, it might be neccessary to define operations that
transform the data into a suitable form.

One approach is to organise all the data required into a single data ware-
house, which is a huge data storage in a specified format. In such a solution
much effort is spend to define a suitable storage mechanism that stores the
data for easy analysis. This approach is usually taken when questions about
the data are known beforehand, because the storage solution is generally
optimised for analysis, rather than the original data.

Data warehouses are designed for a specific use case and usually inter-
nal business information. A classical example is the storage of orders and

18

customers to allow for analytics of orders per customer, orders per time and
other metrics that indicate how well the business is performing. These data
originate from internal systems with underlying data storage. Sales might
originate from the payments system, a complex webapplication that running
a webshop, or an internal software application for customer relations.

By defining an ETL pipeline, data warehouses automatically load exter-
nal data into the warehouse. Just like the data storage, this ETL pipeline
definition can be very complex, and is always specific for the data warehouse
it is designed for. This means that the data operations used are not reusable
and it is hard for users to trace the origin of the data. Reuse and interpre-
tation of these data is highly dependent on the level of documentation that
is provided.

When we step down to a lower level, we can investigate different tech-
niques. We choose these techniques based on their widespread usage and
different use case scenarios. The data analysis solutions we investigate are:

SQL or Structured Query Language is the best known and most used query
language, and is a standardized language for querying databases. Many
dialects exist for specific database implementations and their features,
but all dialects share the same core. It acts on 2-dimensional data
structures, referred to as tables. Usage of SQL requires the definition
of these tables in the form of typed columns 1.

OLAP or Online Analytical Processing has specific operations to change
cube structures. Its data structure differs compared to standard SQL
in the sense that it uses multiple dimensions. Languages that allow
querying over OLAP structures define operations that deal with this
additional data structure.

Wrangling language, by Trifacta is a language that backs the graphical
application that Trifacta makes, which lets users interact with their
data to clean it. The steps the user performs are captured in a script
in this specific language, which can be executed on the data.

Pandas library is a data analysis library for python that allows users to
perform data operations on a loaded DataFrame, which is a 2-dimensional
data structure.

All data processing libraries have their own vision on how data analy-
sis should be performed ideally and differ in expressiveness, usability and

1although typed columns is the most used implementation, there are implementations
like SQLite that do not require this

19

method of usage. SQL and OLAP are complete data storage and query pos-
sibilities and targeted to provide more data analytics, rather than extensive
data science operations. The trifacta language is more extensive than SQL
with regard to operations and transformations on the data and aims at pro-
viding a solution to be able to interactively clean your data. The pandas
library provides data analysis capabilities to python. This aims partially at
solving the same problems as the trifacta language, but provides an API as
first-class citizen, rather than providing a language for a user interface.

2.3.1 Database storage

Database storage is a method to storage data in a permanent manner. Be-
cause they store data, they provide structure over the data they store and
have methods to make this data accessible. All database solutions have
methods to extract data from it.

SQL based databases are one of the oldest and stable storage solution
available. Database packages like PostgreSql, MySQL or Oracle provide
databases that can be queried using SQL. Queries are executed on a tables,
which are defined in a database schema.

Such a schema describes a set of tables and which columns exist in which
table. Based on such a schema, users can insert rows into the database,
retrieve rows, and delete rows.

These databases provide 2-dimensional storage.

2.3.2 Pandas

Yet another option to define data transformations is the pandas library for
python, which is often used in the data science community. Pandas works
with the data structures Series, which essentially is a list of values and
DataFrames which is a 2-dimensional data structure. The expressiveness of
python allows users to define data operations in the form of simple equations
that can quickly become more and more complex.

By the nature of being a python library, pandas makes it possible to
use pre-defined functions on these data structures and by creating a very
extensive set of functions it allows users to be very expressive with their data
analysis. This allows users to define complex analysis methods and perform
operations on the level of expressiveness that python provides, rather than
the sometimes limited data operation functions in SQL.

This expressiveness is most notable when performing operations on a row-
by-row basis. SQL defines these operations as a function in the select clause,

20

but the user is limited to the built-in functions its specific database engine
supports. Pandas allows users to define an arbitrary function based on a
Series data structure and a new Series can be created that draws the value
based on this function. These functions are limited to the possibilities of a
python function definition, which essentially comes down to no limits.

2.3.3 OLAP

The 2-dimensional data structure of SQL has its limits, especially for ag-
gregated data sources. The On-Line Analytical Processing cube, or OLAP
for short is a storage and query method targeted at multi-dimensional data.
This is one of the reasons this technology is mostly used in data warehouse.

Just like SQL databases, OLAP databases require a pre-defined schema
to be able to load the data into. But because it uses a different storage
mechanism, it can provide additional operations that operate specifically on
the dimensions as specified in the schema.

The OLAP concept has been described by different researchers and many
derivatives have been defined that differ slightly in form of definition or op-
erations that have been defined. We will make a simple definition based on
these concepts and make an illustration of the operations that have been
defined. Its goal is to define a base when OLAP is referenced elsewhere in
this report.

We describe the OLAP cube on basis of figure 2.2. A single OLAP cube
has multiple dimensions with distinct values. For each combination of dimen-
sion values, there is a box that has a value for every metric defined. Figure
2.2 shows a cube with three dimensions, which is the largest dimension count
that can be visualised easily. The cube itself, however, is not limited to three
dimensions and can have many more dimensions.

While this visualisation is very simple, in practice these cubes can become
very complex. Often, dimensions inherit hierarchies that aid the user in
quickly collecting data. For example, there is a time hierarchy that gives
an overview of sales per day. It is often desirable to view these numbers
also per week, per month or per year. In OLAP cubes, these values are also
calculated and stored in the cube. These data can then be queried easily,
without the need for many calculations.

These dimension hierarchies are not trivial. For example, within the
time hierarchy, we can aggregate days by using hourly values, and weeks by
using daily values, but months cannot be calculated by using weekly values.
Therefore, to aggregate months, daily values are needed. This complexity

21

Figure 2.2: Schematic representation of an OLAP cube with three dimen-
sions. Every smaller cube in the center represents a set of metrics and its
values.

requires a definition that is able to capture this complexity.
We will use the definition of a direct acyclic graph. This allows for ar-

bitrary parent-children relationships, while removing the complexity arising
from cyclic definitions.

OLAP cubes are designed to be able to provide insight to the user inter-
acting with it. Operations can be defined that allow a user to query the data
within the cube, and extract the desired results. Although these operations
may differ from implementation to implementation, the essential operations
are:

Selection Select a subset of metrics. In the visualisation, this corresponds
to taking a smaller section of each box.

Slice and dice Selecting a subset of dimensions. This is called slicing when
a selection across a single dimension is made (because it cuts along a
single axis) and called dicing when a selection across multiple dimen-
sions is made and can be seen as selecting a sub-cube from the bigger
cube. All small boxes containing the metrics are untouched, as only a

22

sub selection of these boxes is made.

Roll-up Because the dimensions contain hierarchies, conversions between
the levels of these hierarchies can be made. A roll-up is navigation
to a higher level in the hierarchy. The limit is when all values for a
dimension are summed up to a total value.

Drill-down Drill-down is the opposite of roll-up. It steps down a level in a
dimension hierarchy. The limit of drilling down is defined by the level
on which data is available.

Operations on multiple cubes are more complex, because the complexity
of the dimensions needs to be taken into account. A Cartesian product, for
example, creates a values for every possible combinations across the dimen-
sions. This also means that metric values are duplicated across the cube and
that the dimensions do not apply to every metric contained in the box. This
makes the cube much harder to define and interpret.

2.4 Metadata modeling

Apart from the solutions for applying data transformations, metadata defi-
nitions are an essential element as well. Metadata is data describing data.
Definitions of metadata are even more broad than data itself and can consist
of a wide variety of properties. While the description of data structure is the
most essential for data processing, other elements are necessary to provide
meaning to the data.

A proper definition to describe these metadata is hard, because there
are many elements to consider. Hence we start with an identification of the
elements and different use cases that users require for these metadata.

Metadata is used by users to let them understand the data it represents.
Essentially, the metadata should provide answers about the data that the
users can ask to their selves. Questions like: Where do these data come
from? or What are the quality of these data?.

A taxonomy for end-user metadata is given by [16], and presented in table
2.1. Based on an end-user’s perspective (the user that is using the data after
analysis), they define four categories containing information aiding the user
in interpreting the data: definitional, data quality, navigational and lineage.
Unfortunately, a well-defined model on what these different categories con-
tain is missing and each of these categories is still very broad.

23

Category Definition
Definitional Convey the meaning of data: What does this data mean,

from a business perspective?
Data Quality Freshness, accuracy, validity or completeness: Does this

data possess sufficient quality for me to use it for a spe-
cific purpose?

Navigational Navigational metadata provides data to let the user
search for the right data and find relationships between
the data

Lineage Lineage information tells the user about the original
source of the data: Where did this data originate, and
what’s been done to it?

Table 2.1: An end-user metadata taxonomy defined by [16]

Different efforts have been made to standardize these metadata [7]. DCC
provides a set of metadata standards that aim to describe different methods
of describing metadata. We observe that many of these specifications are
based on a single domain, and describe only the meaning of the data (defi-
nitional).

One of the standards described is DCAT [15], as developed by Fadi Maali
and John Erickson. The goal of DCAT is to promote interoperability between
different data catalogs, such that datasets can be indexed across different
platforms without the need of duplicating the complete dataset. A dataset
here is defined to be a file or set of files. DCAT standardizes properties that
describe the file and properties of the data as a whole, like title, description,
date of modification, license, etc. These attributes can be used during the
implementation of a data catalog application that can then easily share its
definitions with another catalog built on top of DCAT.

Because it is aimed towards data catalog interoperability, it does not pro-
vide information on the data itself. Within terms of the above taxonomy: it
provides information in definitional and navigational context on a high level.
To some extent information about lineage, because it can be queried for the
source, but it is not guaranteed that this source is the original source and
does not provide information about transformations applied to the data.

The PROV Family of documents [17] provides effort into generalizing
the provenance of data. It “defines a model, corresponding serializations
and other supporting definitions to enable the inter-operable interchange of

24

provenance information in heterogeneous environments such as the Web.”.
Based on the research for PROV, eight recommendations are provided to
support data provenance on the web [8]. There recommendations focus on
how to incorporate this provenance into a framework, like “Recommendation
#1: There should be a standard wary to represent at minimum three basic
provenance entities: 1. a handle (URI) to refer to an object (resource), 2. a
person/entity that the object is attributed to and 3. a processing step done
by a person/entity to an object to create a new object.”. Incorporating these
recommendations allows for a more complete and transparent provenance
framework.

While these solutions provide a standardized solution to provide metadata
about the dataset as a whole, this still misses much of the context of the data
itself. The data analysis solutions described above provide this information
on a lower granularity to some degree, but still miss much information. SQL
databases, for example, provide information the table information and some
types, but lacks further description. OLAP cubes provide some additional
information, but still lack much information.

Even using all these solutions does not provide much information on data
quality. This quality metadata is broad, because there are many different
quality issue sources that occur on different levels. On the lowest level,
someone might have entered a wrong number in the database and this single
value is wrong. A level higher, there could be a systematical error in a single
column (e.g. leading or trailing white space), or the complete dataset could
be having issues.

All in all, we observe that there is no unified method to describe metadata.
The methods and models described above are used as an inspiration for our
contributions. The contribution of this research for metadata is focused on
how we can propagate metadata during data analysis, rather than providing
a detailed model for the description of metadata. We will introduce a basic
method to describe some metadata, and investigate the effect of propagating
this information.

25

Chapter 3

Case Studies

To illustrate concepts, we will introduce two case studies. These cases orig-
inate from a discussion group consisting of 11 board members of public or-
ganisations throughout the Netherlands. This group discusses open data,
use thereof inside their organisations and the impact it will have on their
decision making processes. These cases thus arose from practical policy de-
cisions that proved to be difficult because there was not enough insight for a
substantiated choice.

This chapter indicates the insights required for policy decisions and sub-
sequently gives an indication of the technical elements required to generate
these insights.

3.1 Case 1: Supply and demand childcare

The first case involves supply and demand for childcare services. A large
childcare services organisation with multiple locations wants to open a new
location. The success of a childcare location is highly dependent on the
demand close to it. Without children, there are no customers and the location
set up for failure.

Before making this decision, it is essential to have an indication of the
demand within possible locations. This could be done based on feeling and
knowledge of the decision maker, but this relies heavily on his or her knowl-
edge and is subject to biases from this person.

By performing an analysis comparing demographic information across
neighborhoods, an indication for the best possible location can be given.
This can be visualised using a chloropleth map, where each neighborhood
is colored with the expected demand in that neighborhood, similar to the
visualisation shown in figure 3.1.

26

Figure 3.1: A screenshot of cbsinuwbuurt.nl, with a chloropleth map visual-
isation of the amount of married people per neighborhood

Such a visualisation requires us to reduce data sources to a single value
per neighborhood, which can be mapped to a color to represent that neigh-
borhood on the map. This number could, for example, be calculated using
a model for supply and demand, which requires us to look at supply and
demand separately.

The supply is defined as the amount of places available for the childcare
services. This can be estimated with good accuracy, because the register
with all certified locations is published as open data. The National Registry
for Childcare [4] (‘Landelijk Register Kinderopvang en Peuterspeelzalen’ in
Dutch) registers every location and amount of places available per location,
which directly gives a good indication of on what locations there is a lot, of
little supply. The integral dataset can be downloaded as an CSV file through
the data portal of the Dutch government [6].

Based on this information, one of the analysis methods that could be
performed is to plot the numbers of the amount of places for each location
on a map. This quickly gives a visual overview of where there are places
available. Even though this requires some technical knowledge, there are
many tools available online that allows a novice user to perform this operation
and view the map.

Figure 3.2 shows this process from a more low-level perspective. If the
data from the register needs to be plotted on a chloropleth map with a value
per neighborhood, the data from the register needs to be aggregated to this
level. The sum of all places available can be counted per neighborhood. How-
ever, the register does not include the neighborhood information. We need to
extend the register data with this neighborhood information by integrating

27

it with another dataset.

Figure 3.2: The data flow for the data to be retrieved from the register

All in all, even this simple question results in a data processing pipeline
that requires us to integrate multiple datasets. When only presented with the
end result, critical policy makers immediately will ask questions like: ”How
are these results calculated?”, ”What is the source?”, ”How trustworthy is
the source?. This is because all assumptions made can highly influence the
final results, and interpretation for these people is critical.

The resulting map gives insight on the places with high supply, but does
not provide enough information. A location where few places are available
might be a tempting, but is not relevant if no one lives in the neighborhood.

Data indicating the supply is just as important. Since no exact numbers
available, an indirect approach will be used. Various demographic properties
of neighborhoods can be used to provide an indication. While this does not
provide us with exact numbers, it can provide the right insights. Because this
report focuses on the technical results, rather than the policy information,
we will use simplified model that only uses information available already as
open data. This model uses the following properties as an indicator for high
demand of childcare services:

• Number of inhabitants

• % of inhabitants between 25 and 45 years

• % of people married

• % of households with children

These numbers are available on a low level and provided by the CBS.
While this model may not be 100% accurate, this is not essential for the
analysis point that is made. The goal for this analysis is that we can easily use
different indicators, incorporate these into a model and provide visualisations
of these analysis.

28

Figure 3.3: The data flow for the data to be retrieved from the CBS

3.2 Case 2: Impact of company investments

The second cases concerns insights in the investments made by Oost NL. Oost
NL is an investment company with the goal to stimulate employment within
provinces Overijssel and Gelderland. The insight they require is twofold.
On the one hand, they require insight in the impact on their investments.
Since investments are not targeted for profit, but for economic growth, it is
hard to measure. Insight in what investments do have an impact and what
investments do not can aid them in better guiding their investments.

Another insight that they require is what companies are suitable for an
investment. Generally, investments target companies and startups who inno-
vate. When Oost NL wants to invest in a certain business sector, they look
for companies within the regions they think it is possible to find a suitable
investment. Where they look is mainly based on assumptions, which may or
may not be completely off.

Much open data is available based on registers of companies. One of the
registers in the Netherlands is LISA [5]. LISA gathers data from a national
questionnaire send to companies and publishes open data based on aggrega-
tions of this questionnaire. Table 3.1 shows one of the open data sets that
can be generated from their site. It shows the amount of business locations in
that specific region, per year and per business sector, including the amount
of employees summed up in that region.

These data can be used to investigate trends of growth per sector, per
region and create a baseline for growth.

Another similar dataset that can be used for this purpose is the dataset
“Vestigingen van bedrijven; bedrijfstak, regio”[1], as provided by the CBS.
This dataset provides similar metrics, but uses the more elaborate sector
classification. Another difference is that this dataset is accessible trough an

29

Table 3.1: An excerpt of open data provided by the LISA register

Corop Sector Jaar vestigingen totaal banen 0 t/m 9 banen 10 t/m 99 banen >100 banen totaal
Achterhoek Landbouw en Visserij 2013 3830 7660 1070 900 9630
Achterhoek Landbouw en Visserij 2014 3800 7370 930 660 8960
Achterhoek Landbouw en Visserij 2015 3790 7230 1010 690 8930
Achterhoek Landbouw en Visserij 2016 3810 7200 1020 700 8920
Achterhoek Landbouw en Visserij 2017 3730 7060 1110 700 8870
Achterhoek Industrie 2013 1780 3020 11770 15070 29860
Achterhoek Industrie 2014 1750 3020 11790 15030 29850
Agglomeratie ’s-Gravenhage Landbouw en Visserij 2013 2070 3060 910 420 4390
Agglomeratie ’s-Gravenhage Landbouw en Visserij 2014 2050 2890 930 420 4240
Agglomeratie ’s-Gravenhage Landbouw en Visserij 2015 2090 2900 960 390 4260
Agglomeratie ’s-Gravenhage Landbouw en Visserij 2016 2140 3020 920 350 4290
Agglomeratie ’s-Gravenhage Landbouw en Visserij 2017 2160 2950 960 350 4250
Agglomeratie ’s-Gravenhage Industrie 2013 1470 2610 4040 7850 14500
Agglomeratie ’s-Gravenhage Industrie 2014 1550 2650 3910 7990 14540
Agglomeratie ’s-Gravenhage Industrie 2015 1640 2760 3610 8390 14760

open API, and thus more easily accessible without using your own data stor-
age solution.

Investments of Oost NL are often long-term and there are many factors
having influence on the performance of the companies they invest in. This
makes it hard to generate visualisations that undoubtedly show the impact
of their investments.

From a research perspective, it is necessary to compare the growth of
the companies invested in to growth of companies that did not receive this
investment. One method can be to create a visualisation in which the growth
of a company is compared to the growth of its sector and region, or compare
its growth with similar companies throughout the Netherlands as a whole.

Measuring growth in such a manner will never become an exact science,
but can provide valuable insights. These insights can best be obtained when
growth is measured across as many relevant measurement scales as possible,
i.e. compare it in as many relevant ways as possible. Which comparisons are
relevant and which are not are to be determined by the business experts.

Oost NL uses a topsector classification for their companies, while registers
(and thus resulting data) in the Netherlands usually categorize the companies
using the SBI [2] (Standardized Company division). This SBI categorisation
is, however, not insightful for Oost NL because this categorisation does not
align with their investment portfolio and targets.

The SBI structure is a classical example of a dimension specified as an

30

hierarchical tree structure. The root is “Total”. The second layer represents
the most high level categorisation. Then, every category is categorised in
smaller sub-categories.

The topsector classification Oost NL uses is a simpler subdivision across
8 different categories. These 8 categories represent the important sectors for
their innovative investments, and companies that do not fall into one of these
essential categories are classified as “Other”. This allows Oost NL to focus
on the companies that are important for them.

To be able to use datasets with the SBI classification for comparison, we
need to be able to convert this tree structure into the more simple topsector
classification. Because the SBI categorisation is more explicit and contains
more information, it is impossible to accurately map the sectors to this SBI
code dimension.

Oost NL has provided a mapping from SBI code to sector, for each SBI
code on all levels of detail. Since the SBI and topsector classifications can-
not be mapped directly, It does, however, give a appropriate indication of
companies to sector.

31

Chapter 4

Dataset modeling

This chapter introduces the first element of the proposed solution, being a
dataset metamodel. This metamodel describes the structure for a model
that describes the metadata of a dataset. A DSL is generated off of this
metamodel that can be used to create model files for different open data
sets. Such a model then directly represents the metadata of the dataset.

4.1 Metadata

The metadata should aid users, as well as machines, to be able to read
and interpret the data. While users mainly use it to understand the data,
machines process the data and need to understand it in their own manner.
A proper metamodel is able to fulfill these tasks for a wide variety of data.

Chapter “background” did show techniques to describe metadata. There
is, however, no existing metamodel suitable for our goals, requiring the defi-
nition of a custom one.

The elements required in this metamodel depend on the definition of “to
understand” within the context of the data. To identify and classify what
elements belong to this, we take a pragmatic, bottom-up approach, based off
of questions that the metadata should be able to answer. We noted these
and classified them into the following 6 categories.

Origin What is the original source? Who created or modified it? How old
is it? Who modified the data? How is the data modified?

Distribution How can it be accessed? How can I filter or modify data?

Quality Can I trust the data provided in this dataset? Are all measurements
complete? Are all measurements done at the same type/in the same
manner? Can I use the data without validation?

32

Scope What region/time/values does it cover?

Structure What is the size of this dataset? What are relations between
different elements?

Interpretation How should I interpret it?

More formally, to make the data understandable the metamodel should
provide an abstract interface that allows processing steps to be defined and
applied, independent on the data its concrete representation. Additionally,
it should capture additional information about the context of the data. The
combination of these two elements creates a structure allowing interaction
and processing of the dataset while containing the information about its
context.

4.2 Data structures

As an starting point, the two different datasets needed by case 1 will be
analysed using these questions. Case 1 concerns supply and demand for
childcare services and mainly uses two different data sources. The first source
is the register of childcare services and the second source is the regional
information from the CBS. These sources are representative of many open
data sources, as we will discuss later.

The childcare service register provides an overview of every location in
the Netherlands where children can be taken in. An excerpt of this dataset is
shown in table 4.1. These data are published in CSV format and is structured
such that every row represents a single childcare service. For each service, it
provides the type of service it offers, its name, its location, amount of places
and responsible municipality.

This source is representative of different registers of locations, companies,
buildings or organisations that may have data that is structured in a similar
format. Such a source contains a row for each instance and has columns for
each of its properties.

Table 4.1: An excerpt of the register childcare services with the headers and
5 rows of values representing childcare services in Enschede

type oko actuele naam oko
aantal
kindplaatsen

opvanglocatie adres
opvanglocatie
postcode

opvanglocatie
woonplaats

cbs code verantwoordelijke gemeente

VGO Hoekema 4 Etudestraat 45 7534EP Enschede 153 Enschede
KDV Peuteropvang Beertje Boekeloen 14 Boekelose Stoomblekerij 27 7548ED Enschede 153 Enschede
VGO Zwart 4 Bentelobrink 128 7544CR Enschede 153 Enschede
VGO Ramjiawan Mangal 6 Padangstraat 68 7535AE Enschede 153 Enschede
VGO Reve-Kompagne 4 Kruiseltlanden 7 7542HC Enschede 153 Enschede

33

The other data source for the first case originates from the CBS, and is
accessible through the CBS’ OData API. In addition to providing the raw
data, it has capabilities to filter the data, perform simple operations or re-
trieve additional metadata. Listing 4.1 shows an excerpt of the raw data
response. Because the dataset itself is too large to show in this report (62
properties), only a single metric and the two dimensions are selected.

Listing 4.1: An excerpt of how the response looks like from the OData API
from the CBS

{

"odata.metadata":"http://opendata.cbs.nl/ODataApi/OData/70072ned

/$metadata#Cbs.OData.WebAPI.TypedDataSet

&$select=Gehuwd_26,RegioS,Perioden",

"value":[

{ "Gehuwd_26":11895.0,"RegioS":"GM1680","Perioden":"2017JJ00" },

{ "Gehuwd_26":6227.0,"RegioS":"GM0738","Perioden":"2017JJ00" },

{ "Gehuwd_26":13181.0,"RegioS":"GM0358","Perioden":"2017JJ00" },

{ "Gehuwd_26":11919.0,"RegioS":"GM0197","Perioden":"2017JJ00" },

{ "Gehuwd_26":null,"RegioS":"GM0480","Perioden":"2017JJ00" },

{ "Gehuwd_26":null,"RegioS":"GM0739","Perioden":"2017JJ00" },

{ "Gehuwd_26":null,"RegioS":"GM0305","Perioden":"2017JJ00" },

{ "Gehuwd_26":11967.0,"RegioS":"GM0059","Perioden":"2017JJ00" },

{ "Gehuwd_26":null,"RegioS":"GM0360","Perioden":"2017JJ00" },

{ "Gehuwd_26":9118.0,"RegioS":"GM0482","Perioden":"2017JJ00" },

{ "Gehuwd_26":10960.0,"RegioS":"GM0613","Perioden":"2017JJ00" },

{ "Gehuwd_26":null,"RegioS":"GM0483","Perioden":"2017JJ00" }

]

}

The structure between these two data sources may seem disparate, but
they are actually very similar. Both are a list of grouped values. The CSV
file groups the values by row, and identifies values by the header on the first
row. The OData result explicitly groups these values as sets of key-value
pairs. When the keys for each set are the same, these data structures are
identical albeit in a different representation.

The CSV format could be easily converted to the OData result by gener-
ating key-value pairs based on the column header and the value in its column.
Every row then represents an entry in the set, and the value for each column
forms a key-value pair within this set. The OData repsonse can be rendered
to CSV by extracting the keys to headers, and placing the values in the
corresponding columns.

This two-dimensional structure is often seen in exported data and es-
pecially open data sources. It is convenient for exports, because it is very

34

simple. More complex structures tend to be hard to distribute and interpret
further.

Because this structure is so common, we limit the supported datasets by
only supporting data that can be represented as a list of sets. The implica-
tion for our metamodel is that it should accurately describe the properties
of each set. Structure can be generalized, with the condition that a method
is need to identify the representation.

Another important aspect is the interpretation. This can be split up into
interpretation of each individual key, each individual value and the set as a
whole.

The key does not provide much information. The key “Gehuwd 26” in the
CBS data leaves the user in the dark with its exact representation. It could be
guessed that it represents the amount of married people, but this is still not
enough. Questions arise such as: Which people are taken into account? How
are these people counted? What does the number “26” mean within the key?

In addition to the information the key should provide, the value pro-
vides information itself as well. Each value says something about its group,
but not all values are equal. Isolating the column amount of places (’aan-
tal kindplaatsen’) yields the values: 4, 14, 4, 6, 4. The values are a pretty se-
quence, but do not convey any meaning. Isolating the names column provides
the sequence: “Hoekema”, “Peuteropvang Beertje Boekeloen”, etc. These
names are not valuable on their own as well, but they do provide a means to
identify a single instance, and thus the topic of the group.

Combining these two sequences yields key-value pairs that match the
amount of places to the name. Adding the other information from the dataset
like location and type adds even more and more information about the in-
stance.

The difference between the different types of values lies in the fact that
one column can be removed without loss of meaning, while the other one
cannot. When the column with amount of places is removed, the location of
each instance is still known and instances can be identified. In contrast to
the name or location, as information about the context is lost upon removal.

The CBS data source can be analysed in the same manner. In this dataset,
the column “Gehuwd 26” can be removed without loss of context for the
other variables present in the dataset, but columns “RegioS” and “Perioden”
cannot. The childcare dataset has one column that can identify the childcare
service and each row represents the information of a single instance. In
the CBS data source, the combination of both “RegioS” and “Perioden” is
needed.

35

We identify the columns that cannot be removed without loss of meaning
to be the identifying columns, similar to a primary key in SQL databases.
When the names of the childcare instances is used as the identifying column,
this column cannot be removed without loss of information. These identify-
ing columns play a key role in determining the scope of a dataset, its topics
and in combining multiple datasets.

4.2.1 Dimension and metrics

The identifying columns are an essential element of the context of the dataset,
and thus essential metadata. A method to fundamentally capture these prop-
erties into the dataset is by classifying a column to be either a dimension or
metric. Dimensions and metrics form the foundation of OLAP databases
(section 2.3.3). Yet, definitions and interpretations of dimensions in datasets
differ in academia. Based on the observation about columns that can or can-
not be missed, we consider a data feature to be a dimension if its row value
is necessary to define the context of the value of the metrics in the same row.

When classifying a column to be dimension or metric, its role in identi-
fying the subject of the row is the deciding factor. If the value describes a
property of the subject, it is considered to be a metric, if it puts the subject
into perspective or gives an indication of partitioning of a value, it is a di-
mension.

Our definition provides some useful properties. First of all, the complete
scope of the dataset can be identified by just inspecting the dimensions. Be-
cause these dimensions describe what the data is about, their values describe
the complete scope.

This dimensional information can be further enhanced. Different keys
can describe different types of a dimension. One example is the use of a
dimension that describes time-related information. By adding such a type to
the dimension, the scope of dimension, regional and topics quickly become
apparent.

Sometimes, the structure of the data obstructs the actual use of dimen-
sional information. Table 4.2 shows an example which provides information
on the amount of people in a specific region (specified by a code). In this
case, the region code is the subject, as all values describe a property of that
region.

Based on our earlier definitions, we should interpret the dataset as having
a single dimension and three metrics: “Total people”, “Male” and “Female”.

36

Region Total people Male Female
GM0153 1500 800 700

Table 4.2: An example dataset

The dataset could be just as well be represented using a single metric with
“Amount of people” and two dimensions for region and gender, which would
transform the dataset into the form in table 4.3. Because it now is a di-
mension, it directly identifies in the metadata that information about the
differences in gender is present, and that the scope is the complete set of
people.

Region Gender Amount of people
GM0153 Total 1500
GM0153 Male 800
GM0153 Female 700

Table 4.3: The example dataset in a pivoted form, using an additional di-
mension

The method of converting this information is known in OLAP terminol-
ogy as a pivot operation. One solution is to create an extraction process
that extracts this information when importing such a dataset, but doing so
would require a high level of complexity in querying and function definition.
Besides that, a problem occurs when the dataset has additional metrics that
are not represented in that dimension. The example shown in table 4.4 has
two additional columns that are not related to the gender dimension.

Region Total people Male Female Native inhabitants Immigrants
GM0153 1500 800 700 1350 150

Table 4.4: The second example dataset

Yet, doing such operations is useful to change the structure in a manner
that allows the definition of more context. Both methods of representation
have their advantages and disadvantages. Ideally, it should be possible to
represent the dataset in both methods and be able to choose the appropriate
model when starting an analysis.

37

4.2.2 Aggregated vs. non-aggregated data

The difference between the two data sources is the level of aggregation. Di-
mensional data structures are generally used to describe aggregated data,
and the aggregation means are used as the dimensions.

For data sources that represent measurements on single entities, an spe-
cific dimension type is used called “Identity”. Its values identify a single
entity and requires the data source to have a feature that can be used as an
identity.

4.2.3 Origin and quality

Elements important for traceability of the dataset are its origin and quality.
These two properties are not essential for data analysis, and often not con-
sidered in database models. But, traceability is a key element of the dataset
once important decisions are based off of these data, which is part of the
interpretation of the data.

The origin of the data can be split up into two categories, being the
original source and the operations that have been performed on the data.
These metadata should provide insight into the complete path from data
aquisition to presentation of the data.

This includes information about the author, organisation that the author
belongs to, method of publishing people who modified it. The credibility of
the author or its organisation can have a big influence on the trustwhortyness
of the data.

Another closely related metadata caterogy is the quality of the data.
When data quality is higher, better conclusions can be based on these data,
while low data quality can lead to skewed results.

Data quality is, like the origin, dependent on the source as well as the
operations. During the data aquisition step, there is much room for error.
When data originates from applications, for example, the data quality de-
pends on the quality of the application. Some applications may force a user
to enter data, or restrict the types of data that can be put in, which increases
consistency, and thus quality, across exported datasets.

Operations can alter quality as well. During execution of operations on
raw data, there is little guarantee that all operations are valid and provide
valid results. Some operations might neglect empty values and use these if
there are values, or some operations remove values that should not be re-
moved.

38

4.3 Dataset model

The above observations need to be modeled in a formal metamodel. We pro-
pose the metamodel shown in figure 4.1. The root element is the “Dataset”
element, which contains a key, name and description, as it is a child of the
Element class. The Element class is used for the most elements in the meta-
model, because many elements need a key, name and description.

Figure 4.1: The dataset metamodel based on the dimension-metric model, in-
cluding features as groups for dimensions and metrics, aggregation functions
and different dimension types

39

The dimensions and metrics form the foundation for the metamodel. The
usage of dimensions allows the distinction between values that provide mean-
ing to the context of the data and actual measurements. Because its usage is
widespread, it allows us to build upon the results and experiences of OLAP
technology for data analysis and focus on how to re-use different concepts.

The metamodel is a combination of different features provided by existing
data metamodels.

• The dimension-metric model used by the CBS. We consider this model
to be strong in definition of description of different properties and the
grouping of metrics and dimensions.

• The dimension-metric model described by Boulil et al. [13], which is
strong in defining typing and the operations that can be performed on
the different types.

• The open data standard DCAT [15], which is strong in providing con-
text of the dataset itself

Not all properties required for the metadata are directly described by
properties in the dataset model. Table 4.5 shows an overview of which meta-
data properties are covered in which manner.

Table 4.5: An analysis of the metadata categories and the level the meta-
model supports

Origin The definition of author and distribution shows the
source.

Distribution Definition of distribution defines the location and type of
dataset. The keys of the dimensions and metrics define
how these can be accessed.

Quality Validation can be done based on the units of measure-
ments.

Scope This is implicitly contained in the dimensional informa-
tion.

Structure The combination of dimensions and metrics shows the
amount of columns and typing of different columns.

Interpretation Fine-grained descriptions allow people to specify infor-
mation about the dimensions and metrics. Typing of
different elements allows users to

To show the usability of this metamodel, we will describe the examples
in terms of this metamodel and consider the advantages it provides us with.

40

Each column in the table needs to correspond to either a dimension or metric
in the dataset model. This distinction already gives us a good indication of
the meaning of the values.

Listing 4.2: The dataset model description for the dataset of childcare ser-
vices

Dataset {

key: lrkp

name: "Landelijk register kinderopvang"

description: "Dataset met alle register kinderopvang gegevens"

dimensions: {

type: identity

key: id

name: "ID"

description: "Identiteit"

}

metrics: {

type: "Measurement"

key: aantal_kindplaatsen

name: "Aantal kindplaatsen"

description: "Het aantal kindplaatsen binnen deze instantie"

},{

type: "Property"

key: type_oko

name: "Type kinderopvang"

description: "Het type kinderopvang"

},{

type: "Property"

key: actuele_naam_oko

name: Naam

description: "Naam van de kinderopvang instantie"

},{

type: "Property"

key: opvanglocatie_postcode

name: "Postal code"

description: "Postal code of the instance"

},{

type: "Property"

key: opvanglocatie_huisnummer

name: "Huisnummer opvanglocatie"

description: "Huisnummer van de opvanglocatie"

},{

type: "Property"

41

key: opvanglocatie_straat

name: "Straat van de opvangloctie"

description: "Straat van de opvanglocatie"

}

distributions: CSV {

url: "file:///home/lrkp.csv"

}

}

For each value in the original data file, it needs to provide information
on what properties these data points have, what they mean, and how we can
perform operations on these sets of data points. Every row in this file is an
individual data point. We can analyse this model definition based on the
context definition given earlier.

The metamodel representation for the CBS dataset is given in listing 4.3.

Listing 4.3: Dataset model representation for the CBS OData dataset

Dataset {

key: wijk_kerncijfers_2017

name: "Kerncijfers per wijk"

description: "Aantal kerncijfers per wijk in Nederland"

dimensions: {

type: Spatial

key: WijkenEnBuurten

name: "Neighborhoods"

description: "Wijken en buurten"

attributes: {

NL00: "Nederland",

GM1680: "Aa en Hunze",

WK168000: "Wijk 00 Annen",

BU16800000: "Annen",

BU16800009: "Verspreide huizen Annen",

WK168001: "Wijk 01 Eext"

}

}

metrics: {

type: "Measurement"

key: Gemeentenaam_1

name: "Gemeentenaam"

description: "Testing"

}, {

type: "Measurement"

key: AantalInwoners_5

42

name: "Aantal inwoners"

description: "Test"

}, {

type: "Measurement"

key: Mannen_6

name: "Aantal mannen"

description: "Het aantal mannen per regio gebied"

}, {

type: "Measurement"

key: Vrouwen_7

name: "Vrouwen"

description: "Het aantal vrouwen"

}

distributions: CSV {

url: "test"

}

}

Due to the additional metadata the CBS provides and semantics its
datasets have, modeling the results from the CBS’s OData API is more
straightforward. Its aggregated data is based on dimensions and metrics,
and our model implements a similar pattern for dimensions and metrics.
Because the semantics already inherit dimensions and metrics, there is no
design decision in what columns should be defined as dimension, and which
as metric.

These groups allow us to give additional meaning to a big list of metrics
for larger datasets and make it easier for an user to browse and filter these.

The dataset model provides a foundation to describe different properties
of the metadata. These properties are essential to make data-driven policy
decisions. Some metadata elements are not described in the dataset model.
This model describes a state of the dataset. This includes structure, docu-
mentation for interpretation and method of accessing. It does, however, not
necessarily include complete history on the data.

Describing history of the dataset needs additional structure. We opt to
provide this structure by providing metamodel defnitions for transformations
on the data, and thus metadata. The next chapter presents our view on
solving this problem using structured operations, and providing additional
transparency during data operations.

43

Chapter 5

Function modeling

This chapter presents the DSL specifying the function that defines data op-
erations, described in the form of a metamodel.

Performing operations on the data requires the definition of a function.
This function enables data-analysts to specify their intentions and generate
their desired results. They create a function model in terms of the function
metamodel, and use the framework to transform the function to executable
queries such as SQL or executable code that retrieves the results.

The definition of these functions should aid in providing information on
the metadata elements stated in the previous chapter.

First, we show how the function model fits into the model driven frame-
work. This should be be designed such that results can be reused, as well as
direct use of results, while still maintaining a appropriate level of expressive-
ness of the language.

After that, we will show its usefulness from a data oriented perspective.
The metamodel needs to be constructed in such a way that the data analysis
it supports is actually useful. The dataset model has already taken a step
towards this goal, by using the dimension-metric model often used in data
analytics.

5.1 Functions transformation structure

The most common problem with metadata definitions is the level of outdat-
edness. Metadata may be present, but is made obsolete when analysis is
performed on this data. To be able to have keep the proper descriptions, the
data analysts must create and modify this after every data operation step.
Because this is time consuming, this is often neglected and the resulting data
is not reusable, since other people cannot interpret or understand the results.

44

We opt to maintain the same levels of documentation, by structuring the
documentation and operations on the data. Using a model driven solution
allows us to specify the models in such a way that the documentation in-
formation can be propagated. This propagation allows the data analyst to
directly have documentation about the resulting data, and provide this doc-
umentation alongside the dataset to inform people reusing the data.

Consider an analysis about the percentage of households with children
across neighborhoods within a single municipality. Analysis is needed to
determine if households with children have been declining in the city center.
Such information can help case 1, regarding supply and demand for childcare
services.

As stated, Statistics Netherlands publishes data about neighborhoods
every year in a separate dataset. The information to determine a trend
is available, but separation across multiple datasets encumbers retrieval in
the desired format. Data from all datasets with years of interest need to
be combined into a single result. This result can then be used to generate
graphs and analyse it to achieve the desired result.

A possible solution is to perform an ETL process that extracts informa-
tion from the separate datasets, gets the right information and stores its
results. The result is a file or database that contains the data needed analy-
sis. This works well, but insight in the process is lost and because only the
data is processed, metadata about underlying sources is lost. A person using
these results has no clue about the origin of the data and cannot reproduce
the steps taken.

If the analyst continues working and publishes visualisations or reports
based on the results, the meaning of these data is derived from the implicit
knowledge the data analyst has. Errors during this process are not transpar-
ent, and all implicit knowledge not documented is quickly lost after the data
analyst continues with the next project.

Using the dataset model, operations can be defined that are able to mod-
ify the dataset model in such a way that the desired dataset is derived.
Because these dataset models represent underlying data, executing the same
operations on the data generates matching results. A combination of these
operations can be used to define a proper function meant for analysis.

We wish to design a process that puts focus on creating a dataset with
the desired results, rather than transformations on the data itself. The ac-
tual transformations on the data should then follow logically based on the
transformations on the dataset. After this transformation, the result is a
dataset that can be as easily used as the sources, because it has the same

45

level of metadata, descriptive properties and query possibilities. Automatic
generation of an ETL process based off of this function definition provides
the possibility to transform data and metadata accordingly.

Figure 5.1: An example of the function transformation application to a merge
of the CBS neighborhoods datasets

The process of such a transformation applied to the example above is
shown in figure 5.1. Two dataset models are taken and a new dataset model is
created containing the information of both, accompanied by a new dimension.
This new dataset model now represents the resulting data, thus the user has
an overview of the meaning of the data and can share this metadata definition
to help others interpret the data as well.

The two original datasets include implicit and explicit context informa-
tion. Explicit context information contains descriptions about the metrics,
and a spatial dimension containing neighborhoods. The year of publishing of
the dataset is present in the description, but not as dimensional information.
This makes it implicit and not directly usable. When using the dataset on
its own, it is irrelevant to contain this information explicit in the dataset,
but it can prove to be useful during analysis. To create the new dimension,
the function must take care of formalizing the temporal information into the
model.

46

Figure 5.2: A schematic overview of the reuse of functions with relation to
datasets and storage.

To realize this, a method is needed to describe and retrieve the data
source of resulting datasets. This is solved by defining an identity query,
as well as allowing functions to be a source of a dataset. The combination
of these allows users to generate a dataset using a function, and not having
to physically store its result. This maintains transparency of the operations
executed, as well as allowing multiple metadata representations of the data.
The data needed can be transformed on-demand using the function defini-
tions present in the metadata model.

Figure 5.2 shows how this can be applied recursively. Dataset A rep-
resents a physical data source. By executing an identity query, the results
for this dataset are retrieved. A function can be defined to perform calcu-
lations on this dataset. Function X describes a function that takes dataset
A and generates a derived dataset B. To retrieve the results of the newly
generated dataset B, the corresponding function X is executed on the orig-
inal data source. This result can, in its turn, be used to generate another
dataset. Dataset C is defined by applying function Y on dataset B. Because
it is known that dataset B is the combination of query X on dataset A, the
results of dataset C can be retrieved by combining query X and Y and exe-
cuting it on the original source of dataset A.

47

Enabling this process requires a carefully designed function. Context and
metadata information may become very complex, and thus hard to propa-
gate. Even more so, some operations may be invalid based on its context.

It is a challenge to determine the level of incorporation of the semantics
into this process. In the CBS example, the actual datasets contain more
metrics than the two shown. These metrics are mostly similar to each other,
because the CBS designed its metrics this way. But there is no guarantee that
methods of retrieval of these metrics are identical throughout these datasets.

More generally, the combination of multiple datasets requires matching
different properties, albeit on column or on row level. This matching process
is error-prone when data quality is not 100%.

5.2 Metamodel definition and design

There are roughly two methods of defining a data transformation function.
One can choose an expression style, where an expression is defined on how
to retrieve data. It is a good method, since it allows users to think in terms
of the data they require, rather than the method of retrieval.

The other method is to choose a sequential style where each operation
is executed after the other. ETL processes or the pandas library are good
examples of this. This method defines the function as a starting point and a
set of ordered operations to executed on this starting point.

Our function metamodel definition uses the definition of a sequential style,
because

• It results in more readable queries. These are more easy to reason
about.

• The ETL processes have proven to be effective to be able to use them
on data operations. New, more complex, operations can be created
easily and allow for easy reuse

• It simplifies the process of investigating the metadata transformation
definitions. It is sufficient to show that each operation can transform a
dataset to a new dataset. This property is directly true for the complete
function, since operations can be appended to each other.

• It allows easy merging of functions; complete groups of operations can
simply be appended.

48

We propose the metamodel as shown in figure 5.3. Its root is the Query
element that contains expressions. Each expression is a chain of operations
with a single starting source. Different sources can be combined by using
specific operations that have additional sources as an input. These inputs
can consist of a subexpression.

Figure 5.3: Overview of the function metamodel, including all its elements

The structure of the metamodel is simple, but is quite large due to the
large amount of operations. The top section of themetamodel is shown in
figure 5.4. This section holds the root object Query, as well as the important
Source elements.

A query consists of multiple expressions, of which one is the main expres-
sion. All subexpressions require a key, such that they can be referenced by an
expression source. This method of referencing allows operations to reference
these sources for merging purposes. The operations referenced by the ex-
pression are a ordered list of elements belonging to the abstract Operation

element. An expression, thus, holds a source that represents the original

49

data and a set of operations that can be executed consecutively on this data
source.

The dataset source definition requires a method of retrieval. During exe-
cution, the dataset referenced in this model are needed, and thus need to be
retrieved. Ideally, models are registered globally, easily accessible, and thus
easily referenced in the model. While implementation and proper use can
be complicated, we consider this a solved problem. Many package managers
for programming languages take an approach that identifies packages by us-
ing a combination of namespace, key and version and publish packages in a
global registry accessible through HTTP. Examples of this include npm (for
javascript), cargo (for rust) and rubygems (for ruby).

For the prototype implementation, we opted for a simple option similar
to a complete package management solution: a single key and a local folder
containing files where the key of the dataset matches its filename. This al-
lows the transformation executions to simply read the file from this folder
(because the filename is known by its key). This solution is easily transfer-
able to a more complete package management approach using registries.

The other sections of the metamodel represent the complete set of opera-
tions available. Details of all operations and their classifications are presented
in the next chapter. Figure 5.5 shows the category containing operations to
merge multiple datasets. Since a more elaborate description is given below of
all operations, the remainder of visual details of these operations are omitted.

50

Figure 5.4: The top section of the function metamodel, containing the root
element, source elements and reference to the abstract operation element.

Figure 5.5: The bottom-left section of the function metamodel, containing
the operations for merging multiple datasets.

51

5.3 Data operations

The most essential element of the function metamodel is its usability for
analysing data, and consequently the operations it supports. Our proposed
structure requires that all operations must be executable on the data, as well
as the metadata. Data operations are well researched and can be specified
easily, but the challenge is to create a subset of these operations such that
every operation can be executed on the metadata in a meaningful way, while
not prohibiting the data operations required.

The scope of data operations and possibilities is huge, and we deem there-
fore the definition of the operations based on a few example cases insufficient
for a proper definition. The focus of this research is not to provide a com-
plete query language, but rather to demonstrate the vision of model driven
engineering on the data analysis perspective. We therefore aim to define a
subset of the operations used by other languages, show that these are useful
and define how the metadata should be transformed accordingly, while ne-
glecting the proof of being a complete data analysis language.

Data operations are not unique across the different languages, and defini-
tions of how the data is changed for each operation is defined. The impact on
the metadata, however, is not. A proper definition of these these metadata
operations is needed. Based on an analysis of the operations, we categorize
the operations as follows:

• Operations that only change values

• Operations that change the structure of the dataset

• Operations that combine multiple sources

These categories differ in the level of impact they have on the meta-
data. The more contained an operation is, the easier it is to transform the
metadata. If an operation changes a single metric value across the dataset,
the input dataset model can be mostly copied and propagated, except for
that single metric. It becomes more difficult when the complete structure
of a dataset changes, and when multiple sources are combined, their models
must be combined as well and challenges arise on how to perform such an
operation properly.

Consider the example shown in figure 5.6. The upper left table represent-
ing childcare services, with an column indication in which neighborhood the
service is located. The lower left table represents a table containing informa-
tion about the inhabitants for each neighborhood. Using SQL, we can easily
join these tables on neighborhood code, resulting in the right table.

52

Figure 5.6: An example of when an SQL join loses contextual information.
The inhabitants of the neighborhood are not on the same level as the amount
of children per service.

While this is a valid data operation, the inhabitants metric is fundamen-
tally different than the children one. Consider the case when using this result,
we would like to get the information per neighborhood. This means the table
will be aggregated on neighborhood, and the amount of inhabitants now has
invalid values.

This indicates that not every data operation can be executed naively.
Some data operations have requirements on the data before they can be ex-
ecuted. Before performing these operations, these requirements have to be
fulfilled. To not prohibit these functions, additional operations must be de-
fined that aid the user in fulfilling these requirements.

5.3.1 Operations overview

This section provides an overview of the operations specified. For each opera-
tion, requirements are defined as well as impact the operation has on the data
along with the metadata. The operations are tagged with a level, according
to the impact they have on the metadata. These are defined as follows:

Multi-dataset level Operations that combine several datasets in a certain
way. These are the hardest to perform, since they require the combi-
nation of multiple metadata models.

Dataset level Operations that change the structure of a dataset.

53

Dimension level Operations that also change the structure of a dataset,
but only over a single dimension. These are easier to reason about,
compared to the change of the complete structure of a dataset.

Metric level These only change one, or multiple, metrics. Since these op-
erations only change the values, and not structure, they are the easiest
to reason about.

� Aggregation (Dimension) (dimension level)

Metamodel representation as: AggregationOverDimension

Aggregate values using an aggregation function like sum, or mean. Such a
function takes a group of values and returns a single result. The aggregation
needs input that determines which rows need to be grouped together.

Requirements:

• An aggregation function is needed for every metric

• A mapping for which dimension values will be aggregated is needed

Impact on data: The amount of rows is decreased, and is reduced to the
amount of distinct rows in the column that is being aggregated upon. Fur-
thermore, for every metric an aggregation function is defined and its values
thus change according to this aggregation function.

Impact on dataset:

• Information and values of metrics change. This change should be re-
flected in the description of the metric

• The attributes of the dimensions that is aggregated on changes, ac-
cording to the mapping. The dataset should reflect the originating
dimension attributes.

• Dimensions that are not aggregated over stay equal in description and
attributes.

� Aggregation (Metric) (dataset level)

Similar to the aggregation over a dimension from a data perspective, but has
a much bigger impact on the dataset structure. Aggregating over a metric
has the implication that this metric is converted to a dimension, where each

54

value in the dimension represents a group (or range) of metric values. Each
of the values in the calculation for the aggregation is based on the identifier
of the data in the dataset, and thus all other dimensional information in the
dataset is lost, and the original dimensions are used as base of counting.

Such an aggregation is most notable when targeting a dataset that rep-
resents entities, like a register. Such a dataset has a single dimension for the
entity identification, but several properties that might be interesting. For
example, we would like to aggregate over the region code that is provided as
a property for the metric. An example of this is shown in tables 5.1 and 5.2.

Table 5.1: Table before aggregation over the region metric

location region aantal kindplaatsen
A WK015301 40
B WK015301 40
C WK015301 20
D WK015302 40
E WK015302 16
...

Table 5.2: Table after aggregation over the region metric

region code aantal kindplaatsen aantal locaties
WK015301 100 3
WK015302 150 6

It can be seen that many information in the dataset, especially regarding
information specific for each organisation. These properties could be used as
an additional aggregation option, such that rows with that specific property
are grouped and added into an additional dimension. Because this operation
has so much impact, basically the complete structure of the dataset changes.
This is desirable when new dimensions should be created because those are
the ones of interest.
Requirements :

• For each other metric than the one that is aggregated over, a aggrega-
tion function is needed

• A specification is needed on how to aggregate the metrics. This can
be either range-based, e.g. with numerical values, or based on exact
match, e.g. on properties of a certain row.

55

Impact on data: The columns from the original dimensions are lost,
because these are not relevant anymore.
Impact on dataset: The impact on the dataset is huge, as this operation
basically alters the complete structure of the dimensions and metrics. In
short:

• All original dimensions are lost, unless specifically set

• A new dimension is created, based on the mapping for the metric ag-
gregation

• Metric that are aggregated need to be annotated in the dataset, similar
to an aggregation over a dimension

� Merge metric values (multi-dataset level)

Suppose two datasets exist that have different metrics, but their dimensions
match precisely. These two datasets can be merged, such that there is a
resulting dataset that keeps the dimensions it had and now has the union of
the metrics present in both datasets.
Requirements :

• Dimensions, including meaning and attributes, match precisely between
two datasets

• Metric keys are distinct across datasets

Impact on data: Rows on left and right dataset need to be matched
properly, based on the dimension attributes. The amount of columns gets
extended by the amount of metrics that are appended from the new dataset.

Impact on dataset: Impact on the dataset is minimal. Dimensions stay
equal, and the metrics of both datasets are merged into a single set.

� Join properties (multi-dataset level)

Despite the fact that SQL joins might lose context, it might sometimes be
necessary to perform such an operation. This is the case when the user wants
to aggregate over the property of a relation. Suppose we have a dataset about
grades of children, and we want to aggregate these numbers based on the total
budget of the school. The dataset can have a property for each child with
the school, and there might be another dataset that contains info for each
school.

56

In this case, the data that is added cannot be considered to be a regular
metric.
Requirements :

• The base dataset contains a property

• The added dataset contains a single dimension, where each dimension
attribute corresponds to the value of the property to be matched in the
base dataset. This means the right dataset always matches to exactly
one or no row.

Impact on data: Columns are added based on which properties are joined
from the added dataset. The amount of rows in the resulting data is equal
to the rows in the base dataset.
Impact on dataset: Impact on the dataset is similar to the merge based
on metrics, with the only difference that the metrics from the added dataset
are typed as properties, rather than measurements.

� Merge based on dimension (multi-dataset level)

When two datasets are similar in the sense that they provide the same data,
but have one dimension scattered across two sources, these datasets can be
merged on this scattered dimension. This is, for example, the case for the
splitted data about neighborhoods from the CBS. Because they publish data
about different years,
Requirements :

• Metrics are equal across datasets

• There is a single dimension that has the same meaning and type, but
differs in attributes.

• All other dimensions match precisely

Impact on data: Because the actual data structures are very similar, the
data operation is as simple as appending the actual data sources.

Impact on dataset: Impact on the dataset is minimal. Most features are
identical, only the attributes of a single dimension are extended to reflect
this increase of scope of data.

57

Table 5.3: An example of a data export where dimensional information is
present, but encoded as metrics

Buurten

Bevolking
0-4

Man
2016

Bevolking
0-4

Vrouw
2016

Bevolking
5-9

Man
2016

Bevolking
5-9

Vrouw
2016

0101 Binnenstad Centrum 95 107 56 64
0102 Binnenstad Oost 25 29 30 11
0103 De Hofstad 19 21 25 12
0104 Binnenstad Noord 13 1 6 9
0105 Het Zand 26 34 12 20
0106 Vughterpoort 14 4 22 6
0201 Het Bossche Broek 0 0 0 0
0202 Zuid 64 85 74 74

� Pull

Sometimes, dimensional information is present in the dataset, but not in the
right format. The pull operation is defined in OLAP terms and converts a
set of metrics to a new dimension and new metric. This new dimension has
an attribute for each of the metrics that is used to create this dimension.

An example of the required transformation is shown in tables 5.3 and 5.4.
This table is an export from the amount of inhabitants in each neighborhood
in ’s Hertogenbosch (a municipality in the Netherlands), published by the
buurtmonitor. In table 5.3, it can be seen that there are many colums that
contain a very specific value for, essentially, a selection within a dimension.
The issue is that this information, and thus context, is not explicit and thus
not directly usable by data analytics platforms.

In order to use it, the data must be transformed into the form shown in
table 5.4.
Requirements :

• A metric for each attribute used in the dimensions

• A mapping of which metrics are used

• A description of the newly generated metric

• Every metric must be used to generate the dimensional values. The
dimensional attributes must provide context over the metrics in the
dataset, so if these are not used this transformation does not make
sense.

58

Table 5.4: The table in 5.3 should be transformed into this format, in order
to be able to use the dimensional information.

Buurten Age Gender Year Bevolking
0101 Binnenstad Centrum 0-4 Male 2016 95
0101 Binnenstad Centrum 0-4 Female 2016 107
0101 Binnenstad Centrum 5-9 Male 2016 56
0101 Binnenstad Centrum 5-9 Female 2016 64
0102 Binnenstad Oost 0-4 Male 2016 25
0102 Binnenstad Oost 0-4 Female 2016 29
0102 Binnenstad Oost 5-9 Male 2016 30
0102 Binnenstad Oost 5-9 Female 2016 11
.....

Impact on data: The amount of columns is decreased at the cost of adding
additional rows. Every row is replaced by a new number of rows that equals
the amount of attributes for the dimension that is pulled from the columns.
Essentially, the data from a single row and multiple columns is transposed
to a single column and multiple rows. Additionally, a column is added to
represent the attribute of the dimension for that particular row.
Impact on dataset: A new dimension is created, with the specified at-
tributes, based on the columns. Metrics are mostly deleted, and new more
general ones are added.

� Push

The push operation is the opposite of the pull operation and converts the
attributes for a dimension into separate metrics. This can be used when the
dimension needs to be removed in order to match the dataset with other
cubes, or if the metrics are to be used separately for calculations. More
generally, this is a method to reduce the amount of dimensions in a dataset.
Requirements : Because dimensions are more descriptive and contextual
than metrics, the information about the dimensions can be used to generate
the new metrics.

• There are at least two dimensions, one of which can be pushed. This
means that the attributes of the dimension must be known in the
dataset model. This means identity dimensions cannot be used to push.

Impact on data: Amount of rows are decreased, columns are increased.
Impact on dataset: All metrics are replaced by new metrics that now
contain the specific values for the related dimension attribute value.

59

� Expression (metric-level)

This operation adds a new metric off of existing metrics in the dataset on a
row-by-row basis. Because the values originate directly from metrics in the
same row, this operation is simple.
Requirements :

• All metrics referenced in the expression are present in the dataset

Impact on data: A new column is added with the values from the expres-
sion. This value must be calculated using the values in the other columns in
a row-by-row basis.
Impact on dataset: A new metric is added, with a description and name
as provided in the function.

� Restriction

Restrict dimensions by attributes, or remove metrics from the dataset. In
OLAP dimensional terms, this essentially means cutting a part of the cube.
Because filtering a range of a metric value is different in terms of the meta-
data, this cannot be done using the restriction operation.
Requirements :

• The dimensions attributes or metrics that are filtered upon are present
in the dataset

Impact on data: A restriction on dimensions changes the amount of rows
in the dataset, while a metric restriction removes columns.
Impact on dataset: Dimension attributes and metrics are removed based
on the specifications of the function. When dimension attributes are removed,
it changes the scope of the dataset, which requires additional notes on the
dataset.

� Add dimension

Every dataset has dimensions, but this information is not always included.
Measurements are taken for a specific year, or for a specific region, or only
the results for the age group 0-18 is included, etc. If this information is not
present, adding a dimensions with a constant value can aid in putting the
dataset into context.

This newly generated context can be used to merge the datasets with
others or used as notes in the selection for an interface.
Impact on data: A new columns with a constant value is added.
Impact on dataset: A new dimension with a single attribute is added,
named according to the input of the function.

60

� Rename

In order to add descriptions and change keys of the data, there is the ability
to rename. On the one hand, this serves the purpose of being able to change
keys of metrics that allows for merging of multiple datasets. On the other
hand, this can provide better descriptions of data.
Impact on data: The key of a single column changes
Impact on dataset: Key, name and description of a single dimension or
metric change.

5.4 Dataset merge operations

One of the essential elements in data analysis is combining several datasets
into a single one. An attentive reader might have noticed that the framework
highly restricts possibilities to merge these datasets. While SQL allows a user
to combine tables and match these on arbitrary values, this is restricted in
the operations specified.

These restrictions are made to guarantee meaningful results and meta-
data compatibility. Furthermore, if the dataset merging operations are not
restricted, it becomes impossible to define a proper metadata transformation.
This forces the user into using the operations that change the structure of a
dataset, such that dimensional structures match before performing the merge.

Merging datasets is based completely on using dimensions as an identi-
fication mechanism. Since these dimensions define the scope of the dataset,
restricting this makes sure that the scope of these datasets can be matched
properly.

Using this method makes the transformations of dimensions a critical
element. The operations therefore provide multiple options to change these
dimensions. These operations act on lower levels can thus be more easily
captured in separate functions. When a dimension change is captured in a
single function, there is a resulting dataset with this altered dimension. The
first user doing this uses this result for a new operation on the higher level to
merge two dataset. But the result with the altered dimension can be reused
for other people that would like to use this altered dimension.

Dimension transformations are harder than they seem at first sight. For
example,

• When comparing the amount of inhabitants between municipalities in
2018 and 2010, the dimensions for region do not match. Every year,

61

there are changes in the structure of municipalities. Several municipal-
ities might merge into a new one, or one municipality joins a bigger
one. To properly compare these, the changes for each year need to be
propagated.

• A comparison of two datasets that contain an age group dimension,
where dataset A is split into groups of 5, while dataset B is split into
groups of 10.

• Two datasets with a temporal dimension have an overlapping time
range, but dataset A also includes earlier data.

Dimensions are assumed to be compared using their attributes. If at-
tributes in a dimension are equal, they are assumed to represent the same
element. When combining dimensions, both dimensions are to be converted
to a common set of attributes. An identification on cases to be encountered
is required to assert that a solution is present for each of these cases. The
dimension-level, as well as the dataset level, have to be considered. On the
dimension level, it is required that two dimensions can be matched properly
using their attributes, while on the dataset level it is required that all dimen-
sions can be paired.

When considering if two dimensions can be matched, their attributes
must be compared. Since, these attributes are two sets of values, set theory
can be used to identify the possible cases:

1. A equals B

2. A is a proper subset of B1, and the identical case vice versa

3. A is not B, but do have similar attributes, i.e. their intersection is not
empty

4. A is not B, and their intersection is empty

The first case is when the attributes of dimensions match exactly. In this
case, no transformations are necessary to convert the dimensions to an equal
state.

The second case can be solved easily. If A is a subset of B, we can match
each attribute in A to an attribute in B. By definition, B has additional

1we use proper subset, because this does not include the case where both sets are equal,
which would be identical to the first case

62

Figure 5.7: An example of two datasets with difference in dimension

attributes that cannot be matched to ones in A. Because there is no use for
this data in this comparison, these attribute values must be removed from
this dataset, which can be done using a restriction.

The third case could be solved similar to the second case, but a transfor-
mation for both dimensions is needed to limit them to the attributes within
the intersection. This does, however, lose much data.

The fourth case cannot be solved by a subselection of attributes. In many
cases, these dimensions probably do not describe the same element and can
therefore not be matched, but this is not always the case.

In an instance of the third or fourth case, many attributes are unused
and certain cases allow for another solution. If possible within the semantics
of the data, attributes from A can be converted such that they match an
attribute in B. Consider the case when dimensions for region codes of munic-
ipalities in 2017 need to be matched with 2018. Every year, there are certain
municipalities that fuse together and form a new one. This comparison thus
will have a big set of municipality codes that did not change. But 2017 will
have municipalities GM0007 and GM0048, while 2018 will have the new mu-
nicipality GM1950, which is a fuse of those two. With the aid of a mapping
which municipalities have merged, we can transform the 2017 dataset with
aggregations into this new one.

This is also the case when two dimensions describe, for example, age
ranges. A can have attributes “0-10”, “11-20”, “21-30”, etc. While B has
“0-5”, “6-10”, “11-15”, etc. Obviously, the values for B can be aggregated
to the same values as A, but they do not have any common attributes.

When investigating a complete dataset, the only additional complexity
comes from matching the dimensions. The dimensions must form pairs in
order to apply the technique specified above. Each matched dimension pair
can be transformed individually. An issue occurs, however, when a dimension

63

is present in dataset A, but not in B. In this case, a pair cannot be created
and such a missing dimension must be created, or the surplus dimension
must be reduced.

If possible, the dimension can be created by executing a pull operation
that extracts the dimension information. If needed, this new dimension can
be transformed to suit the paired dimension. Additionally, the add dimension
operation can be used to add a constant dimension, to be used if dimensions
are merged. When creating a dimension is not possible, the dimension cannot
be used for merging and must be reduced.

Reducing a dimension is different to removing all its values, because this
would remove the complete dataset, it rather should be converted into a
single value. This can be done by selecting a single value, or by aggregating
the dataset over this dimension. The method required differs based on the
dataset and the data that is needed.

This selection of a value can change the context of the dataset. For
instance when a dimension provides the attributes ”Male”, ”Female” and
”Total”. Creating a selection based on the “Total” attribute keeps the
global scope of the dataset, while selecting “Male” or “Female” can dras-
tically change the context.

Defining all these transformations can become cumbersome for a user,
but this is not considered a huge issue. This method provides a well-defined
method of combining datasets in a meaningful manner, while simultaneously
forcing the user the think about the structure of the dataset and its results.
We expect this hugely decreases errors made during the data analysis process.

This structure also allows tool development that automate large parts
of this process. Tools can be developed that analyse two dimensions and
generate a function that can match these dimensions. Or analysis programs
can be made that analyse on what level the datasets match and provide data
quality scores.

Additionally, allowing function reuse would allow users to define such
a dimension transformation once and use it across many different datasets.
Implementing this is possible within the structure of the function metamodel
definition, but considered out of scope for this project. Section 10.7 discusses
this in more detail.

5.5 DSL definition

While the dataset DSL definition is a simple, JSON-like definition and is
directly derived from the metamodel, using this technique for this function

64

metamodel results in a unreadable, verbose mess. We define a more concise,
elegant solution to solve this problem.

The shortened structure for the language is given in lising 5.1. Elements
have been left out to preserve readability, but the complete main structure
is shown.

Listing 5.1: Shortened DSL definition to parse text into the function meta-
model, defined in the XText grammar language

Query: (’with’ subexpressions*=SubExpression)? expression=Expression;

SubExpression: ’(’ expression=Expression ’)’ ’as’ key=ID;

Source: ExpressionSource | Dataset;

ExpressionSource: ’$’ key=ID;

Dataset: namespace=ID ’/’ key=STRING;

Expression: ’select’ source=Source

operations+=Operation (’,’ operations+=Operation)* (’,’)?;

Operation: RestrictionOperation

| RenameMetricOperation

| AddMetricsFromSource

| MetricExpressionOperation

| PushOperation;

RestrictionOperation: ’restrict’

(’metrics’ (’to’)? metric=MetricSelection)?

(’dimensions’ (dimensions*=DimensionSelection))?;

RenameMetricOperation: ’rename’ metric=SingleMetricSelection

’to’ key=STRING;

AddMetricsFromSource: ’add metrics from’ source=Source

’with’ ’dimensions’ dimensions*=KeyTuple;

AddDimension: ’add dimension’ type=STRING alias=STRING ’,’ value=STRING;

MetricExpressionOperation: ’calc’ (’ulate’)?

expression=MetricExpression ’as’ description=Description;

Most importantly, the Expression statement shows that a source is spec-
ified using the select keyword and then references a source. This source is
either a combination of namespace and key, or an reference to an expression
using a key with a dollar sign. This is used to be able make this distinction
during parsing.

Based on this definition, the earlier example on combining neighborhood
datasets can be defined more formally. This definition is similar to the process
shown in the case description. It consists of sequential transformations on
the dataset with the functions provided in the metamodel. This defined in
terms of the metamodel is shown in listing 5.2.

65

Listing 5.2: A function definition for the case description, written in the
textual semantics defined above

1 WITH (

2 select wijk_kerncijfers_2016

3 restrict metrics on keys Mannen_6, Vrouwen_7

4 add dimension constant "Perioden", "2016"

5) as wk_2016,

6 (

7 select wijk_kerncijfers_2017

8 restrict metrics on keys Mannen_6, Vrouwen_7

9 add dimension constant "Perioden", "2017"

10) as wk_2017

11 select wk_2017

12 union wk_2016 ON "Perioden" = "Perioden"

Lines 1-4 represent a subexpression with key wk 2016. Like every ex-
pression, this expression consists of a source selection (line 2) and a set of
expressions. In this case, there are 2 expressions defined. The first expression
on line 3 restricts the metrics to two metrics, while the operation defined on
line 4 adds a dimension with a constant value to this dataset. Lines 6-10
repeat this same pattern the other dataset, which can be referenced with key
wk 2017.

Line 11-12 represent the main expression. This is apparent because the
expression does not have brackets, as well as lacking a key specification.

The added dimension constants are used as the dimension to combine
these datasets on. Because both datasets represent a different slice of a di-
mension, in this case time, these slices can be directly appended to each
other (taking into account the requirements of this operation). This union
operation is defined on line 12.

This function definition now can be used to define complex functions
on the dataset. It provides a concise definition language. Although the
syntax feels like a SQL language, it is not structured like such and must
be interpreted as a sequential set of operation definitions. According to the
definitions provided in this chapter, it is possible to transform the data, as
well as the metadata using these operations.

66

Chapter 6

Data transformations

The function metamodel and dataset metamodel allow us to describe the
metadata and operations in a structured manner. These operations are de-
fined such that metadata can be preserved. Yet, a proper definition of the
metadata transformations, as well as a path to execution, are still miss-
ing. This chapter describes the transformation processes which transform
the dataset model, and allow transformation of the data.

6.1 Transformation goal

The function definition specifies data- and dataset transformations such that
the transformed dataset represents the metadata of the transformed data.
The data and dataset model are, however, not transformed in the same man-
ner. The dataset transformation can be specified directly in terms of the
metamodels, but there is nu such abstraction for the data source. The struc-
ture is known, as this is described in the dataset model, but the data itself
is not contained in a model. Consequently, the data operations cannot be
done using a model transformation.

The dataset transformation will use traditional MDE transformations.
For each function operation, a transformation step is to be implemented
that transforms the dataset in a specific way. All these possible transforma-
tions based off of the operations are already defined in section 5.3.1 , which
leaves this transformation to be a implementation detail.

The data transformation requires an intermediary step. There are many
data analysis platforms focused on data transformations and a re-implementation
of such a platform is deemed unnecessary. Rather, these platforms can be
utilized to perform the actual data operations.

67

Using Model-Driven Engineering, code generation can be used to generate
executable code based on model definitions. Since there are many suitable
languages suitable for the data analysis as target code, this technique can
be used to generate code that lets such a platform execute the operations
defined in a function model.

6.2 Data transformation target

Model transformations allow us to, theoretically, easily define transforma-
tions such that code can be generated for different platforms. Based off of
the models, code is generated for a platform and passed into its runtime envi-
ronment. When a platform executes the code, it performs the data operations
and results from that code execution can be retrieved.

Support of multiple platforms requires an implementation structure suit-
able for choosing different target platforms. Specific code for each platform
is needed, but for best interoperability it is required to minimise platform-
specific code. Transformations and metamodels need to be as much reused
as possible to do this properly.

The problem of code generation can be split into two smaller problems.
On the one hand, a definition of how to perform code generation is needed.
This is platform specific and can differ highly between platforms. On the
other hand, platform-specific code needs to be minimised and the reuse of
existing models and transformations be maximised.

To simplify, a single target platform is used to demonstrate how the pro-
cess for a single platform operates. Because SQL is widely used for data
operations and storage, this is the choice for the platform demonstration.
Code generation steps are defined that generate SQL code to be executed on
a database platform.

One implementation method is the definition of a direct transformation
from function model to code. As the abstraction gap between the function
metamodel and SQL is too big to generate SQL code based on the function
metamodel in a straightforward manner. This method requires a definition
of transformation for each execution platform.

Another option is to generate a metamodel for each code generation tar-
get. This creates a 2-step process in which a transformation to this inter-
mediary metamodel is performed, after which this metamodel is used for the
actual code generation. The transformations to the intermediary metamodels
can be trivially reused, while also simplifying the code generation step.

The 2-step process allows flexibility in defining the abstraction level of

68

Figure 6.1: Overview of how the transformations for the function model,
dataset model and data relate to each other.

the metamodels for code generation, which can be used as an advantage for
reuse of models. It is a design decision to either create specific metamodels
or create a general one with low-level data operations. Using more specific
models generally increases the difficulty for transformations to that model,
but makes code generation simpler, while code generation based on a general
metamodel can still be quite complex.

Even more so, one can choose a combination of both methods. In the
specific case of SQL, the same intermediary metamodel can be used for dif-
ferent SQL dialects, or one can choose to create specific metamodels for each
SQL dialect. During implementation, it is necessary to find a balance be-
tween usability, reuse of transformations and effort of creating metamodels
and metamodel-to-text transformations.

An overview of how these transformations are related to each other is
shown in figure 6.1. When the user has the dataset model and function model
defined, all steps in this overview can be automated using model transforma-
tions. The SQL model is derived from the function model using a pre-defined
transformation.

SQL needs a specific execution platform. We deem SQLite a good choice
for this, based on its ease of usage, level of usage within the data community

69

Figure 6.2: The simplified SQL metamodel suitable for code generation off
of functions defined in terms of the function metamodel

and complexity of language. Since it is based on the SQL standard, it has a
good foundation of data operations and because it stores data in a single file,
it allows us to neglect many implementation and setup issues arising when
using more complex database applications. Furthermore, while the SQLite
dialect might differ slightly from other SQL implementations, the effort put
into this transformation should be easily translatable to other SQL-based
platforms.

6.3 Function transformation

This function transformation process requires the definition of a SQL meta-
model. Its only use is to generate code based off of functions defined in our
metamodel. Hence support for a subset of SQL is sufficient.

This metamodel definition is shown in figure 6.2. Because its only use-case
is code generation, many simplifications can be implemented. For example,
the Selector element is simplified to be just a string. If SQL functions are
needed, this function can be incorporated into this string. While this poses
problems when targeting different SQL dialects and is not an ideal solution,
it allows us to show the concepts in the prototype implementation.

70

With the use of this new metamodel, transformation rules are defined
that transform a function model into an SQL query model. The function
metamodel from chapter 5, designed in such that it can represent a pipeline
in which each step is executed consecutively. It also described the impact on
the data for each of these operations, which are separately easily transferable
to SQL operations. This means our transformation needs to handle concrete
SQL syntax based off of these definitions, the initial data selection and a
method of consecutive execution of these operations.

The concrete SQL syntax definition is the simplest step. Each operation
can be directly converted to an individual SQL query, based on the definitions
in section 5.3.1.

For data selection, the assumption is made that the SQLite database used
contains a table with the actual data. The name of this table matches the
key of the dataset. Every column in such a table corresponds to the keys as
specified in the dataset itself. Importing a CSV file in SQLite is easily done
using the .import command.

There are two methods to link subqueries using SQL. A with clause allows
users to specify queries separately and reference them using an alias. The
transformation can be created such that every operation from the function
model is a separate SQL query and references the result of the previous
function using an alias. This makes the transformation straightforward, as
well as the resulting SQL query organised and understandable.

Another method is to use nested subqueries. This decreases the need of
aliasing and referencing, but at the cost of the resulting query having a level of
nesting for every operation and thus becoming complex to read for elaborate
functions. In the end, the results are very similar. We opted for the first, as
it is closer to the function metamodel and generates more readable SQL code.

Using these elements, we define the transformation structure as follows:

• Always start with a full selection of the source, because we need this
data to start with, e.g. “SELECT * FROM dataset”. This query needs
to be wrapped in an alias and used in the with query, which results in
“WITH 1 as (SELECT * FROM dataset)”

• Create a with subquery that performs a query using the previous query,
e.g. “SELECT key1, key2 FROM 1”. To keep the aliases simple, we
use the combination of an underscore and a counter.

71

• After the last operation, create the main sql query that is a selection.
While we could just use the last operation as the main query, that
generates edge cases in the transformation that we have to solve. This
method works generally, at the cost of some verbosity in the resulting
query.

There is one additional complexity, which is handling the subexpressions
of the initial function model. Because SQL does not support nested WITH
expressions, the tree structure needs to be flattened. In order to do this,
the order for execution for sub-expressions must be resolved. When sub-
expression A depends on sub-expression B, B needs to be transformed before
A.

6.3.1 Transformation example

As an example, we will investigate the issue of counting the amount of places
for childcare services per neighborhood, such that these can be compared
with statistical information from these neighborhoods. The query needed for
this operation is shown in listing 6.1.

Listing 6.1: A query that calculates the amount of childcare services present
per neighborhood, by first merging the neighborhood information from an
external dataset followed by an aggregation operation

1 select lrkp

2 restrict metrics on keys actuele_naam_oko, opvanglocatie_postcode, opvanglocatie_huisnummer, aantal_kindplaatsen, type_oko, ID

3 add from adres_codes

4 gwb2016_code

5 match opvanglocatie_postcode=pc6, opvanglocatie_huisnummer=huisnummer

6 aggregation

7 based on keys gwb2016_code, type_oko

8 sum aantal_kindplaatsen as "Totaal aantal kindplaatsen"

9 count ID as "Aantal kinderopvanglocaties"

This function consists of three different operations (restrict, add from and
aggregation). For each of the operations, the impact on the data is known.
Hence, conversion to SQL is as simple as translating each of these steps
and merging them into a single SQL query, such that each of these steps is
executed consecutively.

72

Listing 6.2: Resulting SQL query, generated based off the transformation
from the query in listing 6.1

1 WITH

2 _1 as (

3 SELECT * FROM lrkp

4),

5 _2 as (

6 SELECT actuele_naam_oko, opvanglocatie_postcode,

7 opvanglocatie_huisnummer, aantal_kindplaatsen,

8 type_oko, ID

9 FROM _1

10),

11 _3 as (

12 SELECT adres_codes.gwb2016_code, _2.*

13 FROM _2

14 JOIN adres_codes

15 ON _2.opvanglocatie_postcode = adres_codes.pc6

16 and _2.opvanglocatie_huisnummer = adres_codes.huisnummer

17),

18 _4 as (

19 SELECT gwb2016_code, type_oko,

20 SUM(aantal_kindplaatsen) as totaal_aantal_kindplaatsen,

21 COUNT(ID) as aantal_kinderopvanglocaties

22 FROM _3

23 GROUP BY gwb2016_code,type_oko

24)

25 SELECT * FROM _4

It can be directly seen that every operation generates to its own sub-
query. The restrict metrics operation (line 2) boils down to a selection
of columns. The resulting SQL sub-query (line 5-10) selects these columns,
as well as the dimension columns that are present at that location. Without
adding these dimension columns, the dimensional information would be lost
in the resulting data.

Similarly, the operation on lines 3-5 converts to the SQL sub-query on
lines 11-17 and the operation with lines 6-9 results in the SQL sub-query
on lines 18-24. Each consecutive function references the key of the preced-
ing sub-query, just like each operation acts as on the result of the previous
operation.

The last line of the query is a selection on the result of the last operation,
which is a method to generalize the transformation for each operation. It
does not require a special case to convert the subquery of the last operation

73

to the main expression, instead of a subexpression.

Executing this sql query on a database including the lrkp dataset as table,
yields the results as specified by the function in listing 6.1.

6.4 Dataset transformations

Parallel to the data transformations, dataset transformations are to be exe-
cuted as well, such that a new dataset is generated matching the data result.
Roughly the same approach is taken as during the data transformations.
Start with the initial dataset as source, perform each operation sequentially
and return the final result.

Each operation has a certain impact according to the specifications in sec-
tion 5.3.1. The impact is that dimensions and metrics need to be adjusted,
annotated or sometimes newly generated.

Because the structures of transformation are so similar, the challenges
coming are mostly identical.

There is one additional challenge. The data source does not have to be
retrieved, as an assumption is made for location of data and the tablename
can be used easily. To be able to apply the operations sequentially, it is
required to keep track of the state of the transformation. This due to the
fact that

1. The transformation start with the root of the query, referencing a
source. Instead of modifying a dataset, retrieval of an existing dataset
is needed.

2. There can be multiple expressions in a query. The datasets resulting
out of these queries need to be stored, such that other queries can
reference them.

3. When using an operation that merges different datasets, the desired
added source can be the result of a subexpression.

We solve these issues using an internal dataset registry that is accessible
to the transformer implementation. This registry holds all datasets avail-
able for use during the transformation and the transformer can request these
datasets when necessary. For each subexpression, these resulting datasets
can be stored in this registry as well, allowing later expressions to request
the registry for intermediary results.

74

Many metadata elements are just descriptions. To propagate context, the
descriptions and names must be propagated accordingly. There is a design
decision here on what to append, how to append it and on what level this
should be described by the user.

We opted to generate additional text alongside the existing descriptions.
This can mean that when aggregating a metric, its description can be prepended
with the method of aggregation and leave the other information intact. Be-
cause the open data sources used and their documentation is in Dutch, the
implementation adds textual information in Dutch as well. Bilingual support,
or configuration of how to append information would be relatively straight-
forward but is considered out of scope for this project.

75

Chapter 7

Implementation details

For the interested reader, this chapter provides technical details on the im-
plementation of the prototype. It can aid the reader in reproducing the
implementation or providing new insights for model-driven engineering but
can be skipped in its entirety without loss of conceptual meaning. Addi-
tionally, it provides a compressed overview of libraries and our reasoning of
choice between different libraries of implementation.

7.1 EMF and PyEcore

The Eclipse Modeling Framework is the most widely used framework to apply
model-driven engineering, and provides tightly integrated tools to enable
development of models and transformations.

While the Eclipse Modeling Framework provides a solid foundation for
models, its use bounds the user to the use of Eclipse and Java. Eclipse
and Java are difficult to configure and make it hard to automate different
steps, especially when one is not familiar with build tools used. The MWE2
workflow provides methods to chain different operations across the platform
together, but we did not manage to make this work consistently. We suspect
this is due to either configuration issues, versioning issues or untraceable er-
rors after a model change.

Since this did not provide the right environment for our prototype imple-
mentation, we searched for a different method that would allow Model-Driven
Engineering similar to the Eclipse Modeling Framework, but use better, more
flexible, tooling that allowed us to develop a prototype more quickly.

PyEcore [10] is an open-source implementation of the Eclipse Model-
ing Framework in Python, and can be found on GitHub. It allows users

76

to import existing ECore files, generate python code for the metamodels
and use these classes. Because of our familiarity with many python pack-
ages, this allows us to use these packages to streamline the Model-Driven
Engineering and use these libraries for parsing, text generation and au-
tomation of different steps. Documentation for PyEcore can be found at
https://pyecore.readthedocs.io [9].

The ECore models are designed using Eclipse, since Eclipse its editor
is solid and provides a good workflow. Importing these models for use in
PyEcore is very simple. PyEcore supplies the tool pyecoregen that takes
an ECore file and generates python model code. Executing pyecoregen

-e model.ecore -o . in the terminal generates a python package called
“model” in the current directory containing model code. This model code
can be imported into the python code by simply using import model.

Python is a dynamically typed language, which might not be the ideal
choice for Model-Driven Engineering. Using models implies that types of
variables are static. PyEcore takes care of this by performing validation of
types when a value is bound to the property of a model.

The dynamic nature of Python does give us advantages for the develop-
ment of a prototype. During testing, a model can be loaded into an inter-
preter, allowing direct interaction and exploration of the properties of the
model. Furthermore, Python is a famous scripting language to quickly tie
elements of code together. This allows us to quickly combine different ele-
ments and automate execution of different steps of the framework using a
complete programming language.

7.2 Text-to-model transformations

Using the metamodels with PyEcore allows us to create an python object
representing a model as a python data structure. Because PyEcore can load
the serialized formats generated by Eclipse, one could use the Eclipse editor
to create models and load these into the application. This ECore format is
however not easily readable, and creating these models in Eclipse is cumber-
some. This can be solved by defining a concrete DSL syntax that allows the
user to specify its model in a text file. Models are generated by parsing this
text file according to the DSL specification.

Eclipse provides XText to specify these DSLs, but this is not directly
available in Python. Python does have parsing libraries that can be used to
parse text. TextX is a python parser that comes the closest to XText 1. It

1https://github.com/igordejanovic/textX

77

https://pyecore.readthedocs.io

sells itself as being a “meta-language for building Domain-Specific Languages
(DSLs) in Python. It is inspired by XText”. Unfortunately, integration with
PyEcore is still ongoing at the time of writing.

Therefore, we opted for a simple parser-combinator library called pyparsec
2. Parser-combinators have their limitations, but these limitations are outside
our scope. The ease of implementation of a parser-combinator library allows
for a quick prototype and direct implemenation of the PyEcore models.

This parser takes the contents of a single file as input, and returns a
Dataset model as an ECore model, as specified with the aid of PyEcore. A
parser combinator parser a file and directly generates objects based on the
elements it parsed. Listing 7.1 shows the root function to parse a dataset.

Listing 7.1: Root function to parse a dataset definition

1 @generate("Dataset model")

2 def dataset_model():

3 ’’’Parse a dataset model’’’

4 yield keyword(’Dataset’) >> string(’{’) >> whitespace

5 d = DatasetMetaModel.Dataset()

6 d.key = yield key_value(’key’, value_string)

7 d.name = yield key_value(’name’, value_string)

8 d.description = yield key_value(’description’, value_string)

9

10 for dim in (yield key_value(’dimensions’, sepBy(dimension, string(’,’)))):

11 d.dimensions.append(dim)

12 for met in (yield key_value(’metrics’, sepBy(metric, string(’,’)))):

13 d.metrics.append(met)

14

15 dist = yield key_value(’distributions’, csv_distribution)

16 d.distribution.append(dist)

17

18 yield string(’}’)

19 return d

Line 4 shows the keyword Dataset and the start of the bracket. Line
5 initiates a Dataset model using the PyEcore metamodel package. Lines
5-8 parse the key, name and description using a key value function. This
function is a parser-combinator in itself and parses a statement in the form
key ‘:’ value and returns the value. Lines 16-22 provide parsing mechanisms
to parse the other properties of the dataset and call other parse functions to
retrieve partial elements of the model. The dimension and metrics parsers

2https://github.com/Dwarfartisan/pyparsec

78

are more complex than a simple key-value parse. The last two lines ensure
that the bracket combination is closed and return the dataset itself.

Using this function requires some boilerplate code. It takes a string as
input and returns a model, deliberately omitting functionality to read and
write files. This is performed by a few lines of Python code. For reference,
this code is provided in listing 7.2

Listing 7.2: Python boilerplate code to read a file and parse a dataset off of
it

def parse_dataset(filepath):

with open(filepath, ’r’) as f:

text = f.read()

return dataset_parse(text)

7.3 Model-to-Model transformations

When the text-to-model transformation have supplied the PyEcore dataset
models, these models can be used in a transformation. Downside of our
approach is that Python and PyEcore do not have transformation libraries
themselves, so custom code is a necessity.

Still, we would like to use a similar approach used by Eclipse and its
community. We could create a port of the QVT transformation framework
written in Eclipse, but that is definitely outside the scope of this project.

Another tool often used for transformations in EMF is SiTra [12]. This
is a simple library enabling the definition of a transformer and rules, and the
transformer can be simply called to transform to the desired object. This
framework is simple enough to easily port the implementation and its ideas
to Python and our implementation.

The ported code for the transformer class, as well as the abstract Rule
class are provided in listing 7.3 and 7.4. As Python does not have the no-
tion of an abstract class, the Rule class is specified as a regular class. Its
build method throws an error by default. Rules can override this method to
omit these errors. When a Rule is not properly implemented, the runtime
environment will throw an error, which is expected behaviour.

Listing 7.3: Transformer class from SiTra ported to python

79

class Transformer:

def __init__(self, rules, context):

self.rules = rules

self.context = context

def transform(self, obj):

for x in self.rules:

if x.check(obj):

return x.build(obj, self)

raise NotImplementedError("Could not find transformation rule for {}".format(obj))

Listing 7.4: Rule class from SiTra ported to Python

class Rule:

source_type = None

target_type = None

def check(self, source):

if type(self.source_type) != tuple and type(source) != self.source_type:

return False

Check if all tuple types match, when applicable

if isinstance(self.source_type, collections.Iterable):

if not isinstance(source, collections.Iterable):

return False

for index, x in enumerate(self.source_type):

if type(source[index]) != x:

return False

return True

def build(self, source, transformer: Transformer):

raise NotImplementedError("The regular Rule class does

not implement the build method")

An example of an implementation of such a rule is shown in listing 7.5. It
sets the source type as property of the class, which is used by the check func-
tion to determine if the rule applies to the object that is to be transformed.
The build function builds a SQL Query object from a Function object in
the function metamodel. For each source object, such a rule is defined and
the transform function on the transformer can be called to transform a sub

80

element. The transformer selects the right transformation rule based on the
source type set in the rule specification.

Listing 7.5

class FunctionRule(Rule):

source_type = functionModel.Function

def build(self, source: functionModel.Function, transformer: Transformer):

sql = sqlModel.Query()

subquery = transformer.transform(source.expression)

sql.with_.extend(subquery.with_)

sql.selects.append(sqlModel.Selector(key="*"))

last_key = sql.with_[-1].key

sql.from_=sqlModel.TableIdentifier(key=last_key)

return sql

7.4 Model-to-text transformations

The metamodels and transformations have been designed to ease code gen-
eration. Since logic operations in Model-Driven Engineering should be per-
formed in the transformations, code generation steps are easy to perform.

Because our code generation steps are so simple, the use of a templating
language is deemed unnecessary. To generate the code, the built-in Python
print functions are used to generate text. Functions are used to render sub
elements to a string, which are propagated to the root function using return
statements. While this highly limits the ease of code generation, as well as
decreasing the readability of the code, it is sufficient for the prototype. For
anything other than a prototype, we do not recommend using this approach,
due to its limitations.

Listing 7.6 shows an example of how the with statements are rendered to
text. These are the subquery elements of the function. On lines 4 and 7, it
can be seen that other render functions are called that render subelements
of the current object. Since these functions return strings as well, their
combination can be easily returned.

Listing 7.6: Example of render functions to render different elements of the
models to text

1 def render_withs(withs: EOrderedSet):

81

2 if len(withs) == 0:

3 return ""

4 return "WITH " + ", ".join([render_with(x) for x in withs])

5

6 def render_with(with_ : sqlModel.WithQuery):

7 return "{} as ({}\n)".format(with_.key, render_query(with_.query))

Similar to the parsing functionality, boilerplate code is needed to convert
this properly to a file. Listing 7.7 shows this boilerplate code for the render
function.

Listing 7.7: Boilerplate code to save the result of code generation to a file

def render_sql_file(sql_model, filepath):

s = render_query(sql_model)

with open(filepath, ’w+’) as f:

f.write(s)

82

Chapter 8

Validation

To validate the claims made in this work and show how a full implementation
of our analysis approach looks like from a user perspective, we show the
implementation of the analysis of the second case in terms of the framework.
This allows us to verify the suitability of the framework for different analysis
methods.

8.1 Case study

The case study used for validation has been described in Section 3.2. The
analysis required in that case is to compare if the expectations of business sec-
tors and locations from investment company OostNL matches reality. When
OostNL targets an investment for a specific sector, assumptions are made on
where to search for companies suitable for an investment. This may lead to
skewed investment results, because other regions are neglected.

This analysis is performed by representing all datasets using the dataset
DSL. During this process, the dataset model is analysed to validate if it is
expressive enough to represent all information required.

The same process takes place for function definition. The function meta-
model should be expressive enough to be able to define the analysis as re-
quired, and generate code able to execute this analysis.

8.2 Implementation

The implementation followed a 7-step process:

83

1. Identify all needed datasets. This is mostly shown in the case descrip-
tion, but we require a more detailed specification.

2. Represent each dataset in terms of a dataset model.

3. Load the data for each dataset into the platform required for analysis.

4. Define the analysis function

5. Generate the new dataset model by applying the analysis function

6. Generate SQL code using the defined transformations

7. Execute the generated SQL code and retrieve results

Step 3 and the execution of SQL code are required due to limitations of
the framework prototype. Since only SQL is supported as execution plat-
form, the raw data has to be loaded into an SQL table prior to execution.

8.2.1 Dataset identification

The first step is to identify the needed datasets, retrieve the data in a usable
format and specify the datasets using dataset models. All data is stored on
disk in CSV format. When necessary, we applied transformations on the
data format to normalize these. These transformations include conversion of
Excel spreadsheet format to CSV or changing delimiters in the CSV file.

Each dataset is identified using a unique key. The key is used as name of
the data csv files, as well as the dataset model files, and use the appropriate
extension to describe the type of file. Since all these files are stored in a
single folder, this convention can be used to directly access files. The data
files can be accessed by reading the file <key>.csv and the dataset model
file can be accessed using the file <key>.dataset. These keys are identical to
the ones used in the descriptions below.

projecten capital This is a dataset provided by Oost NL and provides
a list of investment at a specified time. Because the data contained
in this dataset is confidential, data results presented in this report
are randomly generated with the same format as this datafile. This
file contains, among others, the name of the organisation, its address,
province name, and short description per organisation.

84

lisa per corop Is a file originating from the Lisa register and provides per
sector, per region code an indicator of the number of companies in that
region, as well as the total number of employees of these companies.

To be able to properly use these data, a couple of conversions and map-
pings are needed to be able to convert the dimensions to the right format. We
use the following datasets to be able to do just this. The following datasets
can basically just be seen as definition files, but can be specified in the same
dataset model format, to be able to use these datasets in the our framework.

sector sbi map This dataset describes a mapping from SBI code to a sector
that Oost NL uses. This mapping goes deep unto 3 nested levels.

adres codes This dataset has also been used for the lrkp case examples
and holds information about neighborhood and municipality location
of each postal code, number combination. We used this dataset to
add municipality information to the companies provided in the dataset
projecten capital. This allows this dataset to be used including a geodi-
mension.

gebieden in nederland This dataset has also been used for the lrkp case
examples and holds information about neighborhood and municipality
location of each postal code and house number combination.

8.2.2 Dataset model specification

For each of these files, we need to specify a dataset model using the described
DSL. For completeness, we have included all dataset files in the following list-
ings.

The first dataset projecten capital is the data provided by Oost NL. It is
structured such that each row represents an investment they made into the
company, and has columns that represent information about the company
itself. The file does not contain how much investment has been made, but
rather information on the organisations themselves.

All metrics in this dataset are specified as properties.

Listing 8.1: Dataset representing the dataset with projects, originating from
Oost NL

Dataset {

key: projecten_capital

85

name: "Projecten van de Capital afdeling"

description: "Projecten van de capital afdeling gespecificeerd epr organisatie. Deze data is verzameld vanuit het systeem van.."

dimensions: {

type: identity

key: id

name: "ID"

description: "Auto generated identity"

}

metrics: {

type: Property

key: Organisatienaam

name: "Organisatie naam"

description: "Naam van de organisatie"

},{

type: Property

key: "Sector organisatie"

name: "Sector organisatie"

description: "De sector van de organisatie zoals gedefinieerd door Oost nL"

},{

type: Property

key: "Bezoekadres organisatie"

name: "Bezoekadres"

description: "Het bezoekadres voor de organisatie"

},{

type: Property

key: "Postcode bezoekadres organisatie"

name: "Postcode"

description: "De postcode van het bezoekadres van de organisatie"

},{

type: Property

key: "Plaatsnaam bezoekadres organisatie"

name: "Plaatsnaam"

description: "Plaatsnaam waar het bezoekadres van de organisatie gevestigd is"

},{

type: Property

key: Provincie

name: "Provincie"

description: "Provincie waar de organisatie gevestigd is"

},{

type: Property

key: "Hoofdcontactpersoon Oost NL"

name: "Hoofdcontactpersoon Oost NL"

description: "De medewerker binnen Oost NL die als hoofdcontactpersoon is aangesteld"

}

distributions: CSV {

url: "file://./instances/case2/projecten_capital.dataset"

86

}

}

The dataset from LISA is better structured and makes more extensive
use of dimensions. Because it provides aggregated data, there is information
about the region, year as well as their specified sector. This sector, however,
does not correspond to the one Oost NL uses, as it is divided using the SBI
classification.

Listing 8.2: Dataset representing the exported file from the Lisa register
containing information per region about amount of companies and employees

Dataset {

key: lisa_per_corop

name: "Bedrijfsgegevens per sector, per corop regio"

description: "Bedrijfsgegevens per sector"

dimensions: {

type: Spatial

key: corop

name: "Corop regio"

description: "Corop regio"

}, {

type: Temporal

key: Jaar

name: "Jaar"

description: "Jaar"

}, {

type: thematic

key: Sector

name: "Sector"

description: "Hoogste level sector, volgens SBI codering"

}

metrics: {

type: Measurement

key: "vestigingen totaal"

name: "Aantal vestigingen"

description: "Het aantal bedrijven zoals berekend"

}, {

type: Measurement

key: "banen totaal"

name: "Totaal aantal banen"

description: "Het aantal banen geregistreerd als totaal per sector"

}

distributions: CSV {

87

url: "file://./data/case2/lisa_per_corop.csv"

}

}

While the previous two datasets provide the data used for insights, other
datasets are needed as reference for defining appropriate transformations.
The following datasets represent definitions needed to extract information
from the datasets above. When performing this analysis after further devel-
opment of the framework and more elaborate data model loading, it can be
assumed that these models are already predefined and thus do not provide
additional effort for the user.

Listing 8.3: Dataset model of the data containing information of SBI codes,
including their names and corresponding Oost NL sector. To be used to
provide a mapping of SBI code to sector.

Dataset {

key: sector_sbi_map

name: "Sector SBI mapping code"

description: "Mapping van sector naar SBI code"

dimensions: {

type: identity

key: sbi_code

name: "SBI code"

description: "SBI code"

}

metrics: {

type: Property

key: sbi_naam

name: "SBI code naam"

description: "Naam van de SBI codering"

}, {

type: Property

key: oostnl_sector

name: "Oost NL sector"

description: "Sector gedefinieerd door Oost NL"

}

distributions: CSV {

url: "file://./data/case2/sector_sbi_map.csv"

}

}

Since this dataset is provided by Oost NL, the assumption for other ref-
erence datasets does not hold. These kinds of custom transformations need

88

to be loaded prior to its first use. Nevertheless, these references can be used
more often, which brings big advantages when performing subsequent data
analysis.

Listing 8.4: Information on postal codes and the municipality and neighbor-
hood they belong to. Postal code and house number are the dimensions.

Dataset {

key: adres_codes

name: "Buurt en wijkcodes per adres"

description: "Voor combinaties van postcode6 en huisnummer zijn de wijk en buurtcodes gegeven"

dimensions: {

type: identity

key: pc_zes

name: "Postcode 6"

description: "Postcode 6 gebieden zijn een standaard indeling in nederland"

}

metrics: {

type: "Property"

key: gwb2016_code

name: "Buurtcode 2016"

description: "Buurtcode zoals vastgesteld in 2016"

},{

type: "Property"

key: wijkcode

name: "Wijkcode"

description: "Wijkcode"

},{

type: "Property"

key: gemeentecode

name: "Gemeentecode"

description: "Gemeentecode"

}

distributions: CSV {

url: "test"

}

}

Listing 8.5: Dataset coupling municipalities to higher level regions. To be
used to aggregate data on municipality region level to larger regions.

Dataset {

key: gebieden_in_nederland

89

name: "Gebieden in nederland"

description: "Namen, codes en relaties van gemeenten in Nederland, ten opzichte van overige gebiedsindelingen"

dimensions: {

type: spatial

key: RegioS

name: "Regio’s"

description: "Gemeenten in Nederland"

}

metrics: {

type: Property

key: corop_code

name: "Corop code"

description: "The corop code die bij een gemeente hoort"

}

distributions: CSV {

url: "file://./data/case2/gebieden_in_nederland.csv"

}

}

8.2.3 Data loading

Since the prototype only supports SQL, data need to be loaded from the
CSV files into an SQL database. In line with the earlier examples, SQLite
has been used as execution platform.

SQLite is able to load CSV files using the built-in .import command. All
datasets can be imported by executing all import commands consecutively,
like shown in listing 8.6. The first argument specifies the csv file (relative to
the directory sqlite is run in) and the second argument represents the table
the data is loaded in. To facilitate traceability, the table name is identical to
the key of the dataset.

Listing 8.6: Code to be executed using SQLite to load CSV files into the
database

.import projecten_capital.csv projecten_capital

.import lisa_per_corop.csv lisa_per_corop

.import sector_sbi_map.csv sector_sbi_map

.import adres_codes.csv adres_codes

.import gebieden_in_nederland.csv gebieden_in_nederland

For this process to work properly, it is essential that all datasets have the
same CSV format, i.e. the same separator. The separator using SQLite can

90

be defined using the .separator command, which is to be executed before
the import command to be able to load the file using this specific separator.

In a fully developed framework, these operations should either be auto-
matically generated, or not necessary, because functions are executed on the
CSV files. We envision that a dataset can have multiple sources, represent-
ing its data and that database storage can be automatically derived from the
data and dataset file itself. Since these import operations are not exclusive
to SQLite and are available for other data platforms as well, this concept is
relatively simple to implement in other storage mechanisms.

8.2.4 Data retrieval

Steps 4-7 have been executed in an iterative manner, similar to how such a
process is executed in real-life when insight is required based on data anal-
ysis. We start with a simple analysis and show its implementation. Based
on that result, more complex analyses are implemented. A new function is
defined and new insights are gathered, which lead to the execution of a new
query. Its results are investigated new function model based off of the results
can be created.

As an example for a simple analysis, we will investigate which sectors
account for the most investments. Unfortunately, no numbers are present
on the actual investment numbers, but we can perform an analysis on the
amount of companies in each sector.

Listing 8.7: A simple function that generates an aggregation over the organ-
isation sector based off of the Oost NL dataset

select projecten_capital

aggregate over metric "Sector organisatie"

count ID as "Aantal organisaties"

Based on our definitions, we expect to retrieve a dataset that has the
Sector organisatie as dimension and a metric called Aantal organisaties. The
resulting dataset using the function-dataset transformation is shown in listing
8.8.

Listing 8.8: Resulting dataset off of the function-dataset transformation,
based off of the function model from listing 8.7

91

Dataset {

key: "projecten_capital"

name: "Projecten van de Capital afdeling"

description: "Projecten van de capital afdeling gespecificeerd epr organisatie. Deze data is verzameld vanuit het systeem van.."

dimensions: {

type: "Thematic"

key: "Sector organisatie"

name: None

description: None

}

metrics:

distribution: CSV { url: file://./instances/case2/projecten_capital.dataset}

}

The function-sql transformation generates SQL code based off of the func-
tion. This resulting SQL code is presented in listing 8.9.

Listing 8.9: Resulting SQL query off of the function-dataset transformation,
based off of the function model from listing 8.7

WITH _1 as (

SELECT * FROM projecten_capital

), _2 as (

SELECT ‘Sector organisatie‘, COUNT(ID) as aantal_organisaties FROM _1

GROUP BY ‘Sector organisatie‘

)

SELECT * FROM _2

Executing this SQL code using sqlite yields results as presented in ta-
ble 8.1. It can be seen that all columns in the table are represented in the
dataset model. The dataset model also provides additional information on
its resource.

Now, for a more interesting example let us count the amount of organisa-
tions per sector, per region. As a target for the regional analysis, we will use
the COROP regions. This is a standardized classification for regions in the

92

Netherlands and is defined as shown in figure 8.1. For Oost NL, this regional
specification is useful because it is the right level of granularity and there is
enough information present on this level. Another advantage is that counts
on this level can be aggregated from municipality information, or aggregated
further up to province regions.

Because the Oost NL dataset does not have direct information on the
region it belongs to, this function is more complex. The region information
must be extracted from the address information in the dataset, in cooperation
with a dataset that provides regional information for each address in the
Netherlands.

This query implementation directly leads us to an issue. To be able to
match the dataset adres codes means that we need to extract this number
from the address field in the dataset. Because this involves string processing,
it is hard to do and not completely reliable. It is needed to execute an
extraction function that extracts this number and adds it to a new column.

While the data process is tough, it is conceptually easy to model in the
framework. It is just an operation on a metric that creates a new column.
Which operations to support is, however, a hard problem, because this is
highly dependent on the target platform for execution. For example, we
might define such a function using a regular expression operation that ex-
tracts a piece of the string using a regular expression. Our target platform
SQLite, however, does not have support for this feature, which renders this
platform useless for that purpose.

We note this issue and will discuss it further during the discussion at the
end of this report. To continue this case study, we perform this step by hand
using the python code listed in listing 8.10 and continue based off of that
dataset. It also takes case of removing all spaces in the postal code field,
which is a data quality issue in the dataset provided.

Listing 8.10

Table 8.1: An overview of the output of the query from listing 8.9

Sector organisatie aantal organisaties
AF 22
CTE 40
FiF 15
Gelderse Specials 12
HTSM 23
LS&H 71
Maak 101

93

Figure 8.1: An overview of the COROP regions in the Netherlands. Image
generated using www.regioatlas.nl

import pandas

def parse_huisnummer(x):

gs = re.match(r’^([A-z]+\s)*([0-9]+)’, x[’Bezoekadres organisatie’])

if gs is None or len(gs.groups()) < 2:

return None

return str(gs.group(2))

df = pandas.read_csv(csv_file)

df[’postcode’] = df.apply(

lambda x: x[’Postcode bezoekadres organisatie’].replace(" ", ""), axis=1

)

df[’huisnummer’] = df.apply(parse_huisnummer, axis=1)

with open(’out.csv’, ’w+’) as f:

94

df.to_csv(f)

To aggregate to regional level, we first add the municipality code from
the adres codes dataset, followed by the addition of corop code using this
municipality code using the dataset with municipality information by the
CBS. Using this corop code, we can aggregate using this corop code and
sector of the organisation.

Listing 8.11: The query to aggregate the projects capital region to corop
regions.

select projecten_capital

join properties gemeentecode

from adres_codes

match "Bezoekadres postcode"=pc6, huisnummer=huisnummer

join properties corop_code

from gebieden_in_nederland

match gemeentecode=gm_code

aggregate over metrics corop_code, "Sector organisatie"

count ID as "Aantal organisaties"

The resulting dataset from the dataset should have two dimensions, con-
taining the corop code and the sector of the organisation, and includes the
count of organisations for each of those combinations.

The data is again retrieved using a generated SQL code based on this
query specification. This SQL code is shown in listing 8.12. The results of
running this query are shown in table 8.2

Listing 8.12: Resulting SQL query off of the function-dataset transformation,
based off of the function model from listing 8.11

WITH _1 as (

SELECT * FROM projecten_capital

), _2 as (

SELECT ‘adres_codes.gemeentecode‘, ‘_1.*‘ FROM _1

JOIN adres_codes ON _1.Bezoekadres postcode = adres_codes.pc6 and _1.huisnummer = adres_codes.huisnummer

), _3 as (

SELECT ‘gebieden_in_nederland.corop_code‘, ‘_2.*‘ FROM _2

95

JOIN gebieden_in_nederland ON _2.gemeentecode = gebieden_in_nederland.gm_code

), _4 as (

SELECT ‘corop_code‘, ‘Sector organisatie‘, COUNT(ID) as aantal_organisaties FROM _3

GROUP BY ‘corop_code‘,‘Sector organisatie‘

)

SELECT * FROM _4

Table 8.2: An overview of the output of the query from listing 8.11

Sector organisatie Corop code aantal organisaties
AF CR01 18
AF CR03 4
CTE CR01 30
CTE CR03 12
HTSM CR01 2
...

Based on this data, and the geographical information about the corop
regions, a visualisation map can be created, or a graph representing the
different elements. Such regional information provides insight where most
companies are for each sector Oost NL invests in.

The last query that gives us insight in this case is a similar query, but
executed on the data from the Lisa register, and combine it with the dataset
from Oost NL. This requires several conversion steps of the LISA register, as
well as the final combination of the Oost NL dataset when their dimensions
match. The challenge here is the dimension transformations to match the
dimensions in the dataset. The dimension transformations required are:

• Conversion from SBI classification to sector

• Conversion of Corop region name to code

These dimension transformations are difficult, because many exported
files are targeted at providing a meaningful name, rather than a code in
the dataset that can be used to be matched. Because this is the case, we
need to convert the names in the LISA dataset to codes, or the codes in the
original dataset to values. Usually using these names in a dataset brings data

96

quality issues, because names to not fully correspond. This means there is
no guarantee that the dimensions can be properly converted.

A dimension transformation consists of property join for the right region,
followed by a aggregation over that property. If the mapping is proper, the
resulting data is the same in size, though column with the named dimension
is lost.

The query needed to perform these operations is listed in listing 8.13. In
this query specification, two subqueries are used in order to pre-process the
specification files that contain data about the regions and sector information.
This pre-processing aligns their dimensions and allows us to match the values
for the lisa dataset according to their code, rather than an possible ambiguous
name.

Listing 8.13

with (

select sector_sbi_map

aggregate over metric sbi_naam

identify oostnl_sector

) as sbi_naam_sector,

(

select gebieden_in_nederland

aggregate over metric corop_name

identify corop_code

) as corop_names,

select lisa_per_corop

add properties oostnl_sector

from sbi_naam_sector

add properties corop_code

from corop_names

aggregate over metrics corop_code, oostnl_sector, year

SUM "vestigingen totaal",

SUM "banen totaal"

8.3 Results

During the implementation of this analysis, we can identify a couple of in-
teresting elements that give us insight into usability and completeness of the
framework. Since the prototype is not a complete implementation, issues
and workarounds are expected. Our interest lies in the usability and validity
of the models and transformations.

97

First of all, we deem the specification for dataset models sufficient to
describe the data structures that we have seen. All content can be properly
described, albeit in a simple manner. The dimensions that can be specified
do give insight in how the data is structured and the context it is put in.
Especially the concept of dimensions and metrics, and uniqueness and context
they describe is useful.

This model however, does miss some functionality for dataset descrip-
tions. For further implementation, adding elements from the DCAT model
can improve the metadata description and enables more information to be
stored about its original source, author and properties. While it is possible
to store this information in the description of the dataset, using this method
defeats the purpose of creating a specific model for a dataset metadata de-
scription.

Another element for the dataset model that has not been extensively
considered is alternative dimension representations. Up until now, we have
considered these to be different dimensions. Although this is valid and the
conversion steps for the dimensions in the last query are useful, this oper-
ation is very common when using exported datasets. Applying this many
times leads to a verbose query.

When we investigate the function metamodel, there are some additional
issues. Most notably is the data quality issue that our prototype did not have
an solution for. We had to use custom python code to modify the dataset in
order to be able to use it. The operations and functions that can be executed
on a single metric are too limited in the framework to be able to provide a
solution to these data quality issues. This is problematic because resolving
data quality issues is one of the most time consuming tasks.

Implementation of these functions is not straightforward, because dif-
ferent execution platforms need to be taken into account. When designing
such a library in the Model-Driven Engineering context, different execution
platforms and their standard libraries need to be taken into account. For
example, SQLite does not support regular expressions out-of-the-box. This
means that a solution needs to be found when such a function is specified in
the function metamodel for this platform.

8.4 Conclusions

Overall, we deem the structure of the framework to be usable for these kind
of case studies. The model structure works well to describe the data, the
function metamodel is expressive enough to specify merges of data and met-

98

ric calculations and the transformations provide usable SQL code for data
analysis. Most importantly, the resulting dataset model can be exported back
to valid DSL code and describes the resulting data in the way that is required.

The queries specified in the function metamodel are not necessarily more
elegant or simpler than the resulting SQL queries, but the underlying model-
ing techniques allow for better tooling, validation of query and propagation of
metadata. In its current implementation, a lot of this functionality is based
on conventions. While this is not always desirable, it provides a foundation
to be used further.

Furthermore, the prototype implementation lacks expressiveness in some
areas. On the one hand, this is due to implementation issues in the pro-
totype, such as only support for SQLite and retrieving dataset by filename
convention. Other issues are more inherent to the models themselves. These
include lack of operations for metrics and data quality issues, metadata mod-
eling of the data itself, typing of data and dimensional representations.

We deem the structure of transformation most important and have shown
potential for this structure to be well applicable to a wide variety of datasets.

99

Chapter 9

Conclusion

Throughout this report, we have presented our research on data metamod-
eling and platforms to be used for data analysis. Based on this research,
we have implemented a Model-Driven framework prototype used for data
analysis. Data analysis using this framework allows for propagation of meta-
data, automatic documentation of context and traceability of queries and
data sources. Additionally, the development of the prototype and modeling
concepts provide opportunities and improvements that have not been fully
explored, which are documented in chapter 10.

9.1 Research questions

In the introduction, we posed the following research questions:

RQ 1. What elements are necessary to create a metamodel able to represent
existing datasets?

RQ 2. How can we create models for existing datasets efficiently?

RQ 3. What is the best method to define a generalized query in terms of this
data model?

RQ 4. How can the generalized queries be transformed to executable code able
to retrieve data?

RQ 5. How can the context of the data be represented and propagated in the
result?

Based on the related work and lessons learned during the implementa-
tion of the framework, we will present our answers to each of these questions.

100

What elements are necessary to create a metamodel able to repre-
sent existing datasets?

Because our inspiration is based on open data, we have used those sources
mainly as reference for this question. It becomes clear metadata is needed
on the data package itself, including creation date, author, size, description.
These help a data analyst reason about the data as a whole.

Using only this information makes it hard for a user to effectively use the
data. To solve this, metadata about the structure of the data is needed in
addition. This structure needs to be modeled such that many 2-dimensional
data structures should be able to be represented in this model.

How can we create models for existing datasets efficiently?
By defining a DSL, users are aided in specifying as much info about the

dataset as possible. This DSL definition brings possibilities to develop tooling
that aids the user in specifying such a file.

Model mining for existing datasets still remains an open problem, how-
ever.

What is the best method to define a generalized query in terms of
this data model?

Generally, all queries are a representation of several data operations on a
set of values. Our aim was to find a method to describe these operations into
a metamodel. The two main options for this are to define a single expression
like query that uses nested expressions to perform more complex operations,
or to define an implementation in pipeline style. Because of readability and
overview, we deem the latter the best option to define a generalized query.

To define a set of suitable operations, several other data transformation
implementations have been investigated. Many of these data operations aim
to achieve the same goal transformation, but are implemented in different
manners. Based on this complete set, we have limited operations such that
they 1) have actual meaning and 2) can be applied on the metadata too.

How can the generalized queries be transformed to executable code
able to retrieve data?

The queries as specified above represent data operations to be executed.
For this execution, a target platform is needed that. Because the current
scope of these platforms is large, it is most logical to choose an existing
platform for this execution.

We have shown that SQL can be a suitable execution platform of choice.
In a more complete implementation, multiple execution platforms can be

supported.

101

How can the context of the data be represented and propagated in
the result?

Context of data is represented in the dataset model. By allowing the
query to transform these models, the context of the data is transformed as
well and thus, preserved. While not all context can be preserved and some
information is lost, at least the source of data and operations are preserved.

9.2 Prototype implementation

Based on these lessons, we have implemented a prototype for the framework
and applied this to two use cases. We have shown that the framework is
suitable for the business level analysis that is needed on open data sources
to enable new insights.

Based on the cases we have presented, we deem the structure for the
framework and its transformations a valid choice for performing data oper-
ations and maintaining the context. The functions defined are applicable to
the metadata as well, and where needed require the user to explicitly de-
scribe his or her intentions. While this may hinder quick prototyping, this
additional documentation will help in the long run.

We observe that many of the requirements posed on the metadata come
from the process, rather than the model definition. While it is possible to
define the provenance of data in an extensive and time-consuming manner,
it is much more elegant to have these issues be covered by the process itself.
After all, the goal of provenance is to describe the data analysis process and
origin. By making the process inherently transparent, this documentation
creates itself.

This is even more so the case with data quality. Data quality is usually
defined using a set of metrics, supplied with the data. By using the specifi-
cations of data, types and units, many of these metrics can be derived. For
example, timeliness as a quality metric can be derived if there is information
about a temporal dimension. Ranges of values can be verified by using a
proper definition of the number in the dataset model and empty values can
be derived from the dataset itself as well. These features can be automati-
cally analysed using the dataset model and, if required, stored in the model
itself.

Although this may be true, the prototype implementation does not com-
pletely cover the full data analysis spectrum. Some shortcuts were used

102

during the case implementation and the prototype needs to be extended on
several areas to be able to overcome the necessity of these shortcuts and
support more scenarios.

Yet, these issues are solvable within the current structure of the frame-
work and will be further discussed in the next chapter. Some are straight-
forward to resolve, while others require effort to identify the proper method.
For the latter type, we propose a direction for thought and some options.

Another side effect of this implementation has been the evaluation of
ECore alternatives. We deem the PyEcore implementation a good alternative
for programmers who like to take advantage of the flexibility of Python. This
implementation allows the user to decouple the model specification from its
environment and complicated configuration that comes with it.

The main disadvantage we encountered was defining a proper parser for
the files. The parser library in Python must be combined with the models
generated by PyEcore. Chapter 7 described our method of using a parser-
combinator to achieve this result. While this works well, it is very time
consuming and changes in the metamodel can lead to strange error messages.
In hindsight, choosing another library might have been a better choice.

103

Chapter 10

Future work

Although we have shown the usefulness of Model-Driven Engineering for
data analysis and metadata use, the scope of this project was too narrow
to incorporate all desired features. A complete data analysis framework is
difficult to accomplish due to the wide amount of formats available. The
following sections present features that could be implemented to improve the
framework.

To create a valid prototype within the scope of this project, some features
have not been implemented. While these are not essential for a working pro-
totype and tool on a small scale, to fully take advantage of the possibilities,
an extension is needed to solidify the connections of this framework in the
current data environment. These are not completely developed concepts, but
rather documented ideas based on the framework as described.

10.1 Dataset model mining

In all steps we have shown, dataset models are defined by the user using the
specified DSL. This task can be quite tedious, especially when the dataset
and amount of columns is very large. One method to aid the user would be to
create an graphical user interface that aids the user in defining dimensions,
metrics and other properties. Because all properties all well-defined, such an
interface would be straightforward to implement.

Even when using the interface, this task can be time intensive. One
method is to implement model mining techniques to automatically create
models based on the existing data. This means logic should be implemented
that is able to load data sources, analyse them and create models accordingly.

This model mining can be based on other metadata models. For example,

104

when using a dataset model from the Dutch government open data portal,
it already has much information about the Author, originating source and
distributions because it uses the DCAT metadata model. Transformations
can be defined that create a dataset model from these metadata.

In case a dataset from Statistics Netherlands is used as a source, this
mining process can be more elaborate. Its API exposes different information
about the dataset, including keys of dimensions and descriptions of metrics.
All these data can be extracted from this endpoint and converted into a
dataset model.

The National Georegister is another portal providing an endpoint with
data that can be loaded, mined and converted to a dataset model.

Even when the data is presented in a single CSV file, it is possible to
parse headers that representing the columns, or parse the file metadata to
extract modification date and author.

Based on the current premise, each of such an integration needs a custom
implementation, which can be time intensive when there are many portals
and different standards.

After this extraction process there is a dataset model. This model is, how-
ever, usually far from perfect because there can be many issues during the
mining process. It is, therefore, necessary to allow users to change datasets.
We suggest to define an additional transformation process that lets users just
define property changes, and descriptions for a dataset. The final transfor-
mation is similar to the function-dataset transformation, but the underlying
data do not change.

10.2 Dataset versioning

An issue often encountered using data analysis is that data sources change.
Data that is hosted on external machines are not guaranteed to stay identical.
Data owners might add data, or change column headers, etc.

One method to solve this would be to make the dataset models immutable.
Current Model-Driven Engineering techniques do not have features to sup-
port this, but when creating a dataset registry, such features can be imple-
mented. When adaptions are necessary, a new dataset model is created and
its version is bumped.

Using this approach, it is also possible to validate the data sources and
their structure. For example, dataset X with version 1.0.0 is created on the
1st of May, based on a SQL table. Users can use this dataset model to

105

generate queries. Functions are defined that reference this dataset model,
including version, and the transformations are used to retrieve results.

After a month, a user wants to change the dataset and inserts new in-
formation for the new month, using a new dimension attribute. The table
has changed, and thus the dataset model needs to be changed as well. This
change adds a new attribute to the dataset, and the new dataset becomes
version 1.1.0.

Functions that are defined using the 1.0.0 dataset are still usable, because
the ’new’ table is backwards compatible with the old one. Functions based
of off this dataset can still be properly executed.

Based on the dataset, we can define SQL queries of which the output
can be calculated based on the dataset. For example, all distinct values in
a column can be requested, or the different columns that should be present.
This method allows us to validate if dataset models (and thus the functions
based off of them) are still usable and if the right results are to be expected.

10.3 Data quality

Another issue we have barely touched is the data quality of datasets, while
data analysis spend much time on these issues before they are able to use
the data. Operations that are executed during the data cleanup are also
relevant for the data provenance, to increase transparency. A more complete
implementation of this framework should therefore also be able to handle
these issues.

We notice that many of the data quality issues that arise are on the metric
level. In the example case of Oost NL, we encountered the issue that some
postal codes did have a space between numbers and letters, while others did
not, e.g. the difference between ’1234 AA’ and ’1234AA’. Because these data
originate from user defined input, they are not consistent and for proper use,
these values have to be made consistent.

While not much effort has been put into a proper set of function defini-
tions applicable on a metric level, this is essential for these kind of operations.
The language from trifacta is specialized in this use case and is therefore a
good foundation for implementing functions that work in this level. Exten-
sion of the function meta-model is relatively straightforward and since these
functions acts on the metric level they do not have much impact on the
dataset model as a transformation.

Although conceptually easy for the framework, such an implementation
does pose issues for an actual implementation and support for multiple ex-

106

ecution platforms. During implementation of these functions, support for
such a function on the execution platform is not guaranteed. This is further
discussed in section 10.6 below.

Besides these issues, there can be more complex data quality issues.
Databases can be inconsistent, have strange relationships, data may be in
the wrong columns, etc.

10.4 Dataset annotations

The amount of descriptions and data that can be added to the dataset is still
quite limited. To increase knowledge about the dataset and its context, we
suggest a method able to define notes on different levels in the dataset.

Because of the way dimensions are defined, a selection of dimension values
can be used to specify a data range unambiguously. During a data trans-
formation, it is straightforward to determine if the data needed falls within
such a range, since such a selection is based fully on the dimensions. Thus,
we can use this method to annotate a certain part of the dataset.

We propose adding an additional Note element to the dataset metamodel.
This note contains a dimension selection, metric selection (similar to the Re-
striction operation in the function metamodel) and a description. Extensions
of this Note object can include multiple selections, a certain type (e.g. data
quality, additional information or warning), or relations to other notes or
datasets.

This selection method also maintains the requirement that the metadata
can be propagated through the functions. Since it is known how the function
alter the dimensions, these notes can be propagated through the transforma-
tions. For example, when an aggregation is made on a region that has many
data quality issues, these data quality issues can be added to the aggregation
itself.

This allows users to add information to the metadata of a dataset, which
can be useful for users who will reuse those data.

10.5 Data typing

A more complicated addition would be to include a more extensive data type
system into the model. In the current model definition, there is a distinction

107

between some basic types, like an integer, string or date. These types are
similar to the types generally seen in SQL databases. While this can work
well generally, it is limited in functionality.

One enhancement can be a simple addition of different types. Types that
are missing but could be useful are, for example, spatial data including coor-
dinates or regional data, date ranges, or even some more complicated objects.
Definition of custom types allows users to specify a better intention of the
data value they provide.

Data analysis platforms do not benefit from extensive typing, like many
programming languages do. If the metadata models could incorporate a more
advanced type system, validation of these data operations can be more exten-
sive. For example, if there is a type system that incorporates a “Percentage”
type, we can base further analysis on this type alone. A warning could be
provided if the percentage is above 100%, or if all values in the dataset are
between 0 and 1, or if aggregations are made over this metric. Or there could
be the definition a “Postal code” type, which contains certain semantics on
a location, which can be used as base for aggregation functions.

In reality, the checks that could be defined per type can vary a lot. A
percentage should be between 0 and 100, but there are exceptions, e.g. the
current population is 103% compared to the previous year. Postal codes are
also different in structure or might have other caveats. This is especially true
in between countries.

Typing these elements allows the framework to be more specific on what
operations are possible and meaningful. The current typing implementation
can prohibit the addition of a number to a string, but cannot prohibit an
addition of euros to percentages.

Extension of supported types is straightforward to implement, yet it is a
challenge to define the right types that support a wide range of use cases,
without bringing a lot of clutter to the framework.

An implementation of a more extensive type system is even more compli-
cated. A typing system is complex and requires many elements that require
extensive thought, especially in a model-driven environment. The typing
system implemented must be flexible, because it is impossible to define all
types beforehand, which requires extendable types. While this is possible to
model in the dataset metamodel, this would limit reuse.

108

10.6 Multiple execution platforms

The prototype implementation we have shown only supports SQLite. The
promise of Model-Driven Engineering is to be able to use the same models
to target different execution platforms.

To implement this, a solution needs to be found for the different opera-
tions and features each of the platforms support. If the framework should
be expressive enough to be able to handle different data quality and analysis
aggregations, its support needs to be extensive. When considering open data
platforms, it cannot be assumed that each of these platforms supports all
features.

For example, the OData API platform that the CBS uses is mainly used
for accessing data. It has some functionality for operations and expressions,
but this functionality is limited. It cannot perform aggregation operations.
it cannot do complex modifications on the dimension structures, etc. This
means that functions cannot be easily applied to this OData API.

An obvious solution would be to create a database, load all raw data
into this database and then perform the operations as defined. This does,
however, require the need of a database and all complexity that is involved
using that. It also is more complex for users to be able to execute.

Another solution is what we call partial query rendering. The result of
each operation is a dataset. Therefore, a function model can be split up such
that the results are two (or more) separate functions that each provide their
own resulting dataset. When the result of function 1 is fed into function 2, a
pipeline is created that provides the same result as the initial function. The
advantage is that each function split can be transformed separately.

If functionality is not compatible across two platforms, these operations
can be split up into two functions, rendered to their two platforms and ex-
ecuted separately. While this has downsides (most notably performance of
exporting and importing datasets to the platform), it does provide function-
ality to target multiple platforms. If required, code generation can also be
applied to automate the pipeline calculation process.

10.7 Function re-usability

Because one of the main promises of this framework is reuse of datasets and
functions, function reuse is an important element as well. The method of
implementation described in this report does not help much towards that

109

goal.
To be able to properly reuse function models, we deem the following

elements necessary:

• Function parameters should be definable and operations must be able
to use these parameters.

• An operation must be added that executes a function and is able to
define the parameters.

• A function registry, similar to the dataset registry is needed to be able
to retrieve the functions to be implemented.

While each of these operations seems simple, their implementation can
be quite complex. Implementation of these features generates a structure of
nested functions that must be properly taken into account when transform-
ing these to executable code.

110

Bibliography

[1] Dataset “vestigingen van bedrijven; bedrijfstak, regio”. https://

opendata.cbs.nl/#/CBS/nl/dataset/81578NED, .

[2] Sbi explanation, cbs. https://www.cbs.nl/nl-nl/

onze-diensten/methoden/classificaties/activiteiten/

sbi-2008-standaard-bedrijfsindeling-2008, .

[3] The fair data principles. https://www.force11.org/group/

fairgroup/fairprinciples.

[4] Landelijk register kinderopvang. https://www.

landelijkregisterkinderopvang.nl/pp/StartPagina.jsf.

[5] Lisa, employment register. https://www.lisa.nl/home.

[6] Open dataset landelijk register kinderopvang. https://data.

overheid.nl/data/dataset/gegevens-kinderopvanglocaties-lrk.

[7] Dcc metadata standards. http://www.dcc.ac.uk/resources/

metadata-standards/list.

[8] Prov-reccomendations. https://www.w3.org/2005/Incubator/prov/

XGR-prov-20101214/#Broad_Recommendations.

[9] Pyecore documentation: A pythonic implementation of the eclipse mod-
eling framework. https://pyecore.readthedocs.io/en/latest/, .

[10] [github] pyecore: A pythonic implementation of the eclipse modeling
framework. http://www.github.com/pyecore/pyecore, .

[11] Wet hergebruik van overheidsinformatie. http://wetten.overheid.

nl/BWBR0036795/2016-10-01.

[12] David H Akehurst, Behzad Bordbar, Michael J Evans, W Gareth J
Howells, and Klaus D McDonald-Maier. Sitra: Simple transformations

111

https://opendata.cbs.nl/#/CBS/nl/dataset/81578NED
https://opendata.cbs.nl/#/CBS/nl/dataset/81578NED
https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/activiteiten/sbi-2008-standaard-bedrijfsindeling-2008
https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/activiteiten/sbi-2008-standaard-bedrijfsindeling-2008
https://www.cbs.nl/nl-nl/onze-diensten/methoden/classificaties/activiteiten/sbi-2008-standaard-bedrijfsindeling-2008
https://www.force11.org/group/fairgroup/fairprinciples
https://www.force11.org/group/fairgroup/fairprinciples
https://www.landelijkregisterkinderopvang.nl/pp/StartPagina.jsf
https://www.landelijkregisterkinderopvang.nl/pp/StartPagina.jsf
https://www.lisa.nl/home
https://data.overheid.nl/data/dataset/gegevens-kinderopvanglocaties-lrk
https://data.overheid.nl/data/dataset/gegevens-kinderopvanglocaties-lrk
http://www.dcc.ac.uk/resources/metadata-standards/list
http://www.dcc.ac.uk/resources/metadata-standards/list
https://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/#Broad_Recommendations
https://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/#Broad_Recommendations
https://pyecore.readthedocs.io/en/latest/
http://www.github.com/pyecore/pyecore
http://wetten.overheid.nl/BWBR0036795/2016-10-01
http://wetten.overheid.nl/BWBR0036795/2016-10-01

in java. In International Conference on Model Driven Engineering Lan-
guages and Systems, pages 351–364. Springer, 2006.

[13] Kamal Boulil, Sandro Bimonte, and Francois Pinet. Conceptual model
for spatial data cubes: A uml profile and its automatic implementation.
Computer Standards & Interfaces, 38:113–132, 2015.

[14] dr. A. Abela. Choosing a good chart. http://extremepresentation.

typepad.com/blog/2006/09/choosing_a_good.html.

[15] John Erickson and Fadi Maali. Data catalog vocabu-
lary (DCAT). W3C recommendation, W3C, January 2014.
http://www.w3.org/TR/2014/REC-vocab-dcat-20140116/.

[16] Neil Foshay, Avinandan Mukherjee, and Andrew Taylor. Does data
warehouse end-user metadata add value? Communications of the ACM,
50(11):70–77, 2007.

[17] Paul Groth and Luc Moreau. PROV-overview. W3C note, W3C, April
2013. http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/.

[18] Jörn Kohlhammer, Tobias Ruppert, James Davey, Florian Mansmann,
and Daniel Keim. Information visualisation and visual analytics for
governance and policy modelling. 2010.

[19] Algemene rekenkamer. Trendrapport open data 2016. http:

//www.rekenkamer.nl/Publicaties/Onderzoeksrapporten/

Introducties/2016/03/Trendrapport_open_data_2016.

[20] Jane Ritchie and Liz Spencer. Qualitative data analysis for applied
policy research. The qualitative researchers companion, 573(2002):305–
329, 2002.

112

http://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
http://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html
http://www.rekenkamer.nl/Publicaties/Onderzoeksrapporten/Introducties/2016/03/Trendrapport_open_data_2016
http://www.rekenkamer.nl/Publicaties/Onderzoeksrapporten/Introducties/2016/03/Trendrapport_open_data_2016
http://www.rekenkamer.nl/Publicaties/Onderzoeksrapporten/Introducties/2016/03/Trendrapport_open_data_2016

	Introduction
	The impact of open data
	Project goal
	Project approach
	Structure of the report

	Background
	Data-driven decision making
	Sources for data-driven desicion making
	Data analysis solutions
	Database storage
	Pandas
	OLAP

	Metadata modeling

	Case Studies
	Case 1: Supply and demand childcare
	Case 2: Impact of company investments

	Dataset modeling
	Metadata
	Data structures
	Dimension and metrics
	Aggregated vs. non-aggregated data
	Origin and quality

	Dataset model

	Function modeling
	Functions transformation structure
	Metamodel definition and design
	Data operations
	Operations overview

	Dataset merge operations
	DSL definition

	Data transformations
	Transformation goal
	Data transformation target
	Function transformation
	Transformation example

	Dataset transformations

	Implementation details
	EMF and PyEcore
	Text-to-model transformations
	Model-to-Model transformations
	Model-to-text transformations

	Validation
	Case study
	Implementation
	Dataset identification
	Dataset model specification
	Data loading
	Data retrieval

	Results
	Conclusions

	Conclusion
	Research questions
	Prototype implementation

	Future work
	Dataset model mining
	Dataset versioning
	Data quality
	Dataset annotations
	Data typing
	Multiple execution platforms
	Function re-usability

