
Creating an
Interactive
Art Installation
for the SmartXP

This thesis describes the process of creating an interactive art installation. A
state of the art in both literature on interactive art and interactivity, and in
relevant interactive art installations, led to the creation of a Kinect based
installation. The different steps of the software that run this installation are
described in detail, and the shader code that creates the visuals has been
provided. Using this installation a user test was done to find out what people
did and did not like about the installation, and what people thought about
interactive art in general. The results showed that people want their interactions
take effect instantly, and they want to see exactly what influence their actions
have on the system. Furthermore a slight preference for strong visuals over
strong interactivity was discovered.

Aart Odding

Supervision: Angelika Mader

External Client: Richard Bults

B.S. Creative Technology

University of Twente

1

Table of Contents
3 Introduction

5 Research Questions

6 State of the Art – Literature

8 State of the Art – Relevant Work

14 Conclusions and Ideation

17 Requirements

18 Realisation – Combining multiple Kinects

28 Realisation – Gestures

32 Realisation – Effects

36 Final Product

39 User Tests and Research

41 Results and Conclusion

46 Discussion

49 Future Research

50 References

52 Appendices

2

Introduction
The goal of this graduation project is to create and evaluate an interactive art
installation. We aim for this installation to be as engaging as possible, such
that people playing with it, will not feel as if they are directly controlling the
installation, but feel a mutual interaction, with the installation. This
document describes the process of creating the interactive art installation, it
contains the preliminary research that was done before starting the creation,
the usability tests, and a reflection on the entire process.

Interactive art is a type of art distinguishing itself by the possibility of
interaction between the viewer, and the artwork itself. It is very hard to
provide an exact definition for both interactivity and interactive art, but it is
generally accepted that this interaction needs a certain degree of
meaningfulness: The fact that a statue or painting can be picked up and
placed down upside down, does not make it an interactive artwork, even
though the action itself can be considered an interaction with the work.

Before the emergence of the computer, artists that wanted to make
interactive art mostly relied on physical manipulation to make changes in
the artwork. Marcel Duchamp’s Rotary Glass Plates [1] (1920), relied on the
participants to manually spin the glass plates. During the 1950’s Yacoov
Agam started making his Transformable Reliefs [2] compositions that could
be rearranged by the audience. His motivation for this was: “to release the
creativity of the art public, to encourage people to enter into the spirit of his
work and change it according to their tastes”.

When computers and consumer electronics became more widely available,
interactive art increased in popularity. These new technologies resulted in
numerous large changes in interactive art: Motors, actuators and sensors
made physical manipulation no longer necessary to influence the artwork. It
became possible for the artwork to have a programmed brain of its own. This
made it possible for the reactions of the artwork to be influenced by more
than one factor, and even previous events. And furthermore computer
screens, beamers and digitally controlled lights gave a whole new way of
visualising the interactions.

In recent years interactive art has again seen major developments. The rise of
the maker movement has popularized the idea of tinkering with code and
electronics as a hobby. Not to create commercial applications, but with the
intention to play around, and create playful and creative projects. This
development has gone paired with initiatives such as Processing [3], and
Arduino [4], initiatives that attempt to simplify the use of code and

3

electronics, to make these technologies more available to non technically
educated people and artists. This increased usability of soft- and hardware
has led to a new interest in interactive art, this can be observed in the
increasing amount of art festivals aimed at digital, interactive, and computer
art: ISEA, Ars Electronica, STRP festival and GOGBOT, to name a few.

4

Research Questions
Because the final goal of this graduation project is to create an interactive art
installation, the main research question was chosen to reflect this goal:

Q1 How to design an interactive installation that is playful, fun and
engaging?

However because this is such a broad and large question to answer the
question was subdivided into five subquestions. Each subquestion deals with
a specific part or stage of the process as a whole.

First off a state of the art research was done in interactive art. Both in
literature, and towards actual installations that have been build. The
following research question was used for this process:

S1 What state of the art in interactive installations?

When a direction for the installation has been chosen based on the research,
multiple impactful choices need to be made on the technical workings of the
installation. Human interaction needs to be registered in the installation in
one way or another, thus a sensor (or multiple) needs to be picked, the
sensor data will have to go through a pipeline of transformations, to process
the incoming sensor data, to be usable for gesture analysis.

S2 How is the interactive installation build from a technical perspective?

The incoming sensor data needs to go to a processing stage to identify certain
gestures of the people interacting with the installation. If for instance the
sensor is a distance sensor, then approaching the installation can be seen as a
gesture to control certain effects. From this, subquestion three arises:

S3 What gestures can the installation identify from the incoming sensor
data?

Of course the processing of people’s gestures means nothing to them if they
are not made visible. What sorts of effects are possible to create, and which
work well in combination with the identified gestures?

S4 What effects can be generated, and coupled to these gestures?

Finally after the installation is finished it will be evaluated, Usability tests
will be held, and factors key to generating interactivity will be attempted to
identify.

S5 What makes the installation inviting to interaction?

5

State of the Art – Literature
One of the problems with defining interactiveness is that in a broad way
everything can be considered interactive. To play a film one needs to select
the “start film” option in the DVD menu, does this make films interactive?
Similarly to view a painting one might move around it and look at it from
different angles. Does this make paintings interactive? If a painting brings up
emotions in the person looking at it, and these emotions in return influence
the perception of the painting, does that then make the painting interactive?
And if it is in that sense interactive, does this make paintings interactive art?
Multiple attempts have been made to solve this ambiguity.

Lopes [5] recognises this problem and suggests two distinctions of
interactivity. Weakly interactive and strongly interactive. To explain this
distinction he uses the word ‘structure’ as an analogy for the work of which
the interactiveness is being questioned: “In weakly interactive media the
user’s input determines which structure is accessed or the sequence in which
it is accessed, in strongly interactive media we may say that the structure
itself is shaped in part by the interactor’s choices.”

Cornock and Edmonds [6] attempt to solve this ambiguity towards
interactivity in a similar manner. However they consider two distinctions
too few, and propose a system with four categories of interactive art:
Static: The artwork does not respond to its context. There may be interaction
between the interactor and the piece, but this is not visible for observers.
Dynamic-passive: The artwork can change and adapt to variables such as light
intensity, temperature, etc. but does not directly interact with humans.
Dynamic-interactive: The same as dynamic passive, but now the changes do
no only apply to environmental factors, but also to human interaction with
the installation.
Dynamic-interactive (varying): The same as dynamic interactive, but now the
installation is also aware of past interactions, which cause the effect of the
installation not to be repeatable.

Comparing Cornock and Edmonds’ four category system with Lopes’ two
category system, there is a certain overlap. Lopes’ weakly interactive media,
is comparable to Cornock and Edmonds’ static category, in the sense that
neither is intuitively interactive, and is only considered interactive using a
loose definition of interactivity. Cornock and Edmonds’ dynamic passive
category does not fit in Lopes’ system. This seems to be because Lopes’
system only considers human interaction, and dynamic passive encompasses
artworks interactive with non-human variables. Lastly Dynamic-interactive

6

and Dynamic-interactive (varying) can both be coupled to Lopes’ strongly
interactive.

Smuts [7] disagrees with this division of interactivity into multiple
categories, and states an action is either interactive or not, but there are no
different degrees of interaction. To support this viewpoint Smuts creates his
definition of interactivity according to the attributes of social interactions.
“Something is interactive if and only if it (1) is responsive, (2) does not
completely control, (3) is not completely controlled, and (4) does not
respond in a completely random fashion.”

The result of this definition has one great advantage, simplicity. Where the
other definitions rely on categorization of interactivity in multiple types,
Smuts finds a way to define interactiveness that creates a clear boundary
between what interactive and not interactive. This is useful, because
linguistically it makes more sense. For people not familiar with the subject,
interactive art speaks to the imagination, whereas the difference between
static interactive and dynamic interactive art is not intuitive. There is
however an issue with Smut’s definition: A lot of the art that is generally
considered interactive art, does not satisfy Smut’s rule 3: “it is not
completely controlled”. Both the artworks by Marcel Duchamp and Yacoov
Agam mentioned in the introduction fall in this category, and are thus
according to Smuts not interactive.

None of the definitions are completely free of problems, each with their
advantages and disadvantages. For this research Smut’s definition of
interactivity is used as a guideline, this will ensure that the final result is not
only responsive, but also active on its own, without people activating it.
Furthermore to Comply with Smut’s definition it is also necessary to reach
the highest category in interactiveness on Cornock and Edmond’s scale.

7

State of the Art – Relevant Work

Beautiful Chaos – Nathan Selikoff, 2013 [13]

Beautiful Chaos works by sensing movement of people’s hands using a leap
motion sensor. Using this data intricate drawings are produced on a screen in
front of the people.

Evaluation

+ Generative: Visuals are generated by mathematical formulas.
+ Simple input (leap motion), still generates sophisticated visual effects.
- Relatively small, only single screen, one person capacity.
- Only one type of visual effects, makes the installation quite monotone.

“Beautiful Chaos is an experimental art app designed for the Leap Motion
Controller, a 3D motion control device that enables gestural interaction with a
computer.”

“The user interacts with the software and the underlying mathematical formulas to
produce an infinite variety of futuristic, abstract shapes. As the user’s hands move,
the coefficients of a math equation change, and the chaotic cloud of particles
ripples and shifts in unpredictable, beautiful and mysterious ways.”

8

Wander through the Crystal Universe – TeamLab, 2016 [8]

This installation build by TeamLab is a room with mirrors on each side, This
makes the room look infinitely large. There are lights suspended from the
ceiling which the people can move through, creating immersion.
Furthermore the people can control the lights with their smartphone, and all
the lights are responsive towards each other.

Evaluation

+ Use of space: people are inside the installation.
+ Effects are responsive to peoples location and movements.
+ Fully interactive (Smuts’ definition), work not completely controlled.
- App is required for full interaction.
- Installation is based on large amount of hardware.
- Not applicable to this project considering space and budget.

“This artwork uses an accumulation of light points to create a sculptural body,
similar to the way distinct dots of color form an image in a pointillist painting. In
Crystal Universe, the particles of light are digitally controlled and change based on
the viewer’s interactivity with the work. The result is an installation that consists of
lights, forming a sculpture that expresses the universe. Viewers are invited to enter
and walk around within the three-dimensional light space. This movement affects
the light particles and creates changes in the installation. Viewers can also interact
with the work by using their smartphones to select elements that make up the
Crystal Universe. While Crystal Universe is created by elements selected by the
viewers, each action or change affects the other. The viewer's position within the
artwork also influences how the work is created; thus, the artwork is continuously
changing.”

9

Aether – Thomas Sanchez Lengeling & Gilberto Castro, 2013 [9]

This artwork makes the user feel like they are interacting with a net shaped
mesh, with particles continuously spawning and shooting away, creating
stunning visuals. The screen is a large touch sensitive plate of glass on which
the visuals are projected. Interacting is done by moving your hands over the
screen.

Evaluation

+ Beautiful visuals based on Hubble telescope images and geometry.
+ Seems fun to interact with and create visuals.
+ Large scale projection in front of the people.
- Seems unintuitive to touch an artwork.
- Artwork is only responsive to one interaction (touch).

“A series of studies in geometric symmetry, dynamic particles and interactivity on a
large multitouch screen. It explores techniques of manipulating a digital sculpture
throughout the interaction of the users. It is inspired by the work of the digital artist
Quayola as well as similar inspired modernist cubist works such as Picasso´s “Seated
Nude” and the classical French painter Poussin. The users are able to alter the
geometry and the physics, which changes the representation of objects from
different viewpoints. The sources of study are various Nebula images taken from the
Hubble Space Telescope. Those images are exposed into an abstract form,
furthermore, is possible to manipulate the digital information in real-time with the
touch of the users.”

10

Hakanaï – Claire Bardainne & Adrien Mondot, 2013 [10]

Hakanaï is an installation meant for dance performances. A dancer moves
inside of a cubic space on which visuals are projected. The movements of the
dancer directly influence the visuals projected on the cube, creating a virtual
extension of the dancer.

Evaluation

+ Large space monitored.
+ Not flat, but 3d because of visuals on all four sides.
+ Reactivity between body movements and the visuals.
- Only one person at a time can control the installation.
- Mostly meant as watchable performance, in which case it is not interactive
 for the crowd.

“Dance choreography performed in the immersive environment of a moving cube,
to explore the fleeting nature of dreams and the fugacity of life.”

“Live animations based on physical movement modelling, on an original music
score played live. After the quadrifrontal performance, the audience will be invited
to explore the stage installation.”

11

Drawing on the Water Surface – TeamLab, 2016 [11]

Another installation by TeamLab: Koi (carps) are projected onto a layer of
water. People can enter the water to play with the fish and see the fish play
with them.

Evaluation

+ Interesting play with position in space deciding outcome of visuals.
+ Original idea to make projections on water.
- Visual effects are rather basic and monotone.
- Very impractical to fill a room with water.
- People have to take of their shoes and get their feet wet.

“Koi swim on the surface of water that stretches out into infinity. People can walk
into the water. The movement of the koi is influenced by the presence of people in
the water and also other koi. When the fish collide with people they turn into
flowers and scatter. The trajectory of the koi is determined by the presence of
people and these trajectories trace lines on the surface of the water. The work is
rendered in real time by a computer program. It is neither a prerecorded animation
nor on loop. The interaction between the viewer and the installation causes
continuous change in the artwork. Previous visual states can never be replicated,
and will never reoccur.”

12

Forest Friends – potion design, 2015 [12]

Forest friends is an installation that helps children deal with the mental
stress of going through treatment in hospital. Each child has an animal as an
avatar, that accompanies them in the hospital, and helps them in the
sometimes harsh process of treatment.

Evaluation

+ Good looking visuals.
+ Keeps track of people over time, so it is possible to come back and continue
 play.
- Requires unique RFID tags for everyone.
- Only fun if people keep coming back to it.
- Less suitable for public installation where many people walk by.

“The digital woodland welcomes patients and their families in the Waiting Room.
Thereafter, patients trigger their animal companion (frog, duck, bunny) by scanning
their hospital bracelet.”

“The patient's animal accompanies them through all stages of treatment and, when
cued, demos behaviours like sleep during anaesthetic administration or departure
at the end of a visit or wait.”

13

Conclusions and Ideation
When comparing the choices made by the other large projects mentioned
before, combined with our initial idea and vision, we can come towards
multiple conclusions as to what the installation should look like and how it
should work.

First and foremost there are certain criteria to the contents of the installation
in order to qualify as an “interactive installation”. As concluded before
Smuts’ definition of interactivity is used as a criterion for interactiveness.
This means that the installation responds to human activity, shall not be
fully controlled, shall not fully control, or be completely random. This means
that things like playing a video after certain triggers are not interactive
enough.

The output of the installation will therefore be computer generated graphics,
influenced and manipulated by the people using the installation, and
projected onto a wall in front of the people like in Hakanaï and Beautiful
Chaos. The visuals will be projected onto a wall or screen in front of the
people, which will hopefully create a very direct connection between the
people playing, and the virtual interactions that they control.

The visual style of the installation will be kept simple but colourful, while
containing lots of movement, in order to create a very dynamic visualisation.
Furthermore some of the effects will be kept rather abstract, instead of a very
direct representation of the people’s features or movements, to create some
confusion and mystery to add to the wow factor. A Moodboard has been
made portraying the intended style: figure 2.

Like all the works mentioned before, apart from Hakanaï, and Beautiful
Chaos, we chose to have the requirement that multiple people should be able
to interact with the installation at once. This so that the installation is not
only and interactive experience, but a social experience as well. This
requirement already eliminates technologies such as augmented and virtual
reality and any type of body mounted sensors. However this is not a
problem, because it is also better for the installation if people do not need
extra equipment to be able to interact with it, because such equipment
would quickly increase the threshold for people to start playing with the
installation.

Therefore Microsoft’s Kinect sensor was chosen to take that role. The Kinect
is a camera that senses depth instead of colour, which makes it able to detect
people standing in front of it. This allows for very natural interaction because
the participant does not need to physically manipulate some device to

14

initiate interaction, but can freely move through the space in the installation
to interact with it. Furthermore because the data that comes from the sensor
contains so much information, many different variables can be used to
facilitate interaction, movement, moving ones arms, jumping, ducking,
touching other people, making your body larger and smaller, and many more
gestures can be deduced from the data send by the Kinect.

One issue the Kinect has is the limited field of view. Because the idea was to
create a very large area as a playground for the interactions, and a life size
projection as output, it was decided to use multiple Kinects standing next to
each other as input. This however means that the data coming from multiple
Kinects has to be combined in such a way that the whole play area is being
sensed as if it were through one sensor. Some parts of the area will be covered
by two Kinects, while other parts might not be covered at all. This will need
to be compensated for in the software. A general impression of the whole
installation can be found in figure 1.

Figure 1: Impression of what the finished installation could look like.

15

16

Figure 2: The moodboard, functioning as a visual style guideline for the installation.

Requirements
Following the ideation phase a set of requirements was devised. These
requirements were made with two goals in mind: To ensure that a certain set
of goals which has been described in the ideation phase will be met. And
secondly: To be able to look back at the requirements when the projects is
finished, as a measurable benchmark, and to see how well the creation
process went.

Interaction requirements

 ● Interaction must somewhat change over time, so the installation
stays unpredictable and replayable.

● People must realize how their interactions affect the visuals.
● The interactions must be understandable, E.G. if a certain effect is

triggered when a person does a somersault no one will ever find the
effect.

● Interactions should be doable for all people. Children and grown ups.

Functional requirements

● Must support multiple people interacting simultaneously.
● Must support output of images on multiple screens/ beamers.
● Must support the combination of the image of multiple Kinects into a

single input.
● Must have a sufficiently large screen so that people can see

themselves at full size.
● Must be efficient enough to run at Kinects full speed, without

hiccups.

Visual requirements

● Must contain certain visual complexity, E.G. Not just some coloured
rectangles that move.

● Good use of colour: Too much would make the installation look
tacky, while too little would make the installation look dull.

● Must also look good when there are no people interacting with the
installation.

● Visuals should at least somewhat change over time, to allow for
replayability.

● Must look inviting for people to interact with, and attract people to
interact with it.

17

Realisation – Combining multiple Kinects
For people to be able to interact with the installation, it needs a method
through which it can sense participants’ gestures. The installation can then
give responses to these gestures to stimulate interaction and facilitate play.
For this installation Microsoft’s Kinect sensor was chosen to take that role.
The Kinect is a camera that senses depth instead of colour, which makes it
suitable to detect (shapes of) people standing in front of it. This allows for
very natural interaction because the participant does not need to physically
manipulate some device to initiate interaction. Furthermore because the
data that comes from the sensor contains so much information, many
different variables can be used to facilitate interaction, movement, moving
ones arms, jumping, ducking, touching other people, making your body
larger and smaller, and many more variables can all be deduced from the data
send by the Kinect. However this comes at the cost of the necessity of more
complicated code analysing the sensor data to extract these action. Another
issue with the Kinect is the small field of view of approximately 58°, this
means that even though the Kinect is the ideal sensor to to track the motion
of people through a space, this space can only be relatively small. To
counteract this problem it was decided to use multiple Kinects next to each
other to increase the effective area of the sensor. Unfortunately this again
comes at the cost of increased code complexity. The following chapter will
explain the process that the Kinect data goes through, to go from raw depth
values to usable information. The first part will describe the process that is
run for each Kinect individually, while the second part will discuss the
process that is run for all the Kinects combined. An overview of the process
that the data goes through from Kinect to visuals can be seen in figure 3.

Figure 3: The pipeline of transformations data goes through before usage for visual effects.

18

For each Kinect individually

Input

To interface with the Kinect over USB a driver is required. For this project
libfreenect [14] was chosen for its minimalistic design, and cross platform
capability. Libfreenect provides the developer with a 640 * 480 array of
shorts (16 bit integers), at a constant 30 frames per second. These shorts
contain a depth measurement in millimetres at that specific pixel. These
measurements can range from approximately 500 mm (50 cm) to 4500 mm
(4.5 m). However sometimes sensor read errors cause the pixels to be either
0 or 10000.

Because further processing relies on external libraries that do not use this
uncommon pixel format, the data is first converted to the more common one
byte per pixel, single channel pixel data. This format is most commonly used
for black and white bitmap images, and thus supported by most image
processing libraries. Because this conversion between pixel formats needs to
be done extremely often, up to 37 million times per second (running 4
Kinects at 640p 30 fps), it is important to be efficient as possible.

A naive implementation could be a clamped map function, which would
look something like this:

if (pixel_value < 500)
{
 result = 0;
}
else if (pixel_value > 4500)
{
 result = 255;
}
else
{
 result = (255.0f / 4000) * (pixel_value – 500);
}

However this can be very expensive when executed so often: two branch
conditions, a possible division, and multiple float to integer conversions.

A better approach is to use a lookup table so that no calculations are
necessary. The difficulty here stems from the fact that the possible pixel
values range from 0 to 10.000 and making a lookup table of 10.000
elements wouldn’t be very fast either because that much data does not fit in
cache simultaneously.

19

Furthermore the only real values that are important are between 500 and
4500 (the sensing distance of the Kinect). Coincidentally this gives a range
of 4000 values which is very close to 4096 which is 2^12. This is useful
because we need to convert to a range containing 256 values (0 to 255),
which is 2^8. This means that when we bitshift to the right by 4 bits we
naturally map the 4096 range to the 256 range.

Unfortunately it isn’t as easy as adding 500 and bitshifting right by 4,
because there are still the special cases of 0 and 10.000. 10.000 + 500 is
bitshifted right by 4 equals 656, this means that a lookup table to 656
elements would suffice to handle all cases, 656 bytes is small enough to fit in
cache at once, because a lookup table is used no branch conditions are
necessary, and no more information is lost than in the naive implementation
shown before. The code could look like this:

result = lookup_table[(pixel_value – 500) >> 4];

Now that the images are stored in a more conventional format, they can be
viewed as a regular black and white image: figure 4.

20

Figure 4: Example of incoming Kinect data

mapped to brightness values.

Figure 5: The background of the scene in figure 4.

Removing the background

Even though as a human it is very simple to spot the human in an image, this
is much harder for a computer. One effective and not to complicated method
involves subtracting the background of a scene from the image (assuming the
background does not change too fast) in order to only be left with the people
standing in the foreground. In the case of figure 4, the background that
should be subtracted can be seen in figure 5.

To subtract the background the background first needs to be known. The
background is the image the Kinect sees, when there are no people standing
in front of it. To know when there are people in front of the Kinect a PIR-
sensor (infrared movement sensor) is used. Now when there are no people in
front of the Kinect the application can use the incoming images to sample
the background. This also allows for slow changes in the background,
without it being problematic for the next stages.

Three tricks are applied to keep the background more accurate. First, when a
sample is being taken of the scene not one frame is used but around 30 (1
second worth of frames). These frames are not averaged, but the maximum
value is picked at each pixel. This is done so that the edges of things in the
scene becomes less fuzzy. Secondly, the background does not consist of one
sample, but each time a new sample is taken it is added with a certain weight
to the previous samples. This makes every older sample have less impact on
the background, while the background is a still bases on multiple samples.
Lastly samples are not taken continually, but they have a timeout. This
means that the background always reflects the background during a larger
timeframe, instead of in a single moment. The combination of these factors
allows for excellent background subtraction: figure 6&7.

21

Figure 7: The subtracted image after applying

a threshold.

Figure 6: The leftover image after the

background is subtracted from the input.

Thresholding and searching for contours

Even though the computer can now differentiate between people and
background the data is still not very useful because it is in image (bitmap)
format. To get convert between bitmap data, and vector data, OpenCV [15]
has a useful feature called contour finding, which does exactly this. It takes a
binary image, and finds the contours of shapes in the image. OpenCV also
contains functionality to convert the byte image to a binary image using
thresholding (figure 7). The result of the contour finding algorithm can be
seen in figure 8, and in figure 9 after applying boost.geometry’s [16] simplify
algorithm.

For the next steps some clarification is first necessary. Because the final goal
is to use multiple Kinects together, instead of just one at a time, it is
necessary to map the vertices that have been found to one shared coordinate
system between all the Kinects. To realise this the vertices should first be
transformed to a 3D coordinate system relative to the Kinect, after which the
multiple Kinects can be added together by some transformations.

Right now the coordinates stored in the vertices found by OpenCV are the
indices of the pixels that consisted the shapes in the images. This means that
the vertical position relative to the Kinect cannot directly be determined
from the vertical position of the vertex found by OpenCV alone. The real
location is also dependant on the distance to the Kinect. Fortunately the
Kinect is made for just that: being a depth camera.

22

Figure 8: The vector data obtained by OpenCV's

FindContours.

Figure 9: The remaining shape after applying

boost.geometry's simplify.

Calculating vertex distance

The x and y values stored in the vertices of the contours now correspond to
the x and y indices of the pixel in the image. Using these indices it is possible
to sample the depth at said point from the original depth data received from
the Kinect. The problem with this is that each vertex in the contour falls
exactly on the edge of the contour in the picture. This means that half the
times the depth is sampled on a certain vertex, this position actually falls
outside of the contour in the depth image of the Kinect, which would yield
inaccurate depth values.

To counter this problem it is necessary to measure the depth not exactly on
the vertex position, but to move the sample position slightly inwards in the
shape of the person, as seen in figure 10. This is possible because the
contours found by OpenCV always have a clockwise winding. This means
that the inward normals at each vertex can be found with some
trigonometry, after which a new sampling location can be found slightly
inward in the shape, along this normal.

23

Figure 10: The sampling locations in blue, sampling the depth of the vertices pointed to in white.

Even though this technique of sampling improves the amount of erroneous
samples tremendously, there are still occurrences of samples outside of the
contours in places like fingers, and Kinect interference errors that cause false
depth values. Because of this it is also necessary to filter all the depth values,
to take out the false readings.

To solve this problem each sample goes through a validating stage, to make
sure there are no invalid samples. If a sample is found to be invalid its
distance will calculated by averaging the two nearest valid neighbours.

It is first important to identify what types of error can make a depth reading
inaccurate. There appear to be three types: A. Interference from infrared
light, either from other Kinects or sunlight. B. Taking the sample outside of
the body, which causes the depth to be the depth of the whatever is behind
that person. C. Taking a sample in the infrared shadow that every object in
front of the Kinect creates. This shadow is a side effect of the fact that the
infrared laser, that the Kinect uses to sense depth, is not on the exact same
spot as the infrared camera. To gain a better idea of the nature of the false
depth readings the readings of a single figure were graphed: Figure 11.

24

Figure 11: The depth readings of four people as seen by the Kinect visualized: values sorted by

distance (mm).

Of these errors, C is very easy to solve: invalidate all depth readings of 0
(total blackness). A and B are a bit more subtle, The interference appears to
always to too bright, however its brightness is not consistent, and measuring
outside of a person’s body gives to dark values, but this is also dependant on
what is behind the person. When analysing the distribution of the depth
samples from a single person standing in front of the Kinect, the erroneous
depth values become apparent. There are three distinct groups: Samples that
are to near (A & C), samples that are valid, and samples that are too far (B). A
good approach towards filtering the samples seems to be to sort them first so
that the median can be obtained, then a range centred on the median can be
defined as valid. For each depth measurement that is found that is not valid,
the average of the two nearest valid measurements can be taken.

Once the depth has been established for each vertex of a person, it is also
possible to change the x and y coordinates of the vertex from being locations
in an image to locations of the world relative to the Kinect. The first step is
calculating the dimensions of the Kinect’s vision at the depth of the vertex.
The width at any distance can be found with: depth (m) * 1.08, and the height
at any distance can be found with: depth (m) * 0.825. Then the relative
position of the vertex in the Kinect’s depth image can be mapped to the same
relative position in the dimensions calculated before, in order to find the 3D
coordinate of a vertex relative to the Kinect. Because these coordinates no
longer contain perspective, they can now be combined with the data coming
from other Kinects.

For all Kinects combined

Combining Kinect shapes

To combine the incoming data of multiple Kinects, it is necessary to know
the relative positions of the Kinects to each other. The vertex data of each
individual Kinect is relative to the Kinect itself, thus a different linear
transformation is necessary to transform the data from Kinect space to
shared world space.

Now that all the coordinates are in the same coordinate space, the data of a
person that appears in two Kinects overlaps, as can be seen on the left side in
figure 12. It is now necessary to reduce the two outlines of a person together,
so that each person has only one outline, independent of in how many
Kinects they appear.

25

There are two ways to this: Using a geometry library to find the spatial set
theoretic union of the two outlines, or drawing the outlines on a flat surface,
and then reuse OpenCV to find contours of the combined outlines, the
disadvantage of this technique is that depth information is lost.

Comparing these two methods, the first option seems the superior, it is both
more efficient and preserves more information. The problem with this
approach however is that the geometry library that has been used for
simplification as well: boost.geometry, has problems with self intersections
in the outlines, created when the perspective is being removed from the
outlines. Thus it was chosen to use the drawing method.

First a framebuffer object (FBO) is created using OpenGL. An FBO is an
image that can be drawn onto as if it were a regular OpenGL window. The
advantage however is that the pixel data can easily be pulled back to the main
memory after the drawing has finished. This means we can apply the
OpenCV contour finding algorithm on the pixel data, to retrieve all the
combined outlines.

Another simplification is necessary, because OpenCV considers each pixel a
vertex, which creates much too large vertex sets. Boost.Geometry is used for
this simplification. The output can be seen on the right side in Figure 12.

26

Figure 12: The outlines of the same person in two Kinect, before and after combination.

Tracking shapes over time

The end goal of the installation will be to couple people’s gestures to visual
effects in the installation to create interactivity. To identify gestures, it is
necessary to have knowledge of people as entities over time, instead of a
collection of people’s outlines, without temporal continuity.

Between any frame N, and its next frame N+1, people can do three basic
things: enter the sensor area, leave the sensor area and move. However
because the Kinects perceive the space in front of them as a 2D image instead
of a 3D space, two extra actions are possible: People walking past each other,
can together become one outline: Merge, and afterwards separate again:
Split. This gives a total of five possible actions: “Move”, “Enter”, “Leave”,
“Merge” and “Split”.

To determine which action an outline undertook and in which (if any)
outline that resulted, it is first necessary to look in broader terms: which
outlines, between frame N and N+1, have any relation at all. A person in the
left side of a room in frame N, cannot suddenly be on the right side of that
room in frame N+1. Thus relatedness is dependant on position. For
simplicity we consider two outlines related if they intersect.

For each outline in frame N+1 a list of intersections with outlines in frame N
is created, and in reverse for each outline in frame N, a list of intersections
with outlines in frame N+1 is created. Note that these two lists do not need
to be symmetrical, because of splitting and merging of outlines. These
intersections are the relations between the outlines in both frames, however
they still need to be categorized into one of the five aforementioned
categories to hold any meaning for the flow of people moving in and out of
the installation.

To categorize the relationships can be done with counting. If outline A has a
single intersection: outline B, and B also only has a single intersection: A,
then A and B are the same person, and their relationship is Move.

If outline A has a single intersection: outline B, but B has two intersections:
A and C, then the relationship is either Merge or Split: Merge if A and C are
in frame N and B in frame N+1, and Split if B is in frame N and A and C in
frame N+1.

All the outlines that have not yet been assigned are either categorizable as
Enter or Leave. Enter if the outline is in the new frame, and Leave if the
outline is in the previous frame. From this information outlines can be
assigned to Person objects, which can be analysed for gestures over time.

27

Realisation – Gestures

First attempt

The interaction in the installation comes from the coupling of certain
identified gestures to effects. IE. a person jumps, and some virtual objects
that are part of the effect also move up. To create this sort of interaction, the
possible gestures that were deemed identifiable, were determined: they are
listed below.

Jumping: Can be recognised by a rapid increase of the y-coordinate of the
lowest point in the body.

Ducking: Can be recognised by a rapid decrease of the y-coordinate of the
highest point in the body.

Spreading arms: Can be recognised by the increasing distance between the
maximum and minimum x-coordinate in the body.

Pulling in arms: Can be recognised by the decreasing distance between the
maximum and minimum x-coordinate in the body.

Movement: Can be recognised by the displacement of the centre of mass of
the body.

Arm-Tracking: The idea of tracking the arms was also explored, multiple
possible ways of arm-tracking where deemed good enough to be usable, they
are listed here:

The first method tried to find the direction of the majority of extreme points
relative to the centre of mass of the body. This is done by first translating the
body-outline such that its centre of mass lies on the origin of the coordinate
system. Then by squaring the magnitude of the vectors comprising the body-
outline, vectors that already have a large magnitude have now become even
more extreme. This means that the new centre of mass of the outline moves
in the direction of the most extreme points. When taking the direction from
the old centre of mass to the new centre of mass, the direction of the most
extreme points is found. If a person sticks out their arm then this will be that
direction. One caveat is legs often stick out more than arms, which gives
inaccurate results. A very easy way to solve this problem is to assume the
people are standing upright, and just ignore all the points that lie below the
centre of mass.

28

The second method uses the Ramer, Douglas-Peucker[17, 18] recursive
simplification algorithm. The algorithm simplifies until a given error is met,
this means that using the right error (the thickness of a hand), hands will
always be reduced to a single point, while body parts thicker than a hand
(such as the head), will keep more than one point. Because the arms are
relatively long, compared to their thickness, the angle of the two line
segments at the hand point will be very sharp. Arms can now be detected by
looking for corners sharper than a certain threshold. The algorithm is
provided by the Boost.Geometry library.

Figure 13: Polygon simplification using Ramer, Douglas-

Peucker.

The third method is somewhat different in its approach, in the fact that it
does not attempt to just identify the arms, but the general skeleton inside of
the body. One way to do this is to find the topological skeleton/ medial axis
of a polygon, as defined by Blum [19], this defined as the set of all points
having more than one closest point on the object's boundary. Unfortunately
there are no open source library implementations of the medial axis
problem. However a very similar problem: the straight skeleton problem,
Aichholzer [20], does have an implementation in the CGAL computational
geometry library. The straight skeleton is mainly different from the medial
axis in the fact that it only contains straight lines, where the medial axis can
also contain parabolas, as can be seen in figure 14.

Figure 14: Comparison of Medial Axis (a) and Straight Skeleton (b) of the same polygon.

29

Unfortunately when using this algorithm on the outlines found by the
Kinect, it slowed down the whole application too much, going from never
dropping below 60 frames per second, to reaching an average of five frames
per second.

The last alternative is to use a Voronoi diagram creation algorithm and
subsequently filtering out the edges that do not fully lie withing the body-
outline. An example of this can be seen in figure 15.

Figure 15: Filtering the Voronoi diagram.

With this approach the creation of the Voronoi diagram was relatively fast,
and did not slow down the application to unusable speeds. However the
second filtering stage, is very costly. One way of filtering is to use a point
inside polygon algorithm to check for each line segment if one of the two
points falls inside the body-outline. However even assuming the fastest of
these algorithms runs in O(n) time, then to check all the points it would still
run in O(n^2). This proved to not be fast enough to run in real time.

Evaluation

Most gestures that were considered identifiable where relatively easy to
implement, and ran very fast. However the arm recognition proved
somewhat of a trouble. The first two methods (direction of most extreme
point, and simplification) worked without too many concerns, however they
would sometimes glitch out, or not recognize features. The third method
(straight skeleton) looked very promising, but was hard to make performant
enough to run in real time. Although possible to create to Voronoi diagram
with relative ease. It took too much cpu time to actually filter all the line
segments. This problem could have been solved by parallelization, or
hardware acceleration (using texture lookup), since all the filtering
calculations are independent of each other, however in the end this was not
considered worth the effort due to larger problems with the approach of
gesture identification in general:

30

The initial idea was to identify gestures, and then couple certain events in the
effects to these gestures, as a means of creating interaction. However when
the first effects were being made it quickly appeared that this does not feel

truly interactive. As Smuts said: “Something is interactive if and only if it (1)

is responsive, (2) does not completely control, (3) is not completely controlled,
and (4) does not respond in a completely random fashion”. In this case we can
speak of complete control, which means the whole installation wouldn’t even
be considered interactive at all. The moment a person realizes the effect a
certain gesture has on the visualization the magic is gone. Being in complete
control does not stay fun for long. Therefore a new less direct way of gesture
to effect coupling was explored.

Second attempt

The problem with the first iteration of gesture recognition and usage comes
from the full control the person has over the installation. Full control is
predictive and thus boring. A better way of creating interaction is to first start
with the effect. The effect should be running continuously, autonomously,
and unpredictably, and people should only be able to influence the way the
effect runs, while staying unpredictable. There is a big difference in knowing
something will change and knowing exactly what will change.

Evaluation

This idea was initially tested by creating a large particle system, moving with
to simplex noise (derivative of Perlin noise). Instead of directly controlling
the particles with gestures. The people interacting can only somewhat adjust
the particles that they touch, to make them move in different patterns. This
method proved to be much more successful in creating interactivity and was
therefor much preferred over the direct control method, which caused a
certain design pattern that was eventually used for all the developed effects:
First create a system with its own behaviour, and only afterwards introduce a
variable that people can influence by their interactions.

31

Realisation – Effects
The final installation was finished with four separate and unique interactive
effects. To create the effects inspiration was taken from the moodboard
created: Figure 2. The shaders that were used for each of the effects can be
found back in Appendix C.

Effect A: Particle system in flow field

When looking at other interactive art installations the theme of particle
effects is often used. From quite early on there was the idea to make a particle
effect where each particle takes its direction from a Perlin noise field. The
movement was programmed in GLSL (OpenGL shader language) to provide
the parallel processing power of the graphics card. Furthermore the noise
implementation used was simplex noise 3D by Ashima Arts and Stefan
Gustavson.

To create the interaction it was first attempted to either only show the
particles on the location of the screen where people are standing, or to
remove the particles where people are standing. Neither gave the desired
result of interacting with the particle system, but only gave the person the
choice where the particle system was visible. In this case the particle system
could just as well have been a video.

32

The answer was to only show a small part of the particles in the system, and
revealing all of them when a person touches them. This created both
interaction and an incentive to play with the installation.

Effect B: The Shattered mirror

For the second effect the initial idea came from John Conway’s Game of Life.
A “game” where cells in a grid can be either on or off, and the state of the
next iteration of the grid is decided by a set of rules applied to the current
active cells in the grid. The idea was though to use a triangular instead of a
rectangular grid.

Upon further exploration the Game of Life did not translate well to non
rectangular grids. It was thus chosen to concentrate more on the visual
aspects of this effect. When a person touches one of the triangles it becomes
activated, and then gains colour for a short duration. Meanwhile everything
is continuously moving and changing colour/ shade, to create an impressive
display.

In the end this effect turned out not very interactive, because the person
using the installation only had the ability to activate cells, while there were
also many other things changing in the installation which could not be
influenced by the person. This was not all bad though because it also allowed
the testing of what people find more important in such an installation: the
amount of control, or visual effects.

33

Effect C: Begone polygon

The third effect plays with the idea that there is not a representation of your
body in the visualisation, but the opposite. Your body is the void, where
there is a lack of anything in the installation.

The effect consists of two things: A large collection of circles that almost
move in a particle effect like fashion, and a big web of lines, which is a single
large loop of line with both the ends connected. Both of these are walking
around in a somewhat random fashion, moving over the screen. By touching
the geometries you make them disappear.

34

Effect D: Oldskool

The fourth and last effect was meant to be just fun and look good without
being to complicated. The person in the installation sees their body in the
installation in a bright colour. A few times per second a snapshot of the
people is made which gets drawn on the background. The background is
stored and slowly zooms in to not only show you a direct representation of
yourself, but also what you looked like a few moments ago. The colours were
chosen to be random, but to all lie in the same range of brightness and feel,
so as to not make certain colours stand out more than others.

35

Final Product
The finished product exists of two separate applications. Connected over a
TCP connection. The visualisation application consists of displaying the four
effects shown in the previous chapter. They rotate every minute, so people
interacting with the installation for four minutes get to see all of them. If a
specific effect is desired the keys 1-4 can be pressed corresponding to the
four effects, to rotate to that effect immediately. Other than this there are no
actual control parameters that can be adjusted in the application. All the
settings can be found in the Kinect control application.

Kinect control application

The Kinect control application is really the heart of the installation. The
steps that are necessary to transform the pixel input that is received from the
Kinects into the perpective-removed vertex data that is fed into the
visualisation application as described in chapter 7 will not be discussed
again, however the settings that can be controlled through the UI (figure 16),
do influence this process.

In the centre of the application the input of two connected Kinects can be
seen. Kinect 0 has been bordered by the dark green colour, and Kinect 1 by
purple. Inside of the borders four things can be seen. The live input image
coming from the Kinect. The current background image that is being
subtracted from the live image. The subtracted image after a threshold has

36

Figure 16: The finalized UI of the Kinect control application.

been applied. And lastly the little red light on the top right of the area. This
light tells you wether or not the current live image will also be used as
background for subsequent images. Because there is a person in the image
which should not be part of the background, the light is on red instead of
green.

On the left side of the application are all the settings. Controlling the input
processing pipeline, starting with the background samples. Updating the
background of a Kinect is done using samples. Samples have a duration,
influence and cooldown, each of which can individually be controlled.

The first item under vertex processing is the error margin. By lowering the
error margin it is possible to get rid of the spikyness of the output outlines,
however when a person has a large difference in furthest and nearest body
with respect to the Kinect then their body will get distorted. Therefore it is
not always best to just put the error margin as low as possible.

Sample point distance governs how far into the body, the body should be
sampled for the distance to the Kinect. Make this distance too small and you
risk missing the body. Make this distance too large and you risk
overshooting the body in thin places like arms and hands. Next are the
settings for simplification, as discussed in chapter 7, and two sliders that
determine the minimum area in pixels of blobs before they are considered
people.

Under devices you can see all the currently connected Kinects. For each you
can adjust the angle, which controls a little motor in each Kinect, and the
distance (which is because the program doesn’t know how far the they are
apart). Furthermore under each Kinect there is a list of all the connected PIR
sensors (in this case only COM6). By enabling and disabling them it is
possible to have different Kinects use different PIR sensors to sense motion.
This is useful in a very large setup with many Kinects.

Lastly there is the red and cyan outline visible overlaying the Kinect images.
This is the total finished result of all the processing steps, and the data that
will be send to the other application.

37

Final setup

The finished project was setup in the SmartXP laboratory, as seen in figure
17. A large screen was used that was lowered to be at floor height, so that
people can come very close to the screen. A beamer was suspended above the
play area, shining down on the screen, this brought down shadows on the
screen to a minimum. Two Kinects were used to sense the whole width of the
area, and a single movement sensor was used to identify if there were any
people.

38

figure 17: The final setup in the SmartXP.

User Tests and Research
The main aim of the user tests, was to research what people’s preferences are
in this sort of interactive installation. The test was kept relatively short (one
double sided sheet of a4), so that the threshold for people to participate was
not too high, and people answer more serious than if the form was very
large, and people want to be done quick. The questions were as follows:

1) Please order the four effects from liked most to liked least.

2) What was it about your favourite effect that made you like it most?

3) What was it about your least favourite effect that made you like it least?

4) Which effect did you think was most visually pleasing?

5) Which effect did you think felt most interactive?

6) Did you think effect D was interactive? Why/ why not?

7) What do you think are the requirements for something to be interactive?

8) When playing with this installation, what would you say was more
important for your enjoyment: the visuals or the interactivity?
(provided with a 10 step scale from visuals to interactivity)

9) Space for suggestions

It was chosen to ask the questions in such an order that the participant
having just finished playing with the installation, first has to order all the
effects from most to least fun. This ensures that the other more specific
questions do not interfere with this intuition.

The real crux of the questionnaire is the last non open question: question 8.
It is not only useful in the fact that it’ll give us information on what the
general public likes to see in such an interactive installation: interaction or
visual effects, but also allows us to look back to question 4 and 5, where
people have filled in which effect they thought was most interactive, and
which one was most visually pleasing. With the combination of these two
pieces of information, we can look back at question 1, to see if these
preferences are also visible in their intuitive opinion of the effects. Because
of this it is so important that the first question gets asked first.

39

Another interesting point is that according to Smuts’ definition of
interactivity something which is completely controlled is not interactive.
With all the effects some of the behaviour comes from the computer, and
some comes from people’s interaction with the computer. Only effect 4 is
different. Apart from the little sensor mistakes made by the Kinect the effect
is completely deterministic. It’ll be interesting to see how outside people
think about this matter, with question 6 & 7.

The remaining open questions 2, 3 & 9, do not serve any specific purpose,
and are just there to see if people have interesting thoughts on this.

In the end the test was done by 40 different participants. The full test can be
found in Appendix A.

40

Results and Conclusion

Opinions on effect A:

+ Peaceful
+ Good that you see your own body
+ More movement creates more particles (incentive to move)
+ Elegant
- Direction of particles cannot be influenced
- Lack of colour

Opinions on effect B:

- Too few triangles (low resolution, makes it inaccurate)
- Not very interactive (only the colour changes)
- Rather abstract (not good image of yourself)
- Impact of visualisations and interactivity out of balance
- Made some people nauseous

Opinions on effect C:

- Unclear interaction (many people felt this)
- Lack of colour, visually not interesting
- Feels random instead of interactive
- No image of yourself in front of you
- Not impressive or exciting
- “Feels like a bad trip”

41

Figure 18: Ratings of each effect: 1-4 signifies 1st till 4th place.

Opinions on effect D:

+ Actions are more lasting
+ Feels very interactive
+ Clearly see yourself in front of you
+ Lots of control
+ Looks good

42

Figure 21: Participant’s preference towards visuals or interaction, x = preference, y =

amount of people.

Figure 20: Amount of times each effect was

chosen as most visually pleasing.

Figure 19: Amount of times each effect was

chosen as most interactive.

Figure 22 contains an overview of the preferences of all 40 participants. The
right most column contains their opinion on importance of visuals
compared to the importance of interaction, where -4 means only visuals is
important, 4 means only interactions are important, and 0 means both are
equally important. The yellow markers indicate a contradiction between two
or more of the answers. For instance a person with a preference for
interaction (1) found B the most interactive, but in his ordering of all the
effects B was third.

43

Figure 22: Overview of all 40 participant’s preferences on the effects. V/I preference stands for

how much participants leaned towards preferring visuals (-4) to interactions (4).

(Q6) Is effect D interactive?

Out of 40 people, 35 said D was interactive, one person doubted, and four
people said it is not interactive.

The people that said it was interactive did not really have arguments, on why
their opinion was such. But most people generally answered “yes”, or
answered something in the likes of:

“Yes, because it makes you move.”

“Yes, because I can see my history”

The person that was not certain said it was down to the definition of
interaction:

“It is interactive in that it responds to your movement, but I would say
whether it is interactive depends on the definition of the word interactive.”

The people that deemed the effect not interactive, all had a similar reasoning
as Smuts [7]:

“Not interactive, it seems to copy your shape, but not interact with any
objects/ particles”

The installation copies your shape, and does something with that, however
your shape is the only thing in the installation, your shape does not have any
power to interact with anything.

Lastly another interesting result was that multiple people actually called D
the most interactive effect. Their reasoning came mostly from the fact that
the influence the participant has is so direct and visible, and from the fact
that this effect made people generally very active

44

(Q7) What are the requirements for interactivity?

26 out of 40 people just said something along the lines of “Have some
control on the visual effects.”.

Six people mentioned that it is important that this response to your actions
happens immediately.

Six people mentioned that the interaction between both parties should be
mutual.

Five people phrased their answer such that it is dependant on the definition
of interaction.

And lastly three people gave an answer that made not much sense in the
context. A full list of the answers can be found in Appendix B. Some of the
interesting answers included:

“Being able to change the something and the something being able to show
you changes, to change your behaviour.”

“A user must feel connected action, reaction”→ action, reaction”

“Whether it is manipulatable.”

“Responding in a lively way.”

“See which impact your actions have on something, this can be subtle as
long as people notice it.”

45

Discussion
Measuring the finished installation against the initially devised
requirements, the installation satisfies on most departments: most of the
requirements have been fully achieved. The functional requirements
specifically: the Kinect application supports all the features that were
desired. Multiple Kinects can be connected even when they are standing at
arbitrary positions. Because the installation as a whole runs as two separate
applications it is very easy to reuse the Kinect part to work in conjunction
with another project or installation, or even with more than one installation
or program at once. All of the settings governing the processing of the Kinect
data can be adjusted at runtime, which provides a lot of flexibility in its
usage, and allows the user to setup the Kinect part of the installation at any
location with any particular configuration with relative ease, and up to four
Kinects simultaneously.

Interaction-wise most major requirements have been accomplished,
however trade-offs had to be made. As described in “Realisation – Gestures”
in the section about gesture recognition two different attempts have been
made at creating the desired interaction. Initially it was attempted to identify
specific gestures which could trigger certain effects. This idea was then
discarded, because it would: A. Be very very difficult for people to realise
what gestures can be recognised, and what these gestures trigger. And B. Not
give people a sense of their own body being an entity inside of the
installation.

Eventually the entity approach was used, where people would first and
foremost see their own representation in the installation, and then use their
representation to interact with the installation. However one mistake was
made at this point. Most of the effects ended up following the same
structure: A certain entity or group of entities is existing on the screen. At
the positions where your body touches these entities, they are distorted in
one way or another. The result of this is that your interaction is very location
based. Using your body you can influence the installation in where a certain
effect will be distorted. But in the end it is not truly possible to have any
influence on the behaviour of the effect itself. The best would have likely
been to have a combination of motions influencing the effect, but only have
these interactions happen where a person’s virtual representation resides.

Another factor that determined how interactions were handled in the final
installation came from the software that was used to read the images from
the Kinect. Libfreenect was used, this is a driver which loads the raw depth
data from the Kinect in large arrays of distance values. Because of this it is

46

very involved, and out of the scope of this project to extract true gestures
from this data. Alternatives would have been the official Microsoft kinect
SDK, or OpenNI, however both of these have their own issues as well
(License, restriction on amount of Kinects, stability issues etc.), therefore
libfreenect was chosen, for its overall features and permissive license.

The final installation consisted of four different effects running in a loop,
being alternated each minute. Because of this the diversity in interaction and
visuals was very high, which was well received by the test subjects. The one
minute timer to switch effects seemed to be a good trade-off in keeping
people playing for as long as possible, and keeping people entertained by the
installation. The only problem was the abrupt change of effects. Having a
nicer smooth transition between the effects would have led to the
installation feeling more like one experience instead of four separate effects.

One of the notable findings of the user tests was that people focus very much
on the speed at which the installation responds to their interactions. People
liked seeing their own reflection as clear as possible, and seeing their
influences straight away. This accounts for the popularity of effect D, where
the interactions where immediate, and people’s mirror image was very clear.
This also explains why some people considered D the most interactive effect,
from all four, because of this immediacy of the control.

However it is still up for discussion whether or not effect D is truly
interactive. In effect D snapshots are created using the silhouette of your
body. These continuously increase in size until they are so large that it is not
recognisable any more as a silhouette. People are able to fully control their
virtual image in the installation, however their image is the only thing in the
installation. This means that their image has nothing to interact with, and
thus can’t be interactive either.

This results in one of the most surprising conclusions from this research.
From the start it has been assumed that the amount of interactivity in the
installation should be maximized, reasoning that this would create the most
fun and entertaining installation. However most people interacting with the
installation have a different opinion on what is interactive, than what is
considered interactive in the literature. The general public prefers to clearly
see their own actions in the installation, and this is where their sense of
interaction comes from. Most people would be happy with an installation
that has great visuals, and a certain degree of control the user can exert. So
what then should be strived for when creating an interactive art installation?
Just a good experience? We believe that to create the perfect interactive art
installation, that is both the most fun for the user, and truly interactive needs
the following aspects:

47

Emergent generative and complex behaviour. If you want to interact with
something it needs a certain degree of complexity to be able to meaningfully
influence with it. Just like how as a human you could have more meaningful
and genuine interactions with a cat or dog than with a spider.

Long term influence and short term influence. Short term to feel interactive
instantly, and long term to feel like your interactions are meaningful:
similarly to an interaction between humans has long and short term effects
(short term: The successive responses on each other, long term: Changing
each other's opinion on a certain topics) interactive art also needs
interactions on both time scales.

The right balance of control. This is not as straight forward as it sounds:
Smuts argues: an interaction should not be completely controlled or
completely controlling, however during the user tests it has appeared that
most people prefer to have as much control as possible in the installation.
This is therefore a topic worthy of future research. One good approach would
be to take over control during an interaction, while when not (actively
interacting) the installation tries to take control back from the user. Again
this should be attempted and be experimented with.

Change of interaction, or change of influence of interactions. If one can
interact with an installation by lifting one’s arm, and each time the
installation responds with the same outcome the installation will quickly
become boring. This comes back to the same point as the first requirement:
sufficiently complex behaviour. Which would cause interactions to have
different outcomes each time. Think of a person A saying the same sentence
every day to a person B. Depending B’s mood, A and B’s relationship and
infinitely more factors, the response would be different every day.

48

Future Research
Interactive art is a still a new and emerging field, with many aspects left to
explore. This thesis is hopefully helpful for those who wish to create their
own interactive art, or wish to research interactive art themselves.

The usability test of this project was mostly done by university students aged
18 – 30. The wants and expectations of this group might not accurately
represent the wants and expectations of the general public. More research
could be done to the perception of interactive art by different social groups,
interacting alone or in groups, with someone to explain what the installation
is or completely unguided, etc.

Of course this project was one very specific installation, and therefore might
not accurately represent all interactive art in general. A larger sample size and
more interactive art installations are always desired.

Furthermore the complete dimension of audio has not been touched in this
project, which would have a large impact on how people interact with and
perceive the installation.

Interactive art is still young, and most interesting research and projects are
still to come.

49

References
[1] M. Duchamp, Rotary Glass Plates (Precision Optics). New Haven,

Connecticut: Yale University Art Gallery, 1920.

[2] Y. Agam, Transformable Relief. Private collection, 1953.

[3] B. Fry and C. Reas, Processing. Processing Foundation, 2001.

[4] M. Banzi, D. Cuartielles, T. Igoe, G. Martino and D. Mellis, Arduino.
Arduino LLC, 2018.

[5] D. Lopes, "The Ontology of Interactive Art", Journal of Aesthetic
Education, vol. 35, no. 4, p. 65, 2001.

[6] S. Cornock and E. Edmonds, "The Creative Process Where the Artist Is
Amplified or Superseded by the Computer", Leonardo, vol. 6, no. 1, p.
11, 1973.

[7] A. Smuts, "What Is Interactivity?", The Journal of Aesthetic Education,
vol. 43, no. 4, pp. 53-73, 2009.

[8] TeamLab, Wander through the Crystal Universe. 2016.

[9] T. Lengeling and G. Castro, Aether. 2013.

[10] C. Bardainne and A. Mondot, Hakanaï. 2013.

[11] TeamLab, Drawing on the Water Surface Created by the Dance of Koi
and People - Infinity. 2016.

[12] Potion Design, Forest Friends. 2015.

[13] N. Selikoff, Beautiful Chaos. 2013.

[14] H. Martin, libfreenect. OpenKinect Project, 2010.

[15] OpenCV Library. Intel Corporation, Willow Garage, Itseez, 2000.

[16] B. Gehrels, B. Lalande, M. Loskot and A. Wulkiewicz, Boost.Geometry.
Boost Organization, 2009.

[17] U. Ramer, "An iterative procedure for the polygonal approximation of
plane curves", Computer Graphics and Image Processing, vol. 1, no. 3,
pp. 244-256, 1972.

50

[18] D. Douglas and T. Peucker, "Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or its
Caricature", Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 10, no. 2, pp. 112-122, 1973.

[19] H. Blum, "A transformation for extracting new descriptors of shape",
Models for the Perception of Speech and Visual Forms, pp. 362-380,
1967.

[20] O. Aichholzer, F. Aurenhammer, D. Alberts and B. Gärtner, "A Novel
Type of Skeleton for Polygons", J.UCS The Journal of Universal
Computer Science, pp. 752-761, 1996.

51

Appendix A – User Test

A) B)

C) D)

How old are you? . Gender .

Please give the order of your preference to which effects you liked most, to
which you liked least.

 Liked most liked least

What was it about your favourite effect that made you like it best?

What was it about your least favourite effect that made you like it least?

52

Which effect did you think was most visually pleasing?

Which effect did you think felt most interactive?

Did you think effect (D) was interactive? Why/ why not?

What are your requirements for something to be interactive?

When playing with this installation, what would you say was most important
for your enjoyment: the visuals, the interactivity, or both equally.

Visuals equal Interactivity

Any particular reason why?

Would you say that any of the interactions could have been stronger/ done in a
different way?

Do you have any ideas/ tips to improve this installation?

53

Appendix B – Answers to Open Questions

(Q6) Is effect D interactive?

“Yes, snapshots of what you are doing, feels like a stroboscope.”

“Yes, I played with the installation the most with this effect.”

“I did, I could directly see my movements on the screen.”

“Yes, you could take on poses and see yourself back on the screen very
clearly.”

“Kind off, it was more like snapshots where taken, instead of really changing
the visualisation.”

“Yes, it looks so cool, it moves with you.”

“Yes, I think it was the most interactive as I could see an effect.”

“Yes, because you can see the movement and history.”

“Yes, I see a silhouette of my movements/ position.”

“Yes, you could actually see a silhouette.”

“Yes!”

“Yes, seeing your movement update is awesome.”

“Not interactive, it seems to copy the shape, but not interact with any object/
particles.”

“Not really because it is just a live visualisation.”

“A little, because it changed on my movement but it didn’t do much more.”

“Not really since the movement was tracked by all the effects. D had no other
additions.”

“It is interactive in the way that it responds to your movement, but I would
say it depends on your interpretation of the word interactive.”

“Yes, effect changes on movement.”

“For some reason it really encourages the user to interact with it. It has a ‘just
dance’ kind of feel.”

54

“Yes, you made the screen show up with a different picture depending on
your pose, coming up with something different every time.”

“A bit slow reaction, but that made it nice.”

“Yes, because you could clearly see it was you.”

“Yes, however it seemed like short snapshots after each other.”

“Yes, it copied my movements, and distorted my physique.”

“Yes, it used your body shape to show cool visuals.”

“Yes, the program still mirrored my movement. It was even more interactive
than B.”

“Yes, since the shapes change and you have influence on the at.”

“Yes, you saw yourself coming back in the shapes.”

“Yes, because it showed your movements.”

“It imitated: very direct interaction.”

“Yes, it changed very well with the movement of the user and adapted to the
poses well.”

“Yes, your acting shapes what happens on the screen.”

“Yes, I could clearly see myself and it was quite cool.”

“Yes, your posture is really clearly visible.”

“Yes, it was clear what pose you made.”

“Yes, it is very clear how your interactions translate to the shapes on the
screen.”

“Yes, because you can also see your history (and order of movements/ the
different layers).”

“Yes, it copied movement and dared you to try to create new shapes.”

“Yes, because the effect moves to the outside borders, you go there to try
things out.”

“Yes, because it was most realistically shaped and made it easy to interact
with others.”

55

(Q7) What are the requirements of interactivity?

“I move it updates.”

“Status of the machine changes accordingly to user input.”

“Fast reaction.”

“I can clearly see the changes that I cause.”

“See which impact your actions have on something, this can be subtle as
long as people notice it.”

“I can so something with the presented technology.”

“It reacts to what you’re doing (your input).”

“Being able to change the something and the something being able to show
you changes, to change your behaviour.”

“There has to be a reaction to an action you perform.”

“I should see change when I do something.”

“That I am interested.”

“Clear feedback of your actions.”

“To give a reasonably accurate impression of a human being.”

“Two units that respond to each other continuously.”

“Engagement to try and create new objects/ things.”

“Control on the effect by the user, and vice versa.”

“You should be able to understand what happens on the screen.”

“My actions affect the something.”

“It has to be inviting, and putting in more effort should result in more
awesome stuff.”

“That I am given some control over the installation.”

“My actions have impact on the installation.”

“Something has to change as soon as the user makes an effort to interact
with the installation.”

56

“Direct and natural interaction generates action.”

“That it reacts on what you do, that you see it follows you E.G.”

“Seeing your interaction fast.”

“You have influence and can change what is happening.”

“You can do something.”

“Responding to your actions.”

“If I approach, touch or do something, the installation should react to me.”

“Interaction with user.”

“To react on what you are doing.”

“Quick responses.”

“Whether it is manipulatable.”

“Visually appealing, and the effect has to be noticeable straight away.”

“A user must feel connected action, reaction.”→ action, reaction”

“Responding to your input.”

“Aspects of a program that respond in a lively way. Meaning that I can see
that it does more than just track my movement.”

“That it does something more than just copy my movement, but does
something else with it.”

“In this case something should react to your movement: like in case C where
circles get smaller and disappear.”

“Depends on the definition of interactive, I guess you have to be able to
move or change objects.”

57

Appendix C – Shaders

Effect A – Vertex Shader

#version 330 core

layout (location = 0) in vec2 position_in;
layout (location = 1) in float ttl_in;
layout (location = 2) in float time_offset;

out vec2 position_out;
out float ttl_out;

uniform float time;
uniform float elapsed_time;
uniform float speed;

uniform vec2 window_size;
uniform vec3 noise_scale_inside;
uniform vec3 noise_scale_outside;

uniform sampler2D stencil;

void main()
{
 vec3 noise_pos;
 vec2 sample_pos = vec2(
 position_in.x / window_size.x,
 (window_size.y - position_in.y) / window_size.y);

 if (texture(stencil, sample_pos).x > 0)
 {
 ttl_out = 0;
 noise_pos = vec3(position_in, 1.0f) * vec3(
 noise_scale_inside.x, noise_scale_inside.y,
 (time + time_offset) * noise_scale_inside.z);
 }
 else if(ttl_in < 1.0f)
 {
 ttl_out = ttl_in + elapsed_time;
 noise_pos = vec3(position_in, 1.0f) * vec3(
 noise_scale_inside.x, noise_scale_inside.y,
 (time + time_offset) * noise_scale_inside.z);
 }
 else
 {
 ttl_out = ttl_in + elapsed_time;
 noise_pos = vec3(position_in, 1.0f) * vec3(
 noise_scale_outside.x, noise_scale_outside.y,
 (time + time_offset * 3) * noise_scale_outside.z);
 }

 float noise_val = snoise(vec3(noise_pos.x, noise_pos.y, noise_pos.z)) * 4.5f;
 vec2 movement = vec2(cos(noise_val), sin(noise_val)) * speed;
 position_out = position_in + movement;

 if (ttl_in < 1.0f || time_offset > 4)
 {
 gl_Position = vec4(map(position_out, vec2(0, 0), window_size,
 vec2(-1, -1), vec2(1, 1)), 0, 1);
 }
 else
 {
 gl_Position = vec4(-2, -2, 0, 1);
 }

 if (position_in.x < 0 || position_in.x > window_size.x ||
 position_in.y < 0 || position_in.y > window_size.y)
 {
 position_out.x = random(vec2(position_in.x, time)) * window_size.x;
 position_out.y = random(vec2(position_in.y, time)) * window_size.y;
 }
}

58

Effect A – Fragment Shader

#version 330 core

out vec4 frag_color;

in float ttl_out;

void main()
{
 if (ttl_out < 1)
 {
 frag_color = mix(vec4(1, 1, 1, 1), vec4(0.7, 0.7, 0.7, 1), ttl_out);
 }
 else
 {
 frag_color = vec4(0.7, 0.7, 0.7, 1);
 }
}

Effect B – Vertex Shader

#version 330 core

layout(location = 0) in vec2 position_in;
layout(location = 1) in vec2 center;
layout(location = 2) in vec2 time_offset;
layout(location = 3) in float random_walker;

layout(location = 4) in float hue_a;
layout(location = 5) in float hue_b;
layout(location = 6) in float saturation;

out float hue_a_out; // captured
out float hue_b_out; // captured
out float saturation_out; // captured

out vec3 vertex_color;

uniform vec2 window_size, current_hues, pt_ab, pt_cd;
uniform float current_time;
uniform float delta_time;
uniform sampler2D stencil;

void main()
{
 bool s1 = texture(stencil, vec2((center.x + pt_ab.x) / window_size.x,
 (window_size.y – (center.y + pt_ab.y)) / window_size.y)).x > 0;
 bool s2 = texture(stencil, vec2((center.x - pt_ab.x) / window_size.x,
 (window_size.y - (center.y - pt_ab.y)) / window_size.y)).x > 0;
 bool s3 = texture(stencil, vec2((center.x + pt_cd.x) / window_size.x,
 (window_size.y - (center.y + pt_cd.y)) / window_size.y)).x > 0;
 bool s4 = texture(stencil, vec2((center.x - pt_cd.x) / window_size.x,
 (window_size.y – (center.y - pt_cd.y)) / window_size.y)).x > 0;

 float gray_noise = (snoise(vec3(position_in, current_time + time_offset))
 + 1) / 2;
 float hue_noise = (snoise(vec3(position_in, current_time + time_offset
 + 1000)) + 1) / 2;

 if (s1 || s2 || s3 || s4)
 {
 hue_a_out = current_hues.x;
 hue_b_out = current_hues.y;
 saturation_out = 0.5;
 }
 else
 {
 hue_a_out = hue_a;
 hue_b_out = hue_b;
 saturation_out = max(saturation - (delta_time / 2), 0);
 }

 float hue = abs(fract(hue_a + hue_noise / 2));

 vertex_color = hsl2rgb(vec3(hue, saturation, gray_noise));

59

if (random_walker > 0 && saturation == 0)
 {
 hue = abs(fract(snoise(vec3(center.x / 1000, center.y / 1000, current_time
 / 100)) / 2));
 vertex_color = hsl2rgb(vec3(hue, random_walker, gray_noise));
 }

 float dir = snoise(vec3(position_in.x / 100, position_in.y / 100,
 current_time / 10)) * 4.5;

 float mag = snoise(vec3(position_in.x / 100, position_in.y / 100, 100 +
 current_time / 10)) * 30;

 gl_Position = vec4(map(position_in + vec2(cos(dir) * mag, sin(dir) * mag),
 vec2(0, 0), window_size, vec2(-1, -1), vec2(1, 1)), 0, 1);
}

Effect B – Fragment Shader

#version 330 core

in vec3 vertex_color;

out vec4 out_color;

void main()
{
 out_color = vec4(vertex_color, 1.0);
}

Effect C – Vertex Shader for Circles

#version 330 core

layout (location = 0) in vec2 coord_in;
layout (location = 1) in vec2 centre_in;
layout (location = 2) in float shrinking_in;
layout (location = 3) in float noise_offset;

out vec2 coord_out;
out vec2 centre_out;
out float shrinking_out;

uniform vec2 window_size;
uniform float time;
uniform sampler2D people;

void main()
{
 float x = snoise(vec3(1, 1, time * 0.1 + noise_offset));
 float y = snoise(vec3(1, 1, time * 0.1 + noise_offset + 300));

 vec2 movement = vec2(x, y) * 2.5;

 coord_out = coord_in;
 centre_out = centre_in + movement;

 if(centre_out.x > window_size.x + coord_out.y) {
 centre_out.x = -coord_out.y;
 } else if(centre_out.x < -coord_out.y) {
 centre_out.x = window_size.x + coord_out.y;
 }
 if(centre_out.y > window_size.y + coord_out.y)
 {
 centre_out.y = -coord_out.y;
 } else if(centre_out.y < -coord_out.y) {
 centre_out.y = window_size.y + coord_out.y;
 }

 float two_pi = 6.28318530717958647693;

 bool hit = texture(people, vec2(centre_out.x / window_size.x,
 (window_size.y - centre_out.y) / window_size.y)).x > 0;

 for(float a = 0; a < 6.25; a += two_pi / 8)
 {

60

 vec2 pos = centre_out + vec2(sin(a) * coord_out.y * 0.5, cos(a) *
 coord_out.y * 0.5);

 if (texture(people, vec2(pos.x / window_size.x, (window_size.y - pos.y)
 / window_size.y)).x > 0)
 {
 hit = true;
 }
 }

 if (hit)
 {
 coord_out.y -= 5;

 if (coord_out.y < 0)
 {
 centre_out.x = random(centre_in.x);
 centre_out.y = random(centre_in.y);
 coord_out.y = 40 + 40 * random(centre_in);
 }
 }

 vec2 position = vec2(cos(coord_in.x) * coord_in.y, sin(coord_in.x) *
 coord_in.y) + centre_out;

 gl_Position = vec4(map(position, vec2(0,0), window_size, vec2(-1, -1),
 vec2(1, 1)), 0, 1);
}

Effect C – Fragment Shader for Circles

#version 330 core

out vec4 frag_color;

void main()
{
 frag_color = vec4(1, 1, 1, 1);
}

Effect C – First Vertex Shader for Lines

#version 330 core

layout (location = 0) in vec2 position_a;
layout (location = 1) in vec2 position_b;
layout (location = 2) in vec2 position_c;
layout (location = 3) in vec2 noise_offset;

out vec2 position_out;

uniform float time;
uniform float buffer_size;
uniform vec2 window_size;
uniform vec3 noise_scale;
uniform sampler2D people;

bool collision()
{
 bool result = false;

 float n_times = 10;
 float inc = 1.0f / n_times;

 for (float a = 0; a <= 1; a += inc)
 {
 vec2 pos1 = mix(position_a, position_out, a);
 vec2 pos2 = mix(position_c, position_out, a);

 if (texture(people, vec2(pos1.x / window_size.x, (window_size.y - pos1.y) /
 window_size.y)).x > 0 || texture(people, vec2(pos2.x / window_size.x
 (window_size.y – pos2.y) / window_size.y)).x > 0)
 {
 result = true;
 break;
 }
 }
 return result;
}

61

void main()
{
 float x = snoise(vec3(1, 1, time * noise_scale.z * 0.6 + noise_offset.x
 + 100));
 float y = snoise(vec3(1, 1, time * noise_scale.z * 0.2 + noise_offset.y
 + 300));

 vec2 mov = vec2(x, y) / length(vec2(x, y)) * 4;

 position_out = position_b + mov;

 if (position_out.x < -buffer_size || position_out.x > window_size.x +
 buffer_size)
 {
 position_out = vec2(random(position_out) * window_size.x,
 random(position_out.yx) * window_size.y);
 }

 if (position_out.y < -buffer_size)
 {
 position_out = vec2(position_out.x, window_size.y + buffer_size);
 }
 else if (position_out.y > window_size.y + buffer_size)
 {
 position_out = vec2(position_out.x, -buffer_size);
 }

 int n = 0;

 while (collision() && n++ < 7)
 {
 position_out = vec2(random(position_out) * window_size.x,
 random(position_out.yx) * window_size.y);
 }

 gl_Position = vec4(-3, -3, 0, 1);
}

Effect C – Second Vertex Shader for Lines

#version 330 core

layout(location = 0) in vec2 position_in;

uniform vec2 window_size;

void main()
{
 gl_Position = vec4(map(position_in, vec2(0, 0), window_size, vec2(-1, -1),
 vec2(1, 1)), 0, 1);
}

Effect C – Fragment Shader for Lines

#version 330 core

out vec4 out_color;

void main()
{
 out_color = vec4(1.0, 1.0, 1.0, 1.0);
}

Effect D

For effect D only the default rendering pipeline present in OpenFrameworks
was used without the addition of custom shaders.

62

	Creating an Interactive Art Installation for the SmartXP
	Table of Contents
	Introduction
	Research Questions
	State of the Art – Literature
	State of the Art – Relevant Work
	Beautiful Chaos – Nathan Selikoff, 2013 [13]
	Evaluation

	Wander through the Crystal Universe – TeamLab, 2016 [8]
	Evaluation

	Aether – Thomas Sanchez Lengeling & Gilberto Castro, 2013 [9]
	Evaluation

	Hakanaï – Claire Bardainne & Adrien Mondot, 2013 [10]
	Evaluation

	Drawing on the Water Surface – TeamLab, 2016 [11]
	Evaluation

	Forest Friends – potion design, 2015 [12]
	Evaluation

	Conclusions and Ideation
	Requirements
	Interaction requirements
	Functional requirements
	Visual requirements

	Realisation – Combining multiple Kinects
	For each Kinect individually
	Input
	Removing the background
	Thresholding and searching for contours
	Calculating vertex distance
	For all Kinects combined

	Combining Kinect shapes
	Tracking shapes over time

	Realisation – Gestures
	First attempt
	Evaluation

	Second attempt
	Evaluation

	Realisation – Effects
	Effect A: Particle system in flow field
	Effect B: The Shattered mirror
	Effect C: Begone polygon
	Effect D: Oldskool

	Final Product
	Kinect control application
	Final setup

	User Tests and Research
	Results and Conclusion
	Opinions on effect A:
	Opinions on effect B:
	Opinions on effect C:
	Opinions on effect D:
	(Q6) Is effect D interactive?
	(Q7) What are the requirements for interactivity?

	Discussion
	Future Research
	References
	Appendix A – User Test
	Appendix B – Answers to Open Questions
	(Q6) Is effect D interactive?
	(Q7) What are the requirements of interactivity?

	Appendix C – Shaders
	Effect A – Vertex Shader
	Effect A – Fragment Shader
	Effect B – Vertex Shader
	Effect B – Fragment Shader
	Effect C – Vertex Shader for Circles
	Effect C – Fragment Shader for Circles
	Effect C – First Vertex Shader for Lines
	Effect C – Second Vertex Shader for Lines
	Effect C – Fragment Shader for Lines
	Effect D

