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Abstract
In this paper the spin-dependent transmission through an ideal
copper-cobalt interface is calculated using the method of wavefunc-
tion matching (WFM) implemented with a basis of muffin-tin or-
bitals (MTO) within the framework of density functional theory
(DFT). A sketch of DFT is given and the theory of muffin-tin or-
bitals is explained, illustrated with examples of vanadium, copper
and cobalt bands structures.
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1 Introduction

For many modern electronic applications it is necessary to accurately describe
and control electronic transport within electronic devices at nanometer scale.
At this scale the effect of interfaces on electronic transport becomes very impor-
tant. An interface between two infinite crystals breaks the translational Bloch
symmetry that allows the electronic structure of solids to be studied theoreti-
cally using the Kohn-Shame equations of density functional theory (DFT). In
this paper we will first outline the methods of DFT and linear muffin-tin orbitals
(LMTO) and illustrate the latter with numerical results obtained for the band
structures of vanadium, copper and cobalt.

Secondly the method of wave function matching (WFM) derived by Ando [1]
and reviewed by Brocks et al. [2] will be used together with the transport code
provided by the chair of Computational Material Science to calculate the trans-
mission through a cobalt-copper interface.
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2 Density Functional Theory

2.1 Hohenberg-Kohn theorems

Metals can be modeled as three dimensional lattices in which electrons are
confined by the potential of the lattice ions. Such a situation can be described
by the Schrödinger equation for all of the ions and electrons in the system.
Because of the mass difference between the electrons and the ions, the ions
can be considered to be stationary, with only the electrons able to move. This
justifies the use of the so called Born-Oppenheimer approximation, which states
that the behaviour of the electrons can be described a Schrödinger equation for
the electrons only, by finding a wavefunction Ψ, as a function of the positions
ri of the electrons in the system, satisfying the eigenvalue problem

− ~2

2m

N∑
i=1

∇2
iΨ(r1, r2, ...rN) + V (r1, r2, ...rN)Ψ = EΨ, (1)

where ~ is the reduced Planck constant, m the electron mass, V the potential
of the system and E the energy of the system.

The operator ∇2
i is the Laplacian operator acting on the coordinates of the i-th

electron.

In quantum mechanics the kinetic energy operator and the Hamiltonian operator
are given by

T̂ = − ~2

2m

N∑
i=1

∇2
i

Ĥ = T̂ + V

The properties of an N -electron system can be described by wavefunctions Ψ,
which are solutions to the Schrödinger equation. The ground state is the value
of Ψ that minimizes the energy E. In particular from this state many transport
properties can be deduced.

In (1) the potential V describes the influence of the ionic lattice on the electrons
and the interaction between the electrons. Due to this electron-electron inter-
action the Schrödinger equation becomes a many-body problem and the hope
of finding an analytical solution is lost.

To find the eigenvalues and eigenfunctions of the Schrödinger equation one
quickly has to resort to numerical techniques for solving many-body problems.
As the wavefunction and the potential in (1) depend on 3N variables, techniques
for directly solving this equation become computationally intractable for large
systems.
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The best approach found so far to solve a many-body Schrödinger equation is
by using Density Functional Theory (DFT). In this framework one does not
need a wavefunction which depends on 3N variables. Instead observables are
written as functions of the electron density n(r), which depends on only the 3
coordinate variables. This remarkable result is stated by the Hohenberg-Kohn
Theorems [3].

In this framework the Hamiltonian operator is split up into three components

Ĥ = T̂ + Vext + Vee,

where the complete potential V is the sum of Vee, the interaction potential
between electrons and Vext,the external potential.

The first Hohenberg-Kohn theorem states that:

Theorem 1 The ground state energy of an interacting electron system is a
unique functional of the electron density. [3]

This functional can be expressed as

E[n] ≡ E[n(r)] =

∫
n(r)Vext(r)dr + F [n], (2)

where the integral is over all of space and the functional F [n] is given by:

F [n] = T [n] + Eee[n], (3)

with T [n] the kinetic energy as a functional of the electron density and Eee[n]
the electron interaction energy.

As electrons carry a charge q, classically their interaction energy is given by the
Coulomb interaction energy of two charge densities:

Ec[n] =
q2

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
. (4)

Electrons can, however, also interact in different ways, such as through spin
densities, and the energies of these interactions are bundled as the non-classical
interaction energy Enc[n]. The functional in (3) can thus be written as:

F [n] = T [n] + Ec[n] + Enc[n] = T [n] +
q2

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
+ Enc[n].

The second Hohenberg-Kohn theorem explains how to find the ground state
energy using the electron density in (2).

Theorem 2 The electron density that minimizes the energy functional is the
ground state density of the interacting electron system. [3]

Proofs of the Hohenberg-Kohn theorems can be found in their original paper [3].
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2.2 Kohn-Sham equations

According to the second Hohenberg-Kohn theorem the ground state energy can
be found by minimizing (2) over the electron density, but before this can be
done, one first needs to find the correct expression for (3).

Determining the correct expression for F [n] is the biggest challenge in density
functional theory. Especially since the form of the non-classical electron-electron
energy is hard to determine. One method to determine the expression for F [n]
was introduced by Kohn and Sham [4].

The idea of their method is to find a system of N non-interacting electrons with
the same electron density as the interacting system, ns(r) = n(r), whose kinetic
energy is given by:

Ts[n] = − ~2

2m

N∑
i=1

〈ψi|∇2|ψi〉∞. (5)

In this expression the bra-ket notation is used:

The brackets 〈| and |〉 represent respectively a column and a row vector.
〈|〉 then defines an inner product and we use the expression 〈|〉∞ to denote that
this inner product is an integral over all of space.
Lastly the notation 〈||〉 is defined by:

〈A|B|C〉 = 〈A|BC〉,

where B is an operator.

The ψi in (5) are the one electron wavefunctions, so called orbitals, of the non-
interacting system.

The functional in (3) can be written in terms of the kinetic energy of the non-
interacting system:

F [n] = Ts[n] + Ec + EXC , (6)

where EXC is the exchange-correlation energy defined as:

EXC(n) ≡ (T [n]− Ts[n]) + (Eee[n]− Ec[n]).

According to the second Hohenberg-Kohn theorem the correct ground state
energy and ground state electron density can then be found by minimizing the
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energy in (2) over all possible electron densities:

0 =
∂E[n]

∂n(r)
=

∂

∂n(r)

∫
n(r)Vext(r)dr +

∂F [n]

∂n(r)

=
∂

∂n(r)

∫
n(r)Vext(r)dr +

∂Ts[n]

∂n(r)
+
∂Ec[n]

∂n(r)
+
∂EXC [n]

∂n(r)

=
∂Ts[n]

∂n(r)
+ Vext + Vc + VXC =

∂Ts[n]

∂n(r)
+ Vs(r),

where Vs(r) = Vext + Vc + VXC is called the effective Kohn-Sham potential,
Vc(r) is the functional derivative of classical interaction energy Ec[n]

Vc(r) =
q2

2

∫
n(r′)

|r− r′|
dr′,

and the so called exchange-correlation potential Vxc(r) is given by

Vxc(r) =
∂EXC [n]

∂n(r)
.

As a consequence we see that the electron density that minimizes the energy
functional in Eq. (2) also minimizes the energy of a non interacting system with
kinetic energy Ts(r) and potential Vs(r). Solving the Schrödinger equation for
the full system is thus equivalent to solving the Schrödinger equation for the
non-interacting system[

− ~2

2m
∇2 + Vs(r)

]
ψi(r) = εiψi(r), (7)

where εi are called the Kohn-Sham eigenvalues.

Since the squared norm of the wavefunction Ψ(r) is the probability amplitude
for finding an electron at r, the electron density is given by:

ns(r) =

N∑
i=1

|ψi(r)|2. (8)

Equations (7) and (8) together are called the Kohn-Sham equations. Using these
equations the problem of solving the Schrödinger equation of an N-electron in-
teracting system is reduced to solving N non-interacting one-electron equations.

Since Vs(r) depends on n(r), which via ψi(r) also depends on Vs(r), the problem
must be solved iteratively by first guessing an electron density ns(r) and then
calculating the corresponding Vs(r) and ψi(r) and using these to calculate a new
electron density to use in the next iteration. This procedure is then repeated
until convergence is reached.
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3 LMTO method

3.1 LCAO and Partial Waves

The wavefunction ψ(r) is a one-electron wavefunction extending over the whole
lattice. Working directly with this wavefunction is quite difficult. It is easier to
split this wavefunction up into many single electron orbitals χ localized at differ-
ent atomic sites. The wavefunction ψ(r) can be written as a linear combination
of these orbitals.

ψi(r) =
∑

Rn`m

χRn`m(r−R)cRn`m,i, (9)

where the c are expansion coefficients, R is a vector that runs over all the
coordinates of the atomic sites and n, ` and m are the quantum numbers of an
orbital.

This method of expansion is called the linear combination of atomic orbitals
(LCAO) method.
For simplicity in the rest of this paper we will use the notation L = `m and
rR = r−R

In this way the first Kohn-Sham equation (7) can be written as:∑
RnL

HksχRnL(rR)cRnL,i = εi
∑
RnL

χRnL(rR)cRnL,i,

where Hks is the Kohn-Sham Hamiltonian:

Hks = − ~2

2m
∇2 + Vs(r).

Multiplying this equation by a single basis function χR′n′L′ and integrating over
the whole space gives∑

RnL

cRnL,i

∫
χR′n′L′HksχRnL(rR)dr = εi

∑
RnL

cRnL,i

∫
χR′n′L′χRnLdr,

which can be written as a matrix equation

(H − EO) · c = 0,

Where the Hamiltonian matrix H is given by

HR′n′L′,RnL = 〈χR′n′L′
∣∣− ~2

2m
∇2 + Vs

∣∣χRnL〉∞, (10)

and O is the overlap matrix,given by

OR′n′L′,RnL = 〈χR′n′L′
∣∣χRnL〉∞, (11)
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c is a column vector containing the different expansion coefficients, and E is a
diagonal matrix containing the Kohn-Sham eigenvalues εi.

The one electron energies can be found by diagonalizing the matrix (H − EO).

A commonly used basis is the set of muffin-tin orbitals. Muffin-tin orbitals are
solutions to the so called muffin-tin potential,which is an approximation to the
real metallic potential. The muffin-tin potential is spherically symmetric inside
spheres of radius sR surrounding atomic sites and constant in the so called
interstitial region between those sites. The potential is given by

Vmt(r) =
∑
R

θR(rR)VR(rR) + θi(r)Vi,

where θ is one inside the corresponding region and zero outside, and VR and Vi
are respectively the potentials inside the spheres and in the interstitial regions.

This muffin-tin potential is not exactly equal to the Kohn-Sham potential. There
is a part left over.

Vks = Vmt + Vnmt,

where we call Vnmt the non muffin-tin part of the potential.

Each orbital χ(rR) consists of a component inside the sphere where it is centered,
which we call the head of the orbital, and a component outside its own sphere:
its tail.

Because the muffin-tin potential is split up into two potentials, one inside the
atomic spheres and one in the interstitial region, the solution to the Kohn-
Sham equation with Vs = Vmt can be written as a linear combination of so
called partial waves φRL(E, rR) with different energies

ψ(E, r) =
∑
RL

θR(rR)φRL(E, rR)bRL, (12)

where the b are expansion coefficients.
Because the muffin-tin potential is spherically symmetric inside the atomic
spheres the partial waves can be split up into a radial and an angular com-
ponent.

φRL(E, rR) = φR`(E, rR)YL(r̂R),

where the YL are spherical harmonics, which are solutions to the angular part
of the Schrödinger equation, and the radial functions φR`(E, r) are solutions to
the radial part of the Schrödinger equation.

d2

dr2
[rφR`(E, r)] = [VR(r) +

`(`+ 1)

r2
− E]rφR`(E, r).
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We will now introduce the so called logarithmic derivative, which is defined as

DR`(E) ≡ sR
d

dr
ln[φR`(E, sR)] = sR

φ′RL(E , sR)

φR`(E , sR)
, (13)

and is related to the slope of the radial functions ψR` at the sphere boundaries.
We will make frequent use of the logarithmic derivative in the coming sections.

3.2 Tail augmentation

Figure 1: Bonding (ΨB) and anti-bonding (ΨA) wavefunctions of a one-
dimensional two site system. The atoms are centered at 0 and R and the radius
of the muffin-tin orbital around 0 is sR.

The LCAO method and the method of partial waves both have their advantages
and disadvantages. The LCAO method transforms the Kohn-Sham equation
into an eigenvalue problem, which is not difficult to solve. To give accurate
solutions it does, however, need a reasonably complete basis set, which requires
many different basisfunctions χ.

The method of partial waves can give solutions to arbitrary accuracy, but to
obtain this solution of set of equations with a non-linear energy dependence
needs to be solved.

It would thus be desirable to find a method which has all the advantages of the
LCAO and partial waves methods but non of the disadvantages. To explain
how the LCAO method and the method of partial waves can be combined we
first look at a simple one-dimensional two site example with one atom at the
origin and one at position R. In this case (9) reduces to
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ψBA = χ(r)± χ(r −R), (14)

where the constants c can be left out because they are equal by symmetry and
can thus be embedded into the basis functions χ.

This system thus has two possible states. The anti-bonding state ψA, which
corresponds to an energy A, and the bonding state ψB , which corresponds to
an energy B.

The bonding and anti-bonding states are shown in Figure 1. Each of these states
belongs to one particular energy (A or B) and can thus be described by a single
energy-dependent partial wave.

In Figure 1 it can be seen that the anti-bonding wavefunction has a node at
the sphere radius sR. At that point the logarithmic derivative in (13) becomes
infinite. The partial wave for this state can thus be found as:

ψA = φ(A, r) (15)

if the logarithmic derivative of A satisfies

D(A) =∞.

Similarly in the bonding state the radial wave-function has zero slope at the
sphere radius and the logarithmic derivative is thus zero:

ψB = φ(B, r) (16)

if the logarithmic derivative of B satisfies

D(B) = 0.

To combine the LCAO and the partial wave method, equations (14), (15) and
(16) must all be true,and inside the sphere at the origin the orbital centered at
R must satisfy

χ(r −R) = [φ(B, r)− φ(A, r)]/2. (17)

But χ(r−R) is a localized energy independent basis function centered at position
R and we cannot expect it to everywhere match this combination of energy-
dependent partial waves. We can expect only that it matches at the boundary
of the sphere.

We must thus find a way to satisfy (17). This can be done by choosing the
basis functions χ to be the atomic orbitals whose tails are augmented to fit
[φ(B, r)− φ(A, r)]/2 inside other spheres.

In the general case there is a continuous set of states instead of only a bonding
and anti-bonding state and the augmentation is done by using the derivative
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with respect to energy of the partial waves around some energy Eν at the center
of our interest.

This method is called the linear muffin-tin orbitals (LMTO) method because
via the Taylor series expansion the relation between partial waves of different
energies can be found to linear order as

φ(E, r) ≈ φ(Eν , r) + (E − Eν)φ̇(Eν , r),

where we us an overdot to indicate a derivative with respect to energy.

φ̇(Eν , r) ≡
∂φ(E, r)

∂E

∣∣∣
E=Eν

.

We will from this point on use the notation φ(r) = φ(Eν , r).

Because of this augmentation by the energy derivative the new basis functions χ
cannot be written as a linear combination of only the partial waves. The energy
derivative has to be included as well

χ(r) =
∑
RL

[φRL(rR)ΠRL + φ̇RL(rR)ΩRL] + χi(r), (18)

where χi is the component of the basis function in the interstitial region and
for notational simplicity the θs are dropped.

To obtain a physical solution, these basis functions and their derivatives need
to be continuous. The matrices Π and Ω are coefficient matrices chosen such
that the basis functions satisfy this condition.

It is convenient to write (18) in matrix form.

|φ〉Π + |φ̇〉Ω + |χ〉i = |χ〉∞, (19)

where |〉 and |〉i denote functions defined in respectively an atomic sphere and
the interstitial region.

3.3 Hamiltonian and Atomic Spheres Approximation

Without loss of generality the partial waves φ can be chosen to be normalized
inside their sphere.

〈φRL|φRL〉 ≡
∫ sR

0

φ2R`(E, r)r
2dr = 1

By differentiating this expression with respect to the energy we see that φ and
φ̇ must be orthogonal.

〈φRL|φ̇RL〉 =

∫ sR

0

φR`(E, r)φ̇R`(E, r)r
2dr = 0.
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The partial waves are solutions to the Schrödinger equation with the muffin-tin
potential inside the spheres.

[− ~2

2m
∇2 + VR(r)]φRL(E, r) = EφRL(E, r). (20)

We are interested in the region around the energy E = Eν . Near this energy
the Schrödinger equation can be written in bra-ket notation as

(− ~2

2m
∇2 + VR(r)− Eν)|φ〉 = 0,

and by differentiating (20) with respect to energy we obtain

(− ~2

2m
∇2 + VR(r)− Eν)|φ̇〉 = |φ〉.

Using these expressions, the orthogonality of φ and φ̇ and the expression of the
basis function χ in (19), the full Hamiltonian matrix including the contribution
of the interstitial region and the non-muffin-tin potential in (10) can be written
as

〈χ| − ~2

2m
∇2 + Vks|χ〉∞ = Π∗Ω + 〈χ| − ~2

2m
∇2|χ〉i + 〈χ|Vnmt|χ〉∞

= H − EνO,

where the non muffin-tin potential Vnmt is chosen as Vks in the interstitial region,
and the overlap matrix can be written as

O = 〈χ|χ|〉∞ = Π∗Π + Ω∗〈φ̇2〉Ω + 〈χ|χ〉i,

where 〈φ̇2〉 is a diagonal matrix with elements

〈φ̇2RL〉 =

∫ sR

0

φ̇2r`(r)r
2dr.

In principle the basis function is known once the matrices Π and Ω are known
and the one electron energies can be found. To calculate these matrices one
has to integrate over the interstitial region and the non muffin-tin part of the
potential. Calculations in the interstitial region can be done with plane waves
or muffin-tin orbitals. Plane waves have the disadvantage that a large basis set
of 10-50 plane waves is needed to describe the potential in the interstitial region
accurately. Muffin-tin orbitals allow us to work with a smaller basis set, but
the energies in the interstitial region can, however, not be accurately described
with this set.

A more convenient approach, especially in metals, where the atoms are densely
packed, is to eliminate the interstitial region by employing the so called atomic
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spheres approximation (ASA), which is actually a combination of two approx-
imations. The first approximation is that in the interstitial region the kinetic
energy |E − Vi(r)| can be treated as a constant independent of the energy. We
will use this approximation later.

The second approximation is that around the atomic sites the potential is spher-
ically symmetric, and that these atomic spheres surrounding the atoms can be
expanded such that they fill up all of space, with a slight overlap that can be
ignored.

The ASA works very well in combination with muffin-tin orbitals, because these
orbitals are the solutions to a spherical symmetric potential near the atomic
sites. By eliminating the interstitial region in this ASA the muffin-tin orbitals
in (19) can be replaced by a new set of basis functions; the so called theta-
orbitals, which are orbitals that are augmented in other spheres by only φ̇ func-
tions. These orbitals are obtained by multiplying (19) by Π−1 leaving out the
interstitial region.

|φ〉+ |φ̇〉ΩΠ−1 = |χ〉∞Π−1 = |Θ〉∞. (21)

In this set of basis function the Hamiltonian matrix can be represented as

H = 〈Θ| − ~2

2m
∇2 + Vs|Θ〉∞ = ΩΠ−1 + EνO = h+ EνO, (22)

where the matrix h is defined as

h = H − EνO = ΩΠ−1, (23)

and the overlap matrix is given by

O = 〈Θ|Θ〉∞ = 1 + h〈φ̇2〉h.

The second term of the overlap matrix is second order in h and the real Hamil-
tonian can to the second order in h be approximated by

H̃ = H − Eν .

The only problem remaining now is finding the matrices Ω and Π in the LMTO
formalism.

3.4 Logarithmic derivative

In (13) the logarithmic derivative was defined and it was shown that the bond-
ing and anti-bonding wavefunction in a simple two atom system are related to
the logarithmic derivative.
The wavefunctions were later augmented by φ̇ to connect the LCAO and partial
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waves method, but to ensure continuity of the wavefunction after the augmen-
tation, the combination of φ and φ̇,

Φ(D, r) ≡ φ(r) + ω(D)φ̇(r) (24)

should have the same logarithmic derivative as the radial function φ(r). This is
the case if we have:

ω(D) = −φ(sR)

φ̇(sR)

D −D{φ}
D −D{φ̇}

,

where we use the notation

D{φ} = s
dφ

dr
(s)/φ(s),

and

D{φ̇} = sR
dφ̇

dr
(sR)/φ̇(sR). (25)

The variables Φ and ω are called potential parameters because their values
depend intrinsically on the potential. The virtue of a linear method is that
these parameters depend on the potential only via the logarithmic derivative.

ω = ω(D), (26)

Φ = Φ(D), (27)

and according to Andersen [5] the Wronskian relation between two different
logarithmic derivatives D+ and D− is

(D+ −D−)sRΦ+Φ− = ω− − ω+, (28)

where ω+ and ω− are ω(D) for respectively D+ and D−.

3.5 Structure Constants

Muffin-tin orbitals are the solutions of a spherically symmetric potential in
spheres surrounding the atomic-sites and are thus angular-momentum eigen-
functions, which can be separated into a radial part and an angular part.

χRL(r) = χR`(r)YL(r̂).

In the interstitial region the tail function χiRL(r) is a solution to (7) for a
constant potential i.e. to the Helmholtz equation.

∇2χiRL(κ, r) + κ2χiRL(κ, r) = 0, (29)
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where κ2 = E − V is a constant. Because the packing of the atomic spheres in
metal is very close, especially in the ASA, κ2 is very small and for simplicity we
make the choice E = V , such that κ2 = 0.

In this case (29) reduces to the Laplace equation whose solutions are propor-
tional to r−`−1 and r`.

The radial part of the tail function extends throughout the whole crystal and
must thus be chosen such that it vanishes as r goes to infinity.

χiR`(rR) =

(
rR
s

)−`−1
,

where s is a scaling constant, which can be chosen arbitrarily.

In the LMTO method the tail function is augmented in all spheres. It can thus
be expanded around the other sites using the multipole expansion1.(

rR
s

)−`−1
YL(r̂R) = −

∑
L′

(
rR′

s

)`′
YL′(r̂R′)

2(2`′ + 1)
SR′L′,RL (30)

where the coefficients S are called the structure constants, which are given by

SR′`′m′,R`m = (4π)
1
2 g`′m′,`m

(
R−R′

s

)−`′−`−1
Y ?`′−`,m′−m(R−̂R′), (31)

with

g`′m′,`m = (−1)`+m+1 2

[
(2`′ + 1)(2`+ 1)(`′ + `+m′ −m)!(`′ + `−m′ +m)!

(2`′ + 2`+ 1)(`′ +m′)!(`′ −m′)!(`+m)!(`−m)!

] 1
2

.

The head and tail of the LMTO must match continuously on the sphere radius
sR and we can thus define the LMTO as

χRL(r) = YL(r̂)


Φ−R`(−`− 1, r) for r ≤ sR

( r
SR

)−`−1Φ−R`(, `− 1, sR) for r ≥ sR
, (32)

where Φ−R` is given by (24), where the logarithmic derivative is D = −` − 1,
which is the logarithmic derivative of r−`−1.

Using (30) and (32) the contribution of an orbital at position R inside a sphere
at position R′ can be seen to be

χRL(rR) = −
∑
L′

Φ+
R′L′(r′R)

2(2`′ + 1)φ+R′`′(s
′
R)

(sR′

s

)`′
SR′L′,RL

( s

sR

)−`−1
Φ−R`(sR),

(33)

1For a derivation see J.D. Jackson, Classical electrodynamics, pp 145-150.
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where Φ+
R` is given by (24) for the logarithmic derivative D = `, which is the

logarithmic derivative of r`.

3.6 Π and Ω matrices

Equation (33) can be simplified by introducing two new parameters.

√
∆ ≡

( s

sR

)−`−1(s
2

) 1
2

Φ−(−`− 1, sR),

√
Γ ≡ 2(2`+ 1)

( s

sR

)`(s
2

) 1
2

Φ+(`, sR) ≡ Q∆
1
2 ,

where Q is called the screening parameter.

Using these parameters the relation from (28) can be rewritten as

√
∆
√

Γ = (2`+ 1)sRΦ−(−`− 1, sR)Φ+(`, sR) = ω− − ω+, (34)

where ω+ and ω− are ω(D) for respectively D = ` and D = `− 1.

Using the potential parameters, (33) can be written as

χRL(rR) = −
∑
L′

Φ+
R′L′(r

′
R)Γ

−1/2
R′L′ SR′L′,RL∆

1/2
RL . (35)

Equation (32) gives the shape of the LMTO inside its own sphere and (35) gives
the contribution to the LMTO inside this sphere from the LMTOs centered
at other sides. Taking into account all these contributions, the complete basis
functions can be written in matrix notation as

|Φ−〉 − |Φ+〉Γ− 1
2S∆

1
2 + |χ〉i = |χ〉∞. (36)

According to (24) the functions Φ+ and Φ− are given by

|Φ+〉 = |φ〉+ ω+|φ̇〉,
|φ−〉 = |φ〉+ ω−|φ̇〉,

and the expressions for the Π and Ω matrix are then given by

Π = 1− Γ−
1
2S∆

1
2 (37)

and

Ω = ω− − ω+Γ−
1
2S∆

1
2 (38)
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3.7 LMTO-ASA Hamiltonian

Using the atomic sphere approximation (ASA), the interstitial region is elimi-
nated and the Hamiltonian can be written as in (22). The matrices Π−1 and Ω
in the Hamiltonian can be obtained from (37) and (38) as

Π−1 = ∆−
1
2 (Q− S)−1Γ

1
2 ,

and

Ω = (ω− + ω+) + ω+Γ−
1
2 (Q− S)∆

1
2 ,

where Q is now used as a diagonal matrix with the values QRL on its diagonal.

Using these relations and (34) and (22) we obtain an expression for h = ΩΠ−1.

h = Γ
1
2 (Q− S)−1Γ

1
2 + ω+

= ∆
1
2S(1−Q−1S)−1∆1/2 + ω−.

The full Hamiltonian can then be obtained as

H̃RL,R′L′ = ∆
1
2

R`S̃RL,R′L′∆
1
2

R′`′ + ω− + EνR` (39)

= ∆
1
2

R`S̃RL,R′L′∆
1
2

R′`′ + CR`δRR′δLL′ , (40)

where the S̃ denote the screened structure constants.

S̃ = S(1−Q−1S)−1.

This is the reason why we call Q, the screening parameter, because it relates
the ordinary structure constants S to the screened structure constants S̃.

3.8 Canonical Bands

We start by discussing the case without screening, which is obtained by setting
the screening matrix Q−1 = 0. The screened structure constants then reduce to
the ordinary structure constants and the Hamiltonian can be written as

H = C +
√

∆S
√

∆.

Our goal is the find the so-called energy bands ε(k), which describe the energies
that electrons can have.

To calculate these energy bands one needs to transform the Hamiltonian from
real space into the so-called k-space, which is essentially the Fourier transform
of the real lattice. The Hamiltonian is transformed from real space to k-space
by performing a Bloch summation over all the atoms in the lattice.

Hk
`m,`′m′ =

∑
R6=0

eik·RH0L,RL′ (41)
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As taking a summation over an infinite lattice is not possible, the Bloch summa-
tion must be performed only over all neighbours within a certain radius. This
can be done by setting up the 3 spanning vectors such that the lattice can be
generated by a linear combination of these vectors. We will do a sample calcu-
lation for vanadium, which has a bcc (body centered cubic) lattice, which is a
cubic lattice with lattice points on all its vertices and one in the center of the
cube. Another useful lattice is the fcc (face centered cubic) lattice, which is a
cubic lattice with lattice points on all its vertices an on the center of its faces.
A bcc lattice is shown in Figure (2). The corresponding lattice vectors are

a1 =
a

2

 1
1
−1

 , a2 =
a

2

 1
−1

1

 , a3 =
a

2

−1
1
1

 ,

where a is the lattice constant, which is the length of one edge of the cubic
lattice.

Figure 2: bcc lattice spanned by the vectors a1, a2 and a3.

A lattice of neighbours is then a set containing the linear combinations of these
lattice vectors.

RN = {n1a1 + n2a2 + n3a3 | n1, n2, n3 ∈ {−N,N}}

We will call RN the set containing N shells of neighbours.

To each lattice in real space belongs a reciprocal lattice in k-space, spanned by
the vectors b1, b2 and b3, which are defined as

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a2 · (a3 × a1)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
.
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As the scaling matrices ∆ and Γ are independent of the shape of the lattice, the
Bloch summation can be done using only the structure constants.

Sk`m,`′m′ =
∑

R∈RN

eik·RS0L,RL′ .

The so-called canonical bands can be obtained by neglecting hybridization, which
is the influence the different bands have on each other. This can be done by
separately diagonalizing the diagonal blocks ` = `′ of the matrix Sk`m,`′m′ .

Energy bands are drawn between so called high symmetry points, which are
points in k-space that represent the symmetry of the lattice. Some high sym-
metry points are listed in table 1.

The bcc canonical d-bands (` = 2) are shown in Figure 4.

High symmetry point position in k-space
Γ (0,0,0)
N (0,π/a,π/a)
P (π/a, π/a, π/a)
H (0,0,2π/a)
X (0,2π/a,0)
W (π/a,2π/a,0)
K (3π/2a,3π/2a,0)
L (π/a,π/a,π/a)

Table 1: High symmetry points and their position in k-space.
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Figure 3: Some high symmetry points for an fcc lattice in k-space.
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Figure 4: Canonical d-bands for a bcc lattice calculated with 20 shells of neigh-
bours. The bands are dimensionless and are shown between the two high sym-
metry points Γ and N . These canonical bands give a first order approximation
of the real energy of bcc materials.

Energy bands represent the energy that electrons can have. Each line in a band
diagram is a dispersion relation ε(k), which matches a point in k-space to a
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correspond electron energy. Because the structure constants are dimensionless
quantities, the canonical bands are also dimensionless. Their dimensionless
values are those for the structure constants in (31) when s is chose as the so-
called Wigner-Seitz radius.

s = a
( 3

8π

) 1
3

The convergence of the canonical bands can be made a bit more concrete by
looking at the behaviour of one of the bands at the point Γ for a different
number of shells of neighbours, as shown in Table 2. It can be seen from the
last column of the table that the effect of taking into account more neighboring
shells becomes weaker very quickly. The canonical bands obtained will thus
quickly converge.

Neighbour shells Energy at Γ Contribution of new shells
1 -3.852 -3.852
2 -3.685 0.168
4 -3.623 0.062
8 -3.603 0.020
16 -3.598 0.005
32 -3.596 0.002

Table 2: Energy of the lowest bcc canonical bands at the high symmetry point
Γ computed with various numbers of shells of neighbours.

3.9 Hybridized Bands

The canonical bands are very similar to real energy bands. They form a dimen-
sionless template for the real energy bands, but to obtain the real bands three
additional steps have to be made.

Firstly the structure constants have to be screened by the screening parameter
Q.

Because both the structure constants and the screening parameter are dimen-
sionless, the bands have to be scaled and positioned at the right energy for a
specific system, which is done by the parameters ∆ (or Γ) and C respectively.

All of these steps are incorporated in the Hamiltonian in (40). The correspond-
ing Hamiltonian in k-space is given by (41) by replacing H with H̃.

The last step to obtain real energy bands is by applying hybridization. Hy-
bridization is the influence that the different energy bands have on each other.
The hybridization is applied by diagonalizing the entire k-space Hamiltonian
instead of diagonalizing each diagonal block ` = `′ at a time. The energy bands
that result from this diagonalization are called the hybridized bands. The shape
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of these bands depends on the potential parameters, such as Eν , ω−, Φ− and Φ+.
These parameters are all material dependent and can be found in literature [5].
In Figure 5 the hybridized energy bands for bcc-vanadium are shown.
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Figure 5: Hybridized energy bands for bcc vanadium calculated with two shells
of nearest neighbours.

The Hybridized energy bands are real energy bands, meaning that each line
represents a dispersion relation ε(k) for an electron. All the possible energies
an electron can have, can be found in such a band diagram.

The numerical convergence of the LMTO method is very good. From Table 3
it can be seen that the influence of adding a second shell of nearest neighbours
on the energies is already very small and that further shells will contribute very
little.

N = 1 N = 2
-0.5678 -0.5757
-0.0804 -0.0824
-0.0770 -0.0816
-0.0736 -0.0808
0.1054 0.1099
0.1055 0.1099

Table 3: Energies of the hybridized vanadium bands in Rydberg at the point Γ
for a different number of neighboring shells.

Using the LMTO code written by Andersen and Jepsen, band structures can
be calculated efficiently and with great accuracy. Figures (6), (7) and (8) show
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the band structures of vanadium, copper and cobalt respectively. These band
structures were calculated using the LMTO code.

For cobalt two band structures are shown. This is because cobalt is a magnetic
material. Where in non-magnetic materials all electrons have identical band
structures, in magnetic materials the spin of an electron plays an important role.
Spin can be conceived as the rotational angular momentum of the electron. This
is however not completely true, because electron spin can only take two values,
spin up (majority spin) or spin down (minority spin). In magnetic materials
electrons tend to align their spin to the magnetic field, and one spin is favoured
over the other. In cobalt this has as a consequence that majority spin electrons
have lower energies than minority spin electrons, resulting in two distinct band
structures.
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Figure 6: Vanadium energy bands.
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Figure 7: Copper energy bands.
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Figure 8: Energy bands for (a) majority spin cobalt and (b) minority spin
cobalt electrons. Because Cobalt is magnetic the minority spin bands lie at
higher energies than the majority spin bands.
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4 Transport

4.1 Scattering Formalism

Figure 9: Schematic of the configuration used for transport calculations. A
scattering region S is sandwiched by left (L) and right (R) leads. The scattering
region is divided into N layers.

One of the applications of muffin-tin orbitals is the calculation of the conduc-
tance of metallic interfaces, such as the one depicted in Figure 9. Such an
interface can be divided into three regions: The left and right leads, which are
assumed to be ideal and periodic conductors,such that the Bloch theorem can
be used, and the scattering region,which is the region sandwiched between these
two ideal leads.

In electronic transport the concept of a scattering matrix is very important.
Scattering matrices are used to relate incoming and outcome waves trough a
barrier. (

F
G

)
=

(
t γ
γ∗ t∗

)(
A
B

)
,

where A and B are the amplitudes of respectively the right-going and the left-
going waves in the left lead, and F and G are the amplitudes of respectively
the right and left-going waves in the right lead. In the scattering matrix the
coefficient t is the probability that a right going wave on the left is transmitted
to a right going wave on the right.

Conductance through an interface can be described in terms of scattering ma-
trices by the Landauer-Bütticker formula.

G =
e2

h

∑
n,m

|tn,m|2, (42)

where tn,m is the probability that a state n in the left lead scatters into a state
m in right lead.
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For this purpose we are concerned with only a single energy and it is desirable
not to expand the wavefunction ψ(r) in a basis of linear muffin-tin orbitals, but
to expend it into energy dependent orbitals. We define the radial part of these
orbitals as

χR`(E, r) =

φ(E, r)− DR`(E)+`+1
2`+1

(
r
sR

)`
φR`(E, sR) for r ≤ sR

`−DR`(E)
2`+1

(
r
sR

)−`−1
φR`(E, sR) for r ≥ sR.

Defined this way the MTO is continuous and differentiable everywhere, and is
thus a physical basis function. The notation can be cleaned up by introducing
two new quantities.

|r+〉 ≡
(rR
sR

)` YL(r̂R)

2(2`+ 1)
,

and

P (E) ≡ 2(2`+ 1)
D(E) + `+ 1

D(E)− `
, (43)

where P (E) is called the potential function.

We can still use (30) to expand the tails of the orbitals. The total orbital can
thus be written in matrix form as

|φ(E)〉+ |r+〉
[
P (E)− S

]
χ(E, sR) = |χ(E)〉∞.

The wavefunction can be found as a linear combination of these MTO’s centered
at different sites.

Ψ(E, r) =
∑
RL

χ(E, rR)CRL. (44)

The wavefunction can thus be represented by the expansion coefficients.

Ψ =



...
ci−1
ci
ci+1

...

 .

From the partial wave point of view we already know that φ(E, r)YL(r̂) is a so-
lution to the Schrödinger equation. The only way that the expansion of orbitals
in (44) holds is if the tails from all orbitals cancel inside each atomic sphere, i.e.
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∑
R′L′

[
PRL(E)δRR′δLL′ − SRL,R′L′

]
CR′L′ = 0.

This is called the tail cancellation equation.

For performing calculations it is impractical that the MTO’s have an infinite
range. This can be solved in a simple way by introducing screening constants
αR` such that the tail-cancellation equation changes to∑

R′L′

[
PαRL(E)δRR′δLL′ − SαRL,R′L′

]
CαR′L′ = 0, (45)

Where the screened potential function matrix and the screened structure con-
stants are given by [6]

Pα` (E) = P`(E)
[
1− αP`(E)

]−1
,

SαRL,R′L′ = SRL,R′L′

[
1− αSRL,R′L′

]−1
.

Due to this screening the structure constants can have a very short range. The
set of screening constants for which the range of the structure constants is
minimized is denoted by βR`.

We will take into account only the interaction between neighbouring layers. The
structure constant matrix can then be written as

S =



. . . . . . 0 0 0
... Si−1,i−1 Si−1,i 0 0
0 Si−1,i Si,i Si+1,i 0

0 0 Si,i+1 Si+1,i+1

...

0 0 0 . . .
. . .


, (46)

Where the structure matrix Si,j denotes the structure interactions between sites
in layer i and j.

Using (46) we can write out the tail cancellation equation in its terms to obtain
the so-called equation of motion.

−Sβi,i−1Ci−1 +
(
Pβ
i,i(E)− Sβi,i

)
Ci − Sβi,i+1Ci+1 = 0, (47)

where Ci is an M dimensional vector, where M = (`max + 1)2N , N is the
number of sites in a layer and (`max + 1)2 is the number of orbitals used per
atomic site.
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4.2 Leads

In a periodic potential, such as in an ideal metal, the wavefunction should satisfy
Bloch’s theorem and the expansion coefficients C should be related by

Cn = λCn−1, (48)

where λ is the Bloch phase factor.

λ = eik·T,

with T the vector connecting two equivalent sites in neighbouring layers.

Using (48) the equation of motion can be written in matrix form.(
S−1i,i+1(Pi,i − Si,i) S−1i,i+1Si,i−1

1 0

)(
Ci

Ci−1

)
= λ

(
Ci

Ci−1

)

This eigenvalue problem has 2M eigenvalues and eigenvectors. The eigenvectors
are divided into M right-going waves and M left-going waves.

Following the notation introduced by Ando [1], let u1(−), . . . ,uM (−) be the
vectors C0 of the left-going solutions corresponding to the eigenvalues
λ1(−), . . . , λM (−) and u1(+), . . . ,uM (+) the vectors C0 of the right-going so-
lutions corresponding to the eigenvalues λ1(+), . . . , λM (+).

We then define U(±) and Λ(±) as the matrices

U(±) = (u1(±) . . .uM (±)),

and

Λ(±) =

λ1(±)
. . .

λM (±)

 .

Any solution to the equation of motion at in the layer C0 can be written as a
linear combination of left or right going solutions.

C0(±) = U(±)C(±),

where C(±) is a vector of expansion coefficients.

By (48) in general any solution can be written as

Cj(±) = U(±)Λ(±)jC(±).
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Two solutions can be related as

Cj(±) = F (±)j−j
′
C′j(±), (49)

with

F (±) = U(±)Λ(±)U−1(±).

4.3 Scattering region

Now that the relation between two solutions is known, it can be applied to a
scattering problem. We consider the scattering problem shown in Figure 9: a
scattering region consisting of N layers, which has an ideal lead attached to
both its left and right side.

By linearity of the wave equation the total amplitude of the wave at each cell
can be written as the sum the right-going and the left-going waves at that point.

Cj = Cj(+) + Cj(−).

We consider the case where a current is sent into the left lead. At the left end
of the scattering region there are left-going and right-going solutions resulting
from reflection and transmission. Using (49) the amplitude at cell -1 inside the
left lead can then be related to the amplitude at cell 0.

C−1 = F−1(−)C0 + [F−1(+)− F−1(−)]C0(+).

The equation of motion at cell 0 can then be written as

−Sβ0,−1C−1 = (Pβ
0,0 − Sβ0,0)C0 − Sβ0,1C1 = 0,

which becomes:

(P0,0 − S̃0,0)C0 − S0,1C1 = S0,−1[F−1(+)− F−1(−)]C0(+),

with

S̃0,0 = S0,0 + F−1(−). (50)

This expression shows the basis principle of the wave function matching method.
By matching the waves coming from the left lead with the waves in the scattering
region, the wave amplitude in all layers in the left lead can be written in terms
of the amplitude C0 and the whole left lead essentially turns into a single layer
C0.

To the right of the scattering region there are only right-going waves, because
the right lead,as an ideal conductor, does not reflect. Amplitudes of successive
layers in this lead can thus written in terms of the previous layer.

CN+2 = F (+)CN+1.
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The equation of motion in layer N + 1 can then be written as

(PN+1,N+1 − S̃N+1,N+1)CN+1 − SN+1,NCN = 0. (51)

Equations (50) and (51) can be seen as boundary conditions on the scattering
region, and the problem of finding the conductance through the interface is
reduced from a problem over an infinite region to a problem over only the
scattering region.

For the whole scattering region the tail cancellation matrix can be written as

P− S̃ =

(P − S̃)0,0 −S0,1 0 . . . 0 0
−S1,0 (P − S)1,1 −S1,2 . . . 0 0

0 −S2, 1 (P − S)2,2 . . . 0 0
...

...
...

. . .
... 0

0 0 . . . . . . (P − S)N,N −SN,N+1

0 0 0 . . . −SN+1,N+1 (P − S̃)N+1,N+1


.

The scattering problem can then written as a set of in-homogeneous linear
equations.

(P− S̃)



C0

C1

C2

...
CN

CN+1


=



S0,−1[F−1(+)− F−1(−)]C0(+)
0
0
...
0
0


.

The solution to which is given by

C0

C1

C2

...
CN

CN+1


= g



S0,−1[F−1(+)− F−1(−)]C0(+)
0
0
...
0
0


,

where g is defined as

g = (P− S̃)−1.

The amplitude of the wave at the right of the scattering region CN+1 can now
be related to the incoming wave amplitude C0.

CN+1 = gN+1,0S0,−1[F−1(+)− F−1(−)]C0(+) (52)
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From this expression the transmission coefficient tµν for a incident wave ν with
velocity υν and outgoing wave µ with velocity υµ can be expressed as

tµν =
(υµ
υν

)1/2
{U−1(+)gN+1,0S0,−1[F−1(+)− F−1(−)]U(+)}µν (53)

Now the conductance of the interface can be calculated using the Landauer-
Buttiker equation (42).

4.4 Cu-Co interface

Figure 10: Cubic crystal with (111) planes shown in blue. These planes are
perpendicular to the vector 1b1 + 1b2 + 1b3 indicated by the broken line.

We are now ready to commit ourselves to finding the conductance through a
copper-cobalt interface.

The wavefunction matching method explain previously can be used for this sit-
uation. We are interested in transport across the (111) plan, which is the plane
in a cubic crystal perpendicular to the reciprocal lattice vector 1b1 +1b2 +1b3,
as shown in Figure (10). We use the transport code developed by the chair of
Computational Materials Science, in which the scattering formalism is combined
with the wavefunction matching method. With this code the transmission coef-
ficients in (53) can be calculated as a function of the Bloch-wave vector parallel
to the (111) direction k||.

All the different Bloch states k|| can be visualized by a projection of the Fermi
surface onto the a (111) plane, as shown in Figures 11a and 11b for copper and
cobalt respectively.
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(a) (b)

(c) (d)

Figure 11: Top row: projection of the Fermi surfaces of copper (a) and cobalt
(b) onto the (111) plane, perpendicular to the transport direction. Bottom row:
Transmission probability as a function of k||, T (k||) of an ordered copper-cobalt
interface for majority spin (c) and minority spin(a). The transmission probabil-
ity is indicated by the color scheme, with red being complete transmission and
blue being total reflection. White indicates points where there is no state.

These Fermi surface projections already give a good estimate of the Transmis-
sion probability spectrum for the interface. In ordered interfaces, which we are
dealing with now, the crystal momentum parallel to the interface k|| must be
conserved. There can only be transmission for a given k|| if their exists a state
for it in both copper and cobalt. If there exists a state in copper, but there is
no corresponding state in cobalt there will be no transmission and the electron
will be totally reflected.

The transmission spectrum for the majority-spin states as shown in Figure 11c
follows this intuitive picture quite nicely. It can be seen that if there is no state
k|| in either copper or cobalt there is no transmission and for other states the
transmission is almost everywhere unity.

The transmission spectrum for the minority-spin states, shown in Figure 11d
is more complicated. The transmission is not uniform for the k|| points which
exist in both copper and cobalt. This is because of the magnetic properties of
cobalt. Due to cobalt’s ferromagnetism its 3 minority d-bands are partially lifted
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above the Fermi energy, which is the energy of the highest occupied, and are
thus only partially occupied.These band can thus all contribute a state k|| for
transmission. This means that an propagating state in copper with momentum
k|| is transmitted into a combination of the propagating states in cobalt with
the same k||.

This however still does not fully explain the minority transmission probabilities.
Fur a full explanation the k-points need to be examined one by one. At each
point there are different propagating states in copper and cobalt, with odd or
even symmetry. Propagating from an even to an odd state and vice versa is not
allowed, and at some points this results in vanishing transmission probabilities,
while in other points these can become very large.

By comparing the transmission probabilities for the majority and minority spin
cases, it can be seen that the total transmission of majority spin electrons is
higher than that of the minority spin electrons, by about 20%. In this way
ferromagnetic materials like cobalt thus act as a spin-polarizer, allowing more
majority spin electrons than minority electrons. Such a polarizer is very useful
in the field of spintronics (spin electronics), which has many applications, such
as hard drives or spin-bases transistors.

5 Summary & Conclusion

In this paper we calculated the energy bands of vanadium, copper and cobalt,
and the transmission probability spectrum through a copper-cobalt interface
using scattering formalism and wavefunction matching, where the electronic
structure was calculated using the LMTO-ASA formalism within the framework
of density functional theory.

In particular, we explained how in DFT a 3N -dimensional quantum mechanical
problem is transformed to a 3-dimensional problem, making numerical solutions
possible, and how this framework can be implemented using the Schrödinger-like
Kohn-Sham equations to obtain solutions for metallic structures.

Furthermore, we explained the method of muffin-tin orbitals and showed that
these orbitals form a flexible basis set for solving the Kohn-Sham equations.
For energy intervals we showed that these orbitals can be modified to linear
muffin-tin orbitals using tail augmentation and can be used to calculate band
structures of metals.

We demonstrated that for a single energy the muffin-tin orbitals can be used in
combination with the tail cancellation condition to give equations for a scatter-
ing problem which can be solved with wavefunction matching to obtain trans-
mission probabilities and subsequently the conductivity of an interface.

We illustrated this method for the case of a copper-cobalt interface and cal-
culated the transmission spectra for transport perpendicular throug the (111)
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plane. Lastly we explained how the magnetic properties of cobalt lead to differ-
ent transmission spectra for majority and minority spin electrons.

Furthermore we have only looked at ordered interfaces with equal lattice pa-
rameters in all layers of the scattering region. Real interfaces often have some
form of disorder and the lead can have very different lattice parameters. An
approach that could be able to take into account disorder and different lattice
parameters is by extending the current wave function matching model by the
use of supercells [6].
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