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Abstract

We have researched the e�ects of disorder on the size of the band gap of an inverse woodpile

photonic crystal. The disorder is an uniform deviation on all of the pores. This deviation will

vary from 0% to a maximum of 25%. For every level of disorder, we calculate ten di�erent

disorder realization from which we will derive mean band gap size and error margins. We

observed that the band gap becomes smaller as the level of disorder increases until the band

gap disappears. The frequency of the upper band edge remains almost stationary while the

frequency of the lower band edge shifts upwards with increasing disorder. These calculations

and predictions can be compared with experiments in the future.

Introduction

Nowadays a lot of research is done into pho-
tonic crystal and their properties. There is a
wide variety of crystals all with there own prop-
erties and behavior. Some of these properties
are common under all photonic crystals and
some are speci�c to the type of photonic crys-
tal. A photonic crystal is usually composed
out of two materials for example air and sili-
con. Photonic crystals are made out of micro
structures that are on the same scale as the
wavelength of light. This is usually somewhere
in the hundreds of nanometers. These photonic
crystals are interesting because they allow us to
manipulate the light1. Light can move through
materials and this is something we can describe
by using the refractive index. Usually photonic
crystals are made of two materials one with a
low refractive index and one with a high refrac-
tive index. In the example earlier air has a low
refractive index while silicon has a high refrac-
tive index. This is special because the arrange-
ment of the materials is periodically repeated

in space on the same scale as the wavelength of
light. This is why the refractive index is also a
periodically repeating pattern in space.

In this paper we are concerned with the
band gap of photonic crystals and how they
behave under disorder. To understand this we
�rst take the band structure. The band strucu-
ture of a photonic crystals describes the range
of wavelenghts which may or may not propa-
gate through the crystal. The band gap is the
range of wavelengths in which the light cannot
exist inside the photonic crystal1. The band
gap is a property that every photonic crystal
has, although not always in the same range.
This is what makes a photonic crystal special,
because it allows us to manipulate light. We
can for example change the speed of light with
this. In this band gap the density of optical
states is equal to zero, which we are going to
use to investigate their behavior under disor-
der. The density of states describes the amount
of states per frequency interval. This is mathe-
matically represented as a density distribution.
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The density of states is continuous while the
density distribution is discrete.

Figure 1: 3D inverse woodpile photonic
crystal7

As mentioned before we are going to inves-
tigate what the e�ects of disorder are on the
band gap of a photonic crystal. When creating
a photonic crystal we can never create a per-
fect crystal. Therefore the radii of the pores
will never be perfect and this is the disorder
we are going to look into. We are going to in-
vestigate what happens to the band gap of a
photonic crystal when all pores in the crystal
have a small deviate from the optimal value.
The exact model here fore will be explained
later.

To do this research we are going to look into
a speci�c photonic crystal, the inverse woodpile
photonic crystal. We are going to use this pho-
tonic crystal because it has a very wide band
gap2. This is very convenient for our research
since we want to look into how the band gap
behaves under disorder. To investigate this we
are going to do a density of states calculation
which we will revere to as DOS. The density of
states shows us the frequency ranges in which
light can and cannot propagate through the
crystal. Under disorder we already know that
the band gap will close or in other words the
range of frequencies in which light cannot prop-
agate will decrease when we increase the disor-

der. The main questions we want answered are
how fast does it close and how does it close?

Model

To investigate these question we are going to
make a model. This research will not include
any experiments and is completely theoreti-
cal and computational. We used a software
program named MIT photonic bandstructures
or in short MPB. This program is used to
compute band structures, dispersion relations
and electromagnetic modes of periodic dielec-
tric structures. This runs on both serial and
parallel computers. We used this on a cluster
which consists of sixteen nodes with each node
having 40 processors.

Parameters

We are looking into an inverse woodpile pho-
tonic crystal. Our crystal has a length of
L = 1, 5µm. Furthermore these photonic crys-
tals have a tetragonal unit cell with lattice con-
stants (c, a, c) in the X,Y and Z directions. An
inverse woodpile crystal has a lattice constant
of a ≈ 500nm and the relations between the
lattice constants is as follows a = c

√
2. The

values that we have for L and a allow us to cal-
culate the amount of unit cells. The amount of
unit cells follow from the fraction L

a = 3. We
consider a 3D photonic crystal with 3 × 3 × 3
unit cells. We are looking into disorder and
how the band gap reacts when we increase this
disorder. The model for the disorder is based
on work by Conti3. We use for the disorder the
following equation r = r0(1+γξ). In this equa-
tion γ is the strength of the disorder. We have
looked at the the following strengths of disor-
der thoroughly γ = 0, 0.01, 0.02, 0.05 and 0.08.
This means that we have done every calcula-
tions with this disorder ten times. We have ex-
panded these strengths of disorder with the val-
ues of γ = 0.15, 0.20, 0.22, 0.24 and 0.25. This
is done because the band gap was not closed
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yet. These disorders realizations have also been
calculated ten times. The ξ is a uniform devi-
ate in the interval [−1.1] and r0 = 0.24 is based
on work done by Conti3. Because of the model
we use for the disorder we have that the volume
fraction is di�erent in each calculation. The
volume fraction is the fraction between the ma-
terials of which the crystal exist. Next to this
we use 5×5×5 k-points, which are vectors used
to calculate the eigenfrequencies. The width of
the band gap is known to be 0.136, therefore we
would like a frequency resolution of ∆ω = 0.15.
From Nikolaev 4 we use the following equations
∆ω = ∆k. This would result in a k-space grid
in every dimension of 1

0.15 ≈ 6 2
3 . We round

this up to 7 which results in a k-space grid of
73 = 343, which covers the wanted ∆ω = 0.15.
Further we know that the Brillouin zone is be-
tween the fourth and �fth band6. This means
we need to calculate �ve band, because of band
folding we need to calculate 5 ·33 = 135 bands.
The last parameter is the grid resolution, we
will use the resolution of 12× 17× 12.

Results

From these calculations we have gotten the fol-
lowing results. In the �rst graph (Figure 2) we
have plotted the width of the band gap against
the disorder.

Figure 2: On the x-axis we see the disorder of
the crystal. The disorder is a uniform deviate
named within the bound [-1,1]. The disorder
is given in terms of the maximum deviation as
a fraction of the pore radius of the backbone
crystal. On the y-axis we have the width of the
band gap de�ned as the absolute band gap.

The width of the band gap is de�ned as the
di�erence between the upper band edge and
the lower band edge. The line that is plot-
ted represents the mean of the band gap. We
calculated every disorder realization ten times
because of the uniform deviate. The circles are
the average value of the band gap at a cer-
tain disorder that was calculated. The dashed
lines in between the circles are interpolations
of the calculated means. Furthermore we have
graphed error bars on each of the calculated
means. These error bars have a a length of two
times the standard deviation. This means that
one arm has the length of one standard devia-
tion of the band gap. At zero disorder we have
no deviation, which is visible since there are
no error bars. We can also see when the disor-
der increases, the standard deviation increases
to. This occurs as soon as we go past a certain
disorder value of γ = 0.20. Then the standard
deviation seems to decrease. When we look at
γ = 0.25 we notice that the lower arm goes
below zero. Physically it is impossible, but it
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means that the band gap has been closed.

The following �gure shows the mean upper
and mean lower band edge.

Figure 3: The lower and the upper edge of the
band gap plotted as a function of the disor-
der. The error bars are de�ned as one time the
standard deviation.

Again the circles are the calculated disor-
der values and the length of the error bars is
two times the standard deviation. The lines
in between the circles are interpolated. We
can see that the mean value of the upper band
edge stays approximately the same, while the
lower band edge increases when the disorder
increases. We can also see that the deviation
increases when the disorder increases. At a dis-
order value of γ = 0.25, the mean of the lower
and upper band gap are in the same place. The
mean of the lower and upper band edge being
in the same place does not imply that there is
not a band gap. In 50% of the calculated cases
there wasn't a band gap and in the other 50%
there was a small band gap. That is why the
mean of the lower and upper band edge seem
to be they are in the same place and have an
error bar.

Figure 4: The �rst is image is with zero disor-
der and this is increased until the last image to
γ = 0.25. On the x-axis are the reduced fre-
quencies ranging from 0 to 0.8. On the y-axis,
the density of states is scaled with the scalar
4

a2c . The increasing of the disorder is with the
same values as mentioned before.
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To show the closing of the band gap fur-
ther we made the density of states of one cal-
culation at each level of disorder that we used.
These are visible in �gure 4. When we look at
these density of states we see that the disor-
der increases and the band gap gets �lled. The
states that are on the left and right of the gap
seem to go into the band gap when we increase
the disorder. When we take a closer look at
a single density of state we can also see some-
thing that looks like noise. To make this more
clear we look at the density of states at γ = 0
in �gure 5.

Figure 5: Density of states with γ = 0

We see that it is not a smooth curve before
the band gap. This is most likely caused by
the parameters we chose. We took ∆ω = 0.15
which would suggest that for our density of
states we should have made bins with sizes of
0.15. We have made bins of 0.01 because the
c is in practice very low and therefore we can
a�ord to make the bins smaller. Because of
the lower bin size, the density of states is not
a perfectly smooth curve before the band gap.

Disorder (γ) Standard

deviation

lower band

edge

Standard

deviation

upper band

edge

Standard

deviation

band gap

0 0 0 0

0.01 0.0005 0.0006 0.0002

0.02 0.0016 0.0028 0.0013

0.05 0.0044 0.0059 0.0027

0.08 0.0050 0.0058 0.0055

0.15 0.0150 0.0143 0.0086

0.20 0.0210 0.0211 0.0235

0.22 0.0260 0.0268 0.0206

0.24 0.0260 0.0286 0.0162

0.25 0.0218 0.0218 0.0155

Figure 6: Standard deviation of the band gap
and the edges of the band gap.

To make the deviation more clear we imple-
ment the following table. In this table (�gure
6) we can see all the values of the standard
deviation. When we take a look at this table
we can see a couple of things. The �rst thing
to notice is that the deviation of the band gap
is most of the times smaller than the devia-
tions in the upper and lower band edge. The
odd one out is at a disorder of 0.08, but there
is more to that value. We saw earlier already
that the deviation increases when we increase
the disorder until a certain value. At an dis-
order of γ = 0.08 the deviation of the upper
band edge is lower than the the deviation of
the upper band edge at γ = 0.05. We would
have expected it to be larger at 0.08 than 0.05.
Furthermore when we look at the next disor-
der of γ = 0.15, we see that the deviation is
still increasing. To explain this we look at the
method we used to model the disorder. This is
a uniform deviate, which means it is likely that
the deviation at 0.05 is an extreme value or at
0.08 the deviation is somewhat low in compar-
ison to what it actually should be. In other
words we might have sampled smaller pore de-
viations by chance. Another value where the
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deviation in the band gap is larger than the
deviations in the lower and upper band edge is
at a disorder of γ = 0.20.

The deviation of the band gap keeps in-
creasing until we go past the γ = 0.20. This is
logical because after γ = 0.20 we are encoun-
tering calculations in which the band gap has
been closed. The deviation of the band edges
keep increasing until γ = 0.24.

Another observation we can make is that
the value of the standard deviation of the up-
per band edge is most of the time slightly big-
ger than the one of the lower band edge. If
we combine this with �gure 3, we can see that
the upper band edge stays in approximately
the same place, while the lower band edge is
increasing. So the upper band edges that stays
in the same place has a slightly bigger devia-
tion than the lower band edge who increases.

A possible explanation for this is as follows.
The size of the band gap can be graphed ver-
sus the size of pore radii. In this graph we
get a "banana" like shaped area consisting of
two curves5,6. At the top of this area is the
curve for the upper band edge and at the bot-
tom is the lower band edge. At the end of
the banana the curve for the upper band edge
does not increase much at all in comparison to
the lower band edge. This explains why the
lower band edge is increasing and why the up-
per band edge is stationary. The odd thing is
that we would expect the upper band edge to
have a lower deviation comparison to the lower
band edge. From �gure 6 we already saw the
deviation of the upper band edge was slightly
bigger than the lower band edge. A possible ex-
planation for this phenomenon is possibly that
there are states above the band gap, who can
enter the band gap. These states always enter
from the upper edge and therefore it is possible
that they cause the increase in deviation in the
upper band edge, especially because we have a
uniform deviation in the pore radii.

Discussion

In this research there are a couple of doubts
that we should address. The �rst thing we are
going to address is the possibility to have a
crystal with pore radii that have a possible de-
viation of 25%. We start with �gure 7, which
is an inverse woodpile crystal with no disorder.

Figure 7: Inverse woodpile photonic crystal
with no disorder.

This �gure is a color map of the permittiv-
ity function with a perspective from one side.
The white areas are the pores that are �lled
with air. The colored areas are the dielectric
material that makes up the crystal. All the
pores in this crystal are of the same radius. In
�gure 8 we have the same crystal only then
with γ = 0.25. If we compare it with �gure 7
we can see the di�erence in the structure, some
pores are bigger while others are smaller than
the pores from �gure 7.
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Figure 8: Inverse woodpile photonic crystal
with γ = 0.25

As we can see in �gure 8 the structure has
changed but the crystal is possible with an
γ = 0.25.

Another point of discussion is the model
that we use for the disorder. It seems more
logical to use a normal distribution instead of
a uniform distribution for the deviation in the
pore radii. The reason for not using a nor-
mal distribution is the small possibility that
we get a number so big that a single pore de-
stroys the entire crystal. A similar argument
can be made for a very small number which
would make the pore radius negative which is
not possible. When creating a crystal in prac-
tice you never get these extreme values.. We
thus want a distribution that has a bounded in-
terval to not get these problems. Another rea-
son for choosing a uniform distribution is that
we are directly taking into account extreme
cases, because they happen with equal likely
hood within a uniform distribution. Therefore
we can see the uniform distribution as an worse
case scenario and it will only get better.

the last point is that the data we have got-
ten is based on a distribution. We have calcu-
lated every disorder ten times in order to re-
duce the e�ects of possible outliers. Nonethe-
less it is still possible that they are in the re-
sults we acquired and there is not much we can

do about that except for calculating more dis-
order realizations. This implies that the means
that we have calculated are close to the actual
mean, but they can be o� by a small margin.

Conclusion

In this paper we researched what happens to
the band gap of an inverse woodpile photonic
crystal when increasing the disorder. For this
we found a couple of interesting results. We
discovered how fast the band gap closes as
shown in �gure 1. We also discovered how the
band gap closes. We saw that the lower band
edge increases while the upper band edge re-
mains in the same place. We calculated these
for every level of disorder ten times with dif-
ferent disorder realizations and put them in
graphs. We discovered that the deviation of the
band gap and its edges increase with increas-
ing disorder until we go past a certain point
at which it gets smaller again. This study is
completely computational and theoretical no
experiments are done. The results can be used
to quantitatively compare them with future ex-
periments. Furthermore the acquired results
of this research are very useful in for example
creating photonic crystals. It is impossible to
create a perfect crystal, but now you can make
a prediction based on the precision of the cre-
ating process what the possible in�uences are
on the crystal.
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