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Preface

This master thesis finishes my master Applied Mathematics at the University
of Twente. In September I started my internship at DAT.Mobility, which is
part of the Goudappel Groep. Goudappel Groep gives advises on all kinds of
mobility problems and within DAT.Mobility all expertise on the area of big data,
model methodology, geographic information systems and software development
is brought together. My assignment was to study the matrix estimation problem
for the assignment model STAQ. And although this problem is only a small
subproblem within a big system of models which work together to forecast traffic
flows on a network, I like the idea that this research attributes to practice.

An important part of my internship was to develop an understanding for the
given problem and the related models. Herein I have learned a lot from my
supervisors at DAT.Mobility, Luuk Brederode and Luc Wismans. They provided
me with the right literature and models and were always willing to answer my
questions. By reading papers and testing different hypotheses on small test
networks in Excel and Matlab, I obtained knowledge and feeling for the given
problem, which resulted in many ideas and conclusions. But there was a lot
more to investigate. Therefore I decided to continue with this subject as my
final master project. I am happy with this decision because during the past
months I have been able to analyse and answer many of the open questions
there were at the end of my internship. The weekly discussions with Georg Still
have attributed a lot to these results. He was always helpful and critical on my
work. Although the matrix estimation method for STAQ is still in development,
I am proud of what I reached. Luuk Brederode will continue working on the
developed matrix estimation method and I hope he will keep me informed.

Past year I have learned a lot and therefore I would like to thank in the first
place Georg Still, Luuk Brederode and Luc Wismans. They have shown me how
to look at the matrix estimation problem for STAQ from both a mathematical
and a traffic engineering point of view. Where I started reading the paper about
matrix estimation for STAQ having questions at almost every sentence, I am
now able to give feedback on the new version of this paper. This has been a
valuable experience. Also I would like to thank Marc Uetz and Jan-Kees van
Ommeren for reading my final work.
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Abstract

This research focuses on the matrix estimation problem for the assignment
model STAQ. In the matrix estimation process, additional road information
is used to refine the OD-matrices which are estimated in the first three steps
of the four step model. The chosen assignment model, in this case STAQ,
is needed in this matrix estimation process. As such, the matrix estimation
problem is typically expressed as a bi-level optimization problem. Because bi-
level problems are known to be NP-hard, in practice heuristic methods are used
to search for solutions. Conventional matrix estimation methods as developed for
traditional static traffic assignment models are not directly suitable for STAQ.
The approximations of the link flows as considered in these heuristic methods
cannot cope with capacity constraints. Therefore Brederode et al. [5] propose a
matrix estimation method for STAQ, in which the link flows are approximated
using a first order Taylor approximation. In this study it has been shown that
the current approach to determine the sensitivities of the assignment matrix
to changes in the OD-demands, which are required in the first order Taylor
approximation of the link flows, can lead to significant errors. It should be
investigated on large scale networks how big those errors are. It might be
needed to adapt the way of approximating the link flows or to choose a different
heuristic approach. Furthermore from the characteristics of the simplified upper
level optimization problem as considered within the proposed matrix estimation
method it has been concluded that this optimization problem can be solved best
using the quadprog solver in Matlab. However also the currently implemented
fmincon interior point algorithm is suitable.
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Notation List

N set of nodes
R ⊆ N set of origins
S ⊆ N set of destinations
RS |R× S| set of OD-pairs
P set of paths

P̃ ⊆ P set of paths with travel time measurements
A set of directed links

Ã ⊆ A set of directed links with count measurements
I ⊆ A set of inlinks
J ⊆ A set of outlinks
IJ set of turns
D vector of OD-demands
Q |P | vector of path demands
T |IJ | vector of turn demands
Y |A| vector of link demands
y |A| vector of link flows

ỹ |Ã| vector of observed link flows
t |IJ | vector of turn flows
τ |P | vector of path queueing delays

τ̃ |P̃ | vector of observed path queueing delays
α |IJ | vector of turn based reduction factors
D |R× S| OD-matrix

A |Ã| × |R× S| assignment matrix

B |Ã| × |P | crossing fraction matrix
P |P | × |R× S| route fraction matrix
Drs ∈ D demand from origin r to destination s
Qp ∈ Q demand on path p
Tij ∈ T turn demand from inlink i to outlink j
Ya ∈ Y demand on link a
ya ∈ y flow on link a
ỹa ∈ ỹ observed flow on link a
tij ∈ t flow from inlink i to outlink j
τp ∈ τ average path queueing delay
τ̃p ∈ τ̃ observed average path queueing delay
αij ∈ α reduction factor on turn ij
Arsa ∈ A fraction of demand from OD-pair rs that flows over link a
α̂pa ∈ B reduction factor on path p till link a
ψrsp ∈ P fraction of OD-demand rs on path p
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Chapter 1

Background information

Mobility plays an important role in modern life. To improve and schedule traffic
and transportation, models are used to forecast traffic flows on networks. The
goal of this master thesis is to mathematically describe and solve a subproblem
within a certain traffic model. More specific: I studied the matrix estimation
problem for the four step traffic model with assignment model STAQ. This
chapter provides the required background information about the four step model,
the matrix estimation problem and the assignment model STAQ. In the next
chapter the exact research question of this master thesis is introduced.

1.1 Four step model

The four step model is the most commonly used traffic and transportation model
to forecast traffic flows on networks. In this model the network of the studied
area is represented in the form of a directed graph (N,A), where N are the nodes
which represent the junctions in the network and A are the links which represent
the roads in the network. The studied area is divided in several zones for which
characteristic socio-economic data is available. All these zones are connected to
the network via centroids, which are one or more nodes in the centre of the zone.
Trips in the network always start and end at these centroids. Commencing with
this directed graph and the available socio-economic data, the four step model
estimates trips per transport mode and the use of the network in terms of flows
per link. The model consists of the following steps [9] [13]:

1. Trip generation In the first step, based on the available socio-economic
data, the number of people arriving in and departing from each zone
are determined. After this step it is clear how many trips originate and
terminate at each centroid, but the origin and destination of specific trips
are not yet connected.

2. Trip distribution In the second step the number of trips between each
origin and destination pair (OD-pair) is determined. This number is called
the trip demand of the OD-pair. The gravity model1 is a frequently used
method to obtain these trip demands. The trip demands of all OD-pairs

1For more information about the gravity model see [20].

7



are represented in a matrix, this matrix is called the origin-destination
matrix (OD-matrix). So the OD-matrix describes the number of trips
from every centroid in the studied network to every other centroid in the
network.

3. Modal split In the third step for each OD-pair it is decided how the
trips are divided over different transport modes. Examples of transport
modes are car, public transport and bicycle. After this step the number
of trips between all OD-pairs are known per mode (there is determined
an OD-matrix per mode), but it is not known which route on the network
each trip will take. In practice step 2 and step 3 are often combined.

4. Assignment Finally in the fourth step the trip demands of all OD-
pairs are distributed along the network. So for each trip it is determined
which route in the network it will take. There is a wide variety of models
developed to deal with this assignment problem, these models are called
assignment models. When all traffic demand is assigned to the network,
values for the flows and speeds on the links can be deduced.

So following these four steps, the four step model finds a forecast of the traffic
flows on a network. In practice a feedback loop is performed within the four
step model. This is needed because the gravity model used in step two requires
the travel time between each OD-pair as an important aspect of the generalized
costs2 between OD-pairs, but there are no travel times other then free-flow travel
times known before the fourth step.

1.2 Assignment models

As described, there is a wide variety of assignment models available. Within this
study the assignment model STAQ is used (studied), which stands for Static
Traffic Assignment with Queueing. The assignment model STAQ is explained
in section 1.4. In this section first a general introduction to assignment models
is given, such that the matrix estimation problem and the assignment model
STAQ can be explained and placed within this context.

Traffic assignment models describe the interaction between road travel demand
and road infrastructure supply. Given the travel demand on a network, assign-
ment models describe how this travel demand is distributed along the network.
All assignment models consist (implicitly or explicitly) of a route choice submodel
and a network loading submodel. The route choice submodel determines path
flows, based on travel demands and travel times. The network loading submodel
propagates path flows through the network and yields travel times. This is
shown in figure 1.1. Bliemer et al. have introduced a theoretical framework
for the classification of traffic assignment models. Their classification is shortly
discussed in this section, because it gives insight in the different assignment
models available. In this theoretical framework assignment models are classified
on their spatial, temporal and behavioural assumptions. In the remainder of
this section the different model types within these three model classes are briefly

2For simplicity in the rest of this report the generalized costs are considered to consist of
travel times only.
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Figure 1.1: Interaction between travel demand and infrastructure supply [2].

explained. For more details the reader is referred to their article “Genetics of
traffic assignment for strategic transport planning” [2].

1.2.1 Route choice submodel

Within the theoretical framework the behavioural assumptions describe the route
choice submodel. The route choice submodel determines path flows based on
given travel demands and considered travel times. To describe the route choice
submodel, the behavioural assumptions define how the considered travel times
are determined, and how the travellers are assumed to choose their routes. As a
result of the behavioural assumptions, the theoretical framework distinguishes
between three model types:

1. Equilibrium models In an equilibrium model an equilibrium flow is
sought for in which no traveller can unilaterally change routes to improve
his or her travel time. Congested travel times are considered by iterating
between the route choice submodel and the network loading model. The
routes can be chosen in a deterministic or stochastic way.

2. One-shot models In an one-shot model a single network loading is
performed to determine the travel times on the routes. The routes are
usually chosen using a logit-model (stochastic route choice).

3. All-or-nothing models In an all-or-nothing model typically free-flow
travel times are used. The routes are chosen such that all travellers follow
the fastest route (deterministic route choice). An all-or-nothing model is a
special case of a one-shot model.

The three model types are given in a decreasing order of capability. Capability
can be explained in terms of realism and complexity. The more capable a model
type is, the more realistic this model is, but this makes the model also more
complex. It can be seen that the equilibrium models are the most capable
models. The assignment model used in this study (STAQ) can be applied as an
equilibrium model. Therefore equilibrium models are explained in more detail in
the remainder of this subsection. However STAQ can also be used as an one-shot
or an all-or-nothing model [4].
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In an equilibrium model congested travel times are considered. The difficulty
of considering congested travel times is that these travel times are not fixed.
The level of congestion and hence the travel time on a route is depending on
the route choice, and the route choice is on its turn depending on the amount
of congestion on each possible route. Because of this interaction between route
choice and travel times, equilibrium models iterate between the route choice
submodel and the network loading submodel to account for congested travel
times. The route choice submodel calculates path flows which are used by the
network loading model to update the travel times. Then these updated travel
times are used by the route choice submodel to calculate new path flows (etc.).
Note that in one-shot models and all-or-nothing models the travel times are
considered to be fixed. Hence these models do not iterate between the route
choice submodel and the network loading submodel, and thereby these models
do not consider congested travel times.

The route choice in an equilibrium model can be determined in a stochastic way,
like in an one-shot model, or in an deterministic way, like in an all-or-nothing
model. Hence one-shot models and all-or-nothing models can be seen as a single
iteration of an equilibrium model. In an equilibrium model the route choice
tends to comply with Wardrop’s first principle:

“The journey times in all routes actually used are equal and less than
those which would be experienced by a single vehicle on any unused
route” [19].

So an equilibrium is sought for, in which no traveller can unilaterally change routes
to improve his or her travel time. Such an equilibrium is called a User Equilibrium
(UE). A feedback loop is performed between the route choice submodel and the
network loading model till this equilibrium state is reached. The travellers are
assumed to be non-cooperative, so they exhibit selfish behaviour. This is in
contrast to system optimal models, which minimize the total (or average) travel
time in the system and assume travellers to cooperate.

1.2.2 Network loading submodel

Within the theoretical framework the spatial assumptions describe the network
loading submodel. The network loading submodel loads the path flows on the
network and yields travel times. The spatial assumptions define if and how the
network loading submodel accounts for congestion (delays and queues). As a
result of the spatial assumptions there are four model types distinguished. They
are described below in a decreasing order of capability. The less capable model
types can be derived from the more capable model types by making simplifying
assumptions:

1. Capacity- and storage-constrained models In capacity- and storage-
constrained models, both the capacity of flow and the storage of queues on
road segments are constrained. These models can be applied to all possible
traffic conditions, including very heavy traffic when queues can grow longer
than the road length and spill back onto upstream road segments occurs.

10



2. Capacity-constrained models In capacity-constrained models, there
are no constraints on the storage of queues on road segments and as such
spillback does not occur. These models are suitable for light to heavy
traffic conditions in which short queues can form.

3. Capacity-restrained models In capacity-restrained models, flows can
also exceed the physical road capacity and, therefore, queues are not
described explicitly. These models are only suitable for light to medium
traffic conditions in which the flow does not exceed the capacity, but some
slight delays may occur due to increasing density.

4. Unrestrained models In unrestrained models, there are fixed (usually
free-flow) travel conditions and travel times. These models are only suitable
for light traffic conditions in which flow increases linearly with density,
indicating that vehicles drive at maximum speed.

Actually the more capable the model type, the better these models reflect the
theoretical relationship which exists between flow and density. This theoretical
relationship between the flow and density can be empirically observed from
traffic counts and can be described in a fundamental diagram (see figure 1.2).
Each point in this fundamental diagram represents a specific steady traffic state.
When the density is below the critical density, there is no congestion and no
queues appear. The corresponding branch of the fundamental diagram is called
the free-flow branch. Densities higher then the critical density are a result of
congestion and queues on the road. This branch in the fundamental diagram is
called the congested branch. All model types explicitly or implicitly3 assume a
fundamental diagram. In figure 1.3 for each model type an example of a funda-
mental diagram is shown. The fundamental diagram of the least capable model
type only reflects part A of the theoretical fundamental diagram in figure 1.2
correctly. The more capable the model type, the better it reflects the theoretical
fundamental diagram. The most capable model type is suitable for all given
traffic conditions and hence reflects all parts of the theoretical fundamental
diagram correctly (A, B, C and D).

Figure 1.2: Theoretical relationship between flow and density [2].

3For the unrestrained and capacity-restrained model types, in practice only a travel time
function is defined. This function describes the relation between flow and travel time.
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Figure 1.3: Fundamental diagrams [2].

While the fundamental diagram only shows flows (veh/h) and densities (veh/km),
the speed of a vehicle (km/h) can be determined using the fundamental relation-
ship that speed equals flow divided by density [2], or equivalently:

flow = speed · density (1.1)

So, given the flow and density, it is possible to determine the corresponding speed
and hence the corresponding travel time4 on a link. Note that for unrestrained
and capacity-restrained model types, given a link flow, the corresponding density
can be uniquely determined from the fundamental diagram. The travel times
are separable; They are only depending on the flow on the link itself. Whereas
for capacity- (and storage)-constrained model types, given a link flow, also the
corresponding density is needed to determine the speed and hence the travel time
on the link from the fundamental diagram5. The travel times are non-separable;
The travel time on a link depends on the level of congestion on the link, which
on its turn depends on the flows on all other links.

1.2.3 Temporal assumptions

Finally within the theoretical framework the temporal assumptions define if and
how a time dimension is considered within the assignment model. As a result of
the temporal assumptions the theoretical framework distinguishes between three
model types. They are described below in decreasing order of capability:

1. Dynamic models Dynamic models consider a time-varying travel demand
and generally (but not necessarily) multiple time periods for route choice.
Within each time period there exist smaller time steps for network loading.
In these models variations over time in path flows, link flows and travel
times are explicitly taken into account.

2. Semi-dynamic models Semi-dynamic models often consider only a
single step for network loading within each route choice period, but traffic
flows can be propagated between route choice periods. These models can
be seen as a sequence of static models, in which the result from a previous
period is taken into account in the next period.

3. Static models Static models consider a stationary travel demand and
only a single time period for the route choice and the network loading. It
is assumed that traffic outside this time period does not influence flows or

4The travel time on a link (h) equals the length of the link (km) divided by the speed
(km/h) on the link.

5See [11] for the relation between the flow-density, speed-density and speed-flow curves.
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Figure 1.4: Relation time periods and travel demand [2].

travel times in the considered period. Within the network loading step all
traffic reaches the destination. Static models result in an average image of
the traffic in the considered time interval.

In figure 1.4 it is shown how static, semi-dynamic and dynamic models represent
the travel demand. The more capable the model, the better it reflects the time-
varying travel demand (the red line). Note that this figure only visualizes the
differences between the model types in travel demand, other relevant differences
have been described above.

1.2.4 Classification

In the previous subsections the different model types within the three model
classes of the theoretical framework for the classification of traffic assignment
models are described. The behavioural and temporal assumptions distinguish
between three model types and the spatial assumptions distinguish between
four model types. Combining the three different model classes, 36 different
assignment model types can be described. This is shown in the framework in
figure 1.5. Note that not all model types distinguished in the framework exist
or can exist in practice. The goal of this framework is to make it possible to
classify and compare existing traffic assignment models.

The least capable model type according to this framework is a static unrestrained
all-or-nothing traffic assignment model. The most capable model type is a
dynamic capacity and storage-constrained equilibrium traffic assignment model.
Of course it seems best to build and always use the most capable model. But
it turns out that this model is not ideal in practice. The dynamic capacity
and storage-constrained equilibrium traffic assignment model is poorly scalable,
data intensive and it has even been proven that there does not always exist an
equilibrium for this model type [6]. Therefore, to support policy development
and planning in strategic applications on large scale congested networks, the
assignment model STAQ is developed [4]. STAQ circumvents problems with
scalability and data-intensiveness, because this model does not consider a time
dimension. The assignment model STAQ is a static capacity-constrained and6

capacity- and storage-constrained assignment model which can be applied as an
equilibrium model, and will be further introduced in section 1.4. First, in the
next section the matrix estimation problem introduced.

6The assignment model STAQ consists of two phases, see section 1.4.
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Figure 1.5: Framework classification traffic assignment models, edited from [2].

1.3 Matrix estimation problem

The matrix estimation problem for the assignment model STAQ is the central
subject of this master thesis. This section provides a general introduction to the
matrix estimation problem.

Matrix estimation is a process which aims to improve the results of the four
step traffic model by adding exogenous information. In the four step traffic
model, after step three, OD-matrices have been determined per mode. These
OD-matrices are determined by the behavioural models in the first three steps
of the four step model (see section 1.1). The behavioural models do not always
guarantee good results, because the socio-economic data (survey-data) used, only
describes the average mobility behaviour over an entire study area. To refine
the results of the four step traffic model, additional traffic measurements can
be used to improve the modelled OD-matrices. This process is called matrix
estimation. In figure 1.6 the position of the matrix estimation process within the
four step traffic model is visualized. The traffic measurements which are used for
this process can be of many types and sources, most frequently used are traffic
counts. Traffic counts register the traffic flow on a certain location in the network.

To improve a modelled OD-matrix using traffic counts, the modelled OD-matrix
should be adjusted such that it better fits to measured traffic flows. The
difficulty is that the adjusted OD-matrix cannot be directly compared with the
measured traffic flows. OD-matrices describe the traffic demand for each OD-
pair and the traffic flows caused by these OD-demands are only known after an
assignment is performed. In other words, there is no one-to-one correspondence
between OD-matrices and traffic counts. Therefore the assignment problem, in
which the demand of a given OD-matrix is distributed along the network, is
embedded within the matrix estimation problem7 [13]. Because of this embedded
assignment problem, the matrix estimation problem is typically expressed as a
bi-level optimization problem. In the upper level the modelled OD-matrix is
improved based on available traffic measurements, while in the lower level the

7So note that the chosen assignment model within the four step traffic model is not only
used in the fourth step, but also within the matrix estimation process.
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Figure 1.6: Matrix estimation within the four step model.

traffic assignment problem is solved. When traffic counts are the only traffic
measurements used, the matrix estimation problem is formulated as follows:

min
D

F (D) = αf1(D,D0) + (1− α)f2(y, ỹ)

s.t. y = Assign(D)

D ≥ 0

(1.2)

D vector/matrix of estimated OD-demands
D0 vector/matrix of prior (modelled) OD-demands
y vector of estimated link flows
ỹ vector of observed link flows
f1 distance function
f2 distance function
α ∈ [0, 1] weighting factor

Note that in the upper level of this bi-level optimization problem not only the
distances between the observed and estimated link flows, but also the distances
between the modelled (prior) and estimated OD-demands are minimized. This
term is included, to not deviate too much from the OD-matrix as estimated in
the first three steps. The distance functions f1 and f2 should be defined to make
the problem concrete. These distance functions can be of many forms, for an
overview the reader is referred to the master thesis of Smits [13]. Furthermore
the weighting factor α gives the decision maker the opportunity to express his or
her confidence in the prior matrix against the traffic counts. A smaller value of α
puts more weight on the counts-part (f2) of the objective function, while a larger
value of α puts more weight on the prior-part (f1) of the objective function.
There does not exist a standard way of setting the α-value. In practice the
weighting factor is calibrated through trial and error. Note that both objective
function parts have a different scale. The prior-part concerns all OD-pairs
while the counts-part concerns all observed links. Therefore a normalization
should be applied to allow the weighting factor α to give a meaningful interpreta-
tion, expressing the relative importance of both terms on a scale of zero to one [5].
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Figure 1.7: The assignment matrix.

In the lower level of the bi-level optimization problem, an assignment model
Assign(D) is embedded, which can be any of the available assignment models.
The assignment model distributes a given demand D along the network, which
results in flows y(D) on all links. According to Frederix et al. [8], for each
possible assignment model the relation between the given OD-demands and
the resulting link flows can be described by an assignment matrix A(D). This
assignment matrix can be further subdivided into a crossing fraction matrix and
a route fraction matrix:

y(D) = A(D)D,

= B(D)P (D)D.
(1.3)

D vector of OD-demands, |R× S|
y(D) vector of estimated link flows, |Ã|
A(D) assignment matrix, |Ã| × |R× S|
B(D) crossing fraction matrix, |Ã| × |P |
P (D) route fraction matrix, |P | × |R× S|
Ã set of links with count measurements
R set of origins
S set of destinations
P set of paths

The elements of the crossing fraction matrix B(D) express the proportion of a
route flow that passes a link, thereby these elements describe the spatial propa-
gation of the route flows through the network by the network loading submodel8.
The elements of the route fraction matrix P (D) express the proportion of an
OD-flow choosing a certain route, thereby these elements reflect the behavioural
assumptions of route choice submodel. Finally the temporal assumptions of the
assignment model are reflected in the dimensions of the assignment, crossing
fraction and route fraction matrices. If more time periods are considered, these
dimensions are correspondingly enlarged. It can be concluded that the assign-
ment matrix A(D) is depending on the chosen assignment model.

8When there are no capacity and storage constraints considered, the crossing fraction matrix
is fixed to the link-path incidence matrix.
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In figure 1.7 it is shown that for some assignment models the crossing fraction
matrix and the route fraction matrix are fixed matrices; They are not depending
on D. It is interesting to note that if both the route fraction and the crossing
fraction matrix are assumed to be fixed matrices, then the matrix estimation
problem can be reformulated to a single level problem. In this case the assign-
ment matrix is the same (and hence explicitly known) for all given D, so there
exists a linear relationship between the link flows and the OD-flows and as such
the vector of estimated link flows y can be formulated explicitly as a function of
the OD-demand D. Hence the given bi-level matrix estimation problem can be
reformulated as a single level problem. Such a reformulation to a single level
problem is possible for all assignment models for which the assignment matrix
A(D) is known explicitly. The assignment matrix of the assignment model STAQ
cannot be expressed explicitly as a function of the OD demands. Therefore the
matrix estimation problem for STAQ is (remains) a bi-level optimization problem.

1.4 STAQ

In this section the traffic assignment model STAQ is introduced. STAQ stands
for Static Traffic Assignment with Queueing. As the name already indicates,
STAQ can be seen as a static traffic assignment model. So the results of STAQ
give an average image of the traffic in the considered time interval. In the next
two subsections the route choice submodel and the network loading submodel of
the assignment model STAQ are described, following the paper of Brederode et
al [4]. Subsequently STAQ is placed within the theoretical framework for the
classification of traffic assignment models as described in subsection 1.2 and its
capability is discussed.

1.4.1 Route choice submodel

In figure 1.8 the modelling framework for the assignment model STAQ is shown.
When used as an equilibrium model, STAQ iterates between its route choice
submodel and its network loading submodel, such that congested travel times
are considered. The main characteristics of STAQ are derived from its network
loading model and as such its route choice submodel is interchangeable [4]. The
route choice submodel within STAQ as considered in this study, consists of three
components which interact to determine path flows from the given travel times:

• Route set generator The route set generator creates a set of routes
based upon a given transport network.

• Route choice model The route choice model uses generalized costs,
which are mainly based on the travel times calculated by the network
loading model, to compute route fractions for all route alternatives between
an OD-pair.

• Route demand calculator The route demand calculator computes
path demands (in the figure called route demands), based on the given
OD-demand and the calculated route fractions.
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Figure 1.8: STAQ modelling framework, edited from [4].

1.4.2 Network loading submodel

The network loading submodel within STAQ consists of four different components
which interact to propagate the given route demands through the network and
calculate the resulting travel times:

• Link model The link model describes for each link the relation between
flow and density in the form of a fundamental diagram. It determines from
the path demands as given from the route model in interaction with the
node model the corresponding link flows.

• Node model The node model seeks for a consistent solution in terms of
flows transferred over an intersection. It accounts for flow restrictions due
to merge and diverge interactions between flows. This model can transfer
the effect of capacity restrictions on downstream to upstream links and
the effect of demand changes on upstream to downstream links.

• Junction model The junction model accounts for the effect of limited
supply due to conflict points on a junction itself and the way the junction
is regulated. Furthermore it calculates travel time delays due to passing a
junction.

• Travel time calculator The travel time calculator derives travel times
from the output as calculated by the link model, node model and junction
model.

STAQ can be applied to congested networks in which queues can grow longer
than the road length and spillback to upstream road segments occurs. To deal
with congestion the network loading model considers two phases: a squeezing
phase and a queueing phase. The squeezing phase deals with the flow metering
effect of congestion, assuming capacity but no storage constraints and the queue-
ing phase deals with the spillback effect of congestion, assuming both capacity
and storage constraints. STAQ-squeezing can also be used as a stand-alone
network loading model, but STAQ-queueing needs the squeezing phase outcomes
for initialisation9.

9The queueing phase uses initial sending and receiving flows for every link as calculated by
the squeezing phase.
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Figure 1.9: Fundamental diagrams STAQ -squeezing (left) and -queueing (right)
[4].

Both phases of STAQ use the same node model and the same junction model,
but different link models. The link models differ by the form of their funda-
mental diagram. This is shown in figure 1.9. The free-flow branch (blue) of
both fundamental diagrams is identical. The fundamental diagrams differ in the
congested branch (red). The congested branch of the fundamental diagram for
STAQ-squeezing satisfies a maximum flow constraint. In this way the squeezing
phase takes into account flow metering: the flow on a link can never become
higher than the maximum flow of capacity of that link. However the maximum
density is not constrained. As a consequence in the squeezing phase vertical
queues are implied. All demand on a link that exceeds the maximum capacity
forms a vertical point queue on the upstream node of this link10. Hence the
squeezing phase detects the locations and the severity of active bottlenecks in the
network. Then the spillback effect of congestion is considered in the next phase,
the queueing phase. The fundamental diagram of STAQ-queueing constrains
both the flow and the density. Therefore the queueing phase accounts for both
the flow metering and the spillback effects. The fundamental diagrams in figure
1.9 are meant to show the difference between the squeezing and queueing phase,
they are not explicitly implemented in the models.

In practice the network loading model first considers the squeezing phase and
then the queueing phase. During the squeezing phase the STAQ algorithm
iterates11 between the network loading submodel (squeezing) and the route
choice submodel till an User Equilibrium is approximated. After this phase the
bottlenecks in the network are determined. Then, to determine the spillback and
secondary effects of these bottlenecks, in the queueing phase the STAQ algorithm
performs one iteration with the network loading submodel (queueing). Only one
iteration is performed, because in real world applications on heavily congested
networks it is not always possible to approximate an equilibrium to a level that
is sufficient for strategic transport model applications [6]. Although no time
dimension exists with respect to the in- and output of STAQ, the queueing phase
uses internally a time dimension to allow for the spatial interaction between all
different spillback and flow metering effects. Brederode et al. [4] describe that the
main reason to split the algorithm in two phases is to maintain scalability when
calculating spillback and secondary effects of bottlenecks. Additional reasons are
that the flow metering and spillback effects can be analysed separately and that
the squeezing phase compensates for the lack of a pre-study-period warm-up.

10Such an assignment model is called a residual queueing model.
11Note that this only holds when STAQ is used as an equilibrium assignment model, otherwise

no iterations are preformed and no User Equilibrium is approximated.
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Figure 1.10: Placement of STAQ within the framework, edited from [2].

1.4.3 Capability of STAQ

It can be concluded that STAQ is a static traffic assignment model and from
the fundamental diagrams in figure 1.9 it can be seen that STAQ is capacity-
constrained in the squeezing phase and capacity- and storage-constrained in the
queueing phase. Note that STAQ technically spoken is not static in the queueing
phase, but its input and output are both static of nature. The theoretical
framework in figure 1.10 shows that STAQ is a more capable assignment model
than the traditional static traffic equilibrium assignment (STA) models, which
assume separable monotonously increasing travel time functions and hence are
unrestrained or capacity-restrained models. Traditional STA models cannot
cope with capacity constraints, nor represent flow metering and queue formation,
while STAQ takes into account these physical effects of congestion. Therefore,
according to Brederode et al, STAQ is a viable alternative for traditional STA
models to support policy development and planning in strategic applications on
large scale congested networks [5]. STAQ combines the advantages of classical
static and typical12 dynamic assignment models; It is a computationally fast
and scalable model which takes into account the physical effects of congestion.
Note that in figure 1.10 the traditional STA model, STAQ and the typical DTA
model are indicated as equilibrium assignment models. While comparing these
three model types they are considered to be equilibrium models. However, they
can also be used as a one-shot or AON assignment models. The algorithms as
used within STAQ are explained in detail in chapter 3.

12Nowadays dynamic models are typically capacity- (and storage-) constrained model types.
But note that unconstrained and capacity-restrained dynamic models also exist.

20



Chapter 2

Introduction

In the previous chapter the matrix estimation problem and the assignment
model STAQ have been introduced. Recall that the assignment problem, and
hence the chosen assignment model, is embedded within the matrix estimation
problem. This research contributes to the development of a solution method for
the matrix estimation problem with the assignment model STAQ. Within this
chapter the goal of this research and the research question for this master thesis
are introduced and motivated. Besides, the corresponding solution approach and
the structure of this report are explained.

2.1 Research motivation

Matrix estimation methods for traditional static traffic assignment (STA) models
are studied extensively and are readily available [5]. Generally these assignment
models assume separable monotonously increasing travel time functions (see
subsection 1.2.2), and as such, using these models it is relatively easy to determine
how the prior OD-matrix should be adjusted to achieve similar modelled and
observed link flows. Contrary to traditional STA models, STAQ takes into
account capacity constraints and represents flow metering and queueing effects.
This results in a more realistic, but also more complex assignment model. The
implicitly considered travel time functions within STAQ are not separable any
more; The travel times on the links are not only depending on the flow on
the link itself, but also on the flows on all other links. This makes it more
complex to determine how the prior OD-matrix should be adjusted to achieve
similar modelled and observed link flows. Therefore, available matrix estimation
methods, which are developed for traditional STA models, are not directly
suitable for the assignment model STAQ. This research aims at developing a
suitable matrix estimation method for STAQ. Within this master thesis a specific
method for matrix estimation with STAQ is investigated. This proposed method
is developed by Brederode et al. [5]1 (it is still under development) and is based
on the conventional matrix estimation method for traditional STA models. The
conventional matrix estimation method for traditional STA models and the
proposed matrix estimation method for STAQ are discussed in the next two
subsections.

1Currently there is worked on a new version of this paper.
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2.1.1 Conventional matrix estimation method

Generally the matrix estimation problem is a bi-level optimization problem (see
section 1.3); In the upper level problem the distances between the prior and
estimated OD-matrix and between the observed and estimated link flows are
minimized. However, the estimated link flows corresponding to the estimated
OD-matrix, are (for most assignment models) only known explicitly after solving
the assignment problem for this OD-matrix, hence after solving the lower level
assignment problem. So the evaluation of the upper level objective function
requires solving the lower level optimization problem, whose functional form
is generally unknown. It is important to realize that bi-level problems are in-
trinsically hard to solve. They are neither differentiable anywhere nor convex.
This holds even when the objective functions of the upper level and lower level
and the constraints are all linear, because the objective function of the upper
level is decided by the solution function of the lower level problem and therefore
is neither linear nor differentiable [18]. Bi-level problems are even shown to
be NP-hard [1], which implies that they cannot be solved to optimality within
polynomial time. Therefore in practice, heuristic methods are used to search
for solutions which are not guaranteed to be optimal or perfect, but which are
sufficient for practical applications.

To solve the bi-level matrix estimation problem for traditional STA models,
conventionally a heuristic algorithm is used that iteratively assigns the OD-
vector from the upper level into the lower level and then solves the upper level
problem using the assignment matrix from the lower level to approximate the
relationship between the OD-flows and the link flows [8]. In figure 2.1 this solution
approach is shown. Recall from equation (1.3) in section 1.3 that the relationship
between the OD-flows and the link flows is determined by the assignment model
and is given by the assignment matrix A(D). Within the conventional solution
approach for traditional STA models, the relationship between the OD-flows and
the link flows in the upper level is approximated, using the assignment matrix
from the previous lower level (STA model) assignment:

y(D) ≈ A(Dk−1)D,

= BP (Dk−1)D.
(2.1)

y vector of estimated link flows
A(Dk−1) assignment matrix from previous lower level assignment
D vector of OD-demands
B crossing fraction matrix
P (Dk−1) route fraction matrix from previous lower level assignment

The assignment matrix of a traditional STA model consists of a fixed crossing
fraction matrix and a route fraction matrix which is depending on the OD-
matrix. Traditional STA models do not take into account capacity and storage
constraints and as such their crossing fraction matrix is equal to the (fixed) link
path incidence matrix. However variations in route choice are taken into account,
such that their route fraction matrix is depending on the OD-matrix2. So note

2See also figure 1.7 in section 1.3.
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Dk = arg min
D

[w1f1(D,D0) + w2f2(y(D), ỹ)]

where y(D) ≈ A(Dk−1)D
s.t. D ≥ 0

STA(Dk)

Dk
k = k + 1
A(Dk)

Figure 2.1: Conventional solution approach for traditional STA model.

that a linear relationship between the link flows and the OD-flows is assumed
in the upper level, whereas in reality this relationship is non-linear, because
actually the route fraction matrix of a traditional STA model is depending on
the OD-matrix D. But by performing iterations between the upper level problem
and the lower level problem, the heuristic algorithm finds solutions which are
sufficient enough for practice.

2.1.2 Proposed matrix estimation method

The conventional matrix estimation method for traditional STA models as
introduced in the previous subsection, is not directly suitable for the assignment
model STAQ. Contrary to traditional STA models, STAQ considers capacity and
storage constraints, hence it takes into account the physical effects of congestion.
As such, its crossing fraction matrix is not fixed, but is depending on the OD-
matrix. If the conventional matrix estimation method for traditional STA models
would be directly used for STAQ, the same linear relationship would be assumed:

y(D) ≈ A(Dk−1)D,

= B(Dk−1)P (Dk−1)D.
(2.2)

y(D) vector of estimated link flows
A(Dk−1) assignment matrix from previous lower level assignment
D vector of OD-demands
B(Dk−1) crossing fraction matrix from previous lower level assignment
P (Dk−1) route fraction matrix from previous lower level assignment

However, in reality there are two sources of non-linearity for STAQ. Considering
STAQ, not only the route fraction matrix, but also the crossing fraction matrix
is depending on the OD-flows. So the assignment matrix is even more depending
on the corresponding OD-matrix. Therefore, the approximation of the link flows
as given in equations (2.2), turns out to be not suitable for STAQ3; Considering
STAQ, performing iterations between the upper level and lower level using (2.2),
does not always lead to satisfying solutions.

3See example in subsection 4.2.3.
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This is why Brederode et al. [5] propose to approximate the relationship between
the OD-demands and the link flows for STAQ in a different way; They propose
a first order Taylor approximation4 around the previous OD-vector Dk−1:

y(Dk−1) = A(Dk−1)Dk−1,

y(D) ≈ A(Dk−1)Dk−1 +
δ
(
A(D)D

)
δD

∣∣∣
D=Dk−1

(D −Dk−1).
(2.3)

The main difference between the conventional approximation5 of the link flows
and the Taylor approximation as given in (2.3) is the second term in equation
(2.3) [8]. This term incorporates the sensitivity of the assignment matrix to
changes in the OD-demands; Hence using this approximation, the (first order)
response of the lower level problem is taken into account in the upper level
problem. This idea is adopted from Frederix et al. [8]. Frederix et al. describe
that (even for traditional STA models) using the approximation as in (2.3) is
theoretically more sound. Herein they refer to Yang [22] and Tavana [17], which
both discuss the importance of including the response of the lower level problem
when solving the upper level problem.

According to Yang [22] the conventional matrix estimation method for traditional
STA models solves the matrix estimation problem as if it were a Cournot Nash
game, while in reality it is a Stackelberg game. In a Cournot Nash game, the
upper level and lower level problem are treated in a parallel (symmetric) way.
Indeed this symmetry can be recognized in the conventional solution approach
for traditional STA models. Both in the upper level and in the lower level
optimization problem only the latest solution of the other sub problem is known.
In an iterative way there is sought for a mutually consistent solution. However
actually the matrix estimation problem is a bi-level optimization problem, and
as such in reality it has an asymmetric hierarchical structure. In the upper level
optimization problem not only the latest solution of the lower level, but also
the reaction of the lower level to a given upper level decision is known. Such
an asymmetric game is also known as a Stackelberg game [10]. So the matrix
estimation problem is a bi-level problem and hence a Stackelberg game, and
therefore the response of the lower level should be taken into account in the
upper level optimization problem.

Although Frederix et al. [8] describe that it is theoretically more sound to use a
first order Taylor approximation to approximate the link flows, they also describe
why this approximation is not preferred in practice; For most assignment models
the relationship between the OD-demands and the link flows is not explicitly
known (see section 1.3), so the sensitivity of the assignment matrix to changes
in the OD-demands cannot be exactly determined. It is possible to numerically
approximate this sensitivity using finite differences, but therefore it is needed to
perform a lower level assignment for each OD-pair in the network. In most practi-
cal situations this leads to computation times which are not feasible. Therefore in
practice many researchers use the conventional approximation of the link flows [8].

4This first order Taylor approximation is discussed in more detail in section 4.2.
5As given in (2.1) and (2.2) for respectively traditional STA models and STAQ.
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Dk = arg min
D

[w1f1(D,D0) + w2f2(y(D), ỹ)]

where y(D) ≈ A(Dk−1)Dk−1 +
δ
(
A(D)D

)
δD

∣∣∣
D=Dk−1

(D −Dk−1)

s.t. D ≥ 0

STAQ(Dk)

Dk

k = k + 1

A(Dk), δA(Dk)
δDk

Figure 2.2: Proposed solution approach for STAQ.

Brederode et al. [5] explain in their paper that the sensitivity of the assignment
matrix for STAQ can be easily determined without performing |RS| times a lower
level assignment, by using the node model within STAQ. As such they conclude
that the approximation of the link flows as given in (2.3) can be used efficiently
for STAQ. Hence for STAQ it is possible to take into account the response of
the lower level in the upper level optimization problem, while computation times
remain feasible. In figure 2.2 the solution approach for the matrix estimation
problem with STAQ as proposed by Brederode et al. [5] is shown. The exact
method they propose to determine the sensitivity of the assignment matrix to
changes in the OD-demands is explained in chapter 4.

2.2 Research question

The proposed matrix estimation method for STAQ as given in figure 2.2 is still
under development. Currently it is possible to find realistic solutions on small
test networks, if within STAQ only the squeezing phase is considered, fixed route
choice is assumed and no junction modelling is applied. This simplified variant of
STAQ is shown in figure 2.3. Of course finally it should be possible to solve the
matrix estimation problem with STAQ for both the squeezing and queueing phase,
using STAQ as an equilibrium model and applying junction modelling. To reach
this, the idea is to first add route choice, so use STAQ as an equilibrium model,
and then add junction modelling to the currently developed model. Finally not
only the squeezing but also the queueing phase should be considered in the future.

The developed matrix estimation model for STAQ squeezing with fixed route
choice and no junction modelling is implemented in Matlab. In the current model
the fmincon interior point algorithm is used to solve the upper level optimization
problem. However, it is not known if this solver is (most) suitable for the given
optimization problem. Therefore I was asked to find out whether fmincon of
some other solver should be used, to solve the given upper level minimization
problem. The corresponding research question is:

Which solver is (most) suitable for the upper level optimization
problem within the matrix estimation method for the assignment
model STAQ-squeezing as developed by Brederode et al. [5], assuming
fixed route choice and no junction modelling?
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Figure 2.3: STAQ with no junction modelling, edited from [4].

2.3 Solution approach

To answer the research question, the given (upper level) optimization problem
and the proposed solution method are mathematically formulated and analysed.
Based on the mathematical characteristics of both the problem and the solution
method a motivated choice for a suitable solver can be made. Analysing the
given problem and solution method also resulted in recommendations for the
further development of the matrix estimation method for STAQ.

The structure of this report is as follows; In chapter 3 the matrix estimation
problem for the assignment model STAQ-squeezing with fixed route choice and
no junction modelling is formulated. Subsequently in chapter 4 the developed
solution method for this problem is described. Chapter 5 further investigates the
characteristics of the given simplified upper level optimization problem. Finally
in chapter 6 conclusions are drawn and recommendations for further research are
given. Furthermore in this chapter the matrix estimation problem is discussed
from a mathematical and practical point of view.
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Chapter 3

Problem formulation

In section 1.3 the matrix estimation problem has been generally introduced and
formulated. In this chapter the studied matrix estimation problem for STAQ-
uesqueezing with fixed route choice and no junction modelling is described in
detail. Assumptions within the formulation of this problem are adopted from
the developed matrix estimation method for STAQ [5].

3.1 Upper level problem

The formulation of the matrix estimation problem as given in section 1.3, is the
conventional form of the matrix estimation problem. As mentioned before, this
formulation only accounts for count information, hence for observed link flows.
However, nowadays ever more types of (big) data are available to modellers. As
such, in the developed matrix estimation method for STAQ, it has been chosen
to also take the average travel times along paths into account. Furthermore,
the developed method assumes that there is information available to determine
for each link whether the link is in a free-flow traffic regime or in a congested
traffic regime. The matrix estimation problem considered in this study has the
following form:

min
D

F (D) = min
D

w1f1(D,D0) + w2f2(y, ỹ) + w3f3(τ, τ̃)

s.t. y, τ = Assign(D)

D ≥ 0

+links in right traffic regime

(3.1)

D vector of estimated OD-flows
D0 vector of prior OD-flows
y vector of estimated link flows
ỹ vector of observed link flows
τ vector of estimated path queueing delays
τ̃ vector of observed path queueing delays
fi i ∈ {1, 2, 3}, distance functions

wi i ∈ {1, 2, 3}, weighting factors;
∑3
i=1 wi = 1, w1 ≥ 0
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In the upper level of this bi-level optimization problem not only the distances
between the modelled (prior) and estimated OD-demands and the observed and
estimated link flows are minimized, but also the differences between the observed
and estimated path queueing delays. The average travel time on a path consists
of the free-flow travel time and the average queueing delay on that path. And
because the free-flow travel time on a path is fixed, only the path queueing
delays are considered in the objective function. Note that the average travel
time information is included in the objective function, while the traffic regime
information is included in the constraints. Section 3.3 explains why the traffic
regime information is needed to constrain the problem and formulates the traffic
regime constraints explicitly.

The distance function used in the developed matrix estimation method is the
squared L2-norm. According to Smits [13], the advantage of this norm is that it
does not rely on statistical assumptions. The distance functions in (3.1) get the
following form:

f1(D,D0) =
∑
rs∈RS

(Drs −D0
rs)

2
,

f2(y, ỹ) =
∑
a∈Ã

(ya − ỹa)2,

f3(τ, τ̃) =
∑
p∈P̃

(τp − τ̃p)2.

(3.2)

Drs demand from origin r to destination s
D0
rs apriori demand from origin r to destination s

ya estimated flow on link a
ỹa observed flow on link a
τp estimated queueing delay on path p
τ̃p observed queueing delay on path p
RS set of OD-pairs
A set of directed links

Ã ⊆ A set of links with count measurements
P set of all paths

P̃ ⊆ P set of all paths with travel time measurements

3.2 Lower level problem

In the lower level of the matrix estimation problem (3.1), the assignment model,
Assign(D), distributes a given demand D over the network which results in flows
on the links and implicitly in queueing delays (travel times) on the paths. In
this study the assignment model STAQ-squeezing with fixed route choice and
no junction modelling is considered. STAQ has been introduced in section 1.4
and is described in more detail in this section. The modelling framework of
the STAQ variant as considered within this study is shown in figure 3.1. The
junction model is drawn slightly blurred, to indicate this model is not considered.
Furthermore keep in mind that only the squeezing-phase is considered.
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Figure 3.1: STAQ modelling framework, edited from [4].

It can be seen that the route choice submodel determines the path demand (route
demand) given the network, the free-flow travel times and the OD-matrix D. The
network loading submodel then determines the link flows and travel times, given
the path demand from the route choice submodel. Note that normally STAQ
iterates between its network loading submodel and its route choice submodel till
convergence (see figure 1.8). Then a stochastic user equilibrium flow assignment
has been approximated [4]. But within this study fixed route fractions are
assumed, hence no iterations between the network loading model and the route
choice model are performed. So the simplified variant of STAQ as considered
within this study is not an equilibrium but a one shot assignment model.

3.2.1 Network loading submodel

In figure 3.1 it can be seen that within the network loading submodel of STAQ,
the node model, link model and junction model interact to determine junction
delays and link flows, given the path demand from the route choice submodel.
Because junction modelling is omitted in this study, in this study only the
node model and link model interact to determine the link flows. The travel
time calculator then determines the travel times corresponding to these link flows.

It is important to realize that traditional static traffic assignment (STA) models
do not need a complex network loading submodel to determine link flows and
travel times. In unrestrained and capacity restrained static assignment model
types it is assumed that link flows can exceed link capacities (see section 1.2.2).
Therefore, for these model types, the flow on a link simply equals the travel
demand on that link and the travel demand on a link can be easily calculated by
summing the path demands of the paths that use this link. From these link flows,
travel times can then be calculated using a travel time function. Travel time
functions can be easily defined, because for unrestrained and capacity restrained
model types the travel time on a link is only depending on the flow on the
link itself (see section 1.2.2). So it can be concluded that the network loading
submodel for traditional STA models is only formed by a link flow function and
a travel time function. In practice these functions are integrated within the
route choice submodel, such that one optimization problem is obtained. This is
shown in appendix A.1.
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It can be seen that the network loading submodel for the more capable assignment
model STAQ is much more complicated. Recall that STAQ is capacity restrained
in the squeezing phase and capacity and storage constrained in the queueing
phase. So in contrast to the classical static traffic assignment models, in both
these phases the flows on the links are constrained (see section 1.2.2); Link
flows cannot exceed the capacity of a link. Hence, within the network loading
submodel of STAQ, a consistent set of link flows has to be determined that
satisfies the given link capacities. This requirement on the link flows can be
expressed by a set of supply constraints [16] on the network loading submodel:

yj =
∑
i

tij ≤ Rj , ∀j ∈ J. (3.3)

yj flow on outlink j
tij turn flow from inlink i to outlink j
Rj available supply outlink j
I ⊆ A set of inlinks
J ⊆ A set of outlinks

These constraints describe that the inflow1 on an outlink can never exceed the
available supply of that link. This available supply on a link is defined by link
geometry and spillback from downstream supply constraints [4]. Because in this
study only the squeezing-phase is considered, spillback is not taken into account.
Therefore, in this study, the available supply on an outlink is only defined by
link geometry, hence by the capacity Cj of outlink j; So for STAQ-squeezing Rj
in (3.3) can be replaced by Cj .

When more inlinks are competing for the limited supply of an outlink, the node
model within the network loading submodel determines how this available supply
is divided over the competing turns. It calculates a set of reduction factors
which express on turning movement level the fraction of turn demand that can
fit trough a turn:

tij = αijTij , ∀ij ∈ IJ. (3.4)

tij turn flow from inlink i to outlink j
αij reduction factor on the turn from inlink i to outlink j
Tij turn demand from inlink i to outlink j
IJ set of turns

These reduction factors expresses the proportion between the amount of flow
that wants to flow trough a turn and the amount of flow that actually can flow
trough the turn. If not all flow demand can flow trough the turn, the reduction
factor on this turn is less then one and the blocked flow forms a point queue on
the upstream node of the corresponding outlink. So during the squeezing phase
it is assumed that more vehicles can flow into a link than may exit, because
there are no constraints on the storage of queues (see section 1.2.2).

1Flows can be defined on on link level but also on turn level, path level or origin destination
level. A turn is defined by an inlink, a node and an outlink.
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Figure 3.2: Flowchart network loading submodel of STAQ-squeezing without
junction modelling [4].

An important assumption within the node model of STAQ, is that vehicles exit
a link in a first in first out (FIFO) sequence; It is assumed that vehicles flow
from an inlink into different outlinks in the same order they reached the end
of the inlink. This means that if there is a vehicle which is unable to exit the
inlink into its preferred outlink, all vehicles behind are prevented to continue
regardless of their destination. So the outflow of an inlink is always restricted
according to its most restrictive outlink. Therefore the node model determines
the reduction factors in such a way, that the reduction factors for all turns which
start from the same inlink are the same:

αij = αi, ∀ij ∈ IJ. (3.5)

αij reduction factor on the turn from inlink i to outlink j
αi reduction factor for inlink i

In figure 3.2, a flowchart of the network loading submodel of STAQ-squeezing
is shown2. It is visualized how the node model and the link model interact to
calculate for a given path demand the corresponding link flows and travel times.
It can be seen that based on the given path demand (route demand) from the
route choice submodel and the reduction factors from the node model, the link
model calculates turn demands. From these turn demands and the given link
capacities, the node model determines on its turn the reduction factors. Note
that the turn demands are depending on the reduction factors, but the reduction
factors are on their turn depending on the turn demands. Therefore, iterations
are performed between the link model and the node model till a fixed point is
reached3. After convergence the link model calculates the corresponding link
flows. Finally from these link flows the travel time calculator determines the
corresponding travel times.

2This flowchart visualizes a part of the STAQ modelling framework as shown in figure 3.1
for the squeezing phase.

3That this problem is indeed a fixed point problem is shown later on.
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To determine the turn demands and the link flows, the link model uses equations
(3.6) to (3.9) as given below:

Tij =
∑
p∈Pij

α̂pi (D)Qp, ∀ ∈ ij ∈ IJ. (3.6)

tij =
∑
p∈Pij

α̂pj (D)Qp, ∀ij ∈ IJ. (3.7)

Ya =
∑
i∈Ia

Tia, ∀a ∈ A. (3.8)

ya =
∑
i∈Ia

tia, ∀a ∈ A. (3.9)

Tij turn demand from inlink i to outlink j
tij turn flow from inlink i to outlink j
Ya demand on link a
ya flow on link a
Qp demand on path p
α̂pi (D) reduction factor on path p till inlink i
α̂pj (D) reduction factor on path p till outlink j

Pij ⊆ P set of paths that use turn ij
Ia ⊆ I set of inlinks to outlink a

Recall that within the link model, the path demands (Qp) are given from the
route choice submodel. Furthermore within the link model the reduction factors
as determined by the node model are given. From these turn based reduction
factors, path based reduction factors (α̂pa) can be calculated. These path based
reduction factors describe the fraction of traffic on path p that is not held up by
supply constraints upstream from inlink a [5]:

α̂pa(D) =
∏

ij∈IJap

αij(D), ∀a ∈ A, p ∈ P. (3.10)

α̂pa(D) reduction factor on path p till link a, for OD-vector D
αij(D) reduction factor from inlink i to outlink j, for OD-vector D
IJap set of turns used by path p travelling from origin to link a

Note that the calculation of the turn demands (3.6) and turn flows (3.7) is
similar. They only differ in whether the reduction factor on the turn itself is
taken into account or not. To determine the turn demand on a turn, which is
the amount of flow that wants to flow into the turn, the reduction factor on the
turn itself should not be taken into account. But to determine the the actual
flow on the turn, the reduction factor on the turn itself should be taken into
account. The link demands (3.8) and link flows (3.9) can be easily determined
from the turn demands and the turn flows.
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To determine the reduction factors the node model uses the following node model
function for node n ∈ N :

[αi]i∈In = Γn(Ti′j′ , Ci′ , Cj′ , ∀i′ ∈ In, ∀j′ ∈ Jn). (3.11)

αi reduction factor of inlink i, see (3.5)
Γn node model function, it represents the node model for node n
Tij turn demand from inlink i to outlink j
Ci capacity of inlink i
Cj capacity of outlink j
In ⊆ A set of inlinks on node n
Jn ⊆ A set of outlinks on node n
N set of nodes

For each node n in the network, the node model is used to calculate the set of
reduction factors for all inlinks on the node, from the set of turn demands on the
node as determined by the link model, the capacities of all incoming links on the
node and the capacities of all outgoing links on the node. Note that the node
model function is defined for the reduction factors on all inlinks; But due to the
FIFO rule the reduction factors for all turns from the same inlink are the same.
There exist different kinds of node models, the one within STAQ is adopted from
Tampère et al [16]. This specific node model and the corresponding algorithm
are explained in detail in subsection 3.2.2.

It can be observed from respectively equations (3.11), (3.6) and (3.10) that
indeed the reduction factors are depending on the turn demands, while the turn
demands on their turn are depending on the reduction factors. As mentioned
before, this problem, which is solved within the network loading submodel of
STAQ-squeezing, is a fixed point problem. Following Bliemer et al. this problem
can be formally defined as follows [3]:

α = Γ(T |C) = Γ(Υ(α|Q)|C) = g(α|Q,C). (3.12)

Γ node model function, see (3.11)
Υ turn demand function, see (3.6)
g composite function Γ ◦Υ
α vector of reduction factors on all turns
T vector of turn demands on all turns
Q vector of path demands on all paths
C vector of capacities on all links

The vector of reduction factors α∗ that satisfies α∗ = g(α∗|Q,C) is a solution to
this fixed point problem.

In algorithm 1 it is shown how this fixed point problem within the network
loading submodel of STAQ-squeezing without junction modelling is solved. The
input of this algorithm are the path demands Q, which are given by the route
choice submodel and the capacities C which are known from the given network.
The output are the flows on all links in the network and the reduction factors
on all turns in the network.
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Algorithm 1 Capacity constrained network loading algorithm

INPUT: Q, C . path demands, link capacities
OUTPUT: y, α . link flows, reduction factors
STEP 0: initialization

1: Assume an empty network.
2: Initialize all reduction factors α(0) = 1.

STEP 1: calculate initial link flows
3: Calculate the turn demands Tij

(0) applying equation (3.6), using reduction
factors α(0) and path demand Q.

4: Calculate the link flows ya
(0) applying equations (3.7) and (3.9), using

reduction factors α(0) and path demand Q.
5: Set l := 1. . iteration number

STEP 2: determine potentially congested links
6: Determine the set of potentially congested links using (3.13).
7: Determine the corresponding turn demands T̃ij

(l−1) using (3.15).
STEP 3: compute reduction factors

8: Calculate the reduction factors α̃(l), applying the node model in (3.11), using
turn demands T̃ij

(l−1) and link capacities C. For details, see section 3.2.2.
STEP 4: compute turn demands

9: Calculate the the turn demands T̃ij
(l) applying equation (3.6), using reduction

factors α̃(l) and path demand Q.
STEP 5: convergence check

10: Converged if: 1
|Ã|‖α̃

(l) − α̃(l−1)‖ < ε1 for some ε1 > 0, go to STEP 6.

11: Otherwise, set l := l + 1 and return to STEP 3.
STEP 6: update the link flows on potentially congested links

12: Update the link flows ỹa applying equations (3.7) and (3.9), using the
reduction factors α̃(l) and path demand Q.

The algorithm starts with an initialization. All reduction factors are set to one.
Using these initial reduction factors, initial turn demands and link flows are
calculated using equation (3.6), (3.7) and (3.9). Then it is determined which
links are potentially congested links. For each link the ratio between the link
flow and the capacity is calculated. When a link has a flow/capacity ratio larger
than one, this link is a potential bottleneck. All turns into this link are therefore
potentially blocked, hence all corresponding inlinks are potentially congested.
The set of potentially congested4 links is formally defined as follows:

Ã = {i ∈ In, n ∈ N | tij > 0, yj > Cj , j ∈ Jn}. (3.13)

Ã ⊆ A set of potentially congested links
tij turn flow from inlink i to outlink j
yj flow on outlink j
Cj capacity of outlink j
In ⊆ A set of inlinks on node n
Jn ⊆ A set of outlinks on node n

4Note that a turn into a potential bottleneck may also block other turns originating from
the same inlink due to the FIFO assumption.
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Only the reduction factors of the turns starting from a potentially congested
link have to be considered. All other reduction factors remain fixed on their
initial value of one; For these turns, it is known that all flow can fit trough. The
reduced vector of considered reduction factors and the corresponding reduced
vector of considered turn demands become:

α̃ = [αi]{i∈Ãn, n∈N}, (3.14)

T̃ = [Tij ]{i∈Ãn, j∈Jn, n∈N}. (3.15)

α̃ reduced vector of reduction factors
αi reduction factor of inlink i

T̃ reduced vector of turn demands
Tij turn demand from inlink i to outlink j

Ãn ⊂ Ã set of potentially congested links on node n

Now the algorithm iteratively runs the node model and the link model to solve
for respectively α̃ and T̃ . The vector of reduced reduction factors is calculated
using equation (3.11) and the vector of reduced turn demands is calculated using
equation (3.6). These iterations are performed till the the reduction factors and
hence the turn demands do not change much any more between iterations. In
that case a fixed point has been found. Then finally the link model updates the
link flows on the potentially congested links, using equations (3.7) and (3.9).
Given these link flows, the travel time calculator can calculate the corresponding
travel times. This travel time calculation is discussed in section 4.4.1.

3.2.2 The node model

Within algorithm 1, in STEP 3 the node model function as defined in equation
(3.11) is used to determine the reduction factors. But, as mentioned before, this
node model function is used to represent the node model. The exact node model
algorithm within STAQ is explained in detail in this section.

Recall that a node model determines the reduction factors on a node, given
the capacities of all links on the node and the turn demands (as determined
by the link model) of all turns on the node. So note that the turn demands
remain fixed during a run of the node model. Within the network loading
submodel of STAQ a consistent set of link flows is sought for, which do not
exceed the capacities of the links. If there are, in a congested situation, more
inlinks competing for the limited supply of an outlink, the node model within
the network loading submodel of STAQ determines how this limited supply is
divided over the competing links. So in fact the node model determines the flows
on all turns on a node. Then from these turn flows and the given turn demands
on the node, the reduction factors on the node can then be determined using
relation (3.4).

There exist different kinds of node models5. The node model within STAQ is a
macroscopic first order node model. STAQ only considers traffic flows and traffic

5Smits et al. [14] give a good overview of the existing node models and Wright et al. [21]
recently published a new first order node model.
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flow characteristics, therefore it’s scale is macroscopic6. Besides STAQ has a
first order link model7, and as such a first order node model suffices. Tampère
et al. [16] describe a set of generic requirements for first order macroscopic node
models. They define that within each first order macroscopic node model the
optimization problem as formulated in (3.16) till (3.22) has to be solved.

For a given n ∈ N , and given Rj , Yi and Tij :

max
tij

(∑
i∈In

∑
j∈Jn

tij

)
subject to: (3.16)

yj =
∑
i∈In

tij ≤ Rj , ∀j ∈ Jn. (3.17)

yi =
∑
j∈Jn

tij ≤ Yi, ∀i ∈ In. (3.18)

tij ≥ 0, ∀i ∈ In, j ∈ Jn. (3.19)

fij =
Tij
Yi

=
tij
yi

∀i ∈ In, j ∈ Jn. (3.20)

if ∃i ∈ In | yi < Yi, then yi invariant to Yi → Ci. (3.21)

node supply constraints. (3.22)

SCIR constraints. (3.23)

tij turn flow from inlink i to outlink j
yj flow on outlink j
Rj supply on outlink j
Yi demand on inlink i
fij turning fraction from inlink i to outlink j
Tij turn demand from inlink i to outlink j
yi flow on inlink i
Ci capacity on inlink i
In set of inlinks on node n
Jn set of outlinks on node n

As we shall see, this optimization problem (3.16) to (3.22) is solved iteratively by
the node model algorithm within STAQ (see algorithm 2). Indeed the variables
within this optimization problem are the turn flows. Note that the optimization
problem is defined on node level. So it has to be solved for each node in the
network, to determine all turn flows in the network. The turn demands Tij and
hence also the link demands Yi (see equation 3.8) are given from the link model

6Microscopic traffic flow models simulate single vehicles.
7In a first order link model only one independent variable (flow) is considered.
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and the supply Rj , equals for STAQ-squeezing without junction modelling the
capacity Cj , which is known from the given network. The objective function
(3.16) is to maximize the sum of all turn flows. Turn flows are maximized
because drivers will always try to move whenever possible. So each turn flow
will increase till it is actively restricted by one of the constraints. Besides the
supply constraints, which were mentioned before (see equation 3.3), Tampère et
al. describe more requirements which should be fulfilled by the node model in
order to find a realistic and consistent set of link flows. All these requirements
are explained below, following the paper of Tampère et al. [16].

The first two set of constraints (3.17) and (3.18) are respectively the supply and
the demand constraints. The supply constraints Rj describe the maximum inflow
that outlink j could possibly receive, when there are considered no constraints
on the inflow of link j. The demand constraints Yi describe on their turn the
maximum flow that inlink i could possibly send, when there are considered no
constraints on the outflow of link i. As mentioned before, the supply constraints
Rj are in this study defined by the capacity of the outlink Cj . It can be concluded
that the supply and demand constraints ensure that the flow on a link does not
exceed the supply of the link respectively the flow demand for the link. The third
set of constraints (3.19) are the non-negativity constraints. Traffic never flows
backwards. Therefore this constraint ensures that the link flows never attain a
negative value. Then the fourth set of constraints (3.20) are the conservation of
turning fractions (CFT) constraints. These constraints describe that vehicles
should exit a link in a FIFO sequence8. The total demand of an inlink can be
split into turn demands to all considered outlinks. To ensure that a constraint
on one of these turn demands also restricts the other turn demands, as required
by the FIFO assumption, the turning fractions fij in the turn demand should be
conserved in the resulting flows. This is ensured by the CFT constraints. The
fifth requirement9 (3.21) describes the invariance principle. This principle states
that flows should be invariant during an infinitesimal time step if the demand and
supply constraints are constant. It is known from traffic flow dynamics that the
demand of a link in a congested regime increases after some infinitesimally small
time step to the link capacity Ci. When the node model would predict a different
value for yi due to this change from Yi to Ci, it would contradict its initial solu-
tion. Therefore the invariance principle ensures that when a link is in a congested
regime, the corresponding link flow is invariant under the replacement of Yi by
Ci. Note that the flow on link i equals the sum of the flows on all turns starting
from inlink i, so indeed this requirement is an constraint on the turn demands tij .

Tampère et al. [16] describe that the supply constraints, demand constraints,
non-negativity constraints, CFT constraints and the invariance principle are
generic requirements; They hold for all types of macroscopic first order node
models. But they define that the next two constraints, the supply constraint
interaction rule constraints (SCIR) and the node supply constraints, are specific
for the type of macroscopic first order node model that is considered. A node
typically imposes some node supply constraints (3.22). These constraints express
the effects of limited supply on the node (junction) due to conflict points and

8The FIFO-assumption has been explained in subsection 3.2.1.
9Note that this requirement is not a constraint.
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traffic regulation. In this study no junction modelling is considered, therefore
in this study within the node model of STAQ-squeezing it is assumed that
there are no node supply constraints. The SCIR constraints (3.23) describe the
distribution of the supply. It is known that drivers are selfish and seek for a user
optimum. Without the specification of SCIR constraints cooperative non-selfish
behaviour would be assumed, because then the distribution of the supply would
be only determined by the maximization of the total flow. The SCIR constraints
define how the limited supply is distributed over the competing flows and how
the supply constraints interact with each other, herein reflecting the aggregate
driving behaviour at a congested intersection.

The SCIR within STAQ is the oriented capacity proportional distribution. This
SCIR is adopted from Tampère et al. [16]. So it can be concluded that the node
model within STAQ is a first order marcroscopic node model with an oriented
capacity proportional distribution. The distribution scheme of the oriented
capacity proportional distribution is based on directional capacities Cij :

Cij = fijCi =
Tij∑

i∈Ii
Tij

Ci, ∀i ∈ In, j ∈ Jn. (3.24)

Cij directional capacity per turn
fij turning fraction for the turn from inlink i to outlink j
Tij turn demand from inlink i to outlink j
Ci capacity of link i
Ji set of outlinks considered by inlink i
In set of inlinks on node n
Jn set of outlinks on node n

The available supply of an outlink j is divided over the competing inlinks i
proportional to their directional capacities Cij as defined in the distribution
scheme above. Hence the rightful share of the supply for each competing inlink i
is depending on its capacity and its turning fraction in relation to the capacities
and turning factions of the other competing inlinks. In their paper [16], Tampère
et al. give a behavioural interpretation for oriented capacities as basis for the
distribution scheme.

Besides the oriented capacities for all turns, more information is needed to
be able to determine the distribution of the available supplies in a congested
situation; It should also be known which outlinks are bottlenecks and which
inlinks are competing for the limited supply of these outlinks. Actually, in the
case of active supply constraints, the SCIR has to find a consistent answer to
the following two questions10:

• For each inlink i: Which constraint is most restrictive for this inlink?
The maximization of turn flows in (3.16) implies that each turn flow is re-
stricted by either a demand constraint or a supply constraint. Furthermore,
due to the FIFO assumption, the turn flows starting from the same inlink
are mutually coupled. Therefore for each inlink i exactly one constraint

10For inlinks i ∈ In and supply constraints Rj on the outlinks j ∈ Jn.
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can be identified as the most restrictive one. So each inlink i belongs to
exactly one of the following sets:

i ∈Wi ⇐⇒ yi = Yi,

i ∈ Uj ⇐⇒ j = j∗(i) and yi < Yi.
(3.25)

Wi set of inlinks constrained by Yi
Uj set of inlinks constrained by Rj
Yi demand on inlink i
Rj supply of outlink j
yi flow on inlink i
j∗(i) outlink j with the most restrictive supply constraint on inlink i

The composition of these sets U and W is depending on how the available
supply is distributed over the competing flows.

• For each supply constraint Rj : how is the supply distributed to each one
of the competing turns towards j?
For each supply constraint the supply distribution scheme of the SCIR
describes how the limited supply is distributed. This scheme accounts for
the aggregate driver behaviour and is depending on the composition of the
sets U and W . Within the node model of STAQ the distribution is based
on the directional capacities as defined in (3.24).

Note that these two questions are related to each other. Whether the flow on a
link is limited by some supply constraint or not, depends on the share of the
supply that is distributed to this link. But the distribution of the supply is on
its turn depending on the composition of the sets U and W , hence on which
flows are limited by which constraint. Therefore the node model algorithm works
iteratively, as will be explained below.

An important observation is that when the flow on an inlink i on node n is
constrained by the supply of the most restrictive outlink Rj∗(i), then due to the
FIFO assumption, inlink i uses less than its rightful share of the supplies Rj of
the other outlinks j on node n it was competing for. Therefore, the SCIR first
subtracts the claims from all non-competing inlinks (i /∈ Uj), which are less then
their rightful share, from the supply of an outlink Rj (see line 27 of algorithm 2).
Then the reduced supply is distributed among the competing inlinks (i ∈ Uj),
proportional to their oriented capacity. In this way the full supply Rj of each
outlink is used. The reduced supply is defined as follows:

R̃j = Rj −
∑
i/∈Uj

tij . (3.26)

R̃j reduced supply on outlink j
Rj supply of outlink j
Uj set of inlinks i ∈ In constrained by Rj
tij turn flow from inlink i to outlink j

Note that also the turn demands from demand constrained inlinks are sub-
tracted from the supply of the considered outlink to obtain the reduced supply.
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In algorithm 2 it is shown how the node model within STAQ, which is adopted
from Tampère et al. [16], finds the turn flows on a node, given the capacities of
the inlinks, the capacities of the outlinks and the turn demands from the link
model. Within the algorithm the turn flows are determined as follows:

tij =

{
Tij ∀i | Wi 6= ∅,
βj∗(i)Cij ∀i ∈ Uj∗(i),

(3.27)

where:

βj =


R̃j∑

i∈Uj

Cij
if Uj 6= ∅,

1 if Uj = ∅,
(3.28)

j∗(i) = argmin
j|Tij>0

βj . (3.29)

tij turn flow from inlink i to outlink j
Tij turn demand from inlink i to outlink j
βj level of reduction for outlink j
Cij directional capacity from inlink i to outlink j
j∗(i) outlink j with the most restrictive supply constraint on inlink i
Wi set of all inlinks i constrained by Yi
Uj set of inlinks constrained by Rj
R̃j reduced supply on outlink j

So when a turn is constrained by the demand of the inlink, the turn flow of this
turn is equal to the turn demand. But when a turn is constrained by the supply
of the most restrictive outlink corresponding to its inlink, this turn obtains a
share of the reduced supply which is proportional to its oriented capacity; This
can be seen from equations (3.27) and (3.28):

βj∗(i)Cij =
Cij∑

i∈Uj

Cij
R̃j , ∀i ∈ Uj∗(i). (3.30)

βj level of reduction for outlink j
j∗(i) outlink j with the most restrictive supply constraint on inlink i
Cij directional capacity from inlink i to outlink j
Uj set of inlinks constrained by Rj
R̃j reduced supply on outlink j

Note that the turn flows in (3.27) are iteratively determined. The level of
reduction βj and the sets Uj , which are required to determine the turn flows, are
mutually depended. Equation (3.29) implicitly defines the sets W and U , and
thereby requires the level of reduction. But to calculate the level of reduction
following equation (3.28), the sets U are required. This is why algorithm 2 solves
the problem iteratively. From equations (3.26) till (3.29) it can be deduced that:

βj =
R̃j∑

i∈Uj
Cij

=
Rj −

∑
i|Wi 6=∅ Tij −

∑
j′ 6=j

∑
i∈Uj′

βj′Cij∑
i∈Uj

Cij
. (3.31)
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βj level of reduction for outlink j

R̃j reduced supply on outlink j
Cij directional capacity from inlink i to outlink j
Rj supply on outlink j
Wi set of all inlinks i constrained by Yi
Tij turn demand from inlink i to outlink j
Uj set of inlinks constrained by Rj

From (3.29) and (3.31) it can be seen that the smallest level of reduction can
be directly calculated from the input of the node model; There exist no turns
with positive turn demand to the most restrictive outlink ĵ, for which the
corresponding inlink is restricted more by another outlink. Therefore, in the
calculation of the smallest level of reduction, the last term in the numerator of
equation (3.31) can be omitted:

βĵ =
Rj −

∑
i|Wi 6=∅ Tij∑

i∈Uj
Cij

, ∀j ∈ Jn. (3.32)

βj level of reduction for outlink j

R̃j reduced supply on outlink j
Cij directional capacity from inlink i to outlink j
Rj supply on outlink j
Wi set of all inlinks i constrained by Yi
Tij turn demand from inlink i to outlink j

ĵ most restrictive outlink

In general it holds that in the calculation of the level of reduction of an outlink,
only the interaction from outlinks with a smaller level of reduction has to be
considered. So from the smallest level of reduction the second smallest level of
reduction can be calculated and so on. In this way the algorithm iteratively
finds the exact solution for all βj and Uj and thereby determines all turn flows tij .

Algorithm 2 Node model algorithm - for node n

INPUT:
Ci, Cj | ∀i ∈ In, j ∈ Jn . link capacities

Tij = T
(l−1)
ij | ∀i ∈ In, j ∈ Jn . turn demands from link model

Yi = Y
(l−1)
i , Yj = Y

(l−1)
j | ∀i ∈ In, j ∈ Jn . link demands from link model

OUTPUT:
tij | ∀i ∈ In, j ∈ Jn . turn flows
STEP 1: initialize . initial iteration number

1: for all i, j do

2: R̃
(0)
j = Cj . initial supply constraint

3: Uj
(0) = {i | Tij > 0} . initial set of competing inlinks per outlink

4: J (0) = {j | Yj > 0} . initial set of considered outlinks
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STEP 2: determine oriented capacities
5: for all i | Yi > 0 do
6: for all j do
7: Cij =

Tij

Yi
Ci, ∀j . calculate oriented capacities

STEP 3: determine most restrictive constraint
8: for all j ∈ J : do

9: βj =
R̃j∑

i∈Uj
Cij

. calculate level of reduction for outlink j

10: ĵ = argminj∈J βj . determine most restrictive outlink

STEP 4: determine flows of set Uĵ and recalculate R̃j
11: if ∃i ∈ Uĵ | Yi ≤ βĵCi then . if ∃i ∈ Uĵ demand constrained
12: for all i ∈ Uĵ | Yi ≤ βĵCi do
13: tij = Tij , ∀j . calculate link flow
14: for all j ∈ J do

15: R̃
(k+1)
j = R̃j − Tij . remove used supply from constraint

16: U
(k+1)
j = Uj \ {i} . remove inlink from Uj

17: if U
(k+1)
j = ∅ then

18: βj = 1 . set definitive βj
19: Uj = ∅ . set definitive Uj
20: J (k+1) = Jk \ {j} . remove outlink from considered set

21: else if Yi > βĵCi ∀i ∈ Uĵ then . if ∀i ∈ Uĵ constrained by ĵ
22: for all i ∈ Uĵ do
23: tij = βĵCij ∀j . calculate link flow
24: for all j ∈ J do

25: R̃
(k+1)
j = R̃j − βĵCij . remove used supply from constraint

26: if j 6= ĵ then

27: U
(k+1)
j = Uj \ Uĵ . remove inlinks from Uj

28: if U
(k+1)
j = ∅ then

29: βj = 1 . set definitive βj
30: Uj = ∅ . set definitive Uj
31: J (k+1) = Jk \ {j} . remove outlink from considered set

32: else if j = ĵ then
33: βj = βĵ . set definitive βj
34: Uj = Uĵ . set definitive Uj

35: J (k+1) = Jk \ {ĵ} . remove outlink from considered set

STEP 5: Stop criterion
36: if J (k+1) = ∅ then
37: Stop . algorithm ends
38: else
39: return to STEP 3 . new iteration
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Finally, from the turn flows on a node as calculated by algorithm 2, the reduction
factors for all turns on the node (STEP 3 algorithm 1) can be determined using
relation (3.4):

αij
(l) =

tij

Tij
(l−1)

, ∀i ∈ I, ∀j ∈ J. (3.33)

αij
(l) reduction factor from inlink i to outlink j;

in iteration (l) of the network loading algorithm
tij turn flow from inlink i to outlink j;

determined by the node model algorithm,
in iteration (l) of the network loading algorithm

Tij
(l−1) turn demand from inlink i to outlink j;

determined by the link model,
in iteration (l − 1) of the network loading algorithm

Note that, due to the FIFO assumption, the reduction factors for all turns which
start from the same inlink are the same. In their paper Tampère et al. [16]
prove that algorithm 2 indeed satisfies the general requirements for first order
macroscopic node models as defined in (3.16) till (3.23).

3.2.3 Route choice submodel

In the previous two subsections, the network loading submodel of STAQ-squeezing
without junction modelling (subsection 3.2.1) and its corresponding node model
(subsection 3.2.2) are discussed. Recall that each assignment model consists
of both a network loading submodel and a route choice submodel. However,
Brederode et al. [4] describe that the advantages of the assignment model STAQ
as compared to a traditional STA model, are derived from its network loading
submodel. As such, the route choice submodel of STAQ is interchangeable. The
route choice submodel as used within this study is adopted from Brederode et
al. [4]. This route choice submodel consists of three components (see figure 3.1):

• The route set generator

• The route choice model

• The route demand calculator

These three components are shortly explained in this section. It is important to
realize that concerning the route choice, there is a difference depending whether
the traffic assignment is a one shot model or an equilibrium model. In an
equilibrium model the route set generator is run once at the beginning of the
assignment step, but in each iteration, for computing an (approximate) user
equilibrium, the route choice and the route demand are calculated anew based
on the actual path travel times in that iteration (see figure 1.8). However in
a one-shot model, such as the variant of STAQ-squeezing as used within this
study11, the route set, route choice (depending on the free-flow travel time) and
the route demand are only computed once per traffic assignment (see figure 3.1).

11Recall that within this study the route fractions are considered to be fixed. As such the
considered assignment model is not an equilibrium model but a one-shot model.
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The first component of the route choice submodel is the route set generator.
The route set generator determines a set of potential routes for each OD-pair [7].
First, the route set generator calculates the shortest path for all OD-pairs using
the Dijkstra algorithm on the given network. Then, to generate alternative
routes, a random sampling process using a gamma distribution is applied. Herein
free-flow travel times are assumed. Finally, a route filter is used to reduce route
overlap, to remove irrelevant routes and to restrict the size of the set of potential
routes [4]. Note that the route set generator is only needed within the first run
of the route choice submodel.

From the route sets as determined by the route set generator and given the
travel times, the route choice model, which is the second component within
the route choice submodel, determines the corresponding route fractions. In
this study the route choice is stochastic; The trips are assigned to the potential
routes using probabilities. These probabilities, which are called route fractions,
represent the likelihood of choosing a certain path and are determined based
on the generalized costs. To calculate the route fractions, the multinomial logit
(MNL) model is used. This leads to the following definition of route fractions [4]:

ψrsp =
e−µcp∑

p′∈Prs

e−µcp′
. (3.34)

ψrsp fraction of OD-demand rs on path p
µ scale parameter
cp generalized costs on path p
Prs set of paths p between OD-pair rs

Note that there are multiple paths considered in one trip assignment; Not all
drivers take the route with the smallest generalized cost12, also other routes are
used, only with a smaller probability. In this way variations in driver perceptions
are modelled. The scale parameter describes the degree of the perception errors
of travellers on route travel times. It can be seen that if the scale parameter
goes to infinity, µ→∞, then only the route with the smallest generalized costs
is used, while if the scale parameter is goes to zero, µ→ 0, then all demand is
equally distributed over the potential paths. The route choice is conditional on
the path set as determined by the route set generator.

Finally, from the route fractions as determined by the route choice model, the
route demand calculator, which is the third component of the route choice sub-
model, calculates the corresponding path demands, using the following relation13:

Qp =
∑
rs∈RS

ψrsp Drs. (3.35)

Qp demand on path p
ψrsp fraction of OD-demand rs on path p
Drs demand from origin r to destination s

12Recall that the generalized costs are assumed to consist of travel times only.
13Note that each path p only runs between one OD-pair. Hence only for one OD-pair rs the

route fraction ψrs
p is non zero.
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Because in this study fixed route fractions and hence fixed path demands are
assumed, the route choice submodel is only run once. But when STAQ is used
as an equilibrium model, iterations are preformed between the route choice
submodel and the network loading submodel. Then, to check for convergence a
relative duality gap is used. And to speed up convergence the route demands are
averaged over iterations. For details the reader is referred to Bliemer et al. [3]
and Brederode et al. [4]. After convergence in the equilibrium model a stochastic
user equilibrium (SUE) has been approximated. Recall that for STAQ-queueing
such a user equilibrium cannot always be reached [6].

3.2.4 Dogbone example

Now that both the network loading submodel of STAQ-squeezing without junction
modelling and the considered route choice submodel are discussed, in this
subsection an example of an assignment with the assignment model STAQ-
squeezing with fixed route choice and no junction modelling is shown on a
relative simple network. The considered network is called the Dogbone network.
This network is shown in figure 3.3. It has two origins, two destinations and
seven links. In the figure for each link the link number and the capacity of the
link (veh/h) are given. R = {1, 3} is the set of origins and S = {2, 4} is the set
of destinations of the network. Hence the OD-matrix for the Dogbone network
has the following form:

D =

[
D12 D14

D32 D34

]
. (3.36)

Note that there is no route choice in this simple Dogbone network. For each OD-
pair, there is only one route possible. Hence the route choice within the Dogbone
network is inherently fixed; No route choice model is needed to determine the
route fractions. In figure 3.4 the four paths in the Dogbone network are indicated.

Figure 3.3: The Dogbone network.

Figure 3.4: Paths in the Dogbone network.

Each path is used by one of the four OD-pairs. So it can be concluded that
for the Dogbone network the OD-demand Drs is equal to the demand of the
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Figure 3.5: Resulting flows and vertical queues on the Dogbone network.

corresponding path Qp. Formally the following route fractions ψrsp can be defined:

ψ12
1 = 1, ψ14

2 = 1, ψ32
3 = 1, ψ34

4 = 1. (3.37)

Suppose that the following OD-matrix is assigned to the Dogbone network by
the assignment model STAQ-squeezing with fixed route choice and no junction
modelling:

D =

[
1500 500
500 500

]
. (3.38)

Following equation (3.35) and using the route fractions as given in (3.37), the
path demands corresponding to the given OD-demands are:

Q1 = 1500, Q2 = 500, Q3 = 500, Q4 = 500. (3.39)

Given these path demands, the network loading submodel, can calculate the
corresponding flows on the links and the vertical queues on the bottlenecks in
the network. These assignment results are shown in figure 3.5. To obtain these
results, the network loading algorithm, algorithm 1 is applied. This algorithm
iteratively solves for the reduction factors and the turn demands, till a fixed point
is reached. The following reduction factors and turn demands are iteratively
found by the network loading algorithm from the considered fixed path demands
(3.39) on the Dogbone network14:

↓turns α(0) T (0) α(1) T (1) α(2) T (2) α(3)

49 1 2000 3
4 1500 3

4 1500 3
4

109 1 1000 1 1000 1 1000 1

98 1 3000 4
5 2500 4

5 2500 4
5

82 1 3000 1 2000 1 2000 1

23 1 2000 1
2 1300 10

13 1300 10
13

211 1 1000 1
2 700 10

13 700 10
13

It can be seen that a fixed point is already reached after the second iteration;
Within the next iteration the vector of reduction factors does not change any
more. Hence it turns out that the fixed point problem for the simple Dogbone
network is relatively easy to solve; For other networks it could be necessary to
perform much more iterations before a fixed point is reached.

From the resulting vector of reduction factors, the network loading algorithm
determines the link flows using equations (3.7) and (3.9). The reader can check

14The reader can verify these results by applying the network loading algorithm (1) and the
embedded node model algorithm (2) on the path demands as given in (3.39).
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that these link flows indeed are the flows as shown in figure 3.5. Also the vertical
queues as shown in this figure can be verified. To do so, recall that all demand
on a link that exceeds the maximum capacity of this link, forms a vertical point
queue on the upstream node of this link. So for example, on link 9 the link
demand is 3000 vehicles per hour (see equation (3.8)), but the capacity of this
link is only 2500 vehicles per hour. Therefore a vertical queue of 500 vehicles
per hour can be found on the upstream node of link 9.

3.3 Constraints

In the previous section the lower level assignment model is discussed in detail. The
reader is now familiar with reduction factors and knows how they are determined
by the lower level assignment model. Therefore in this section the traffic regime
constraints within the matrix estimation problem for STAQ-squeezing (3.1) can
be formulated explicitly.

3.3.1 Traffic regime constraints

As mentioned in section 3.1, within the proposed matrix estimation method for
STAQ, it is assumed that it is possible to determine for each link whether this
link is in a free-flow traffic regime or in a congested traffic regime. So for each
outlink j an indicator χj can be defined, which indicates whether the outlink is
actively constraining inflow or not:

χj =

{
1 if outlink j is actively constraining inflow.

0 if outlink j is not actively constraining inflow.
(3.40)

In practice these χj-indicators are set by the decision maker, based on available
road information. This traffic regime information is used to define traffic regime
constraints. Within the matrix estimation problem there is sought for an optimal
OD-matrix. The traffic regime constraints are added, to ensure that this OD-
matrix can only be chosen such that all links remain within the right traffic
regime. This means that all free-flow links, for which χj = 0, remain free-flow
and that all congested links, for which χj = 1, remain congested. The traffic
constraints are defined as follows:

χj =


1 then

∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D) ≥ Cj ,

0 then
∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D) ≤ Cj ,
∀j ∈ J̃ . (3.41)

Drs demand from origin r to destination s
ψrsp fraction of OD-demand rs on path p
αij(D) reduction factor from inlink i to outlink j for OD-vector D
Cj capacity of outlink j
χj ∈ {1, 0}, indicates if outlink j is actively constraining inflow
Pj set of paths using outlink j

ĨJjp set of turns on path p travelling from origin to outlink j,
excluding the last turn to link j

J̃ set of outlinks j which can actively constrain flow
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These constraints describe that when an outlink is in a congested regime, the
total reduced traffic demand of all paths using this outlink is more than the
capacity of this outlink, hence the link is actively constraining inflow. And
when an outlink is in a free-flow regime, the total reduced traffic demand of all
paths using this outlink is less than the capacity of this outlink, hence the link
is not actively constraining inflow15. Note that the traffic regime constraints
are only known explicitly for a certain OD-vector after a lower level assign-
ment of this OD-vector; Only then the reduction factors corresponding to this
OD-vector are known. All traffic regime constraints form, together with the con-
straint that the OD-demands should be non-negative, the feasible set of solutions.

Frederix et al. [8] discuss the importance of including traffic regime constraints.
They explain that the relationship between link flows and OD-demands behaves
non-monotonic in the transition from a free-flow regime to a congested regime;
In a free-flow regime the link flows are an increasing function of the passing
OD-flows, whereas in a congested regime, the link flows are determined by the
bottleneck capacities and therefore are insensitive to the passing OD-flows. As
such, the sensitivity of the link flows to changes in the OD-demands is different
in both regimes, not only in magnitude but also in sign. Therefore the transition
from a free-flow to a congested regime (or the other way around) forms a source
of local minima. Jumps between different local minima can be avoided, by
choosing only OD-matrices D for which the corresponding link flows are in the
same traffic regime as the actual traffic regime.

3.3.2 Dogbone example

As an example, the traffic regime constraints for the Dogbone network are
derived. The Dogbone example has been introduced in section 3.2.4. From the
link capacities of the Dogbone network as given in figure 3.3, it can be seen that
there are four links in the Dogbone network which can actively constrain flow.
This are link 3, 11, 8 and 9. Therefore, in the Dogbone network, the indicator set
χ = {χ3, χ11, χ8, χ9} defines which outlinks are able to actively constrain flow.
From (3.41) for the Dogbone network the following traffic regime constraints can
be defined:

χ3 =

{
1 then α4,9(D)α9,8(D)D12 + α10,9(D)α9,8(D)D32 ≥ 1000.

0 then α4,9(D)α9,8(D)D12 + α10,9(D)α9,8(D)D32 ≤ 1000.

χ11 =

{
1 then α4,9(D)α9,8(D)D14 + α10,9(D)α9,8(D)D34 ≥ 1000.

0 then α4,9(D)α9,8(D)D14 + α10,9(D)α9,8(D)D34 ≤ 1000.

χ8 =

{
1 then α4,9(D)(D12 +D14) + α10,9(D)(D32 +D34) ≥ 2000.

0 then α4,9(D)(D12 +D14) + α10,9(D)(D32 +D34) ≤ 2000.

χ9 =

{
1 then D12 +D14 +D32 +D34 ≥ 2500.

0 then D12 +D14 +D32 +D34 ≤ 2500.

For the Dogbone network the relation between the traffic regimes and the path
demands, which equal the OD-demands, can be visualized. This is shown in

15It can be seen from equations (3.6), (3.8) and (3.35) that the left side of the inequalities in
(3.41) equals the total demand on outlink j (Yj).
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Figure 3.6: Possible traffic regimes for the Dogbone network.

figure 3.6. Note that such a visualization of the traffic regimes is not possible in
general. Because the traffic regime constraints form, together with the constraint
that all OD-demands should be non-negative, the feasible set of solutions, it
can be concluded that figure 3.6 actually visualizes for the Dogbone network
for each possible χ the set of feasible solutions. It can be seen that not all
combinations of the four indicators exist in practice. This can be easily explained
by the capacities of the links in the network (see figure 3.3). First of all it is not
possible that both χ3 = 1 and χ11 = 1, because the capacity of link 2 is only
2000. Secondly it is not possible that χ9 = 1 and χ8 = 0, because the capacity
of link 9 is 2500 while the capacity of link 8 is 2000.

3.4 Uniqueness of the solution

In the previous sections, the upper level problem, lower level problem and the
constraints of the considered bi-level matrix estimation problem for STAQ-
squeezing with fixed route choice and no junction modelling (3.1) are discussed.
In this final section the uniqueness of the solution to the given upper level
minimization problem is discussed. To do so, in the next subsections the three
objective parts, f1, f2 and f3 are first analysed separately.

3.4.1 Uniqueness of the solution (f1)

In this subsection only the first part of the given upper level objective function
is considered:

min
D

f1 = min
D

∑
rs∈RS

(Drs −D0
rs)

2

s.t. D ≥ 0

χj =


1 then

∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≥ Cj ,

0 then
∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≤ Cj ,
∀j ∈ J̃ .

(3.42)

This problem is obtained when w1 is set to one and w2 and w3 are set to
zero in the given matrix estimation problem (3.1). It is analysed whether this
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minimization problem has a unique solution. The given objective function f1

is a strictly convex function (see appendix C). It can be easily seen that if the
OD-demands are set equal to the prior OD-demands, so if D equals D0, the
function f1 has a minimum function value of zero. Of course, this minimum
function value can only be reached if the minimizer, D0, is a feasible solution16.
Since f(D) > f(D0) for all D 6= D0, it can be concluded that if D0 is feasible,
then it is the unique solution to the given minimization problem. But also if
the prior OD-matrix D0 is not feasible, it is possible to find the minimum of the
optimization problem in (3.42). However, in this case the corresponding solution
is possibly non-unique. The given set of constraints is closed and continuous
in D. Besides it can be seen that if ||D|| → ∞, then f1(D)→∞. As such the
minimum of the given optimization problem exists. But for a strictly convex
objective function, only on a convex set the corresponding solution can be proven
to be unique. The set of constraints in the given minimization problem is non-
convex, because the traffic regime constraints are non-linear. So when the prior
OD-matrix D0 is not feasible, the solutions to (3.42) are possibly non-unique.
Note that in this case the minimum function value is also bigger than zero.

3.4.2 Uniqueness of the solution (f2)

In this subsection only the second part of the given upper level objective function
is considered. The variant of STAQ-squeezing as considered within this study, is
denoted by STAQ-squeezing∗:

min
D

f2 = min
D

∑
a∈Ã

(ya(D)− ỹa)2

s.t. ya(D) = STAQ-squeezing∗(D)

D ≥ 0

χj =


1 then

∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≥ Cj ,

0 then
∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≤ Cj ,
∀j ∈ J̃ .

(3.43)

This problem is obtained when w2 is set to one and w1 and w3 are set to
zero in the given matrix estimation problem (3.1). It is analysed whether this
minimization problem has a unique solution. It can be easily seen that when
the flow on each link equals the count value on that link, then the minimum
function value of zero is reached. So only if there exists a feasible OD-matrix D
for which ya(D) = ỹa for all a ∈ Ã, the minimum function value zero is attained.
However it is always possible to find an OD-matrix D which minimizes (3.43).

Figure 3.7: Link flows real situation.

16This feasibility should be checked with respect to the traffic regime constraints.
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To gain some insight, first a case within the Dogbone network is analysed.
The Dogbone network has been introduced in section (3.2.4). Consider in the
Dogbone network the following OD-demands:

Dreal =

[
750 250
750 250

]
. (3.44)

In figure 3.7 the link flows in the Dogbone network corresponding to these OD-
demands are shown, as generated by the assignment model STAQ-squeezing∗.
It can be seen that only link 3 is actively constraining flow. Hence the traffic
regime in this situation is χ = {1, 0, 0, 0}. Now suppose, that the link flows
as shown in figure 3.7 are available as count information. For this case in the
Dogbone network, the considered matrix estimation problem (3.43) gets the
following form:

min
D

(y4(D) − 1000)2 + (y10(D)− 1000)2 + (y9(D)− 2000)2+

(y2(D) − 2000)2 + (y3(D) − 1000)2 + (y8(D)− 2000)2+

(y11(D)− 333)2

s.t. ya(D) = STAQ-squeezing∗(D)

D ≥ 0

D12 +D14 +D32 +D34 ≤ 2000,

D12 +D32 ≥ 1000,

D14 +D34 ≤ 1000.

(3.45)

By construction, the OD-matrix Dreal is a minimizer to (3.45). Assigning Dreal

to the Dogbone network using STAQ-squeezing∗ results in link flows which
perfectly match with the available counts. Furthermore, because the matched
counts perfectly reflect the given traffic regime χ = {1, 0, 0, 0}, also the traffic
regime constraints and the non-negativity constraints are satisfied. The question
is if the matrix Dreal is a unique minimizer, or if there exist more solutions to
the given minimization problem (3.45). Note that Dreal results in an minimum
objective function value of zero. So to minimize the squared differences between
the link flows and the link counts, an OD-matrix D should satisfy the following
relations:

y4(D) = D12 +D14 = 1000,

y10(D) = D32 +D34 = 1000,

y9(D) = y8(D) = y2(D) = D12 +D14 +D32 +D34 = 2000,

y3(D) = (D12 +D32) ∗ α2,3 = 1000,

y11(D) = (D14 +D34) ∗ α2,11 = 333.

(3.46)

It can be seen that the first two equations directly give information about the
sum of the OD-demands: D12 + D14 and D32 + D34, and from the last three
equations, the sum of the OD-demands D12 + D32 and the sum of the OD-
demands D14 +D34 can be deduced. To do so, note that the turns 2-3 and 2-11
form a diverge. So following the FIFO rule in the node model, it should hold
that: α2,3 = α2,11 = α2. Using this rule and the last three equations, it can be
found that α2 = 0.667, D12 +D32 = 1500 and D14 +D34 = 500. Hence, it can
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be concluded that it is possible to deduce from the available count information
the row sum of each row and the column sum of each column of an OD-matrix
D that minimizes (3.45):

D =
D12 D14 1000
D32 D34 1000
1500 500

. (3.47)

Note that there exist different OD-matrices D which satisfy these given row sums
and the column sums. The matrix Dreal is one of the possible solutions, but
for example matrix D̂ with D̂12 = 600, D̂32 = 900, D̂14 = 400 and D̂34 = 100
also suffices. When it is assumed that the OD-demands can only take integer
values, then there are already 501 different solutions possible. This can be seen
by setting one of the OD-demands to x and express the other OD-demands in x:

D =
(x + 500) (500− x) 1000

(1000− x) (x) 1000
1500 500

. (3.48)

Because x can take values between 0 and 500, there are 501 different OD-matrices
D possible. It can be seen that all 501 OD-matrices satisfy the traffic regime con-
straints as shown in (3.45). Therefore in this case all possible OD-matrices D are
also feasible OD-matrices. This is not surprising; the counts which are matched
by these solutions perfectly reflect the given real traffic regime χ = {1, 0, 0, 0}.
So it can be concluded that Dreal is not a unique minimizer of (3.45).

In the considered example, counts are available on all links. In practice this
will never be the case. When there are less counts available, the set of possible
solutions is possibly larger. However note that not all these extra solutions are
also feasible solutions with respect to the traffic regime constraints. Furthermore
it is important to realize that the placement of the available counts is more
important then the number of available counts for the amount information which
can be deduced from the counts17. In this example the best case possible with
2 counts and the worst case possible with 6 counts give the same amount of
information. Consider the same case as above. For the situation with two counts,
most information can be deduced if these counts are positioned on link 4 and
link 9. For the situation with six counts, least information can be deduced if
these counts are positioned on link 4, 10, 9, 8, 2 and 3. This best case for two
counts and worst case for six counts give the same amount of information about
OD-matrix D. For both cases it can be deduced that the total OD-demand is
2000 and:

D =
D12 D14 1000
D32 D34 1000

? ?
. (3.49)

A final remark is that counts are measurements, so in practice it is possible that
counts are mutually inconsistent. In that case, the minimum function value of
zero cannot be reached.

17The maximization of information with a minimum number of sensors is a well-known
problem, because the placement of sensors is costly.
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From the given example in the Dogbone network it can be concluded that the
solutions to (3.43) are possibly non-unique. However the considered example
within the Dogbone network turns out to be very specific. A similar uniqueness
analysis is not always possible. Already for more congested situations in the
Dogbone network, it is not possible to draw conclusions about the uniqueness of
the solutions to the upper level optimization problem any more. To see this, note
that to find all OD-matrices D for which the corresponding link flows perfectly
match the given counts, the following problem is solved:

y(D) = B(D)P (D)D = ỹ

D ≥ 0
(3.50)

y(D) vector of estimated link flows
B(D) crossing fraction matrix
P (D) route fraction matrix
D vector of OD-demands
ỹ set of links with count information

For the example in the Dogbone network as discussed above, this system of
equations reads18:



1 1 0 0
0 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1

α2(D) 0 α2(D) 0
0 α2(D) 0 α2(D)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



D12

D14

D32

D34

 =



1000
1000
2000
2000
2000
1000
333


(3.51)

And for a situation in the Dogbone network with three bottlenecks, this system
or equations reads19:



α̂1
4(D) α̂2

4(D) 0 0
0 0 α̂3

10(D) α̂4
10(D)

α̂1
9(D) α̂2

9(D) α̂3
9(D) α̂4

9(D)
α̂1
8(D) α̂2

8(D) α̂3
8(D) α̂4

8(D)
α̂1
2(D) α̂2

2(D) α̂3
2(D) α̂4

2(D)
α̂1
3(D) 0 α̂3

3(D) 0
0 α̂2

11(D) 0 α̂4
11(D)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



D12

D14

D32

D34

 =



ỹ4
ỹ10
ỹ9
ỹ8
ỹ2
ỹ3
ỹ11


(3.52)

α̂1
4(D), α̂2

4(D) = α4,9(D)

α̂3
10(D), α̂4

10(D) = α10,9(D)

α̂1
9(D), α̂2

9(D), α̂1
8(D), α̂2

8(D), α̂1
2(D), α̂2

2(D) = α4,9(D)α9,8(D)

α̂3
9(D), α̂4

9(D), α̂3
8(D), α̂4

8(D), α̂3
2(D), α̂4

2(D) = α10,9(D)α9,8(D)

α̂1
3(D), α̂2

11(D) = α4,9(D)α9,8(D)α2(D)

α̂3
3(D), α̂4

11(D) = α10,9(D)α9,8(D)α2(D)

18Note that indeed this system of equations is the same as the system of equations in (3.46).
19Recall from (3.5) that α2,3(D) = α2,11(D) = α2(D).
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The system of equations in (3.51) contains four variables, but only three inde-
pendent equations. As such, as has been shown before, it can be concluded
that the corresponding solution is non-unique. But for the system of equations
in (3.52) it is not possible to determine the number of independent equations;
The path based reduction factors are not known explicitly20. Therefore it is not
possible to draw conclusions about the uniqueness of the solutions to the system
of equations as given in (3.52).

Summarizing it can be concluded that it is difficult to draw apriori general
conclusions about the uniqueness of the solutions to (3.43). However from the
given example on the Dogbone network, it can be concluded that the solutions to
(3.43) are possibly non-unique. In appendix A.2 the uniqueness of the solutions
to f2 for a traditional STA model are discussed. Note that STAQ reduces to a
traditional STA model when the crossing fraction matrix equals the link path
incidence matrix.

3.4.3 Uniqueness of the solution (f3)

In this subsection the third part of the given upper level objective function is
considered:

min
D

f3 = min
D

∑
p∈P̃

(τp(D)− τ̃p)2

s.t. τp(D) = STAQ-squeezing∗(D)

D ≥ 0

χj =


1 then

∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≥ Cj ,

0 then
∑
p∈Pj

ψrsp D
k
rs

∏
ij∈ĨJjp

αij(D) ≤ Cj ,
∀j ∈ J̃ .

(3.53)

This problem is obtained when w3 is set to one and w1 and w2 are set to zero
in the given matrix estimation problem (3.1). It is analysed whether this mini-
mization problem has a unique solution. It can be seen that when the queueing
delay on each path equals the measured queueing delay on that path, then the
minimum function value of zero is reached. So only if there exists a feasible
OD-matrix D for which τp(D) = τ̃p for all a ∈ Ã, the minimum function value
zero is attained. However it is always possible to find an OD-matrix D which
minimizes (3.53).

In section 4.4.1 it is explained how STAQ-squeezing∗ calculates the average
queueing delays on a path. The following formula is given:

τp(D) =
T

2

(
1∏

ij∈IJp
αij(D)

− 1

)
, ∀p ∈ P. (3.54)

Here T is the considered study period duration and IJp is the set of turns
used by path p travelling from origin to destination. It can be seen that the

20Recall that the reduction factors are only known after a lower level assignment for the
corresponding OD-vector D.
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queueing delay on a path p is depending on the product of all reduction factors
on that path. When the total reduction factor on a path p equals 1, there are
no bottlenecks, hence there is no queueing delay on path p. But when the total
reduction factor on path p has a value ∈ (0, 1) then there are bottleneck(s) on
path p in the network, and as such there is a queueing delay on path p. So it
can be concluded that a measured average queueing delay τ̃p gives information
about the total reduction factor on a path p. As mentioned earlier, in practice
not the average path queueing delays but the average travel times on a path are
measured. The average queueing delay on a path can be easily determined from
the average path travel time by subtracting the free-flow path travel time.

Again, to gain some insight, the given minimization problem is analysed on the
Dogbone network. In the Dogbone network there exist four paths, so when the
average travel times are known on all four paths, f3 in (3.53) consists of four
terms. In figure 3.3 it can be seen that the Dogbone network has four potentially
blocking links. As such, there are five turns in the Dogbone network that can
have a reduction factor which does not equal 1. This are: α4,9, α10,9, α9,8, α2,3

and α2,11. Note that, because of the FIFO-rule (see equation (3.5)), it holds
that α2,3 = α2,11 = α2. Therefore, using (3.54), for the Dogbone network the
following formulas for the path queueing delays can be derived:

τ1(D) =
T

2

(
1

α4,9(D)α9,8(D)α2(D)
− 1

)
,

τ2(D) =
T

2

(
1

α4,9(D)α9,8(D)α2(D)
− 1

)
,

τ3(D) =
T

2

(
1

α10,9(D)α9,8(D)α2(D)
− 1

)
,

τ4(D) =
T

2

(
1

α10,9(D)α9,8(D)α2(D)
− 1

)
.

(3.55)

To minimize the upper level problem in (3.53), an OD-matrix D is sought for,
such that τp(D) = τ̃p for all paths with measurements. So when there are
measurements available on all paths in the Dogbone network, using (3.55), the
following information can be deduced for the OD-matrix D in the Dogbone
network that minimizes (3.53):

α4,9(D)α9,8(D)α2(D) =
T

2τ̃1 + T
,

α4,9(D)α9,8(D)α2(D) =
T

2τ̃2 + T
,

α10,9(D)α9,8(D)α2(D) =
T

2τ̃3 + T
,

α10,9(D)α9,8(D)α2(D) =
T

2τ̃4 + T
.

(3.56)

Note that the same information can be deduced from a measurement on path
1 as from a measurement on path 2. The same holds for path 3 and 4. And if
α4,9(D) = α10,9(D), all measurements give the same information.
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Now an example case in the Dogbone network is studied. Suppose that the
considered study period in the Dogbone network is one hour and the measured
queueing delays on the paths in the Dogbone network all equal fifteen minutes.
Furthermore the traffic regime is assumed to be χ = {1, 0, 0, 0}. Then the
considered matrix estimation problem (3.53) gets the following form:

min
D

(τ1(D)− 0.25)2 + (τ2(D)− 0.25)2 + (τ3(D)− 0.25)2+

(τ4(D)− 0.25)2

s.t. τp(D) = STAQ-squeezing∗(D)

D ≥ 0

D12 +D14 +D32 +D34 ≤ 2000,

D12 +D32 ≥ 1000,

D14 +D34 ≤ 1000.

(3.57)

Using (3.56), for this case in the Dogbone network the following information can
be deduced:

α4,9(D)α9,8(D)α2(D) =
2

3
≈ 0, 667,

α10,9(D)α9,8(D)α2(D) =
2

3
≈ 0, 667.

(3.58)

And from the given traffic regime it can be seen that in this case α4,9(D) =
α10,9(D) = α9,8(D) = 1. As such, for the given traffic regime (3.58) reduces to:

α2(D) =
2

3
≈ 0, 667. (3.59)

So it can be seen that for the given traffic regime (3.58) results in a relative simple
set of equations21; There are no products of turn based reduction factors left.
It can be shown that there exist different OD-matrices D which minimize the
matrix estimation problem as given in (3.57). To do so, note that the link flows
as shown in figure 3.7 result in reduction factors which satisfy (3.59) and comply
with the given traffic regime. Hence it can be concluded that the OD-matrix
Dreal minimizes (3.57). But as discussed in section 3.4.2, there are 501 other
OD-matrices which result in the same flows on the Dogbone network. As such, all
these 501 different OD-matrices minimize the given matrix estimation problem
(3.57). Therefore it can be concluded that also the solutions to the upper level
minimization problem as given in (3.53) are possibly non-unique.

From the considered example in the Dogbone network, it can be seen that solving
the upper level minimization problem in (3.57) is related to solving the upper
level minimization problem in (3.45); The flows on all links in a network implicitly
imply the travel times and hence queueing delays (expressed in reduction factors)
on the paths in this network. Furthermore note that if we consider an objective
function in which both f2 and f3 are included, then the measured path queueing
delays add information to the problem as defined in (3.50); The given products
of reduction factors (partly) specify the unknown crossing fraction matrix.

21For example for the traffic regime χ = {1, 0, 1, 1}, the set of equations remains as in (3.58).
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3.4.4 Conclusion

From the previous three sections it can be concluded that if we use exclusively
one of the three parts of the upper level objective function in (3.1) only the
solution to the first part is possibly unique. When the prior OD-matrix D0

satisfies the traffic regime constraints, this OD-matrix is the unique solution to
f1. For the second part of the upper level objective function, it turns out to
be difficult to draw general conclusions on the uniqueness of the solutions. But
the given example in the Dogbone network shows that the solutions to f2 are
possibly non-unique. The same can be concluded for the solutions to the third
part of the objective function; Also the solutions to f3 are possibly non-unique.
Therefore in practice it is required to put always some weight on the first part
of the upper level objective function f1. However note that this will not always
guarantee a unique solution.
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Chapter 4

Solution method

In chapter 3 the matrix estimation problem for STAQ-squeezing with fixed
route choice and no junction modelling as considered within this study has been
formulated and discussed. In this chapter it is described in detail how this
problem is solved, using the matrix estimation method for STAQ as developed
by Brederode et al. [5].

Analysing the proposed matrix estimation method [5] resulted in some
remarks, which are given in a gray text box. Those remarks are important
in the further development of the given matrix estimation method.

4.1 General idea

Below the matrix estimation problem as considered within this study is shown1.
Again the considered STAQ variant, STAQ-squeezing with fixed route choice
and no junction modelling, is denoted by STAQ-squeezing∗.

min
D

F (D) = min
D

w1f1(D,D0) + w2f2(y, ỹ) + w3f3(τ, τ̃)

s.t. y, τ = STAQ-squeezing∗(D)

D ≥ 0

χj =


1 then

∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D) ≥ Cj ,

0 then
∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D) ≤ Cj ,
∀j ∈ J̃ .

(4.1)

It can be seen that the link flows y and the path queueing delays τ in the upper
level minimization problem are depending on the OD-vector D. The lower level
assignment model STAQ-squeezing∗ can calculate for every possible OD-vector
D the flows ya on all links a and the path queueing delays τp on all paths p.
But considering STAQ, it is not possible to determine explicit relationships y(D)

1This problem has been defined in chapter 3. See equation (3.1) for the matrix estimation
problem and equation (3.41) for the corresponding traffic regime constraints.
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Dk = arg min
D

[w1f1(D,D0) + w2f2(y(D), ỹ) + w3f3(τ(D), τ̃)]

s.t. nonnegativity and traffic regime constraints

y(D) ≈ A(Dk−1)Dk−1 +
δ
(
A(D)D

)
δD

∣∣
D=Dk−1(D −Dk−1)

τ(D) ≈ T
2

(
α̂(Dk−1)−1 −~1

)

STAQ-squeezing∗(Dk)

Dk

k = k + 1

A(Dk), δA(Dk)
δDk , α̂(Dk)

Figure 4.1: Proposed solution approach for STAQ.

and τ(D). As such, the given matrix estimation problem for STAQ-squeezing∗

is a bi-level optimization problem. The upper level minimization problem is
constrained by the lower level assignment problem. In chapter 2 it has been
described, that to solve this bi-level matrix estimation problem, Brederode et
al [5] propose a heuristic algorithm that iteratively assigns the OD-vector from
the upper level into the lower level and then solves the upper level optimization
problem using information from the lower level to approximate the relationship
between the OD-demands and the link flows y(D) and the relationship between
the OD-demands and the path queueing delays τ(D). This solution approach is
shown in figure 4.1. By approximating the link flows and path queueing delays in
the upper level problem, less lower level assignments are required, which possibly
speeds up the optimization process.

Remark 1: But note that the approximated link flows and path queueing
delays might differ significantly from the actual link flows and path
queueing delays as can be calculated by the lower level assignment model
STAQ-squeezing∗. Therefore, it could be better to perform only one or a
few steps within the upper level optimization problem (instead of solving
it to optimality) before a new lower level assignment is performeda.

aAnother possibility is to put more weight on the prior part of the objective function.

Recall from section 2.1 that the proposed solution approach as shown in figure
4.1 is adopted from the conventional matrix estimation method for traditional
STA models [8]. However, within the conventional matrix estimation problem
no path queueing delays2 and no traffic regime constraints are considered. And
more importantly, Brederode et al. [5] have introduced a different way of approx-
imating the link flows in the upper level optimization problem. Not only the
assignment matrix, but also the sensitivity of the assignment matrix to changes
in the OD-demands is taken into account in the proposed first order Taylor
approximation of the link flows.

2The calculation and approximation of the queueing delays are discussed in section 4.4.
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In the next section the upper level approximation of the link flows is explained
in detail. Subsequently in section 4.3 it is described how the required sensitivity
of the assignment matrix to changes in the OD-demands is determined from
the lower level assignment model STAQ-squeezing∗. Then in section 4.4 the
calculation and the upper level approximation of the path queueing delays are
discussed. And finally in section 4.5 it is explained how the traffic regime
constraints are taken into account in the given upper level optimization problem.

4.2 Approximation of the link flows

In this section the first order Taylor approximations of the link flows as considered
within this study are explained in detail. Besides an example is given to show
why the conventional method to approximate the link flows is not suitable for
STAQ.

4.2.1 Assignment matrix

To approximate the link flows Brederode et al. [5] propose a first order Taylor
approximation around the previous upper level solution (see subsection 2.1.2).
Note that this previous solution vector has been assigned to the network in the
lower level. As such the link flows corresponding to this OD-matrix are known.
To formulate the considered first order Taylor approximations, first an expression
for the relationship between an assigned OD-vector and the resulting link flows is
deduced, considering the lower level assignment model STAQ-squeezing∗. Recall
from section 1.3 that this relationship can be described by an assignment matrix,
which can be subdivided in a crossing fraction and a route fraction matrix. For
the assignment model STAQ, both these matrices are normally depending on the
corresponding OD-matrix D. However within this study a fixed route choice and
hence a fixed route fraction matrix is assumed. So considering STAQ-squeezing∗

it holds that:
y(D) = A(D)D = B(D)PD. (4.2)

D vector of OD-demands, |R× S|
A(D) assignment matrix, |Ã| × |R× S|
B(D) crossing fraction matrix, |Ã| × |P |
P route fraction matrix, |P | × |R× S|

The elements of the crossing fraction matrix express the proportion of a route
flow that passes a link. For STAQ-squeezing∗ these elements equal the path based
reduction factors α̂pa, which can be determined from the turn based reduction
factors as calculated by the network loading submodel of STAQ-squeezing∗

(3.10). And the elements of the route fraction matrix express the proportion of
an OD-flow choosing a certain route. So this are the fixed route fractions ψrsp ,
as determined by the route choice submodel (3.34). It can be concluded that for
STAQ-squeezing∗ the elements of the assignment matrix A(D) can be described
as follows:

Arsa (D) =
∑
p∈Pa

α̂pa(D)ψrsp . (4.3)
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Arsa (D) fraction of demand from OD-pair rs that flows over link a
ψrsp fraction of demand from OD-pair rs that uses path p
α̂ap(D) reduction factor on path p till link a
Pa ⊆ P set of paths that use link a

From (4.2) and (4.3) and (3.35) it can be seen that considering STAQ-squeezing∗

the flow on a link a is defined as follows3:

ya(D) =
∑
rs∈RS

∑
p∈Pa

α̂pa(D)ψrsp Drs,

=
∑
p∈Pa

α̂pa(D)Qp.
(4.4)

ya(D) flow on link a for OD-vector D∗ as calculated by STAQ-squeezing∗

ψrsp fraction of demand from OD-pair rs that use path p
α̂ap(D) reduction factor on path p till link a for OD-vector D
Qp demand on path p for OD-vector D

So for an OD-vector assigned in the lower level the corresponding flows on the
links can be calculated from the path based reduction factors as determined by
the lower level assignment model STAQ-squeezing∗ and the fixed route fractions.

4.2.2 Approximation of the link flows

Given equation (4.4) the first order Taylor approximation of the link flows as
considered within this study can be explicitly formulated. A first order Taylor
approximation of the flow on link a for OD-vector D around the previous upper
level solution Dk−1 is defined as follows:

ya(D)= ya(D
k−1) + y′a(D

k−1)(D −Dk−1) + o
(
||D −Dk−1||

)
,

ya(D) ≈ ya(Dk−1) + y′a(D
k−1)(D −Dk−1).

Where using (4.4) gives:

ya(D) ≈
∑

rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p D

k−1
rs +

∑
rs∈RS

δya(D)

δDrs

∣∣∣∣
D=Dk−1

(Drs −Dk−1
rs ),

=
∑

rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p D

k−1
rs

+
∑

rs∈RS

δ
( ∑

rs′∈RS

∑
p∈Pa

α̂p
a(D)ψrs′

p Drs′

)
δDrs

∣∣∣∣∣
D=Dk−1

(Drs −Dk−1
rs ),

=
∑

rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p D

k−1
rs

+
∑

rs∈RS

( ∑
rs′∈RS

∑
p∈Pa

δα̂p
a(D)

δDrs

∣∣∣∣
D=Dk−1

ψrs′
p Dk−1

rs′

)
(Drs −Dk−1

rs )

+
∑

rs∈RS

( ∑
p∈Pa

α̂p
a(D

k−1)ψrs
p

)
(Drs −Dk−1

rs ),

3 Note that (4.4) can also be deduced from the definitions of link flow (3.9), turn flow (3.7)
and path demand (3.35) as given in subsection 3.2.1.
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=
∑

rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p D

k−1
rs +

∑
rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p (Drs −Dk−1

rs )

+
∑

rs∈RS

( ∑
rs′∈RS

∑
p∈Pa

δα̂p
a(D)

δDrs

∣∣∣∣
D=Dk−1

ψrs′
p Dk−1

rs′

)
(Drs −Dk−1

rs ),

=
∑

rs∈RS

∑
p∈Pa

α̂p
a(D

k−1)ψrs
p Drs

+
∑

rs∈RS

( ∑
rs′∈RS

∑
p∈Pa

δα̂p
a(D)

δDrs

∣∣∣∣
D=Dk−1

ψrs′
p Dk−1

rs′

)
(Drs −Dk−1

rs ). (4.5)

This derivation of this first order Taylor approximation is adopted from Frederix
et al. [8]. It can be seen that to approximate the link flows using (4.5), the
previous upper level solution, the path based reduction factors4 and the partial
derivatives of the path based reduction factors to the OD-demands4 are required.
In equation (3.10) it is shown that these path based reduction factors can be
easily determined from the turn based reduction factors as given by the network
loading submodel of STAQ-squeezing∗. More difficult is the approximation of
the sensitivity of the path based reduction factors to the OD-demands. How
these sensitivities are determined within the lower level assignment model is
described in section 4.3.

Remark 2: Note that the approximation of the link flows as given in (4.5)
is defined for STAQ-squeezing∗. When STAQ-squeezing with a variable
route choice is considered, which is a future goal, then the route fractions
are not fixed, but depending on the given OD-matrix D:

ya(D) =
∑
rs∈RS

∑
p∈Pa

α̂pa(D)ψrsp (D)Drs.

So in this case, within the partial derivatives of the link flow to the OD-
demands also the sensitivity of the route fractions to the OD-demands
should be taken into account. It should be investigated if it is possible to
approximate these sensitivities within a feasible computation timea.

aFrom a practical point of view it could be studied if it is really needed to include
sensitivities of the route fractions.

The difference between the approximation of the link flows as used in conventional
matrix estimation methods for traditional STA models (see section 2.1.1) and
the first order Taylor approximation of the link flows as given in (4.5) is the
second term in equation (4.5). This term incorporates the sensitivity of the
assignment matrix to changes in the OD-demands. Using the first order Taylor
approximation of the link flows, the first order response of the lower level problem
is taken into account in the upper level problem [8]. Note that secondary and
higher order interaction effects are omitted. As such there is not accounted for
the fact that when simultaneously changing multiple elements in the OD-vector
D, the effect on the assignment matrix might not be simply the sum of the
effects of changing D sequentially per OD-pair [5].

4 As calculated in the previous lower level assignment STAQ-squeezing∗(Dk−1).
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4.2.3 Corridor example

In this subsection it is shown by example why the conventional method to
approximate the link flows is not suitable for STAQ. Consider the corridor
network in figure 4.2. The link capacities are given above the links. There is
only one count location, on link n. Now suppose that Dk−1

rs = 160 veh/h is the
previous upper level solution.

Figure 4.2: Corridor network.

Assigning this OD-matrix5 to the given network in the lower level using STAQ-
squeezing∗, results in the reduction factors αl(D

k−1) = 0.5 and αm(Dk−1) = 1.
Given these reduction factors, the flow on link n corresponding to the solution
Dk−1 can be calculated from equation (4.4):

yn(Dk−1) = α̂pn(Dk−1)ψrsp D
k−1
rs ,

= αl(D
k−1)αm(Dk−1)ψrsp D

k−1
rs ,

= 0.5 ∗ 1 ∗ 1 ∗ 160 veh/h = 80 veh/h.

(4.6)

where the second equality follows from equation (3.10). So it can be seen that
in iteration k-1 the flow on link n does not yet match the given count value of
100 veh/h. Therefore in the next iteration, in iteration k, there is sought for a
more suitable OD-matrix Dk. Using the conventional way to approximate the
link flows as given in equation (2.2), in the upper level optimization problem
there is sought for a feasible OD-matrix for which it holds that:

yn(Dk) ≈ α̂pn(Dk−1)ψrsp D
k
rs = ỹn,

0.5 ∗ 1 ∗Dk
rs = 100 veh/h.

(4.7)

Note that Dk
rs = 200 veh/h, solves the problem as given in (4.7). However,

when this solution to the given upper level problem is assigned to the network
using STAQ-squeezing∗, it turns out that the corresponding actual reduction
factor, αl(D

k) equals 0.4. As such, the actual flow on link n corresponding to
Dk equals:

yn(Dk) = α̂pn(Dk)ψrsp D
k
rs,

= 0.4 ∗ 1 ∗ 200 veh/h = 80 veh/h.
(4.8)

So increasing the demand on OD-pair Drs, has no effect on the flow on link
n; Only the reduction factor on the turn from inlink l to outlink m changes.
Considering STAQ-squeezing∗ the flow on link m will never exceed the capacity
of 80 veh/h. Hence for STAQ-squeezing∗ it is not possible to match the given
count on link n. But using the conventional approximation (4.7) of the link flows,

5Note that in this simple network the OD-matrix consists of only one OD-pair.
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it seems as if this count value can be reached. This is because this approximation
does not account appropriately for capacity constraints. The first order Taylor
approximation of the link flows better accounts for capacity constraints; The
sensitivity of the assignment matrix to changes in the OD-demands is taken
into account. Using this approximation, the approximated flows on link m and
n do not exceed the bottleneck capacity of 80 veh/h. So considering capacity
constraints, it is more suitable to approximate the link flows using a first order
Taylor approximation6. Note that it is not very realistic to place a count location
after a bottleneck. It can be easily seen that this count value cannot be reached.
This simple example is only used for illustrative purposes. But note that adding
one extra inlink to outlink n makes the situation already realistic.

4.3 Lower level information

In subsection 4.2.2 it has been shown that to calculate the first order Taylor
approximations of the link flows, the partial derivatives of the path based
reduction factors to the OD-demands4 are required (4.5). Note that actually the
sensitivity of the assignment matrix to changes in the OD-demands is required.
Given the definition of the assignment matrix for STAQ-squeezing∗ (4.3) it can
be deduced that:

δArsa (D)

δDrs′
=

δ

δDrs′

( ∑
p∈Pa

ψrsp α̂
p
a(D)

)
,

=
∑
p∈Pa

ψrsp
δα̂pa(D)

δDrs′
.

(4.9)

Drs demand on OD-pair rs
Arsa (D) fraction of demand from OD-pair rs that flows over link a
ψrsp fraction of demand from OD-pair rs that uses path p
α̂pa(D) reduction factor on path p till link a
Pa ⊆ P set of paths that use link a

This expression can be recognized in equation (4.5). So in this study the
sensitivity of the assignment matrix to changes in the OD-demands can be
calculated given the partial derivatives of the path based reduction factors to
the OD-demands and the fixed route fractions. In this section it is described
how within the developed matrix estimation method for STAQ-squeezing∗ the
sensitivities of the partial derivatives of the path based reduction factors to the
OD-demands are determined from the lower level assignment model.

4.3.1 Sensitivity of the path based reduction factors

Recall from subsection 2.1.2 that it is not possible to explicitly determine the
sensitivity of the assignment matrix to changes in the OD-demands. It is only
possible to approximate this sensitivity using finite differences by performing |RS|
times a lower level assignment. But because this leads to infeasible computation

6Recall from subsection 2.1.2 that even for traditional STA models, a first order Taylor
approximation of the link flows is theoretically more sound [8].
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Figure 4.3: Approximation of the path based reduction factors to the turn
demands using the node model of STAQ-squeezing∗.

times Brederode et al. [5] propose to use the node-model of STAQ-squeezing∗ to
approximate the required partial derivatives of the path based reduction factors
to the OD-demands. In figure 4.3 the corresponding solution approach is shown.
A point derivative of any reduction factor αij(D) to any turn demand Tij′(D) is
approximated by running the node model twice around the current value of this
turn demand Tij′(D): ∀ij, ij′ on node n, ∀n ∈ N

δαij(D)

δTij′(D)
≈ αijrun 1− αijrun 2

2∆
. (4.10)

αij(D) reduction factor from inlink i to outlink j
Tij′(D) turn demand from inlink i′ to outlink j′

αijrun 1 reduction factor approximated as shown in figure 4.3
αijrun 2 reduction factor approximated as shown in figure 4.3
∆ finite difference step size

Note that it is assumed that the demands on all other turns ij′′ 6= ij′ on the
considered node n remain fixed. From these sensitivities of the turn based
reduction factors to changes in the turn demands, the sensitivities of path based
reduction factors to changes in the OD-demands are approximated in a few
intermediate steps.

Remark 3: Mathematically seen, the derivative of a reduction factor
to a turn demand is not defined; The reduction factors and the turn
demands are both depending on the OD-vector D. Besides it is not
possible to express the reduction factors as an explicit function of the
turn demands. As such this derivative only exists for an OD-vector D of
only one OD-pair. See appendix B for a proof. Consequently using the
proposed approximations might lead to significant errors in the model.

Given the derivatives of the turn based reduction factors to the turn demands
(4.10), the derivatives of the turn based reduction factors to the path demands
are determined as follows: ∀ij on node n, ∀p over node n, ∀n ∈ N

δαij(D)

δQp(D)
≈ δαij(D)

δTij′(D)

δTij′(D)

δQp(D)
=
δαij(D)

δTij′(D)
α̂pi (D). (4.11)

Qp(D) path demand on path p
α̂pi (D) reduction factor on path p till link i
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Where turn ij′ is part of path p and on the same node as turn ij. The equality
in (4.11) follows from the definition of turn demand (3.6). Note that the partial
derivatives from the turn based reduction factors to the path demands are
only defined for paths over the node corresponding to the considered turn. In
all other cases they are considered to be zero. From these derivatives of the
turn based reduction factors to the path demands (4.11), the derivatives of
the turn based reduction factors to the OD-demands are determined as follows:
∀ij on node n, ∀rs with one or more paths p ∈ Prs over node n, ∀n ∈ N

δαij(D)

δDrs
≈
∑
p∈Prs

δαij(D)

δQp(D)

δQp(D)

δDrs
=
∑
p∈Prs

δαij(D)

δQp(D)
ψrsp . (4.12)

Drs demand on OD-pair rs
ψrsp fraction of demand from OD-pair rs that use path p
Prs ⊆ P set of paths between OD-pair rs

Here the equality in (4.12) follows from the definition of path demand (3.35).
Note that the partial derivatives from the turn based reduction factors to the
OD-demands are only defined for OD-pairs which have one or more paths over
the node corresponding to the considered turn. In all other cases they are
considered to be zero. Finally using the product rule, it can be seen that the
derivatives of the path based reduction factors (3.10) to the OD-demands can
be determined as follows: ∀a ∈ Ã, p ∈ P, rs ∈ RS

δα̂pa(D)

δDrs
=

( ∏
ij∈IJap

αij(D)

)( ∑
ij∈IJap

δαij(D)/δDrs

αij(D)

)
. (4.13)

α̂pa(D) reduction factor on path p till link a for OD-vector D
αij(D) reduction factor from inlink i to outlink j for OD-vector D
IJap set of turns used by path p travelling from origin to link a

It should be mentioned that (4.11) and (4.12) are not described in [5], but are
deduced from the given Matlab model of the proposed matrix estimation method
for STAQ.

4.3.2 Sensitivity of the turn based reduction factors

In this section the sensitivities of the turn based reduction factors to the turn
demands as approximated by Brederode et al. [5] (see figure 4.3) are further
analysed7. By varying the initial turn demand4 on one turn Tij′ , while keeping all
other turn demands fixed on their initial values, alpha-graphs can be determined
which show for a node n the relation between the demand on the turn Tij′
and the reduction factors αn on node n. Such alpha-graphs can be calculated
for all turn demands Tij′ on a node and for all nodes n in the network. Each
alpha-graph shows the sensitivity of a specific turn based reduction factor αij to
the changes in a specific turn demand Tij′ . Recall that it is assumed that the
turn demands on all other turns on the considered node remain fixed.

7So in this section remark 3 is neglected.
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Figure 4.4: Sensitivity of the reduction factors on the first node in the Dogbone
network to changes in T4,9. Initially T4,9 = T10,9 = 2000.

An example is shown in figure 4.4. In this example the first node within the
Dogbone network8 is considered. This first node has two inlinks, link 4 and
link 10, and one outlink, link 9 with a capacity of 2500. The initial turn de-
mands in this example are assumed to be T4,9 = T10,9 = 2000. To determine
the sensitivity of the reduction factors α4,9 and α10,9 to changes in the turn
demand T4,9, the node model is run for all different possible values of T4,9.
During all runs the value of T10,9 is fixed on its initial value of 2000. Because
the capacity of inlink 4 is 4000, the range of the resulting alpha-graphs is [0, 4000].

The form of the alpha-graphs can be explained following the node model solution
algorithm (see algorithm 2). It can be seen that both inlinks on the considered
node have a directional capacity of 4000, hence both turns have right on half of
the available supply of outlink 9, which equals 1250. For 0 ≤ T4,9 ≤ 500, outlink
9 is not constraining any inflow. So both turns are demand constrained and
both reduction factors equal 1. For 501 ≤ T4,9 ≤ 1250 outlink 9 is constraining
the inflow of inlink 10. So the turn 4-9 is demand constrained whereas the
turn 10-9 is supply constrained. Inlink 4 claims less than its rightful share of
1250 of the available supply, hence the reduction factor for turn 4-9 equals 1.
Inlink 10 obtains all remaining supply t10,9 = 2500− T4,9, which is more than
its rightful share, but less then the turn demand T10,9 of 2000. Therefore the
reduction factor for turn 10-9 decreases linearly; Following (3.33) it holds that
α10,9 = t10,9/T10,9 = (2500−T4,9)/2000. Finally for 1251 ≤ T4,9 ≤ 4000, outlink
9 is constraining the inflow of both inlink 4 and inlink 10. So both turns are
supply constrained and both reduction factors are less then 1. The reduction fac-
tor on turn 4-9 decreases, because T4,9 increases; It holds that α4,9 = 1250/T4,9,
hence this reduction factor decreases non-linearly. The reduction factor on turn
10-9 remains α10,9 = 1250/2000 = 0.625.

Brederode et al. [5] mention that in general, alpha-graphs αij(Tij′) are continuous
on its positive domain, can be constructed piecewise and are differentiable almost

8See figure 3.3 in section 3.2.4.
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everywhere. On each interval of Tij′ , αij(Tij′) is determined by the same
supply and demand constraints and at each non-differentiable point, a switch
between active constraints occurs. From this knowledge about the form of the
alpha-graphs it can be concluded that the point derivatives which are used
to approximate the sensitivity of the turn based reduction factors to the turn
demands (4.10), only approximate the slope of the alpha-graph between two
non-differential points correctly. Note that herein it is neglected that the point
approximation is linear, whereas the alpha-graphs sometimes monotonously
increase or decrease non-linearly between two non-differential points. It can
be concluded that the point approximations as used in the developed matrix
estimation method, are only representative within the turn demand interval in
which the initial value of Tij′ lays.

Remark 4: It can be concluded that the derivatives of the path based
reduction factors to the OD-demands as used within the upper level
optimization problem (4.13) are only sufficiently representative, when the
OD-vector D in the upper level results in turn demands for which the
active demand and supply constraints remain active. In that case the
resulting turn demands stay between the same non-differential points of
the alpha-graphs and as such the used approximations correctly reflect
the corresponding slope of the alpha-grapha.

aNote that when the route choice is considered to be variable, the links will be
steered away from becoming (more) actively constraining. This might reduce the
number of times the described problem occurs.

The traffic regime constraints solve this problem partially. When an outlink is in
a free-flow traffic regime, the corresponding traffic regime constraint ensures that
this outlink remains in a free-flow traffic regime and hence all its inlinks remain
demand constrained. However when an outlink is in a congested traffic regime,
the corresponding traffic regime constraint ensures only that this link remains in
a congested traffic regime. It does not ensure that all the supply constrained
inlinks remain supply constrained and that all the demand constrained inlinks
remain demand constrained. So for turns to a congested outlink it is possible
that the approximated point derivatives are not representative enough, because
the turn demands corresponding to the OD-vector in the upper level jump over
a non-differential point of the alpha-graph.

Consider the example on the first node of the Dogbone network (see figure 4.4).
In this example the initial turn demands are assumed to be T4,9 = T10,9 = 2000.
So the point derivatives of the turn based reduction factors α10,9 and α4,9 to
changes in the path demand T4,9 are determined around the point T4,9 = 2000,
fixing T10,9 = 2000. Running the node-model twice around this point, results in
the following point derivatives:

δα4,9(D)

δT4,9
≈ −0, 000313 and

δα10,9(D)

δT4,9
= 0. (4.14)

Note that in the initial situation outlink 9 is in a congested traffic regime. So the
traffic regime constraint corresponding to outlink 9 ensures that the OD-matrix
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Figure 4.5: The traffic regimes in the alpha graphs for T4,9 on the first node in
the Dogbone network. Initially T4,9 = T10,9 = 2000.

in the upper level is chosen such that T4,9 + T10,9 > 2500. In figure 4.5 this
corresponding area is coloured green. It can be seen that this congested area
is split into two intervals by a non-differential point. In the left (light green)
area, turn 4-9 is demand constrained and turn 10-9 is supply constrained. Here
501 ≤ T4,9 ≤ 1250 and T10,9 = 2000. And in the right (dark green) area, the
demand on both turns is supply constrained. This holds for 1251 ≤ T4,9 ≤ 4000
and T10,9 = 2000. It can be seen that the point derivatives as given in (4.14) are
only representative enough for OD-vectors D in the right (dark green) interval.
However in the upper level also OD-vectors corresponding to the left interval
can be chosen. For these OD-vectors the point derivatives as given in (4.14) are
not sufficient.

Remark 5: It is not possible to formulate constraints on the turn
demands in the upper level to ensure that active supply and demand
constraints remain active; The relationship between the turn demands
and the sets of demand constrained and supply constrained inlinks is
determined by the node-model algorithm in the lower level assignment
model STAQ-squeezing∗. See equation (3.25) in section 3.2.2. Therefore
it is not possible to define explicit turn demand constraints to prevent a
jump over non differentiable points of the alpha-graphs.

4.4 Approximation of the path queueing delays

In the matrix estimation problem as considered in this study (4.1), not only the
differences between the observed and estimated link flows, but also the differences
between the observed and estimated path queueing delays are included in the
upper level objective function. Recall that the average travel time on a path
consists of the free-flow travel time and the queueing delay on that path. But
because the free-flow travel time on a path is fixed, only the path queueing delays
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are considered in the objective function. In the next subsection the calculation
of the average path travel times and hence also the calculation of the average
path queueing delays are explained for STAQ-squeezing∗.

4.4.1 Calculation of the average path travel time

The derivation of the average path travel time9 for STAQ-squeezing∗ as given in
this subsection is adopted from Bliemer et al. [3]. For each path p the average
path travel time cp within a given demand period [0, T ] can be determined. This
is the average travel time of the vehicles departing on path p during time interval
[0, T ]. The average path travel time cp consists of two terms; It is the sum of the
free-flow travel time on path p and the average path queueing delay on path p.

cp(D) = tp + τp(D), ∀p ∈ P. (4.15)

cp(D) average travel time path p for OD-vector D
tp free-flow travel time path p
τp(D) average queueing delay path p for OD-vector D

The term tp can be calculated by adding the free-flow travel times of all links in
path p. The free-flow travel time of a link a is simply given by its length divided
by its maximum speed.

cp(D) =
∑
a∈p

La
vmaxa

+ τp(D), ∀p ∈ P. (4.16)

La length (km) link a
vmaxa maximum speed (km/h) link a

To derive an expression for the term τp(D), first the average queueing delay on
link-level is determined. At time 0, there are zero vehicles in the vertical queue
of a link a. Therefore the first vehicle departing in time period [0, T ] has a delay
of zero. At time T , the number of vehicles in the vertical queue of a link a,
equals the number of vehicles that have flown into the link, minus the number
of vehicles that could exit the link:

Ba(D) = ya(D)T − αa(D)ya(D)T =
(

1− αa(D)
)
ya(D)T, ∀a ∈ A. (4.17)

From equation (4.4) it can be seen that for STAQ-squeezing∗ ya(D) can be
written as:

ya(D) =
∑
p∈Pa

α̂pa(D)Qp, ∀a ∈ A. (4.18)

Ba(D) number of vehicles in the queue on link a at the end of [0, T ]
ya(D) inflow (veh/h) on link a
T time horizon
αa(D) reduction factor of link a
Pa set of paths that use link a
Qp demand (veh/h) path p
α̂pa(D) path-based reduction factor for path p from origin till link a

9The travel time calculator within STAQ uses cumulative flow diagrams and not fundamental
diagrams to calculate the average path travel times.
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Now the delay of the last vehicle departing in time period [0, T ] on link a can be
computed by dividing the number of vehicles in the queue on link a at time T,
by the outflow rate of link a:

Ba(D)

αa(D)ya(D)
=

(
1− αa(D)

)
ya(D)T

αa(D)ya(D)
=

(1− αa(D))

αa(D)
T, ∀a ∈ A. (4.19)

Hence the average queueing delay for all vehicles that have entered link a during
time period [0, T ] is:

T

2

(
1− αa(D)

)
αa(D)

, ∀a ∈ A. (4.20)

Note that this average link queueing delay is based on the number of vehicles
that entered a link at time instant T, and not on the total number of vehicles
that will eventually pass through the link when all flow demand within period
[0, T ] exits the network. Therefore, to obtain the average delay that a vehicle
travelling along path p encounters on link a, the average link queueing delays
are scaled up by a factor Qp/yap(D):

τap(D) =
Qp

yap(D)

(
1− αa(D)

)
αa(D)

T

2
=

Qp
α̂pa(D)Qp

( 1

αa(D)
− 1
)T

2
,

=
1

α̂pa(D)

( 1

αa(D)
− 1
)T

2
, ∀a ∈ A.

(4.21)

τap(D) average queueing delay on link a of path p
yap(D) inflow (veh/h) on link a of vehicles using path p

Here the expression for yap can be deduced from (4.18). This factor is the ratio
between the total number of vehicles that will eventually pass through link a
when all path flow demand within period [0, T ] exits the network, QpT , and the
number of vehicles using path p that entered link a at time instant T , yap(D)T .
Note that the average link queueing delays are depending on the reduction
factors on previous links. Indeed it is known from queueing models that the
composition of the vehicles in the queue depends on upstream bottlenecks.

Finally the average path queueing delay τp(D) can be written as the sum of the
consecutive average link queueing delays τap(D) on path p:

τp(D) =
∑
a∈p

τap(D) =
∑
a∈P

1

α̂pa(D)

( 1

αa(D)
− 1
)T

2
,

=
T

2

∑
a∈p

(
1

α̂pa(D)αa(D)
− 1

α̂pa(D)

)
=
T

2

(
1

α̂p(D)
− 1

)
, ∀p ∈ P.

(4.22)

α̂pa(D) path-based reduction factor for path p from origin till link a
α̂p(D) path-based reduction factor for path p from origin till destination
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The last term can be found realizing that the previous term is a telescoping
series. Note that if a2 is the successor of a1 on path p then it holds that:

1

α̂pa1(D)αa1(D)
=

1

α̂pa2(D)
. (4.23)

Substituting (4.22) into the expression for τp(D) in (4.15), the formula for the
average path travel time becomes:

cp(D) =
∑
a∈p

La
vmaxa

+
T

2

(
1

α̂p(D)
− 1

)
, ∀p ∈ P. (4.24)

Here the first term represents the the free-flow travel time on path p and second
term the average queueing delay on path p.

Remark 6: Note that only the path queueing delay on the total path p
with travel time information, p ∈ P̃ , are included in the objective function.
See equation (3.2). But in practice there are almost never measured travel
times available from origin to destination. However, from equation (4.21)
it can be seen that it is possible to determine the queueing delay on a
section of a path, by summing only the relevant average link queueing
delays. As such, it could be considered to include also sections of paths in
the third queueing delay part, f3, of the upper level objective functiona.

aNote that the measured travel time on a section of links might be used by different
paths. It should be investigated how this can be taken into account.

4.4.2 Approximation of the average path queueing delays

In the previous subsection, as a part of the average travel time on a path, an
expression for the average path queueing delay τp(D) is derived (4.22). For all
paths p for which observed travel time information is available, the corresponding
path queueing delays are included in the upper level objective function of the
matrix estimation problem for STAQ-squeezing∗ (4.1). Note that these path
queueing delays can only be determined after computing a lower level assignment
with the assignment model STAQ-squeezing∗, because only then the path based
reduction factors α̂p(D) are known (3.10). Therefore, as shown in figure 4.1,
also the path queueing delays are approximated in the upper level optimization
problem of the developed matrix estimation method for STAQ-squeezing∗.

To approximate the path queueing delays, the path based reduction factors from
origin till destination as calculated within the previous lower level assignment
are used. This leads to the following approximations:

τp(D) ≈ T

2

(
1

α̂p(Dk−1)
− 1

)
, ∀p ∈ P. (4.25)
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T time horizon
τp(D) average queueing delay on path p
α̂p(D) path-based reduction factor for path p from origin till destination
Dk−1 OD-vector, previous upper level solution

In figure 4.1 these approximations are formulated in vector notation. Given the
approximations of the path queueing delays on element level (4.25) the following
vector notation is introduced:

τ(D) ≈ T

2

(
α̂(Dk−1)−1 −~1

)
. (4.26)

τ(D) vector of path queueing delays, of dimension |P̃ |
Dk−1 OD-vector, previous upper level solution

Where α̂(D)−1 is defined as the vector with the elements α̂p(D)−1 for all paths
p in P̃ . And ~1 is defined as the vector of ones with length |P̃ |.

Remark 7: Recall that Brederode et al. [5] propose to approximate the
link flows using a first order Taylor approximation around the previous
upper level solution. It would be more consistent to approximate also
the queueing delays using a first order Taylor approximation around
the previous upper level solution Dk−1. This is possible; The partial
derivatives of the queueing delays to the OD-demands at the point Dk−1

can be determined. The advantage of taking into account the response of
the lower level in the upper level approximations has been discussed in
subsection 2.1.2.

4.5 Traffic regime constraints

Finally in this last section the traffic regime constraints as considered within the
upper level of de developed matrix estimation method for STAQ-squeezing∗ (4.1)
are discussed. Recall from subsection 3.3.1, that to calculate the traffic regime
constraints, the reduction factors corresponding to the given OD-matrix D are
required. This can be seen in equation (3.41). So also for the traffic regime
constraints lower level information is needed to determine them explicitly. In
the developed matrix estimation method for STAQ-squeezing∗ there is chosen
to approximate the traffic regime constraints using the reduction factors as
calculated within the previous lower level assignment. This leads to the following
approximation:

χj =


1 then

∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D
k−1) ≥ µcCj ,

0 then
∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D
k−1) ≤ µfCj ,

∀j ∈ J̃ . (4.27)

χj ∈ {1, 0}, indicates if outlink j is actively constraining inflow
Drs demand from origin r to destination s
ψrsp fraction of OD-demand rs on path p
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αij(D) reduction factor from inlink i to outlink j for OD-vector D
Dk−1 OD-vector, previous upper level solution
Cj capacity of outlink j
µc safety factor for congested links, µc > 1
µf safety factor for free-flow links, µf < 1
Pj set of paths using outlink j

ĨJjp set of turns on path p travelling from origin to outlink j,
excluding the last turn to link j

J̃ set of outlinks j which can actively constrain flow

Note that there are included safety-factors in (4.27). These factors are introduced
to compensate for possible inaccurate approximations. Recall that the traffic
regime constraints ensure that the total flow demand on a link j remains
either above or below the capacity of link j, depending on whether this link
is in a congested or a free-flow traffic regime. However within the upper level
optimization problem the total flow demand on link j is approximated (4.27).
As such, it can occur that the actual flow demand as calculated by a lower level
assignment with the assignment model STAQ-squeezing∗ turns out to be lower
or higher. So it could be that the traffic regime constraints in the upper level
seem to be satisfied, but in reality they are violated. To prevent this the link
capacities are corrected with a safety factor of µf < 1 for free-flow links and
µc > 1 for congested links. In practice these factors are set by trial and error.
For the Dogbone network µf = 0.99 and µc = 1.05 are used.

Remark 8: Also for the traffic regime constraints it is more consistent to
approximate the link demands using a first order Taylor approximation.
Note that because there is a similarity between the link flows (4.4) and the
link demandsa, the first order Taylor approximations of the link demands
can be determined similar to the first order Taylor approximations of the
link flows.

aSee also section 3.2.1 equation (3.8) and equation (3.9).
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Chapter 5

Solving the upper level

In the previous two chapters the matrix estimation problem for STAQ-squeezing
with fixed route choice and no junction modelling is formulated and the developed
solution method for this problem has been described. In this chapter the upper
level optimization problem as considered within the developed matrix estimation
method for STAQ-squeezing∗ is further analysed. The goal is to determine
whether the fmincon interior point algorithm as used within the current Matlab
model is suitable for this problem, or if a different solver should be used.

5.1 Simplified upper level optimization problem

The developed matrix estimation method for STAQ-squeezing∗ has been shown
in figure 4.1. In this chapter there is referred to the corresponding upper level
problem as the simplified upper level optimization problem. The problem is
called simplified because the link flows, queueing delays and link demands are
approximated instead of determined by the lower level assignment model. The
simplified upper level optimization problem in substep (Dk−1 → Dk) reads:

min
D

w1

∑
rs∈RS

(Drs −D0
rs)

2
+ w2

∑
a∈Ã

(ŷa(D)− ỹa)2 + w3

∑
p∈P̃

(τ̂p(D)− τ̃p)2.

ŷa(D) =
∑
p∈Pa

α̂pa(Dk−1)ψrsp Drs + ...

...
∑
rs∈RS

( ∑
rs′∈RS

∑
p∈Pa

δα̂pa(D)

δDrs

∣∣∣∣
D=Dk−1

ψrs
′

p Dk−1
rs′

)
(Drs −Dk−1

rs ).

τ̂p(D) =
T

2

(
1

α̂p(Dk−1)
− 1

)
.

s.t. D ≥ 0.

χj =

{
1 then Ŷj(D) ≥ µcCj ,
0 then Ŷj(D) ≤ µfCj ,

∀j ∈ J̃ .

Ŷj(D) =
∑
p∈Pj

ψrsp Drs

∏
ij∈ĨJjp

αij(D
k−1).

(5.1)
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ŷa(D) approximation of the flow on link a
τ̂p(D) approximation of the queueing delay on path p

Ŷj(D) approximation of the total demand on link j

The distance functions as used in the objective function have been introduced
in equation (3.2) and the expressions for the approximations of the link flows,
queueing delays and traffic regime constraints follow respectively from equations
(4.5), (4.25) and (4.27). It can be seen that the objective function as given
in (5.1) is a convex quadratic function. Moreover if the weighting factor w1 is
positive, then the objective function is strictly convex and thus the solution
Dk of the simplified upper level optimization problem is unique. This is shown
in appendix C. Furthermore note that the corresponding constraints are linear
inequalities.

In the current Matlab implementation of the developed matrix estimation method
for STAQ-squeezing∗, the fmincon interior point algorithm is used to solve the
simplified upper level optimization problem. The optimization decision table in
the Matlab documentation gives an overview of the available solvers in Matlab [12].
Given that the simplified upper level optimization problem has a (strictly) convex
quadratic objective and linear constraints, this table shows that quadprog is the
most suitable solver. However, note that the currently used fmincon algorithm
can also be applied; The objective function is smooth and non-linear. Although
the quadprog solver is most efficient for the problem as given in (5.1), within this
study there is chosen to keep using the current fmincon solver. The reason for
this choice is that in the analysis of the developed solution method (see chapter
4) it has been concluded that the sensitivities as used within the approximations
of the link flows might lead to significant errors (see remark 3). In that case a
different approximation of the link flows or even a different heuristic approach
could be needed, which influences the optimization problem and hence also the
requirements for the solver. The current (suitable) fmincon solver is used to
investigate this further.

Within fmincon there are five different algorithms to choose from. The Matlab
documentation [12] of fmincon describes that both the sqp algorithms and the
active set algorithm are only suitable for small to medium sized problems. But
the considered matrix estimation problem is a large scale problem; In the Matlab
implementation of the developed matrix estimation method for STAQ-squeezing∗

large sparse matrices are used. Only the trust region reflective algorithm and the
interior point algorithm can handle such a large scale problem. But because the
trust region reflective algorithm only allows (either) bounds or linear equality
constraints, the currently used interior point algorithm is indeed most suitable
for the given simplified upper level optimization problem. Within the fmincon

interior point algorithm it is optional to include the Hessian and the gradient. In
this study there is decided to include the gradient, because otherwise the fmincon
solver determines this gradient using finite differences. When the number of
OD-pairs becomes large, this slows down the optimization process significantly.
In the next section it is shown how the gradient of the simplified upper level
optimization problem can be calculated. Note that it would also be possible to
include the Hessian matrix.
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5.2 Gradient

To determine the gradient of the simplified upper level objective function as
shown in (5.1), the three objective parts (f1, f2 and f3) are analysed separately.
Note that given the gradients of the three objective parts, the gradient of the
simplified objective function can be determined using the weighting factors.

5.2.1 Gradient (f1)

The partial derivatives of the first (prior) part of the upper level objective
function to the OD-demands are given by:

δf1

δDrs
=

δ

δDrs

( ∑
rs′∈RS

(Drs′ −D0
rs′)

2
)
,

= 2(Drs −D0
rs), ∀rs ∈ RS.

(5.2)

So the gradient of the first part of the simplified upper level objective function
can be calculated using (5.2).

5.2.2 Gradient (f2)

The partial derivatives of the second (counts) part of the simplified upper level
objective function to the OD-demands are given by:

δf2

δDrs
=

δ

δDrs

(∑
a∈Ã

(ŷa(D)− ỹa)2
)
,

=
∑
a∈Ã

2(ŷa(D)− ỹa)
δŷa(D)

δDrs
, ∀rs ∈ RS.

(5.3)

Here for each link a ∈ Ã, ŷa(D) is defined as given in (4.5). Hence the partial
derivatives of ŷa(D) to the OD-demands are defined as follows:

δŷa(D)

δDrs
=

δ

δDrs

( ∑
rs′∈RS

∑
p∈Pa

α̂pa(Dk−1)ψrs
′

p Drs′ + ...

...
∑

rs′′∈RS

( ∑
rs′∈RS

∑
p∈Pa

δα̂pa(D)

δDrs′′

∣∣∣∣
D=Dk−1

ψrs
′

p Dk−1
rs′

)
(Drs′′ −Dk−1

rs′′ )

)
,

=
∑
p∈Pa

α̂pa(Dk−1)ψrsp +
∑

rs′∈RS

∑
p∈Pa

δα̂pa(D)

δDrs

∣∣∣∣
D=Dk−1

ψrs
′

p Dk−1
rs′ ,

∀a ∈ A, ∀rs ∈ RS.
(5.4)

Note that the path based reduction factors and their partial derivatives to the
OD-demands for the previous upper level solution Dk−1 can be determined from
the available lower level information, see respectively (3.10) and (4.13). So the
gradient of the second part of the simplified upper level objective function can
be calculated using (5.3) and (5.4).
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5.2.3 Gradient (f3)

The partial derivatives of the third (path queueing delays) part of the simplified
upper level objective function to the OD-demands are given by:

δf3

δDrs
=

δ

δDrs

(∑
p∈P̃

(τ̂p(D)− τ̃p)2
)
,

=
∑
p∈P̃

2(τ̂p(D)− τ̃p)
δτ̂p(D)

δDrs
, ∀rs ∈ RS.

(5.5)

Here for each path p ∈ P̃ , τ̂p(D) is defined as given in (4.25). Hence the partial
derivatives of τ̂p(D) to the OD-demands are defined as follows:

δτ̂p(D)

δDrs
=

δ

δDrs

T

2

(
1

α̂p(Dk−1)
− 1

)
= 0, ∀rs ∈ RS. (5.6)

Note that the approximation of the queueing delay on path p is a constant term
which is not depending on the OD-matrix D. So the derivatives of the path
queueing delays to the OD-demands all equal zero. And from equation (5.5) it
can be seen that also the gradient of the third part of the simplified upper level
objective function is a vector of zeros.

It can be concluded that the third part (f3) of the simplified upper level objective
function plays no role in the gradient of the simplified upper level objective func-
tion. This shows even more (see also remark 7) the importance of approximating
the path queueing delays using a first order Taylor approximation. Using a first
order Taylor approximation, the approximation of the path queueing delays is
not a constant but a linear equation depending on the OD-matrix D and as such
also the third (path queueing delay) part of the objective function has effect on
the gradient of the objective function.
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Chapter 6

Conclusion

In this chapter the research question as given in chapter 2 is answered. Besides
recommendations are given on the further development of the proposed matrix
estimation method for STAQ. Finally in the discussion the matrix estimation
problem, which has been the central subject of this study, is discussed from a
mathematical and practical point of view.

6.1 Conclusion

Using the analysis of the proposed matrix estimation method for STAQ-squeezing∗

as given in chapter 4 and the analysis of the corresponding simplified upper level
optimization problem as described in chapter 5, the given research question can
be answered. Below once again this research question is given:

Which solver is (most) suitable for the upper level optimization
problem within the matrix estimation method for the assignment
model STAQ-squeezing as developed by Brederode et al. [5], assuming
fixed route choice and no junction modelling?

Recall that the matrix estimation problem for the assignment model STAQ-
squeezing with fixed route choice and no junction modelling is a NP-hard
problem. Therefore heuristic methods are used to find suitable solutions for
this bi-level problem. Brederode et al. [5] propose a matrix estimation method
in which approximations of the link flows and the path queueing delays are
used in the upper level problem. As such, contrary to the original upper level
optimization problem in each substep Dk−1 → Dk, this simplified upper level
optimization problem has a (strictly) convex quadratic objective function with
linear inequality constraints. From these problem characteristics, in chapter
5 it has been concluded that within Matlab the quadprog solver can be used
best to find the minimum of the given simplified upper level optimization prob-
lem. However also the currently used fmincon interior point algorithm is suitable.

Because the proposed matrix estimation method for STAQ-squeezing∗ is imple-
mented in Matlab, choosing a build-in solver is most practical. But note that also
an open source solver or building an own solver could be considered. However
during the project, investigating these options turned out to have no priority.
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The fmincon interior point algorithm works as desired on small test networks.
And at the moment there is worked on the scalability of the implementation,
such that it is possible to perform tests on large scale networks. More important
to investigate, are the problems with the approximations of the link flows, as
identified in the analysis of the proposed matrix estimation method (see chapter
4). Remark 3 describes that the way in which the sensitivity of the assignment
matrix to changes in the OD-demands is approximated is mathematically seen
not correct. And also remark 4 and remark 5 indicate possible errors in the ap-
proximated sensitivities. It still has to be determined whether these errors within
the sensitivities as used in the upper level approximations of the link flows are sig-
nificant on large scale networks. Currently this is the most important question to
answer; If the errors are too big1, it could be desired to adapt the proposed matrix
estimation method. Note that this could influence the requirements for the solver.

One possibility to adapt the proposed matrix estimation method would be to use
only the assignment matrix and not the sensitivity of the assignment matrix to
changes in the OD-demands to approximate the link flows. However in chapter 2
and in the example in section 4.2.3 it has been shown that for STAQ-squeezing,
which considers capacity constraints, this conventional approximation method is
not suitable. A solution could be to use the conventional method to approximate
the link flows, but to include for each link only the paths which have not yet
passed a bottleneck2. On these free-flow paths a change in path demand results
indeed in a change in link flow, such that it is possible to use the conventional
approximation method for these paths. It is not possible to approximate the
required sensitivities as required within the proposed matrix estimation method
using finite differences, because this results in infeasible computation times. The
other possibility would be to investigate which other heuristic methods could be
used to solve the matrix estimation problem.

6.2 Recommendations

Analysing the proposed matrix estimation method has resulted in some more rec-
ommendations for the further development of the given matrix estimation method.
These recommendations follow from the remarks as discussed in chapter 4. Note
that these remarks focus on improving the current proposed matrix estimation
method. So it is assumed that the required sensitivities of the assignment matrix
to changes in the OD-demands can be determined as described in subsection 4.3.1.

Observation 1 It might be better to perform only one or a few steps within
the simplified upper level optimization problem (in step Dk−1 → Dk) instead of
solving it to optimality before a new lower level assignment is performed. The
approximations of the link flows, path queueing delays and link demands (as
needed within the traffic regime constraints) might differ significantly from their
actual values as can be determined using the lower level assignment model. Only
by performing a lower level assignment it is known whether the steps as taken
in the upper level are indeed in the right direction. This has been discussed

1It should be checked if there is a significant difference between the sensitivities as determined
by using the node model (see figure 4.3) and by using finite differences on lower level assignments.

2On all other paths the flow remains fixed on the value as determined by the bottleneck.
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in remark 1. More precisely, in each substep Dk−1 → Dk of proposed solution
approach as shown in figure 4.1 the approximation F̂ (D) of the the objective
F (D) is a (strictly) convex approximation of the in general (highly) nonconvex
function F (D). So the danger is that even if there is started in step 1 with a
vector D1 near a local minimizer D∗ of the original bilevel problem, by solving
D1 → D2, the new iterate D2 could be further away from D∗. So it could be
that: ‖D∗ −D1‖ < ‖D∗ −D2‖ and even F (D∗) < F (D1) < F (D2).

Observation 2 It is important to use also a first order Taylor approximation
to approximate the path queueing delays and the traffic regime constraints in
the upper level optimization problem. See respectively remark 7 and remark 8.
In the current implementation of the proposed matrix estimation method both
are approximated using only the assignment matrix from the previous lower
level assignment. However in subsection 2.1.2 it has been discussed that it is
theoretically more sound to include also the response of the lower level in the
upper level optimization problem. As such, similarly as for the link flows, using
a first order Taylor approximation to approximate the path queueing delays and
the link demands would be more suitable. Note that for the path queueing delays
it is extra important to use a first order Taylor approximation; The current
approximation of the path queueing delays does not depend on the OD-matrix
D at all (see section 5.2.3).

Observation 3 It should be realized that choosing a solver for the upper level
problem within the developed matrix estimation method for STAQ-squeezing
without route choice and junction modelling is not the final goal; Finally the
aim is to solve the upper level problem in the developed matrix estimation
method for the full assignment model STAQ. So considering a simplified variant
of STAQ is just a intermediate step. In remark 2 has been mentioned that
when STAQ-squeezing is used as an equilibrium model, it is questionable if
it is still possible to approximate the sensitivity of the assignment matrix to
changes in the OD-demands. This is subject of further research. Note that
adding junction modelling and considering also the queueing phase, make the
optimization problem even more complex.

Finally some minor observations; In remark 6 it has been described that not
only the total path queueing delays, but also queueing delays on a section of a
path could be included in the objective function. This would be advantageous,
because in practice most travel time information is available on sections of links.
Furthermore from the uniqueness analysis in section 3.4 it can be concluded
that it is required to put always some weight on the prior part (f1) of the
objective function. This is because only the first part of the objective function
can guarantee unique minimizers under convexity conditions on the traffic regime
constraints. Although this probably works in practice (also when w2, w3 > 0),
note that this will not always guarantee a unique solution.
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6.3 Discussion

The matrix estimation problem has been the central subject of this study. In this
subsection the matrix estimation process is analysed from a mathematical and
practical point of view. In traffic engineering matrix estimation is a well-known
problem and it is common to apply a matrix estimation step within the four
step traffic model (see figure 1.6). The reason to apply matrix estimation has
been discussed in section 1.3.

Recall that the goal of the matrix estimation process is to use additional traffic
information, which are observations from practice, to refine the prior OD-matrix
as determined in the first three steps of the four step traffic model. The difficulty
herein is that there is no one-to-one correspondence between the (prior) OD-
matrix and these observations. Given an OD-matrix, which estimates the
number of trips between all origin destination combinations in the network,
the corresponding link flows, travel times and other relevant characteristics
can be predicted using an assignment model. It is important to realize that
assignment models are meant to forecast the usage of the network. So they
can be applied for example to determine where the bottlenecks or queues in a
congested situation possibly will occur. However, it cannot be expected that the
results of these assignment models perfectly reflect the situation which can be
observed in practice. Therefore, it is questionable if it is valuable to try to match
the link flows as predicted by the chosen assignment model, with the link flows
as can be observed in practice. This question could be stated as follows: Suppose
that the OD-matrix D0 is a good approximation of the real OD-distribution.
How precisely will the outcome y(D0) (link flows) of the assignment model then
describe the real measurable link flow ỹ? A relative error

‖y(D0)− ỹ‖
‖ỹ‖

of 10% or 40% or other?

So can the predicted assignment matrix D0 or the prediction of the assignment
model for the link flows y(D0) be trusted more?

Another observation is the following non-uniqueness problem; Within the matrix
estimation process the input of the assignment model, the prior OD-matrix, is
adapted such that it fits as good as possible with the required output, which are
observed characteristics like link flows and travel times. So given the required
output of the assignment model, there is sought for a suitable input, hence for
an OD-matrix that results after assignment in the required output. Recall that
given an OD-matrix the assignment model results in one corresponding vector of
link flows and one corresponding vector of travel times. However given the flows
on the links and/or the travel times on the paths there can be found different OD-
matrices which result (after assignment with the considered assignment model)
in these observations, assuming that the observations are mutually consistent.
This makes it difficult to judge the obtained results. Furthermore note that it
would be theoretically more sound, to adapt the model itself and not the input
of the model when the output is not as desired. It can be concluded that, from
a mathematical and practical point of view, the value of the matrix estimation
process is a point of discussion.
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Appendix A

The traditional STA model

A.1 Assignment problem

In this appendix the assignment problem for a traditional static traffic assignment
(STA) model is discussed. The goal of this appendix is to give the reader insight
in the main differences between the STAQ equilibrium model and traditional STA
models. Traditional STA models are either unrestrained or capacity restrained
static equilibrium assignment models. In an unrestrained or capacity restrained
assignment model, there are assumed to be no capacity (or storage) constraints.
Hence flows are allowed to exceed link capacities. So within a traditional STA
model, a feasible flow, (x, f), x ∈ IR|E| × IR|P |, does not have to satisfy capacity
constraints. In a traditional STA model, for a flow to be feasible, the following
conditions must hold [15]:

Λf = d

∆f − x = 0

f ≥ 0

(A.1)

Λ path-demand incidence matrix
∆ path-edge incidence matrix
f path flow vector, f = (fp, p ∈ P )
fp traffic flow (veh/hour) on path p
d demand vector, d = (dw, w ∈W )
dw traffic demand (veh/hour) from sw to tw
x edge flow vector, x = (xe, e ∈ E)
xe traffic flow (veh/hour) on edge e
V set of vertices
E set of edges, e = (i, j), i, j ∈ V
W set of OD-pairs (sw, tw), sw, tw ∈ V
P set of paths

The first condition ensures the conservation of flow. The second condition
describes the relationship between path flows and link flows. And the last
equation ensures that all path flows are positive. So for a STA model, given
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demand d, a feasible flow (x, f) can be defined as:

Fd = {(x, f) | (x, f) satisfies (A.1) }. (A.2)

d demand vector
x edge flow vector
f path flow vector

Contrary to STA models, STAQ does take into account capacity (and storage)
constraints. Hence for STAQ, not only conservation of flow and non-negativity
constraints, but also capacity constraints should be satisfied. This makes the
assignment problem for STAQ more complex, but also more realistic.

Within an equilibrium model, the link flows in the user equilibrium (UE) should
comply with Wardrop’s first principle (see section 1.2.1). Wardrop’s principle
states that a feasible flow (x, f) ∈ Fd is a UE with respect to the given demand
d, if for all w ∈W it holds that for any p, q ∈ Pw we have [15]:

fp > 0 ⇒

{
cp(x) = cq(x) if fq > 0.

cp(x) ≤ cq(x) if fq = 0.
(A.3)

Pw set of all directed paths p connecting sw to tw
fp traffic flow (veh/hour) on path p
cp(x) path cost function
x edge flow vector

Because a traditional STA model assumes no capacity constraints, all link costs1

are separable (see section 1.2.2); The cost on a link is only depending on the
flow on the link itself. Hence for traditional STA models the link and path costs
can be formulated as a function of the link flows:

ce = ce(xe),

cp(x) =
∑
e∈p

ce(xe), ∀p ∈ P. (A.4)

xe traffic flow (veh/hour) on edge e
ce(xe) edge cost function
cp(x) path cost function

For STAQ it is not possible to express the link and path costs as in (A.4). Within
STAQ, the cost on a link is not only depending on the flow on the link itself,
but also on the flows on all other links in the network. So for STAQ ce = ce(x).

Assume that the link cost functions ce(xe) are continuous and non-decreasing in
xe:

ce(xe) ≤ ce(x′e) for xe ≤ x′e. (A.5)

Beckmann et al. have shown that the UE for a traditional STA model under
condition (A.5) can be computed as the solution of the following optimization

1Recall that for simplicity in this report the generalized costs are considered to consist of
travel times only.
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problem [15]:

min
x,f

∑
e∈E

∫ xe

0

ce(τ) dτ s.t. (x, f) ∈ Fd . (A.6)

Solving this optimization problem, results in link flows and path flows (x, f)
corresponding to the given demand vector d. It can be concluded that (A.6)
describes the assignment problem for a traditional STA model as an optimization
problem.

For STAQ it is not possible to define the assignment problem explicitly as one
optimization problem. Due to the capacity constraints within STAQ, flows can
be held up on bottlenecks upstream from the considered link. As such path
flows are not defined for STAQ2. Within STAQ only the inflow an outflow of
each link can be determined. The node model, link model and junction model
within the network loading submodel of STAQ interact, to determine link flows
given the path demands. To do so a fixed point problem has to be solved (see
subsection 3.2.1). Consequently it is not possible to define an explicit relationship
between path demands and link flows for STAQ. It can be concluded that network
loading for a traditional STA models consists of a simple relationship between
path flows and link flows, whereas for STAQ a complex algorithm is needed to
determine the link flows given the path demands. Therefore, for STAQ it is not
possible to combine the route choice and network loading problems into one
optimization problem. Using STAQ as an equilibrium model3, iterations between
the route choice submodel and the network loading submodel are preformed
to find solutions to the assignment problem for STAQ. After convergence the
resulting flows approximate a UE.

A.2 Matrix estimation

For a traditional STA model the matrix estimation problem is formulated as
follows (see section 1.3):

min
D

F (D) = αf1(D,D0) + (1− α)f2(y, ỹ)

s.t. y = STA(D)

D ≥ 0

(A.7)

D vector/matrix of estimated OD-demands
D0 vector/matrix of prior (modelled) OD-demands
y vector of estimated link flows
ỹ vector of observed link flows
f1, f2 distance functions
α ∈ [0, 1] weighting factor

Within this appendix the uniqueness of the solutions to the second part of the
upper level objective function in (A.7) is analysed. So the situation is analysed
for which α in (A.7) is set to zero.

2Instead there is worked with path demands (and reduction factors).
3Recall that this is possible in the squeezing-phase but not in the queueing-phase of STAQ

(see subsection 1.4.2).
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Because STAQ reduces to a STA model when the crossing fraction matrix equals
the path-link incidence matrix, this problem is interesting to consider.

In the remainder of this appendix the notation of appendix A.1 is used, which is
the most commonly used notation for traditional STA-models. So from now on
the vector of OD-demands and the vector of link flows as introduced in (A.7)
are denoted differently (D ≡ d, y ≡ x). Hopefully this causes no confusion. So
the matrix estimation problem as considered in this appendix reads:

min
d≥0

f2(d) :=
∑
e∈Ẽ

(xe(d)− x̃e)2

s.t. (f, x) ∈ Fd is UE w.r.t. given costs

(A.8)

d demand vector
x edge flow vector
f path flow vector
xe(d) traffic flow (veh/hour) on edge e for OD-vector d
x̃e link flow measurement on link e

Ẽ ⊂ E set of links with a link flow measurement
Fd set of feasible flows, see A.2

The possible nonuniqueness of minimizers of (A.8) is discussed. To investigate
whether there exists an unique OD-vector for which the corresponding path flows
match the given observed link flows it is assumed that the flows on all links are
known;

Assumption 1: For given d̄ > 0 the vector x̄ is the (unique) link flow UE.
Furthermore Ẽ = E and x̃e = x̄e, e ∈ E.

So it is assumed that x̄ is given, such that it is an UE with respect to some cp
and some d̄ ≥ 0. The question is, if there exist different OD-matrices for which
the corresponding path flows perfectly match these given edge flows, or if only d̄
suffices. To find al possible solutions such that (x̄, f) is a UE with respect to d,
the following problem has to be solved4:

Λf = d

∆f = x̄

f, d ≥ 0

(A.9)

where only the paths p in Λ and ∆ can be taken, such that for p ∈ Pw we have:

cp(x̄) = min
q∈Pw

cq(x̄). (A.10)

Λ path-demand incidence matrix
∆ path-edge incidence matrix
x̄ observed edge flow vector, x = (x̄e, e ∈ E)
cp(x) path cost function
Pw set of all directed paths p connecting sw to tw

4Note the similarity between (A.9) and (A.1).
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Note that if it holds for STAQ that B(D) = ∆, then indeed (3.50) is the same
problem as (A.9).

Figure A.1: Example network.

This extra criterion (A.10) is needed, because otherwise not all solutions indeed
correspond to a UE. To see this, consider the network as given in figure A.1. If
the edge costs in this network are all considered to be one, then x̄ = {1, 1, 1} is
a UE with respect to these edge costs and d̄ = {1, 1, 1}. Given these edge flows,
problem (A.9) reads:

f1 + f4 = d1 f1 = 1 fp ≥ 0, ∀p ∈ P.
f2 = d2 f2 + f4 = 1 (A.11)

f3 = d3 f3 + f4 = 1

Solving this system of equations leads to the following set of solutions:

1 ≤ d1 ≤ 2,

d2 = 2− d1,

d3 = 2− d1.

(A.12)

But it can be seen that not all these OD-matrices correspond to a UE with
respect to x̄. When the demand on the first OD-pair is chosen to be bigger
than one, d1 > 1, this implies that the demand on path four is bigger than zero,
f4 > 0. But in a UE path four cannot be used, because a traveller can do better
by changing to path 1:

c4(x̄) = 2 > c1(x̄) = 1.

As such, path four should be set to zero in the path-demand and path-edge
incidence matrices to obtain only the solutions which correspond to a UE. In
general it holds that in (A.9) only paths should be chosen for which condition
(A.10) holds.

A condition similar to (A.10) cannot be formulated for STAQ. The travel times
for STAQ can not be described by a monotonously increasing function, but are
(in an equilibrium model) determined by the network loading submodel. As such,
the generalized costs for a set of given path flows are only known explicitly after
performing a network loading step.

87



In this specific example it can be seen that the solution to (A.11) together
with (A.10) is unique. However if in the same network again the edge flows are
x̄ = {1, 1, 1}, but the edge cost of link one equals two instead of one, then all
solutions d to (A.12) satisfy both (A.11) and (A.10). As such in that case the
solution of (A.8) is not unique. Generally the uniqueness of the solutions to
the second part of the upper level objective function as given in (A.8), can be
analysed using the system of equations (A.9) with extra condition (A.10);

Assumption 2: Let Assumption 1 be satisfied and let the system (A.9) be
in reduced form. In other words it is assumed that all columns of Λ and ∆ are
skipped which belong to a path q ∈ Pw for some w ∈W , such that

cq(x̄) > min
p∈Pw

cp(x̄).

Lemma 1: Let Assumption 1 and Assumption 2 hold. Then for all solutions
(d, f) of the reduced system (A.9) the part d is a minimizer of (A.8), satisfying
f2(d) = 0.

Figure A.2: Example network.

The simplest example where Lemma 1 can be applied to obtain non-unique
minimizers is as follows; Let the network be as shown in figure A.2 . The strictly
increasing costs ce(xe) can be chosen arbitrarily. Furthermore let x̄ = (2, 2) ∈ Fd̄
be a UE with respect to d̄ = (1, 1, 1) and let x̃ = x̄ and Ẽ = E in (A.8). Then
(A.9) reads:

f1 = d1 f1 + f3 = 2 fp ≥ 0, ∀p ∈ P
f2 = d2 f2 + f3 = 2 (A.13)

f3 = d3

or equivalently d1 + d3 = 2, d2 + d3 = 2. Hence the solution set of (A.13) and
thus of (A.8) is given by:

d1 = d2 = 2− α, d3 = α with 0 ≤ α ≤ 2. (A.14)

For this specific example, the same non-uniqueness occurs when in the lower level
of (A.8) STAQ-squeezing is used instead of a traditional STA-model. Consider
the problem

min
d≥0

f2(d) :=
∑
e∈Ẽ

(ye(d)− ỹe)2

s.t. y(d) is the link flow result of STAQ-squeezing

(A.15)

and take the network in figure A.2 with arbitrary link capacities. Applying
STAQ-squeezing with d̄ = (1, 1, 1) leads to a link flow y(d̄). If the observed link
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flows are now set to ỹ = y(d̄), then obviously for all demands d satisfying (A.14)
the inflow demands into all nodes are the same and STAQ-squeezing generates
the same flow y(d) = y(d̄) = ỹ. As such, all these d’s are minimizers of (A.15).

Finally it is interesting to note that the following general non-uniqueness result
holds.

Lemma 2: Let Assumption 1 and Assumption 2 be satisfied and assume that
there is a UE (f̄ , x̄) ∈ Fd̄ (see Assumption 1) with f̄ > 0. Suppose further that
|W | > |E| holds. Then the reduced system (A.9) has a solution polytope of
dimension ≥ 1.

W set of OD-pairs, (sw, tw)
E set of edges
P set of paths
Pw set of all directed paths p connecting sw to tw

Proof. According to the assumptions the solutions (d, f) of

Λf − d = 0, ∆f = x̄,

are given by (
d
f

)
=

(
d̄
f̄

)
+ ker M, (A.16)

where

M =

(
−I Λ
0 ∆

)
and ker M = {(d, f) |M

(
d

f

)
= 0}.

Here I is the unit matrix of dimension |W |. It can be shown that ker M 6= {0}
allows non-unique solutions with respect to the d variable. To do so Gauss
elimination is applied to M , or in this situation to ∆, and M (or ∆) is transformed
into an upper triangular form:

M̃ =

(
−I Λ
0 U

)
with U =


|?

|?
|?

. . .

 ,

where U has |P | columns and |E| rows and ? denotes the pivot elements. Since it
holds that |P | ≥ |W | > |E| the matrix U has more columns than rows. Therefore
U and thus M̃ must contain at least one non-pivot column q corresponding to
a free variable path flow fq, q ∈ Pw0

for some w0 ∈ W . Solving the system

M̃
(
d
f

)
= 0 wrt. the variable dw0

yields:

dw0 =
∑
p∈Pw0

Λw0,pfp.

So dw0
contains the free variable fq with q ∈ Pw0

and represents a solution set
of dimension at least one. By the assumption that d̄ > 0, f̄ > 0 the solution
set of (A.16) allows at least a one dimensional line segment which also satisfies
(d, f) ≥ 0.
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Appendix B

Turn based reduction
factors

B.1 Existence of the sensitivities to the turn de-
mands

Brederode et al. [5] propose to use the node model within the network loading
submodel of STAQ-squeezing∗ to approximate the partial derivatives of the turn
based reduction factors αij(D) to the turn demands Tij′(D). From equations
(3.11), (3.6) and (3.35), it can be seen that both the turn based reduction factors
and the turn demands are depending on the OD-vector D. As such the partial
derivatives of the turn based reduction factors to the turn demands can be
written in the following form:

δαij(D)

δTij′(D)
→ δf(x)

δg(x)
. (B.1)

αij(D) reduction factor from inlink i to outlink j
Tij′(D) turn demand from inlink i′ to outlink j′

It can be shown that a derivative of the form (B.1) only exist, considering a vector
of one variable; To do so suppose x ∈ IR and f, g ∈ C1. Then the derivative
from f(x) to g(x) at the point x = x̄ is defined as:

δf(x)

δg(x)

∣∣∣
x=x̄

= lim
h→0

f(x̄+ h)− f(x̄)

g(x̄+ h)− g(x̄)
,

= lim
h→0

f ′(x̄)h+ o(h)

g′(x̄)h+ o(h)
=
f ′(x̄)

g′(x̄)
.

(B.2)

But now suppose x = (x1, x2), with x1, x2 ∈ IR and f, g ∈ C1. And let fx1
, fx2

,
gx1

, gx2
denote the partial derivatives of f and g. Then the derivative from f(x)

to g(x) at the point x = x̄ is not defined:

δf(x)

δg(x)

∣∣∣
x=x̄

= lim
h→0

f(x̄+ h)− f(x̄)

g(x̄+ h)− g(x̄)
,

= lim
h→0

fx1
(x̄)h1 + fx2

(x̄)h2 + o(|h|)
gx1(x̄)h1 + gx2(x̄)h2 + o(|h|)

.

(B.3)
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To see this choose for example h1 = ch2, c 6= 0, then:

δf(x)

δg(x)

∣∣∣
x=x̄
≈ fx1

(x̄)c+ fx2
(x̄)

gx1(x̄)c+ gx2(x̄)
. (B.4)

Which is depending on the value of c. So it can be concluded that a derivative
of the form (B.1) only exists for a vector of one variable.

Note that when f(x) in (B.1) can be written in the form f(x) = k(g(x)), where
k ∈ C1, then the derivative of f(x) to g(x) at the point x = x̄ is defined for a
general vector x̄:

δf(x)

δg(x)

∣∣∣
x=x̄

= lim
h→0

f(x̄+ h)− f(x̄)

g(x̄+ h)− g(x̄)
,

= lim
h→0

k(g(x̄+ h))− k(g(x̄))

g(x̄+ h)− g(x̄)
= k′(g(x̄)).

(B.5)

However, it is not possible to write the reduction factors as an explicit function
of the turn demands. Recall form subsection 3.2.1 that the reduction factors
are depending on the turn demands and the turn demands are on their turn
depending on the reduction factors. To find the turn demands and reduction
factors corresponding to a given vector of path demands, within the network
loading submodel of STAQ-squeezing∗ a fixed point problem has to be solved
(3.12). So it can be concluded that the derivatives of the turn based reduction
factors to the turn demands have form (B.1) and are only defined when the
corresponding OD-vector D consists of only one OD-pair.

B.2 Possible model errors

Because the partial derivatives of the turn based reduction factors to the turn
demands generally do not exist, using the approximations of the partial deriva-
tives to the turn demands as proposed by Brederode et al. [5] in practice leads
to errors in the model. It can be shown that the proposed approximations (see
figure 4.3) are only suitable when both the path based reduction factors and the
route fractions equal one:

• From the definition of turn demand (3.6) it can be seen that:

Tij(D) + ∆ = Qp(D) + ∆, for p ∈ Pij ⇐⇒ α̂pi (D) = 1. (B.6)

Tij(D) turn demand from inlink i to outlink j
Qp(D) path demand on path p
α̂pi (D) reduction factor on path p till link i
Pij ⊆ P set of paths over turn ij

So a change in turn demand can be directly translated in a change in
path demand if the corresponding path based reduction factor equals one
(α̂pi = 1). Note that if path p over turn ij already passed a bottleneck
(α̂pi < 1), then the equality in (B.6) does not hold. In that case, a change
in the demand on path p possibly affects the distribution of flow on the
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upstream bottleneck, and as such not only the demand on turn ij but
also the demand on other turns ij′ on the considered node are possibly
changed.

• From the definition of path demand (3.35) it can be seen that:

Qp(D) + ∆ = Drs + ∆, for p ∈ Prs ⇐⇒ ψrsp = 1. (B.7)

Qp(D) path demand on path p
Drs demand on OD-pair rs
ψrsp fraction of demand from OD-pair rs that use path p
Prs ⊆ P set of paths between OD-pair rs

So a change in path demand can be directly translated in a change in
OD-demand if the corresponding route fraction equals one (ψrsp = 1).
Note that if the OD-demand of OD-pair rs is divided over different paths
(ψrsp < 1), then the equality in (B.7) does not hold. In that case a change
in demand on OD-pair rs does not only affect path p, but also other paths
p′ between OD-pair rs.

This leads to the conjecture that only when both α̂pi and ψrsp equal one, a change
in turn demand can be directly translated in a change in OD-demand, such that
in this case:

δαij(D)

δTij′(D)
=
δαij(D)

δQp(D)
=
δαij(D)

δDrs
. (B.8)

αij(D) reduction factor from inlink i to outlink j
Tij′(D) turn demand from inlink i′ to outlink j′

Where turn ij and turn ij′ are on the same node. In this case the approximation
of the partial derivatives of the turn based reduction factors (see figure 4.3) to
the turn demands reads:

δαij(D)

δTij′(D)
≈ αij(D + ∆ers)− αij(D −∆ers)

Tij′(D) + ∆− (Tij′(D)−∆)
=
αij(D + ∆ers)− αij(D −∆ers)

2∆
.

(B.9)

Here turn ij′ lies on path p (ψrsp = 1) between OD-pair rs. The approximation
in (B.9) is a valid approximation. However the reader should realize that a
situation in which all the path based reduction factors and all route fractions
equal one is never seen in practice. As such, the considered approximations of
the path based reduction factors to the OD-demands (4.13) are expected to be
incorrect in practice.
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Appendix C

Convexity

C.1 Simplified upper level objective function

In this appendix it is shown that the simplified upper level objective function as
given in (5.1) is a (strictly) convex function. The considered objective function
reads:

F̂ (D) = w1 f1(D,D0) + w2 f2(y(D), ỹ) + w3 f3(τ(D), τ̃),

= w1

∑
rs∈RS

(Drs −D0
rs)

2 + w2

∑
a∈Ã

(ŷa(D)− ỹa)2 + w3

∑
p∈P̃

(τ̂p(D)− τ̃p)2.

(C.1)

Here the approximations of the link flows ŷa and the queueing delays τ̂p are as
defined in (4.5) and (4.25). The three objective parts (f1, f2 and f3) are first
analysed separately. Note that if all three objective parts are convex, then also
the total objective function as given in (C.1) is convex.

Convexity (f1)
It can be easily seen that the elements of the Hessian matrix of the first (prior)
part of the simplified upper level objective function are given by:

δ2f1

δDrsδDrs′
=
δ2
(∑

rs∈RS(Drs −D0
rs)

2
)

δDrsδDrs′
=

{
0 ∀rs′ 6= rs,

2 ∀rs′ = rs,
∀rs′, rs ∈ RS.

Hence the Hessian matrix |RS| × |RS| has the following form:

H =


2 0 . . . 0
0 2 . . .
...

...
. . .

...
0 0 . . . 2

 = 2I|RS|.

This matrix is positive definite and therefore it can be concluded that the first
part of the simplified upper level objective function is strictly convex.
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Convexity (f2)
The first order Taylor approximations of the link flows ŷa(D) as used within the
second (counts) part of the simplified upper level objective function (C.1) are
linear functions of the form:

ŷa(D) = ca + bTaD with ca ∈ IR, ba ∈ IR|RS|.

As such, (ŷa(D)− ỹa)2 is a quadratic function:

(ŷa(D)− ỹa)2 = (bTaD)2 − 2bTaD(ỹa − ca) + (ỹa − ca)2.

Where the corresponding Hessian matrix reads ∇2(bTaD)2 = 2bab
T
a . This matrix

is positive semidefinite; Indeed it can be seen that:

DT bab
T
aD = (bTaD)2 ≥ 0 ∀D ∈ IR|RS| .

Therefore it can be concluded that the second part of the simplified upper level
objective function is convex.

Convexity (f3)
The approximations of the queueing delays τ̂p(D) as used within the third (queue-
ing delays) part of the simplified upper level objective function (5.1) are constants.
Therefore in this case the Hessian matrix corresponding to (τ̂p(D)− τ̃p)2 equals
zero. Note that considering a first order Taylor approximation τ̂a(D) of the
path queueing delays τa(D), the corresponding Hessian matrix will be positive
semidefinite. This can be shown using an argument similar as for the link flows.

Conclusion
It can be concluded that the Hessian of the simplified upper level objective
function as given in (C.1) ∇2F̂ (D) reads:

∇2F̂ (D) = w12I|RS| + w2

∑
a∈Â

bab
T
a .

Note that this matrix is positive semidefinite and positive definite if w1 > 0. So
in the latter case the function F̂ (D) is a strictly convex quadratic function with
a unique minimizer Dk. The same holds when a first order Taylor approximation
τ̂a(D) of the queueing delays τa(D) is used in the third part of the simplified
upper level objective function (C.1).
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