
Automated Failure Diagnosis in Aviation
Maintenance Using eXplainable Artificial

Intelligence (XAI)

Author:
S.G. ten Zeldam

Supervisors:
Prof. dr. ir. T. Tinga, University of Twente
Dr. ir. R. Loendersloot, University of Twente
Dr. ir. R.G.K.M. Aarts, University of Twente
Dr. A. de Jong, NLR - Netherlands Aerospace Centre

July 9, 2018

University of Twente
Faculty of Engineering Technology
Mechanical Engineering
Maintenance Engineering & Operations

Master thesis
Document number ET.18/TM 5822



S.G. ten Zeldam



Automated Failure Diagnosis in Aviation Maintenance Using
eXplainable Artificial Intelligence (XAI)

Sophie ten Zeldam1,2,3, Arjan de Jong1, Richard Loendersloot2 and Tiedo Tinga2,3

1 Netherlands Aerospace Centre (NLR), Amsterdam, the Netherlands
Arjan.de.Jong@nlr.nl

2 University of Twente, Dynamics based Maintenance group, Enschede, the Netherlands
r.loendersloot@utwente.nl

t.tinga@utwente.nl

3 Netherlands Defence Academy, Military Technical Sciences, Den Helder, the Netherlands
sg.t.zeldam@mindef.nl

ABSTRACT

A repair card is used in aviation maintenance to report
a failure or anomaly and register it in the maintenance
management system. An incorrect or incomplete repair card
may result in incorrect maintenance and make it very hard to
analyse the maintenance data. There are several reasons for
this incomplete reporting. Firstly, (part of) the information
is often unknown at the moment the maintenance crew fills
in the card. Also, the findings on repair cards are generally
filled in as free-form text, making it difficult to automatically
interpret the findings. An automatically assessed failure
description will lead to more complete and consistent repair
cards. This will also improve the efficiency of troubleshoot-
ing since this failure diagnosis can add information which
would otherwise not be at the disposal of the maintenance
crew at that time. With this research, a model is developed
which is able to automatically diagnose a failure. The model
utilises a data driven approach, combining maintenance data
and usage data. The model is based on Artificial Intelli-
gence (AI) such that it is no longer necessary to completely
understand the physics of a (sub)system or component. A
newly proposed XAI (eXplainable AI) methodology, Failure
Diagnosis Explainability (FDE), is added to the model to
provide transparency and interpretability of the assessed
diagnosis. The assessed diagnosis is explained by checking
whether a new failure matches the expected values of a certain
diagnosis (class). A failure is from class (diagnosis) A,
because the features have similar values as class A. Contrary,
this failure is not from classes (diagnosis) B and C, because
the features have dissimilar values as class B and C. Two
techniques are used to check whether a failure matches the

expectations: visual representation and the proposed χ-factor.
The proposed model and XAI methodology FDE are applied
to a case study with a main wheel of the RNLAF (Royal
Netherlands Air Force) F-16. This feasibility study already
showed the value of this automated failure diagnosis model
with an achieved accuracy of 81% of classifying a diagnosis .
The proposed XAI methodology FDE was able to explain the
diagnosis assessed by the failure diagnosis model both with
visual representation and the χ-factor. Thereby the feasibility
of this model is proved. This model will also support a repair
shop to repair NFF (No Failure Found) components based on
their historical usage.

1. INTRODUCTION

A repair card is used in aviation maintenance to report
a failure or anomaly and register it in the maintenance
management system. An incorrect or incomplete repair card
may result in incorrect maintenance and make it very hard to
analyse the maintenance data. An example from practise is a
helicopter Main Gear Box (MGB) removal due to a leakage
found during a 500 hours inspection. The maintenance crew
described the complaint as ‘defect, 500 hrs’. The component
shop carried out an overhaul when a small repair could
also have solved the problem. The overhaul, however, was
unforeseen and there was no spare MGB available which
resulted in a grounded helicopter. So the consequences of this
incomplete repair card were additional maintenance costs and
a decrease in availability.

This example is not unique in the aviation sector, it is rather
common and there are several reasons behind this. Firstly,
(part of) the information is often unknown at the moment the
maintenance crew fills in the repair card. Also, the findings
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on repair cards are generally filled in as free-form text. As
a result, repair cards may contain incorrect information and
can be incomplete. A consequence of the incorrect and
incomplete repair cards is that they are not practical for data
analysis because it is difficult to automatically interpret the
findings.

A possible solution for this problem is the use of AI (Artificial
Intelligence) combining maintenance data and usage data. To
receive the user’s trust the algorithms used in AI should be
explained with (eXplainable AI). A literature study about AI,
XAI and their applications is carried out. AI can be defined
by ‘the study of how to make computers do things at which,
at the moment, people are better’(Rich, 1983). Many data
can be fed to AI models and after training they can recognise
patterns much better than humans (Koch, 2018). AI is no
longer science fiction but it is already applied in everyday
technologies. Examples are Netflix suggesting your next
movie, Facebook personalising your timeline and recognising
friends in pictures, filtering for your email on spam and phone
assistants such as Siri and Google Now. The application of
AI within the maintenance sector is a potential step forward
in the development of the sector. Ultimately, the goal is
to predict failures and to automatically plan maintenance
activities with AI. But first, the possibilities of diagnosing and
explaining the cause of a failure will be researched. In other
words, why is a certain diagnosis assessed? This is important
because, as an example, AI can be used for diagnosing
patients in the healthcare. An example is cancer diagnosis.
Some algorithms are able to predict whether the patient has
cancer or not, more accurately than doctors. But as long
as humans do not understand how this algorithm made the
assessment, it will not be used in practise since they are not
trusted (Holzinger et al., 2017). Transparent and interpretable
explanations are required for trust and acceptance of both
doctors and patients. Therefore, the need for XAI is growing.
Since a comparable trust problem will be present in the
maintenance sector when applying an AI model, XAI will be
an option to solve this problem.

Firstly, the current status of AI within the maintenance sector
will be discussed. For many industrial and military machines,
there is a large amount of historical data. Sometimes data are
stored after a system or component failure, but there is also
a lot of data for which there was no purpose of collecting
it at the time. This data was stored because it might prove
useful in the future. The challenge now is to transform
this big amount of (historical) data to usable information.
Many methods exist for analysing this data and turning it
into useful forms for decision making, including statistical
correlation/regression methods, fuzzy logic classification and
neural-network clustering techniques (Vachtsevanos et al.,
2006). Failure search routines can be developed with AI
for troubleshooting and diagnosis (Russell & Norvig, 2010).
These developments have lead to ‘Knowledge Acquisition’,

the abstraction of knowledge from experts and structuring it
for applications in investment projects. This method is also
known as Knowledge Based Systems Analysis and Designs
Support (KADS) (Smit, 2010).

In part of these publications of AI in maintenance (and
also specifically in failure diagnosis), the diagnosis relies
on just one or a few features (Yan et al., 2014; Al-Garni et
al., 2006) while others requires a massive amount of data
and/or knowledge to train the model (Milne et al., 2001;
Tarifa et al., 2002; Khoo et al., 2000). For the failure
diagnosis model many data is available but not all data are
useful due to missing information: when a failure can not
be linked to the corresponding usage data of the the failure
description is insufficient. Also, this model aims to eliminate
the requirement of systems knowledge. Concluding, AI can
be a potential solution to the problem were XAI have to be
implemented for the trust of the user.

Therefore a model will be generated which can automatically
assess a failure diagnosis based on maintenance data and
usage data. An automatically assessed failure description will
lead to more complete and consistent repair cards. This will
improve the efficiency of troubleshooting since this failure
diagnosis can add information which would otherwise not
be at the disposal of the maintenance crew at that time.
Conventional ways to link failures to the usage are physical
models, but this research utilises a data driven approach
combining maintenance and usage data, and AI into a failure
diagnosing model. AI is capable of recognising more patterns
and relations than humans can. With this model, it is no
longer necessary to completely understand the physics (and
failure mechanisms) of a (sub)system or component. This
data driven approach makes it difficult to establish causal
relations between features. To convince the users of the
model, a plausible explanation is needed to understand the
cause of the failure. XAI techniques will be implemented in
the model to provide transparency and interpretability of the
resulting diagnosis.

Figure 1 proposes the steps to achieve an automatic failure
diagnosis based on usage data (sensor information from the
flights) with XAI. This methodology is newly proposed in this
research and will be discussed in the remainder of this thesis.
Section 3 describes which data have to be collected and
in which form, to develop an automated failure diagnosing
model (blocks 1,2). In Section 4, the training of the model
is described (blocks 3,4,5). A historical reconstruction will
be made and features and algorithms will be selected. The
failure diagnosis will be discussed in Section 5 (blocks
6,7,8). The diagnosis will consist of an assessment of the
possible causes, the explainability of this assessment and the
correctness of the diagnosis. Finally, all these steps will be
demonstrated in a case study in Section 6 were the feasibility
of the model will be tested. But first, in Section 2, the
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Figure 1. Functional diagram of an automated failure diagnosis model

motivation for this research and the research questions will
be discussed.

2. RESEARCH MOTIVATION

Companies, institutes and governments are starting to realise
the importance of maintenance more and more. This is
especially interesting for companies owning or working with
capital assets such as buildings, infrastructures, ships, trains,
airplanes and plants. Maintenance technologies are applied
for various reasons such as for lifetime extension and for
safety reasons.

This research will focus on the increase of availability and
reliability of the system. Maintenance has gone through a
development over the years which is qualitatively represented
in Figure 2. The availability of systems has been increased
due to new developed technologies, improved accuracies of
methods and a growth of awareness and acceptance of the
importance of maintenance.

Figure 2. The development of maintenance technologies (Lee
& Wang, 2008)

The fourth step, predictive maintenance, is striving for just-

in-time maintenance. At the moment, this is usually achieved
by either monitoring the status of a system and predicting its
status in the future, or by using historic sensor data to predict
the system’s status in the future based on trends or a physical
model. The use of sensors which monitor the parameters to
determine the system’s status require knowledge about the
failure mechanisms of the system and the parameters which
indicate the system’s status.

Another approach than physics based, is a data driven ap-
proach where decisions are made based on data analyses.
Since a lot of data are already available but remained unused
so far, this is an opportunity. This research will integrate data
from multiple sources (maintenance and usage data), also
known as data fusion. Data fusion achieves more accuracy,
consistency and useful information than that provided by the
individual sources. In other words, the whole is greater than
the sum of its parts. The usage data used for this research
are not measuring the system’s status but only the usage of
the airplane. Examples are speed and air temperature, so
no status indicators such as remaining profile of a tyre or a
pump’s flow rate.

It will be researched if a diagnosis can be conducted by AI
after a failure occurs. Usage data obtained from sensors and
maintenance data from repair cards will be used as an input
for the AI-model. This attempts to solve the current problems
of the incomplete and incorrect repair cards resulting in
incorrect maintenance activities and the limitations of data
analysis.

2.1. Research questions

The objective of this research is to automatically diagnose
failures with a data driven approach. This in order to improve
the efficiency of complaint handling and to improve the
quality of data (for further analysis). The main question of
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this research is:

Which data driven approach gives the best results for auto-
mated failure diagnosis using XAI?

The sub-questions that will lead to the answer of the main
question are:

• Which data are required and in which form should it
be presented to develop an automated failure diagnosis
model based on usage?

• How should the model be trained to obtain a failure
diagnosis model?

• Which methodologies are applicable for eXplainable
Artificial Intelligence (XAI)?

• How should the data be explained to substantiate the
provided failure diagnosis?

2.2. Research scope and approach

A literature study (Section 1) demonstrated that AI gets
bigger and becomes more important in today’s technologies.
Also in the maintenance industry, the application of AI
is growing but not a common practise yet. One of the
applications of AI is diagnosing in the medical sector. A lack
in these diagnoses is their explainability. As long as doctors
cannot explain to their patients why a model assesses a certain
diagnosis, the model will not be trusted. A similar issue can
be observed in the field of aviation maintenance, where this
research focusses on. Explainability will be added so that the
user’s trust on the diagnosis will increase by gaining more
knowledge about the diagnosis assessment.

In this research, different existing methods and technologies
which are possibly useful for the application of failure
diagnosis will be discussed. Not all the details are discussed
about the existing methods and techniques but the focus is
mainly on combining and applying them to failure diagnosis.
For the explainability, a new methodology is proposed which
explains why a new failure is assessed to a certain diagnosis.
This methodology is inspired by approaches proposed by
DARPA (Defense Advanced Research Projects Agency), the
agency of the United States Department of Defense (Gunning
& et al., 2016). Finally, in a case study, a specific model is
built to demonstrate that failures can be diagnosed with AI
and explained with the proposed XAI methodology. Below,
the scopes per section will be discussed:

• Data pre-processing theoretical guidelines will be given
which can be applied to various applications. One
example will be elaborated in the case study. All deci-
sions (e.g. which variables will be selected) are made
manually and technologies to automate this process are
out of the scope of this research.

• Machine learning model considerations are given about
the selection of features and which algorithms are suit-
able for this type of problem. Detailed information about

the algorithms and optimisation of the features is out of
the scope.

• Failure diagnosis state of the art approaches of XAI
suitable for failure diagnosis are discussed but are not
elaborated in detail.

3. DATA PRE-PROCESSING

Before the model can be trained, the data need to be pre-
processed so that it can be implemented in a ML (Machine
Learning) algorithm. This raises the question which data, in
which form and how much is required for proper training.
The model will be based on historic maintenance and usage
data which is sensor data from historic flights. In this
research, the maintenance data will be used to label the
failures. The usage data will be added to incorporate the
historic usage of a component in the assessment of the
diagnosis.

This section will discuss the algorithm prerequisites, the
required variables and types of data. The requirements will
differ per system and per component. This section provides
some guidelines. Later, in the case study, a specific example
will be elaborated on.

3.1. Algorithm prerequisites

There are no specific requirements for the dataset that is
applied to ML algorithms. Actually Hua et al. (2005) mention
that one should be wary of rules-of-thumb generalised from
specific cases. The optimum sample size will differ per
situation. But there are some general guidelines for the data:

• The optimal amount of features relative to the sample
size depends on the algorithm and the feature-output
distribution. Hua et al. (2005) show the relation between
the number of samples, number of features and the error
rate for various algorithms.

• The performance of an algorithm can be greatly influ-
enced by the number of features. Therefore the amount
of features used should be close to the optimal amount
(Hua et al., 2005).

• A balanced labelled dataset (each class has about the
same amount of samples) is preferable to avoid overfit-
ting on the class which contains more examples (Jain &
Chandrasekaran, 1982).

• All ML algorithms can only handle single values per
case. So when each row is a case, each case must have
the same amount of columns.

Since the guidelines are not directional, the data have to
be processed by reasoning in which format the data can be
implemented in the ML algorithms. Engineering judgement
is needed for the amount of features and data to be used.
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3.2. Variable selection procedure

This research uses two data sources, namely usage data
and maintenance data. The usage data comes from sensors
in the airplane and consist of continuous, numeric values.
This dataset contains information such as altitude, velocity,
acceleration and outside temperature. The maintenance
dataset consists mainly of text and categorised variables.
This dataset is filled by the maintenance crew and contains
information about the failure of a component. Besides the
selection of variables from both datasets, the data probably
will need cleaning. There are two types of errors in the
datasets, namely measurement faults (e.g. an altitude of -100
m) and incompleteness (e.g. when a maintenance notification
does not have a tail number (airplane identification number)
such that it cannot be linked to the usage data of an airplane).

Maintenance data entails information about the date of instal-
lation/removal of a part on a tail, preventive and corrective
maintenance and the reason of a notification. The data have
to be labelled before training. In order to limit the amount
of labels, the failures with similar failure descriptions (and
the same failure cause) will be grouped. E.g. ‘removal due
to being worn out’ and ‘component x is worn’ should be
in the same group. This grouping is also done because ML
algorithms always require multiple events per group in order
to train the model.

Variables are used to describe the usage. More variables can
result in a more accurate description, but not all variables
contain relevant information on the usage of the system. The
usage variables will be different for each system, in each
situation. In the case of a new system that has not been built
yet, there is more freedom of selecting variables than in the
case of an existing system. In general, to select the usage
variables, it should be checked whether there is a relation
between that variable and the loads on the system or the
performance of the system (Tinga, 2010).

Also the features, i.e. the specific parts or details retrieved
from a variable or signal, have to be determined. Is data
required from the entire flight or only from take-off and
landing or only during the flight? From all flights or only
from the last one or last 10? This need will depend on the
type of failure mechanism i.e. for corrosion, fatigue and wear
all flights are required but an overload can probably be seen in
(one of) the last flights. For the landing gear failures only the
take-off and landings are interesting but for structural failures
the entire flight (from take-off to landing) is needed.

3.3. Training and input data

A distinction is made between training data and input data.
When this model is trained, data can be entered in the
model and the model provides a diagnosis. Subsequently, the
maintenance crew validates the diagnosis. The input data are

now labelled and can be used to enrich (i.e. train) the model.

Since the usage data will be combined with the maintenance
data (repairs, removals etc.), usage data of a certain period
can be both training and input data. The usage data of the last
year for a specific tail will be used as input data, e.g. when a
failed component has been on a tail for one year. If another
component, on the same tail failed four months earlier, then
the usage data for the months before this failure can be used
for training the model for that specific component.

4. MACHINE LEARNING MODEL

After pre-processing the data, the data from the different
sources have to be combined and the model has to be trained
for failure diagnosis. This section will discuss the data
requirements for the ML algorithms and the procedure to
select the variables from both maintenance data and usage
data. Finally, the destinction between training data and input
data will be discussed.

4.1. Historical reconstruction

As can be seen in the functional diagram in Figure 1, the
maintenance and usage data will be combined to come to a
historical reconstruction where both sources are aligned to
one timeline as is shown in Figure 3.

Most air forces and airlines exchange components between
airplanes (tails), which is not common in every industry
(e.g. process industry). Making a historical timeline of a
component may show that a component has been installed
on different tails. The usage data, in this case, need to be
collected from different tails. Visualisation of the historical
timeline is very important. This will give the maintenance
crew a quick overview of the history of a component which
helps to judge the final diagnosis assessed by the model.
Figure 3 shows the air temperature and wing root bending
during landing to which the airplane was exposed during
the lifetime of a specific component. As can be seen, there
was a high wing root bending during one of the landings in
the beginning of the wheel’s life which probably indicates
a hard landing. When this component shows a relatively
quick degradation this might can be explained by this hard
landing, so it helps the maintenance crew to judge the model’s
diagnosis assessment.

4.2. Feature selection

Since all ML algorithms can only handle single values per
case, the usage of the component has to be expressed in
features. Features are individual measurable properties or
characteristics of a phenomenon being observed (Bishop,
2006). The features will be selected depending on the failure
mechanism and the ML algorithm. E.g. when the velocity
during take-off is one of the selected variables it is likely
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Figure 3. Reconstruction of a historical timeline for one component, installed on two different tails during a certain period of
its operational life

that the amount of data points is not equal for every landing
and the data can therefore not be implemented directly in a
ML algorithm. To get data strings of the same size, several
options are possible: choose the lowest amount of data points
and delete the superfluous points for the other take-offs;
select the largest amount of data points and extrapolate or
interpolate between data points for the other take-offs; or
determine characteristics such as average, standard deviation
and kurtosis for each take-off. Neural networks prefer to work
with the whole data string (extrapolation or interpolation) and
more simple algorithms require characteristics (features).

4.3. Algorithms

During the training process, the dataset contains supervised
(labelled) data, i.e. each notification is classified in a failure
diagnosis category. Diagnosing a new failure will be a
supervised multi-classification problem, for which there are
some suitable algorithms (Wang & Xue, 2014; Kotsiantis,
2007; Wu et al., 2008):

• Support Vector Machines (SVM), finds the best classi-
fication function which separates the training examples
of both classes. Originally it separates binary classes so
a multiclass problem will be decomposed in a series of
binary problems (one-versus-one or one-versus-rest).

• k-Nearest Neighbour (kNN), finds the k training exam-
ples that are closest to the test object.

• Naive Bayes, is a conditional probability model where
the probability of belonging to a class, given certain fea-
tures, is computed. The disadvantage is the assumption
that all features are conditionally independent given the
class labels.

• Random forest, contains n decision trees and classifies
by sorting an object based on feature values. Each node

in the tree represents a feature and each branch a (range
of) values that a feature can take.

• Neural networks, used for non-linear separable prob-
lems. They consist of input units, a hidden layer and
output units.

The above mentioned algorithms are all suitable for the
failure diagnosing model and will be compared after applying
them individually to the data from the case study. The algo-
rithm with the highest diagnosing accuracy will be selected.

5. FAILURE DIAGNOSIS

The failure diagnosing model (from Figure 1) is trained with
the selected algorithm and pre-processed data. When data
from a test example (or a new failure) is given to the model as
input, it comes up with a probable failure diagnosis. This
section will discuss how this diagnosis can be presented
to the maintenance crew and the possible ways to explain
the diagnosis to help the maintenance crew to verify the
reliability of the diagnosis. Finally, the correctness of the
model will be discussed.

5.1. Diagnosis

Visualisation is a strong method to transfer data from the
model to the user (here the maintenance crew). Therefore
the output of the model will be visualised. Commonly,
probabilities are shown as simple function plots, with either
probability versus data value or value versus cumulative
probability. The ubiquity of these representations make them
easy to read and interpret, even if the user is unfamiliar with
the subject (Potter et al., 2012). This is why the assessed
results are presented in a bar graph as shown in Figure 4.
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Figure 4. Example of a bar graph showing the outcome of the
failure diagnosis model

5.2. Explainability

ML algorithms are often quite reliable, but sometimes not
very explainable which results in a lack of trust as discussed
in Section 1. Trust can be based on deterrence, on knowledge
or on identification according to Lewicki & Bunker (1995).
This research will strive to achieve trust based on knowledge.
In order to give the maintenance crew this knowledge, it is
very important to make the diagnosis assessment explainable
to them.

5.2.1. XAI methodologies proposed by DARPA

DARPA, is currently researching the explainability of various
AI applications (Gunning & et al., 2016). Depending on the
chosen algorithm, some options are suggested which will be
discussed below. To refer these options to a failure diagnosis,
an example of a tyre failure of an airplane will be used. The
three possible diagnoses in this example are wear, impact
(overload) and other (for the remaining causes).

Local Interpretable Model-agnostic Explanations
(LIME) Ribeiro et al. (2016) state that ‘LIME is an algorithm
that can explain the assessments of any classifier or regressor
in a faithful way’. One of the examples in this paper is the
explanation of an image classification assessment as shown in
Figure 5. The top three classes predicted were electric guitar,
acoustic guitar and labrador. The model also shows which
part of the picture is used for each assessment. Although this
research is focussing on the explanation of image recognition,
it possibly can be applied to airplane component failure
diagnosis as well. The methodology should first be transfered
from pixels to text/numerical values. The image will be a new
failure and in the example of the tyre a possible top three of
predicted classes is low profile, high amount of landings/take-
offs and moderate or low landing/take-off velocities. This
can help the maintenance crew to validate the diagnosis of
wear. The model will not perform the diagnosis, only the
explainability. The classes are pre-defined but the importance

of each class can vary for each failure.

Figure 5. Application of explaining how an image is classi-
fied with LIME

Explanatory text In the paper of Hendricks et al. (2016)
explanatory text sentences are used to justify an assessment.
The research is also focussed on explaining deep visual
models. One example is a picture of a bird (Figure 6). The
model gives: ‘This is a yellow breasted chat because this is
a bird with a yellow breast and a grey head and back’. For
the tyre example the explanation could be, this tyre is worn
because it has lasted for over 200 landings/take-offs and now
has a profile below x mm.

Figure 6. Application of explaining how an image is classi-
fied with LIME

Bayesian teaching Bayesian teaching is the optimal selection
of examples for machine explanation. So examples of the
training data will be selected to explain the assessment of the
model. In Figure 7 (Gunning & et al., 2017) a picture of
a child is used as input for the model. The output, based
on image recognition, is that the face is angry because it
is similar to the images of kids with angry faces are given
and dissimilar to images of kids with sad and happy faces.
For the failed tyre, training notifications will be selected
with similar feature values. E.g. the tyre had an impact
because the amount of landings is (more or less) equal to the
ones from these failures (followed by showing these similar
notifications).

Neural networks Neural networks are used for classification
but if the decisions towards this classification can be made
visible it can also be used as an explanation for a diagnosis.
A neural network contains an input layer, one or more hidden
layers and an output layer. The hidden layers in between are
seen as a black box. In Figure 8 (Gunning & et al., 2017) a
neural network is shown which predicts the type of animal.
The training data contains images of all kinds of animals, the
input is an image of a dog. They explain that the first layer
neurons respond to simple shapes, the second layer neurons
to more complex structures (a tail, paws, head). This will
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Figure 7. Application of explaining how an image is classi-
fied with LIME

further increase until the nth layer were the neurons respond
to highly complex, abstract concepts. The output of the model
was 10% wolf and 90% dog. For the example of the tyre, the
simple shapes will probably be rough and clear separations
between data (tail numbers, number of landings/take-offs)
more complex layers will include values of velocity, variation
in velocity etc.

Figure 8. Application of explaining how an image is classi-
fied with LIME

Decision trees Decision trees are very powerful, but also
simple and efficient for extracting knowledge from data.
They are easy to interpret, understand and control by humans
(Ertel, 2009). In Figure 9 an example is given for the tyre
failure. The decision tree determines the nodes (number
of landings/take-offs, surface of landing strip) and the limit
values (15 and smooth/rough) by computing the information
gain. For each layer in the tree, the feature with the highest
information gain will become a node.

Figure 9. Simplified explanation of a tyre failure diagnosis by
a decision tree

5.2.2. Proposed XAI methodology: Failure Diagnosis
Explainability (FDE)

As discussed in Section 5.2.1, there are various methodolo-
gies to make a ML decision more explainable for the user (in
this case the maintenance crew). As these methodologies are
still in development and are only conceptual at the moment,
detailed information has not been available yet. Apart from
that, most of the previously mentioned XAI methodologies
are focussing on images. The data used for the failure
diagnosis model will consist of text and numerical values,
therefore an additional step has to be taken to make it possible
to apply the concepts which are focussing on images to a text
and numerical problem. Also, since DARPA’s methodologies
are very new and only applied to a specific example, there
is no information available yet about how to compare the
performances of these different methodologies. This lack of
information makes it, at the moment, not possible to apply
these methodologies to failure diagnosis and therefore a new
XAI methodology will be proposed here: Failure Diagnosis
Explainability (FDE). The newly proposed methodology is
based on the methods used for the different options suggested
by DARPA. A common method to describe on what grounds
the decision was based is with characteristics. In the example
of the guitar playing dog, parts of the image were highlighted
which were characteristic for a specific decision. For the
bird, the characteristics were described in text form and for
the example of the child, pictures with similar and dissimilar
characteristics were shown. The dog from the neural network
was explained by its characteristic shapes and finally in a
similar manner, the decision tree from Figure 9 explains tyre
failures based on usage characteristics.

The failures are described by different features (as discussed
in Section 4.2) which will be used to explain the failure
diagnosis assessed by the model. Since many features are
implemented in the model, one can wonder which ones
are most important: which features characterise a certain
diagnosis the most. E.g. a certain value for feature j
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is very typical for a worn tyre. The variable importance
of a model gives the (relative) importance of each variable
(feature) for a trained model. But since this model includes
various diagnoses (classes), the importance of each feature
per class is not determined: the variable importance shows
which feature is most important in deciding which class a
failure belongs to, which is not equal to the characterisation
of a certain class. To achieve this, new models will be trained
in which, in each model, one class is appointed as 1 and the
others as 0 (binary). E.g. class A is 1 and classes B and
C are 0. Still, this does not precisely determine the variable
importance per class, but it does yield the variable importance
of a specific class relative to the other classes. A top five of
most important features is determined per class (diagnosis)
which can be found in Figure 12 in the case study. Before
the model is trained, all values will be normalised using
feature scaling. Note, the variable importance can only be
determined for so called ‘white box’ algorithms as decision
tree, random forest and Naive Bayes.

Finally, this methodology will show the user how much
(and for which features) a new failure matches with each
diagnosis. The more the features match the expected values
of a specific diagnosis, the more likely it is that this failure
belongs to that class. Also, if the features are very dissimilar
to the values of a certain class, it is very unlikely that this
failure belongs to that specific class. So, the reasoning of this
methodology is similar to the one from Bayesian teaching
from Section 5.2.1. A failure is from class (diagnosis) A,
because the features have similar values as class A. Contrary,
this failure is not from classes (diagnosis) B and C, because
the features have dissimilar values as class B and C (Gunning
& et al., 2017).

The expectations for each feature are expressed by boxplots.
If the value of a new failure falls within the 50% range
(recognised by the box) of the boxplot, there is a good
match. If the value falls within the 95% range (recognised
by the whiskers of the plot), the values still matches but
less compared to the 50% range. In case the value falls
outside the 95% range, it is unlikely the failure belongs to
that class, based on a 95% confidence interval; 2 sigma limit.
The boxplots of the top five features of each class were
represented in one graph. The values of a new failure will be
added to the graph to give the maintenance crew an indication
of which features match with the expectations of a certain
diagnosis and which do not. A fit is made through these value
points. If this line is equal to the x-axis, the new failure
corresponds entirely with the expected values. An example
of such a plot can be found in Figures 13 and 14 in the case
study.

For a better visual presentation, the medians of all boxplots
were aligned with the same x-axis. Also, all values are, per
variable, multiplied with their scaled importance w(fj). This

means that a deviation on the most important variable will be
enlarged compared to a deviation on the fifth most important
variable. Equation 1 shows the computation of all absolute
explanation values Si,j (both for the boxplot and for a new
failure), where the fraction normalises the value fi,j with f
as the sensor data from feature j and failure i. Following the
median will be substracted and finally, multiplied with the
scaled importance.

Si,j =
( fi,j − min(fj)

max(fj)− min(fj)
− median(fj)

)
∗ w(fj) (1)

Apart from a visual representation with boxplots, the χ-factor
is introduced which is a measure to what extend the value of
a new failure (x) from feature j matches the expected values
of the same feature from a specific diagnosis. The χ-factor
is determined by the value from feature j of a new failure
divided by the variance of that feature j per specific diagnosis
as shown in Equation 2. The χ-factor is determined per
variable but also the maximum and average value from the top
five features per class are determined. If the χ-factor is equal
to 0, the new failure matches entirely with the expected value.
The higher the factor is, the less the new failure matches the
expectations of that specific diagnosis.

χxj
=

xj
variance(j)

(2)

This methodology will be shown and tested in Section 6.3.2
in the case study.

5.3. Correctness

The number of correctly classified examples is a performance
measure for the diagnosing model. To measure this, part of
the data is randomly separated before training and assigned
as the test data. The correctness will be expressed in the
accuracy of the algorithm, which means the percentage of
correctly classified failures. A common practice within ML
is to compare the achieved accuracy with a certain baseline.
One common baseline for classification problems is the ‘most
frequent’ which always classifies the most frequent label in
the data set. When the accuracy of a ML algorithm is below
this baseline, the algorithm will not be of any value.

If the training data would be used for performance measure-
ments, overfitting of the model cannot be noticed. After the
initial training, when the model is in use, it will continuously
enrich itself after every new example. The maintenance crew
validates the diagnosis before it is added to the training data,
hence the model will learn by updating itself. This process
is also called incremental learning (Ertel, 2009). Incremental
learning will improve the correctness of the model, unless
only failures from the same class are added to the training
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data. In which case the dataset can become very unbalanced
which has a negative influence for overfitting.

6. CASE STUDY

In this section, the model proposed in this thesis is applied
to a case study to test the feasibility. For the case study, data
from RNLAF (Royal Netherlands Air Force) F-16s (fighter
airplane) main wheels are used. The F-16 is equipped with a
nose landing gear and a main landing gear. The nose landing
gear consists of one nose wheel, the main landing gear of
two main wheels. The RNLAF has a total of 68 F-16s using
these main wheels. The tyres are removed for corrective
maintenance or in case of other maintenance e.g. the wheel
will be removed for when say a shock strut replacement is
conducted. After the replacement of the shock strut, the
original wheel will be reinstalled on the same tail. Common
failures include the tyre being worn out, a flat tyre and a
replacement due to contamination (mainly oil). There is no
preventive maintenance on the wheels. The RNLAF does not
retread their wheels, so a worn tyre will be directly disposed
of. Flat tyres will be repaired if possible and contaminated
tyres will be cleaned. After repair, the wheels will be
mounted on an arbitrary tail. Most likely a different one, but
occasionally it could be the same. Since the data from the
used case is not public, the steps in data processing will be
elaborated to provide more transparency.

6.1. Data pre-processing

The data has to be pre-processed before the model can be
trained. The maintenance and usage data are prepared
separately prior to being combined. For the pre-processing,
the steps described in Section 3 will be followed. The main
wheel is chosen for the case study since this component had
one of the most removals and has only a few failure modes
which are easy to understand.

6.1.1. Maintenance data

The maintenance data (repair cards) is obtained from the
Computerised Maintenance Management System (CMMS)
SAP (Systems, Applications and Products). A repair card
is filled in manually by the maintenance crew. The data is
extracted from SAPs database and is filtered by tail and by
number of notifications per SN (Serial Number). Failure
registrations without a specified tail are deleted since the
tail is needed to link a failure to the usage data. If there
is only one notification of a specific SN, the component
is still in use (only the installation is reported, while no
removal is reported). The installations do not mark a failure,
therefore only the removals are kept. For this case study it
is assumed that all removals are failures since cannibalisation
(i.e. removal of sound components to be used on another tail)
of wheels is not common for these F-16s. For the case study,

only one removal is eliminated due to these filters.

The data is labelled in three categories; ‘flat’, ‘worn’ and
‘other and unclassifiable’ (when the cause is unknown, dif-
ferent from the other two or the failure did not have enough
information to be labelled). A distinction between an elimina-
tion from the dataset and a label of ‘other and unclassifiable’
is made between the kind of information available. If a failure
cannot be linked to the usage, it will be eliminated but a
failure with a limited failure description will be labelled as
‘other and unclassifiable’. For labelling, several data fields
were checked for words as ‘worn’, ‘due’, ‘flat’, ‘deflating’
etc. This labelling is done automatically, but it is based
on words which are found manually by going through the
failure descriptions. Text mining may be an option to fully
automate this process. There is no contamination class since
these failures could not be traced from the repair cards or
were not present in the data set. The labelled notifications
(242) are combined with a dataset containing information
about the tail and installation and removal date of each unique
component. While combing the maintenance data with the
usage data, only 144 removals are kept due to missing usage
data (elaborated in Section 6.2). So the amount of data is big
(notifications and usage data together), but there are only a
few failure cases which can also be combined with usage data.
For data mining, 144 notifications is generally considered
as a relatively small number, but in industries such as the
aviation sector and in particular in the military sector, these
numbers are rather common. A better registration of failures
can easily lead to more notifications. Also, the class ‘other
and unclassifiable’ is now considerably high (82 of the 144
failures), this is mainly due to many failures which did not
have enough information to classify. Preferably, this class is
the smallest of the three, but this is a limitation of the data
from current practise.

6.1.2. Usage data

Sensor data from almost 7,000 flights are used. The data
are extracted via a spool file, as it is stored in a relational
database, requiring a considerable amount of computing
effort. The variables, which are appointed as related to the
loads on the wheels by engineering judgement, are: CAS
(Calibrated Air Speed), strain from several strain gauges,
weights, longitudinal and lateral accelerations, pitch and air
temperature. There are more variables available but these are
(for example) related to the engines or electronic components.
Also, the phase of the flight (take-off, flight, landing) is
assigned to each point. The variable selection is done by
logical reasoning. In case of doubt, the variable was selected.
This selection is done to avoid that the model will fit on
unrealistic relations and to gain more causality in the model.
E.g. the model could find a strong relation between maximum
altitude and flat tyres but it later turns out that there were
nails on the landing strip where flights with high altitude
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Figure 10. Example of data table which is used as input for a ML algorithm

were trained. These type of unrealistic correlations can be
prevented by the manual variable selection. The drawback
could be, however, that a real but unexpected correlation is
not revealed.

6.2. Machine Learning model

The ML algorithms require a dataset in which each row
is a notification and the columns are the different features.
After the data pre-processing, the maintenance and usage
will be combined to put the data in the right format. Every
notification should be combined with the usage related to this
notification. No usage data was available for 98 of the 242
failures, leaving 144 failures for training and testing. The
unavailability of the usage data can have various reasons e.g.
the recorder was full or the data are yet not added to the
database due to the mission location of the airplane.

A notification can only include single values and not a
(varying) range of data points. Therefore the variables of
the usage data were translated to characteristics (as discussed
in Section 4.2) with single values such as number of flights,
average speed etc. Figure 10 shows an example of the
input data after pre-processing and the feature selection. The
selected features are:

• number of flights
• average CAS during 1) take-off and 2) landing
• average and maximum strain gauge (called FS325) mea-

suring the wing root bending during 1) take-off and 2)
landing

• average and maximum strain gauge (FS374) measuring
the fuselage bending during 1) take-off and 2) landing

• average and maximum strain gauge (BL120) measuring
the wing tip bending during 1) take-off and 2) landing

• average lateral acceleration during 1) take-off and 2)
landing

• average longitudinal acceleration during 1) take-off and
2) landing

• average total weight during 1) take-off and 2) landing
• average air temperature during 1) take-off and 2) landing
• the amount of calendar days between failures (i.e. the

component age)

Table 1. Accuracies obtained from various ML algorithms

Algorithm Accuracy
Naive Bayes 62%

Neural network 43%
Support Vector Machine 69%

Random forest 81%

All these characteristics are calculated over the period of time
since the first installation of the considered component. Now
that the datasets are combined, a historical reconstruction can
be made. This example has already been shown in Figure 3.

Since the algorithms can only handle numerical and categor-
ical values, all text fields were deleted. These data were
already taken into account, since these fields were already
used for the labelling of the notifications. Several algorithms
(from Section 4.3) were applied to the training data. Table 1
shows the accuracies of the different algorithms. The first
algorithm, Naive Bayes, probably performs moderately since
this algorithm is simply too weak or too simple to detect the
patterns in this dataset. The neural network and SVM are
probably overfitting on the training set. Overfitting can be
seen when the accuracy on the test set is remarkably lower
than on the training set. Since random forest gave the highest
accuracy, this algorithm is used for the remaining steps.

6.3. Failure diagnosis

The model is now trained with the training set. After that, one
failure from the test set will be fed into the model to assess a
diagnosis for this failure. This single failure from the test set
simulates a new failure. The results (diagnosis) of two new
failures and how they should be interpreted (explained) are
discussed in this subsection.

6.3.1. Diagnosis

As discussed in Section 5.1 the assessed diagnosis is repre-
sented in a bar graph. Figure 11 shows the results for two
specific failures which are most likely a ‘worn’ tyre (case
A) and a ‘flat’ tyre (case B). This figure only shows the
probability of each diagnosis yet does not explain the user
why each diagnosis has a certain probability.
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Figure 11. Probability of each class plotted for two specific cases, A and B

Figure 12. Variable importance plot for the different features

6.3.2. Failure Diagnosis Explainability (FDE)

As discussed in Section 5.2.2, the variable importances per
class relative to the others had to be determined. The top
five of scaled importances per class are shown in Figure 12.
As can be seen, the weighted mean air temperature during
landing is the most important feature to determine whether
the tyre is ‘flat’ or not and the maximum fuselage bending
during landing is the fifth. These top five features are most
distinctive for the classification of the diagnosis (class) ‘flat’
versus the other two classes ‘other and unclassifiable’ and
‘worn’. A complete overview of all the abbreviations used
for the features can be found in Table 2.

Figure 13 and Figure 14 present the results of a ‘worn’ (case
A) and a ‘flat’ tyre (case B) (as shown in Figure 11). As
can be seen in Figure 13, the values of this new failure (case
A) fall within the 50% range for four of the five features for
the ‘flat’ diagnosis. The first variable is on the edge of the
95% interval. For the diagnosis ‘other and unclassifiable’,
only three values fall within the 50% range. Therefore it
is unlikely that the new failure belongs to the class ‘flat’ or
‘other and unclassifiable’. For the diagnosis of a ‘worn’ tyre,

Table 2. Features from top fives of important variables

Features Meaning
w m TEMP L weighted average air

temperature during landing
w m TEMP T weighted average air

temperature during take-off
w m LATACC L weighted average lateral

acceleration during landing
w m TOTWGT L weighted average total weight

during landing
w m TOTWGT T weighted average total

weight during take-off
max FS374 L maximum fuselage bending

during landing
days before failure number of days before failure

max FS325 T maximum wing root bending
weight during take-off

max FS325 L weighted average wing root
bending during landing

w m FS325 L weighted average wing root
bending during landing

w m CAS T weighted average calibrated
air speed during take-off

n flights number of flights before failure
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Figure 13. Boxplots explaining a specific case of a ‘worn’ tyre (case A)

Figure 14. Boxplots explaining a specific case of a ‘flat’ tyre (case B)

the new failure falls within all 50% ranges and two variables
even match the median (the third and the fourth variable).
So it is likely that this new failure is ‘worn’ because all
values correspond with the expectations. Even the fourth
variable (the weighted average wing root bending during
landing), which has a very tight range, matches. The χ-
factors per variable are presented in the bottom of the graph.
Both the maximum and the average χ-factor indicate case
A is from class ‘worn’ since the maximum and average are
lowest for ‘worn’. Concluding, case A is ‘worn’ because the
features have similar values as class ‘worn’. Contrary, this
failure is not ‘flat’ or ‘other and unclassifiable’ because the
features have dissimilar values as classes ‘flat’ and ‘other and
unclassifiable’.

In Figure 14, the values of case B entirely correspond with
the expectations of a ‘flat’ tyre failure. This makes it very

likely, the assessed class will be ‘flat’. On the contrary, the
new failure does not correspond with most of the variables
from the classes ‘other and unclassifiable’ and ‘worn’. The χ-
factor comes to the same conclusion since both the maximum
and average are lowest for ‘flat’.

In conclusion both, from case A and B, assessed diagnoses
(shown in Figure 11) can be explained with the proposed XAI
methodology FDE both with visual representation and with
the χ-factor.

6.3.3. Correctness

After training the model, it achieved an accuracy of 81%
on the test set which means that the notifications from the
test set were classified to the correct diagnosis (‘flat’,‘other
and unclassifiable’ or ‘worn’) in 81% of the cases. As
discussed in Section 5.3 this result will be compared to
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the ‘most frequent’ baseline, which is the percentage of
occurrence of the biggest class. In this case the class ‘other
and unclassifiable’ is the biggest class. Of the in total
42 cases from the test set, 28 are labelled as ‘other and
unclassifiable’. If the model would (without any knowledge
or training) assess every case as ‘other and unclassifiable’, it
has an accuracy of 67%. The model showed its value already
with the first test within this feasibility study, with a relative
improvement of 21% compared to the baseline. Figure 15
shows the confusion matrix of the test data. This matrix
gives an overview of the correctly and wrongly classified
failures and shows, for example, 24 of the 28 failures which
are from the class ’other and unclassifiable’ were diagnosed
by the correct class. The others are diagnosed with ‘worn’.
It is remarkable that most misclassifications are caused by
a ‘flat’ or ‘worn’ tyre which are predicted as ‘other and
unclassifiable’. This can be explained by the fact that the
class ‘other and unclassifiable’ most likely contain also many
failures which are actually from the classes ‘flat’ or ‘worn’
but were simply unclassifiable due to the lack of information
on the repair card.

Figure 15. Confusion matrix of the test set applied to the
model

7. DISCUSSION

Different methods and technologies have been discussed and
tested to come to the model proposed in this research. This
model is able to diagnose a failure and also to explain the
assessement of this diagnosis with XAI. A selection is made
of algorithms which were suitable for the type of data and
the type of problem (a classification). The algorithms are not
discussed in detail since they are commonly used algorithms
and the focus of this research was not on developing a new
algorithm. The algorithm with the highest accuracy was
selected. In case another algorithm was chosen, the model’s
diagnosing accuracy would have been considerably lower.
The accuracy of the model will never become 100% since the

model will not be able to predict when a tyre is punted by a
nail. The focus for this research was more on the addition of
XAI to the model. The conceptual methodologies for XAI
proposed by DARPA are currently not reproducible since
detailed information is not available yet. Even if they are
reproducible, a translation has to be made from images to text
and numerical values. Therefore a new XAI methodology
is proposed, called FDE. The selected ML algorithm was
from influence on the proposed XAI methodology, since the
variable importence can only be determined for, so called,
‘white box’ algorithms as decision tree, random forest and
Naive Bayes. So the selection of another algorithm could
have required another XAI methodology than FDE.

The combination of maintenance and usage data with (X)AI
showed its value. An accuracy improvement of 21% (to a
total of 81%) for classifying a diagnosis compared to the
baseline is achieved already with this feasibility study. Even
though the model was trained with only a small amount
of failures, which is very common in this industry. Also,
with FDE, the model was able to explain the assessed
diagnosis to the user. This transparency was given both
visually and numerically with the χ-factor. The usefulness
of automatically diagnosing a failed tyre based on usage
data can be questioned. After all, given that the tyre is
failed, the distinction between a flat and worn tyre is easy
to make. However, this case study served as a feasibility
study. The tyres were one of the components with most
data available and the failures were easy to understand which
made validation of the model possible. Applying this model
to components which are hard to diagnose (e.g. when the
component is physically hard to reach) can really improve
the efficiency of troubleshooting. With this research the
requirements for the data and for such an analysis have
become clear.

The current technology is already able to (based on trend
analysis and physical models) predict a component or sys-
tem failure quite accurate. However, after a component is
uninstalled from the system and tested on a test bench it
will receive a NFF (No Failure Found) so that no specific
maintenance can be applied. The proposed model from this
research is able to assess a diagnosis based on the compo-
nent’s historical usage. This can prevent overmaintenance on
the component which was about to fail.

The greater goal is to predict failures. To implement this to
the current model, the model also has to predict a time to
failure besides assessing (classifying) a diagnosis. So besides
a classification problem there is also a regression problem
(determining the time to failure). Regression problems
require different ML algorithms than classification problems.
Still this can be based on usage data. For predicting the
time to failure, features such as time since operating, time
to failure have to be added to the model. Cumulative features
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need to be implemented besides the average and maximum
values of the variables which were already used. Given
a certain history, the time to failure can be predicted per
diagnosis for a specific component. E.g. given the history
of a tyre (amount of landings above a certain speed and/or
temperature, total force (cumulative) etc.), the time to a flat
tyre and to a worn tyre will be predicted. The diagnosis with
the lowest time to failure will be most likely to happen first.

In the case study, the model was applied to a F-16 main wheel
but likely this model can be applied to other components
as well. As long as the systems are equipped with usage
monitoring sensors which are able to store the data and the
component failures are reported and stored in a database.
Since the model links the failures to the usage, there has to be
some relation between the failures and the usage, even though
this reason does not have to be known already. Therefore
the model might not be applicable to all components yet.
New sensors should be added to the system so that the
usage of those components can be recorded as well. Within
the RNLAF, it is likely that the model can, apart from the
application to the components of the F-16, be applied to
other weapon systems (other airplanes or helicopters) as well.
An important requirement for application is measuring and
storing of usage data. The Dutch air force is the only one
of which all F-16 are equipped with this usage sensing and
storing system. Therefore the model will, in its current status,
not be applicable to the F-16s of other air forces. Since
civil airplanes are more and more equipped with sensors
monitoring the systems usage, the application will not be
limited to the defence sector. Also it can be applied more
widely than in the aviation sector alone, e.g. maritime, rail,
energy generation and distribution and process industries.

8. CONCLUSION

A literature study showed that AI is getting bigger and
more and more involved in today’s technologies. The use
of AI can be a potential step in the development of the
maintenance sector to participate in this change. As a start,
this research focusses on diagnosing failures with AI based
on usage data. Besides, to provide knowledge and trust
to the user, the assessed diagnoses have to be transparent
and explainable. Therefore, XAI has been implemented in
the model. Following the answers on the sub-questions of
this research will be given. Finally the main question is
answered, which data driven approach gives the best results
for automated failure diagnosis?

Which data are required and in which form should it
be presented to develop an automated failure diagnosis
model based on usage?
This question is answered in Section 3. First of all, there
are no strict requirements for the amount of notifications
(number of failures) and amount of variables c.q. features.

But a high amount of notifications is preferred. Before the
maintenance and usage data must be combined, they have to
be cleaned and prepared so that the ML algorithm can handle
the data. ML algorithms require a dataset were each row is
a failure and each column a feature. The algorithms which
were proposed can only handle numerical and categorical
data so all important text fields should be in some way
converted to numerical or categorical values. The usage has
to be expressed in features since the ML algorithms can only
handle single values.

How should the model be trained to obtain a failure
diagnosis model?
As can be seen in Section 4 there are three important steps
in training the model. First, the maintenance and usage data
need to be combined. Therefore the usage data from a specific
tail from a specific period need to be linked to a certain
failure. Secondly, the feature selection is depended on the
failure mechanism and the ML algorithm (neural networks
can handle whole data strings while more simple networks
require only features). Finally, a ML algorithm needs to
be chosen based on the best performances (correctness).
There are various options available, also for this type of
data and type of problem. Guidance can be found in the
mentioned literature from Section 4 and a selection can
be based on comparing the performance (accuracy) of the
various algorithms.

Which methodologies are applicable for eXplainable Ar-
tificial Intelligence (XAI)?
DARPA is currently researching the explainability of various
AI applications. The options suggested to explain a failure
diagnosis are LIME, explanatory text, Bayesian teaching,
neural networks and decision trees. Since detailed infor-
mation about all these methodologies is not available (yet),
a new XAI methodology is proposed, Failure Diagnosis
Explainability. Apart from this sub-question’s objective,
there is no information available yet about how to compare
the performances of the different methodologies since untill
now they are only conceptual.

How should the data be explained to substantiate the
provided failure diagnosis?
By using the variable importance per class, a top five was
made of the variables which characterise a certain class the
most. The features of a new failure need to be compared
with the expectations per feature. Apart from a visual
representation of this comparison, the χ-factor is introduced
which is a measure to what extend the value of a new
failure matches the expected value from a specific diagnosis.
The lower the χ-factor, the more the feature matches the
expected value. The transparency in the diagnosis assessment
gives the user additional information about the history of the
component and helps the user to trust the assessed diagnosis.

Which data driven approach gives the best results for
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automated failure diagnosis using XAI?
For the selection of an AI algorithm, the pre-selected algo-
rithms have been applied to the case study. This resulted
in the highest assessment accuracy for random forest. For
the addition of XAI to the model, an overview is presented
with the applicable XAI methodologies. FDE is proposed
as a new XAI methodology next to the existing conceptual
methodologies. The proposed model showed its value with
an improves diagnosing accuracy of 21% (from 67% to 81%).
Aside from this achievement, the model was also able to
make the diagnosis assessment transparent and explainable
for the user, the maintenance crew. Since there is insufficient
information available abouth the other methodologies and
how to compare them, it can not be determined whether this
option is the best or not. But this feasibility study thereby
demonstrated that the application of AI to failure diagnosis
is possible and that XAI can support by gaining trust of the
users.

9. RECOMMENDATIONS

With the implementation of the case study, many difficulties
arose. Most of them concerned the preparation of the data
in such a way that the data could be implemented in the ML
algorithm. Since many of these difficulties will be common
for data-driven approaches in this industry, some general
recommendations can be drawn. First of all, when the data are
stored in a database, it does not mean they are also available
for the preferred analysis. In case it is not available it should
be made clear which steps need to be taken. The sensor
data from the case study were stored in a relational database.
Therefore it took significant effort to extract the data from the
database. Secondly, the maintenance and usage data have to
be combined. To do this, there must be a possibility to link
these datasets with each other (by tail, by date, by pilot, by
airport or anything else). Thirdly, the data should be prepared
for the algorithm (cleaning, labelling, inventing features etc.).
This process can take a lot of effort and logical reasoning by
selecting the features can add causality to the model. The way
the data is recorded and stored will partly have influence on
this effort. E.g. for cleaning and labelling a certain way of
recording and storing can help, but it does not have influence
on the effort to select the features.

For further research, the features can be changed, the data
can be more balanced (optimal is equal amount per class)
and more data can be used (also with incremental learning).
These changes may lead to improvement in the accuracy
(correctness) of the model. Other features which could be
taken into consideration are the number of exceedances of
certain values and the variance or distribution of the data. For
this research, a first set of features is used and optimisation of
the features was out of the scope of this research. By using
other labelling techniques, consulting more data sources or
ensuring the repair cards are filled in more completely and

more consistently the number of unclassifiable diagnoses
will decrease which makes the dataset more balanced. The
model is now tested on one component, a logical next step is
testing the model on other components as well. For example
more complex components with more failure mechanisms,
and components which are repaired multiple times during
their lifetime. For a prove of concept of the proposed XAI
methodology FDE hypothesis testing can be used were a
value from a certain variable from a new failure will be
tested versus the expected values of that variable for a specific
diagnosis. The expected values can be expressed in different
ways such as average, variance, standard deviation etc.
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ABSTRACT

An incorrect or incomplete repair card, typically used in
aviation maintenance for reporting failures, may result in
incorrect maintenance and make it very hard to analyse the
maintenance data. There are several reasons for this incom-
plete reporting. Firstly, (part of) the information is often
unknown at the moment the maintenance crew fills in the
card. Also, the findings on repair cards are generally filled in
as free-form text, making it difficult to automatically interpret
the findings. An automatically assessed failure description
will lead to more complete and consistent repair cards. This
will also improve the efficiency of troubleshooting since this
failure diagnosis can add information which would otherwise
not be at the disposal of the maintenance crew at that time.
This research utilises a data driven approach combining main-
tenance and usage data. The model will be based on Artificial
Intelligence (AI) such that it is no longer necessary to com-
pletely understand the physics of a (sub)system or compo-
nent. A newly proposed XAI (eXplainable AI) methodology,
Failure Diagnosis Explainability (FDE), will be added to
the model to provide transparency and interpretability of the
assessed diagnosis. The assessed diagnosis is explained by
checking whether a new failure matches the expected values
of a certain diagnosis (class). On the other hand, when
a failure is dissimilar to the expected values of a certain
diagnosis (class), it is unlikely to be the actual diagnosis.
The different steps towards this failure diagnosing model are
applied to a case study with a main wheel of the RNLAF

Sophie ten Zeldam et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

(Royal Netherlands Air Force) F-16. This feasibility study
already showed the value of this automated failure diagnosis
model with an achieved accuracy of 81% of classifying a
diagnosis . The proposed XAI methodology was able to
explain the diagnosis assessed by the failure diagnosis model.

1. INTRODUCTION

A repair card is used in aviation maintenance to report a
failure or anomaly and register it in the maintenance man-
agement system. An incorrect or incomplete repair card
may result in incorrect maintenance and make it very hard
to analyse the maintenance data. An example from practise is
a helicopter Main Gear Box (MGB) removal due to a leakage
found during a 500 hours inspection. The maintenance crew
described the complaint as ‘defect, 500 hrs’. The component
shop carried out an overhaul when a small repair could
also have solved the problem. The overhaul, however, was
unforeseen and there was no spare MGB available which
resulted in a grounded helicopter. So the consequences of this
incomplete repair card were additional maintenance costs and
a decrease in availability.

This example is not unique in the aviation sector, it is rather
common and there are several reasons behind this. Firstly,
(part of) the information is often unknown at the moment the
maintenance crew fills in the repair card. Also, the findings
on repair cards are generally filled in as free-form text. As
a result, repair cards may contain incorrect information and
can be incomplete. A consequence of the incorrect and
incomplete repair cards is that they are not practical for data
analysis because it is difficult to automatically interpret the
findings.

Therefore a model will be generated which can automati-
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Figure 1. Functional diagram of an automated failure diagnosis model

cally assess a failure diagnosis based on usage data. An
automatically assessed failure description will lead to more
complete and consistent repair cards. This will improve the
efficiency of troubleshooting since this failure diagnosis can
add information which would otherwise not be at the disposal
of the maintenance crew at that time. Conventional ways to
link failures to the usage are physical models, but this re-
search utilises a data driven approach combining maintenance
and usage data, and Artificial Intelligence (AI) into a failure
diagnosing model. AI is capable of recognising more patterns
and relations than humans can. With this model, it is no
longer necessary to completely understand the physics of a
(sub)system or component. This data driven approach makes
it difficult to establish causal relations between features. To
convince the users of the model, a plausible explanation is
needed to understand the cause of the failure. XAI (eX-
plainable AI) techniques will be implemented in the model
to provide transparency and interpretability of the resulting
diagnosis.

Figure 1 proposes the steps to achieve an automatic failure
diagnosis based on usage data (sensor information from the
flights) with XAI. This methodology is newly proposed in
this research and will be discussed in the remainder of this
paper. Section 2 describes which data have to be collected
and in which form, to develop an automated failure diag-
nosing model (blocks 1,2). In Section 3, the training of the
model is described (blocks 3,4,5). A historical reconstruction
will be made and features and algorithms will be selected.
The failure diagnosis will be discussed in Section 4 (blocks
6,7,8). The diagnosis will consist of an assessment of the
possible causes, the explainability of this assessment and the
correctness of the diagnosis. Finally, all these steps will be
demonstrated in a case study in Section 5 were the feasibility
of the model will be tested.

2. DATA PRE-PROCESSING

Before the model can be trained, the data need to be pre-
processed so that it can be implemented in a ML (Machine
Learning) algorithm. This raises the question which data, in
which form and how much is required for proper training.
The model will be based on historic maintenance and usage
data which is sensor data from historic flights. In this re-
search, the maintenance data will be used to label the failures.
The usage data will be added to incorporate the historic usage
of a component in the assessment of the diagnosis.

This section will discuss the algorithm prerequisites, the
required variables and types of data. The requirements will
differ per system and per component. This section provides
some guidelines. Later, in the case study, a specific example
will be elaborated on.

2.1. Algorithm prerequisites

There are no specific requirements for the dataset that is
applied to ML algorithms. Actually Hua et al. (2005) mention
that one should be wary of rules-of-thumb generalised from
specific cases. The optimum sample size will differ per
situation. But there are some general guidelines for the data:

• The optimal amount of features relative to the sample
size depends on the algorithm and the feature-output
distribution. Hua et al. (2005) show the relation between
the number of samples, number of features and the error
rate for various algorithms.

• The performance of an algorithm can be greatly influ-
enced by the number of features. Therefore the amount
of features used should be close to the optimal amount
(Hua et al., 2005).

• A balanced labelled dataset (each class has about the
same amount of samples) is preferable to avoid overfit-
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ting on the class which contains more examples (Jain &
Chandrasekaran, 1982).

Since the guidelines are not directional, the data have to
be processed by reasoning in which format the data can be
implemented in the ML algorithms. Engineering judgement
is needed for the amount of features and data to be used.

2.2. Variable selection procedure

This research uses two data sources, namely usage data and
maintenance data. The usage data comes from sensors in
the airplane and consist of continuous, numeric values. This
dataset contains information such as altitude, velocity, accel-
eration and outside temperature. The maintenance dataset
consists mainly of text and categorised variables. This dataset
is filled by the maintenance crew and contains information
about the failure of a component. Besides the selection of
variables from both datasets, the data probably will need
cleaning. There are two types of errors in the datasets,
namely measurement faults (e.g. an altitude of -100 m) and
incompleteness (e.g. when a maintenance notification does
not have a tail number (identification number) such that it
cannot be linked to the usage data of an airplane).

Maintenance data entails information about the date of instal-
lation/removal of a part on a tail, preventive and corrective
maintenance and the reason of a notification. The data have
to be labelled before training. In order to limit the amount
of labels, the failures with similar failure descriptions (and
the same failure cause) will be grouped. E.g. ‘removal due
to being worn out’ and ‘component x is worn’ should be
in the same group. This grouping is also done because ML
algorithms always require multiple events per group in order
to train the model.

Variables are used to describe the usage. More variables can
result in a more accurate description, but not all variables
contain relevant information on the usage of the system. The
usage variables will be different for each system, in each
situation. In the case of a new system that has not been built
yet, there is more freedom of selecting variables than in the
case of an existing system. In general, to select the usage
variables, it should be checked whether there is a relation
between that variable and the loads on the system or the
performance of the system (Tinga, 2010).

Also the features, i.e. the specific parts or details retrieved
from a variable or signal, have to be determined. Is data
required from the entire flight or only from take-off and
landing or only during the flight? From all flights or only
from the last one or last 10? This need will depend on the
type of failure mechanism i.e. for corrosion, fatigue and wear
all flights are required but an overload can probably be seen in
(one of) the last flights. For the landing gear failures only the
take-off and landings are interesting but for structural failures
the entire flight (from take-off to landing) is needed.

2.3. Training and input data

A distinction is made between training data and input data.
When this model is trained, data can be entered in the model
and the model provides a diagnosis. Subsequently, the main-
tenance crew validates the diagnosis. The input data are now
labelled and can be used to enrich (i.e. train) the model.

Since the usage data will be combined with the maintenance
data (repairs, removals etc.), usage data of a certain period
can be both training and input data. The usage data of the last
year for a specific tail will be used as input data, e.g. when a
failed component has been on a tail for one year. If another
component, on the same tail failed four months earlier, then
the usage data for the months before this failure can be used
for training the model for that specific component.

3. MACHINE LEARNING MODEL

After pre-processing the data, the data from the different
sources have to be combined and the model has to be trained
for failure diagnosis. This section will discuss the data
requirements for the ML algorithms and the procedure to
select the variables from both maintenance data and usage
data. Finally, the destinction between training data and input
data will be discussed.

Figure 2. Reconstruction of a historical timeline for one
component, installed on two different tails during a certain
period of its operational life

3.1. Historical reconstruction

As can be seen in the functional diagram in Figure 1, the
maintenance and usage data will be combined to come to a
historical reconstruction where both sources are aligned to
one timeline as is shown in Figure 2.

Most air forces and airlines exchange components between
airplanes (tails), which is not common in every industry
(e.g. process industry). Making a historical timeline of a
component may show that a component has been installed
on different tails. The usage data, in this case, need to be
collected from different tails. Visualisation of the historical
timeline is very important. This will give the maintenance
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crew a quick overview of the history of a component which
helps to judge the final diagnosis assessed by the model.
Figure 2 shows the air temperature and wing root bending
during landing to which the airplane was exposed during the
lifetime of a specific component. As can be seen, there was
a high wing root bending during one of the landings in the
beginning of the wheel’s life which probably indicates a hard
landing.

3.2. Feature selection

All ML algorithms can only handle single values per case,
therefore the usage of the component has to be expressed
in features. Features are individual measurable properties
or characteristics of a phenomenon being observed (Bishop,
2006). The features will be selected depending on the failure
mechanism and the ML algorithm. E.g. when the velocity
during take-off is one of the selected variables it is likely
that the amount of data points is not equal for every landing
and the data can therefore not be implemented directly in
a ML algorithm. To get data strings of the same size,
several options are possible: choose the lowest amount of
data points and delete the superfluous points for the other
take-offs; select the largest amount of data points and extra-
or interpolate between data points for the other take-offs; or
determine characteristics such as average, standard deviation
and kurtosis for each take-off. Neural networks prefer to work
with the whole data string (extra- or interpolation), but more
simple algorithms can utilise characteristics.

3.3. Algorithms

During the training process, the dataset contains supervised
(labelled) data, i.e. each notification is classified in a failure
diagnosis category. Diagnosing a new failure will be a
supervised multi-classification problem, for which there are
some suitable algorithms (Wang & Xue, 2014; Kotsiantis,
2007; Wu et al., 2008):

• Support Vector Machines (SVM)

• k-Nearest Neighbour (kNN)

• Naive Bayes

• Random forest

• Neural networks

The above mentioned algorithms are all suitable for the
failure diagnosing model and will be compared after applying
them individually to the data from the case study.

4. FAILURE DIAGNOSIS

The failure diagnosing model (from Figure 1) is trained with
the chosen algorithm and pre-processed data. When a test
example (or a new failure) is given to the model as input, it
comes up with a probable failure diagnosis. This section will

discuss how this diagnosis can be presented to the mainte-
nance crew and the possible ways to explain the diagnosis
to help the maintenance crew to verify the reliability of the
diagnosis. Finally, the correctness of the model will be
discussed.

4.1. Diagnosis

Visualisation is a strong method to transfer data from the
model to the user (here the maintenance crew). Therefore the
output of the model will be visualised. Commonly, probabili-
ties are shown as simple function plots, with either probability
versus data value or value versus cumulative probability. The
ubiquity of these representations make them easy to read and
interpret, even if the user is unfamiliar with the subject (Potter
et al., 2012). This is why the assessment results will be
presented in a bar graph as shown in Figure 3.

Figure 3. Example of a bar graph showing the outcome of the
failure diagnosis model

4.2. Explainability

ML algorithms are often quite reliable, but sometimes not
very explainable. An example is cancer diagnosis. Some
algorithms are able to predict whether the patient has cancer
or not, more accurately than doctors. But as long as humans
do not understand how this algorithms made the assessment,
it will not be used in practise since they do not trust them
(Holzinger et al., 2017). Trust can be based on deterrence,
on knowledge or on identification according to Lewicki &
Bunker (1995). This research will strive to achieve trust
based on knowledge. In order to give the maintenance crew
this knowledge, it is very important to make the diagnosis
assessment explainable.

4.2.1. XAI methodologies proposed by DARPA

DARPA (Defense Advanced Research Projects Agency), the
agency of the United States Department of Defense (Gunning
& et al., 2016), is currently researching the explainability of
various AI applications (Gunning & et al., 2016). Depending
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on the chosen algorithm, some options are suggested which
will be discussed below. To refer these options to a failure
diagnosis, an example of a tyre failure of an airplane will be
used. The three possible diagnoses in this example are wear,
impact (overload) and other (for the remaining causes).

Local Interpretable Model-agnostic Explanations (LIME)
Ribeiro et al. (2016) state that ‘LIME is an algorithm that
can explain the assessments of any classifier or regressor in
a faithful way’. One of the examples in this paper is the
explanation of an image classification assessment. The image
is a person, with the head of a dog, playing an acoustic
guitar. The top three classes predicted were electric guitar,
acoustic guitar and labrador. The model also shows which
part of the picture is used for each assessment. Although this
research is focussing on the explanation of image recognition,
it can be applied to airplane component failure diagnosis
as well. The original image will be a new failure and in
the example of the tyre a possible top three of predicted
classes is low profile, high amount of landings/take-offs and
moderate or low landing/take-off velocities. This can help
the maintenance crew to validate the diagnosis of wear. The
model will not perform the diagnosis, only the explainability.
The classes are pre-defined but the importance of each class
can vary for each failure.

Explanatory text In the paper of Hendricks et al. (2016)
explanatory text sentences are used to justify an assessment.
The research is also focussed on explaining deep visual
models. One example is a picture of a bird. The model
gives: ‘This is a yellow breasted chat because this is a bird
with a yellow breast and a grey head and back’. For the tyre
example the explanation could be, this tyre is worn because
it has lasted for over 200 landings/take-offs and now has a
profile below x mm.

Bayesian teaching Bayesian teaching is the optimal selection
of examples for machine explanation. So examples of the
training data will be selected to explain the assessment of
the model. In Gunning & et al. (2017) a picture of a child
is used as input for the model. The output is that the face
is angry because it is similar to certain examples (examples
of kids with angry faces are given) and dissimilar to other
examples (examples of kids with sad and happy faces are
given). For the failed tyre, training notifications will be
selected with similar feature values. E.g. the tyre had an
impact because the amount of landings is (more or less) equal
to the ones from these failures (followed by showing these
similar notifications).

Neural networks Neural networks are used for classification
but if the decisions towards this classification can be made
visible it can also be used as an explanation for a diagnosis.
A neural network contains an input layer, one or more hidden
layers and an output layer. The input layer is fed with
training data and the unlabelled input and the output gives

the assessment. But the hidden layers in between are seen as
a black box. In Gunning & et al. (2017) a neural network is
shown which predicts the type of animal. The training data
contains images of all kinds of animals, the input is an image
of a dog. They explain that the first layer neurons respond
to simple shapes, the second layer neurons to more complex
structures (a tail, paws, head). This will further increase until
the nth layer were the neurons respond to highly complex,
abstract concepts. The output of the model was 10% wolf and
90% dog. For the example of the tyre, the simple shapes will
probably be rough and clear separations between data (tail
numbers, number of landings/take-offs) more complex layers
will include values of velocity, variation in velocity etc.

Decision trees Decision trees are very powerful, but also
simple and efficient for extracting knowledge from data.
They are easy to interpret, understand and control by humans
(Ertel, 2009). In Figure 4 an example is given for the tyre
failure. The decision tree determines the nodes (number
of landings/take-offs, surface of landing strip) and the limit
values (15 and smooth/rough) by computing the information
gain. For each layer in the tree, the feature with the highest
information gain will become a node.

Figure 4. Simplified explanation of a tyre failure diagnosis by
a decision tree

4.2.2. Proposed XAI methodology: Failure Diagnosis Ex-
plainability (FDE)

As discussed in Section 4.2.1, there are various methodolo-
gies to make a ML decision more explainable for the user
(in this case the maintenance crew). As these methodologies
are still in development and no detailed information has been
available yet, a new XAI methodology will be proposed here:
Failure Diagnosis Explainability (FDE). This methodology is
based on the methods used for the different options suggested
by DARPA. A common method to describe on what grounds
the decision was based is with characteristics. In the example
of the guitar playing dog, parts of the image were highlighted
which were characteristic for a specific decision. For the

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

bird, the characteristics were described in text form and for
the example of the child, pictures with similar and dissimilar
characteristics were shown. The dog from the neural network
was explained by its characteristic shapes and finally in a
similar manner, the decision tree from Figure 4 explains tyre
failures based on usage characteristics.

The failures are described by different features (as discussed
in Section 3.2) so these will be used to explain the failure
diagnosis assessed by the model. Since many features are
implemented in the model, one can wonder which ones are
most important: which features characterise a certain diagno-
sis the most. E.g. a certain value for feature f is very typical
for a worn tyre. The variable importance of a model gives the
(relative) importance of each variable (feature) for a trained
model. But since this model includes various diagnoses
(classes), the importance of each feature per class is not
determined: the variable importance shows which feature is
most important in deciding which class a failure belongs to,
which is not equal to the characterisation of a certain class.
To achieve this, new models will be trained in which, in each
model, one class is appointed as 1 and the others as 0 (binary).
E.g. class A is 1 and classes B and C are 0. Still, this does not
precisely determine the variable importance per class, but it
does yield the variable importance of a specific class relative
to the other classes. A top five of most important features is
determined per class (diagnosis) which can be found in Figure
6 in the case study. Before the model is trained, all values
will be normalised using feature scaling. Note, the variable
importance can only be determined for so called white box
models as decision tree, random forest and Naive Bayes.

Finally, this methodology will show the user how much (and
on which points) a new failure match with each diagnosis.
The more the features matches the expected values of a spe-
cific diagnosis, the more likely it is that this failure belongs
to that class. Also, if the features are very dissimilar to
the values of a certain class, it is very unlikely that this
failure belongs to that specific class. So, the reasoning of this
methodology is similar to the Bayesian teaching methodology
from Section 4.2.1. A failure is from class (diagnosis) A,
because the features have similar values as class A. Contrary,
this failure is not from classes (diagnosis) B and C, because
the features have dissimilar values as class B and C (Gunning
& et al., 2017).

The expectations for each feature are expressed by boxplots.
If the value of a new failure falls within the 50% range (recog-
nised by the box) of the boxplot, there is a good match. If the
value falls within the 95% range (recognised by the whiskers
of the plot), the values still matches but less compared to the
50% range. In case the value falls outside the 95% range, it
is unlikely the failure belongs to that class, based on a 95%
confidence interval; 2 sigma limit. The boxplots of the top
five features of each class were represented in one graph. The

values of a new failure will be added to the graph to give
the maintenance crew an indication of which variables match
with the expectations of a certain diagnosis and which do not.
A fit is made through these value points. If this line is equal
to the x-axis, the new failure corresponds completely with the
expected values. An example of such a plot can be found in
Figures 7 and 8 in the case study.

For a better visual presentation, the medians of all boxplots
were aligned with the same x-axis. Also, all values are, per
variable, multiplied with their scaled importance w(fj). This
means that a deviation on the most important variable will be
enlarged compared to a deviation of the fifth most important
variable. Equation 1 shows the computation of all absolute
explanation values Si,j (both for the boxplot and for a new
failure), where the fraction normalises the value fi,j where
f is the sensor data from feature j and failure i. Following
the median will be substracted and finally, multiplied with
the scaled importance. This methodology will be shown and
tested in the case study in Section 5.3.2.

Si,j =
( fi,j − min(fj)

max(fj)− min(fj)
− median(fj)

)
∗ w(fj) (1)

4.3. Correctness

The number of correctly classified examples is a performance
measure for the diagnosing model. To measure this, part of
the data is randomly separated before training and assigned
as the test data. If the training data would be used for per-
formance measurements, overfitting of the model cannot be
noticed. After the initial training, when the model is in use, it
will continuously enrich itself after every new example. The
maintenance crew validates the diagnosis before it is added
to the training data, hence the model will learn by updating
itself. This process is also called incremental learning (Ertel,
2009). Incremental learning will improve the correctness of
the model, unless only failures from the same class are added
to the training data. In which case the dataset can become
very unbalanced.

The correctness will be expressed in the accuracy of the
algorithm, which means the percentage of correctly classified
failures. A common practice within ML is to compare the
achieved accuracy with a certain baseline. One common
baseline for classification problems is the ‘most frequent’
which always classifies the most frequent label in the data set.
When the accuracy of a ML algorithm is below this baseline,
the algorithm will not be of any value.

5. CASE STUDY

In this section, the techniques proposed in this paper are ap-
plied to a case study to test the feasibility of these techniques.
For the case study, the data from RNLAF (Royal Netherlands
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Air Force) F-16s (fighter airplane) main wheels are used. The
F-16 is equipped with a nose landing gear and a main landing
gear. The nose landing gear consists of one nose wheel,
the main landing gear of two main wheels. The RNLAF
has a total of 68 F-16s using these main wheels. The tyres
are removed for corrective maintenance or in case of other
maintenance e.g. the wheel will be removed for when say a
shock strut replacement is conducted. After the replacement
of the shock strut, the original wheel will be installed again
on the same tail. Common failures include the tyre being
worn out, a flat tyre and a replacement due to contamination
(mainly oil). There is no preventive maintenance on the
wheels. The RNLAF does not retread their wheels, so a worn
tyre will be directly disposed of. Flat tyres will be repaired if
possible and contaminated tyres will be cleaned. After repair,
the wheels will be mounted on an arbitrary tail. Most likely
a different one, but occasionally it could be the same. Since
the data from the used case is not public, the steps in data
processing will be elaborated to provide more transparency.

5.1. Data pre-processing

The data has to be pre-processed before the model can be
trained. The maintenance and usage data are prepared
separately prior to being combined. For the pre-processing,
the steps described in Section 2 will be followed. The main
wheel is chosen for the case study since this component had
one of the most removals and has few failure modes which
are easy to understand.

5.1.1. Maintenance data

The maintenance data is obtained from the Computerised
Maintenance Management System (CMMS) SAP (Systems,
Applications and Products). A repair card is filled in man-
ually by the maintenance crew. The data is extracted from
SAPs database and compiled to a CSV (Comma Separated
Values) file. Thereafter the data is filtered by tail and by
number of notifications per SN (Serial Number). Failure
registrations without a specified tail are deleted since the
tail is needed to link a failure to the usage data. If there
is only one notification of a specific SN, the component
is still in use (only the installation is reported, while no
removal is reported). The installations do not mark a failure,
therefore only the removals are kept. For this case study it
is assumed that all removals are failures since cannibalisation
(i.e. removal of sound components to be used on another tail)
of wheels is not common for these F-16s. Also, for the case
study, only one removal is eliminated due to these filters.

The data is labelled in three categories; ‘flat’, ‘worn’ and
‘other and unclassifiable’ (when the cause is unknown, dif-
ferent from the other two or the failure did not have enough
information to be labelled). For labelling, several data fields
were checked for words as ‘worn’, ‘due’, ‘flat’, ‘deflating’

etc. This labelling is done automatically, but it is based on
words which are found manually by going through the failure
descriptions. Text mining may be an option to fully automate
this process. There is no contamination class since these
failures could not be traced from the repair cards or were not
present in the data set. The labelled notifications (242) are
combined with a dataset containing information about the tail
and installation and removal date of each unique component.
While combing the maintenance data with the usage data,
only 144 removals are kept (elaborated in Section 5.2). So the
amount of data is big (notifications and usage data together),
but there are only a few failure cases which can also be
combined with usage data. For data mining, 144 notifications
is generally considered as a relatively small number, but in
industries such as the aviation sector and in particular in the
military sector, these numbers are rather common. A better
registration of failures can easily lead to more notifications.
Also, the class ‘other and unclassifiable’ is now considerably
high (82 of the 144 failures), this is mainly due to many
failures which did not have enough information to classify
the notification. Preferably, this class is the smallest of the
three, but this is a limitation of the data from current practise.

5.1.2. Usage data

Sensor data from almost 7,000 flights are used. The data
is extracted via a spool file, as it is a relational database,
requiring a considerable amount of computing effort. The
variables, which are appointed as related to the loads on the
wheels, are: CAS (Calibrated Air Speed), strain from several
strain gauges, weights, longitudinal and lateral accelerations,
pitch and air temperature. There are more variables available
but these are (for example) related to the engines or electronic
components. Also, the phase of the flight (take-off, flight,
landing) is assigned to each point. The variable selection is
done by logical reasoning. In case of doubt, the variable was
selected. This selection is done to avoid that the model will
fit on unrealistic relations and to gain more causality in the
model. E.g. the model could find a strong relation between
maximum altitude and flat tyres but it later turns out that there
were nails on the landing strip where flights with high altitude
were trained. These type of unrealistic correlations can be
prevented by the manual variable selection. The drawback
could be, however, that a real but unexpected correlation is
not revealed.

5.2. Machine Learning model

The ML algorithms require a dataset in which each row
is a notification and the columns are the different features.
After the data pre-processing, the maintenance and usage
will be combined to put the data in the right format. Every
notification should be combined with the usage related to this
notification. No usage data was available for 98 of the 242
failures, leaving 144 failures for training and testing. The
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Figure 5. Probability of each class plotted for two specific cases, A and B

unavailability of the usage data can have various reasons e.g.
the recorder was already full or the data are not added to the
database due to the mission location of the airplane.

A notification can only include single values and not a (vary-
ing) range of data points. Therefore the variables of the usage
data were translated to characteristics (as discussed in Section
3.2) with single values such as number of flights, average
speed etc. The selected features are:

• number of flights
• average CAS during 1) take-off and 2) landing
• average and maximum strain gauge (called FS325) mea-

suring the wing root bending during 1) take-off and 2)
landing

• average and maximum strain gauge (FS374) measuring
the fuselage bending during 1) take-off and 2) landing

• average and maximum strain gauge (BL120) measuring
the wing tip bending during 1) take-off and 2) landing

• average lateral acceleration during 1) take-off and 2)
landing

• average longitudinal acceleration during 1) take-off and
2) landing

• average total weight during 1) take-off and 2) landing
• average air temperature during 1) take-off and 2) landing
• the amount of calendar days between failures (i.e. the

component age)

All these characteristics are calculated over the period of time
since the first installation of the considered component. Now
that the datasets are combined, a historical reconstruction can
be made. This example has already been shown in Figure 2.

Since the algorithms can only handle numerical and categor-
ical values, all text fields were deleted. Since these fields

Table 1. Accuracies obtained from various ML algorithms

Algorithm Accuracy
Naive Bayes 62%

Neural network 43%
Support Vector Machine 69%

Random forest 81%

were already used for the labelling of the notifications, these
data were already taken into account. Several algorithms
(from Section 3.3) were applied to the training data. Table 1
shows the accuracies of the different algorithms. The first
algorithm, Naive Bayes, probably performs moderately since
this algorithm is simply too weak or too simple to detect the
patterns of this data set. The neural network and SVM are
probably overfitting on the training set. Overfitting can be
seen when the accuracy on the test set is remarkably lower
than on the training set. Since random forest gave the highest
accuracy, this algorithm is used for the remaining steps.

5.3. Failure diagnosis

The model is now trained with the training set. After that, one
failure from the test set will be fed into the model to assess a
diagnosis for this failure. This single failure from the test set
simulates a new failure. The results (diagnosis) of two new
failures and how they should be interpreted (explained) are
discussed in this subsection.

5.3.1. Diagnosis

As discussed in Section 4.1 the assessed diagnosis is repre-
sented in a bar graph. Figure 5 shows the results for two
specific failures which are most likely a ‘worn’ tyre (case
A) and a ‘flat’ tyre (case B). This figure only shows the
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Figure 6. Variable importance plot for the different features

probability of each diagnosis yet does not explain the user
why each diagnosis has a certain probability.

5.3.2. Failure Diagnosis Explainability (FDE)

As discussed in Section 4.2.2, the variable importances per
class relative to the others had to be determined. The top
five of scaled importances per class are shown in Figure 6.
As can be seen, the weighted mean air temperature during
landing is the most important feature to determine whether
the tyre is ‘flat’ or not and the maximum fuselage bending
during landing is the fifth.

Figure 7 and Figure 8 present the results of a ‘worn’ (case
A) and a ‘flat’ tyre (case B) (as shown in Figure 5). As can
be seen in Figure 7, the values of this new failure (case A)
fall within the 50% range for four of the five variables for the
‘flat’ diagnosis. The first variable is on the edge of the 95%
interval. For the diagnosis ‘other defect’, three values fall
within the 50% range. Therefore it is unlikely that the new
failure belongs to the class ‘flat’ or ‘other and unclassifiable’.
For the diagnosis of a ‘worn’ tyre, the new failure falls within
all 50% ranges and two variables even match the median
(the third and the fourth variable). So it is likely that this
new failure is ‘worn’ because all values correspond with the
expectations. Even the fourth variable (the weighted average
wing root bending during landing), which has a very tight
range, matches.

In Figure 8, the values of case B completely correspond with
the expectations of a ‘flat’ tyre failure. This makes it very
likely, the assessed class will be ‘flat’. On the contrary, the
new failure does not correspond with most of the variables
from the classes ‘other and unclassifiable’ and ‘worn’.

in conclusion both, from case A and B, assessed diagnoses
(shown in Figure 5) can be explained with the proposed XAI
methodology FDE.

5.3.3. Correctness

After training the model, it achieved an accuracy of 81% on
the test set which means that the notifications from the test
set were classified to the correct diagnosis (‘flat’,‘other and
unclassifiable’ or ‘worn’) in 81% of the cases. As discussed
in Section 4.3 this result will be compared to the ‘most fre-
quent’ baseline, which is the percentage of occurrence of the
biggest class. In this case the class ‘other and unclassifiable’
is the biggest class. 28 of the in total 42 cases from the test
set are labelled as ‘other and unclassifiable’. If the model
would (without any knowledge or training) assess every case
as ‘other and unclassifiable’, it has an accuracy of 67%. The
model showed its value already with the first preliminary test
within this feasibility study, with a relative improvement of
21% compared to the baseline. For further research, the
features can be changed, the data can be more balanced
(optimal is equal amount per class) and more data can be used
(also with incremental learning). These changes may lead to
improvement of the model. Other features which could be
taken into consideration are the number of exceedances of
certain values and the variance or distribution of the data.
By using other labelling techniques, consulting more data
sources or filling in the repair cards more complete will
decrease the number of unclassifiable diagnoses.

6. CONCLUSION

The combination of maintenance and usage data with (X)AI
showed its value. An accuracy improvement of 21% (to a
total of 81%) for classifying a diagnosis compared to the
baseline is achieved already with this feasibility study. Even
though the model was trained with a small amount of failures,
which is very common in this industry. The usefulness of
automatically diagnosing a failed tyre based on usage data
can be questioned. After all, given that the tyre is failed, the
distinction between a flat and worn tyre is easy to make. How-
ever, this case study served as a feasibility study. The tyres
were one of the components with most data available and
the failures were easy to understand which made validation
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Figure 7. Boxplots explaining a specific case of a ‘worn’ tyre (case A)

Figure 8. Boxplots explaining a specific case of a ‘flat’ tyre (case B)

of the model possible. Applying this model to components
which are hard to diagnose (e.g. when the component is
physically hard to reach) can really improve the efficiency of
troubleshooting. With this research the requirements for the
data and for such an analysis have become clear.

7. RECOMMENDATIONS

With the implementation of the case study, many difficulties
arose. Most of them concerned the preparation of the data
in such a way that the data could be implemented in the ML
algorithm. Since many of these difficulties will be common
for data-driven approaches in this industry, some general
conclusions can be drawn. First of all, when the data are
stored in a database, it does not mean they are also available
for the preferred analysis. In case it is not available it should
be made clear which steps need to be taken. The sensor
data from the case study were stored in a relative database.
Therefore it took significant effort to extract the data from the
database. Secondly, the maintenance and usage data have to

be combined. To do this, there must be a possibility to link
these datasets with each other (by tail, by date, by pilot, by
airport or anything else). Thirdly, the data should be prepared
for the algorithm (cleaning, labelling, inventing features etc.).
This process can take a lot of effort and logical reasoning by
selecting the features can add causality to the model. The way
the data is recorded and stored will partly have influence on
this effort. E.g. for cleaning and labelling a certain way of
recording and storing can help, but it does not have influence
on the effort to select the features.
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