Probability Analysis of Linear Time Logic
Statements on Infinite Walks in Large Random
Kripke Structures

Joran van den Bosse

1 July 2018

Abstract

Model checking is concerned to check the functionality of software and
hardware systems. Those systems are discretised by labelled, directed
graphs, which are called Kripke Structures. Due to the so-called state
explosion problem those systems can become too large to be modelled
by deterministic graphs This report uses the Erdos-Rényi random graph
model to model large systems. Linear Time Logic is used to describe
events related to critical states in systems. Probabilities that basic Linear
Time Logic statements hold, are computed. Former research showed that
first order logic for graphs satisfied a zero-one law. In this paper it is
investigated to what extent that result can be extended to Linear Time
Logic statements on labelled, directed random graphs.

1 Introduction

When software or hardware systems are used, they are desired to satisfy cer-
tain requirements. For instance, it is desirable that no states of the system
can be reached that cause the system to crash. Model checking is a technique
in computer science that checks whether software or hardware systems satisfy
certain properties [I, page 330]. In this report we will be concerned with the
probability that events related to critical states occur, such as their reachability.

According to [I, page 331] model checking often considers discrete models of
such systems. One method to do this is to describe the system through so-called
Kripke Structures. These structures are directed graphs where each vertex rep-
resents a state in the systems and the directed edges represent state transitions.
Each vertex contains a label that describes the properties of a certain state in
the system. One of the vertices in the graph is the initial state where a system
starts running. An execution of the system is then modelled by a walk through
the graph.

Model checking statements are formulated using some specific logic. This pa-
per focuses on statements that are formulated in Linear Time Logic, which is
described on [I, page 334-336]. Linear Time Logic statements describe proper-
ties of walks in Kripke Structures. For instance, the statement ”all vertices in
the walk are healthy states” belongs to this logic. In the next section a formal
definition of the logic is given. This paper focuses on the probability that all
walks in a random graph starting from a fixed starting vertex satisfy a certain
Linear Time Logic statement.

As is described on [Il page 343-344] hardware systems can have a lot of paral-
lel components, causing a system to be able to reach a lot of different states.
When such systems are modelled by directed graphs, the number of vertices can
become large and it can be hard to describe such systems using deterministic
graphs. This phenomenon is called the state explosion problem.

These large systems can be modelled using Erdés-Rényi random graphs [2].
In this model the number of vertices is a deterministic choice. However, the
edges in the graph are selected at random using a given existence probability.
This model was created by P. Erdés and A. Rényi around 1960 [2] and has been
applied to model networks. In this paper we use it to model the Kripke Struc-
tures. In large systems there is a high number of states but the exact phase
transitions are unknown. However, the density of phase transitions often can
be determined. Therefore the random graph can be a good model to describe
these systems.

After P. Erdés and A. Rényi had developed the random graph model a lot of re-
search has been done on this field in order to extend the theory of deterministic
graphs to the field of random graphs. For instance, in the theory of determin-
istic graphs the term connectivity is used to describe graphs in which a path
exists between any pair of vertices. An example of a connected graph is shown
in figure [II The question arose with what probability structural properties in
graphs such as connectivity occurred in random graphs.

Figure 1: A connected graph

Former research on random graphs has shown that such structural properties
of random graphs satisfy zero-one laws [3| [, [[9]. That means that the proba-
bility that certain properties appear in a random graph either tend to 0 or to 1 if

the number of vertices of a graph grows infinitely large. Whether the probability
tends to 0 or 1, depends on the edge existence probability. There exists some
threshold value of the edge existence probability at which the structural prop-
erty appears or disappears. For instance, in [2] it is shown that p(n) = @ is
a threshold for connectivity. That is, if the edge existence probability is larger
than this threshold and the number of vertices is large, it is almost surely con-
nected and if the edge existence probability is lower, the graph is almost surely
not connected. Since zero-one laws exist on a whole class of such properties,
described by the so-called first order logic for graphs, it is possible that some
class of Linear Time Logic statements also satisfies a zero-one law.

The aim of this probability analysis is to investigate whether such a zero-one law
exists by computing the probability that basic Linear Time Logic statements
hold. In section [2| formal definitions of the used structures are given. In section
an extension of former research on zero-one laws onto the model checking
problem is considered. In section [a result on strong connectivity in directed
random graph is presented. Then in sections [5] and [6] the probability analysis
is executed. As a result of this analysis a further research on zero-one laws in
model checking could become of interest.

2 Definitions

Before we start the probability analysis let us first consider some definitions.
Let us firstly give a definition for the random graph model, as described by [5]

page 2].

Definition 1 (Binomial Directed Random Graph). Let us consider a simple
directed graph that contains n vertices and a real number p, with p € (0,1). For
each of the n(n — 1) ordered pairs of vertices let a directed edge exist between
these vertices with probability p and no edge with probability 1 — p. This graph
is considered a Binomial Directed Random Graph. Such a graph is denoted by

G(n,p).

For the purpose of the model checking problem no loops are allowed in the
graphs. After all in model checking only transitions between different states of
a model are of interest. This is a slight difference to the model described by [5]

page 2].

Once the vertices and edges of the graph are created according to definition
labels are added to the graph. In this paper the only considered labels are
the colours red and blue, where each state has exactly one of the two colour
labels. The colour blue represents a healthy state and the colour red represents
a critical state of a modelled system. T'wo methods of vertex labelling are con-
sidered, a random labelling and a deterministic labelling. These are defined as
follows.

Definition 2 (Random Vertex Labelling). Let us consider a random graph
G(n,p). Choose a fized real number q, with ¢ € (0,1). Each vertex of G(n,p)
receives a red label with probability ¢ and a blue label with probability 1 — q.

Definition 3 (Deterministic Vertex Labelling). Let us consider a random graph
G(n,p). Choose a fized integer v, with r > 0. If n < r all vertices of G(n,p)
receive a red label. If n > r the first r vertices are labelled red and the remaining
vertices receive a blue label.

The labelled, directed, binomial random graphs that are created using a
combination of definition[I]and either definition [2]or [3]are the graphs considered
in this paper. In order to apply model checking we consider walks through the
graph, as described on [I, page 335].

Definition 4 (Walk). Let us consider a directed graph G(V, E), where V is the
vertex set and E the edge set of the graph. A finite walk of length k through
G is a sequence of vertices of G, denoted as m =< Ty, 71, ..., Tk >, such that
for all i between 0 and k — 1 the edge (w;,mi+1) is in edge set E. Here k is
a finite integer, with k > 0. An infinite walk is a sequence m =< mg, 71, ... >
such that for all positive i the edge (m;,mi+1) is in the edge set E. Vertex mg
is the starting vertex of the walk. The tail of the walk starting at vertex m; is
the sequence T =< Tj, Tjt1s -y T > i case of a finite walk or the sequence
T =< mj, Wjq1,... > in case of an infinite walk. The length of a walk, denoted
as || is the integer k if the walk is finite or oo if it is an infinite walk.

Note that [I] uses the word "path” instead of "walk”. This paper stays in
line with the choice of words in [6], since that is an elementary course on graph
theory. In this paper only infinite walks will be considered and the first gen-
erated vertex in a random graph G(n, p) will be the starting vertex of each walk.

A walk through a random graph models the running of a system that is con-
sidered by model checking. Now the mathematical framework is given, let us
consider the formal definitions of the discrete models of those systems. Those
models are called Kripke Structure. We will consider the definition as given by
[1, page 331-332].

Definition 5 (Kripke Structure). A Kripke Structure over a set of Atomic
Propositions, denoted as AP, is a system described by the triple (S, R,I). Here
S is a set of states, R is a set of transition relations, with R C S x S, and
I is an interpretation of the atomic propositions belonging to the states. For
each proposition p € AP and for each state v € S either p € I(v) orp & I(v).
Therefore I is a function defined on the space I : S — 247,

The labelled, directed random graphs model Kripke Structures. We are
concerned with the properties of walks through those graphs. Those properties
are described by the language of Linear Time Logic, as described on [, page
334-336].

Definition 6 (Linear Time Logic). The Linear Time Logic in model checking
defines whether a walk 7 in a Kripke Structure meets a statement ¢, denoted as
7w = ¢. A statement ¢ in the language of Linear Time Logic is built using the
following grammar rule:

¢ := pl=0ld1 V @2 X (9)|F(0)|G()|U (4,) WU (¢, ¢)).

Here X (¢) is pronounced as Next ¢, F(¢) is pronounced as Finally ¢, G(¢)
is pronounced as Generally ¢, U(¢,) is pronounced as ¢ Until ¢ and WU (¢, 1))
is pronounced as ¢ Weak Until ©. These statements have the following logical
interpretation:

TEp & pel(m)
TE-p & T
TEMWVP & TENVTE®G
TEX(@) & mE¢
TEF@) & Jkec{ko<k<|r}:n"E¢
TEG@) & Vee{ko<k<|r|}: 7' ¢
TEU@Y) & Fel{ko<k<ln}:(i<k—r Eo) A" Ev)
TEWU($,y) & wEU@Y)VTEG@9).

Let us explain this definition with an example. Consider the graph in
figure 2] Here some arbitrary Kripke Structure of six vertices is presented.
The blue vertices are represented by circles and the red vertices by squares.
Let vy be the initial state of the system and let us consider the finite walk
T =< 1,V2,V4,Vs5,V2,v1 >. Since the initial state is blue, the statement
7 |= blue is true. The next vertex in the walk, v, is also a blue state. Conse-
quently we have m = X (blue). The fourth vertex in the walk, vs, is a red state.
In this walk a red state is reached, so 7 = F'(red). The walk contains both red
and blue vertices. Consequently 7 = —(G(red) vV G(blue)).

In order to show the difference between ”Until” and ”Weak Until”, consider
a second walk p =< vy, v9,v1,vs >. In the walk w there is a vertex at which the
property ”"red” is true, vertex vs, and for which all preceding vertices are blue.
Therefore 7 |= U(blue, red). However, the walk p only contains blue vertices.
Since no red vertex is reached, we have that u p= U(blue,red). In this case the
difference between "until” and ”weak until becomes obvious. Since all vertices
are blue we have p = G(blue). If we apply the definition of ”weak until” we see
that u = WU (blue, red), which is differs from the ”until” function.

TR

U3

Figure 2: A Kripke Structure of six states

3 Zero-One Law

Let us consider a binomial undirected random graph which is defined similarly
as in Deﬁnition with the difference that now edges are undirected. On [3] page
98-99] the definition of the First Order Logic for Graphs is given.

Definition 7 (First Order Logic for Graphs). A statement ¢ in the language
of First Order Logic for Graphs may contain the following elements: vertices,
the equality sign (=) to state that two mentioned vertices are the same vertex
in the graph, the adjacency sign (~) to state that two vertices are adjacent, the
logical connectives A, V, = and — and the quantifiers ¥ and 3. Here the =
and ~ sign are assumed symmetric and ~ is assumed antireflezive.

Independently [8] and [9] showed that statements formulated in First Or-
der Logic for Graphs satisfy a zero-one law. That is, if the number of vertices
goes to infinity the probability that such a statement is true goes to either 0 or 1.

Since that result applies for all statements in an entire logic the question arises
whether the Linear Time Logic statements from model checking also satisfy such
a zero-one law. If it were possible to write Linear Time Logic statements in the
form of First Order Logic for Graphs a zero-one law would immediately have
been proven to exist.

However, the Linear Time Logic statements causes problems when we try to
rewrite statements into the First Order Logic for Graphs. Firstly, Linear Time
Logic statements rely on the vertex labelling. The first order logic can only refer
to vertices in general. In order to refer to vertices with certain properties, in this
case the colours red and blue, sets have to be introduced. Allowing sets requires
us to consider Second Order Logic, which does allow sets [7, page 143]. Then
a set could be defined for each atomic proposition. For instance the statement
G(red) is true if every vertex that is reachable from the starting vertex, is in
the set of red vertices. In first order logic such sets are not allowed.

The reason why first order logic does not allow vertex labels, is indirectly ex-
plained in [3]. It is stated there that first order logic statements hold up to

isomorphism. Since there exist graphs that posses automorphisms this prevents
us from defining Linear Time Logic statements as first order logic statements.

U1 V2 U1 U2

(a) vy is blue and v is red (b) v1 is red and v2 is blue

Figure 3: Two graphs that have equal structure for first order logic

For instance, consider the graph of two vertices where there exists an edge
in both directions and consider the starting vertex to be blue and the second
vertex to be red, as displayed in figure [3a] Compare this to a similar graph
where only the colour labels have changed (figure . Let 7 be the infinite
walk starting at initial state v; and then following the only outgoing edge from
each state: m =< vy, v9,v1,0s,... >. Since these two graphs are isomorphic,
the statement 7 = red would be either true or false for both graphs if it could
be rewritten as a statement from the First Order Logic for Graphs. Since the
statement is actually false in the first graph and true in the second graph, this
is not a first order logic statement.

A second problem is that the random colouring makes it uncertain how many
vertices will be red and how many will be blue. Logical statements have to be
finite. The statement ”generally blue” is only true for a walk if no red vertex is
reached. If it is uncertain how many red vertices exist, no finite statement can
be made that states that no red vertices are reached. Likewise, the existence of
a k-cycle, a cycle of k vertices, in an undirected random graph is a first order
logic statement, while the existence of a cycle in general is not [3]. In order to
apply logic on graphs to statements on walks we therefore are restricted to a
deterministic colouring.

Thirdly, Kripke Structures are modelled by directed graphs instead of undi-
rected graphs. In the definition of the First Order Logic for Graphs adjacency
is assumed to be symmetric. However, in a directed graph symmetry is not a
necessary condition for adjacency. If vertices v and w are in a directed graph it
is possible that the edge (v, w) exists while the edge (w,v) does not. It should
be investigated whether the proofs of the theorems considering the zero-one laws
in the First Order Logic for Graphs depend on the symmetry argument before
they can be applied.

Since Linear Time Logic statements cannot be written as First Order Logic
statements the proven theorems about zero-one laws cannot be directly applied.
Nevertheless it is still possible that Linear Time Logic statements still satisfy
some zero-one law. To investigate this, in this paper a probability analysis has
been done.

4 Strong Connectivity in Binomial Direct Ran-
dom Graphs

While the most results on random graphs consider undirected random graphs,
[5] provides a useful result on directed random graphs. This result can be used
in the probability analysis. After all, if in our case the graphs turn out to be
almost surely strongly connected, all states are reachable from the initial state.
In other words, reachability comes down to the analysis of components.

In [5] a threshold for strong connectivity is found. The following result states
that a constant edge existence probability is greater than the given probability
threshold. It is then quickly deduced that in this case graphs are almost surely
strongly connected.

Theorem 1. Let G(n,p) be a Binomial Directed Random Graph and let the
edge appearance probability p be constant. Then the probability that G(n,p) is
strongly connected goes to 1 as noo.

Proof. Let S be the property that a directed graph is strongly connected. Ac-
cording to [5] p = 1“"% is a threshold for strongly connectedness. That is,
strongly connectedness satisfies a zero-one law except if the chosen probabil-
ity p is the same order as p. In [0] it is shown that if for some random
graph G(n,p) we have that p >> p, which holds if limnﬁoo% > 00, then

lim,,—, 0 P(G(n,p) € S) = 1. Now, let p be constant. In that case we have:

P pn
lim = = lim
n—oc0 p n—oo Inn 4+ ¢

— lim 2
n—oo ()

= lim pn
n—oo

= Q.

So when p is constant then we have that p >> p. Therefore a directed
random graph with constant p is strongly connected with probability 1 for n —
00. O

In the following sections cover computations on basic Linear Time Logic
Statements in random graphs with fixed edge probability p. Firstly we consider
the Random Vertex Colouring of Definiton [2] secondly we consider the Deter-
ministic Vertex Colouring of Definition [3] In those computations this result can
be applied.

5 Random Colouring

In this section the probabilities that all walks starting at a fixed starting vertex
meet some basic Linear Time Logic statement are computed. The graph is

assumed to have a random vertex colouring. The first generated vertex by
random graph G(n, p) is considered to be the starting vertex and is denoted by
v1. Since we now focus on properties of all walks starting at the same initial
state we use the following notation:

vEQ & Vrst. my=v:wEo.

Here v is any state in the Kripke Structure and = is an infinite walk. Since
we denote our initial state as vy, that state will be plugged into the statement
above.

5.1 Generally Red and Generally Blue

Firstly consider the functions G(red) and G(blue). The probabilities that are
computed are P(vy = G(red)) and P(v; |= G(blue)). To compute the probability
that these events occur let us use Theorem [I| that G(n,p) is almost surely, that
is with probability 1, strongly connected if n — oco. In a strongly connected
graph each vertex can be reached from the starting vertex. Therefore the events
v1 = G(red) and vy |= G(blue) are only true if respectively all vertices are red
or all vertices are blue. As a result we have the following results:

P(uy | Glred) = ¢
P(v; E G(blue)) = (1 —¢)".

Since we let the number of vertices grow infinitely large these probabilities
vanish: P(v; | G(red)) — 0 and P(v = G(blue)) — 0 as n — oo.

5.2 Finally Red and Finally Blue

Secondly let us compute the probabilities that the event ”finally red” or ”finally
blue” occurs on each walk starting at v;. By definition the event v; = F'(red) is
true if for all walks starting at vy there exists a & > 0 such that k = red. The
first step of the computation of P(v; = F(red) is conditioning on the colour of
v1. After all, if vy is red the event 7° |= red is true and thus we have found a
nonnegative k such that 7% |= red and such that for all i with 0 < i < k we
have that 7 |= blue. The second condition is a result from the fact that

{i]10<i<0,ieZ}=0.

However if vy is blue the statement vy = F(red) is only true if there is no
possibility of infinitely repeating the same blue cycle. After all the probability
that all vertices are blue equals (1 — ¢)", which vanishes as n — oo. Thus if no
path of blue vertices to a blue cycle exists, almost surely a red vertex is reached
eventually and the statement is true.

This can be demonstrated using the Kripke Structure in figure [2| from section
There a blue cycle exists containing v, the initial vertex, and ve. This allows
the existence of walk m =< vy, v, v1, V3, ... >, which is a cycle that only contains
blue vertices. Consequently, m = F'(red) and therefore vy & F(red). However,
if edge (v2,v1) did not exist, each infinite walk would inevitably reach vertex
vs, which is coloured red. Then all walks starting at v; would meet F(red).

The aim now is to show that v; is almost surely part of some blue cycle and
therefore the event vy = F(red) almost surely is false given that vy is blue.
The probability that there exists an outgoing edge from v; to any other edge
equals p by definition of G(n,p). Similarly, an incoming edge to v; from an
arbitrary vertex exists with probability p. Thus the probability that both an
outgoing and incoming edge exists to the same vertex equals p?. Moreover the
probability that any vertex is blue equals 1 — gq. Therefore the probability of
both an outgoing and incoming edge occurring from v, to any other arbitrary
vertex and that the other vertex is blue, equals p?(1 — ¢). Let us define the
random variable B,, as the total number of blue vertices with both an outgoing
and incoming edge from v;. Let us define the indicator random variables I; as
follows:

7 - 1 if edges (v1,v;) and (vj,v1) exist and v; is blue
770 else

We have shown in the previous paragraph that

I; ~ Bernoulli(p*(1 — q)).

Now consider our definition of B,,:

By = znjfj.

=2

Since the distribution of the indicators is independent of j, we have that

B, ~ Bin(n — 1,p*(1 — q)).

We can now deduce that P(B, = 0) = (1 — p*(1 — ¢))"~!. Since p and q
are fixed probabilities strictly between 0 and 1 the number (1 — p?(1 — q) is also
strictly between 0 and 1. As a result P(B,, = 0) — 0 as n — co. In other words,
given that v; is blue it is almost surely one of two vertices of some blue cycle
in G(n,p). Therefore given that v; is blue the statement v = F(red) is almost
surely false.

10

Now consider the required probability that the statement ”finally red” is true
can be deduced using conditioning on the colour of vy:

nh_)ngo P(v; = F(red)) = nli_)H;O(IP(Ul E F(red)| v = red)P(vy = red)
+ P(v; E F(red) | vy = blue)P(v1 = blue))
=1-q+0-(1—-gq)
=gq.

In short, the probability that the statement ”finally red” is true for all walks
starting at v1, equals ¢q. Similarly it can be deduced that ”finally blue” is true
for all walks starting at v; with probability 1 — gq.

Note that the stochastic element of model checking only appears in the cre-
ation of the graph, not in the selection of walks. Intuitively one could expect
these probabilities to be equal to 1. If we consider the graph to be a Markov
chain and we would like to know whether an arbitrary walk would finally reach
a red vertex, then we would indeed end up with probability 1. However, we are
interested in the probability that every walk reaches a red vertex finally. This
difference is similar to the use of a software package. Let a robot take arbitrary
decisions. Then the system will almost surely end up in a critical state. How-
ever, a human user could understand the package and know how to avoid the
system to collapse, which resembles a blue cycle. This causes the probability of
interest to be lower than 1.

5.3 Next Red and Next Blue

The third set of statements to consider are "next red” and "next blue” By
definition the event v; = X (red) is true if the event 7! |= red is true for all walks
starting at v;. To be certain that the second vertex of each walk starting at v
is red, we have to consider the probability that v; has no outgoing edges to blue
vertices. The probability that an outgoing edge exists to any arbitrary vertex
equals p and the probability that such a neighbour is blue equals 1—g. Therefore
similarly to previous computation a random variable B,, can be defined. Only
this time this time the random variable is the number of outgoing edges to blue
vertices. Therefore we have that

B,, ~ Bin(n — 1,p(1 — q)).
This yields the following result:

P(B,=0)=(1-p(1-¢))" =0 as n — .

Therefore P(v; = X (red) — 0 as n — oo and similarly P(v; | X (blue) — 0
as n — 0o.

11

5.4 Red Until Blue and Blue Until Red

The next considered statements are vy = U(red, blue) and vy = U(blue, red).
The statement "red until blue” is true for all walks if there exists a k > 0 such
that 7% |= blue and for all i such that 0 < i < k we have that 7 = red.

These statements appear to be similar to ”finally blue” and "finally red”. In
fact, those statements turn out to be equivalent.

Theorem 2. Consider a Kripke Structure with initial state vi. The statements
vy = F(red) is true if and only if the statement v; |= U(blue,red) is true.
Similarly, the statement vy |= F(blue) is true if and only if the statement v =
U(red, blue) is true.

Proof. Let us prove the equivalence between F'(red) and U (blue, red). The other
equivalence is proved similarly.

Let us assume that v; = F(red). Consider an arbitrary infinite walk = with
w9 = v1. By definition some k exists such that vertex 7 is red. Let us now
consider the following set:

R ={k| 7" = red}.

Now let us consider the minimum of set R:

k* = min k.
kER

Then we have that 7% |= red and if 0 < i < k* we have that 7* = blue.
Therefore we have that 7 |= U(blue, red). Since 7 is an arbitrary walk starting
at v; we have that vy |= U(blue, red).
Conversely, assume that vy |= U(blue, red). Let us consider an arbitrary walk 7
such that 79 = v;. By definition there exists a k such that 7% = red. Therefore
we also have that 7w = F(red) and consequently we have that vy = F(red). O

An immediate result of theorem [2|is that P(v; = U(red, blue)) — 1 — q and
likewise that P(vy = U(blue,red)) — q as n — oo. These are the required
results.

Note that in general the statements m = F(¢) and © = U(y,¢) are not
equivalent. For instance, let us consider the Kripke Structure in figure [2| Let
T =< V1, Vg, Us, U2, V1, V2, U1, V2, ... > and compare the statements 7w = F(red)
and © | U(red,red). The first statement is true, because vertex vs is red.
However, the initial vertex v; is blue. Therefore 7 & U(red, red) in this case.

5.5 Red Weak Until Blue and Blue Weak Until Red

The final basic formulas of the Linear Time Logic are WU (red, blue) and WU (blue, red).
These statements turn out to be true regardless of the considered walk. It will
be shown why this is the case.

12

Theorem 3. Let us consider a Kripke Structure and any arbitrary walk 7.
Then the statements 7 = WU (red, blue) and w = WU (blue,red) are true.

Proof. Let us prove the theorem for the statement m = WU (red, blue). The
second statements follows similarly.

The statement is true for an arbitrary walk 7 if one of two options is true. The
first option is that there exists a k > 0 such that 7k E blue and for all ¢ such
that 0 <4 < k it holds that 7’ = red. The second option is that for all k > 0
it holds that 7% |= red. The aim is to show that always one of the options is
true. Let us consider a walk for which the second option is false. Then there
has to exist a k > 0 such that 7% |= blue. Let us pick the smallest k such that
7% |= blue. This k can be picked in the definition of U (red, blue). Therefore the
first option is true.

Conversely, if the first option is false then no k can be found such that 7% |= blue.
As a result G(red) is true, which is our second option.

Since one of both statements has to be true, the statement WU (red, blue) is
true for all walks. O

By theorem [3| it is guaranteed that P(vy = WU (red, blue)) — 1 and simi-
larly P(v; |= WU (blue, red)) — 1 as n — oo.

These were all the basic functions of the Linear Time Logic. It can be seen
that the probability that all walks satisfy a basic Linear Time Logic statement
either satisfies a zero-one law or solely depends on the colour of the starting ver-
tex. This partly confirms the conjecture that all Linear Time Logic Statements
satisfy some zero-one law. In order to investigate this possibility further, let us
consider some embedded statements.

5.6 Finally Generally Red and Finally Generally Blue

Firstly, consider the statements F'G(red) and FG(blue). All walks satisfy these
statements if for all walks there exists an ¢ > 0 such that for all &k > ¢ it
respectively holds that 7% |= red or 7% |= blue. That means that each walk
reaches a point from which all vertices in the tail of the walk have the same
colour. Since by Theorem [I] the graph is almost surely strongly connected if n
is large, this can only be true if all n vertices have the same colour. All vertices
are red with probability ¢" and all vertices are blue with probability (1 — ¢)™.
Since those probabilities go to 0 as n — oo it holds that P(v; | FG(red)) — 0
and P(v; = FG(blue)) — 0 as n — oo.

5.7 Generally Finally Red and Generally Finally Blue

Secondly consider the reverse embedding: GF(red) and GF(blue). These state-
ments hold for all walks if for all ¢ > 0 there exists a k > 4 such that respectively
7% |= red or 7% |= blue. Let us focus on GF(red), as GF (blue) is shown sim-
ilarly. Since P(v; | X (blue) — 0 there almost surely exists an edge from vy
to a blue vertex. In the computation of ”Finally blue” it was shown that the

13

probability that v; is not contained in any 2-cycle of blue vertices goes to 0.
Since that proof was not restricted to any specific vertex as only general prop-
erties of the graph were used, it can likewise be shown that the blue neighbour
of v; is almost surely contained in some blue cycle. Therefore a walk exist of
which the tail only contains blue vertices. As a result P(v; = GF(red)) — 0
and P(v1 = GF(blue)) — 0 as n — oo.

5.8 Red Until Generally Finally Red

Finally, consider one larger embedded statement: U(red, GF(red). This state-
ment is true if for all walks some k£ > 0 exists such that for all ¢ such that
0 < i < k it holds that 7* = red and that for all @ > k there exists a b > a such
that 7° |= red. One requirement of this long statement is that the tail of the
walk cannot only contain blue vertices. As was shown previously the starting
vertex almost surely has a blue neighbour that is contained in some 2-cycle with
only blue vertices. Therefore P(v; = U(red, GF(red)) — 0 as n — oo.

As can be seen a if some arbitrary embedded statements are selected the prob-
ability that all walks satisfy the statements either goes to 0 or 1. Therefore the
possibility of a zero-one law on Linear Time Logic statements still exists.

6 Deterministic Colouring

Let us now focus on the deterministic vertex colouring. Again the aim is to
compute the probability that all walks starting at vy satisfy some basic Linear
Time Logic statement. The difference with previous section is the colouring
method. Since the number of red vertices is finite in this section, this fraction
of red vertices will vanish. With the random colouring it is expected that a
fraction ¢ of all vertices are red, with ¢ € (0,1). Here that fraction is I, with
r. This goes to 0 as n becomes infinitely large. This results in some differences

compared to the random colouring.

6.1 Generally Red and Generally Blue

Let us again start with the functions G(red) and G(blue). According to Theorem
[[] the random graph is almost surely strongly connected if n becomes large.
Based on Defenition [3| some integer r is fixed such that the first r vertices are
red and the remaining vertices are blue. When n — oo but r is fixed it is
certain that n > r. Therefore blue vertices will appear in the graph. Since the
graph is strongly connected there will almost surely exist a walk containing a
blue vertex. Consequentely, P(v; = G(red)) — 0 and P(v; | G(blue)) — 0 as
n — 00.

14

6.2 Finally Red and Finally Blue

Secondly, consider the statements F(red) and F(blue). When the random
colouring method was applied the probability that all walks satisfied one of
these statements depended on the colour of the starting vertex. In this case by
assumption the starting vertex is red. Therefore P(v; |= F(red)) — 1 asn — oo.

On the other hand all walks meet F(blue) if all walks at some point have to
reach a vertex other than the first r vertices. The statement is therefore false if
in the first r vertices some red cycle exists that can be reached from the starting
vertex. The probability that such a walk exists is equal to the probability that in
the finite random graph G(r, p) a cycle exists that can be reached from vertex v;.

This probability is hard to compute. Therefore this probability will be denoted
with the symbol P. Therefore we have P(vy | F(blue)) — 1 — P. However, it
is possible to derive an upper and lower boundary for 1 — P.

If v1 has no outgoing vertices to any other red vertex, it is certain that the
second vertex in each walk is blue. Each edge appears independently with prob-
ability p. Therefore, the probability that no edge exists from v; to any other
red vertex equals (1 — p)"~1. This is a lower boundary for P(v; = F(blue)).

To determine an upper boundary, let us define R, as the number of 2-cycles
containing v; and only containing red vertices. Similarly to section [5.2] it can
be derived that

P(R, =0) = (1 —p?¢)" "

As a result we have that P > (1 — p?q)"~!. This results in the following
boundary for the probability that all walks from v; meet F(blue):

(1—p)"! <P(oy | F(blue)) < 1 — (1 —pq)" .

Note that this inequality only holds if » > 1 and n — oo. If r = 1 then only
vy is red. As a result, in that case we have that P(vy = F(blue)) — 1. And n is
chosen infinitely large in order to almost surely have outgoing edges from each
red vertex to blue vertices. That is a consequence of theorem

In order to determine the exact value of this probability one could simulate
some G(r,p) graphs to check which fraction of graphs satisfy the required prop-
erty. However, that is not of interest in this report. After all, it has been
determined that this probability is bounded to some value in the interval (0,1).
In other words, this probability does not satisfy a zero-one law due to the finite
size of the subgraph induced by all red vertices, which is G(r,p). However, if
one would prefer to compute the exact probability, one can use the following

property.

15

Theorem 4. Let us consider a random graph G(n,p) with deterministic vertex
colouring and let n be infinitely large. Consider all possible finite walks of r
starting at verter vi. Then for each walk 7 of these finite walks it holds that
7 | F(blue) if and only if it holds that v1 |= F(blue).

Proof. Assume that vy = F(blue). Then there exists no infinite walk that only
contains red vertices. This means that no cycle of red vertices exists which can
be reached with a path starting at v;. Let us consider the longest walk starting
at v; that only contains red vertices. Let this be 7 =< vy, 7, 72, ..., T >. Since
no red vertex can be reached that is in a red cycle, all vertices in 7 are unique.
Since there exist r red vertices, we have that k < r—1. Consequently, if we have
an arbitrary walk of length r that starts at vq, it is longer than the longest walk
starting at v, that only contains red vertices. Therefore, it contains at least one
blue vertex.

Conversely, assume that vy & F(blue). Then there exists an infinite walk that
only contains red vertices. Now consider the first 7 4+ 1 vertices of this walk.
This sequence is a walk of length r with only red vertices. Therefore not all
walks of length r contain at least one blue vertex. O

Theorem [4] reduces the investigation of all infinite walks starting at v, to
the investigation of all finite walks of length r. Thus with an algorithm based
on breadth first search it is possible to check whether for some generated graph
G(r,p) it holds that v; | F(blue). However, no simulation is done for this
report.

6.3 Next Red and Next Blue

Thirdly consider the statements X (red) and X (blue). All walks meet these
statements if v; respectively has no outgoing edges to blue or red vertices. The
probability that no outgoing edges from vy to another red vertex exists, is finite:
(1—p)"~1. This is a result of the fact that only a finite number of vertices receives
a red label, namely vertex v; up to v,. Since all remaining vertices are blue, the
number of blue vertices does become infinitely large as n — co. The probability
that v; has no outgoing edges to blue vertices equals (1 — p)®~", which goes to
0 as n — oo. In short, P(v; = X (red)) — (1 —p)"~! and P(v; = X (blue)) — 0
as n — 0o.

6.4 Red Until Blue an Blue Until Red

The following statements that are considered, are U(red, blue) and U (blue, red).
For these functions we can again use theorem [2] Consequently, it holds that
P(vy = U(red, blue)) — 1 — P and P(vy |= U(blue, red)) — 1.

6.5 Red Weak Until Blue and Blue Weak Until Red

The final basic statements are WU (red, blue) and WU (blue, red). Theorem
showed that for all walks these statements have to be true. Therefore these

16

probabilities do not depend on the chosen colouring. Thus we have the result
that P(vy | WU (red, blue)) — 1 and P(v1 = WU (blue, red)) — 1.

Now all the basic Linear Time Logic statements have been covered both us-
ing the random vertex colouring and the deterministic colouring. The results
are summarised in table The most striking difference between the results
using the different colouring methods, is the fact that the finite number of red
states in the deterministic colouring method resulted in finite probabilities for
certain model checking statements, while the probabilities of the random colour-
ing either satisfied a zero-one law or were fully determined by the colour of v;.
Paradoxically the deterministic colouring was introduced in order to do an at-
tempt to write Linear Time Logic statements in terms of First Order Logic
statements. If that was possible, the results on zero-one laws as proved for First
Order Logic might have been applicable to the Linear Time Logic statements
of model checking. However the fixing of the number of red vertices caused
the opposite. It let some probabilities depend on finite structures in the graph.
Therefore some probabilities did not satisfy the zero-one law.

Statement Random Colouring | Deterministic Colouring
P(v; = G(red)) 0 0

P(v; = G(blue)) 0 0

P(v; = F(red)) q 1

P(v, E F(blue)) 1—g¢q 1-P
P(v; = X(red)) 0 0

P(v; = X (blue)) 0 (1—p)"
P(vy = U(red, blue)) 1—g¢q 1-P
P(v; |= U(blue, red)) q 1

P(v; = WU (red,blue)) | 1 1

P(v; = WU (blue,red)) | 1 1

Table 1: Probabilities of basic Linear Time Logic Statements

7 Conclusion

In directed random graphs with constant edge existence probability and random
vertex labelling the probability that all walks starting from an initial state satisfy
a basic Linear Time Logic statement either equals 0 or 1 or it solely depends on
the colour of the initial state. This raises the conjecture that some zero-one law
exists for Linear Time Logic. Since the results on zero-one laws for first order
logic statements cannot be applied to Linear Time Logic this topic deserves
further research.

17

References

[9]

Marcus Miilller-Olm, David Schmidt and Bernhard Steffen: Model-Checking,
A Tutorial Introduction.

P. Erdos and A. Rényi: On the Fvolution of Random Graphs.

Saharon Shelah and Joel Spencer: Zero-One Laws for Sparse Random
Graphs.

Joel Spencer: The Strange Logic of Random Graphs.

Alasdair J. Graham and David A. Pike: A Note on Thresholds and Connec-
tivity.

J. A. Bondy and U. S. R. Murty: Graph Theory With Applications
Dirk van Dalen: Logic and Structure.

R. Fagin: Probabilities on finite models, J. Symbolic Logic chapter 41 (page
50-58).

Y. V. Glebskii, D. I. Kogan, M. 1. Liogonkii and V. A. Talanov: Range
and degree of realizability of formulas in the restricted predicate calculus,
Cyberneti chapter 5 (page 142-154).

18

	Introduction
	Definitions
	Zero-One Law
	Strong Connectivity in Binomial Direct Random Graphs
	Random Colouring
	Generally Red and Generally Blue
	Finally Red and Finally Blue
	Next Red and Next Blue
	Red Until Blue and Blue Until Red
	Red Weak Until Blue and Blue Weak Until Red
	Finally Generally Red and Finally Generally Blue
	Generally Finally Red and Generally Finally Blue
	Red Until Generally Finally Red

	Deterministic Colouring
	Generally Red and Generally Blue
	Finally Red and Finally Blue
	Next Red and Next Blue
	Red Until Blue an Blue Until Red
	Red Weak Until Blue and Blue Weak Until Red

	Conclusion

