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Abstract

Fisher Linear Discriminant Analysis (LDA) is a well-known classi�cation method, but it is also
well-known for not being robust against outliers. This paper investigates the uses of two methods
for data classi�cation including outliers. One method alleviates data sensitivity by incorporating
data uncertainty and subsequently optimizes the worst-case scenario of the Fisher discriminant
ratio, which appears to be ine�ective. The use of the second method does seem to be e�ective. It
directly attempts to remove outliers by removing those points that lie furthest from the sample
mean in the Mahalanobis distance sense. Additionally, this paper provides a proof for a general
tolerance ellipsoid for multivariate normally distributed data which is used in the second method.
This technique is also well-known and a rather obvious one, yet most papers do not provide a
general proof for this concept.

1 Introduction

Nowadays there exist many statistical classi�cation algorithms that attempt to identify to which class
a new observation s belongs, given {C1, . . . , CK}, a set ofK classes. This can be done in a wide variety
of ways that can be condensed into three di�erent approaches [1]: in decreasing order of complexity, one
could determine p (Ck, s) and �nd p (Ck | s) using Bayes' rule, called generative modelling, one could
directly compute p (Ck | s), called discriminative modelling, or one could simply �nd a discriminative
function f(s) that directly maps s onto a class label. Regarding the �rst two, classi�cation can be
performed after obtaining p (Ck | s) for every class by using the maximum likelihood discriminant rule,
which assigns s to Cj if p (Cj | s) ≥ p (Ck | s) for all k [2].

Both generative and disciminative models are instances of supervised learning. In supervised learning,
the discriminant rule is based on available data, called the training set. If this available data is
corrupted in the sense that it contains outliers, the perceptions of p (Ck | s) are easily in�uenced,
possibly producing poor classi�cation results. Outliers in this paper are considered to be data points
that are classi�ed as belonging to a certain class but do not have the same distribution as that class.
For several classi�cation algorithms inherent robust methods have been constructed, e.g. [3�5] for
Principal Components Analysis, which is in essence a dimensionality reducer but can be used as
classi�er, or [6, 7], which are direct applications of Fisher LDA to face recognition. Robustness can
also imply robustness against a small sample size, for which [8,9] provide a solution. Extrinsic robust
methods can also be used, e.g. [10], which describes general robustness of estimates. There exist no
methods for Fisher LDA speci�cally that are robust against outliers.
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Fisher LDA is a generative classi�er, also the most well-known linear classi�er. The goal of an
LDA is preprocessing the data by projecting a data set of M -dimensional samples onto a smaller
subspace while maintaining the class-discriminatory information. The popularity of LDAs lies in their
simplicity and computationally inexpensiveness. Originally, Ronald A. Fisher introduced the concept
of transforming two classes of M -dimensional data to 1-dimensional data using a discriminant w that
maximizes class separation and minimizes within class covariance, hence the name [11]. By now, it
has been extended to K > 2 classes and non-linear classi�cation [12�14], although this paper only
attempts to classify a new observation toK = 2 multivariate normally distributed classes. Considering
K > 2 classes would rede�ne the de�nition of the Fisher discriminant ratio (12) and its derivation
(3).

This paper will investigate the use of two methods of estimating the means and covariance for Fisher
LDA, which are called the worst-case estimates and the tM,p estimates. The �rst of the two meth-
ods is inherent to Fisher LDA and is introduced in [15], which claims it alleviates data sensitivity
by incorporating data uncertainty and subsequently optimizes the worst-case scenario of the Fisher
discriminant ratio (12). This paper demonstrates that this method is ine�ective for using it as a
robust method against outliers. Following the poor performance of this method against outliers come
the alternative tM,p estimates. The tolerance ellipsoid, de�ned by a number of dimensions M and
tolerance parameter p, encompasses a fraction p of n points in M -dimensional space as n goes to
in�nity. A common type of outliers, i.e. outliers that lie further from the mean in relation to the
variance, can be spotted and removed. This does appear to be an e�ective method. Many articles
discuss the use of this tolerance ellipsoid but do not provide a clear de�nition and proof, e.g. [16�19].
Therefore, this paper also provides a proof for the construction of the tM,p estimates for multivariate
normally distributed data.

2 Problem statement

Suppose that there are two classes X and Y in an M -dimensional space RM×1, assumed to be mul-
tivariate normally distributed. Of both classes we obtain samples/observations as column vectors,
denoted as x and y, called our sample set or training set. Each dimension in these M -dimensional
vectors contains speci�c information about the sample, of which the total M -dimensional information
will eventually dictate to which class the sample belongs. Therefore, given a new sample s drawn
from either of the two distributions of our classes X and Y , it is the task of a classi�er to tell us to
which of the two classes the new sample s belongs.

First, classi�cation will be discussed in Section 2.1 after which Fisher LDA will be introduced in Section
2.2. The main problem that this paper discusses is as follows. The discriminant w is computed in
(3) using the covariance matrices Σx,Σy and means µx,µx of both classes. Since we only have a
sample set to represent our classes, we must estimate the covariances and means based on the sample
set. The regular non-robust estimates are the sample covariance and sample mean, which for class X
would be

µ̂x =
1

N

N∑
i=1

xi, Σ̂x =
1

N − 1
(X − µ̂x)(X − µ̂x)T ,

where X is a matrix with samples xi as its columns, i = 1, . . . , N . However, should the sample
set contain outliers, then the sample mean and sample covariance are easily in�uenced, resulting in
possibly poor classi�cation. An example will be given in Section 2.3.

Therefore, this paper investigates in Section 3 the use of the two methods mentioned before and
answer the question whether or not using the methods improves success rates. Success rates are found
by drawing a test set of 1.000 samples from the distributions of both classes. We let the classi�er do
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its work and base the success rate on the fraction of test samples correctly classi�ed by the classi�er.
We obtain two success rates: one for class X and one for class Y . We compute the average of these
two success rates and let that be our �nal success rate. The results of the in�uence of the methods
on the success rates are given in Section 4.

2.1 Classi�cation

We need a method that assigns a newly drawn sample s to the class it belongs to. The maximum
likelihood discriminant rule, which assigns s to Cj if p (Cj | s) ≥ p (Ck | s) for all k, is an admissible
discriminant rule [2]. This means that there is no better discriminant rule. In the case of two classes,
we assign s to X if

P [X | s]
P [Y | s]

> 1.

Let us �rst take a look at P [X | s], which is the probability of class X being referenced to by the
sample s. Using Bayes' rule, we derive

P [X | s] =
p (s |X)P [X]

p (s)
,

where p (s |X) is the probability density of s originating from the distribution of X, also denoted as
pX (s). The probability P [X] is the probability that any random sample originates from X, which
depends on your prior knowledge of your two classes. In this paper we assume P [X] = P [Y ], but
these values could be approximated as the number of observations of one class divided by the total
number of observations. The probability density of s originating from either of the two distributions
of the classes X and Y is given by p (s) = pX (s)P [X] + pY (s)P [Y ]. We do the same for class Y .
Now, the maximum likelihood discriminant rule dictates that we assign s to X if

P [X | s]
P [Y | s]

=
pX (s)P [X]

p (s)

/
pY (s)P [X]

p (s)
=
pX (s)

pY (s)
> 1. (1)

However, calculating pX (s) and pY (s) requires a lot of computational power if the number of di-
mensions M is large. Therefore, we want to reduce the number of dimensions while preserving the
class-discriminatory information.

2.2 Fisher's linear discriminant

Let us de�ne a linear mapping f : RM×1 → R that takes a sample s ∈ RM×1 as input and outputs
the projection of s on a 1-dimensional space,

f(s) = wTs.

Notice that this is a linear transformation of multivariate normally distributed data, which is again
a normal distribution (see appendix, Theorem 1). According to Theorem 1, the mapping of the
distribution of class X onto R yields a univariate normal distribution, such that

XW ∼ N (wTµ,wTΣw) =⇒ pXW
(s) =

1√
2πwTΣw

exp

(
−1

2

(s−wTµ)2

wTΣw

)
. (2)

Speci�cally, we want this linear transformation to optimally seperate our two classes X and Y accord-
ing to Fisher's linear discriminant (see appendix, Theorem 2). This discriminant is given by

w = (Σx + Σy)−1(µx − µy), (3)
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where w ∈ RM×1. By maximizing the Fisher discriminant ratio (12) along the variable w, we
simultaneously maximize wT (µx−µy))2 and minimize wT (Σx+Σy)w. Therefore, using the optimal
discriminant w yields maximum seperation between the means wTµx and wTµy and minimal values
for the covariances wTΣxw and wTΣyw.

(a) The line is the visualization of w as the extention
of the vector (3).

(b) Samples projected onto w.

Figure 1: Projection of 2-dimensional space onto a 1-dimensional space.

Now, we replace pX (s) in (1) by projecting pX (s) on R using the discriminant (3) and the lin-
ear transformation given by (2). Doing so yields a univariate distribution pXW

(s) where the class-
discriminatory information has been preserved and thus provides us with an accurate representation
of pX (s). Then, we �nd that

P [X | s]
P [Y | s]

=
pXW

(
wTs

)
pYW

(wTs)
, (4)

which we call our classi�er.

2.3 Numerical example and outliers

To demonstrate the classi�er based on Fisher LDA and the consequence of outliers on this classi�er,
we draw 100 samples from two classes X and Y and call this our sample set. The true means and
covariances are

µx =

[
3
0

]
, µy =

[
−3
0

]
,

Σx =

[
5 3
3 5

]
, Σy = Σx.

Classi�cation will be executed once on the sample set and once on the sample set in which 5% of the
samples of class X have been replaced with outliers. These outliers will be taken from a multivariate
normal distribution with mean and covariance

µ =

[
−15

0

]
, Σ = Σx.
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(a) Scatter plot of the sample set. (b) Scatter plot of the sample set with outliers.

Figure 2: Example of two 2-dimensional classes.

It should be mentioned that some distributions for outliers do not in�uence the classi�cation success
rate much. These are not interesting to consider. Therefore, this distribution for outliers has been
chosen somewhat speci�cally to demonstrate what the in�uence could be.

Classi�cation based on the information given by the sample set and corrupt sample set will now be
executed simultaneously. The results of the sample set without outliers will be displayed on the left
side and the results of the sample set with outliers on the right side. We begin with a visualization of
the two sample sets in Figure 2. An additional visualization of the in�uence of outliers on the sample
covariance is given in Figure 5.

By calculating the sample mean and sample covariance, we have

µ̂x =

[
3.28
0.28

]
, µ̂y =

[
−3.38
−0.29

]
, µ̂x =

[
2.35
0.24

]
, µ̂y =

[
−3.38
−0.29

]
,

Σ̂x =

[
6.76 3.88
3.88 5.49

]
, Σ̂x =

[
22.14 4.14
4.14 5.24

]
,

Σ̂y =

[
4.31 2.66
2.66 4.44

]
. Σ̂y =

[
4.31 2.66
2.66 4.44

]
.

From these estimates we �nd the discriminant w,

w =

[
0.93
−0.56

]
. w =

[
0.25
−0.12

]
.

We can now construct our classi�er (4) based on our estimates µ̂x, µ̂y, Σ̂x and Σ̂y. The success rate
is

0.9536 0.8049

3 Analysis

In this section the two methods for robust Fisher LDA will be analysed. First, we will discuss the
worst-case method introduced in [15] and see that it cannot be robust against outliers. Next, the
tM,p estimates will be introduced by de�ning its objective and a proof for its construction. Numerical
results of using these two methods in the classi�cation process are presented in Section 4.
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3.1 Optimizing the Fisher discriminant ratio over the worst-case scenario

Intuitively, [15] attempts to alleviate the sensitivity problem by assuming the, as of yet unde�ned,
worst-case estimation of the means and covariances of X and Y for optimizing the Fisher discrimi-
nant ratio (12). This way, Fisher's discriminant is optimized for bad estimations of the means and
covariance. The question then arises as to what sort of sensitivity it attempts to counter. This will
be discussed later.

Formally, the worst-case scenario is de�ned to the set of means and covariances µ̌x, µ̌y, Σ̌x and Σ̌x for
which (12) is minimal with �xed w and variables µx,µy,Σx and Σx. After minimizing, we maximize
(12) with variable w, resulting again in the optimal discriminant (3). This optimization problem is
de�ned as

minimize (µx − µy)T (Σx + Σy)−1(µx − µy)

subject to (µx,µy,Σx,Σy) ∈ U . (5)

Here, U is de�ned as a convex set established by the constraints

(µx − µ̄x)TPx(µx − µ̄x) ≤ 1, ||Σx − Σ̄x||F ≤ ρx,
(µy − µ̄y)TPy(µx − µ̄y) ≤ 1, ||Σy − Σ̄y||F ≤ ρy,

where

Px = Σ−1µx

/
M, ρx = max

j=1,...

(
||Σxj

− Σ̄x||F
)
,

Py = Σ−1µy

/
M, ρy = max

j=1,...

(
||Σyj − Σ̄y||F

)
.

Through bootstrapping [20] we obtain 100 new sets of the data set and from those resamples we obtain
a set of 100 sample means and sample covariances for X and Y . From these sets we compute the
nominal means and covariances, µ̄x, µ̄y, Σ̄x and Σ̄x, as pointwise averages. From the set of means we
also compute its covariances Σµx and Σµy . [15] claims that the constraint (µ − µ̄)TP (µ − µ̄) ≤ 1
corresponds to a 50% con�dence ellipsoid in the case of a Gaussian distribution, which is slightly
di�erent from the 50% tolerance ellipsoid presented in Section 3.2, in the sense that the constraint
(µ− µ̄)TP (µ− µ̄) ≤ 1 equals D2

M (µ, µ̄) ≤M and M ≈ χ2
M,0.5. The parameters ρx and ρy are taken

to be the maximum deviations between the covariances and the nominal covariances in the Frobenius
norm sense over the set of resamples.

The paper also shows that for a speci�c type of uncertainty model, i.e. the product form uncertainty
model U =M×S, whereM is the set of possible means and S is the set of possible covariances, another
equal optimization problem exists that produces the same results as (5) and is less computationally
expensive. For this model, (5) can be written as

minimize (µx − µy)T
(

max
(Σx,Σy)∈S

Σx + Σy

)−1
(µx − µy)

subject to (µx,µy) ∈M.

We �nd that max(Σx,Σy)∈S Σx + Σy = Σ̄x + Σ̄y + (ρx + ρy)I (see, e.g., [21]) with I as the identity
matrix and therefore (5) equals

minimize (µx − µy)T (Σ̄x + Σ̄y + (ρx + ρy)I)−1(µx − µy)

subject to (µx,µy) ∈M,
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of which the outcomes µ̌x and µ̌y are used to compute the robust discriminant

w = (Σ̄x + Σ̄y + (ρx + ρy)I)−1(µ̌x − µ̌y).

Since the nominal covariances Σ̄x and Σ̄y are closely related to the sample estimates of Σx and Σy,
we can see that Σ̌x = Σ̄x+ρxI and Σ̌y = Σ̄y+ρyI are reshaped sample covariances: they now have a
greater variance in the individual dimensions while the covariance of the dimensions remain the same,
i.e. the covariances have become relatively smaller than the variances. Visually, this creates broader
covariances, see Figure 3.

(a) Visualization of Σ =

[
3 2
2 3

]
(b) Visualization of Σ+ 3I

Figure 3: The in�uence of a relatively smaller covariance.

This worst-case estimation of the covariances leads one to believe that it is only useful for a small
sample size: given a data set with a small sample size, one should expect that, if we were to take
more samples from the same distribution, there is a probability that these samples will lie wider,
inducing a higher variance and lower coviariance. For this type of situation, this estimator would
be appropriate. For a situation where outliers already in�uence the nominal covariance, it is not
appropriate. Therefore, the worst-case estimates will probably not be e�ective as a robust method
against outliers for classi�cation. In Figure 4 we see visualizations of the sample covariance and the
worst-case covariance, based on the same sample set given in Section 2.3. As expected, the sample
covariance ellipsoids are completely encompassed by the worst-case covariance ellipsoids.

3.2 The tM,p estimates

In this section we will see that, if we use the linear transformation V for the multivariate normal
distribution X as in (9), we obtain the equality

D2
M (x)

(11)
= D2

M (V Tx)
(10)
=

M∑
i=1

(
x′i − µ′i
λi

)
, (6)

from which we can obtain a tolerance ellipsoid that theoretically encompasses a fraction p of n samples
if limn→∞, de�ned by the set of points,{

tM,p ∈ RM×1
∣∣∣∣D2

M (t)
(8)
= χ2

M,p

}
. (7)
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(a) Without outliers. (b) With outliers.

Figure 4: The blue ellipsoids represent the covariance ellipsoids, the magenta ellipsoids represent the
worst-case covariance ellipsoids.

The equalities in Equations (6) and (7) are derived in Sections 3.2.1 to 3.2.3.

Assuming that outliers are samples that are distanced furthest from our mean in the DM sense (see
Section 3.2.3) and make up a fraction 1−p of our availableM -dimensional data, we can rid them from
our data set by removing all samples from our data that fall outside of our tolerance ellipsoid. The
tolerance ellipsoid is de�ned per distribution by the set of points tM,p where the estimating process of
the means and covariances included the outliers. Then, we can re-estimate our mean and covariance
with (almost) all outliers excluded. These re-estimates will be called the tM,p estimates, which should
not be confused with general tM,p tolerance ellipsoids.

However, one must obtain an idea/estimate of this fraction of outliers and assume that the data is
multivariate normally distributed. When the estimation of the fraction 1− p is too large, one might
delete non-outliers.

(a) Scatter plot of the sample set. (b) Scatter plot of the sample set with outliers.

Figure 5: Example of two 2-dimensional classes.

An example of the t2,0.95 ellipsoid is displayed in Figure 5 as the blue ellipsoids, based on the same
sample set given in Section 2.3. The tM,0.95 ellipsoid can be regarded as a sample covariance ellipsoid,
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since it shows where the two standard deviations boundary lies. Again, we see what the in�uence of
outliers are on the sample covariance. The magenta ellipsoid represents the tM,0.95 estimate. It seems
to be an accurate representation of the true covariance. In this case, using the tolerance ellipsoid to
obtain the tM,p estimates is a robust method.

(a) tM,0.95 is too large. (b) tM,0.7 is more appropriate.

Figure 6: The blue ellipsoids represent the covariance ellipsoids, the magenta ellipsoids represent the
worst-case covariance ellipsoids.

However, if the mean of the outliers is distanced further from the mean of the class and the number
of outliers increases, we see that the t2,0.95 tolerance ellipsoid also encompasses many outliers, see
Figure 6a. In this example, the number of outliers is a fraction 0.25 of the total sample set of class
X. The t2,0.95 estimates are not accurate estimates. If the fraction of samples we want to exclude
with the tolerance ellipsoid is adjusted to 0.3, which is slightly above the fraction of outliers, Figure
6b shows that some real samples of class X will be excluded as well. The blue line represents the
t2,0.7 tolerance ellipsoid. If then we compute the t2,0.7 estimates, the covariance will be smaller than
it should be, which is apparent by looking at the magenta ellipsoid in Figure 6b.

3.2.1 The chi-squared distribution

The chi-squared distribution with M degrees of freedom, χ2
M , is a distribution of a sum of squares of

M independent standard normally distributed random variables:

if Xi ∼ N (µi, σ
2
i ) are independent, then Y =

M∑
i=1

(
Xi − µi
σi

)2

∼ χ2
M .

Since Y is a sum of squares, we have that |Y | = Y . Therefore, P [Y ≤ y] = p indicates that the
probability that a sample taken from Y falls within the interval [−y, y] is p. To easily �nd y given p, we
de�ne the quantile function (inverse cumulative distribution function) of the chi-squared distribution
as follows: if we let Fχ2

M
(y) = P [Y ≤ y] be the cumulative density function of χ2

M , then

Fχ2
M

(y) = p ⇐⇒ χ2
M,p := y.

Fortunately, χ2
M,p is given in Matlab as the function chi2inv(p,M). Now, given p, we can �nd the

corresponding interval [−y, y], such that

P

[
M∑
i=1

(
Xi − µi
σi

)2

≤ χ2
M,p

]
= p,
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for independent random variables Xi ∼ N (µi, σ
2
i ). Therefore, the tolerance ellipsoid that encompasses

approximately a fraction p of our samples is de�ned by the set of points,{
tM,p ∈ RM×1

∣∣∣∣∣
M∑
i=1

(
ti − µi
σi

)2

= χ2
M,p

}
. (8)

3.2.2 Obtaining independent normal random variables

A set of i = 1, . . . ,M random variables Xi ∼ N (µi, σ
2
i ) can be expressed as a multivariate normal

distribution X ∼ N (µ,Σ). If Σ is an M ×M diagonal matrix, then these random variables Xi are
independent.

Given dependent random variablesXi, we want to transform the multivariate normal distributionX ∼
N (µ,Σ), where Σ is not a diagonal matrix, to a multivariate normal distribution X ′ ∼ N (µ′,Σ′),
where Σ′ is a diagonal matrix. Therefore, we compute the eigendecomposition of the matrix Σ:
a diagonalizable matrix A can be factorized into its eigenvalues and eigenvectors. If, in addition,
A is positive-semide�nite, it can always be expressed as A = V ΛV T , where V TV = I are the
normalized eigenvectors and Λ is a diagonal matrix containing the corresponding eigenvalues [22].
Since a covariance matrix is always positive-semide�nite, we get, by projecting X onto V , according
to Theorem 1,

X ′ = V TX,

µ′ = V Tµ, (9)

Σ′ = V TΣV = Λ,

and we have the desired linear transformation of X where the covariance matrix is diagonal.

3.2.3 Mahalanobis distance

The Mahalanobis Distance DM (x,y) is a multi-dimensional generalization for measuring how many
standard deviations away a sample x is from another sample y of the same distribution [16]. Let us
de�ne DM (x) = DM (x,µ). Given the mean µ and covariance Σ, the square of the relative distance
DM (x) is given by

D2
M (x) = (x− µ)TΣ−1(x− µ).

If Σ is a diagonal matrix, it is easily shown that

(x− µ)TΣ−1(x− µ) =

M∑
i=1

(
xi − µi
σi

)2

, (10)

where xi, µi and σi are the i
th elements of x,µ and the diagonal of Σ, respectively. If we transform

x according to (9) and use the fact that V TV = I implies that V −1 = V T , from which we obtain
the identity (

V TΣV
)−1

= V −1Σ−1
(
V T
)−1

= V TΣ−1V ,

we can achieve the equality

D2
M (V Tx) = D2

M (x). (11)

Notice that this equality only holds for linear transformations using a unitary matrix such as V in
(9).
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4 Numerical results

To examine the e�ect of outliers on classi�cation performance using Fisher LDA, we compare the
success rates of the Fisher discriminant based on the regular sample estimates, the worst-case estimates
and the tM,p estimates. A robust version would perform better than the regular version if the success
rate of the robust version is higher.

There will be 23 = 8 con�gurations: the success rates of the three versions of the Fisher discriminant is
tested by varying between two values for every variable. These variables are the sample size, fraction
of outliers and the outlier means. For every con�guration 1.000 data sets will be generated for two
classes X and Y , real samples will be replaced with outliers according to the outlier fraction and
outlier means and the performance of the three versions of the Fisher discriminant is tested on these
data sets. The success rate for every con�guration will be the mean of the success rates of each of the
1.000 generated data sets. The values for the variables will be

1. Sample size per class
� Small: 20.
� Large: 200.

2. Fraction of outliers
� Small: drawn from a N (0.05, 0.03) distribution.
� Large: drawn from a N (0.25, 0.03) distribution.

3. Distance outlier means from class means
� Small: the means of the classes X and Y increased with ±5, where ± indicates either 1 or
-1 randomly.

� Large: the means of the classes X and Y increased with ±20 for every dimension.

The samples of the two classes will be drawn from multivariate normal distributions with means and
covariances

µx =

[
2
0

]
, µy =

[
−2
0

]
,

Σx =

[
5 3
3 5

]
, Σy = Σx.

Outliers will be de�ned as a cluster of points not belonging to either X or Y . The outlier covariances
for both X and Y will be the identity matrix. To include overestimation of the fraction of outliers,
the fraction of outliers will be normally distributed with a variance of 0.03. The tM,0.95 estimates
will be de�ned to remove 0.05 of samples above the mean fraction of outliers, i.e. the t2,0.9 and t2,0.7
estimates will be employed for the small and large fraction of outliers, respectively.

The expectations are that the worst-case estimates might perform better with a small sample size,
although the outliers will interfere with its performance. The tM,0.95 estimates work best with a small
distance of the outlier means, however, as we have seen, the con�guration with large values for outlier
fraction and distance might produce very poor results.

The success rate of classi�cation without outliers and a large sample size is 0.87, which will be the
reference success rate, i.e. we cannot expect the success rates of classi�cation with outliers to be
higher than this reference success rate. However, we do want any version of the Fisher discriminant
to produce success rates close to the reference success rate. The results of the experiment are shown
in Table 1. A con�guration is indicated by a combination of S's and L's, where S and L indicate small
and large values, respectively. They are in the order of the variables as given above.

For all three versions of the Fisher discriminant, we see that increasing the outlier fraction and mean
distance negatively in�uences the success rates, while the con�guration with small outlier fraction and
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Table 1: Success rates of three versions of the Fisher discriminant.

SSS SSL SLS SLL LSS LSL LLS LLL
Regular estimates 0.836 0.697 0.758 0.641 0.856 0.729 0.786 0.660
Worst-case estimates 0.822 0.638 0.685 0.619 0.851 0.731 0.786 0.629
tM,p estimates 0.846 0.848 0.751 0.735 0.866 0.867 0.787 0.810

mean distance does not di�er much compared to the reference success rate. The worst-case estimates
produce their worst results when the outlier distance is large. The fraction of outliers does not lead
to a great di�erence compared to the regular sample estimates. In none of the con�gurations do the
worst-case estimates perform best. The tM,p estimates performed best in all but one con�guration
(SLS). However, when the outlier fraction is large and outlier distance is small, employing the tM,p

estimates is not more e�ective than the regular sample estimates.

5 Conclusion

In the case where outliers are de�ned as a group of points lying further from the mean in the MD
sense, experiments were conducted that show the performance of the Fisher discriminant based on
the regular sample estimates, the worst-case estimates and the tM,p estimates. The best performance
is given by the tM,p estimates, whereas the worst-case estimates did not show better performance in
any of the con�gurations.

The worst-case estimates take on a speci�c shape which is not desirable in case of outliers. It might
be employed in case of small sample sizes, as [15] seems to indicate. However, this paper did not
investigate its performance on small sample sizes without outliers. This suggests to investigate the
performance of the worst-case estimates on small sample sizes in future research. Another suggestion
for future research is to construct di�erent constraints for the covariance matrices that are used in
the optimization problem, since the intuitive idea seems plausible.

The tM,p estimates are predictable to some extent and can be employed in many cases. However,
there are some cases where the regular sample estimates seem to perform at least as well. Future
research may wish to alter or �netune the computation of the tM,p estimates so it can be used as a
robust method in these cases as well.

The experiments in this paper were fully based on multivariate normally distributed data. Future
research may wish to apply these methods to real world data or implement di�erent de�nitions of
outliers.
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Appendix

Theorem 1 (Linear transformation of multivariate normal distribution)
Let X be an M × 1 multivariate normal random vector with mean µ and covariance matrix Σ. Let
A be an L × 1 real vector and B an L ×M full-rank real matrix. Then the L × 1 random vector Y
de�ned by

Y = A+BX

has a multivariate normal distribution with mean

E[Y ] = A+Bµ

and covariance matrix

Cov[Y ] = BΣBT

Proof The joint moment generating function of X is

MX(t) = E
[
et

TX
]

= et
Tµ+ 1

2 t
T Σt

Therefore, the joint moment generating function of Y is

MY (t) = E
[
et

T (A+BX)
]

= E
[
et

TAet
TBX

]
= et

TAE
[
et

TBX
]

(because et
TA is a scalar)

= et
TAMX

(
BT t

)
= et

TAet
TBµ+ 1

2 t
TBΣBT t

= et
T (A+Bµ)+ 1

2 t
TBΣBT t

which is the joint moment generating function of a multivariate normal distribution with meanA+Bµ
and covariance matrix BΣBT . Since two random vectors have the same distribution when they have
the same joint moment generating function, Y has a multivariate normal distribution with mean
A+Bµ and covariance matrix BΣBT .

Theorem 2 (Fisher Linear Discriminant Analysis)
The Fisher discriminant ratio is given by

f(w,µx,µy,Σx,Σy) =
wT (µx − µy)(µx − µy)Tw

wT (Σx + Σy)w
=

(wT (µx − µy))2

wT (Σx + Σy)w
, (12)

A discriminant that maximizes the Fisher discriminant ratio is given by

w = (Σx + Σ)−1(µx − µy)

which gives the maximum Fisher discriminant ratio

max
w 6=0

f(w,µx,µy,Σx,Σy) = (µx − µy)T (Σx + Σ)−1(µx − µy)

Proof The proof is given in [15].
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