
Eötvös Loránd University
Faculty of Informatics

Post Quantum Secure Authentication
methods suitable for Quantum Key

Distribution

Dr. Zoltán Istenes Mohammad Rashid Zamani
Professor at ELTE Computer Science
Dr. Andreas Peter
Assistant Professor at UTwente
Dr. Benedek Kovács
Senior Specialist at Ericsson

Budapest, 2018.

Statement

of thesis submission and originality

I hereby confirm the submission of the Master Thesis Work on the Computer Science

MSc course with author and title:

Name of Student: Mohammad Rashid Zamani

Code of Student: FANMN7

Title of Thesis: Post Quantum Secure Authentication Methods

Suitable for Quantum Key Distribution

Supervisor: Dr. Zoltán Istenes

Computer Science

at Eötvös Loránd University, Faculty of Informatics.

In consciousness of my full legal and disciplinary responsibility I hereby claim that

the submitted thesis work is my own original intellectual product, the use of referenced

literature is done according to the general rules of copyright.

I understand that in the case of thesis works the following acts are considered plagiarism:

• literal quotation without quotation marks and reference;

• citation of content without reference;

• presenting others’ published thoughts as own thoughts.

Budapest, July 4, 2018

student

i

Abstract

Quantum Key Distribution occurs over two communication channels: classical and quan-

tum. While the quantum channel is somewhat secure by quantum principles, the classical

channel need to be authenticated using cryptographic algorithms. Unfortunately, the au-

thentication algorithms and the methods suggested are not taking into consideration the

problems practical implementations are facing. Moreover, there are areas which has not

been discussed by the literature such as the quantum application layer in communication

over classical channel. This study identifies the hurdles practical implementations of QKD

are facing and proposes a solution which take into consideration these needs. Moreover, it

suggests new protocols and approaches suitable for QKD post processing authentication.

ii

Dedication

To the butterfly and the bee.

iii

Acknowledgement

"Always two there are,

no more,

no less.

A master and an apprentice."

— Yoda

iv

CONTENTS

Contents

1 Background 1

1.1 Quantum Information Theory and Cryptography 3

1.2 Quantum Key Distribution . 5

1.2.1 BB84 . 5

1.3 Cryptographic Authentication . 8

1.3.1 Authentication in QKD . 8

1.4 Scope . 9

1.5 Outline . 11

2 Related Literature Analysis 13

2.1 QKD Post Processing . 14

2.1.1 Key Sifting . 15

2.1.2 Confirmation . 15

2.1.3 Error Correction . 16

2.1.4 Privacy Amplification . 16

2.2 QKD Authentication . 17

2.2.1 Block Cipher Based MACs . 18

2.2.2 Cryptographic Hash Based MAC . 25

2.2.3 Universal Hash Based MAC . 30

2.3 QKD Network Implementations . 32

2.3.1 DARPA QKD Network . 34

2.3.2 SECQOC QKD Network . 36

2.3.3 SwissQuantum . 40

2.3.4 Wuhu QKD Network . 42

2.3.5 Los Alamos National Laboratory NQC 43

2.4 Summary . 45

2.4.1 Post Processing . 45

v

CONTENTS

2.4.2 Authentication . 47

2.4.3 QKD Networks . 56

3 Contribution 61

3.1 Solution Architecture . 61

3.2 Quantum Post Processing Daemon . 64

3.2.1 Authentication Algorithm . 66

3.3 Authenticated Post Processing Protocol . 67

3.4 Sample Run . 68

3.4.1 Error 0xE . 70

3.4.2 Initial Setup 0x0 . 71

3.4.3 Sifting 0x1 . 74

3.5 Key Management Layer . 76

4 Discussion 79

4.1 Solution Design Philosophy . 79

4.1.1 Architecture . 81

4.1.2 Authentication . 82

4.1.3 APPP . 82

4.2 Solution Comparison . 82

4.3 Conclusion . 84

vi

LIST OF FIGURES

List of Figures

1.1 BB84 schematic run . 5

1.2 Photon polarization . 6

1.3 BB84 protocol flow . 7

2.1 Key transformation in post processing. 14

2.2 CMAC . 20

2.3 PMAC . 21

2.4 GCTR . 22

2.5 GCM . 23

2.6 GHASH . 24

2.7 Sponge Construction . 27

2.8 Hash Benchmark . 29

2.9 QKD Network . 32

2.10 QKD Network Architecture . 33

2.11 DARPA Architecture . 35

2.12 QBB link . 37

2.13 QBB node . 38

2.14 SECQOC network . 39

2.15 Q3P protocol stack . 40

2.16 Q3P packet header. 41

2.17 Wuhu network. 42

2.18 Los Alamos QKD network . 43

2.19 Los Alamos user registration . 44

3.1 Solution Architecture . 63

3.2 IPSec AH . 66

3.3 Solution Protocol Stack . 66

3.4 APPP constant header. 67

vii

LIST OF FIGURES

3.5 APPP communication sequence . 70

3.6 QKD Error header. 70

3.7 APPP Initial Setup header QKD instantiation request 71

3.8 APPP chunk request . 73

3.9 APPP constant header 2 . 74

3.10 APPP sifting . 75

3.11 APPP Post Processing Sifting Confirmation. 75

3.12 Keys transformation though the system. 78

viii

LIST OF TABLES

List of Tables

2.1 Stream ciphers benchmark . 51

2.2 Skylake benchmark . 52

2.3 auth256 benchmark . 55

3.1 APPP constant header fields. 68

3.2 APPP version 0b000 Header Type values. 69

3.3 Sb values. 75

ix

Acronyms

Acronyms

AES Advanced Encryption System. 4, 18, 19, 23,

24, 35, 43, 49–54, 77, 80

AH Internet Protocol Security Authentication

Header. vii, 65–67, 76, 83, 84

AL Application Layer. 34, 62, 77

API Application Programming Interface. 40, 57,

62, 77

APPP Authenticated Post Processing Protocol. vi–

ix, 12, 65, 67–76, 79–82, 85

BB84 QKD protocol, Bennett and Brassard pro-

posed in 1984. v, 5–7, 9, 10, 13–17, 35, 36,

42, 44–47, 59, 61, 68, 69

CBC Cipher Block Chaining. 20, 21, 24, 25

CMAC Cipher-based Message Authentication Code.

20, 51

cpb Cycles per Byte. 10, 27, 29, 31, 49, 51, 53, 54

CPU Centeral Processing Unit. 19, 27, 28, 31, 48–52

CRC Cyclic Redundancy Check. 44

CTR Counter Mode. 22, 23, 31, 51, 52

DARPA Defense Advanced Research Projects Agency.

v, 34–37, 57, 59, 65, 80

DES Data Encryption Standard. 2, 25, 50

x

Acronyms

ECB Electronic Codebook. 21

ESP Internet Protocol Security Encapsulating Se-

curity Payload. 35, 84

ETSI European Telecommunications Standards In-

stitute. 57, 63, 80

FFT Fast Fourier Transform. 31

FIPS Federal Information Processing Standard. 28,

30

Gbps Giga bit per second. 10, 80, 81

GCM Galois/Counter Mode. vii, 22, 23, 51–54

GHz Giga Hertz. 49

GMAC Galois/Counter Mode Message Authentica-

tion Code. 22–24, 31, 52, 55

HAIFA HAsh Iterative FrAmework. 26, 30

HMAC Hash-Based Message Authentication Code.

29, 30, 35, 53, 55, 59

ICB Initial Counter Block. 22

ICV Integrity Checking Value. 66

IETF Internet Engineering Task Force. 50, 52

IKE Internet Key Encapsulation protocol. 35, 36,

57

IP Internet Protocol. 34, 38, 39, 42, 48, 49, 63–65,

67, 71, 73, 74, 76, 82–84

IPSec Internet Protocol Security. vii, 34–36, 41, 48,

49, 61, 62, 65–67, 76, 77, 81–84

ITS Information-Theoretic Secure. 2–4, 10, 18, 31,

34, 36–38, 43, 48, 50, 54–56, 66, 76, 80, 85

IV Initial Vector. 22

KDF Key Derivation Function. 30, 35, 55, 59, 65,

72

xi

Acronyms

KEP Key Encapsulation Protocols. 34, 35, 57, 64

KMAC KECCAK-family Message Authentication

Code. 29, 30, 53, 55, 76

KML Key Management Layer. vi, 34, 43, 62–64, 67,

76, 77, 80, 85

LDPC Low-Density Parity-Check code. 16, 44, 46, 47

MAC Message Authentication Code. v, 8, 9, 13, 14,

17–21, 23–25, 28–31, 49–51, 53, 54, 80, 85

MBps Mega Bytes per Second. 49, 80

Mbps Mega bits per Second. 80

MD Merkle-Damgård. 26, 30, 59

MHz Mega Hertz. 27

MITM Man-In-The-Middle. 8, 10, 15, 46

MTU Maximum Transfer Unit. 65, 83

NIC Network Interface Controller. 49

NIST National Institute of Standards and Technol-

ogy. 28, 30, 50, 52, 54, 64

NQC Network-centric Quantum Communication. v,

43

NSA National Security Agency. 50

OSI Open Systems Interconnection. 34, 38, 41, 62,

64, 67

OTP One Time Pad. 2, 3, 36, 37, 41, 43, 57, 58, 77,

80, 85

PDU Payload Data Unit. 65

PKI Public Key Infrastructure. 2, 41

PMAC Parallelized Message Authentication Code.

21, 24

xii

Acronyms

PRF Psuedo Random Function. 18, 19, 23, 30

Q3P Quantum Point-to-Point Protocol. vii, 37–40,

48, 49, 59, 64, 82–84

QAN Quantum Access Node. 38

QBB Quantum BackBone. vii, 36–39, 41, 58, 62

QBER qubit Error Rate. 14–16, 46, 69, 72

QID Quantum-device Identifier. 63, 71, 72

QKD Quantum Key Distribution. ii, v–viii, 4, 5, 9–

14, 17, 28, 32–43, 45–49, 56–59, 61–63, 65, 68–

72, 76, 77, 79, 80, 82, 84, 85

QKDAL Quantum Key Distribution Application

Layer. 40, 83

QKDLL Quantum Key Distribution Link Layer. 39, 83

QKDNL Quantum Key Distribution Network Layer.

39, 83, 84

QKDTL Quantum Key Distribution Transport Layer.

39, 83

QL Quantum Layer. 34, 62–64, 76

QPPD Quantum Post Processing Daemon. vi, 63–68,

71–74, 76, 77, 81–83, 85

RFC Request For Comment. 49, 50, 65

SA Security Associate. 35, 65, 67, 76, 77

SAD Security Associate Database. 35, 49, 65, 67,

76, 77

SECQOC SEcure COmmunication based on Quantum

Cryptography. v, vii, 36–41, 56–59, 63, 64, 77,

81, 82, 84

SHA Secure Hashing Algorithm. 26–28, 35, 53, 55,

59, 85

SPD Security Policy Database. 49, 64, 65, 76, 77

SPI Security Parameter Index. 65, 76

xiii

Acronyms

TCP Transmission Control Protocol. 34, 38, 39, 42,

49, 64–67, 69, 71, 73–76, 81–83

UMAC Universal Hash Message Authentication

Code. 23, 31, 54

VMAC 64bit Universal Hash Message Authentication

Code. 23, 31, 54, 55, 59, 80

VPN Virtual Private Network. 35, 36, 59

WDM Wave De-multiplexing Module. 34, 42, 81

XOF Extended Output Function. 28, 30, 59, 72

XOR Exclusive or. 2, 18, 20–25, 27, 30, 54

xiv

CHAPTER 1. BACKGROUND

Chapter 1

Background

"Three can keep a secret,

if two of them are dead."

— Benjamin Franklin

Quest for secure communication dates back to ancient civilizations, near 2500 years ago,

where simple mathematics and physical objects were used to create cryptosystem1. Natu-

rally, attempts to break cryptosystems started. There are evidence indicating the challenge

began in more than thousand years ago2. Although these early attempts might have had

the sole "evil" intention of breaking the cryptosystems; nowadays cryptanalysis plays a

major role on defining security of a cryptosystems. Throughout the course of history, as

the science and technology advanced, cryptosystems enhanced too. Inevitably, these ad-

vancements improved cryptanalysis techniques to a degree where simple substitution and

transposition cipher systems were not secure anymore. In order to gain a better chance

against cryptanalysis, it was a common practice to add security through obscurity of the

cyrptosystems.

Technology advancements enabled communication over long distances, and subsequently

the need for secure communication over long distances arose – the biggest hurdle was to

share a secret between the parties. Secrets could have been distributed either through face-

to-face meetings, which might not have been possible and/or practical in many scenarios.

Or they were shared via a trusted courier, that introduced a third party and increased the
1Cryptography existed for near 4000 years ago in Old Kingdom of Egypt but not for the purpose of

secure communication. The first evident use of cryptography for the purpose of secure communication is

Mlecchita Vikalpa, a substitution cipher listed as one of the arts in Kamasutra, for lovers to exchange

private messages. Scytale transposition cipher, the first known physical object used as an authenticated

encryption system by military in ancient Greek to authenticate and decrypt messages.
2Alkindi books on frequency analysis (800AD).

1

CHAPTER 1. BACKGROUND

attack surfaces of the system such. Instinctively, a secret is safer when shared with less

parties, as the opening quote to the chapter suggests. One reason justifying employment

of security through obscurity could have been the high possibility of key leakage at that

time – hiding the know-hows of the cryptosystem could be viewed as countermeasure – if

an adversary get hold of the key, she would struggle to find out how to use the key.

Last two centuries, however, cryptography entered a new era so called modern cryptog-

raphy. Alongside with rapid developments in science and technology during this period, in

19th century, it was suggested by Krechhoff that the security of cryptosystems shall solely

rely on the secrecy of the key and he ruled out any need for obscurity in the mechanism of

cryptosystem. This amplified the importance of the key which in return, magnified the key

distribution problem. In fact, presently "the strength of a cryptographic algorithm is directly

linked to the difficulty of obtaining the secret key by the adversaries; thus, key distribution

schemes can be identified as one of the most sensitive parts of the security systems in com-

munication networks" [DAGS08]. Another positive influence of Krechhoff principle was, as

slowly as it got adopted3, allowed cryptographers from around the world to exchange ideas

and study cryptography more openly, similar to other sciences.

One of the most fundamental findings in modern cryptography, with no doubt, is asym-

metrical cryptography — a novel technique in which a pair of keys is presented to each party

in communication – one key for encryption, and one key for decryption. In these schemes,

the encryption key (public key) is public knowledge and the decryption key (secret key) is

kept secret. Messages are encrypted using one’s public key and could only be decrypted by

the one’s corresponding secret key. Asymmetrical cryptography is the best solution to the

key distribution problem and it is the backbone to Public Key Infrastructure (PKI)4.

Another influential finding in 20th century was information theory and the concept

of information-theoretic and perfect secrecy. An Information-Theoretic Secure (ITS) cryp-

tosystem is considered cryptanalytically unbreakable even under the assumption that un-

limited computing power is presented to the adversary – there is simply not enough infor-

mation available to perform any cryptanalysis. Besides, if the cipher text created by the

encryption algorithm of a cryptosystem does not reveal any information about the corre-

sponding plain text, the cryptosystem in question has perfect secrecy. Claude Shannon,

father of information theory, proved One Time Pad (OTP)5 is ITS and has perfect secrecy.
3Data Encryption Standard also known as Data Encryption Standard (DES) algorithm was not known

to the public even in the 1990s.
4PKI is the infrastructure used today over Internet and many other type of networks for key distribution

based on asymmetrical cryptography. Asymmetrical cryptography is also known as public key cryptography.
5OTP is an encryption scheme in which the plain text is XORed with the key size of same length. Each

key is only used once.

2

CHAPTER 1. BACKGROUND

It was later proved for any system to have perfect secrecy, it is needed to have the same

key size as the message and use each key only once, similar to OTP.

It seems like a very rational decision to utilize cryptographic algorithms with these

idealistic degrees of security and put an end on the competition between "Alice", "Bob"

and "Eve – leaving "brute-force"6 as the only attack possible. Most of the cryptosystems

in-use today though, do not exercise these optimistic levels of security, and this is mainly

due to the following:

• Most of the algorithms with these levels of security are not efficient – either compu-

tationally or in terms of key consumption.

• Unlimited computational power, clearly, does not exist. All our commercially avail-

able computational power is limited and the annual rate of its growth in future is

predictable to some degree7. Thus, for many "industrial settings" scenarios compu-

tational security or conditional security8 which is secure against current and near

future computational power suffices.

Hence, many modern cryptographic algorithms gain their security legitimacy through

computational hardness assumption i.e. to employ a trapdoor function9 based on a problem

which is assumed to be almost impossible to reverse with limited-existing computational

power. Nevertheless, these assumptions may turned wrong – either through discovery of

a new algorithm or the increase in computational power which would exceed a level that

the problem in question would not be considered hard to solve anymore. Shor’s quantum

algorithm is an example of such. Deploying ITS cryptography would give us security in

future, a term known as forward secrecy.

1.1 Quantum Information Theory and Cryptography

During the last decades and with the progress in the field of quantum physics a new

theory emerged; quantum information theory which deals with quantum information i.e.

information held in the state of a quantum system. Quantum information processing10

opened new horizons both for cryptography and cryptanalysis, in another words, it breaks

and creates cryptosystems.
6An attack in which the intruder tries all the possibilities.
7Moore’s law predicts the computation power doubles about every two years.
8These are security notions under certain restricted computational power or other conditions.
9A one-way function which could be reversed efficiently by knowing a trapdoor or a secret value.

10Analogous notations of transmitting and processing information with algorithms and mathematics of

computer science using quantum computer and qubits as basic element; instead of using digital computer

and bits in classical information processing

3

CHAPTER 1. BACKGROUND

Developed in 1994, Shor’s quantum algorithm efficiently solves integer factorization

problem, the discrete logarithm problem, and the elliptic-curve discrete logarithm problem

in polynomial time. These problems are building blocks to almost all the key distribu-

tion algorithm presently in use and Shor’s algorithm obsoletes security of many modern

cryptography algorithms including RSA11 and Diffie-Hellman12. Quantum computers are

real threat to these cryptosystem. Presently, however, computation over small number of

qubits with quantum computers are performed in research projects and development of ac-

tual quantum computers are still in progress13. Nevertheless, cryptographers are working

on defining a class of cryptosystems resilient against quantum attacks called post-quantum

secure i.e. there exist no efficient quantum or classic algorithm known to solve the prob-

lem these systems are based on – this does not imply unconditional security e.g. AES14 is

post-quantum secure but not ITS.

On a brighter side, there are principles in the nature of quantum mechanics and quan-

tum field mechanics which allow performing cryptographic tasks with unconditional se-

curity. These principles – namely the aftermath of Heisenberg ’s uncertainty principle and

its result: the observer effect, Quantum entanglement concept, and no-cloning theorem –

are the essential parts of quantum cryptography. These quantum physics principles make

it impossible for an adversary to eavesdrop on a communication over a quantum channel

without being noticed and even forbid obtaining a copying of the communication. Hence,

quantum cryptography is ITS.

In 1984, Charles H. Bennett and Gilles Brassard illustrated one of the earliest appli-

cations of quantum cryptography. In their paper they demonstrated Quantum Key Dis-

tribution (QKD) to share a secret (key) between two parties using "elementary quantum

systems, such as polarized photons [...] to transmit digital information" [BB84]. Nowadays,

there exists various applications of quantum cryptography15, yet recently QKD is receiving

great attention. Progress in the technology has allowed practical developments of quantum

communications within range of hundreds of kilometers. Some of these implementations

are elaborated on in section 2.3. Given the fact that security of known key distribution

algorithms are compromised by Shor’s quantum algorithm; QKD seems to be a perfect

alternative, given its unconditional security and proved practicality.
11Rivest–Shamir–Adleman asymmetrical encryption scheme based on factorization.
12Asymmetrical encryption based on discrete logarithm problem.
13The best progress as of 2018 is Bristlecone, Google’s 72 qubits quantum processor. https://ai.

googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
14Advanced Encryption System is a block cipher explained in section 2.2.1.
15Quantum Authentication, Quantum Multi Party Communication, and Quantum Commitments are

some of other applications developed in quantum cryptography.

4

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

CHAPTER 1. BACKGROUND

Figure 1.1: BB84 Quantum Key Distribution schematic protocol run.[Sha11]

1.2 Quantum Key Distribution

The method introduced by Bennett and Brassard in 1984 also known as BB84 protocol,

inspired many others to develop different QKD protocols. Besides communication over

quantum channels, most of these protocols including BB84 , require communication over

an authenticated classical channel as well – means to provide this classic authenticated

channel is the core of this study. Since BB84 is the foundation to many of QKD protocols,

I have chose it as the QKD protocol of this research. The scope of this research is later

detailed in section 1.4 and importance of authenticity of the communication over classical

in QKD will be discussed in detailed in this dissertation.

1.2.1 BB84

Digital information in BB84 are encoded into elementary quantum system i.e. the po-

larization of a single photon. This is done by emitting single photons through different

filters. Figure 1.1 depicts an illustration of BB84 semantic between famous Alice and Bob.

As shown in the picture there are four filters with two different basis – one rectilinear

(horizontal-vertical), and the other one orthogonal (diagonal). Therefore, there are two

distinct polarizations for both bit 0 and bit 1 from these two basis. Alice encodes a ran-

dom bit string (i.e. the key) using the described method. To encode each bit, she selects

the filter’s basis randomly. Bob also, chooses randomly between rectilinear and orthogonal

5

CHAPTER 1. BACKGROUND

basis detectors and measures each photon. Once Bob receives all the photons the com-

munication over quantum channel is finished – as discussed earlier this communication is

prone to undetected eavesdropping.

Figure 1.2 demonstrates basic facts about polarized photon. Segment (a) of the picture

shows when a photon is beamed into a polarizing filter, horizontal in this case, the result

will always be as expected. If the measurements happen with the detector in the same basis

as the one used to polarized the photon in the first place, the result of the measurement

would surely be correct and as expected. This is shown in segment (b), where measuring

a single photon polarized horizontally using rectilinear basis detector yields correct result

all the time. However, when the basis used in polarization differs from the one used in

detection, the outcome would be probabilistic. Similar to section (c) in figure 1.2, where a

detector with orthogonal basis is used to measure a photon polarized in rectilinear basis,

the result would be measured as a photon angled 45◦ or 135◦ with the same probability.

Figure 1.2: Basics of Photon Polarization [Sha11].

Since both Alice and Bob choose the basis randomly, mismatch in the basis are ex-

pected. Indeed, all the measurements Bob performs in different basis from the one Alice

used to polarized the photon, are probabilistic and not reliable; thus, should be discard by

both parties. Additionally, it is possible that that some photons are lost in the transmis-

sion or not detected correctly by "Bob’s imperfectly-efficient detectors" [BB84]. This Post

Processing procedure happens over a public authenticated classical channel, and once this

procedure is finished both parties retained a bit sequence only known to themselves.

It is worthwhile to mention that post processing is the Achilles heel of BB84 – commu-

nication over the quantum channel is secured by quantum physic principles. If an intruder

wishes to eavesdrop on quantum channel without being noticed, she needs to compromise

the authenticity of communication over the classical channel, and then security of the whole

protocol is jeopardized.

Post Processing

Once quantum communication over the quantum channel is finished, post processing initi-

ates by public discussion between two parties. As stressed out before, this communication

6

CHAPTER 1. BACKGROUND

should be authenticated i.e. recipient is certain about the identity of the sender to a very

high degree and is convinced no alteration has happened in the content of the messages.

However, content of the massages do not need to be encrypted – having knowledge of the

information discussed over the public channel does not endangers the secrecy of the shared

bit string over the quantum channel[BB84].

Figure 1.3, is the original protocol flow of BB84. The protocol is divided into quantum

transmission, explained earlier, and public discussion. In the proposed method, Bob will

start the public discussion once he has notified Alice that he received the photons. He

start the procedure by disclosing the basis he used for detection, and Alice will confirm

the correct ones. This step is also know as key sifting. Outcome of this step would be the

presumably shared bit string between the parties.

The next step during post processing is the confirmation, where Bob reveals random

bits of the presumably shared bit string and Alice confirms if they are correct. After this

step they can calculate an estimated an error rate based on miss matches – high error

rate could be a sign of eavesdropping. Since introduction of BB84, many variants and

Figure 1.3: BB84 original protocol flow including quantum communication and post pro-

cessing [BB84].

improvements on the protocol has been suggested – mostly for post processing – different

algorithms and techniques has been suggested. In the original BB84 paper, confirmation is

the last step of the protocol, and it is not explicitly mentioned how to deal with plausible

error in the shared key due to transmission fault. Thus, in the succeeding papers it is very

common for parties to perform error correction to eliminate possible errors. Another

common step during post processing in QKD is privacy amplification in which parties

use privacy enhancing techniques to boost the secrecy of the shred key – the idea is even if

an eavesdropper have knowledge on some bits of the shared key, this step would diminished

her knowledge drastically.

The sequence in which these steps shall be performed differs in some papers. Some once

privacy amplification is done it is safe to assume the shared key is secret and error correction

7

CHAPTER 1. BACKGROUND

is the last confirmation on the correctness of the key, while others argue believe the error

correction might reveal some information about the key hence privacy amplification shall

happen after that – this is described in more detail in next chapter.

1.3 Cryptographic Authentication

Cryptographic authentication is the mean to ascertain integrity and authenticity of mes-

sages. Ordinarily, authentication algorithms have two essential functions: one authenticates

the message, and other verifies authenticated messages. These functions take a key along-

side with other information as input to ensure authenticity and integrity of the message

i.e. to be confident no one has modified the message or has impersonated the real sender

– assuming the key is kept secret.

There are two types of cryptographic authentication algorithm in general: Message Au-

thentication Code (MAC) and Digital Signature. MACs are symmetric algorithm – both

authentication and verification functions use the same key. While, Digital Signature algo-

rithms are asymmetric – there is a pair of key available. Secret key, only known to the

sender, is used to sign messages, and public key is used for verification.

1.3.1 Authentication in QKD

If an adversary is able to inject message of her choosing into classical communication

of post processing, then she can easily perform Man-In-The-Middle (MITM) attack. For

this, the adversary needs to sit "in-the-middle" of the parties communicating link. Be-

ing in-the-middle of both classical and quantum communication, the adversary starts the

quantum protocol with sender and impersonate herself as receiver, and start the protocol

with receiver at the same time pretending she is sender. Then they start post processing,

adversary performs post processing with both parties impersonating the other party for

each end. If authentication on post processing communication is sound, this could be eas-

ily detected during post processing step confirmation (section) where parties reveal some

portion of the exchanged key which both have used the same basis, also known as sifted

key. Clearly, if most of these bits do not match, then the communication over quantum

channel has been tampered with. Had the authentication scheme be subject to forgery, the

intruder could manipulate messages in that step to her favoring and convince both parties

they had shared a secret key with each other, where in reality it is the intruder who they

have distributed keys with.

There are two main approaches to perform authentication over post processing mes-

sages: delayed and instance. As their name suggests, instant authentication, authenticates

8

CHAPTER 1. BACKGROUND

messages in the communication as they are transfered, while delayed authentication hap-

pens at the last step when all the messages are sent. Most of the literature assume the

shared secret used for authentication is present at the first run between the parties, and

later on they consume from the keys generated through QKD. This is the reason this study

focus is on MAC and not Digital Signature. Section 2.2 details post quantum secure MACs.

1.4 Scope

This dissertation is set to find "Post Quantum Secure Authentication Methods Suitable for

Quantum Key Distribution". In this endeavor, this thesis is obligated to find answer for

the following:

• What are the post quantum secure authentication algorithms?

• What does QKD uses the authentication for?

• What methods of authentication exist?

• What is suitable for QKD?

In the original paper of BB84 and almost all other subsequent papers it is assumed that

the parties have a pre-shared secret which they will use for authentication for the first ever

run of the protocol. For the following runs of the protocol, both parties will use a portion of

the shared secret generated in each run, for authentication of the next run. This implies the

need of symmetrical authentication. Therefore, this study only looks into MAC algorithms.

Algorithms that are discussed, are either submissions for standardization competition, or a

modified version of them that has enhanced security and/or performance. This could also

help to specify whether these algorithms are post quantum secure or not. Each submission is

required to submit heavy cryptanalysis of their algorithm for the competition. Furthermore,

standardization competitions, which are open to public, have many rounds over course of

many years in which the submissions will go through heavy analysis by the community

again. After the winner is selected, due to their adaptability being the standard algorithm

or even finalist, cryptanalysis on them will continue. Hence, one could be more confident

about the security of the algorithm as no attack has been discover during all these analysis.

There are some exception algorithm which has gained the community confidence base

on the rate of deployment in industrial projects. These algorithms are mostly incremental

innovation on known proved secure structures and advanced the security and performance

with provable and explicit approach. These are mentioned later, and I try to back their

security based on these facts. Nonetheless, post quantum security definition is rather loose

9

CHAPTER 1. BACKGROUND

– after all the security is not proven and we base the security on the assumption that

no known attack can breach the security of the cryptographic algorithm in question. The

best generic attack known is brute-forcing using Grover’s quantum algorithm [Gro96] which

finds "the" input (e.g. key) in the space of n (e.g. key size) for a given function in complexity

order of 2
√
n = 2

n
2 . Therefore, if for any given algorithm with key size n, if it provides 2n/2

bits security, it is considered post quantum secure. Currently 2128 bits is consider post

quantum secure thus a key size of at least 256 bits. Algorithm in this study are also

compared by their efficiency measured by cycles they require to process a byte and is

measured in Cycles per Byte (cpb).

It is proven had the authentication scheme used is not ITS, the security of QKD is

compromised [PAL+15]. MITM attack on the protocol was shown earlier which exploits

forgery attacks on the authentication algorithm. In theory an almighty attacker can forge

messages if the authentication algorithm is not ITS. Therefore security of the authentica-

tion algorithm plays a major role on the security of the whole system. However, in industrial

"real-life" scenarios as discussed before, ITS is not necessary. In fact, practicality is much

more important given unlimited power does not exist. It is true that unconditional com-

puting power does not exist, though one could argue if the goal is to achieve post-quantum

secure key distribution why use QKD in first place where there are already post-quantum

secure key distribution protocols.

There are two reason to justify the security assumption. First QKD, apart from being

ITS, has a great generation rate potential. Recent implementations demonstrate 1 Gbps

speed encryption using QKD[EWL+10]. More importantly, the authentication security

does not need to provide forward secrecy i.e. if the authentication could be forged later it

would not matter. Therefore, if forging is hard enough for the time of post processing the

secret shared is ITS. And that is why I studied post quantum secure algorithms and ITS.

Therefore, the lower security bound of this study for authentication algorithm is being post

quantum secure, while ITS remains as the higher security bound. Obviously achieving ITS

authentication is more desirable.

Now that it is evident QKD "uses" authentication for post processing, it is useful to

have a general overview of post processing. Understanding the nature of the messages and

communication could help us to propose the suitable algorithm. Thus this study reviews

post processing as it was suggested by original BB84 protocol and briefly mentions the

variations. This is because of the fact that other protocols are derived from BB84 and post

processing step and messages are similar. Knowledge of number of steps, type of communi-

cation, approximate message length could be decisive factors for selecting an authentication

algorithm and an authentication method. An authentication method, employs an authen-

10

CHAPTER 1. BACKGROUND

tication algorithm and it provides authentication total solution. A method of employing

an algorithm is dependent to the usecase of the algorithm e.g. authentication using the

same algorithms with two different methods one for network communication and the other

with digital assets. Since the post processing is assumed to occur over classical channel,

this study considers classical network authentication methods.

The most secure and most efficient algorithm and method is not necessary the best

for QKD. It is important to understand what are the requirement of QKD to propose the

most suitable solution. The best requirement analysis of QKD could be found in practical

implementation of the protocol. Those study reveal the naked truth about the needs of

the system and can better help us to define what suitable for QKD is. Hence, this study

looks into well-known practical implementation of QKD as well. The outcome of analyzing

these implementation would not only be useful to find the needs of QKD, but will also

helps us to get an idea of the post processing steps and algorithms used in them, also the

authentication methods and algorithms. I also use this as a ground to build on it, and also

as a reference to compare my proposal to.

Eventually, based on my findings on the related literature, I propose a solution which

provides authentication infrastructure complying with at least the lower bound security

assumption specified for this study. The solution is software based and assumes it receives

the raw key from the quantum device in software layer and shall perform the post process-

ing. The main focus of this study is post quantum secure authentication method suitable

for qkd, however, it is needed to cover other aspects of the system for the purpose of clarify-

ing the whole picture or justifying design approaches. These "out-of-scope"s are discussed

through out the text briefly. References are provided for interested reader to delve further

on them.

1.5 Outline

This study is conducted in four chapters. Chapter 1 provided a background on the problem

and introduce the topic of the research in abstract. In section 1.4 of this chapter research

questions are detailed and methodology to find answers for them are explained. In chapter

2 related literature are analyzed and section 2.4 a comparative summary of the reviewed

literature is provided which is the building block for the proposed solution presented in

chapter 3. The solution could be considered as a design document which might be subject

to minor changes once feedback from implementation and future research is available. This

is discuss in more depth.

Proposed solution is a QKD network endpoint which could be used in any network

11

CHAPTER 1. BACKGROUND

topology QKDs are working in and perform different QKD protocols. The architecture

is presented in section 3.1 and it is well briefed over the scope of this study, namely

authentication algorithm, authentication method, and QKD post processing. The other

aspects of system related to the scope are detailed as well in section 3.2. To prove efficient

post quantum secure authentication post processing, a simple version of APPP, the other

main contribution of this study, is implemented in section 3.3.

And finally, chapter 4 discuss about the design rationale behind the proposed solution,

and in section 4.2 it provides comprehensive comparison between the proposed solution

and existing ones in different level, and also talks about where the solution stands from

view point of recent literature. I conclude the study in section 4.3 where I argue my

personal thoughts about QKD and the direction it is heading, and set backs which shall be

addressed. I also present the possible outlook for future work on how to enrich and extend

the proposed solution.

12

CHAPTER 2. RELATED LITERATURE ANALYSIS

Chapter 2

Related Literature Analysis

"Secrecy,

once accepted,

becomes an addiction."

— Edward Teller

Thereafter publishment of BB84 protocol, efforts were put on to security analysis, enhance-

ment, improvement, and also practical implementation of quantum cryptography. The level

of secrecy provided by the quantum principles was so tempting that other cryptographic

functions were also suggested based on these quantum principles. This level of acceptance

allowed wide range of techniques and algorithms to be suggested for improvement on se-

curity of the BB84 to an extent that we have many Quantum Key Distribution protocols

all derived from BB84; which itself has many varieties nowadays. Moreover, in the original

paper communication on the quantum channel has been specified to a very clear extent.

On the other hand, communication over the public channels are not described in detail – it

seems out of scope of QKD and Bennett and Brassard contribution which was more focus

on the quantum communication part. This resulted in various approaches and techniques

to perform post processing.

Although the main focus of this research is analyzing authentication algorithms for

QKD, yet it is necessary to clearly specify post processing and understand the type of

messages traversed and the communication itself. These insights will be used to better

identify what authentication algorithm and method is the most suitable for QKD. Thus,

this chapter reviews the related works being done in the field of BB84 post processing with

the intention of grasping an overall knowledge about post processing procedures and the

communications required. Once the steps in post processing are discussed, post quantum

secure MACs are presented. Subsequently practical implementations are reviewed, authen-

13

CHAPTER 2. RELATED LITERATURE ANALYSIS

tication and communication requirements are extracted from these projects. Besides the

issues the projects were facing which affects or is related to authentication are highlighted.

At the end of the chapter, the comparative summary of all three, namely Post Processing,

MAC, and practical implementations, is given.

2.1 QKD Post Processing

Post processing is the public discussion over an authenticated channel and happens right

after quantum communication in which both parties obtained a bit string also known as

raw key. During post processing the basis mismatches in transmission and measurement

are discovered and the corresponding bits are deleted from the raw key during sifting.

The qubit Error Rate (QBER) is then calculated where both parties reveal some portion

of the sifted key during confirmation step. Possibility of eavesdropping is measured in

the same step – if QBER is above the threshold1, the key is ignored and communication

over quantum channel shall start again. Subsequently, plausible transmission and detection

errors in the rest of the confirmed key are recognized and eventually last step will try

to degrade possible knowledge of eavesdropper on the shared secret to minimum. Key life

cycle during post processing is shown in figure 2.1 where each arrow represents one step of

post processing.

Figure 2.1: Key Life Cycle through Post Processing. Arrows resemble post processing steps.

Four main steps of post processing in the sequence of occurrence as suggested by original

BB84 are explained here, known algorithms are described between sender, the one who

initiates the protocol, and receiver. This section will give an overview of the messages,

their approximate size, and their quantity during post processing. This Knowledge will be

considered for both choosing between authentication algorithms and methods, and also in

the design of the proposed solution.
1The threshold is the amount of accepted error in the sifted key based on packet loss, detection issues,

and etc. It is directly dependent to the distance and hardware used in the project. Accepted QBER is not

more than 20%.

14

CHAPTER 2. RELATED LITERATURE ANALYSIS

2.1.1 Key Sifting

Key sifting is the first step in post processing – parties shall reveal used basis and winnow

out the mismatched ones. Although there exist different methods of sifting, but at its

essence, to sift, parties shall reveal all the basis used during quantum communication. To

sift all the basis, a string as long as the key itself, shall be sent by one of the party where

each bit represents the choice of basis. Same size bit string from the other party will confirm

the correct basis i.e. matched ones. In original BB84, receiver initiates sifting.

The main different between key sifting approaches are due to different policies for ter-

mination of quantum communication. Although the original paper submitted time based

policy in which at the end of quantum communication receiver notifies sender she has cap-

tured all the qubits, some have suggested iterative sifting and there is a different iterative

method called non-iterative for the fact that it does not iterate the basis, and it rather

uses a fixed based for communicating the key and use the other basis as decoy [WTC18].

These modifications are proposed to improve efficiency, practicality, and key rate.

In this study, however, I follow the time based termination policy original BB84 suggests

– receiver is expecting a photon within a certain time slot, once the time for detection is

over, receiver shall reveal the basis she chose during measurement. Sender, will then notify

her which ones are correct. As figure 2.1 illustrates, the input in this step is the raw key

and the output would be sifted key. There are two messages communicated in this step

which could be as big as the raw key.itself.

2.1.2 Confirmation

During this step, some portion of the sifted key is revealed – in return parties can calculate

the error rate over the quantum channel i.e. QBER. If the error rate is above a certain

threshold, then parties abort post processing. As discuss earlier, there is an expected error

due to losses during transmission and measurement. On top of that, quality of all most

any connection drops as distance increases. The quality of the hardware used also affects

the quality of the communication – higher QBER than expected is result of eavesdropping

where the intruder tried to measure and disturbed the qubit or is trying to perform MITM.

Analogous to Sifting, there are different suggestion for confirmation step on which bits

and what portion of sifted key shall be revealed, and who should initiates the step. However,

this study follows BB84 original guidelines in which sender will ask for random indexes in

the sifted key and receiver will reveal those bits. Sender, then, notifies her how many are

correct. After this they can calculate the QBER and decided whether to continue or not.

The original paper does not suggest how many bits shall be revealed, but follow up works

15

CHAPTER 2. RELATED LITERATURE ANALYSIS

suggested up to half of the sifted key, and same size message is needed to confirm each

bit. In this step, at least three messages are communicated. The revealed bits, obviously,

would be removed from sifted key to form confirmed key.

2.1.3 Error Correction

In original BB84 paper, as shown in figure 1.3, confirmation is considered the last step of

post processing. In practice however, at this stage, parties have a shared bit sequence which

contains error as much as QBER with very high probability. Hence, it seems necessary for

parties to re-conciliate these errors.

There are many different error correction algorithms which could be selected based

on the implementation requirements and needs. There are two main approaches generally

in these algorithms: (i) Symmetric where both parties participate in the process with the

same load, and (ii) Asymmetric in which only one party plays the major role – symmetrical

techniques are used in scenarios that computation for one party is expensive e.g. satellites

or embedded systems.

Number of messages transmitted during this step depends on QBER, length of the

shared secret and the algorithm used. It is out of the scope of this study to investigate

error correction algorithms like BCH2, LDPC, Cascade, and etc, deeply. Nevertheless,

section 2.4 contains information of known error correction algorithms and scenarios they

are fitted the most for.

2.1.4 Privacy Amplification

Since it is plausible to have error in the confirmed key due to mentioned causes, it is manda-

tory to use error correction. However, many error correction algorithms leak information

about the data they are processing, in this case the confirmed key. Therefor, it is necessary

to reduce the knowledge of adversaries after of this leakage or any other possibilities. This

could be achieved by privacy amplification means – the most mentioned technique in the

literature is using a family of hash functions. The output of privacy amplification function

is set to a desired length for secret key.

Privacy amplification step has not been explicitly addressed in the original BB84 as

well. Indeed it is out of the interest of this study as well – since if sender and receiver

have already concurred on the privacy amplification technique, then the rest is a local

computation for each one of the parties and no message is need to be communicated in

this step; thus no need to authenticate anything. Since it is customary to use family of hash
2Bose–Chaudhuri–Hocquenghem codes[BR60].

16

CHAPTER 2. RELATED LITERATURE ANALYSIS

functions for privacy amplification, it is safe to assume sender and receiver need to agree

upon a function from the family for this step – this is the only communication needed for

this step which, obviously, shall happen prior to the step itself.

2.2 QKD Authentication

Heretofore, we explained post processing in more detail for the purpose of clarifying each

step and the messages communicated. After all, the intention of this study is to identify

suitable means to satisfy the "public channel" requirements mentioned in BB84 for post

processing – the whole QKD protocol is consider secure if and only if "...public commu-

nication channel, assumed to be susceptible to eavesdropping but not to the injection or

alteration of messages[BB84] – the security of the protocol heavily relies on integrity and

authenticity of the communication over the public channel. In general, there are two ap-

proaches for authenticating QKD post processing communication: instant and delayed. As

their name suggest, instant authentication is when all the messages transmitted for each

step are authenticated as they are sent and received – delayed authentication check the

integrity and authenticity of the communication after post processing.

As mentioned in the previous chapter, MACs are cryptographic notions preserving

integrity and authenticity of messages. In this section we present three different type

of MAC algorithms which are mostly used in communication networks and are suggested

by literatures to be deployed in QKD. MAC generates unique "tag" for a given message

and a key. Tags could be later used to verify the integrity and authenticity of messages

assuming the used key was only known to sender and receiver.

2.2.1. Definiton. (Message Authentication Code)

G : K ×M 7→ T

V : K ×M× T 7→ {0, 1}

Vk(Gk(m),m) = 1 ∀ k ∈ K,m ∈M

MACs are defined over arbitrary size message space M, and finite size key space K
and tag space T . They also contain two keyed functions: tag generator function G and

verification function V. Tag generator function G takes m ∈ M and k ∈ K and generates

tag t ∈ T – verifying function V takes a tag and the corresponding message and a key,

then verifies the tag: outputs either 1 if verification was successful meaning the tag was

generated by the same message and key, or 0 otherwise. A MAC is consider secure if an

adversary could not forge a verifiable tag for a message without knowledge of the key.

17

CHAPTER 2. RELATED LITERATURE ANALYSIS

2.2.1 Block Cipher Based MACs

Block ciphers are symmetric encryption algorithm. They process the plain text in blocks

and work in different modes of operations for different purposes.Advanced Encryption Sys-

tem winner algorithm, Rijndael also known as AES is a post-quantum secure block cipher

which its security is based on assumption3 and was introduce in 2001. It has been under

heavy analysis since, and it is the most used symmetric encryption algorithm. By their

essence, block ciphers are very efficient in hardware implementation4; however, concepts

like substitution used in the algorithm are extremely slow in software. Due its high rate

of adoption however, exclusive AES instructions5 are implemented in high end CPUs and

other methods of hardware acceleration are employed exclusively for AES to increase its

performance in implementations.

The other finalists of Advanced Encryption System competition are the common alter-

natives to Rijndael, namely Twofish and Serpent. In the book "Cryptography Engineering:

Design Principles and Practical Applications" by Niels Ferguson, Bruce Schneier, and Ta-

dayoshi Kohno – the official designers and cryptanalyst of Twofish – they compare the

three.

"Serpent [...] is built like a tank. Easily the most conservative of all the AES

submissions, Serpent is in many ways the opposite of AES. Whereas AES puts

emphasis on elegance and efficiency, Serpent is designed for security all the

way. Twofish [...] can be seen as a compromise between AES and Serpent. It is

nearly as fast as AES, but it has a larger security margin".

However both have slow performance over software. Another related algorithm to

Twofish called Threefish has been proposed which does not follow the substitution principle

employed in block ciphers to avoid cache timing attacks, and achieves its nonlinearity de-

pendency through Exclusive ors[FLS+10]. Substitutions are not very CPU friendly – thus

removing them from the scheme make it very efficient in software implementation.

BEAR and LION are two algorithms which construct block ciphers by employing hash

functions and stream ciphers – both very efficient in software implementation and can

process big chunks of data. They are designed based on Luby and Rackoff proposal for

constructing block ciphers from three PRFs. Both methods are proved to be as secure as

used algorithms. BEAR adopts hash function H and stream cipher S. The algorithm splits

input M into [ML|MR]; size of ML is equal to the output size of M . The algorithm uses
3AES is not ITS, but there has not been an efficient attack found yet. Successful attacks exploit poor

implementation rather than the algorithm structure itself.
4they do block by block
5https://en.wikipedia.org/wiki/AES_instruction_set

18

https://en.wikipedia.org/wiki/AES_instruction_set

CHAPTER 2. RELATED LITERATURE ANALYSIS

two keys K1 and K2 which both are bigger than the digest size of the hash algorithm used

in size. Encryption happens as follows.

M ′L = ML ⊕HK1(MR)

CR = MR ⊕ S(M ′L)

CL = M ′L ⊕HK2(CR)

Cipher text would be [CL|CR] and it decrypts as follows.

M ′L = CL ⊕HK2(CR)

MR = CR ⊕ S(M ′L)

ML = M ′L ⊕HK1(MR)

LION has a very similar construction as BEAR; instead it uses stream cipher twice

and hash function once, which could be used with hash functions with weaker security

assumption than the one used in BEAR i.e. the hash function does not need to be a PRF,

it only needs to be collision-free [AB96]. It has been proved by the author that an attack on

either of the algorithm would also break the hash function and the stream cipher used i.e.

the algorithms are as secure as the stream cipher and hash functions used – it is the same

case for proposed MAC algorithms i.e. the security of block cipher based MAC algorithms

depend on the security of underlying block cipher used in any of these scheme presented

here. We will see later AES with help of exclusive modification outperforms all the others

on high end CPUs.

While from applicability perspective, it may not differ which variant of block cipher

is chosen; it could be a great deal from performance point of view or security concerns6.

Being the standard encryption scheme, Rijndael benefits from more attention in analysis

and implementation.

Apart from the block cipher algorithm, its mode of operation could affect the overall

performance – some modes are needed to be calculated sequentially while it is possible

to perform other modes of operation in parallel to achieve better performance. Here we

present modes which could be exploited to create authentication tags. At last we talk about

another MAC algorithm which uses block cipher in a different fashion comparing to others

to generate tag.
6All mentioned above are post-quantum secure and all their security is based on assumption, it is not

proven mathematically which of them is more secure yet statements like Serpant is more conservative

implies the better security of the algorithm, nevertheless it could not be measured.

19

CHAPTER 2. RELATED LITERATURE ANALYSIS

Cipher Block Chaining MAC

Block cipher encryption algorithms operating in CBC mode could be used as MAC algo-

rithm. The reason for this is the fact that in CBC mode there is feedback from the previous

block which can assure the integrity of the message – if one block is changed or even be

substituted with others, the tag would be different. Figure 2.2 shows both schematic of

Cipher-based Message Authentication Code (CMAC) for scenario in which the message

length is multiple of block length (in the right) and otherwise (in the left). As illustrated

in the figure, the message is divided into block size and encrypted with the key K – except

the first message block, the following message blocks would XORed with the previous cipher

text, hence comes the name chaining.

Figure 2.2: CMAC Schematic [Dwo05].

CMAC is an OMAC7 that address security deficiencies found in CBC-MAC. If two

pairs of tags and messages (m, t) and (m′, t′) are generated using the same key, the tag

for the third message m′′ = m||[(m′1 ⊕ t)||m′2|| · · · ||m′l] is also t′ – while generating the

tag for the m part of m′′ generates tag t as expected, when the other part starts, t as the

output of previous block would be XORed with the first block of second part and would be

canceled out by the t in the first block of second part: CIPHk(m′1 ⊕ t ⊕ t) = CIPHk(m′1).

And this is exactly like computing the tag for m′ which is t′. The issue could be solved

by encrypting the last block with another key as ECBC-MAC does, however, the issue

remains if the message size is not known in advance or size of the message is not multiple

of block size. XCBC proposed a solution which requires three different keys. In contrast to

XCBC and ECBC-MAC, CMAC algorithm derives K1 and K2 from the single secret K –

hence comes the name One-key MAC – and apply either of them to the message depending

on its length.
7One-key MAC are modified version of ECBC-MAC and XCBC which address CBC-MAC security

issues but require two and three different keys respectively. CMAC could be seen as one-key XCBC

20

CHAPTER 2. RELATED LITERATURE ANALYSIS

Parallelized Message Authentication Code

CBC style MACs are not very efficient due to the fact that their computation is linear

and cannot be parallelized i.e. computation over a block could not be initiated until the

computation over previous block is finished. Depicted in figure 2.3, PMAC is a block

cipher based authentication tag generator which could be computed in parallel, thus it has

superior performance compared to CBC variants.

Figure 2.3: PMAC schematic [BR02]

.

As demonstrated in figure 2.3 PMAC resembles ECB mode of block cipher operation

– messages are splitted into blocks of n bit size, then they are XORed with multiplication

of constant γi derived from Gray Codes8 and L = CIPHk(0n), except the last block. The

multiplication is defined in detail in [BR02] – it is a polynomial multiplication overGF(2n).

The results of XOR are then encrypted to create Y [i]s. As it can be observed the process on

each block is happening independently of the others and could be performed in parallel.

Subsequently, Y [i]s are XORed and eventually XORed with the last message block to construct
8Gray Codes are ordering γl = γl

0γ
l
1 · · · γl

2l−1 of {0, 1}
l such that successive points differ (in the Hamming

sense) by just one bit. For n a fixed number, PMAC makes use of the “canonical” Gray code γ = γn

constructed by γ1 = 01 while for l > 0, γl+1 = 0γl
0 0γl

1 · · · 0γl
2l−1 1γl

2l−1 · · · 1γ
l
1 1γl

0 . It easy to compute

successive points since for 1 ≤ i ≤ 2n − 1, γi = γi−1 ⊕ (0n−11 << ntz(i)). ntz is the number of trailing

zeros; ntz(7) = 0 while ntz(8) = 3 [BR02].

21

CHAPTER 2. RELATED LITERATURE ANALYSIS

Σ – ordering in XOR obviously does not matter. In case there were no padding added to

the last message block, Σ will be XORed with L.x−1 which means to reduce a degree from

polynomial representation of L – there is an efficient algorithm for that in [BR02]. The

final step is to encrypt the result and take the first τ bits as the authentication tag. It is

obvious changes in any message block or their order will result in generating different tag.

Galois/Counter Mode

GCM is an authenticated encryption scheme based on block ciphers in CTR mode in which

the encryption happens over a counter and the result is XORed with the message – figure 2.4

shows schematic of counter mode used in GCM which is called GCTR, ICB is the Initial

Counter Block (ICB) or value which increments for each block. GCM calculation could be

parallelized due to the nature of CTR mode.

Figure 2.4: GCTRk(ICB,X1||X2|| · · · ||X∗
n) = Y1||Y2|| · · · ||Y ∗

n . Bold border lines on boxed denote
they are input to the algorithm.

Figure 2.5 shows schematic of GCM authenticated encryption function. The algorithm

takes confidential plain text P , and encrypts it using GCTR to construct cipher text C,

and together with other inputs they form the input data the tag would be generated for

– shown as input to GHASHH in figure 2.5. Apart from the plain text and a key K,

Initial Vector (IV) and additional non confidential data which user wants to authenticate

denoted as A are inputs to the algorithm. "An implementation may restrict the input to the

non-confidential data, i.e. without any confidential data. The resulting variant of GCM is

called GMAC. For GMAC, the authenticated encryption and decryption functions become

the functions for generating and verifying an authentication tag on the non-confidential

data" [Dwo07]. Hence the input for GMAC could be only A and IV . The initial vector is

used to define the block J09 which is later fed to GCTRs as ICB.

GHASH, depicted in figure 2.6, is a universal keyed hashing function. It processes the
9If the size of IV is 96 bits, then J0 = IV ||031||1, otherwise IV is hashed using GHASHH to create J0

– the whole algorithm is detailed in [Dwo07].

22

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.5: GCM schematic. Bold border lines on boxed denote they are input to the algorithm
[Dwo07].

message in form of blocks. Each block is first XORed with the result from previous block

and then it is multiplied by the secret H. The first block is XORed with block zeros before

multiplication, and the multiplication itself is a block multiplication – an efficient algorithm

to compute multiplication of two blocks is presented in [Dwo07]. GCM encrypts a block

of 128bits zeros with the key K to arrange H, the secret key for GHASH which is used

to hash the input data. The hashing output is then encrypted using GCTR and the t

most significant bytes are chosen as the authentication tag – this is very similar to UMAC

and VMAC, another MAC generator schemes explained in Universal Hash Based coming

section. The reason GMAC was listed with other block cipher based scheme is GCM mode

was suggested as block cipher operation mode and GMAC is a part GCM authenticated

encryption algorithm, which is different from VMAC and and other solely authentication

algorithms. More importantly, GMAC encrypts the results of universal hash while it is

suggested by Carter-Wegman to XOR the result of hash with a psuedo random string. I

think this would not make difference on the security of both algorithm as long as AES

could be view as PRF, which this is acceptable in post-quantum era.

Verification of the tag follows the same procedure, the only difference is in the final step

the computed tag would be compared to the original tag – if they are equal the tag is valid,

otherwise it is not. In case GCM was used for authenticated encryption purposes, once the

tag is verified, the cipher text C would be decrypted using GCTR decryption which is

an identical procedure to GCTR encryption; the only difference is the input which is the

cipher text C instead of plain text P .

23

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.6: Ghash schematic [Dwo07].

Poly1305

Poly1305 is a MAC algorithm which hashes the message using an efficient polynomial

hashing in mod2130 − 5 so called Poly1305, and then adds the hash output to encryption

of a nonce. Poly1305 is different in nature comparing to other block cipher based MAC

presented here as it does not rely on any modes of operation. Indeed, it might even be more

similar to universal hashing MACs known as Carter-Wegman style. In the first publishment

of the algorithm, it was suggested to use AES in order to encrypt the nonce (Poly1305-

AES), however, later it was suggested to use more efficient encryption algorithms like

chacha20. Chacha20 is a post-quantum secure stream cipher and the successor to Salsa20.

It uses new round function which enhances the diffusion property of the scheme and also

boosts the performance comparing to AES.

ChaCha follows the same principles as Salsa20 the eSTREAM certified portfolio1: soft-

ware implementation, but has more diffusion per round, and this enables achieving the

same security in less round, and obviously less round is more efficient. "Salsa20/20 is more

conservative design than AES, and the community seems to have rapidly gained confidence

in the security of the cipher" [Ber08].

The security of Poly1305 and justification for the design are expressed in [Ber05b].

Chacha20-Poly1305 has received a very good reception since its introduction and getting

adopted into many applications substituting AES types of block cipher authentication

specially in mobile device communication. Performance wise it is superior to CBC, PMAC

and GMAC variations and implementation could be highly customized based on different

architecture with low costs of implementation.

The algorithm implemented an efficient polynomial hashing function and hashes the

message in blocks of 16 bytes (128 bits) and then XORs the hash with the encryption of

the nonce with the secret key k – classic Carte-Wegman where the result of the hash is

24

CHAPTER 2. RELATED LITERATURE ANALYSIS

XOR with a random bit string here the cipher text. The random number r have certain

restrictions, and values for some of its bits are fixed. In the below formula cis are special

polynomial representation of the message, and q = d `
16e where ` is the message length.

(((c1r
q + c1r

q−1 + · · ·+ cqr
1) mod 2130 − 5)︸ ︷︷ ︸

H(m)

+CIPHk(n)) mod 2128

Standard Poly1305 algorithm uses a 128 bits nonce n, 128 bits key k, 128 bits random

number r, and creates authentication tag for arbitrary message length based on the above

formula. However 128 bits is not post quantum secure, and recently versions with higher

key size (256bits) are introduced.

2.2.2 Cryptographic Hash Based MAC

While using block cipher specially CBC-DES10 was the most common approach to generate

authentication tag, utilizing cryptographic hash functions to generate authentication tag

emerged in mid 90s, mostly from sheer interest of Internet community "where the devel-

opment of security protocols has led to the need for simple, efficient, and widely available

MAC mechanisms [...] the popular hash functions are faster than block ciphers in software

implementation" [?].

Cryptographic hash functions are not keyed primitives i.e. they do not take a secret as

input, and this makes it harder to create secure cryptographic authentication tag generator

from them. On top of this, cryptographic hash functions have their own notion of security

– these security properties for a cryptographic hash function H and its digested output

h, are listed below. Other attacks, except those listed below exist for hash functions, like

extension attack, inner collision, or state collisions; yet these three remain the standard

security properties of hash functions.

• Pre-image resistance: for H(m) = h given h it must be impossible/hard to find m.

• Second pre-image resistance: for H(m) = h it must be impossible/hard to find m′

such H(m′) = h.

• Collision resistance: it must be impossible/hard to find two messages m 6= m′ such

that H(m) = H(m′).

Cryptographic hash functions are mapping arbitrary length domains into fixed length

co-domains; hence it could not be claimed that there is no two pairs of input messages which
10Data Encryption Standard is a deprecated block cipher developed by IBM in 70s.

25

CHAPTER 2. RELATED LITERATURE ANALYSIS

yield the same digest. Given the bigger size of the function domain comparing to its co-

domain it is possible in theory for two inputs two have the same output. This fact directly

affect the Second pre-image resistance and Collision resistance property, and that is why I

have used "impossible/hard" to define these properties – the best solution is to use larger

co-domains (e.g. 2256) and design the cryptographic hash function as similar as possible to

the notion of random oracle, i.e. distribute inputs to outputs as evenly as possible to make

the effort expensive and then under some computational power assumptions, cryptographic

hash function is considered secure.

For finding a pair which their digest collides, the attacker could choose any arbitrary

pair of desired messages and check whether they output the same digest. To find second pre-

image of a digest, however, the value of the digest is fixed. Finding collision is easier than

finding a second pre-image, indeed a collision could be found in the order of 2n/2 while this

number is 2n to find a (second) pre-image where n is the size of hash function co-domains in

bits. However, considering Grover’s quantum algorithm, second preimages could be found

in complexity of the same 2
√
n = 2n/2 in post-quantum era[Ber10]. Assuming a function

H is pre-image resistant for every element of the range of H is a weaker assumption than

assuming it is either collision resistant or second pre-image resistant. Moreover, assuming a

function is second pre-image resistant is a weaker assumption than assuming it is collision

resistant [Sma16]. Hash functions are considered broken if collision could be found in order

less than 2n/2 [BDPV07].

Merkle-Damgård (MD) is a well-know compression approach for creating collision re-

sistance hash functions – algorithms such as MD5, SHA-1, and SHA-2 are benefiting from

this structure. MD structure is a tree-based efficient method for calculation over software.

As of 2018, however, finding collision on all variation of MD-5, SHA-1, and SHA-2 are

practical [DEM15][EMS14], and except for two variation of SHA-2, namely SHA-512/224

and SHA-512/256, all of them are vulnerable to extension attack11.

HAsh Iterative FrAmework (HAIFA) is another construction for creating secure cryp-

tographic hash functions. It "maintains the good properties of the MD construction12 while

adding to the security of the transformation, as well as to the scalability of the trans-

formation" ; yet is simpler, more efficient, and faster. BLAKE, a post-quantum secure

cryptographic hash function, was the third secure hashing algorithm finalist, which em-

ploys HAIFA as its domain extender[jCPB+12], and rely on same core permutation used
11Length extension attack on MD construction happens since the output is the internal state. If an

attacker knows message m1 and its length l2, and the tag t which has been generated by key k, then she

can forge tags for extension of m1 – she simply has the inner state of the keyed hash function and forge

the tag for m = [m1||m2] under key k.
12A prefix-free MD construction whose padding rule is prefix-free.

26

CHAPTER 2. RELATED LITERATURE ANALYSIS

in ChaCha stream cipher as compression function [ANWW13]. SHA-3 final reports cred-

its BLAKE with having a "very large security margin", and "a great deal of depth" in

cryptanalysis performed on the algorithm.

In 2013 a enhanced version of BLAKE called BLAKE2 was introduced with astonishing

performance specially on 64-bit CPUs. BLAKE2 operates on 256 bits (BLAKE2s) and 512

bits (BLAKE2b). BLAKE2b on 64bit-CPUs is 1.5 times faster than BLAKE2s [ANWW13]

– on an Intel Core i5-6600 (Skylake micro-architecture, 3310MHz), BLAKE2b can process

1 Gibibyte per second, or a speed rate of 3.08 cpb. The performance could further be

enhanced by using BLAKE2 in parallel mode. BLAKE2bp runs 4 instances of BLAKE2b

in parallel, and BLAKE2sp runs 8 instances of BLAKE2s.

Sponge construction, yet another collision resistance method for creating secure hash

functions introduced in 2008, is designed to behave as random oracle13 – "it takes a variable-

length input and produces an infinite-length output" [BDPV07]. Illustrated in figure 2.7, it

uses a fixed length permutation f over b = r+ c bits also known as the state – r is the bit

rate and c is called the capacity. The initial state is set to zero.

Figure 2.7: Sponge Construction [BDPV07].

Input to the construction is padded and splitted into r bits blocks, and during the

absorbing phase all the blocks are XORed with the r bits of the state before being fed to the

permutation f . Once all the blocks are processed, the sponge enters squeezing phase where

r bits of state would be concatenated after each call to f to create the required length

output. Sponge construction and its security proofs are detailed in [BDPV07][BDPV11].

An instance of sponge construction is called a sponge function. The winner of the third

Secure Hashing Algorithm contest, also known as SHA-3, is a Sponge function called Kec-
13All the security complexity to find collisions and preimage are the same as random oracle, the scheme

is immune to correlation attacks; length extension is not applicable to random oracle concept but sponge

is secure against that as well[BDPV07].

27

CHAPTER 2. RELATED LITERATURE ANALYSIS

cak: "the endpoint of a long learning process [...] at fixing PANAMA [26], resulting in

RADIOGATÚN[4] [...] which become Keccak" [BDPV14]. In contrary to other hash al-

gorithm, SHA-3 has satisfying performance in hardware implementation, but in software

implementation it is slower than others14[jCPB+12].

Analogous to encryption standard, SHA-3 benefits from the attention it receives being

the latest standard; SHA-3 has been, and will be, under heavy analysis – no successful at-

tack has been published yet. Moreover, there are tons of publication on secure and efficient

software and hardware implementation beside suggestion on how to choose parameters to

achieve required security and performance15.

In 2016, two parallel hashing algorithm based on Keccak-p were submitted for NIST

fast hashing competition, namely ParallelHash and KangarooTewelve. The former

achieves unlivable performance on Skylake X CPU platform and is more than 2 times

faster than BLAKE2 parallel algorithms – the benchmark is presented in figure 2.8. Kec-

cak-p based algorithm’s "security assurance directly benefits from nearly ten years of public

scrutiny, including all cryptanalysis during and after the SHA-3 competition" [BDP+16].

Instead of 24 rounds of Keccak permutation used in SHA-3, KangarooTewelve only

does 12 rounds Keccak-p permutation which is a safe margin considering the best attacks

on Keccak are happening over 6 rounds, and it utilizes Sakura encoding for tree hashing

to gain better performance on long messages, scenario more similar to reality usage of MAC

in QKD. Sakura, constructs tree of hops instead of traditional nodes. A traditional node

may contain message bits and chaining values of the tree simultaneously, while there are

two different types of hops for that: message hops and chaining hops. Sakura-compatible

tree hash modes are not required to generate all possible hop trees, but instead they can fo-

cus on the desired subset of them [...]. Such a hop tree determines the parallelism that can

be exploited by processing multiple message hops or chaining hops in parallel" [BDPV13].

There special hoping as well called Kangaroo hop which allows further parallelism. More

detail about the algorithm could be found in [BDP+16][BDPV13]. SHAKE128, shown in

figure 2.8 is Extended Output Function16 version of SHA-3 256 which performs better than

SHA-3 and provides arbitrary output size – it has been standardized on FIPS 20217 and

is presented in the figure as comparison reference.

In order to create authentication tags from these un-keyed hashing algorithms, a
14On Qualcomm’s Krait micro architec-ture1 SHA-3-256 takes about 20% longer to hash a message than

SHA-256 does, and on Intel’s Ivy Bridge (3rd generation) micro architecture 2, SHA-3-512 takes about

twice as long as SHA-512 does [ANWW13].
15Extensive list available at https://keccak.team/papers.html
16XOF is a function on bit strings in which the output can be extended to any desired length [KjCP16].
17https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf

28

https://keccak.team/papers.html
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.8: Cryptographic hash cpb benchmarks.[BDP+16]

straightforward approach could be taking as input the concatenation of a secret key and

the message, taking the output as the tag i.e. H(m, k) = t. This is know as keyed hash-

ing – but this method is vulnerable to length extension attacks for some construction.

Luckily, if a sponge function is used in this form and the inner state is kept secret from

the adversary, the MAC is at least as secure as the sponge function used[sponge]. This is

due to the fact that sponge construction are susceptible to extension attacks i.e. they do

not out put the state of the hash. Indeed, Keccak family could be used in this efficient

MAC generator algorithm called KMAC, constructed exclusively for this family of hash

functions. It is guaranteed "that the keyed sponge constructions can replace random oracles

in any single-stage cryptographic system as long as the total complexity of the adversary is

less than 2(c+1)/2" – for c being the capacity of the sate[BDPV11][BDPV08]. Therefore,

the value for c is usually greater than 255 to have at least 2128 bits security. In order to

resist extension attacks on other hash functions, HMAC principle could be followed.

HMAC

HMAC is one-keyed NMAC18, both publish in 1996 together. It proposes an approach

to make use of normal fixed IV (i.e. default initial state usually set to zero initially) hash
18Nested-MAC which uses hash functions to create MAC resistance to extension attacks – it requires

two keys: NMAC{k1,k2}(m) = H(k1 || H(k2||m))

29

CHAPTER 2. RELATED LITERATURE ANALYSIS

functions to create secure MACs through the below nested formula. k̄ is special key derived

from k "by adding 0’s of k to a full b-bit block-size of the iterated hash function" [BCK96].

opad and ipad are block-size length constants of 0x36 and 0x5c values to perform outer a

inner padding to the key, respectively.

HMACk(m) = H(k̄ ⊕ opad || H(k̄ ⊕ ipad||m))

HMAC does not necessarily share the same collision complexity as the hash function

used in the scheme – it could be more resilient [BCK96][Bel15]. The concept is widely in

used and analyzed extensively, more details and security proofs could be found in [Bel15].

BLAKE2 algorithm are designed to receive key as input – they pad the key with enough

zeros to construct a block and append it to the beginning of the message. BLAKE2 variants

only make one call to the compression function for hashing the first block with the zeros.

This is because they use HAIFA a free prefix MD construction, hence becoming more

efficient (at least for one less call). If HMAC used with BLAKE2, it will benefit from this

enhancement and is called Prefix-MAC which slightly faster due to decreasing invokes of

compression function [ANWW13].

KMAC

KMAC is designed to exploit sponge construction resistance against extension attack. The

MAC is simply hash of the key and the message with a small tweak. During absorbing

phase, first only the a padded version of the key would be XORed with initial state of zero,

and then the message would follow. This model is called outer-keyed sponge. This allows

the state to be unknown to the attacker before applying permutation f on the message

block. The tag would simply be the output of the hash function. One could also place the

key as the state itself, this method is called inner-keyed sponge[BDPV08].

Originally KMAC was proposed as outer-keyed sponge in two variant based on cSHAKE12819

and cSHAKE256 [KjCP16]. KMAC could have arbitrary output length, thus it is rec-

ommended as PRF or Key Derivation Function20 by NIST; the security precautions are

discussed in [KjCP16].

2.2.3 Universal Hash Based MAC

Universal hash based MAC rely on a collection of hash functions instead of one and choose

randomly amongst them in each run. For the collection to be considered universaln strong,
19cSHAKEs are defined in terms of the SHAKE and Keccak[c] functions specified in FIPS 202. They

either call SHAKE with XOF permutation or MACc[KjCP16].
20KDF generates session key from a secret seed.

30

CHAPTER 2. RELATED LITERATURE ANALYSIS

it need to have |H|/|B|n functions to map elements ai to bi for 0 < i ≤ n from domain A

to co-domain B – |H| is the number of hash functions in the family and |B| is the size of

co-domain or digested value. Domain on universal hash functions is mostly fixed and not

arbitrary. Carter and Wegman introduced many classes of strong universal2 and almost

strong universal2 family of hash functions and built MAC generator using universal2. The

scheme takes two key k1, k2, one to choose the hash function fk1 , an the other one to pick

an digest bk2 from B and then tag t = fk1(m) ⊕ bk2 . Usually the message is splitted into

n part and this procedure is repeated and the result are concatenated until all processed

and then the tag is chosen from the final digest. It is important to not process the same

message piece with the same keys twice [CW81].

It is proven using some provisions detailed in [CW81] the proposed scheme is ITS and

unbreakable. UMAC and VMAC are two other implementation of Carter-Wegman style

MAC which are implemented for 32-bit and 64-bit architectures, respectively. VMAC’s

VHASH algorithm uses integer multiplication rather than multiplication of polynomials,

hence it is very efficient comparing to polynomial multiplications or block multiplications

like GHASH. crypto++ implementations of UMAC and VMAC perform at 0.22 and 0.40

cpb and GMAC operates 0.34 cpb with the help of exclusive instruction sets on Skylake

(6th generation) Intel CPUs, otherwise the result for only hashing by GHASH and not

encrypting using GCTR would be more than 10 times slower [BC14]. The performance

comparison of the performances are detailed in section 2.4. VMAC generates tags adopting

Carter-Wegman suggestion through below formula:

VMACk1,k2(m) = Hk1(m)⊕ Fk2(nonce)

auth256, is another Carter-Wegman MAC which achieves astonishing performance

faster additive Fast Fourier Transform (FFT) based algorithm to multiply polynomials –

achieving Faster Binary-Field Multiplication, thus faster MAC generation [BC14]. auth256

is the only algorithm selected in this paper which has not been part of any competition or

standard21. The justification for this selection is the fairly clear and straightforward claims

and modifications done in auth256, namely modification of FFT which "is well known in

the FFT literature but we have never seen it applied to message authentication. It reduces

the cost of FFT-based message authentication by a factor of nearly 1.5" [BC14].
21The work was supported by the National Science Foundation and by the Netherlands Organization for

Scientific Research.

31

CHAPTER 2. RELATED LITERATURE ANALYSIS

2.3 QKD Network Implementations

Traditional QKD implementations contain two QKD endpoints connected to each other to

form a QKD link which contains a quantum channel and classical channel – this type of

connection is known to have the following flaws and restrictions:

• "Traditional QKD is distance limited" [Ell05].

• "Key distribution [rate] exponentially decreases as a function of distance" [PPA+09].

• Traditional QKD "can only be used across a single physical channel (e.g. freespace

or telecommunications fiber, but not both in series due to frequency propagation and

modulation issues)[Ell05].

• QKD link connections "inherent point-to-point character of communication, which

could be a significant obstacle in the majority of relevant application scenarios" [PPA+09],

"and is vulnerable to disruptions such as fiber cuts because it relies on single points

of failure" [Ell05].

With advancement of technology, improvements are being done on restrictions caused

by distance yet "they are still dominating as of today" [PPA+09]. In order to eliminate these

hurdles, in late 90s, it was suggested "to extend point-to-point connections to networks"[PPA+09]

– a natural progression analogous to evolution of classic networks – and the idea was studied

theoretically and experimentally back then [PPA+09].

Figure 2.9: Abstract Schematic of QKD network [Ell05]

Figure 2.9 depicts a pictorial schematic of QKD networks. QKD networks consist of

interconnected QKD links with various types of connections and protocols used amongst

endpoints across the network – it lifts traditional point-to-point QKD links restrictions.

For instance, QKD endpoint A3 could share a secret with a distant QKD endpoint such

32

CHAPTER 2. RELATED LITERATURE ANALYSIS

as B4 through different QKD paths22 – something which is not possible using traditional

QKD.

Obviously, the knowledge gathered during designing and implementation of classical

networks for almost half a century, was the backbone of designing QKD networks. De-

tailed description of QKD network, its components, and its security precautions regarding

trusted and untrusted nodes are describe in the relevant literature [darapa] and are out of

the scope of this section – in this section, I skim through some of the most well-known23

implementations with the intention of understanding the general architecture and design

principle used in them – this would help to better shape the requirements as well, as

discussed before in section 1.4. Another beneficial outcome of the studying existing imple-

mentation which is the most relevant to this study is to inspect their approaches for post

processing and authentication over the public classical channel.

Figure 2.10: General architecture of different layers in QKD network [SLB+11]

All these project are utilizing a three-tier architecture similar to the one shown in

2.10 from SwissQuantum project. In that specific project, it was suggested to employ

multiplexing over classical channel to reduce costs – this the reason the classic connections
22QKD path: a chain of QKD links and corresponding nodes[darpa]
23These implementation are those with rigorous amount of publication, mostly involvement of many

different organizations and were functional for a long time (more than a year) and there is field study

publication for them.

33

CHAPTER 2. RELATED LITERATURE ANALYSIS

go through Wave De-multiplexing Module (WDM) before departing towards destination.

This, however, is not common among all implementations. Nevertheless, the three below

layers exist similarly in all the projects.

1. Quantum Layer (QL) is the layer responsible for generating secrets using QKD

protocol and it contains all the necessary steps including post processing for the

parties to obtain secret key. Once secrets are generated they will be pushed into the

next upper layer to be stored.

2. Key Management Layer (KML) duty is to store and synchronize the keys gener-

ated by QKD and provide them to the application layer upon request or need. In some

implementations there are other inputs apart from QKD into this layer such as keys

generated by classical cryptographic algorithms like Deffie-Hellman [Ell05][SLB+11].

Moreover, this layer in many implementation is also responsible for transmitting

keys into distant nodes over classical communication channel using Key Encapsula-

tion Protocols24. KML also provides keys for authenticating messages during post

processing.

3. Application Layer (AL) is the main consumer of the shared secrets which pro-

vides secure communication and other type of cryptographic applications for end

users using secrets generate by QKD. Different projects have implemented different

applications feeding ITS secure secrets into their "crypto-engines".

The focus of this study is quantum layer, and specifically the post processing approach

and authentication means used in these implementations. For communication over public

channel all these projects are using classic network channels – some are exploiting existing

packet structures and technologies used in Internet such as IP, TCP, and IPSec for their

post processing protocols; while there are a few who have implemented new protocols from

scratch, yet very similar to OSI model. It is important to note the architecture of network

packets is layered design with each layer having definite purpose.

2.3.1 DARPA QKD Network

Defense Advanced Research Projects Agency (DARPA), sponsored Boston University and

Harvard University to implement the first Quantum Key Distribution network in BBN

laboratories in early 2003. The network consisted of six nodes back in 2004 – two free-

space nodes and the other four nodes connected through fiber. The network architecture

allows usage of different QKD protocols amongst nodes, and also connectivity of other
24KEPs encrypt secret keys and send across the network

34

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.11: DARPA architecture for VPN [Ell05]

networks with different protocols[ref]. The QKD protocols used in this project are BB84

and BBN proprietary QKD protocol.

DARPA uses Internet packet structure for post processing. The network uses VPN

tunnels between QKD endpoints to run post processing protocol, thus encrypting the

discussion over the public channel – unlike original BB84. The VPN key agreement prim-

itives are augmented or completely replaced by keys provided by quantum cryptography

[ECP+05]. To my knowledge, there is no published details about the algorithms used in

the VPN, or the nature of the augmentation done on traditional VPNs using IPSec ESP

headers. Besides the post processing protocol are not discussed as well i.e. anything on top

of Transport Layer (layer 4) is not elaborated on.

Figure 2.11 illustrates DARPA architecture. Keys generated from QKD and secrets

shared using Internet Key Encapsulation protocol25 will be used to generate new Security

Associate26 stored in Security Associate Database (SAD) for the VPN tunnel, or IKE. For

encryption of the tunnel AES KDF (similar to IKEv2) is used with key rollover in every

minute, and hashes are used for authentication (most probably SHA-2 HMAC given the

project was implemented before in 2003 but it is not explicitly mentioned). Using IKE or a
25IKE protocol is a KEP that is the backbone to secret sharing over Internet. It uses symmetrical and

asymmetrical cryptographic means to exchange session keys (shared secret) – current IKEv2 uses Deffie-

hellman to generate shared secret keys between pairs and encrypt session key using shared secret.
26SAs contain the key for authentication.

35

CHAPTER 2. RELATED LITERATURE ANALYSIS

key relay device, keys derived from QKD could be shared with other nodes in the network

even if they are connected via quantum channel27.

DARPA viewed QKD as a complementary technology to existing networks rather than

something separate. The only application implemented for DARPA project is to feed ITS

shared secrets into IKE which further would be used by IPsec to ensure secure commu-

nication using modified IPSec suite28. The system is implemented in C over NetBSD and

runs in kernel space – modifications on the kernel has been done to allow QKD module

interaction with IKE and IPSec daemon. The daemons themselves have been customized

for the algorithms they use. At the time of publishment of the paper (2005), DARPA was

considering about employing Carter Wegman tag for a final authentication – current sta-

tus is unknown, but in 2014 it was announce DARPA is adding more wireless and satellite

links into the project in news article.

The concept of three tiers illustrated in figure 2.10 was introduced later in SECQOC

project, that is why in DARPA the distinctions are not very clear. In DARPA Quantum

layer shares the medium for classical channel with key management layer and application.

The same channel (VPN tunnel) is used for post processing and key management (key

forwarding using IKE). The application layer is also defined within the key management

layer – the application is using the keys shared by QKD in IKE which is used as key

manager.

2.3.2 SECQOC QKD Network

SEcure COmmunication based on Quantum Cryptography (SECQOC) "was a major re-

search effort of 41 research and industrial organizations from the European Union, Switzer-

land and Russia, which was initiated in 2003 and carried out between April 2004 and Octo-

ber 2008. The SECQOC prototype in particular features six nodes connected by eight QKD

links. The network was deployed in the internal glass fiber communication ring of Siemens

(a SECQOC project partner) in Vienna, Austria" [PPA+09]. It includes both free-space

and fiber connections, and the project has implemented BB84 and SARG QKD protocols.

Unlike DARPA Quantum Network, SECQOC design philosophy recognized QKD as

an entirely novel architecture of its own. Figure 2.14 illustrates an abstract schematic

of SECQOC network architecture – it is consisted of interconnected Quantum BackBone

(QBB) nodes by QBB links. Figure 2.12 demonstrates two QBB nodes in their most simple
27sent hop-by-hop through a trusted network in which each hop decrypts and then authenticates the

key, and then encrypts the key with the secret it has shared with the next hop and send it to next hop

until it reaches destination
28They claim they have plans to implement OTP over IPSec but do not discuss detail.

36

CHAPTER 2. RELATED LITERATURE ANALYSIS

configuration having a single QBB link – QBB link is a point-to-point connection of many

QKD device which perform the quantum communication to exchange ITS secret. This is

the main difference between QKD links used in DARPA and QBB links introduces by

SECQOC. More quantum channels provide higher rate of key generation and also higher

reliability through redundancy. Each bundle of n QKD devices is accompanied with a

classical point-to-point connection. The classical channel is responsible for all the necessary

communication including QKD post processing, and secret key forwarding/routing. For all

the communication over the classical channel SECQOC designed a protocol called Quantum

Point-to-Point Protocol – its protocol stack is explained later in this section.

Figure 2.12: QBB link architecture [SBC+09]

Each QBB node could be connected to more than one QBB node. Figure 2.13 pictures a

QBB node with arbitrary n QBB links to different QBB nodes in a network. Each QBB link

is being handle by an individual instance of Q3P. Moreover, QBB nodes contain routing

and forwarding module to pass the shared secret across the network. QBB nodes have other

modules like quantum random number generators and post processing modules depicted

as "Other modules" in the figure.

Clients located in different private networks get the same shared secrets from the QBB

nodes located in their own private network, and then use those secrets to communicate

over public network like Internet. Figure 2.14 shows this procedure. Clients in different

private networks first need to register themselves with their QBB node. Then the QBB

node will provide clients with the shared secret which the nodes had exchanged (shown

in red dotted arrows). Subsequently, the clients use the secret to communicate over public

network (shown in blue dotted arrow).

If the two clients are not connected through neighboring QBB nodes, the secret would

be sent via intermediary QBB nodes in hop-by-hop fashion29. The secret is encrypted using
29Each hop authenticates, decrypts, find routes, encrypts using OTP, authenticates using Carter-

Wegman

37

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.13: QBB node architecture [SBC+09]

the keys each hop has shared by their QKD mechanism until it reaches the destination.

An illustration of secret forwarding could be seen in figure 2.13 in which the node is acting

as a hop and a secret is being forwarded from a QBB node connected by QBB link 1 to a

QBB node connected through QBB link n – the path is shown by red dotted arrow.

Besides QBB, Quantum Access Node (QAN) could be used by clients to acquire ITS

shared secrets. QAN nodes are connected to QBB nodes via secure links and they do not

have quantum devices themselves yet take advantage of keys shared by other QBB nodes.

The network topology detail and communication steps are described in [PPA+09][DAGS08].

For all the communication between QBB nodes including post processing and key forward-

ing Q3P protocol used.

SECQOC introduced a QKD protocol suit, illustrated in 2.15, which is a four layer

protocol stack very similar to OSI model and TCP/IP stack, and lays on top of a classical

38

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.14: SECQOC network architecture [SBC+09]

TCP/IP socket or quantum channel interface. Quantum channel interfaces could be used

when classical channel and quantum channel are multiplexed over the same fiber[SLB+11].

The first layer of QKD protocol suit is a link layer protocol, and links the connection of QBB

nodes. In SECQOC, Q3P is used as Quantum Key Distribution Link Layer (QKDLL) and

its header is demonstrated in figure 2.16. The two bit EA flag specify if the packet payload

(the rest of the protocol stack) is encrypted and/or authenticated.

The next header in the protocol Q3P stack is the Quantum Key Distribution Network

Layer (QKDNL) which has the exact same header as IPv4 [PPA+09][DAGS08] – on trans-

port layer QKDTL shares the same header and mechanism as TCP to open a connection.

Using similar technologies as classical network allows adopting similar routing protocols

for forwarding the key in the QBB network – same as routing used in IP they are us-

ing OSPFv230. There were attempt to address common issues current routing protocols

are facing to decrease the packet congestion; no result of that has been published to my
30IP routing protocol.

39

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.15: QKD protocol suit suggested by SECQOC[?].

knowledge though.

About application layer there is no specification; neither for post processing. Possible

different use cases has been standardized [NFV13], yet no standardization is published for

packet structures of Quantum Key Distribution Application Layer (QKDAL) – [NFV10]

introduces API calls for different architectural levels to communicate with each other. It

should be mentioned that communication authentication is not instantaneous as the Q3P

approach is based on delayed authentication, taking place before a distilled key is declared

‘secure’ by the QKD link.

2.3.3 SwissQuantum

SwissQuantum network is the first international QKD network initiated in 2009 with 2

nodes in Switzerland and one node in France. Each node had two sub-nodes to maintain a

point-to-point connection with the other two. The quantum layer of the project relied on

trusted intermediate node and the used multiplexing of quantum and classical channel to

reduce implementation cost. The classical channel is composed of post processing channel,

key routing and forwarding channel, encryption applications channel, and/or monitoring

channel.

The QKD protocols used in this project was SARG which is resilient against photon

40

CHAPTER 2. RELATED LITERATURE ANALYSIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Packet Length

Message #

EA Priority Ver. Command Channel

E-Offset

A-Offset

Payload

A-Tag

A-Tag

Figure 2.16: Q3P packet header.

number splitting attack and is more efficient in long distances [SLB+11]. Cascade is used

for error correction and Wegman-Carter scheme authentication is deployed to authenticate

all classical communications. Raw key exchange over quantum channel took between 4-

5 minutes, and 1 minutes for post processing[swiss00]. In order to increase performance,

they introduced link aggregation on quantum channel – analogous concept to QBB link

structure with aggregated quantum links.

The keys exchange by QKD will be combine with keys generated using RSA31 PKI

compatible with X.509 recommendations32 to create the finale keys:

"Depending on the combination technique, this final key can be as secure as the

more secure of the two initial keys [...] this combination is not used to increase

the security of the resulting key, but for improving the reliability and availability

of the applications in case of failure of the QKD layer". [SLB+11]

The application of the project was to provide secure keys for encryption over Layer

2 (Ethernet or fiber encryptors) and Layer 3 (IPSec encryptors) in OSI model. Keys are

encrypted by OTP schemes to traverse through the network. Detail about the protocol

used for key forwarding and other communications such as post processing is not explicitly

mentioned. However, given the fact that the project uses the same devices as SECQOC

and exploits the same architecture, it seems QKD protocol suit illustrated in figure 2.15 is

used.
31Rivest–Shamir–Adleman asymmetrical encryption.
32X.509 certificates authenticate public keys.

41

CHAPTER 2. RELATED LITERATURE ANALYSIS

2.3.4 Wuhu QKD Network

In 2009, China also implemented a weak+vacuum decoy BB84 QKD network – it was the

first hierarchal network consisting of four nodes in backbone and a subnet containing three

more nodes, making it a 7 nodes network. As illustrated in figure 2.17, one of the backbone

nodes works as a "Trust Relay" and extends the network.

Figure 2.17: Wuhu QKD network diagram [XCW+09].

All the nodes located in the backbone – the important bureaus with high priority –

could in theory play the role of a trust relay. Backbone Nodes are interconnected in a

mesh topology through the Quantum Router with WDM which can establish N(N − 1)

connection in a N port network at the same time.

The idea of subnet came from TCP/IP architecture – subnet enables extending the

network in hierarchy fashion and create separate segments from the backbone to avoid

information collision. In the subnets, delays are accepted to achieve better performance

in overall. Trusted Relay acts as a hop between the subnet and the backbone and all the

information transmitted between backbone and subnet is known to the trust relay.

Wuhu Quantum network is deployed in telecom stations and since there is Ethernet

access point, they had to create their own LAN, but the communication module follows

standard TCP/IP [XCW+09]. Cascade was used for error correction and universal hash

function for privacy amplification – a quite similar choice between other implementations

as well. Parameters from decoy state method are used to choose a the hash function from

the family of hash functions for privacy amplification step.

There is no explicit information about the post processing protocol or authentication

used over the classical channel. The final key generation rate was not high enough to

42

CHAPTER 2. RELATED LITERATURE ANALYSIS

consider OTP. Hence, AES was used to "encrypt the plaintext with the fast refreshed key

sequence of 128 bits supplied by the QKD process" [XCW+09].

2.3.5 Los Alamos National Laboratory NQC

In 2011, Los Alamos National Laboratory introduced a new concept called Network-centric

Quantum Communication. NQC is a network in star topology as illustrate in figure 2.18 – it

follows the same three tier type of architecture. In physical layer different clients distribute

ITS secrets with a central node also known as "hub" and feed those secrets to Quantum Key

Manager (KML) layer which enables secure communication between client. In star or "hub-

and-spoke" type of topologies which are very common in wireless networks – the central

node is a trusted entity which does the work of key forwarding and key sharing between

clients in different level – this addresses the trust issues in the previous implementations

where all the nodes had to trust each other. In "hub-and-spoke" topology, trust could

follow a hierarchal architecture with the hub acting as the only trusted authority (TA)

[HNM+13].

Figure 2.18: Los Almos NQC QKD architecture [HNM+13].

Los Alamos project is using a single multiplex quantum communication receiver in Trent

and all the nodes are equipped with quantum communication transmitter – given the fact

that the most expensive part in QKD implementation is the single photon detectors used in

receivers [HNM+13] – the costs of implementation drops considerably. In order to further

43

CHAPTER 2. RELATED LITERATURE ANALYSIS

Figure 2.19: Los Alamos communication between client and trusted authority [WIPO WO

2013/048674].

reduce the costs, transmitters are using polarized qubits instead of phase-base qubits. This

would also allow manufacturing of the transmitter device in a cheaper and smaller (more

practical) scale.

The project implemented different type of BB84 protocol, and employed LDPC codes

as error detection and correction technique. Toeplitz universal hashing was used for pri-

vacy amplification of the shared secret after reconciliation. In regard to authentication and

post processing communication, no technical detail about the post processing protocol and

implementation of the authentication method is given. It is mentioned cryptographic CRC

hash function were used though – these are lightweight authentication algorithm. Authen-

ticating the keys were generated by quantum identification protocol (QID) [HNM+13].

Moreover, QID could be used for client registration and revocation in the trusted author-

ity.33

Figure 2.19 shows the registration procedure of client by the trusted authority. Upon

first connection to the "hub", each user will use an identification like a biometricB and

encrypts that using a pre-placed share key with the trusted authority. Once the message is

authentication and required steps are taken to approve the identity, the trusted authority

and the user will generate encryption keys K for the client to use with other j users in the

network. The user will use these keys later on to communicate with other nodes in appli-

cation layer. Besides, the trusted authority and user generate secrets L for key derivative

function used between the user and other nodes. Authentication keys M are also generated
33Patented in WIPO WO 2013/048674.

44

CHAPTER 2. RELATED LITERATURE ANALYSIS

and finally the trusted authority and the user refresh the authentication key between them

to AK1.

The trusted authority will go through the above procedure with all the nodes and later

creates key pair P (i, j) and authentication key A(i, j) as shown below – the procedure

takes about 8 minutes for each node. H is "secure keyed cryptographic hash function like

HMAC-SHA-256" [PATENT].

P (i, j) = L(i, j)⊕K(j, i) for 1 ≤ i, j ≤ N and i 6= j

A(i, j) = H[K(j, i);M(i)] for 1 ≤ i, j ≤ N and i 6= j

The pairs are later sent to users over public non-secure network – as a matter of the fact,

once these pairs are published, the trusted authority could go off-line and the clients must

be able to derive shared secret to communicate with each other based on these published

pairs – user i calculates K(j, i) to communicate with user j using its own key derivative

corresponding to user j, namely L(i, j) and the published P (i, j), then with his authenti-

cation M(i) and calculated K(j, i), computes A(i, j) and authenticates K(j, i) – the other

user j can derive and authenticate K(i, j) following the same steps, and users have shared

more than one secret which they could consume based on the application. Devices are con-

stantly updating these values in the physical layer and the above formula is happening in

the Quantum Key Management layer which provides these keys for secure communication

in the application layer. On top of this, the patent of Quantum Key Management also

include password based QID and some other methods for digital signature, multi-party

computation and more.

2.4 Summary

Previously in this chapter, the post processing steps are explained and post quantum

secure authentication algorithms which are mostly suggested for QKD are listed as well.

Subsequently, QKD network implementation were discussed. In the final section of this

chapter, I will try to give a comparative summary of each section in this chapter in which

I try to compare all the explained techniques with the requirements explained in section

1.4. The arguments here are the building blocks of the proposed solution in next chapter,

chapter 3.

2.4.1 Post Processing

As mentioned many times, BB84 definition of post processing itself is rather loose but it is

explicitly mentioned in the paper post processing conversation need to be authenticated.

45

CHAPTER 2. RELATED LITERATURE ANALYSIS

It feels like the paper is trying to lay out some insight and give suggestion on how to

perform things. On the quantum communication, however, the paper is definitive; yet

through further analysis was subject to modifications – a good example would be decoy

based BB84 with slight change in communication over quantum channel to resist photon

split attack.

It is evident that post processing is an inevitable part of QKD, even if the quantum

communication becomes flawless and happens without any error. Certainly, parties need

to discuss the choice of their detection basis in each measurement – random selection of

detection basis is necessary to rule out MITM34.

Post processing steps are subject to alteration and adjustment35 – something that oc-

curred with suggestion for error correction and further privacy amplification steps added to

post processing. Even the sequences of performing can differ; especially for error detection

and privacy amplification. I even encouter an implementation which had a final verification

of the key after privacy amplification – a 200 bits sample [FDD+09].

For each step of the post processing, there are different approaches addressing different

requirements which shine in specifc scenarios. This was more evident in sifting and error

correction steps. For example if decoy based BB84 is used, instead of LDPC, Cascade

algorithm is the first choice. Since it does not need an exact QBER and can work with a

good estimate which parties could calculate from decoys, and this results in less commu-

nication and given Cascade algorithm performance yields faster operation, it also boost

the perfromance of the system. However, if the estimate is not accurate, then the possi-

bility of an error in the key after conciliation still exist. Considering this key would be

fed into privacy amplification methods (figure 2.1) which surely have diffusion36 property

the final key each party will calculate could be significantly different. Hence, depending

on the noise expectancy the suitable error correction could be used. It is also common to

substitute the order of the steps depending on the needs of the project. For example if the

project is deployed in complete private network or when Casacade is used which does not

leak much information about the key, I have seen the privacy amplification step happening

before error correction to re-conciliate errors in the privacy amplified or final key.

To make things even worst, there exist different BB84 variants; divergences are so

extreme sometime that the derived protocol becomes a new protocol on its own. SARG is
34Otherwise, an intruder could easily perform MITM by transmitting the exact same qubit it detect

from the sender to the receiver being located in the middle of communication
35In theory, once the quantum communication becomes error free, error detection could be removed,

thus privacy amplification. Flawless communication in practice, however, seems far fetched.
36Diffusion means that if we change a single bit of the input of a function, then (statistically) half of the

bits in the output should change.

46

CHAPTER 2. RELATED LITERATURE ANALYSIS

an example of which – it is more efficient in long distances and resilient against photon

number splitting attack. Instead of single photon, SARG operates on attenuated laser

pulses. Clearly, detection of weak pulses requires more advanced hardware comparing to

single photon, which increases implementation costs. Therefore, modified single photon

protocols like BB84 are still the choice for short distances. This is the decisive fact in

SwissQuantum and Los Alamos QKD network implementation choice of QKD protocol

due to their different requirements. Short distance meant near 20 kilometers in 2000s, this

should have improved given the technology advancements over the decade.

Moreover, distinctive related concepts in the domain of quantum physiques could re-

shape things in QKD e.g. quantum entanglement concept which lead to development of

entanglement based protocols such as E91. These protocols gain their security based on

the fact that if two particles are entangled in an object, measurement on any of them af-

fects the overall system and can be detected[ref.E91] also known as Quantum Qntanglment,

which is different quantum physique fact from the one used in BB84. Development of this

concept led into rise of different QKD protocol families.

Therefore, it is easy to deduce that it is not the matter of which is the best protocol or

the best approach; it is more about which one is suitable for your project requirements e.g.

the projects prioritized quality attributes (e.g. security over performance, cost, efficiency,

etc.), distance between the nodes, budget, type of the link (fiber, free-space), and etc.

which were not available to me given the stage the research project I am involved in,

currently is. Nonetheless, it was important to understand the essence of post processing and

communications needed to propose suitable authentication method for it. These diversity

shall be considered for the proposed solution and the infrastructure shall be able as generic

as possible towords this layer to accomodate all needs. Furthermore, by studying post

processing literature, one could see common choices of algorithms and approaches for each

step of post processing in most of the literatures which could be view as de-facto standard

of the industry. These are use of Cascade over LDPC for better performance, uses of

universal hash function for privacy amplification with inputs from decoy states, choices of

QKD protocol based on the distance and medium used.

2.4.2 Authentication

Authentication algorithms are the core of this study – the goal is to propose suitable authen-

tication method for QKD post processing. Before arguing about authentication algorithms,

however, it is constructive to recall the view point of the study over some definition. First

and foremost, is the definition of security. As mentioned earlier in section 1.4 of this thesis,

an algorithm is considered secure which could provide 128 bits security even at presence of

47

CHAPTER 2. RELATED LITERATURE ANALYSIS

quantum computers. In order to comply with the security requirement set for this study,

all the explained authentication algorithms are accepted as post-quantum secure, meaning

no known quantum and classical attacks are known for them except brute-forcing the key

space, at the time of writing this document. Hence, if they are used with key size equal or

bigger than 256, they will provide 128 bits security at least. Throughout this study some

algorithms which are in used today are labeled un-secure, simply because they cannot

stand quantum attacks and there are attacks more efficient than 2128. This includes even

some ITS scheme due to their implementation and short key size (e.g. 128 bits key size

which provides 2
128
2 = 264 bits security) which in presence of a quantum computer would

not provide reasonable security37.

Another view point of this study is algorithms performance efficiency and key con-

sumption measured in bits. These are both extracted from the practical implementation of

protocol and are the answers to "what is suitable for QKD?" question listed in the scope

of this study in section 1.4. Both are stressed out in many literature and the efficiency is

a necessity for the proposed solution in next chapter. The dilemma between performance

and security is traditional in cryptography and even in the whole cyber security field, as

one contradicts the other in most of the cases. However, having well defined the security

requirements, I later argue that this may not be the case in this study, and it is possible

to achieve the best performance and the best security within the established realm.

Algorithms perform differently over hardware and software due to different nature of

architectures. No one could argue about the fact that an efficient hardware implementation

will perform superior to software. However, logic circuit implementations are not flexible

and for some implementations they might not be even reasonable to consider. Besides,

hardware implementation could increase the cost of modification compared to software

implementations. As argued before, QKD seems like a very dynamic field. Given the ever

rising CPU power, parallelization, memory capacity and speed presented at software level

nowadays, on top of flexibility and resources that exists there, I later assert proposed soft-

ware implementation could achieve competitive performance to hardware implementations,

if not better. The scope of the research assumes the implementation of post processing hap-

pens over software, however, I later suggests to even perform packet capture in software at

user space level to reach higher performance.

Authentication tag generation and verification resides in a level in my proposed solution,

where it is not rational to consider hardware efficient algorithm as well. Indeed, considering

public channel as classic network using IP, authentication tags are either generated using

standard schemes like IPSec or by project specific implementations like Q3P. In case of
37Grover’s quantum algorithm can search a space of 2n in complexity of 2n/2.

48

CHAPTER 2. RELATED LITERATURE ANALYSIS

IPSec, the authentication tag is located after IP before TCP and in case of project specific

implementation it is on top of TCP. With IPSec, some NICs implement authentication

algorithms listed in IPSec RFC-6071. They get the information about the secret keys from

kernel module which provide them with the key from SAD and the policies from SPD. These

calls from hardware to software, and kernel stack calls are not very efficient as I reason later.

Moreover, none of the implemented algorithms listed in IPSec RFC-6071 comply with this

study security requirement except for AES and that is not the authentication algorithm

choice of the proposed solution in next chapter. If a customize protocol is implemented

for authentication purposes like Q3P, then authentication tags are presented on top of

transport layer known as application layer, and by default the payload of link layer leaves

kernel space and enters user space. Then to once again send it to hardware for MAC

verification or generation does not seem rational.

Suggesting efficient algorithms without foreseeing the bigger picture would make no

contribution. Hardware based proposal should be considered for projects where the outcome

is developing QKD devices like IDQuantum – mass production of hardware based devices

would result in cheaper overall price. However, I believe even in QKD devices software

based implementation might seem to be a better choice given the diversity and probable

modifications that could happen. Current development benefit from hybrid architectures,

where both software and hardware perform their parts.

Mentioned in the scope section 1.4, the research assume the raw key is presented in

software, most probably in RAM. To measure performance in software, algorithms would be

classified based on CPU cycle per byte (cpb) i.e. how many cycles would take an algorithm

to process a byte of the message. 1 GHz CPU does 1,000,000,000 cycle per second, and

could process 1 Giga Bytes of data over a second for an algorithm with 1 cpb performance.

Two different algorithm could operate at the same speed if the input data rate is low

e.g. a 10 cpb algorithm on data input rate of 100 MBps on a 1 GHz perform the same

as 1 cpb algorithm. Thus, fast performance is dependent to the load as well. There are

implementation techniques to dedicate a CPU core to a process38 – a normal Intel Core i5

Skylake (6th generataion) has four 3.2 GHz cores.

It should also be noted that the algorithms which were subject to analysis in this study

are chosen from those who have been under heavy cryptanalysis and they are accepted in

the community. Usually submitted algorithms to standardized competition have undergone
38isolcpus= cpu_number kernel parameter removes the specified CPUs, as defined by the cpu_number

values, from the general kernel SMP balancing and scheduler algorithms. Processes could be load onto or

off an "isolated" CPU through the CPU affinity syscalls. cpu_number begins at 0, and the maximum value

is 1 less than the number of CPUs on the system.

49

CHAPTER 2. RELATED LITERATURE ANALYSIS

a reasonable amount of analysis both before submission (as a requirement for submission),

and during and after the competition. And I dub a cryptosystems accepted by the com-

munity when there is accepted RFCs and standard specification for them by either IETF,

NIST, or other well-known organizations.

Block Ciphers

Block ciphers are one of the common choices for MAC generation, specially AES due

to the its exclusive enhancements on high end CPUs and hardware implementation, as

discussed earlier. Many big names in the industry like Google, CloudFlare, and many more

are migrating from AES based to stream cipher based MAC generators like Chacha20-

poly1305 though. This is due to poor performance of AES on mobile and low end CPUs,

and steady high perfromance of Chacha20 over all platforms.

Another reason commonly found to justify picking alternatives to AES is its security.

There has been some attacks during the two decades the algorithm has been around. While

most of these attacks were used to be on the implementation or other security consideration

such as re-use of nonces with the same key rather than attacks on construction of Rijndael

itself; recently there has been evidence of attacks on the construction of the algorithm.

One example is AES long key scheduling time needed by the scheme which is not very

efficient and makes the scheme vulnerable severely. In 2005, Daniel J. Bernstein, a well

known cryptographer, inventor of Salsa and Chacha stream cipher families also auth256

ITS MAC generator, demonstrated "successful extraction of a complete AES key from a

network server on another computer" using and he claimed "the same technique can extract

complete AES keys from the more complicated servers actually used to handle Internet data"

[Ber05a] – there are many more examples of cache-collision timing attacks against AES,

recent implementations have take consideration against known ones.

Although skeptics think these new vectors of attack will propagate and the security of

the algorithm will be eventually obsolete, if it is not now39. It may sound like a paranoiac

view point since it is not based on any evidence; this could be rationalized better in military

or very confidential settings though.

Threefish, designed in 2008, is a block cipher related to Advanced Encryption Sys-

tem finalist Twofish, and is secure against cache timing attack thanks to its different key

scheduling. Threefish originally was part of SHA-3 finalist Skein; these facts imply the al-

gorithm has undergone a reasonable cryptanalysis. Threefish out performs AES in software

on CPUs with out AES instructions. Another option would be using BEAR and LION, two
39Some believe NSA or similar organization might have a back door for AES, a similar case actually

happened for DES exported devices during 80s and 90s.

50

CHAPTER 2. RELATED LITERATURE ANALYSIS

provably secure block cipher constructions building block ciphers from hash functions and

stream cipher. Both BEAR and LION can process messages in very bigger block blocks

than other i.e. 1KB to 1MB. It is not mentioned in the paper what to use as nonce for

case of short messages or what other security precautions are needed – assuming you need

a secret initial seed for that, both algorithms need 3 keys, but can process big chunk of

data. however, they have 3 rounds of function which comparing to AES with exclusive

instructions are slow.

Apply these to the scope of this study, AES performance is not a concern for this

study’s criteria though. AES instructions are implemented on many AMD and Intel CPUs

which makes AES outperform all other algorithms. ChaCha is known to have the best

performance among all mentioned algorithm across all platform, still AES with help of

exclusive CPU instructions can even outperform fastes ChaCha, ChaCha8 40. Table 2.1

compare the cpb of both algorithm on x86_64 CPU architecture41. ChaCha is a stream-

cipher and it is more accurate to be compared to AES in CTR mode.

Message Size aes256ctr chacha8

8 bytes 19.25 19.25

64 bytes 2.41 2.06

576 bytes 0.69 0.92

1536 bytes 0.56 0.80

4096 bytes 0.50 0.78

Long messages 0.48 0.77

Table 2.1: x86_64 stream cipher architecture AES benchmark.

Thus I argue AES performance is not a concern given the fact we are using high-

end CPUs. And regarding security, I personally believe AES is benefiting from all of the

analysis. As soon as an attack is possible, the community responds rapidly to address the

issues. Hence, I conclude AES is most suited block cipher algorithm for the purpose of this

study.

The performance of block cipher MAC generators also depend on the mode of opera-

tion. CMAC is the least efficient amongst them due to its linear and sequential computation

nature. Parallelized MAC, was patented initially which lowered its rate of adaption, com-

paring to GCM mode which was introduced years later. I could not find any benchmark on
40ChaCha8 has 8 rounds, and still is post-quantum secure. Best attack for Salsa family happens with 7

round. The most in used ChaCha variant is with 20 rounds.
41https://bench.cr.yp.to/results-stream.html

51

https://bench.cr.yp.to/results-stream.html

CHAPTER 2. RELATED LITERATURE ANALYSIS

PMAC, and about others the benchmarks are not from validated sources. I found a bench-

mark of the algorithm implemented in cryptopp library and some personal benchmark42

which all shows GCM mode’s GMAC outperforming others. Results for cryptopp library

implementation43 are demonstrated in table 2.2. I have also included Threefish CTR in the

table. Unfortunately, I could not find any benchmark for Threefish used in authentication

modes, thus to have a better comparison I added AES CTR as well, both with 256 bits

keys. Although Threefish is suppose to outperform AES, but benefiting from the exclusive

CPU instruction, Threefish is almost 10 times slower than AES despite a slight better

performance over the key setup. And that is the reason I did not study Threefish in detail.

Algorithm cpb Cycles for setup

GMAC(AES) 0.34 995

Poly1305(AES) (256-bit key) 2.47 471

CMAC(AES) (128-bit key) 2.41 310

Threefish-256(256)/CTR (256-bit key) 6.86 597

AES/CTR (256-bit key) 0.77 630

Table 2.2: Skylake generation microarchitecture benchmark of cryptographic algorithm.

GCM, NIST selected block cipher mode for 2007, has been under comprehensive anal-

ysis. There has been successful forgery attacks when the tag length is short, when the

nonce is re-used the IV would be the same and key H for GHASH could be retrieve[21]

— also enabling attacker to choose the IV would result in counter IC colliding which leaks

the key, and finally there are known many weak keys for the scheme as well. However,

these attacks were considered "not [to] contradict the claimed security bounds by the de-

signers" [IOM12] and "are outside the security model" [IOM12]. In 2012, it was shown that

the security bounds are lower from the one designers stated in the original paper. The

same study demonstrates when the nonce size is equal to 96 bits, the security bounds are

higher[IOM12].

All of these issues are addressed in recent implementations. AES-GCM-SIV calcu-

lates initial counter "pseudorandomly" for every different nonce/message pair and "even

if the actual nonce repeats, the effective nonce used to mask the encryption is different

for different messages" [GLL17]. In 2016, first IETF draft for "AES-GCM-SIV: Nonce

Misuse-Resistant Authenticated Encryption" was published. There are precautions in re-

gards to choice of parameter selection listed in literatures which one must follow for the
42https://github.com/randombit/botan/issues/969
43https://www.cryptopp.com/benchmarks.html

52

https://github.com/randombit/botan/issues/969
https://www.cryptopp.com/benchmarks.html

CHAPTER 2. RELATED LITERATURE ANALYSIS

scheme to be secure, latest parameter suggestion and analysis I found for this mode could

be seen in [BHT18] proceeding for EUROCRYPT 2018. All these are perks of heavy crypto

analysis happening on the standards – no attack is yet found to treat the construction of

GCM itself.

It should be noted that CAESAR post quantum secure authenticated encryption final-

ists has been announced on May the 5th 2018. Most of the finalists are AES based schemes.

The competition started in 2013, and the selection results are soon to be publish – the

result could be used to choose even more efficient and more secure MAC generator, assum-

ing it would be possible to use them in authentication only mode like GCM. It is common

to find major security flaws during each round. Near 50 algorithms were submitted, and

now 7 finalists are competing for 3 different use cases since "experience with previous com-

petitions suggests that a single-algorithm portfolio is unlikely to provide as much value as

a multiple-algorithm portfolio"44 and this means having standard algorithms for different

use cases which relaxes selection process based on project requirement.

Cryptographic Hashes

Unlike block cipher, comparison between hashes are easier as there are only two to be

considered: BLAKE variants or Keccak family based. It used to be justified that if per-

formance specially on software is the highest quality attribute one is looking for, BLAKE

variants should be chosen, and if security or hardware performance is what you are after

the most, choose SHA-3. BLAKE used to be the only SHA-3 finalist with efficient potential

of parallelism, and although it was used on HMAC nested style scheme which is slower in

abstract design level compared to KMAC that just hashes the key and message together,

BLAKE on HMAC would still be a faster alternative [ANWW13]. The algorithm has a

great rate of adaption in many projects45. In 2018, however, Keccak team published Kan-

garooTewelve which is very competitive with BLAKE variants, out performing them in

near three times less cpb in some cases, as shown in figure 2.8. Although the algorithm has

been recently published, but the family it derives from and all the construction used has

been under heavy analysis for ten years, and as long as there is no attack on SHA-3 for 12

rounds, the algorithm is as secure. As mentioned before, the best attack known happens

over 6 rounds [BDP+16].

Differences with the original SHA-3 SHAKE are less rounds and efficient parallelism

which both boosts the performance drastically. The fact that it has been proved all keyed

sponge functions could be considered as random oracle is very assuring – the security claims
44https://competitions.cr.yp.to/faq.html
45List of users could be found here:https://blake2.net/#us

53

https://competitions.cr.yp.to/faq.html
https://blake2.net/#us

CHAPTER 2. RELATED LITERATURE ANALYSIS

in the paper states the algorithm "shall offer the same security strength as a random or-

acle whenever that offers a strength below 128 bits and a strength of 128 bits in all other

cases" [BDP+16]. Using the key as initial state in inner-keyed sponge with one less round

of permutation comparing to outer-keyed sponge, seems to be a good choice. Rationale be-

hind the security claims are explained fully in the paper – the fixed parameters chosen in

KangarooTewelve like state size [BDP+16] remove the burden of choosing safe param-

eters from users and makes user feel more relieved to use the algorithm compared to GCM

variants. Another benefit compare to block cipher based is the setup time of the algorithm.

AES key setup and scheduling is known to take some time, while Sponge construction,

as mentioned earlier, does not have heavy setup – input needs to be splitted and padded

properly which is not time consuming, and then you can start XORing them with the state

and start computing permutation. The performance for the algorithm is around 1 cpb in

worst case scenario (figure 2.8).

Universal Hashes

The only ITS MAC generation algorithm which is cited in many literatures is Carter-

Wegman style. It has been introduce 30 years ago, yet it is not very common to use them.

The reason for this could be the fact that universal hashes are biased in performance

i.e. they other are efficient in hardware or software, and even in software implementation

are very architecture dependent. Another hurdle for using these type of scheme is their

inefficiency in terms of key usage.

Two known implementations are UMAC (suitable x86 architecture) and VMAC (UMAC

variant for X86_64). Last modification on implementation of VMAC happen in April

200746 and there is an implementation on cryptopp library, but NIST has removed cryp-

topp from the certified list in 2016. All of these are not very good signs. And the worst is

both implementations use 128 bits keys i.e. 264 bits security in post quantum era which is

not considered safe.

In 2014, Daniel J. Brenstien creator of Salsa, ChaCha, poly1305, and many more high-

speed cryptographic algorithms47; co-authored a paper, demonstrating auth256, a super

efficient ITS MAC generator in Carte-Wegman style [BC14]. The software implementation

is in public domain. Same as other Carter-Wegman style MAC generator, the adoption

rate of auth256 does not look good and there is no benchmark of the algorithm apart

from performance claims by the authors. They have compared the algorithm to VMAC,

and two other fast hashing algorithm, namely Poly1305, and efficient exclusive GHASH
46http://www.fastcrypto.org/vmac/
47For a complete list please refer to https://cr.yp.to/papers.html

54

http://www.fastcrypto.org/vmac/
https://cr.yp.to/papers.html

CHAPTER 2. RELATED LITERATURE ANALYSIS

implementation by Intel on Sandy Bridge microarchitecture (2nd generation) and Inter

Core 2 microarchitecture. The comparisons have not been performed very systematically,

as results for all platforms are not presented.

Besides they do not reveal the result for VMAC and dont mention the size of the

key used in VMAC nor the encryption algorithm. They only mention VMAC is faster

than Poly1305 without giving any result for VMAC. The comparison between VMAC and

auth256 is more relevant as others are only hash algorithms. For instance, both Poly1305

and GHASH still need to perform one encryption step before generating the tag. This

imply auth256 outperforms GMAC which is very promising. Benchmark of HMAC-SHA-1

which is currently widely in used over Internet is also presented for comparison by the

authors. Table 2.3 summarizes these benchmarks, for those microarchitectures which the

paper has not presented benchmark, the corresponding cell in table is filled with "–".

Algorithm Sandy Bridge Core 2

auth256 1.43 1.89

GHASH (without PCLMULQDQ) 10 –

GHASH (with PCLMULQDQ) 1.79 –

HMAC-SHA1 5.18 6.74

Poly1305 1.22 1.89

Table 2.3: Benchmark comparison of auth256 with other algorithms.

Suitable Authentication

From the mentioned scheme, block cipher based and cryptographic hash based are satisfy-

ing the lower security bound of this study i.e. they are post quantum secure, and Carter-

Wegman styles are complying with the higher security bound i.e. being ITS. For the lower

security bound, KangarooTwelve is the most promising one. Apart from the perfor-

mance, and unmatched security48, the algorithm pis useful for other cryptographic means

like KDF and etc. – something that is in more detail in chapter 3. KangarooTwelve

is easy to use compared to others in regard to choice of parameters as the algorithm has

taken care of many of them. Given the proof for the keyed sponge acting as random or-

acle, I believe the scheme could also be seen as ITS if the key size and the size of the

capacity of the sate are big enough and their values are kept secret. This has not been

mentioned anywhere, but it is easy to deduce, since the random oracle is unconditionally

secure. Therefore, I believe KangarooTwelve can also satisfy the higher security bound
48Keyed sponge and KMAC are prone to many attacks known for other construction as written before.

55

CHAPTER 2. RELATED LITERATURE ANALYSIS

as well, which might be ground breaking given all ITS scheme required twice the key – this

need further research. Therefore, I suggest auth256 for the higher security bound as well.

Reason for this are discussed earlier.

There also two very different mindsets towards authentication of post processing mes-

sages, namely delayed, and instant. In delayed authentication there are two subcategories

as well, one is to authenticated all the post processing communication at the end of post

processing. The other is to authenticate the last message or exchange only the authen-

tication of the secret key generated. These are very implementation related. I could not

find any tangible reason to favor each above the other since each one has its own bene-

fits. Delayed authentication definitely are more efficient in terms of performance and key

consumption (in case only the key is authenticated). However, it takes a long time before

you can trust the key, while the confidence in the communication is gained immediately

in instant authentication with the first packet. This is why both should be considered in a

generic solution.

2.4.3 QKD Networks

Literatures discussing QKD post processing and authentication could be classified in two

main categories: (i) those which are discussing in algorithm level. Most of these papers

are proposing a new or modified version of universal hash family to achieve better perfor-

mance or exceed the security bounds on message length, use of nonce and etc. I call them

theoretical ones. (ii) The other class, study the problem in implementation level, hence

labeled practical ones. I could not find any paper focused at this level, except field tests or

other related publishment of QKD Network implementations.

For this study which thrives to propose post quantum secure authenticated infrastruc-

ture for post processing, practical literature is favored. This is one of the main rationale

behind analysis of QKD network implementations. Theoretical literature algorithms usu-

ally does not have an implementation, even if there is one it has "academic" standard,

usually as a proof of concept, and not an efficient, well analyzed, secure, implementation.

Moreover, to propose a suitable authenticated infrastructure for post processing, it was

needed to have a better understanding of the use cases of the system. Identifying different

requirements and realization of the network architecture was possible though this analysis.

Indeed, there are perquisites and specifications forced from the architecture into the design

of this authenticated infrastructure. In this section, I will try to discuss these point which

led to shaping the proposed solution architecture in section 3.1.

QKD networks implementation could be viewed in two different categories, namely

SECQOC based, and others. With no doubt, SECQOC project, has had a major contri-

56

CHAPTER 2. RELATED LITERATURE ANALYSIS

bution towards standardization of QKD networks. The well researched project is the first

to introduce the three layer architecture of the network. The idea is so neat, clear, and

natural that I could even identify the same three layers in DARPA project which was

implemented before SECQOC. All implementations are following the same hierarchal ar-

chitecture. In this scenario, as already depicted in picture 2.10, post processing happens

in the lowest layer: Quantum layer. Whatever the algorithms used for authenticating the

key is presented to the algorithm in quantum layer from the above layer, Key Management

layer. ETSI has already standardized these API calls between layers [NFV10]. The key

management, in all implementation, is receiving secret keys from quantum layer, and later

will provide them to application layer or quantum layer for consumption. Key management

layers could also consume these secrets when trying to forward keys in the network. In case

shared secrets are not available between two nodes e.g. run zero of QKD when no key has

yet been distributed, key management layers use known KEP such as IKEv2. Some im-

plementation are using the same protocols for key forwarding (e.g. DARPA) while others

perform hop-by-hop OTP (SECQOC).

Amongst all implementation, Wuhu and Los Alamos approaches and choice of network

topology allowed them to almost remove the need of key forwarding for some users in the

net work, thus result in different key management layer amongst the nodes in the network.

Illustrated in figure 2.17, Wuhu implementation benefits from a Quantum router. Thus,

each node in the Backbone network could efficiently share secrets with all other nodes in

the same network at the same time. When two clients in different subnets would like to

communicate, they need to get the one of the shared secrets in the backbone from their

trust relay (the node in their subnet which is connected to the backbone network as well).

Clients nodes have a quantum connection to their trust relay and can run QKD with them.

Those keys could be used to encrypt the session keys to use fr a communication with a

client in other subnet. End clients do not need to forward key and their Key Management

Layer is different from backbone nodes. This approach, which could be seen as a small

hop-by-hop (one hop) is definitely more efficient than SECQOC hop-by-hop variants, as

there is no need for a routing protocol to identify fast and secure route, and the session keys

are encrypted less, which decreases total key consumption rate, comparing to encrypting

using a key between each pair of hop in SECQOC.

Los Almos implementation, however, exploited the "hub-and-spoke" star shape net-

work topology and proposes a new way of key distribution in which key pairs would be

constructed for communication of each pair, as explained earlier in section 2.3.5. Instead of

key management layer, nodes have a trusted authority or a "hub" which provides them with

information required for calculation of the keys. Thus key management layer is different

57

CHAPTER 2. RELATED LITERATURE ANALYSIS

from other projects and there is no need for key forwarding. Further more, Los Alamos has

the lower data collision amongst its clients, as they are all establishing connection with the

trusted authority, the center-point-of failure and weakest-link to the whole security of the

system49 of the network. The scheme also suffers from long key setup times. Nevertheless,

Los Alamos implementation "for N connected nodes to a hub you can achieve N2 connec-

tion in application layer" without any data collision between the clients in quantum level

[HNM+13], compare this to mesh topology of SECQOC or others, there are many more

connection needed between the clients to efficiently achieve N2 connection. The amount

of key consumption of SECQOC for hop-by-hop OTP encryption of the keys is very large

– to calculate the exact amount, the exact network architecture and routing tables are

required.

Both Los Alamos and Wuhu suffer from scalability. Consider connecting trusted nodes

to allow clients from two networks to communicate, suddenly the load is unmanageable

– a weakness known to the star topology, which is addressed in mesh type of networks.

Although SECQOC is a mesh type network, but it faces some barriers for scalability due to

its trusted "hop-by-hop" nature. It is certainly not feasible to have great number of trusted

"hops". SECQOC is definitely designed for infrastructural level such as telecommunication

backbone, or ATM connections as the use case samples listed in [NFV13] suggests – in these

scenarios trusted "hop"s could be better justified. This also explain the network schematic

in figure 2.14, where nodes are located in private network. One issue I could not find an

answer for in any documents I read about the project[PPA+09][DAGS08][?][FDD+09], is

exchanging the key between QBB nodes and the clients in their private network. It is not

mentioned anywhere if the key is transfered in plain or encrypted – if encrypted how QBB

nodes are sharing keys with the users in their private network. And that seems like the

weakest link of the project, no matter how secure QBB nodes are exchanging the keys,

an intruder could easily penetrate into local network and obtain the shared secret and the

security of the whole project is jeopardized. In contrary to SECQOC use cases, projects

like Los Almos has demonstrated implementation of cheap, small, and efficient quantum

transmitters which could even be incorporated in a personal computer. These developments

will affect the target audience and industrial level QKD could be deployed in; a transition

from backbone layers towards end users.

SECQOC QBB Link principle with introducing redundancy over quantum channel

both for higher key rate and more reliability was another main contribution of the project.

QBB Node, however, were not highly adopted by other projects. From the illustration in

figure 2.13 and real pictures of the device, they are not very cost effective. SwissQuantum
49If the trusted authority is corrupted or out-of-service the whole security of the network is under threat.

58

CHAPTER 2. RELATED LITERATURE ANALYSIS

project demonstrated a modified version with two quantum channel connected. Another

modification was reducing number of link layer modules to save cost. This was implicitly

mentioned in the Tokyo QKD network as well. Tokyo QKD network, a SECQOC based

network which was not listed in this document due to its similarity to the listed ones.

The projects implemented BB84, BBM92, and SARG04 QKD protocols over a mesh type

network of 6 nodes with distances from 1 to 90 kilometers and uses Q3P protocol suite

used in SECQOC. They SwissQuantum project reported 1 minutes of post processing for

each 5 minutes of quantum communications – I later demonstrate this could be further

improved.

None of the implementations performs post-processing on public channel communica-

tion. The closest implementation is DARPA which uses a VPN tunnel. Actually, the secure

tunnel is the application of the projects which is receiving its keys through QKD. Since

the tunnel is established between the nodes, they are exploiting it as public channel. And

in SECQOC variants, it happens through the point-to-point classic communication, shown

in figure 2.12. This is an expensive implementation choice to have point-to-point classi-

cal channel and unnecessary as discussed earlier. SwissQuantum propose to use the same

medium for quantum communication through multiplexing the data with quantum data

to use the maximum bandwidth of the medium and reduce costs. Q3P protocol in this

scenario sits on QuantumChannel interface instead, as depicted in figure 2.15. A compre-

hensive discussion on Q3P is addressed in section 4.2 where it is compared to the suggested

protocol presented in this study.

Finally, authentication scheme used in the implementations are mostly Carter-Wegman

style. Although it is not explicitly mentioned which algorithms they are using, it might

be the case that they are using VMAC with 128 bit keys which are not secrue anymore.

Implementations which suffer from low key rate, adopt commonly used model on their time

e.g. DARPA used HMAC (with either MD-5 or SHA-1, due to the time of the project).

Obviously, the key rate is real issue in QKD networks. Tokyo QKD network, added a

feature to its key management layer which would receive feedback from key generation

rate in Quantum layer and "resize[s] the key materials for absorbing the difference in

key generation rate and key length of each QKD link" [SFI+11]. This implies when the

key rate drops some keys would be fed into some XOF function or KDF (e.g. Shake or

KangarooTwelve) to generate longer secrets. Another suggested approach for better

key consumption is to shorten the length of messages, specially during post-processing to

achieve less number of communication thus less tag generation and key consumption.

To conclude, QKD networks are suffering from high cost of implementation which makes

them expensive key generators comparing to classic ones. There are many suggestion on

59

CHAPTER 2. RELATED LITERATURE ANALYSIS

hardware level to reduce costs as discussed. Another issue is the considerably low key

generation rates. This could also be improved by utilizing better hardware, yet consuming

less key is suggested by all implementation since the consumption on post processing is

rather high. Apart from employing less secure algorithm to reduce key size, shortening the

length of messages communicated is also suggested. On top of these, a generic solution

should update the security and can serve in different network topologies.

60

CHAPTER 3. CONTRIBUTION

Chapter 3

Contribution

"If you steal from one author,

it’s plagiarism;

if you steal from many,

it’s research."

— Wilson Mizner

The state of the art exhibited in latest pieces of academic literatures and cutting edge

knowledge employed in current industrial implementations have been epitomized in chap-

ter 2 and in its last section – section 2.4 – a comprehensive analysis of them is expressed.

This chapter proposes a solution which complies with the requirements set for the research

explained in section 1.4, and overcomes the shortcomings mentioned for QKD. This pro-

posal is based on sate-of-the-art suggestions on how to improve things and also proposes

new approaches where there is no suggestion in literature.

In this chapter, I present an authentication scheme based on IPSec protocol suite using

algorithms studied before in this document. I also propose an enhance architecture of quan-

tum end point which deploys the authentication scheme – I label the enhanced quantum

endpoint together with authentication scheme the solution. Finally, a protocol is proposed

for handling post processing steps of quantum key distribution. The protocol is designed

based on BB84, however, the generic design principles of the protocol accommodates usage

of other quantum key distributions protocols as well. Prior to these, the requirements of

the solution are detailed and a general schematic of the solution’s architecture is presented.

3.1 Solution Architecture

The architecture of my solution also complies with the three layer architecture common in

all implementations. The highest level, application is a layer out of scope this study which

61

CHAPTER 3. CONTRIBUTION

does not need specification. Application Layer (AL) could use the keys generated from QKD

for any cryptographic application. Similar to other implementations, there would be API

calls for Quantum Layer (QL) and AL to obtain keys from Key Management Layer (KML).

In order to provide keys to other layers KML traditionally needs to: synchronize the keys,

generate keys, and manage the key-in use. The idea of providing feedback about key rate to

KML proposed in Tokyo implementation is also included in KML, and I take it further and

illustrate how such an information could be used to obtain dynamic efficient authentication

algorithm based on the rate of the key generated and quantity of shared secrets available.

The focus of this study in KML is more on how KML provides secret to QL for post-

processing, although other features would be discussed abstractly and recommendation on

how to implement them would be suggested in related cases.

QL follows the QBB node design principle in quantum channel, namely redundancy

in quantum links. However, the solution take into account that for cost saving purposes,

there might be only one classical channel present for many quantum channels connected to

different nodes. In QL, the target of this study is post processing, and most importantly

authenticating the communication. Therefore, in coming sections, I detail an authenticated

post processing communication between two nodes in the network. Adopting OSI model

for communication, the solution is not restricted by the network topology of Quantum

Node and could service any topology i.e. these two nodes could be two nodes from any of

the mentioned networks. The adaptability of the solution on network topologies and some

hypothetical use cases are discussed in next chapter.

Figure 3.1 depicts an abstract schematic of the architecture. Parts which would be

detailed in this document are shown in green rectangles from both KML and QL. Both

rectangles could be physically located in the same machine, something seen in most recent

implementation like Tokyo QKD Network. As mentioned earlier, quantum layers of all

implementations are also key consumers for post processing. Hence each quantum end

point needs a key manager layer to manage the shared keys i.e. which to use where and

how. In some implementations like Los Alamos, however, key management is solved in

other fashions and client quantum end points could calculate the secrets and do not need

synchronization between the shared keys. In those scenarios, The IPSec modules should be

located on the same machine which performs post processing. This is the case for use cases

where quantum endpoint are more like end user compared to infrastructural backbone

nodes. IPSec provides authentication for communication and the portion of it related to

the scope of this study is explained later.

Each endpoint can be connected to arbitrary number of endpoints in the network. At

lowest level, arbitrary number of quantum devices are connected to other quantum nodes

62

CHAPTER 3. CONTRIBUTION

Figure 3.1: Proposed Quantum Endpoint Solution Architecture.

across the QKD network via quantum connection. It is not important if it is point-to-

point connections, or connected to a quantum router like Wuhu. Each quantum connection

has an ID – Quantum-device Identifier (QID) in ETSI standard derived from SECQOC

project and is 4 bytes long similar to IPv4 addressing. I adopt the same QID. All quantum

devices push the raw keys into RAW KEYS data base. Quantum Post Processing Daemon

(QPPD), will use these raw keys and performs the post processing. Once the secret keys

are derived, they would be inserted in SECRET KEY database in KML. There are two

other databases in QL related to QKD. IN BOUND contains the keys for QPPD to verify

authentication tags of incoming traffic. OUT BOUND includes the keys that QPPD will

use to generate tag for packets it transfers. Other modules also exist in QL layer which

63

CHAPTER 3. CONTRIBUTION

will not be explained in this study, to name some:

• Random number generator which feed random sequence to quantum devices both for

key to transmit and choice of detection basis. Some implementations use quantum

random number generators.

• A module to gather feedback from quantum communication. This module could com-

pare the size of raw keys and the final secret key which is sent to KML to obtain

quantitative feedback of quantum channel quality, and also the key generation rate.

And keep track of consumption of secret key, and stretch different configuration to

guarantee the system’s availability.

Once keys are placed in SECRET KEYS database, KML manage the keys and insert

them in REFINED KEYS database. For example secret keys could be used as initial seed

to extending algorithm to stretch the key size. KML also generates keys as mentioned

before. Those keys also would be placed in REFINED KEYS database. It is known which

nodes in the network have the same keys in REFINED KEYS. Any application, would

receive keys from REFINED KEYS database. Two other data bases exist as well; these are

Security Associate Database (SAD) and SPD. They contain the secrets and policies needed

by IN BOUND and OUT BOUND in QL. There also other modules in KML layer, the

key one is the KEP. This is the module which creates key, forward them to other nodes,

and etc. NIST competition for post quantum security with the first round of submission

in 2017, already has some promising candidate[BP18]. Certainly result of the competition

could help choosing the appropriate algorithm for this module. Both QL and KML need

classical network connection. This is achievable in many forms, both layer could share the

medium as well, or use the quantum channels. For the purpose of simplicity, they are shown

separately. Quantum Connections could also be terrestrial or satellite communication.

3.2 Quantum Post Processing Daemon

Quantum Post Processing Daemon (QPPD) is the software performing the post processing.

QPPD adopts TCP/IP protocol stack from OSI model for post processing communication,

hence the method of authentication is TCP/IP based. We can see this adaption in other

projects as well except SECQOC variants; they use Q3P protocol stack. Q3P protocol stack,

apart from the first layer, is 100 percent identical to TCP/IP, the routing protocol to route

Q3P packets is the one used in IP, namely OSPFv2. All other network functionalities are

achieved in identical ways as well. Certainly there is no need to deviate from the standard.

The comparison between our proposed protocol and Q3P is written in section 4.2.

64

CHAPTER 3. CONTRIBUTION

TCP/IP protocol stack already takes care of network functioning and has taken into

consideration security of the communication as well i.e. authenticity, integrity, and privacy.

Furthermore, TCP enables reliable communication. Once a TCP connection is established,

it makes sure the Payload Data Unit (PDU) would arrive at destination. The three way

handshake to establish sequence numbers for both direction makes TCP the first choice

for reliable bidirectional communication. It is common for PDUs to be fragmented if their

size exceed a certain amount also known as Maximum Transfer Unit (MTU) for efficiency

purposes — default IP packet MTU is 1500 bytes. The recipient TCP node would assemble

the fragmentation to construct the same PDU, an identical scenario to all communication

over Internet.

IP achieves security through IPSec suite. IPSec is the backbone to secure communica-

tion. RFC-4302 details Security options possible for IP using IPSec suite, and it includes

Internet Protocol Security Authentication Header (AH). AH packet header is shown in

figure 3.2, and it authenticates the whole IP packet, except for mutable fields – these field

are subject to alteration during transition fro performance purposes. Security consideration

are in place in AH and detail in the RFC e.g. sequence number to resist replay attacks.

Security Parameter Index (SPI) refers to a Security Associate which contains the key and

initially is stored in Security Associate Database. Later depending on the policies in Secu-

rity Policy Database it is either placed in IN BOUND or OUT BOUND data base. RFC

uses the secret in SAs to generate keys to use on the communication. The procedure is the

same as standard IPSec. Usually the key in the SA is used as a seed for a KDF to stretch

the key even further. Having the sequence number in the packets, parties can both use the

appropriate number and derived key round and more importantly decided when to drop

the key and use a new one. This procedure is known as re-keying. Usually implementa-

tions use time base fast re-keying, DARPA project and other suggest changing in every

minute. QPPD uses KangarooTwelve for KDF. QPPD uses feedback from the key rate

to stretch even further when necessary.

QPPD implements Authenticated Post Processing Protocol (APPP) to perform post

process steps. APPP is a generic protocol which accommodate post processing for different

QKD protocols. It is described extensively in next section. Unlike other solutions, QPPD

benefits from Fast User Space Packet Processing, a technique which is been used in network

industry to achieve higher packet processing performance unachievable in Kernel Space.

The most well known choice is Intel Data Plane Development Kit(DPDK). This perfor-

mance is necessary to be able to handle the load of post processing for all the quantum

devices.

QPPD is listening on a certain TCP port for post processing requests and instantiates

65

CHAPTER 3. CONTRIBUTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Next Header Length Reserved

Security Parameter Index (SPI)

Sequence Number

Integrity Check Value (ICV)
...


256 bits

or more

Figure 3.2: IPSec AH packet header.

a TCP connection on a different port to carry on with the actual post processing. This is

explained later with the sample run in section 3.4. Protocol stack used by QPPD is shown

in figure 3.3. QPPD generates tags and put them in ICV, or verify them for the incoming

packets.

IP Packet Header
}
20 Bytes

IPSec Authentication Header
}
12 Bytes

Integrity Check Value (ICV)
i.e. Authentication Tag


256 bits

or more

TCP Header
}
12 Bytes

APPP Constant Header
}
4 Bytes

APPP Payload
...


Varying

Size

Figure 3.3: Proposed solution’s protocol stack.

3.2.1 Authentication Algorithm

Lower bound security assumption of this study for authentication algorithm is that the

algorithm should be post-quantum secure. Yet, the higher security bound, that is an ITS

authentication algorithm, is more appealing. QPPD implements KangarooTwelve for

lower bound security assumption. The algorithm could also satisfy the higher bound se-

66

CHAPTER 3. CONTRIBUTION

curity assumption. The reason for this selection, on top the efficiency and sound security

proofs, is the simplicity of the algorithm – it looks like a "turn-key", "plug-and-play" algo-

rithm. And for the higher bound assumption QPPD utilizes auth256. Security Associate,

alongside with the secret key, includes choice of authentication algorithm. QPPD uses the

information in the available SAs in INBOUND and OUTBOUND databases to select be-

tween the two. SAs are prepared in KML and based on the different factor decides which

SAs from SAD should be available to QPPD.

3.3 Authenticated Post Processing Protocol

Authenticated Post Processing Protocol (APPP) is an application layer (layer 7) protocol

in OSI model which sits on top of TCP as shown in figure 3.3. No other implementation

discussed about this layer of communication. The TCP NEXT HEADER field specifies this

payload which would be one of IANA experimentation number between 0xFD-0xFE1. This

way, all ordinary network devices could be used to route the packets.

QPPD implements APPP to perform post processing. A sample implementation of

the protocol is given in section 3.4 of this chapter. As the name of the protocol suggest,

it assume the connection is already authenticated. Indeed, following the layer concept of

OSI, application layer should contain the application data. Packet authentication needs to

happen in lower layer to authenticate both data and the channel and the network. This is

why IPSec AH is placed at lower level and authenticates IP and TCP packets as well.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A Type VER Reserved Packet Length

Figure 3.4: APPP constant header.

As argued before, message size is crucial in post processing communication. To achieve

shortest possible size, APPP follows a dynamic size header design. Such designs could be

seen in bandwidth restricted network protocols such as satellite protocols. APPP has a

constant 4 bytes header illustrated in figure 3.4. Header fields are described in table 3.1.

Based on the the type of packets necessary fields would be attach to the constant header.

The field A is a flag for delayed authentication. If set the parties shall keep the messages

traversed for a later authentication.
1RFC3692

67

CHAPTER 3. CONTRIBUTION

Field Name
Size

in bits
Description

A
Authentication

flag
1

If set, indicates delayed authentica-

tion happens on packet.

Type Type Indicator 4
Specifies the type of APPP packet

based on the values in table 3.2.

VER Version 3

Indicate compatible implementation

version of the protocol with the

packet.

Reserved
Reserved for

future use
8

This field could be exploited by the

protocol developer for application

specific purposes.

Packet Length
Length of the

packet
16

Specifies packet length excluding

constant header in bytes.

Table 3.1: APPP constant header fields.

3.4 Sample Run

In this section, I describe an abstract implementation version 0b000 of APPP. It should

be noted that this solution could be considered as a design draft and could be subject

to slight modifications based on the feedbacks from implementation. From APPP point of

view it is not important what QKD protocol is used or in what sequence the post processing

steps are being performed. Version 0b000, explained here will follow original BB84 in the

order discussed before. It should be noted that this implementation of APPP is detailed

to be compatible with my proposed solution architecture, although the protocol could be

implemented otherwise to accommodate other implementations.

Although post processing starts after quantum communication but APPP version 0b000

starts the communication before initiating quantum communication to negotiate on some

parameters. This is suggested in some theoretical literature [WTC18]. After Initial Setup,

quantum communication begins and parties i.e sender who instantiate the quantum com-

munication and send the key qubits and the receiver, share the raw key. Once quantum

communication is over, both parties’ QPPDs collect the raw keys in RAW KEYS database,

and split them into pieces called chunks and performs post processing on the chunks. Chunk

by chunk process of raw key was proposed in SwissQuantum to perform Post Processing

in parallel.

68

CHAPTER 3. CONTRIBUTION

Value (in hexadecimal) Packet Type

0x0 Initial Setup Packet

0x1 Sifting Step Packet

0x2 Confirmation Step Packet

0x3 Error Correction Step Packet

0x4 Final Confirmation Step Packet

0xE Error Packet

Table 3.2: APPP version 0b000 Header Type values.

Table 3.2 demonstrates types values for APPP version 0b000. These values would fill

the type value field in the constant header of APPP. Other type numbers not listed on the

table are reserved for future use. Depend on each type, additional data would be attached

to the constant header. First, I explain the error packet which is sent if parties face an

error. Then other steps as they would happen in a real run are demonstrated. This section

does not explain Error Correction Step Packet type 0x3. Error correction algorithm are

out of scope of this study, but the same rationale used in other step happens there. Also

Confirmation Step Packet type 0x2 and Final Confirmation Step Packet type 0x4 is not

detailed. These steps are very to similar to Sifting Packet Type 0x1. Indeed, in sifting

one party reveals a bit sequence representing choices of detection basis, and the other

confirms that. Same analogy is happening in confirmation step where part of the sifted key

is revealed to calculate QBER and evaluate the possibility of intruder eavesdropping. Also

final confirmation follows the same principles, but reveal and confirmation happens over

the final secret key after privacy amplification step.

Figure 3.5 depicts sequence of messages sent from the first step of instantiating the

request of QKD, illustrated as Pre Processing Phase, up to the end of post processing. The

sender first sends a QKD instantiation request to receiver, and the receiver accepts the

request. After quantum communication is over and raw key is obtained, both parties will

split the raw key into chunks to be able to perform post processing in parallel. Sender will

send Chunk post processing request to receiver. In this request sender will specify another

TCP port she is waiting for the receiver to start the post processing. Receiver, will then

open another TCP connection to sender and starts the post processing process in the new

TCP connection by sending her choices of basis detection to sender and await confirmation

on it. This is to follow original BB84 post processing as a sample. Depend on the QKD

protocol used, these steps and and the content traversed could differ. For each of the

messages, I have included a packet sample as well which are explained in corresponding

69

CHAPTER 3. CONTRIBUTION

Figure 3.5: APPP version 0.0 message sequence from pre-processing to post-processing.

subsections. As mentioned before, from post processing sifting has been chosen for the

purpose of demonstration. The rest of the post processing steps follow the same routine at

network level.

3.4.1 Error 0xE

Error packet header is shown in figure 3.6. In this type the reserved field in the constant

header is used to show the error type. Depend on error type, additional information could

be added, usually an identifier for a raw key chunk that is being processed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0xE 0b000 Error Type Packet Length

Figure 3.6: QKD Error header.

The packet could be sent payload less as well for example if an authentication tag is

not working, or if a request to instantiate should be rejected. These could be sent only by

70

CHAPTER 3. CONTRIBUTION

error type and without payload.

3.4.2 Initial Setup 0x0

QPPD is listening on a constant specific TCP port for QKD instantiation request from

other nodes in the network. A sender who wishes to start sharing key will construct a

QKD instantiation request similar to the one shown in figure 3.7 and transmit that to the

receiver. Instantiation request will have value 0xAA in the reserve field of QKD constant

header to be distinguished from other packets in this step. The other fields in the packet

are self explanatory. After the constant header, we have the Raw Key Length the sender

wishes to share. The length is given in bits representing amount of qubits she is going to

transfer. After that, the sender QID which is an identification number similar to IPv4 for

the quantum device. The QID shall have a point-to-point connection with the receiver. The

Quantum-device Identifier of the device at the other end i.e. receiver ’s QID will follows after

that. Then the ID for this raw key is added. All these fields have 32 bit size. Logic for this is

briefed in next chapter. Then there are four 1 byte fields to represent QID protocol sender

wishes to use, same for the error correction algorithm, privacy amplification algorithm

which would probably be a family of hash function, and number of chunks the sender

wants to later split this raw key into and perform post processing on. Obviously there

would be tables to associate these fields’ values to corresponding algorithms and protocols.

It needed to be studied what algorithms are going to be used and implemented before that.

For those steps, this study did not perform any analysis, and this could be later defined.

Therefore, the size of these last 4 fields could be modified later – maybe 1 byte is overkill.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0x0 0b000 0xAA Packet Length

Raw Key Length

}
64bits

Sender QID

Reciever QID

Raw Key ID

QKD Protocol Error Cor. Alg. Privacy Amp. Alg. Number of Chunks

Other Options
}Varying
size

Figure 3.7: APPP Initial Setup header QKD instantiation request

Most likely more options would follow as well. To clearly define this, I need more

71

CHAPTER 3. CONTRIBUTION

feedback from the project and maybe the quantum devices, to clearly specify what is

needed in the initial setup. These options could include the expiry date of the raw key,

accepted QBER threshold, qubit detection style (iterative or time based), nonces or tags

that might be needed later e.g. if the key is going to be used for authentication later (this

is to comply with projects like Los Alamos which generate specific purpose keys).

Upon receiving the QKD instantiation request, the receiver performs some check. Obvi-

ously first thing is the authentication tag. Authenticating the packets have been explained

before. All the packets would follow the same instruction. Authentication in QPPD has

happen before processing this packet. As stressed in APPP explanation, at this layer, pro-

tocol assumes the messages are authenticated, except the A flag is set2. Then some error

checks would be perform for example to receiver would check for correction of the quantum

connection with the QIDs given, if its QID is connected to the requested QID. Other checks

could also be performed such as system load and if it can handle new protocol run i.e. if

it is not overloaded. Future study and feedbacks from implementation could spot light on

this. Based on the output of the check the receiver either accept or rejects the request.

I have not included the APPP confirmation packet because I have no knowledge about

how to instantiate the connection on quantum channel. Maybe a constant header payload-

less with its Reserve field set to another value e.g. 0x88 would suffice, or maybe there is

need to send more data. Even it might be possible to send a pulse over quantum channel

to confirm, in order to save consuming the key by less communication over public channel.

In case the request is rejected a payload less error packet could be sent. Depending one

the reserve byte value sender could realize the reason. In case the request is accepted by

receiver, both QPPDs on both end will notify the quantum devices to start the quantum

communication. Means of communication between QPPD and quantum device is out of

interested of this study and out of scope this research. What I assume is QPPDs on both

end will receive the RAW KEYS after the end of the quantum channel which they could

correlate with the exact request.

While the communication on quantum end is happening, both QPPDs will start cal-

culating Chunk IDs. The procedure is with the help of some XOF or KDF. My suggestion

is construct the string I call "RAW KEY TAG" as follows: [Raw Key Length in bits ||

Sender QID || Receiver QID || Raw key ID] which is 128bits and put it as the capacity of

the sate of KangarooTwelve and take the first 32 bits as Chunk ID and the next 32

bits of the same output block as Chunk hash ID. KANGAROOTWELVE output is 1600
2If the flag is set, then there is need for more fields in the first QKD instantiation request to specify

what type of delayed authentication shall happen and what algorithm to use and etc., QPPD then will

keep a copy of the packets to perform authentication on later.

72

CHAPTER 3. CONTRIBUTION

bits in each round and we are taking the first 64 bits of each round. Chunks are sequential

and both QPPDs should calculate the same Chunk ID and Chunk Hash ID. Obviously

security is not the issue here, the reason for using this algorithm is the collision resistancy

property. Reasons for this suggestion are argued in discussion chapter.

Once the communication is finished over the quantum channel, and QPPDs are pre-

sented with the raw keys, they can start splitting them into chunk and correlate them with

appropriate chunk ID. At this point sender constructs the Chunk Processing packet and

send it to receiver to start the post processing on the chunk of raw key. The packet header

is illustrated in figure 3.8. The reserve field in the constant header is set to 0xBB to be able

to differ the packet.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0x0 0b000 0xBB Packet Length

Sender QID

Reciever QID

Raw Key ID

Chunk ID

Dedicated TCP Port Other Options · · ·

Figure 3.8: APPP Initial Setup header chunk post processing request.

Sender in this packet select the chunk she wish to perform post processing on and fill

the packet header’s according IDs. After that sender specifies the TCP port number she

is expecting the receiver to start the post processing this chunk on. This is similar to the

approach of many network application where dedicated port is listening for request and

data transmission happens over other ports. This way the main port is always available to

many nodes as the communications are short for requests unlike data transmission.

The constant header of APPP during post processing will always be 8 bytes shown

in figure 3.9. Reserved field in most of the post processing act as an counter. This could

come handy in error correction specially where number of packets could be more than

other steps and gives QPPD a better chance organizing packets. Also in case of delayed

authentication, packet sequence could be constructed simpler without tracing IP packets,

and just by following packet type field and counter in the APPP header.

The Chunk Hash ID is the identifier which is going to identify this chunk in the com-

munication over the dedicated port for this post processing. Each TCP connection could

be viewed as a virtual tunnel between parties. More than one chunk post processing could

73

CHAPTER 3. CONTRIBUTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A Type VER Counter Packet Length

Chunk Hash ID

Figure 3.9: APPP Post Processing constant header.

happen in each TCP connection or tunnel. Within each tunnel the chunks are known by

their Hash ID. Since there are less chunks in each tunnel comparing to what exist in RAW

KEY database, the probability of the collision over 4 bytes is reasonable. The real identifier

for raw chunks in the domain of QPPD is much longer than 4 bytes, however. This allow

us to reduce the size of the messages transfered e.g. ID reduces from at least 256 bits to 32

bits. Outside the tunnel and in general chunks could be distinguished by the string I name

SECRET KEY TAG, at least 256bits (in case of IPv4) long and constructed as follows:

[Sender IP || Receiver IP || Sender TCP Port || Receiver TCP Port || RAW KEY TAG

|| Chunk ID || Chunk Hash ID]. Obviously these could be fields in RAW KEYS database

which would be filled by QPPDs upon receiving the raw keys from the quantum devices.

Another thread could look into the database and pick the chunks its QPPD was receiver

for and construct the chunk post processing request. One module could keep track of open

TCP connection and perform a very simple load balancing to make sure post processing

on chunks are performed efficiently.

3.4.3 Sifting 0x1

Once sender sends the Chunk Process request, it starts listening on the mentioned TCP

port. Upon receiver receives chunk request packet, it perform some check, like if the chunk

is available, if QPPD is not overloaded, and etc. then decides to accept or reject the

request. If she decides to reject she will send an error packet similar to what explained

before. Otherwise, receiver constructs the packet called Sifting showed in figure 3.10.

After the Post Processing constant header, receiver will add number of detection she

missed in Sifting Packet, these are lost qubits. This could be used by sender to decide if

she want to continue with the post processing or if the number of errors are high. One

could argue that the receiver which is constructing the packet could decide as well, based

on parameters exchange in initial setup, and we could save sending one packet. But I

still have this and give this decision to the sender who instantiated the process to decide

terminate it. Beside this size could be useful for both parties at implementation level.

Following the number of missed detection, the receiver will put her choice of basis

74

CHAPTER 3. CONTRIBUTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0x1 0b000 Counter Packet Length

Chunk Hash ID

Number of Missed Captures

Sb Sb Sb Sb Sb Sb · · ·

Figure 3.10: APPP Post Processing Sifting packet.

Value (in bits) Representation

0b00 Reserved/Not Used

0b01 Not Capture

0b10 Rectilinear

0b11 Diagonal

Table 3.3: Sb values.

detection. Here I propose a very simple way by fast encoding the basis detection string

to Sb values and that is to perpend each bit in the sifting bit string with either a zero

or one, in case of missed match and detected respectively. The values for Sb are shown in

table 3.3. This method is not efficient in size though as it doubles the size of detection

bit string. There are compression algorithm and other size reducing techniques that could

be applied. The focus of this study is, however, on efficiency of the header of the packets

rather than payload. Once the packet is constructed, and she opens a TCP connection, if

there is already no open connection with sender on the same port, and sends the packet

to sender.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A 0x1 0b000 Counter Packet Length

Chunk Hash ID

Number of Wrong Basis selection

Sc Sc Sc Sc Sc Sc · · ·

Figure 3.11: APPP Post Processing Sifting Confirmation.

Sender will process the Sbs to confirm the correct ones and construct Sifting Confir-

mation packet shown in figure 3.11 where after APPP post processing constant header,

75

CHAPTER 3. CONTRIBUTION

sender will put the number of wrong detection, and then values of Sc to confirm which

basis detection was correct and which one was wrong, so both parties could deduce the

sifted key.

It should be easy at this point to have a rough idea on how the rest of the communication

on post processing would look like and how the packets are constructed using APPP. After

post processing, chunks of raw key are transformed to secret keys which would be provided

to KML.

3.5 Key Management Layer

Once the post processing is done, secret keys are provided to KML. The purpose of whole

system could be seen as filling the REFINED KEYS database. These are the keys which

are either provided to application layer, or used by QPPD for classic communication au-

thentication, or even used by KML itself. On top of the secret keys from QL, KML could

receive some feedbacks about the quality of the connection on quantum level and rate of

key generation, and use these information to efficiently use the secret keys. Secret key size

are fixed, known and configurable because all of them had gone through privacy amplifica-

tion step and the step’s function output is set to a desirable length, usually 256 devisable.

Secret keys in all the development go through a refinement process in which the length of

the secret keys are stretched ti have more keys. Based on the feedback, KML could extend

the derived key lengths accordingly to maintain secure communication and provide avail-

ability. This could also be used for filling SAD and SPD databases of IPSec. As mentioned

earlier, SA is an entity which contains a secret key and other information associated with

the key, like the algorithm this key should be used with, and SPI of the SA that should be

expected on the AH packet header.

KML consumes refined keys to create SA and then places them in SAD. Based on

the feedback it can decide on the policies that these SA should be used as well. SPD

indicates which SA with which policies shall be applied on what traffic e.g. whether to be

used for INBOUND or OUTBOUND, or to be used for which packets based on TCP/IP

address and port. These policies could also be set based on the feedback. Consider the key

generation rate is dropping, the KML then creates more keys with one refined key with

help of KANGAROOTWELVE and fills SAD with keys for less consuming algorithms like

KMAC. When the key rate is satisfactory, it can roll back and use Carter-Wegman ITS

style auth256 which consume twice the key to provide better security. The same analogy

could happen for the application layer. Recently a QKD implementation demonstrate the

76

CHAPTER 3. CONTRIBUTION

same concept to reach 1 Gbps3 encryption on Application Layer using AES with one minute

re-keying policy[EWL+10].

Since quantum connections are known in quantum layer, it is also known to which

nodes in the network QPPD would open a connection. Therefore, it is easy for KML to

accommodate secrets shared by those nodes to SAD and later locate SAs in OUTBOUND

and INBOUND databases through setting policies in SPD. These needs to be synchronized

with other node’s KMLs as well. They need to put the same same secret in to INBOUND

and OUTBOUND used by their QPPD accordingly for the bidirectional authentication to

happen.

Figure 3.12 depicts life cycle of keys within the system in abstract. It starts from

the quantum layer where quantum device perform Quantum Key Distribution process to

generate raw keys. Then either QPPD or the device will put them in the RAW KEYS

database4. Raw keys are tagged as specified before, and would be splitted into chunks and

tagged as explained before. Chunks of raw keys would go through post processing so secret

keys could be derived from them. The processes the key goes through post processing

are described before and shown in figure 2.1. These secret keys, then, would be placed at

SECRET KEYS database in KML. This is the last step QPPD is involved with the keys.

Secret key tags, as they are constructed now, could also be exploited by KML as meta data

for routing, and generating SAs for IPSec.

Secret Key Tags include the address for the parties who has shared the key. KML

then picks these secret keys and creates refined keys to put in REFINED KEYS database.

Refinement process for the secret keys is out of the scope of this study. A suggestion

was briefly discussed earlier. The purpose of these process is to create 256bit keys which

would later be provided to consumers. It should be restated that refined keys are not only

generated from QKD secret keys. KML can generate keys and share with other nodes on

its own as well. For those communication KML uses refined keys to encrypt a packet and

encapsulate the key and send to other nodes, like run zero of QKD when the nodes have

not started the QKD yet. Another example is synchronization needed for IPSec secrets, or

other management and synchronization communication needed in this layer for expiring

keys or deleting keys and etc. SECQOC and it variants are using OTP to encrypt these

packets. This is not very efficient, while in the most of the cases just encrypting the key

with OTP suffices and reduces key consumption to only 256 bits instead of more than 100

bytes per packet. Network application layer implementation for KML could be used as
3Giga bit per second.
4Communication between Quantum Device and QPPD, as discussed before, could be detailed once I

get my hands on one or a technical document of their implemented API

77

CHAPTER 3. CONTRIBUTION

well, where encryptions happen over some parts of layer 7 e.g. the key being forwarded.

Figure 3.12: Keys transformation though the system.

78

CHAPTER 4. DISCUSSION

Chapter 4

Discussion

"The aim of argument,

or of discussion,

should not be victory,

but progress."

— Joseph Joubert

On the final chapter of this dissertation, I provide the rationale behind the proposed

solution. The main theme of reasoning behind most of the decision making through out

this project was to follow the standards and try to build on top of what has already

been built. The purpose of the design was to stay as generic as possible to be able to

service different needs, and also update the gap of over 10 years in many sections like

implementation technology and security. The design philosophy would be discussed over

three aspects of the solution namely: architecture, proposed authentication scheme, and

the APPP protocol. The design philosophy is more than reasons behind selecting of an

approach or an algorithm – it is about the idea which resulted in having certain criteria of

selection which ended up choosing an algorithm. Subsequently, I provide a fair comparison

of the solution with existing ones. And at the end, I deduce the conclusion of this study.

4.1 Solution Design Philosophy

One of the main aspect that shaped my solution was following the technology trend and

try to apply it to QKD where applicable. In the literature I found there was at least a 7

years gap. The last QKD network implementation paper I found was published in 2011 for

Tokyo QKD network. There has been lots of progress recently in QKD domain though,

with field test for 307km fiber distance QKD [KLH+17] or 1200km over satellite[YCL+17].

These studies and many others are focused on the quantum communication, apparatus,

79

CHAPTER 4. DISCUSSION

and techniques in order to perform more efficient communication over quantum channel.

Most of these papers do not even consider post processing. It feels like post processing has

been neglected. Maybe one reason for this is that due to still poor performance on the

quantum channel comparing to the price of the appliances, the need for enhancement in

those area is greater.

Another thing about outdated implementations was the security concerns. Most of

the QKD network implementations were not explicit about choice of algorithm used for

authentication. Those who mentioned their choice did not comply with this study’s security

bounds, like SHA-1 in DARPA. This is very important to note, VMAC with AES 128 bits

is a wide in-use ITS Carter-Wegman MAC generator but it is not post quantum secure.

Because the secret key (128 bits) would not provide 128bits security but instead 64 bits of

security in post quantum era. A quick fix to this could be enlarging the size of the key, yet

I included examples that there are some attacks on the construction of algorithms found

recently. Thus, I decided to take a step back and look for new findings that might have

been introduced during these years. Moreover, there were some parts of the whole QKD

which was not well defined in the literature like the application layer of QKD classical

communication (APPP).

One of the key thing in designing a system is to understand the load the system will

face. Unfortunately, I did not have any statistics on key generation rate to grasp the load

of the system. Therefore, I performed educated guessing to define system load. The device

that was considered for this study claimed generating 3kbps secret keys. The highest key

generation rate I found in the literature was 26.2 Mbps at the highest [ILC+17]. Assuming

half of the key is revealed in post processing confirmation step this brings this size to 52.4

Mbps. And half of the raw key most probably has been sifted and there is packet loss as

well so it is safe to assume the raw key generation rate was near 110 Mbps or 13.75 MBps.

If we consider each packet sent in network to be an average of 1000 bytes this mean only

for one party to reveal her choice of detection base which is as long as the key size, 13750

packets per second are needed. These results are obviously the worst case scenario. As

mentioned earlier it is suggested to use compression algorithm on post processing data to

shorten message length.

The other fact to consider is number of keys generated in each node. In KML layer

ETSI suggests space of 512 bits to identify all the keys in the network. In the quantum

layer, however, there is no suggestion. A recent study claims that in order to achieve 1

Gbps encryption at encryption level with 1 minute re-keying policy for AES not OTP, 8.6

Gbps key generation rate is required[EWL+10]. This implies both long length raw keys

and huge number of them for just one encryption link. Clearly, quantum endpoint should

80

CHAPTER 4. DISCUSSION

be connected to more than one node to construct a network. And this enlarges the number

of keys generated in each end point, thus a long ID size is needed.

4.1.1 Architecture

I based my designed on SECQOC, and applied the suggested enhancement for cost reduc-

tion, namely aggregated quantum links, WDM, lowering the number of link layer module

to preferably one personal computer (the one that hosts QPPD in my solution). For au-

thentication I had to add the IPSec into the three layer design as my protocol stack was

different from the one suggested in SECQOC. Suggestions like getting feedback from lower

quantum level to upper key management level is suggested in related literature for extract-

ing more/less keys based on the quality of the quantum channel. I tried to have it in my

design for the choosing more efficient authentication algorithm as well. Key processing and

key tagging is derived from network packet processing application where metadata about

the connection is passed to higher level for further use. This reduce inter communication

between layers which is both a good design practice and an efficient solution. Suggestion for

use of Fast User Space implementation is also from network programming domain which

is the industry standard nowadays.

Recommending one QPPD for all the quantum devices is solely a cost effective decision

and could be wrong based on the load. This is very dependent to the implementation

and benchmark that could be achieve during tests. Another thing is the load which was

discussed earlier. The main reason I suggested software based development was the great

performance of software base packet processing project like Intel DPDK which are enable

10Gbps packet processing for network security purposes which often are time consuming,

like a behavioral detection intrusion detection system or next generation firewall. This also

need to be put in test. Huge number of keys generated each second also was the reason to

use long key tags to avoid any collision.

However, long key tag meant longer packets. In order to reduce the size of the packets,

I decide to add Chunk Hash ID concept and together with the TCP connection the post

processing is being done in, I was able to reduce the key ID size which further reduces the

packet size with out risking collision on the short key size ID. As I calculate 13750 packets

are only sent by one party in a second for just one step of post processing. Reducing only

one byte from the packet size results in 110,000 bit shorter messages per second only in

one step of post processing performed by one party. Suggested solution at least has reduce

the size of packets by 28 bytes during post processing of a chunk (32 bits instead of 256

bits). Key tagging is not discussed in other literature.

QPPD name has been selected modestly, like APPP. In fact, both of them are capable

81

CHAPTER 4. DISCUSSION

of performing more than post processing and this was considered in their design. Through

out the previous chapter, I hinted out some of possibilities, but for this study I stick with

the name. QPPD is more like a QKD daemon. Its concept of functionality is very similar

to other networking application, but it was not discussed in related QKD literature.

4.1.2 Authentication

Given the communication for post procesing happens over classical channel, avoiding

TCP/IP would not be reasonable. All the implementations are using same TCP/IP1. The

best authentication method known for TCP/IP is IPSec. This made selection of authen-

tication method the easiest as all others were using IPSec as well. SECQOC Q3P is also

using very similar techniques. Although they are calling their protocol Q3P, but the proto-

col stack is very similar to tunneling mode of IPSec. IPSec has kernel daemon but none of

the implemented algorithm by the standard complies with our security requirement. This

is why I proposed two different algorithms. Section 2.4 discusses the reasons for selection

of the algorithms.

4.1.3 APPP

APPP was designed to perform post processing of generic QKD protocol. I tried to use only

mandatory field to reduce the size as much as possible. The protocol header and the fields

has been introduce in this document for the first time. I definitely could not follow any

principle from related QKD research. This is why I had to improvise and adopt techniques

from similar communications where bandwidth is expensive.

4.2 Solution Comparison

At architectural level, the solution is definitely an improvement over the already imple-

mented networks based on the information published about those project. This is easy

to justify. I have picked the enhancement and modification suggested by literature and

further extend it. An example is introducing dynamic authentication algorithms based on

feedback from quantum channel quality. While the idea was suggested to use the feedback

to extend the secret key more, I suggest change of algorithm to a more efficient one. Other

example of this small modification are stated through out the text in previous chapter.

Comparing authentication proposed in solution with others would not be justifiable

though. At algorithm security level, all their implementation were consider some how safe
1Q3P might have different name for networking and application data layers but the packet structure,

and functionalities are identical.

82

CHAPTER 4. DISCUSSION

during their time of development, while now the same algorithms are not considered secure.

About the approach for authenticating the packets, all the development are almost using

the same technology i.e. IPSec. And about the performance, my solution is very fast theo-

retically. It needs to be implemented and tested properly against other to conclude. Other

implementation does not reveal any benchmark from key rate generation or computational

costs.

It is not possible to perform comparison for APPP either, since none of the implemen-

tation and any other literature has detailed this level. The efficiency of the design has been

already discussed. The whole protocol stack used by QPPD, however, could be compared

with SECQOC Q3P as both protocol as both protocol stacks are link layer (layer 2) pay-

load. Q3P protocol stack is shown in figure 2.15. QKDNL and QKDTL are identical to

TCP/IP, and header for QKDLL is shown in figure 2.16. There is no information available

about QKDAL. My proposed IPSec based solution protocol stack could be seen in figure

3.3. The comparison is size based. Since information about the application layer is note

provided for Q3P, I do not compare that layer, also the size of authentication tag is not

considered as it is a security concern and both protocol allow varying size of authentication

tag.

Comparing both protocol running on conventional Ethernet based network which runs

TCP/IP is not fair because my proposed solution will easily outperform Q3P. Shown in

figure 2.15, Q3P sits on top of TCP. A quick math will show us that from the MTU 36 bytes

are used for TCP/IP2 in both protocols and later again the similar 36 bytes are used by

Q3P with QKDNL and QKDTL. Authentication header in my proposal is 12 bytes while

Q3P which acts as the same authentication header in case used only for authentication is

16 bytes long. Not considering the authentication tag for each protocol stack, my proposal

has reached application layer after 48 bytes, while in Q3P after 52 bytes, then again there

32 bytes of TCP/IP like packets for routing which makes almost doubles the size compare

to my solution; thus 84 bytes for the same functionality.

Q3P, in my opinion, has been design to be used only over the Quantum Channel

Interface i.e. when data is demultiplex-ed with quantum communication over quantum

channel. The protocol as mentioned before has three modes of operation based of EA flags

in the header to authenticate and/or encrypt the whole data. I am going to compare my

solution to Q3P in all three modes over this type of medium where packets are not carried

by Ethernet protocol. Since QKDNL and QKDTL are identical to TCP/IP and both are

used once in both solution I take them out of comparison as well. Thus we are left with

Q3P and IPSec AH. Q3P claims to be a link layer protocol, which is true but not accurate.
2IP header is 20 bytes and TCP is 16.

83

CHAPTER 4. DISCUSSION

It is located in a place that a Link Layer protocol should be placed, but the packet does

not provide functionality of a link layer protocol namely linking the connection. This is

why on classic Ethernet which many devices are interconnected and can communicated

with each other, Q3P cannot establish a link and substitute Ethernet – the packet header

does not have any address field. In SECQOC however, there is no need for Link Layer. In

fact if the data is demultiplex-ed in quantum channel the link is already there, quantum

channel communications are point-to-point connection links and link layer protocol are not

needed in SECQOC. Hence I conclude Q3P is just an Authentication/Encryption header

comparable to IPSec. The fact that in SECQOC literature and figure also it is mentioned

Q3P is the link layer only for SECQOC, and the name of the protocol itself makes feel

more confident about my claim. Indeed, the protocol stack is very similar to tunneling

mode of IPSec which I argue later.

In case the packets are need to be authenticated only, like in post processing which

is the most of the communication, my proposed solution benefiting from IPSec AH uses

4 bytes less in header. For encryption only packets are not needed in my research, I did

not discuss them. These could be seen in Key Management Layer communication which

is out of the scope of my thesis. My solution for encrypting packets would benefit from

IPSec ESP header designed for encryption. ESP header size is half of Q3P, 8 bytes. And

in case both authentication and encryption are used both solutions have 20 byte header,

thus identical.

My proposed used of IPSec is in transparent mode as it can be seen in figure 3.3. IPSec

ESP in transparent mode does not encrypt IP header. While Q3P also encrypts Quantum

Network Layer (analogous to IP). The only reason to encrypt the network layer (IP or

QKDNL) is to conceal routing information. In that case IPSec could be used in tunneling

mode where the security headers (AH and ESP) would be place before IP. In conventional

network this would be the payload for another IP packet, and that is why this mode is

called tunnel mode. Similar to Q3P, it can sit on Quantum Channel Interface without

any IP before it, providing the same identical functionality. It is clear to see the dynamic

proposed protocol stack out performs static Q3P.

4.3 Conclusion

This research proposed the most suitable authentication infrastructure for QKD post pro-

cessing compared to all the existing alternative. It is suitable because it is designed to

address the real needs of QKD. Based on my findings, practical implementations were

facing the below obstacles.

84

CHAPTER 4. DISCUSSION

• High costs of implementation almost makes it irrational to consider QKD compared

to classical alternatives.

• Reliability and availability of the whole system in regards to providing secret keys

to application layer is a concern and could be further degraded by high rate of key

consumptions of the system over classical channel.

• Security notations were not justifiable with algorithms like SHA-1. Claims like em-

ploying Carte-Wegman style does not mean anything and could even be the case that

the ITS algorithm used in the projects are not post quantum secure.

• There different topologies, and since solutions are not very generic in many layers,

they are not adaptable on many projects. The need for a generic total solution is felt.

These I view as the first feedback the community received from the practical QKD net-

work implementations Which happened over the course of 2000s. In the last decade, there is

no practical implementation of networks. There practical implementation of two end point

connecting to each other as a proof of concept for long distance quantum communication.

Certainly, there are lots of areas to enhance. Different literatures have suggested many

ways to improve certain aspects of QKD, yet there is no study considering everything in a

total solution.

In this research, I tried to take in all these recommendations which could enhance the

system and are related to post processing and authentication. Examples are the suggestion

of using feedback and how it is extended in this study, or cost reduction hints on hardware

level which are considered in the architecture of the solution. For the areas where there were

no suggestion, yet I felt I could contribute and suggest an efficient algorithm, I proposed

new techniques e.g. APPP, QPPD, key tagging and chunk hash ID, and etc.

Without any doubt, implementation of the solution and practical test could result in

slight modification of solutions. Moreover, it could reveal new sets of requirements. More

information about the hardware and statistics about the protocol such key generation

rate, traffic load over classic communication channel, and etc., could also be useful. There

are other areas which could be investigated, some are more generic compared to others. A

generic future study could studying security proofs for KangarooTwelve and suggesting

ITS MAC generation algorithm. One direction that could be taken to extend this research

is definitely the KML, specifically the key forwarding, and OTP encrypting the forwarding

keys which were discussed. Further development of APPP and describing other tasks for

QPPD which were highlighted in the text are other directions to expand this research.

85

BIBLIOGRAPHY

Bibliography

[AB96] Rose Anderson and Eli Biham. Two Practical and Provably Secure Block

Ciphers: BEAR and LION. Springer, England, 3rd international workshop on

fast software encryption edition, 1996.

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Chris-

tian Winnerlein. BLAKE2: simpler, smaller, fast as MD5. Springer, USA,

acns, volume 7954 of lecture notes in computer science, pages 119–135. edition,

2013.

[BB84] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribu-

tion and coin tossing. IEEE International Conference on Computers, Systems

and Signal Processing, New York, volume 175, page 8 edition, 1984.

[BC14] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication and

faster binary-field macs. Springer, USA, international workshop on selected

areas in cryptography p:92-111 edition, 2014.

[BCK96] Mihir Bellare, Ran Canettiy, and Hugo Krawczykz. Keying Hash Functions for

Message Authentication. Advances in Cryptology – Crypto 96, USA, lecture

notes in computer science vol. 1109, n. koblitz ed. edition, 1996.

[BDP+16] Guido Bertoni, Joan Daemen, Michael Peeters, Gilles Van Assche, Ronny Van

Keer, and Benoit Viguier. KangarooTwelve: fast hashing based on Keccak-p.

Cryptology ePrint Archive, 2016.

[BDPV07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge

Functions. NIST, UK, ecrypt hash workshop 2007 edition, 2007.

[BDPV08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the

Indifferentiability of the Sponge Construction. Springer, USA, annual interna-

tional conference on the theory and applications of cryptographic techniques

p:181-197 edition, 2008.

86

BIBLIOGRAPHY

[BDPV11] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryp-

tographic sponge functions. KECCAK Family, 2011.

[BDPV13] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.

SAKURA: a flexible coding for tree hashing. Cryptology ePrint Archive, report

2013/231 edition, 2013.

[BDPV14] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The

making of KECCAK. Cryptologia, 38(1):26-60 edition, 2014.

[Bel15] Mihir Bellare. New proofs for NMAC and HMAC: security without collision

resistance. Springer, USA, ajournal of cryptology 4 volume 4 p:844-878 edi-

tion, 2015.

[Ber05a] Daniel J Bernstein. Cache-timing attacks on AES. Palms Princeton, Chicago,

cd9faae9bd5308c440df50fc26a517b4 edition, 2005.

[Ber05b] Daniel J. Bernstein. The Poly1305-AES message-authentication code. NSF,

USA, 0018d9551b5546d97c340e0dd8cb5750 edition, 2005.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. NSF, USA,

4027b5256e17b9796842e6d0f68b0b5e edition, 2008.

[Ber10] Daniel J. Bernstein. Quantum attacks against Blue Midnight Wish, ECHO,

Fugue, Hamsi, JH, Keccak, Shabal, SHAvite-3, SIMD, and Skein. NSF, USA,

0152ab005327cb177476138d8ca74674 edition, 2010.

[BHT18] Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-

SIV: Multi-user security, faster key derivation, and better bounds. Springer,

annual international conference on the theory and applications of crypto-

graphic techniques p:468-499 edition, 2018.

[BP18] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM Unification.

Cryptology ePrint Archive, USA, report 2018/526 ver. 20180604:211444 edi-

tion, 2018.

[BR60] R. C. Bose and D. K. Ray-Chaudhuri. On A Class of Error Correcting Binary

Group Codes. Information and Control, North Carolina, 3 (1): 68–79, issn

0890-5401 edition, 1960.

87

BIBLIOGRAPHY

[BR02] J. Black and P. Rogaway. A Block-Cipher Mode of Operation for Parallelizable

Message Authentication. Springer-Verlag., USA, advances in cryptology –

eurocrypt ’02 edition, 2002.

[CW81] J. Lawrence Carter and Mark N. Wegman. New hash functions and their use

in authentication and set equality. Journal of computer and system sciences,

USA, 22.3 p: 265-279 edition, 1981.

[DAGS08] Mehrdad Dianati, Romain Alléaume, Maurice Gagnaire, and Xuemin (Sher-

man) ShenMilton. Architecture and protocols of the future European quantum

key distribution network. John Wiley & Sons, Ltd., Paris, France, security

comm. networks. 2008; 1:57–74 edition, 2008.

[DEM15] C. Dobraunig, M. Eichlseder, and F. Mendel. Analysis of SHA-512/224 and

SHA-512/256. Springer, USA, advances in cryptology - asiacrypt lecture notes

in computer science, vol. 9453, springer, 2015, pp. 612–630 edition, 2015.

[Dwo05] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The

CMAC Mode for Authentication. NIST, USA, nist special publication 800-38b

edition, 2005.

[Dwo07] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Ga-

lois/Counter Mode (GCM) and GMAC. NIST, USA, nist special publication

800-38d edition, 2007.

[ECP+05] Chip Elliott, Alexander Colvin, David Pearson, Oleksiy Pikalo, John Schlafer,

and Henry Yeh. Current status of the DARPA quantum network. International

Society for Optics and Photonics, USA, quantum information and computa-

tion iii volume 5815 p:138-150 edition, 2005.

[Ell05] Chip Elliott. The DARPA quantum network. CRC Press, USA, quantum

communications and cryptography p:91-110 edition, 2005.

[EMS14] Maria Eichlseder, Florian Mendel, and Martin Schlaffer. Branching Heuristics

in Differential Collision Search with Applications to SHA-512. IACR Cryp-

tology ePrint Archive, USA, 2014:302 edition, 2014.

[EWL+10] P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden. Quantum key

distribution and 1 Gbps data encryption over a single fibre. New Journal of

Physics, Switzerland, 12 (2010) 063027 (15pp) edition, 2010.

88

BIBLIOGRAPHY

[FDD+09] Simon Fossier, Eleni Diamanti, Thierry Debuisschert, André Villing, Rosa

Tualle-Brouri, and Philippe Grangier. Field test of a continuous-variable

quantum key distribution prototype. IOP Publishing, USA, new journal of

physics vol.11 edition, 2009.

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,

Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function

Family. NIST, USA, version 1.3 edition, 2010.

[GLL17] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Specifica-

tion and Analysis. IACR Cryptology ePrint Archive, 2017.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.

STOC, Philadelphia, pages 212-219 edition, 1996.

[HNM+13] Richard J Hughes, Jane E Nordholt, Kevin P McCabe, Raymond T Newell,

Charles G Peterson, and Rolando D Somma. Network-centric quantum com-

munications with application to critical infrastructure protection. arXiv, USA,

preprint arxiv:1305.0305 edition, 2013.

[ILC+17] Nurul T Islam, Charles Ci Wen Lim, Clinton Cahall, et al. Provably secure

and practical quantum key distribution over 307 km of optical fibre. Ameri-

can Association for the Advancement of Science, USA, science advances vol.3

edition, 2017.

[IOM12] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and re-

pairing GCM security proofs. Springer, advances in cryptology–crypto 2012

p:31-49 edition, 2012.

[jCPB+12] Shu jen Chang, Ray Perlner, William E. Burr, Meltem S. Turan, John M.

Kelsey, Souradyuti Paul, and Lawrence E. Bassham. Third-Round Report of

the SHA-3 Cryptographic Hash Algorithm Competition. NIST, USA, nistir

7896 edition, 2012.

[KjCP16] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 Derived Functions:

cSHAKE, KMAC, TupleHash and ParallelHash. NIST, USA, nist special

publication 800-185 edition, 2016.

[KLH+17] Boris Korzh, Charles Ci Wen Lim, Raphael Houlmann, et al. Provably secure

and practical quantum key distribution over 307 km of optical fibre. Nature

Publishing Groupe, Australia, nature photonics vol.3 edition, 2017.

89

BIBLIOGRAPHY

[NFV10] Network Functions Virtualisation NFV. Quantum Key Distribution (QKD);

Application Interface. New Journal of Physics, France, etsi gs qkd 004 v1. 1.1

(2010-12) edition, 2010.

[NFV13] Network Functions Virtualisation NFV. Quantum Key Distribution; Use

Cases. New Journal of Physics, France, etsi gs nfv 001 v1. 1.1 (2013-10)

edition, 2013.

[PAL+15] C. Pacher, A Abidin, T. Lorunser, M. Peev, R. Ursin, A Zeilinger, and J. Lars-

son. Attacks on quantum key distribution protocols that employ non-ITS au-

thentication. arXiv, Austria, 1209.0365v2 edition, 2015.

[PPA+09] Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan

Bouda, W Boxleitner, Thierry Debuisschert, M Dianati, Eleni Diamanti,

JF Dynes, et al. The SECOQC quantum key distribution network in Vienna.

New Journal of Physics, Austria, iop publishing volume 11 edition, 2009.

[SBC+09] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas Cerf, Miloslav Dušek,

Norbert Lütkenhaus, and Momtchil Peev. The security of practical quantum

key distribution. APS, Austria, reviews of modern physics volume 81, 3 p.1301

edition, 2009.

[SFI+11] Masahide Sasaki, M Fujiwara, H Ishizuka, et al. Field test of quantum key

distribution in the Tokyo QKD Network. Optical Society of America, USA,

optics express vol.19 p:10387-10409 edition, 2011.

[Sha11] Mehrdad S. Sharbaf. Quantum Cryptography: An Emerging Technology in

Network Security. IEEE, California, 978-1-4577-1376-7/11 edition, 2011.

[SLB+11] Damien Stucki, Matthieu Legre, F Buntschu, B Clausen, Nadine Felber, Nico-

las Gisin, L Henzen, Pascal Junod, Eleni Litzistorf, Patrick Monbaron, et al.

Long-term performance of the SwissQuantum quantum key distribution net-

work in a field environment. New Journal of Physics, Switzerland, iop pub-

lishing volume 13 edition, 2011.

[Sma16] Nigel P. Smart. Cryptography Made Simple. Springer, UK, isbn 978-3-319-

21935-6 edition, 2016.

[WTC18] Weilong Wang, Kiyoshi Tamaki, and Marcos Curty. Finite-key security

analysis for quantum key distribution with leaky sources. arXiv, Japan,

1803.09508v1 edition, 2018.

90

BIBLIOGRAPHY

[XCW+09] FangXing Xu, Wei Chen, Shuang Wang, ZhenQiang Yin, Yang Zhang, Yun

Liu, Zheng Zhou, YiBo Zhao, HongWei Li, Dong Liu, et al. Field experiment

on a robust hierarchical metropolitan quantum cryptography network. Springer,

China, chinese science bulletin volume 54 p:2991-2997 edition, 2009.

[YCL+17] Juan Yin, Yuan Cao, Yu-Huai Li, et al. Satellite-based entanglement distri-

bution over 1200 kilometers. American Association for the Advancement of

Science, Australia, science vol.356 edition, 2017.

91

	Background
	Quantum Information Theory and Cryptography
	qkd
	bb84

	Cryptographic Authentication
	Authentication in QKD

	Scope
	Outline

	Related Literature Analysis
	qkd Post Processing
	Key Sifting
	Confirmation
	Error Correction
	Privacy Amplification

	qkd Authentication
	Block Cipher Based macs
	Cryptographic Hash Based mac
	Universal Hash Based mac

	qkd Network Implementations
	darpa qkd Network
	secqoc qkd Network
	SwissQuantum
	Wuhu qkd Network
	Los Alamos National Laboratory nqc

	Summary
	Post Processing
	Authentication
	qkd Networks

	Contribution
	Solution Architecture
	qppd
	Authentication Algorithm

	appp
	Sample Run
	Error 0xE
	Initial Setup 0x0
	Sifting 0x1

	kml

	Discussion
	Solution Design Philosophy
	Architecture
	Authentication
	appp

	Solution Comparison
	Conclusion

