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Abstract

Traditional methods of research on cancer cells are done via tissue
biopsy. Due to the fact that these biopsies are poorly able to predict the
treatment response, other research methods are investigated to eventually
replace tissue biopsies. One method is performing research on circulat-
ing tumor cells from the blood stream, whereas Raman microscopic tech-
niques are used to distinguish different sorts of cancer. This data is used
to obtain a fingerprint per sort cancer by classifying the data. Principle
component analysis (PCA) is used in order to make this hyperspectral
data insightful. Data often contains nonlinear statistical dependencies, so
it is questionable if PCA is the right method to use. This report introduces
two other methods, based on sparse coding, that tackles this shortcom-
ing of PCA. In sparse coding a signal is decomposed in a multiplication
between a set of basis vectors and a sparse matrix, whereas each pixel of
the hyperspectral data will be described with only a few of these basis
vectors. The introduced methods proved to give good classifications and
were noise resilient.
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1 Introduction

Almost 1 out of 6 deaths are caused by cancer [1]. Research on the compos-
ition of cancer cells is therefore an important topic within the health-care

community these days. Current cancer diagnostics is primarily done via tis-
sue biopsy. A single biopsy has shown its limitations due to the heterogeneity
of the tumor. Although multiple biopsies sounds like a clear continuation,
the implementation is rather impractical because of its invasive nature and
risks[15]. Acquisition of cancer tissue is necessary for cancer research so re-
searchers have been searching for other ways to gain cancer cells. Circulating
tumor cells (CTCs) in the blood vessels have been chosen as an alternative be-
cause the isolation of these cells is safe and less expensive[25]. Identification
of the composition of these cells can be done via Raman microscopy. Raman
microspectroscopy is an imaging technique that uses hyperspectral cameras
to measure the electromagnetic energy scattered from a sample using laser
excitation. These energy characteristics are measured in thousands of spec-
tral bands and are then used to obtain a fingerprint from cells based on their
scattered light[11, 17]. The fingerprint will serve as an input for unsuper-
vised statistical classification methods like hierarchical cluster analysis (HCA)
and principal component analysis (PCA). Use of the latter clusters the different
cell components such that distinction between them can be visualized and
different cell types can be classified.

Processing the hyperspectral data, compared to classical fluorescent images,
leads to a great increase in the processing complexity and time. Therefore,
effectively reducing the amount of data is an essential task for hyperspectral
data analysis. One common approach for this dimensionality reduction is
PCA. It is a type of dimensionality reduction where high dimensional data
will be expressed in a lower dimensional dataset of active components. PCA
tries to select a few mutually independent principle components which de-
scribes the data set best and uses all components to represent each pixel of
the observed data [11, 13, 26].

Although PCA is frequently used, there are some drawbacks to this method.
Due to the fact that the principal components have to be orthogonal, the
method is less flexible[24]. Furthermore, PCA is a good method for data
where linear pairwise correlations are predominate, but data often contains
important higher-order statistical dependencies. If so, then it is questionable
if PCA is the right way to go[18].

The goal of this paper is to introduce robust and noise resilient methods that
can serve as a dimensionality reduction tool without the mentioned draw-
backs. The methods that are used are based on sparse coding. The PCA
method will be replaced by a Iterative Shrinkage Thresholding Algorithm (ISTA)
and a Coordinate Descent method (CoD). These methods will be compared with
PCA based on their classification of cancer cells and based on clustering val-
idation indices. A requirement for using these sparse coding methods is a
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learned dictionary. A dictionary learning algorithm from [24] will be used in
this paper because of its fast convergence.

This report is organized as follows: in section 2 a brief overview of the bio-
medical process is given. Section 3 discusses the current method of classify-
ing cancer cells using PCA. In section 4 a method based on sparse coding is
presented that will replace the discussed method from section 3. This section
will also contain a brief overview of the used dictionary learning algorithm.
The results of the method presented will be given in section 5 and section 6
will contain the conclusion and recommendations of this report.
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2 Background information

Cancer tissue has been important for cancer diagnosis, the cancer’s fingerprint
and the prediction of matching cancer therapy. Until now, there has been no
evidence that increasing the understanding of the tumor via tissue biopsies
has led to an increase in treatment response or even survival. The heterogen-
eity of cancer cells and its dynamic characteristics over time are responsible
for this poor prognosis. Research has shown that one biopsy is inadequate
to map the full diversity of the cancer and even multiple biopsies are not
appropriate for this task, because multiple biopsies do not provide enough
information and are impractical due to clinical risks for the patient[16].

Because a good identification of the tumor is essential for an optimal treat-
ment [9, 21], researchers have been searching for other methods to gain cancer
cells for research. CTCs have become an attractive alternative for obtaining
tumor tissue because the described disadvantages do not occur. So-called "li-
quid biopsy" can be used for the accession of cell-free DNA from cancer cells
and the CTCs. These cells are released in the blood vessels during the spread
of the cancer. This method of obtaining cancer cells has the advantage that
taking multiple samples do not harm the patient and the segregating of pure
cancer tissue and other material is not expensive and difficult[21].

Mapping the characteristics of these cells can be done in different ways. Pop-
ular methods make use of microscopic equipment, e.g. CellSearch®. Scanning
Electron Micropscopy (SEM) and Raman micro-spectroscopy are microscopic
techniques for revealing the characteristics of cancer tissue. SEM uses beams
of electrons to gain information about the sample’s surface morphology. The
fact that it makes use of electron beams ensures high resolution data from the
sample’s surface. Raman microscopy uses laser excitation on the sample and
collects the scattered light from the tissue. This scattered light can be used
for the classification of cell composition but is less accurate than SEM because
laser beams are substantially bigger than electrons. In figure 1a and 1b below
the results of cell measurements from both methods are shown. For the rest
of the report the focus will lie on Raman data.

Performing analysis on Raman data requires the data to be more insightful.
Before clusters based on their chemical components can be formed, certain
preprocessing steps have to be made. The first task is to refine the data by,
among other things, removing cosmic rays and outliers. This refined data is
still inappropriate for cluster algorithms to be efficient and precise. This has
a lot to do with the large amounts of data coming from these hyperspectral
cameras. Reducing the amount of data while preserving the utmost of the
variation within the data, is the crucial next step. Methods like PCA and
sparse coding will help out with that problem. Afterwards clusters can be
made and are based on their chemical composition (see Raman spectrum in
figure 1b). HCA clusters parts of the data from PCA or sparse coding and
maps it into a 2D figure. In figure 1c the result of this mapping is shown.
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(a) SEM images of several cancer cells.

(b) A Raman image of a cell with corresponding pixel characteristics.

(c) Results of HCA performed on preprocessed Raman data of the cells in figure 1a.

Figure 1: In figure 1a a SEM images of several cancer cells are shown. Due
to the use of electron beams the morphology is clearly visible. In figure 1b
a Raman image and several pixel characteristics are displayed. The Raman
image shows the mean intensity captured by the sensor. From that image 3
different samples are used for the calculation of the characteristics. It states
that the different colours have different intensities and different peaks. The
Raman shift represents difference in wavelength from the captured scattered
light and the laser beam. In this stage the data is still very raw. After prepro-
cessing, dimensionality reduction and HCA the Raman data will look like the
images in figure 1c.
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3 PCA analysis for hyperspectral images

In this section an overview is given of the current method for cancer cell re-
cognition. This section contains a short description of all preprocessing steps,
an overview of the PCA algorithm and a brief description of the clustering
method.

3.1 Preprocessing

Before PCA is performed, preprocessing techniques are applied on the Raman
data. Below, all the preprocessing steps performed on the raw data are given
in order[17]:

(i) cosmic rays and outliers are removed;

(ii) the region of interest is divided in cell or background. The area outside
this region will not be included;

(iii) the solvent residue of the sample is subtracted by using a linear least
squares fit; and

(iv) furthermore, a baseline correction an denoising is executed.

3.2 PCA

3.2.1 Principle components

When the preprocessing is done, the PCA algorithm can be used as a di-
mensionality reduction tool. The main reasons why this algorithm is used is
because of its power to make data insightful and its low computational costs.
Suppose this method is used on data containing k pixels with each containing
n spectral bands, we have the following data matrix of dimension n x k:

X =


X11 X12 · · · X1k
X21 X22 · · · X2k

...
...

. . .
...

Xn1 Xn2 · · · Xnk


The goal of PCA is to find a m−dimensional subspace (i.e. m < k), while
maintaining the utmost of the variation in the data. The new measurements
W1, . . . , Wk are linear combinations of the column of X, so each Wp (p =
1, . . . , k) can be expressed as follows.

Wp = c1pX1 + c2pX2 + · · ·+ c1pXp

= cT
p X

6



where cT
p = (c1p, c2p, . . . , ckp) are constants and cov(Wi, Wj) = 0 for i 6=

j. The last constraint ensures the new measurements to be orthogonal[2].

(a) Orginal data.

(b) Calculation the principle components.

(c) Switch the axis.

Figure 2: Schematisation construction
principle components[4].

The calculated Wp (p = 1, . . . , k) are
called the principle components (PCs).
There is no standard number of PC
that need to be calculated but at least
a 80% coverage of the variation is
suggested[2]. The first PC represents
the direction with the biggest vari-
ation. The next PC will be ortho-
gonal (because the covariance with
the first PC is equal to zero) and rep-
resents the direction with the second
largest variation. The remainder
components are calculated in a sim-
ilar way.
The calculated PCs helps to make
the data insightful. The process
needed is drawn in figure 2. In fig-
ure 2a the two dimensional data set
is drawn in a regular scatterplot. The
first task is to find the PCs and this
result is drawn in figure 2b (indic-
ated with the green dotted lines).
The last step is a replacement of
the original axis by the calculated
PC (indicated in figure2c). When
data needs to be plotted in 3D then
the next PC is simply added to the
figure[4].

3.2.2 Scores

In the first paragraph the directions
with the biggest variations are cal-
culated. These direction are of great
importance for the eventual classific-
ation of cancer cells. Generally, the
directions with highest variation are more important for the classification[10].
Before this classification can be made, the data needs to be transformed to
another coordinate system because of the change of axis (as shown in figure
2c). Below this transformation is given algebraically and geometrically.
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The mutual relationships between the PC and the data are called scores. Scores
represent the new positions in a coordinate system where the PC form the new
axis. The score of the mth sample on the pth PC can be written as[20].

Wpm = cp1Yp1 + cp2Yp2 + · · ·+ cpkYpk

Figure 3: Geometrically interpretation of the
scores[4].

These scores can also be in-
terpreted geometrically and
is illustrated in figure 3. The
figure clarifies that the ele-
ment ’Neither’, compared to
the new axis, respectively
has a new horizontal and
vertical displacement of -5.6
and -2.38.

Now these scores are known,
the clustering part can be
executed. The scores are
used in a hierarchical cluster
algorithm (HCA) using the
’Ward’ method. In a HCA
distances between clusters
are the only measurements

used. Most HCAs measure distance between elements from different clusters.
Ward’s method handles distance differently. It states that the distance between
clusters A and B is how much the sum of squares grows when the clusters are
merged. This means:

∆(A, B) =
nAnB

nA + nB
‖mA −mB‖2

where mi is the center of cluster i and ni is the number of elements in cluster
i. Starting with zero, the merging costs ∆(A, B) will be added every time
clusters are merged. This algorithm tries to keep it as low as possible[27].
During the clustering a fixed number of clusters is used and is set to 9.
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4 Sparse coding

In this chapter two dimensionality reduction algorithms are introduced whereby
both algorithms are based on sparse coding. First a general introduction of
sparse coding will be given. In the second part a description of dictionary
learning is presented and afterwards the ISTA and CoD algorithm are presen-
ted.

4.1 Sparse coding idea

In sparse coding a signal X will be decomposed in a dictionary D and a
sparse matrix Z (i.e., X

n×k
= D

n×m
· Z

m×k
). The signal of a pixel x ∈ Rn is a linear

combination of basis vectors di i = [1, . . . , m] plus additive noise ε i.e.,

x
n×1

= D
n×m
× z

m×1
+ ε

n×1
. (1)

If z is sparse, this model describes a signal x with only a few elements from
the dictionary D. The Raman data used in this report contains 13228 pixels
with 943 spectral bands each and the dictionary is composed with 1000 basis
vector, i.e. D = [d1, d2, . . . , d1000]. That means that the signal X can be written
as:

X
943×13228

= D
943×1000

× Z
1000×13228

(2)

where each pixel is expressed as x

(943×1)

= D

(943×1000)

z

(1000×1)
+ ε

(943×1)
and

x =
m

∑
i=1

D · zi + ε (3)

where {zi} are the decomposition coefficients.

This method has recently seen a lot of attention in the fields of machine learn-
ing, neuroscience and image processing[13, 24]. Just like PCA, sparse coding
can serve as a dimensionality reduction tool. PCA tries to find a set of prin-
ciple components that represents each pixel in the data, while sparse coding
tries to train a dictionary whereby only a few elements will be used for the
representation of a pixel[13]. This difference in data representation is illus-
trated in figure 4. The goal of sparse representations is to find a set of vectors
that serves the data while using a minimal number of nonzero elements. In
order to find an optimal sparse code, the following minimization problem can
be solved:

min
Z,D

E(X, Z) = min
Z,D
‖X− DZ‖2

2 + α ‖Z‖1 (4)
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where X is the data, D is the learned dictionary, Z is the sparse matrix and
α is a parameter controlling the influence of both terms. The part ‖X− DZ‖2

2
directly comes from the goal of the decomposition of signal X in D and Z (see
equation (4.1)). Besides that decomposition, another goal is to use a minimal
number of nonzero elements from the sparse matrix Z. Counting the number
of nonzero elements of Z will generally be done by using ‖Z‖0. Since this will
make equation (4) a non-convex minimization problem and more sensitive for
outliers, the `1-norm will be used instead[8]. The α in (4) determines how
much nonzero elements there are in Z. A large α causes the ‖Z‖1 to be small.
That means that Z can only contain a small number of nonzero elements.
When α is small, the opposite result occurs.

There are cases where a fixed dictionary is suitable for finding a good sparse
representation of the data, but in most cases learning a dictionary will drastic-
ally improve the results of this method[6]. Although learned dictionaries im-
prove the results, learning them is a computationally expensive procedure
[22]. Fixed dictionaries typically lead to a fast transform but are limited in
sparsifying the signals and can only be used for specific types of signals.

Figure 4: Three classes are represented by using a sparse representation and
PCA as dimensionality reduction tool. The brighter the pixel, the higher the
intensity of each coefficient. The three images in the second row show that
PCA uses all the components to describe the classes, while the sparse repres-
entation only uses several coefficients to describe the classes[13].

Sparse coding has a couple of benefits in comparison to methods like PCA.
In chapter 3 the property of orthogonal principle components is described.
According to [24] this restricts the method to be flexible. Besides that, PCA
can only work with pairwise linear statistical dependencies while data often
contains crucial higher order statistical dependencies. A method that tackles
both problems of PCA, is sparse coding[13, 24].
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4.2 Dictionary learning

A dictionary based on training data can be learned in different ways. In
this report an overcomplete (more columns than rows) dictionary is chosen
because these dictionaries are more flexible and more resilient to noise[5].
Traditional learning methods for overcomplete dictionaries are based on it-
erative batch methods, whereby in each iteration a cost function is minim-
ized while addressing the training data. The most popular batch method
is the K-means Singular Value Decomposition (K-SVD)[14, 28]. This method
consists of two stages: calculation of a sparse matrix solving a version of
equation 4 using a matching pursuit algorithm and a stage where the dic-
tionary is updated column-by-column. Disadvantages of this method are its
slow convergence[28] and the large memory requirement with large training
data[24].
In [24] a method is introduced that solves these problems of K-SVD and is
therefore used as the dictionary learning algorithm for this thesis. Below the
two parts of the dictionary learning algorithm are listed. The result is a dic-
tionary which is slightly overcomplete with 1000 columns (compared to the
943 spectral bands). A bigger dictionary was not an option due to computa-
tional costs.

Algorithm 1 Dictionary learning

1: function Dictionary learning(X, Z, D0, α)
2: Require: x ∈ Rn ∼ p(x) (random variable that randomly selects a

column), D0 ∈ Rn×m, T (number of iterations)
3: Initialize: A0 = 0, B0 = 0
4: for t = 1 to T do
5: Calculate sparse matrix using ISTA:

Zt = min
Z

1
2
‖X− Dt−1Z‖2

2 + α ‖Z‖1 (5)

6: At = At−1 + ZtZT
t

7: Bt = Bt−1 + xtZT
t

8: Computer Dt using algorithm 2 with Dt−1 as input.
9: end for

10: Return DT (the learned dictionary)
11: end function

For the proof of convergence of algorithm 1 the following assumptions were
needed[24]:
Assumption 1. The data meets a bounded probability density (i.e. the error in the
data is bounded)

Assumption 2. The smallest eigenvalue of At is greater than or equal to a non-zero
constant (i.e. At invertible).

Assumption 3. The smallest eigenvalue of DT
t Dt (t = 1, . . . , T) is greater than or

equal to a non-zero constant ∀Dt and ∀x ∈ Rn. Therefore the solution is unique.
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Algorithm 2 Dictionary update

1: function Dictionary update(D, A, B)
2: Require: D ∈ Rn×m dictionary from algorithm 1,
3: A ∈ Rm×m and B ∈ Rn×m

4: Repeat:
5: for j = 1 to k do
6: Update the j−th column of D

uj =
1

Ajj
(bj − DAj) + Dj

Dj =
1

max(
∥∥uj
∥∥

2 , 1)
uj

(6)

7: end for
8: Until convergence
9: Return D (the updated dictionary)

4.3 Algorithms to compute sparse codes

The result of the presented method in paragraph 4.2 serves as input for the
computation of the sparse matrix. Below two different algorithms are presen-
ted that compute the algorithms. In the next paragraphs a short description
is given and their pseudo codes.

4.3.1 ISTA

ISTA minimizes equation (4) over Z while fixing dictionary D. The strength
of this algorithm is its simplicity. The algorithm of ISTA is listed below[19]:

Algorithm 3 ISTA

1: function ISTA(X, Z, D, α, L)
2: Require: L > largest eigenvalue of DT D
3: Initialize: Z = 0
4: repeat
5: Z = h(α/L)(Z− 1

L DT(DZ− X))
6: until change in Z under a threshold
7: end function
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whereby h α
L

is the so-called shrinkage function. This shrinkage function can
be expressed as:

[hθ(V)]i = sign(Vi)(|V)i| − θi)+ (7)

and is used to update Z iteratively with

Z[k+1] = h( α
L )
((I − 1

L
DT D)Z[k] +

1
L

DTX). (8)

This method has proven to converge, even with dense a data matrix[8].

4.3.2 CoD

Besides ISTA, the more efficient Coordinate Descent method (CoD) is intro-
duced. Just like ISTA, a CoD method minimizes equation (4) over Z while fix-
ing D. The difference lies in the selection of components that will be changed
per iteration. A CoD method selects one component to modify while ISTA
modifies all components, causing a CoD method to converge faster. In al-
gorithm 1 D has the size n×m and X n× k. That means that the Z is of the
size m × k and therefore the computational complexity is O(mn), O(m2) or
O(ml) with l the average sparsity across samples and iterations. In CoD one
component at a time is changed, which takes O(n) operations. This will be re-
peated for O(n) or O(m) times and thus it is faster than ISTA. The algorithm
of CoD is listed below[19]:

Algorithm 4 Coordinate Descent

1: function CoD(X, Z, D, α, S)
2: Require: S = I − DT D
3: Initialize: Z = 0, B = DTX
4: repeat
5: Z̄ = h(α)(B)
6: k = index of largest component of |Z− Z̄|
7: ∀j ∈ [1, n] : Bj = Bj + Sjk(Z̄k − Zk)

8: Zk = Z̄k
9: until change in Z under a threshold

10: Z = hα(B)
11: end function

Since CoD updates only one component at a time, this algorithm is not per-
forming a multivariate minimization but a scalar minimization subproblem
instead. That means that every subproblem improves the estimation of the
solution by minimizing along one direction while fixing others. This principle
can easily be shown in 1D. The following minimization problem will then be
solved[23]:

min
z∈Rm

E(z) = |z|1 + λ ‖Dz− x‖2
2 (9)

where x ∈ Rn, D an n×m matrix with n < m and n are the number of spectral
band and m the number of basis vectors in the dictionary.
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Minimizing this problem will deliver the same result as minimizing equation
(4). The solution of this problem can be written as a shrinkage function where

shrinkage( f , µ) =


f − µ, if f > µ;

0, if − µ ≤ f ≤ µ;
f + µ, if f < −µ;

(10)

and can be visualized as follows.

Figure 5: 1D shrinkage displayed in 2D.
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5 Results

The method discussed in the last chapter is performed on a dataset containing
4 lymphocytes, 4 neutrophils, 4 breast cancer cells (SKBR3), 4 prostate cancer
cells (PC3) and 4 LNCaP cells. PCA struggles with finding the distinction
between LNCaP and SKBR3 and are therefore part of his dataset. Important is
that only PCA is replaced and that the remainder of chapter 3 stays the same.
The dictionary is learned in 25 iterations and based on this dictionary, ISTA
and CoD are used for the calculation of the sparse matrix Z (see equation
(4). This matrix is then used by HCA for making the clusters visible in a
classification. Each simulation of ISTA is considered to be converted when

∥∥∥Z[k+1] − Z[k]
∥∥∥

2
< 1

and CoD is considered to be converted when 3500 iterations are reached or∥∥∥Z[k+1] − Z[k]
∥∥∥

2
< 2.

Below results of minimizing equation (4) for different ISTA and COD, for
different values of α and 9 clusters are shown.

(a) Cancer cell classification with α = 1.

(b) Cancer cell classification with α = 200.

(c) Cancer cell classification with α = 500.

Figure 6: Cancer cell classification for different values of α using ISTA. The
cells used in this figure (from left to right): lymphocyte, breast cancer, prostate
cancer and LNCaP.
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(a) Cancer cell classification with α = 0.2.

(b) Cancer cell classification with α = 50.

(c) Cancer cell classification with α = 160.

Figure 7: Cancer cell classification for different values of α using CoD. The
cells used in this figure (from left to right): lymphocyte, breast cancer, prostate
cancer and LNCaP.

Figure 6 shows that there is a value of α between 1 and 500 that describes
the data best. The value of α determines the extent to which the `1−norm
of the sparse matrix Z is dominant. For example, a high value of α ensures
the `1−norm of Z to be small and consequently give a large value of θ in
equation (5). Because most components of D and Z are close to zero, this θ is
then a hard threshold and the shrinkage function [hθ(V)]i tends to go to zero
for the utmost of the components. Therefore, as stated in figure 6c, a lot of
pixels belong to the same red cluster at which it does not contribute anything
to the classification. This is illustrated in figure 8 whereby it illustrates that
the red cluster has a very low intensity. For the residual components the HCA
tries to fit 9 clusters and is shown in the second (from left to right) illustration
of figure 6c. Besides visual interpretation, unveiling the properties of the
corresponding sparse matrix of α = 500, compared to α = 200, gives a good
insight in the effect of a high value of α for the decomposition of signal Y in
DZ. For α = 500 the matrix Z is nonzero for 0.54% of the elements and it uses
on average 5.44 elements to describe a pixel of Y (see equation (4.1)). That in
comparison to 3.3% and 33.02 respectively for α = 200.
Figure 7 also presents the fact that there is an optimal value for α for CoD.
Besides that, the difference in active components per pixel is also occurring
for the CoD algorithm. In the case of α = 160 for CoD, only 0.45% of the
elements are nonzero and on average 4.53 elements are used to describe one
pixel. On the other hand, 1.51% of the elements are nonzero for α = 50 and
uses on average 15.1 elements to describe one pixel.
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Figure 8: The measured intensity for the coloured clusters per frequency.

5.1 Optimizing α

The figures above have shown that there is an optimal value α for this classi-
fication which describes the data best. For this optimization cluster validation
tool Silhouette Validity Index (SVI) is used because this index can be used to
test the input (Z) for the clustering for different values of α and can also be
used for the determination of the number of clusters[7, 29]. SVI is an internal
cluster validation index that is used in situations when no ground truth is
known. Ground truth is data where the classification preferable has a high
accuracy. The SVI for the ith data point is defined as:

Si =
bi − ai

max(ai, bi))
, − 1 ≤ Si ≤ 1 (11)

where

(i) ai is the average Euclidean distance of the ith data point to all other
points in the same cluster;

(ii) bi is the average Euclidean distance of the ith data point to all other
points in the next nearest cluster.

A SVI between -1 and 0 states that the clustering is insufficient and a SVI close
to 1 states that the clustering is sufficient.
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Below a table is shown with the SVIs from ISTA and CoD for different values
of α. For these calculations the number of clusters is kept constant at 9.

α SVI ISTA α SVI CoD

1 0.0118 0.2 0.6271

30 0.0833 40 0.4705

60 0.1827 75 0.4328

200 0.2597 100 0.4872

235 0.2663 105 0.5038

285 0.4395 110 0.4755

500 0.8354 150 0.1052

Table 1: Parameter optimization for ISTA and CoD using the SVI and 9
clusters.

The table shows that an increase in α ensures an increase in SVI for the out-
puts of ISTA. The SVIs from CoD give a peak around the value α = 105 but
further analyis is needed to indicate the optimal value of α. So based on this
validation tool alone an optimal value for α can not be chosen and therefore
another internal validation index, Dunn’s validity index (DVI), is used for the
determination of an optimal value of α. Just like the SVI, DVI also test the
input of this index (Z) and can be calculated as follows[7]:

D = min
1≤i≤k

 min
i+1≤j≤k

 dist(ci, cj)

max
1≤i≤k

diam(cl)

 (12)

where

dist(ci, cj) is the distance between cluster ci and cj.

dist(ci, cj) = min
xi∈ci ,xj∈cj

d(xi, xj)

d(xi, xj) is the distance between data points xi and xj.

diam(cl) is the diameter of cluster cl where
diam(cl) = max

xl ,x2∈cl
d(x1, x2).

According to this tool, the higher the index the better the classification. Below
in figure 9 the DVIs are calculated for several values of α. Each calculated DVI
value is based on the average of 50 calculations because the DVI has not one
specific value per α per iteration. The figure shows a clear peak at α = 200 for
ISTA and at α = 103 for CoD. Therefore, these values are used as the optimal
value for α.
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Figure 9: DVI for different values of α using ISTA and CoD.

5.2 Optimizing number of clusters

In the previous paragraph α = 200 is set as the optimal value for ISTA and
α = 103 for CoD. These values are then used for the determination of the
optimal value for the number of clusters. Both SVI and DVI are used to
determine this value and the results are shown in the table below.

# clusters SVI DVI

9 0.2597 0.3027

10 0.2594 0.2937

11 0.2594 0.2924

12 0.2602 0.3001

Table 2: Determination of the optimal number of clusters using the SVI and
DVI on ISTA.

# clusters SVI DVI

9 0.4901 0.3216

10 0.4914 0.1864

11 0.4819 0.2685

12 0.4832 0.1334

Table 3: Determination of the optimal number of clusters using the SVI and
DVI on CoD.

Based on these results 9 clusters are used for the classification of the cancer
cells for both ISTA and CoD.
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5.3 Comparison with PCA

For the comparison, the same validation tools are used for the classification of
the method discussed in section 3. First, the classifications of the 5 different
cancer cells are given below, then in table 4 the results of the validation tools
are presented.

(a) SEM images from PC3 cell and the SKBR3.

(b) Difference in classification between CoD, ISTA and PCA (from top to down). From
left to right: LNCaP, PC3, neutrophil, lymphocyte and SKBR3.

Figure 10: Comparison between classification via PCA and sparse coding,
with in figure 10a the corresponding SEM images and in 10b the difference in
classification.
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SVI DVI

ISTA 0.2597 0.3027

CoD 0.4901 0.3216

PCA 0.6166 0.0921

Table 4: Overview of the results of the validation tools SVI and DVI, using
PCA and sparse coding.

5.4 Noise resilient

For testing the noise resilience of the algorithms PCA, ISTA and CoD, Gaus-
sian noise is added to the data. Afterwards, the sparse matrix Z is calculated
with the algorithms and the results are visually tested and validated with SVI
and DVI. The corresponding probability density function is given as follows:

p(x) =
1

σ
√

2π
· e−

(x−µ)2

2σ2

were µ and σ are the noise parameters. In this model the µ is set to 0 and
σ to 1. Gaussian noise is a good method for testing the noise resilience of
algorithms because it resembles real world cases[12]. In table 5 the resulting
SVI and DVI are presented and below the table the visual interpretation is
shown.

SVI DVI

ISTA with noise 0.2534 0.2978

CoD with noise 0.4894 0.2705

PCA with noise 0.6103 0.0814

Table 5: Results of validation with ISTA using SVI and DVI.

Figure 11: Normal classification ISTA (top) versus a classification with added
Gaussian noise.
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Figure 12: Normal classification CoD (top) versus a classification with added
Gaussian noise.

Figure 13: Normal classification PCA (top) versus a classification with added
Gaussian noise.

5.5 Summary of the results

In this chapter the results of two methods for replacement of PCA are presen-
ted. All methods were able to classify cancer cells but were not able to distin-
guish LNCaP with SKBR3 cells. Besides that, ISTA contained the more clear
classifications in comparison with CoD (see figure 10b). Furthermore, the pro-
posed methods and PCA all turned out to be noise resilient. This conclusion
is based on a small changes in classifications, SVI and DVI.
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6 Conclusion & Recommendations

This report presented two methods based on sparse coding that were used to
make hyperspectral camera data insightful. These dimensionality reduction
algorithms, ISTA and CoD, made use of a pre-learned dictionary. The α of
equation (4) is optimized via two internal clustering validation tools. The
proposed methods were applied to a data set containing 4 lymphocytes, 4
neutrophils, 4 breast cancer cells, 4 prostate cancer cells and 4 LNCaP cells.

Sparse coding has led to acceptable classifications of cancer cells and the cor-
responding algorithms turned out to be resilient to noise. ISTA gave more
clear distinctions between cancer cells than CoD. Based on the two internal
validation tools it can not be said which algorithm, PCA or ISTA, is better at
classifying cancer cells. This is because PCA had a higher SVI and ISTA scored
better on the DVI. Besides that, both method were able to distinct neutrophils,
lymphocytes and breast cancer, but were both not able to distinct LNCaP with
PC3.

The results show that the resulting sparse model contains outliers and the
model struggles to distinct the orange and red cluster (see the leftmost figure
in figure 10b). If further research on this subject is conducted, I recommend to
change a few parameters. In this research convergence for ISTA was reached

when
∥∥∥Z[k+1] − Z[k]

∥∥∥
2
< 1. Putting the norm difference closer to zero will

lead to a more converted solution of ISTA. This also applies for CoD, whereas
there was not enough time to run the code longer. Besides that, the learned
dictionary formed an input for ISTA and CoD and was learned within 25
iterations. In [13] was stated that most dictionaries were well-converted after
1000 iterations, but they recommend to upscale that number of iterations even
more. Due to lack of a strong computer and time, I was not able to do these
number of iterations. The 25 iteration and the large norm difference were
therefore insufficient.
Besides this recommendation for longer computation time, I recommend to
obtain the results based on more data. In this report 20 cancer cells in total
are used for the input of the algorithms. More data and longer computations
would improve the results of this research.

During this research one dictionary was learned based on the Raman micro-
scopic data. Because a cell contains multiple materials, a clear classification
per pixel is therefore hard. In [3] a method is proposed which trains multiple
dictionaries based on labeled data with high accuracy (ground truth). In this
case, this ground truth can be assessed by using a microtome. A mircotome
cuts very thin slices of a sample (cancer) cell and can be examined with a mi-
croscope in a much easier and precise way. After collecting data from several
sorts of cancer cells, the dictionaries can be learned such that each material has
its footprint in the shape of a Raman spectrum (see figure 1b). The method in
[3] then selects per pixel which dictionary describes the data best and based
on that information a classification is made.
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Besides more dictionaries, better understanding of the size of the dictionary
would probably improve the classification. Expected is that there is an optimal
size for this application but due to lack of time, this research has not been
executed.

Furthermore, two internal classification validation tools are used for the op-
timization of α and the number of clusters. For a better optimization it would
be better to perform a research on which validation tools suit this problem
best or on usage of more validation tools (internal and/or external), whereas
external validation tools are based on ground truth. This ground truth can for
instance be accessed by the use of a microtome. One of the validation tools,
Dunn’s index, proved to be inconsistent. If this validation is used again, it
would be recommended to calculate the average over more iteration.
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A MATLAB implementations

A.1 The dictionary learning algorithm

function [X,beta]=dictionary(X,Y,Z,epsilon,alpha,L,theta,W)
[a b]=size(X);
[c d]=size(Y);
A=zeros(b);
B=zeros(a,b);
for t=1:50;

beta=ISTA(Y,Z,X,epsilon,alpha,L,theta,W);

A=A+beta*transpose(beta); %update A
B=B+Y*transpose(beta); %update B

X=dictionaryupdate(A,B,X); %upload dictionary
end
end

A.2 The dictionary update

function [D_old]= dictionaryupdate(A,B,D)
D_old=D;
[q,r]=size(D);
D_new=zeros(q,r);
norm_D=10;

eta=1;
j=1;
while norm_D>eta;

for j=1:r;
if A(j,j)==0; %special treatment for singularities

u_j=(10^-14)*(B(:,j)-D_old*A(:,j))+D_old(:,j);
else

u_j=(1/A(j,j))*(B(:,j)-D_old*A(:,j))+D_old(:,j);
end

D_old(:,j)= (1/max(norm(u_j),1)).*u_j;

end
norm_D=norm(D_old-D_new) %check norm
D_new=D_old;

end
end
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A.3 ISTA

function [W]=ISTArobust(input,Z,D,epsilon,alpha,L,theta)
norm_ista=10;
W=Z-(1/L)*transpose(D)*(D*Z-input);
while norm_ista>epsilon;

Z=W;
W=sign(Z-(1/L)*transpose(D)*(D*Z-input))

.*max(abs(Z-(1/L)*transpose(D)*(D*Z-input))-theta,0);
end
end

A.4 CoD

function [Z]=CODrobust(X,Z,D,S,alpha,epsilon)
B=transpose(D)*X;
norm_cod=10;
Z_new=Z;
[a,b]=size(B);
Z=zeros(a,b);
k = 0;
while norm_cod(end)>epsilon && k < 3000

Z_bar=sign(B).*max(abs(B)-alpha,0);
absolute=abs(Z-Z_bar);
[~, index] = max(absolute);

for i = 1:b
for j=1:a

B(j,i)=B(j,i)+S(j,index(i))

*Z_bar(index(i),i)-Z(index(i),i));
end
Z_new(index(i),i)=Z_bar(index(i),i);

end

norm_cod(end+1) = norm(Z_new-Z);
Z=Z_new;
k = k + 1;

end
Z=sign(B).*max(abs(B)-alpha,0);
plot(norm_cod)
end
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