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Abstract—A novel approach to finger vein image acquisition
consists of capturing a multi-intensity sequence of images and
merging them into a single HDR image to record a maximum
amount of vein detail.

Two HDR methods are proposed and evaluated: basic scalar
weighting which maximizes entropy, and weighting with a moving
mean filter which increases local contrast and background homo-
geneity. Both methods show promising vein recognition results:
a higher level of vein detail was detected using both Maximum
Curvature and Repeated Line Tracking than with a single LDR
finger vein image. A small-scale vein matching experiment with
3 samples of 4 different fingers from the same person gave no
false positives or negatives, and showed improvement compared
to using single LDR image. Further testing with large datasets is
required in order to draw broader conclusions about recognition
performance.

Index Terms—biometrics, finger vein, exposure fusion, NIR
imaging, High Dynamic Range (HDR)

I. INTRODUCTION

Finger veins are gaining traction as a promising biometric,
since they can uniquely identify an individual and, unlike
fingerprints, are virtually impossible to spoof or forge due
to being subcutaneous. Finger veins can be acquired in a
cheap and non-invasive manner, using Near-Infrared (NIR)
technology. Indeed, NIR light is absorbed by hemoglobin in
the blood but passes through bone and surrounding tissue.
Finger veins thus can be captured by an NIR sensor as dark
patterns by shining NIR light through the finger.

Despite its advantages, finger vein recognition also poses
many technical challenges. In order to be viable as a secure
and convenient personal identification method, finger vein
recognition should be an accurate and timely process. That
is, vein features should be faithfully identified and extracted,
despite variations in finger thickness & size, vein thick-
ness, finger displacement/rotation, and lighting conditions. The
identification process is performed in real-time - ideally, the
user should not have to wait more than a few seconds to obtain
a matching score.

A crucial factor in the quality of finger vein images is
the illumination of the finger. In the finger vein scanner
developed by the DMB group, illumination is controlled by
a strip of NIR LEDs placed above the finger. In the previous
implementation, illumination is controlled using a feedback
loop: images are acquired with varying LED intensities until
homogeneous illumination of the finger is obtained, after
which only the final image is used for vein recognition.
However, this implementation is slow and wasteful, as many

acquired images are discarded in the process, and the level of
vein detail in resulting images is unsatisfactory.

This paper proposes an alternative approach, which records
several finger vein images at different exposures and combines
them all into a single High Dynamic Range (HDR) image.
HDR imaging is typically used in photography to recover
detail, contrast and depth in over- and under-exposed areas,
resulting in a very visually pleasing image which is faithful to
how the human eye would have perceived the scene. However,
in the context of finger vein recognition, HDR is applied with
the aim of condensing more vein information into one image
and recovering vein detail across the whole finger.

To this end, we formulate the following main research ques-
tion: How can High Dynamic Range imaging be implemented
to improve the quality of finger vein images? which we break
down into the following sub-questions:

• How can the current setup be improved to acquire better
vein images?

• How can the camera settings and illumination be con-
trolled to acquire images with different exposures?

• How can multiple Low Dynamic Range images of dif-
ferent exposures be combined to create a High Dynamic
Range image?

• What criteria should be used to evaluate the quality of
the acquired vein images?

• To what extent does High Dynamic Range translate to
recognition performance?

II. BACKGROUND & STATE OF THE ART

A. Acquisition of finger vein images
The most widely used and documented acquisition method

is the light transmission method: the finger is placed between
the sensor and a near-infrared light source, such that IR
light penetrates the finger from the top. This method has the
potential of producing high contrast vein images.[2].

In their white paper[4], Hitachi also documents two other
configurations: bottom lighting and side-lighting. In the case
of a bottom lighting setup, the sensor and light source are
placed on the same side, under the finger. This method is much
less intrusive to the user than the light transmission method,
as their finger is not ”hidden” by the light source; however,
it offers much poorer performance. The side-lighting method
was proposed by Hitachi as a compromise: light sources are
placed on each side of the finger, and the sensor is placed
below it. These two methods are more sensitive to ambient
light and require complex adaptive control of illumination[3].
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B. Evaluation of finger vein image quality

Assessing the quality of finger vein images is necessary
for quantitative comparison of different acquisition setups
and image processing techniques. It is also interesting to
investigate to what extent different quality metrics relate to
finger vein recognition performance.

Many different image quality metrics are featured in
scientific literature. We list several of the most basic ones
here. We can distinguish two types of metrics: statistical
measures and co-occurrence based metrics. Statistical
measures give insight into how pixels are distributed over
the intensity range, but are independent of how pixels are
distributed spatially over the image. Co-occurrence based
metrics, on the other hand, depend on spatial distribution and
thus can give textural information about the image.

Statistical measures:
• Mean gray value: computed by summing the value of all

pixels in the image and dividing by the number of pixels.
This gives information about the global brightness level
of the image. A mean gray value close to the extremities
of the intensity range (0 and 255 for an 8-bit image)
indicates under- or over-exposure, and thus detail loss.

• Standard deviation: indicates how pixel intensities are
distributed around the image. It gives an indication about
the global contrast level.

• Entropy: is a measure of how much information is
contained in an image. A predictable, flat image has
low entropy while an image with many unpredictable
ransitions between pixel values has a high entropy. In
theory, high entropy vein images are desirable, since
we want to maximize the amount of vein information.
However high level of entropy in a vein image may also
be due to noise or undesirable finger features (eg. ridges,
joints, fingerprints, finger edges).

Co-occurrence based metrics:
• Local contrast: is a measure of intensity differences be-

tween neighbouring pixels. Although this parameter may
indicate strong contrast between veins and surrounding
tissue, it is also very sensitive to noise and saturation.

• Energy: can be described as the amount of work per-
formed to obtain the image. The energy is maximum for
a constant image.

• Correlation: measures the dependence of pixel intensities
and that of neighbouring pixels.

• Homogeneity: homogeneity is desirable in finger vein
images, since it indicates that variations in finger thick-
ness are not prominent in the image. However, high
homogeneity may also indicate a complete lack of detail
or complete under/over-exposure.

As shown in [13], these metrics, although commonly used,
are quite limited as vein quality assessment criteria. Many
studies combine these metrics (”score fusion”) or develop
novel methods for more accurate quality evaluation of finger
vein images.

Furthermore, it is unclear how these metrics each exactly
translate to recognition accuracy. Many papers about finger

vein image quality enhancement seem to consider a high
quality vein image to be an image where veins clearly stand
out to the human eye. As such, histogram equalization is often
mentioned in literature as an effective quality enhancement
technique, since it enhances global contrast. However, insight
is lacking about whether contrast enhancement truly improves
the accuracy of vein pattern extraction and matching.

C. Vein recognition & matching

Acquired vein images must first be normalized to correct
for any differences in finger orientation/position or image
resolution. The region of interest (ROI) must then be localized
and extracted; in this process, the background around the finger
and the extremities of the finger (which contain little to no vein
information) are discarded.

The next step is extracting the vascular pattern in the form of
a binary image. Many finger vein recognition methods have
been proposed in literature. Some of the most widely used
vein recognition methods in scientific literature are Maximum
Curvature (MC), Principal Curvature (PC), Repeated Line
Tracking (RLT), and Wide Line Detection.

The Maximum Curvature method takes cross-sectional pro-
files of a vein images in four directions, and looks for local
maximum curvature along each profile. The idea is that since
veins in the image manifest as sharp transitions in pixel
intensity, the curvature along the profile is highest when a
vein is crossed. Each detected center point is weighted with a
score, based on the width and curvature of the dent, indicating
how probable it is that it is located on a vein. Filtering is
then applied in order to connect vein centers and eliminate
noise. Lastly, the vein pattern is binarized via thresholding.[6]
Repeated Line Tracking also looks at cross-sectional profiles.

After vein pattern extraction, the last step consists of com-
paring the extracted binary vein pattern to previously captured
patterns in a database. A matching score can then be given to
the vein pattern.

For measuring vein matching performance, the Equal Error
Rate (EER) is typically used. As illustrated in 1, the EER is
equal to the error rate for which the False Acceptance Rate
and False Rejection Rate are equal. Biometrics applications
aim to reduce the EER to zero, such that there is no overlap
between the acceptance and rejection curve, thus yielding
100% matching accuracy.

D. High Dynamic Range imaging

The dynamic range of an image is commonly defined as the
ratio between its highest and lowest intensity value. Camera
sensors have a limited dynamic range, and thus are unable
to capture the full dynamic range of scenes with large varia-
tions in brightness; brightness levels outside of the camera’s
dynamic range appear saturated in the captured image (under-
exposed or over-exposed). Recording the full range of an
HDR scene with an LDR sensor requires taking multiple
captures at different exposures. This acquisition process is
known as exposure bracketing. The image sequence must then
be combined into a single image, such that all areas are
properly exposed. The resulting image is an HDR image, and
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Fig. 1: Diagram showing the relation between EER,
FAR and FRR. Source: https://www.tractica.com/biometrics/in-
biometrics-which-error-rate-matters/

thus cannot be viewed on a typical LDR screen. For viewing
purposes, the HDR image must be ”compressed” or converted
into an LDR image - this is known as tone-mapping.

1) Exposure bracketing: Constructing an HDR image re-
quires taking a sequence of images at different exposures. The
exposure of acquired images can be varied from the camera
itself, through the following settings, commonly known as the
”exposure triangle”:

• Shutter speed: longer shutter speeds result in brighter
images, since the camera is exposed to light for a longer
period of time; however controlling exposure in this
manner has the disadvantage of introducing motion blur.

• ISO, which determines the light sensitivity of the camera.
High ISO allows proper exposure in low-light conditions
but tends to introduce visible noise in images; low ISO
produces smoother images, but requires a high level of
ambient lighting for proper exposure.

• Aperture is a property of the camera lens; a wider aperture
allows more light to enter the camera, and also reduces
the depth of field.

Merging images with different depths of field or noise levels
would result in undesirable artifacts, since the content of the
images is fundamentally different. This is why, when taking
a sequences of images for HDR reconstruction, the exposure
is traditionally controlled by adjusting shutter time, while the
the ISO and aperture settings are kept fixed.

2) Constructing an HDR image: Constructing an HDR
image from a sequence of multiple input images essentially
amounts to taking a weighted average of these images. Images
are inversely weighed based on their exposure level, such
that details captured at lower exposures appear in the high
end of the final image’s intensity range and vice-versa. State-
of-the art methods in the field of photography first compute
the Camera Response Function which relates scene radiance
(ie. the amount of incoming light) to measured intensity
values. This function is used to compensate for non-linearities
introduced by the camera sensor and image compression. The
goal is to approximate the amount of light that originally hit
the camera sensor at each pixel location, to produce an HDR
image which is as faithful as possible to the captured scene.
An extensive review of CRF calculation and HDR weighting
methods is given in [1].

3) Tone-mapping: The most basic tone-mapping method
consists of linearly scaling the HDR image down to a LDR
(usually 8-bits). However, this uniform distribution produces
an image which is appears very flat and is not ”visually
meaningful”[1]. Non-linear tone-mapping, which emphasizes
intensity variations is much more commonly used. Non-linear
tone-mapping methods often involve some form of histogram
adjustment.

E. HDR imaging for finger vein recognition

In the context of finger vein recognition, there is very little
documented use of HDR imaging or exposure fusion. In fact,
illumination for finger vein acquisition as a whole is not a
widely researched topic.

One approach[10], proposed by L. Chen et al., consists
of acquiring images at different exposures, dividing each
image into ten vertical segments, and reconstructing a single
image by combining the best segments. Although this is an
interesting fusion method if homogeneous illumination cannot
be obtained, the result is not an HDR image.

A previous student at DMB[?] attempted to implement HDR
imaging using constant illumination and varying shutter speed
for exposure bracketing. Results are underwhelming due to the
poor acquisition method.

III. IMPLEMENTATION

A. Setup improvement

The finger vein scanner developed at the DMB group
uses a top-lighting setup: the finger is placed between the
sensor and a near-infrared light source. The sensor used is
a 5 Mega Pixel RB-Camera-WW from Joy It, which was
chosen by previous student[12] for its low cost, Raspberry
Pi compatibility and its large field of view. The camera lens
has a fixed aperture (f-number of 2,35). As the camera does
not have a built-in IR filter, an IR filter was added under
the finger. Illumination control, image acquisition and vein
recognition were all performed on a computer running Matlab,
which controls the on-board Raspberry Pi remotely.

As can be seen in the top image of Figure 2, acquiring
images using the original setup and original code gives un-
satisfactory results: vein details are poorly visible due to low
contrast between veins and surrounding tissue. In an attempt to
improve the quality of acquired images, the following changes
were made to the finger vein scanner:

• Shielding from ambient light was added by placing black
paper around the scanner. This provides more predictable
lighting conditions and seems to reduce scattering in the
finger.

• The IR filter, which easily collects dirt and scratches, and
introduces glare (see Appendix D), was removed. The IR
filter proved to be unnecessary when the dark housing
is used, since the amount of non-IR light entering the
camera is minimal.

• Reflective material around the camera (eg. flatcables) was
shielded as much as possible, as these seem to contribute
to scattering in the finger.
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• The zoom of the camera lens was manually adjusted such
that veins appear in focus.

A major drawback of the previous software implementation
is that exposure settings were set automatically by the camera:
increasing the intensity of the LEDs did not cause an increase
in image brightness, as the camera compensated for the
increased light by lowering its exposure. As acquiring images
from Matlab using the Raspberry Pi Camera Board module
does not allow low-level manual control of camera settings like
ISO and shutter, the illumination control and image acquisition
parts of the code were re-written in Python to run on the
Raspberry Pi itself in order to be able to fix the camera
exposure.

For camera settings, we minimize noise by fixing the ISO
to the minimum setting, and finding the highest shutter speed
for which the image brightness is satisfactory in high light
conditions.

The result of these improvements is shown in the bottom
image of Figure 2. Although contrast between veins and
surrounding tissue is still quite low, vein details are much more
visible with the new setup. Blurring of veins due to scattering
is reduced, and homogeneity is increased, especially in the
joint areas.

Fig. 2: Acquired vein images of the same finger using the old
setup (top) and the improved setup (bottom)

B. Illumination control for multi-exposure image acquisition

In a finger vein scanner setup, we have direct control over
the amount of light that the camera is exposed to. Exposure
bracketing can be done by adjusting the intensity of the IR
LEDs, thus allowing the shutter speed to be fixed. This avoids
the problem of motion blur caused by lowering the shutter
speed.

A suitable illumination pattern for the LED strip is deter-
mined based on typical joint locations of each finger. Infrared
light passes through joints much more easily than muscle, and
the base of the finger is much thicker than the tip. Thus, to
obtain homogeneous brightness along the finger, LEDs placed
above joints and at the tip of the finger are kept dim relative to
LEDs at the base or between the phalangeal joints. To illustrate
this, the illumination pattern used for the index finger is shown
in Figure 3.

Fig. 3: Relative LED intensities used for the index finger. Each
LED is represented as a cell in the row.

The intensity of the LEDs is set to the minimum at start-up,
and is increased by a scalar value between each capture, until
the maximum possible intensity has been reached. Images are
taken in rapid succession to avoid finger displacement between
images which would introduce blur when super-imposing them
in the HDR reconstruction.

A resulting set of images is shown in Figure . As can be
seen in the corresponding histogram (Figure 5), the acquired
images cover the full 8-bit dynamic range, with no saturation.

Fig. 4: Multi-exposure sequence of finger vein images. Note:
Only 5 of the 21 images in the sequences are shown for the
sake of conciseness.

Fig. 5: Histogram of multi-exposure sequence. Each image in
the sequence is shown in a difference color.

C. Normalization

Edges on each side of the finger are detected using Lee’s
method, implemented by Bram Ton[8]. From this finger
outline, the orientation of the finger is estimated by fitting
a line through the middle of the finger’s extremities. Any
deviation from a horizontal orientation is corrected with an
affine transformation.[9] This process is shown in Figure 6.
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Fig. 6: Finger edge detection and affine transformation for
normalization.

The image is then cropped down and scaled to a preset
ROI of 106x361 pixels, such that it contains no background
or finger edges. Without this step, finger edges or elements
around the finger could be detected as veins and skew vein
matching results.

D. Methods for HDR reconstruction

The main question here is how should the input images be
weighed in order to maximize the amount of vein detail in the
output image?

1) Basic HDR implementation with scalar weights: A very
simple HDR implementation consists of weighing each input
image with a single scalar value, with the weighting factor
being the inverse exposure level. Here we estimate the expo-
sure value by computing the mean gray value of the image.
The image is also weighted with a box function, such that if
an image’s mean value lies outside the box’s range, indicating
under- or over-exposure, it is simply discarded from the HDR
reconstruction. The result is seen in Figure 8.

This method is limited, since the brightness and level of
vein detail often depends on the location on the finger: some
portions of the finger may be poorly illuminated while others
may feature high levels of vein detail. Thus, a better implemen-
tation consists of assigning location-dependent weights instead
of a single global weight per image.

2) HDR reconstruction using moving mean filtering for
background illumination suppression: Instead of using a single
global exposure value per image, the exposure is computed
locally by estimating the background illumination of the finger
vein image. The background illumination pattern of can be
estimated by low-pass filtering it; this essentially produces a
matrix of ’local exposures’.

For smoothing the image, a moving mean filter is chosen.
Mean filters are very sensitive to outliers, which is desirable
in this case since we do not want veins (outliers) to appear
in the background illumination estimation. Mean filters also
have the advantage of being fast to compute (as opposed to
Gaussian filters, for instance).

To avoid boundary effects around the edges of the image, the
moving mean filter is applied on the original acquired image
rather than the cropped version. The resulting filter image is
then cropped to match the size of the cropped version. This
way, boundary effects are simply cropped out.

For the HDR reconstruction, each LDR image in the input
sequence is divided by the filtered version of itself. This
suppresses low-frequency variations in intensity over the im-
age, resulting in a homogeneous background. The effect of
different moving mean window sizes can be seen in Figure 7.
The smaller the window, the flatter the background but if the

Fig. 7: Tone-mapped output of HDR reconstruction with mean
filtering for different mean filter windows. From top to bottom:
[2 2], [5 5], [7 7], [10 10], [10 2]

Fig. 8: Tone-mapped output of HDR reconstruction with 15
images used as input. Top: linear tone-mapping. Bottom:
Matlab tonemap function

window size is chosen smaller than the minimum vein width,
small veins are suppressed. As seen in the bottom image,
using a non-square window gives a textured ”ridge and valley”
effect. Based on measured vein widths, a window of [7 7] is
chosen.

E. Tone-mapping

In the context of vein recognition, tone-mapping bears little
relevance as vein extraction is executed on the HDR image
itself. However, tone-mapping is required for visual assess-
ment of the HDR reconstruction. Linear tone-mapping gives
a better representation of what the vein extraction algorithm
”sees”. However, as seen in Figure 8 (top image), it produces
images that look very flat and in which vein details are barely
visible. Thus, for display purposes in this paper, the Matlab
tonemap function is used, which uses a non-linear contrast-
enhancing technique (bottom image).
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IV. EXPERIMENTAL SETUP

Fig. 9: Block diagram illustrating the first two experiments

A. Image quality evaluation

Objectives: The goal of this experiment is to compare the
quality of

• images taken with the old setup vs. the improved setup
• HDR reconstructions with that of a single LDR image

taken with the improved setup
Method: The image quality is evaluated in two ways:
• visually, that is, by displaying the image and observing

characteristics of the image such as vein contrast, blur,
noise or homogeneity

• using qualitative metrics which have been outlined in
section II.B. Details on how each metric was computed
are given in Appendix B

Data: A finger vein image is taken with the old setup and
old adaptive illumination algorithm. Using the improved setup
and method outlined in III-B, a multi-exposure sequence of
images, is required, and two HDR reconstructions are made
(one for each method). From the input sequence, a single
image is chosen to be the reference LDR; we (subjectively)
choose the ”best” one in the sequence ie. the one with the
most visible vein detail.

Presentation of results: Resulting images are displayed
side-by-side for visual comparison. For displaying the HDR
images, non-linear tone-mapping is used. Qualitative metrics
are displayed in a table, with the maximum values for each row
in bold for readability. Histograms are also plotted for each
image for better insight into how pixels are distributed; this
is especially useful for HDR images as only a tone-mapped
version can be displayed.

Results of this experiment are shown in Table I and Figure
10.

B. Accuracy of vein extraction

Objectives: High image quality alone may not necessar-
ily lead to high recognition performance. In order to draw
conclusions about whether the proposed HDR algorithm is a
promising method, a separate experiment must be conducted
to evaluate whether this method leads to a higher level of
detail being detected, and to a higher vein matching accuracy
compared to the use of a single LDR image.

Method: For this experiment, two different vein recognition
algorithms are used: Maximum Curvature and Repeated Line
Tracking. A Matlab implementation was developed by Bram
Ton[11], based on the work of Miura[6] [7]. Parameters for
the recognition algorithm are chosen based on the observed
width of the veins in pixels. The number of iterations used for
RLT is kept quite low (1000) to limit computation time.

Data: The same images as in the first experiment are used.
Presentation of results: Resulting binary vein patterns are

displayed side-by-side for visual comparison.
Prediction: We expect that a higher level of detail will be

detected in HDR reconstructions than in the LDR reference
image, since background illumination has been suppressed and
since the reconstructions contain vein information from many
different images.

Results of this experiment are shown in Figure 11.

C. Matching performance

Objectives: The performance of a finger vein identification
device is ultimately determined by how accurately the system
can identify whether two vein patterns belong to the same
finger. The goal of this experiment is to take a first step in
evaluating how well the proposed HDR reconstruction meth-
ods translate to improved matching performance, compared to
using only the best LDR image in the sequence.

Data & Method: Four different fingers are used for this
experiment (the index and middle finger on each hand of
the same person). Each finger is scanned on three different
occasions: the finger is removed from the scanner, and placed
again between each measurement, to ensure some dissimilarity
between captures of the same finger. In each measurement, a
multi-exposure sequence is captured in quick succession, as
outlined in section III-B. Similarly to the previous experiment,
from this sequence, two HDR reconstructions are made (ba-
sic HDR reconstruction & HDR reconstruction with moving
mean), and the best LDR image in the sequence is selected
for comparison. Binary vein patterns are extracted using both
MC and RLT. Each possible pair of images is given a matching
score, using normalized 2D cross-correlation (implemented by
Bram Ton). Since each finger was scanned on 3 (separate)
occasions, each pattern has 2 expected matches and 9 expected
mismatches in the full dataset.

Presentation of results: For each group (LDR, basic HDR
reconstruction & HDR reconstruction with moving mean)
and for each recognition algorithm (Maximum Curvature,
Repeated Line Tracking), matching scores are plotted in a
histogram. Histograms are color-coded: separate colors are
used for expected matches (patterns from the same finger) and
expected mismatches (patterns from different fingers). Overlap
between the two colors would indicate a false positive or
negative. Matching scores between the RLT and MC pattern
for each finger vein image are also computed to give an
indication of how accurately veins can be extracted for each
method.

Results of this experiment are shown in Figure 12.
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V. RESULTS

Global metrics Textural metrics

Standard dev. Entropy Local contrast Homogeneity Energy Correlation

LDR - Old setup 13.7737 6.9336 5.1560 0.5935 0.0119 0.9992
LDR - Improved setup 10.8490 6.1205 5.7198 0.7070 0.0178 0.9989

HDR basic 12.0861 7.2226 2.3098 0.6236 0.0017 0.9995
HDR moving mean [5 5] 0.0132 4.5080 15.5661 0.8057 0.0006 0.9956

TABLE I: Image quality metrics for different LDR and HDR images. Maximum values in each column are shown in bold.

(a) LDR image from old setup (b) LDR image from improved
setup

(c) Basic HDR reconstruction (d) HDR reconstruction with
moving mean

Fig. 10: Histograms of the four vein images shown in Figure 11. Note that the scale of the x-axis for image (d) was greatly
reduced for readability.

(a) LDR image from old setup
(different finger)

(b) LDR images from im-
proved setup

(c) Basic HDR reconstruction (d) HDR reconstruction with
moving mean

Fig. 11: Vein image (top), Maximum Curvature (middle) sigma = 3, Repeated Line Tracking (bottom), r = 1 W = 13

(a) LDR images from improved setup (b) Basic HDR reconstruction (c) HDR reconstruction with moving mean

Fig. 12: Histogram of matching scores in vein matching experiment. Vein patterns from different fingers are shown in red,
vein patterns from the same finger are shown in blue.
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VI. DISCUSSION

A. Vein image quality and vein extraction

The result of merging a multi-exposure sequence of LDR
images into a single HDR images can be seen in Figure 10
(c): the original intensity range in (b) appears much ”fuller” in
(c), and slightly wider, as information from other LDR images
has been added. As expected, the image produced with the
basic HDR reconstruction method has the highest entropy, as it
contains information from all (properly exposed) LDR images
in the input sequence. The moving mean HDR method yields
the lowest entropy, as low-frequency information along the
finger has been removed to obtain a homogeneous background.

When comparing extracted vein patterns in Figure 11, the
level of vein detail and clarity both using Maximum Curvature
and Repeated Line Tracking, increases from left to right,
with the moving mean HDR method showing the best results,
especially around the base and tip of the finger. This is
reflected by textural quality metrics: both the homogeneity
and local contrast are highest for this method, which yields a
”cleaner” vein cross-sectional profile - the profile is globally
flat (homogeneity) with sharp dips when a vein is crossed
(local contrast). Vein extraction accuracy is also reflected in
the bottom graphs (in green) of Figure 12: matching scores
between MC and RLT patterns are highest in (c), confirming
that veins are detected most reliably with this HDR method.

It is interesting to note that standard deviation (which we
perceive as global contrast) does not appear to be a good
predictor of finger vein image quality: the image taken with the
old setup shows the worst results in terms of vein extraction
((a) in 12) despite having the highest standard deviation (I),
while the intensity of image (d) is concentrated around a
very small portion of the intensity range, yet vein details are
detected much more accurately. This suggests that whether
vein detail can be distinguished by the naked eye bears little
importance for vein recognition, as long as the vein detail is
present in the image.

B. Vein matching

In the vein experiment shown in 12, patterns from different
fingers (in red) are successfully contained within a small
range. The highest matching scores are obtained with the
method in (c). For HDR images, the distance between the
mean acceptance and rejection rates is higher than for LDR
images, indicating higher matching accuracy. With Maximum
Curvature: no significant difference is observed between the
two HDR methods, and with Repeated Line Tracking, method
(b) seems to perform slightly better, despite method (c)
showing better vein detection performance in 11. A possible
explanation is that detecting fine vein details is not necessarily
beneficial in terms of matching, unless these details can be
consistently captured across acquisition sessions. To test this,
RLT and MC parameters could be adjusted such that only the
major vein features are extracted.

We also observed that matching pairs (shown in blue in
Figure 12) with the lowest matching scores have noticeable
differences in orientation. This suggests that improved nor-
malization (which would correct finger angle differences more

accurately) and/or using a matching algorithm that is sensitive
to rotational differences would improve the acceptance rate of
matching vein patterns. Currently, 2D cross-correlation is used
as a vein matching algorithm, which is very basic and only
accounts for translative offsets. For normalization, parameters
should be adjusted (as can be seen in Figure 6, the finger
outline is not perfectly detected) or alternative methods should
be explored.

Finger images analyzed in this paper were all from the same
person; robustness of the proposed HDR reconstructions to
variations in finger thickness, finger size was not investigated.
Furthermore, due to the very small sample size of the vein
matching experiment, no general claims can be made about
the matching accuracy. Thorough and reliable evaluation of
vein recognition accuracy requires a much larger sample size.
As no available vein image database contains multi-exposure
sequences (which are necessary for HDR reconstruction), a
new database should be constructed.

VII. CONCLUSION

Some limitations of the existing image acquisition imple-
mentation were first identified, and several adjustments were
made, both in hardware and in software, in order to acquire
higher quality input images. Results show that these changes
have starkly improved the homogeneity and level of detected
vein detail in acquired images.

Multi-exposure image sets were then acquired by adjusting
both the intensity and pattern of the illumination. In order
to combine a multi-exposure sequence into a single image,
a novel method was developed, which uses a mean filter as
a weighting factor in the HDR reconstruction to emphasize
vein details while homogenizing surrounding tissue in the
background.

A first step in the direction of testing recognition perfor-
mance was made, by visually evaluating the accuracy of ex-
tracted vein patterns, and by computing vein matching scores
between different datasets. Results suggest that HDR imaging
is a promising technique for finger vein image identification.

VIII. RECOMMENDATIONS

The quality of a HDR reconstruction is ultimately limited
by the quality of the LDR images used as inputs. Thus, a sig-
nificant portion of this project was spent trying to improve the
quality of acquired images by adjusting the finger vein scanner
setup and the camera settings. However, this was mostly done
via trial-and-error, and subjective/visual evaluation of image
quality. A more extensive and systematic analysis of how
these parameters affect image quality is necessary to find
the optimal configuration. Some questions to explore further
include: is an IR filter necessary at all? If so, where should it
be positioned in relation to the camera and finger? What is the
effect of ambient light and different housing materials/surfaces
on finger images?

Ideally, movement of the finger on the scanner should be
more limited, to avoid significant variations in displacement
or rotation between acquired image datasets. This could be
achieved by narrowing the scanner area, and deepening the
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notch at the base and edge of the finger to limit finger rolling.
Another option would be to implement a feedback mechanism
which measures the finger position/orientation and prompts the
user to adjust it.

The optimal image resolution for image acquisition and vein
recognition should also be investigated: high resolutions allow
for higher level of detail but greatly increase computation time.

As far as HDR reconstruction is concerned, it would be
interesting to investigate the optimal number of input images
and illumination algorithm for image acquisition. The illu-
mination algorithm used for this paper was quite basic and
manually tailored to each new finger. The next logical step is
to develop an adaptive illumination algorithm which requires
no manual intervention. Furthermore, the software implemen-
tation is currently divided between the Raspberry Pi and an
external computer; a fully embedded Python implementation,
which builds upon the existing Python illumination control &
image acquisition code would be ideal.
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APPENDIX

A. Source code

All the source code used & developed for this project can
be found at https://github.com/glhr/HDR-Finger-vein.

B. Calculation of quality metrics

Since these metrics are sensitive to noise, which would skew
results, we first filter the input image with a Gaussian filter
with a very small standard deviation such that vein features
are conserved.

For the formulas below, we use the definitions specified in
[14].

We take I(x, y) to be pixel intensity at position (x, y), and
X and Y to be the width and height of the image.

1) Statistical metrics:

Mean gray value µ:

µ =
1

XY

X∑
x=1

Y∑
y=1

I(x, y)

Variance σ2 & standard deviation σ:

σ2 =
1

XY

X∑
x=1

Y∑
y=1

(I(x, y)− µ)2

Dynamic range:
max I(x, y)

min I(x, y)

We take k to be the pixel intensity, ranging from 1 to K,
with p(k) the probability that intensity k occurs.

Entropy:

Z =

K∑
k=1

p(k) log2 p(k)

2) Co-occurence based metrics:

These are described in [13] and computed using Matlab’s
graycoprops function.

C. Camera settings

See Table II.

D. Finger vein scanner

See Figure 13.

E. Graphical tool

A graphical tool was developed in Matlab for comparing the
image quality and extracted vein pattern of two vein images.
Images can be cropped using sliders. The image quality met-
rics described in this paper are automatically computed when
loading an image, and displayed in a table. The maximum
value in each row is shown in red for readability. Parameters
for Maximum Curvature and Repeated Line Tracking can also
be adjusted.

Previous setup Proposed setup
Resolution 1920x1080 800x600
Brightness 52 50
Contrast 90 0
Sharpness 0 0
Saturation 0 -100

Exposure mode night
off

(fixed by ISO
& shutter time)

Shutter speed N/A maximum
ISO N/A 100 (minimum)
Metering mode average N/A
AWB mode auto auto

TABLE II: Comparison of camera settings used in the previous
and new implementation

Fig. 13: Image taken by the finger vein scanner with 4 LEDs
on, and the IR filter present.

Fig. 14: Screenshot of the graphical tool


