

Master’s thesis

Tracking of wireless devices:
Is it possible and solvable?

Remie Löwik

July, 2018

Supervisors:

Dr.ir. P.T. de Boer

Prof.dr.ir. G.J. Heijenk

Dr. M. Baratchi

Computer Science

Faculty of Electrical Engineering,

Mathematics and Computer Science

Abstract
A shared research experiment is performed to prove that tracking of Wi-Fi enabled clients is possible.

Then individually a solution for the problem is developed, verified and tested. In this case the goal

was to alter the protocol in such a way that tracking was not possible any more but to keep

interoperability with older devices.

In the shared experiment students are asked to track their household occupancy and devices that

collect Wi-Fi data are placed in student households for a week. Using the collected Wi-Fi data an

occupancy schedule is generated and compared to the actual schedule created by the student.

Unfortunately the schedule could not be generated because the students were all on the same

network (Eduroam) which made it impossible to separate households and their devices from their

neighbours.

The individual part started by determining which parts of the protocol allow tracking of the clients.

The protocol is then implemented in Proverif to verify that the data is actually leaked by the protocol.

The protocol was then altered in such a way that it would not leak any of the data whilst staying as

compatible with older devices as possible. Lastly the solution is implemented on devices to verify the

compatibility of the new protocol with the old one. Determining which parts of the protocol were the

problem, proving this in Proverif and creating a solution in Proverif were all successful. The last part

could unfortunately not be successfully implemented. Thus, the interoperability could not be verified

but due to the limited changes made to the structures defined by the protocol it is expected to not

be a problem.

Table of contents
Figures .. 1

Tables ... 2

Abbreviations ... 3

1 Introduction ... 4

2 Shared research .. 5

2.1 Introduction .. 5

2.2 Background ... 6

2.3 Method ... 8

2.4 Results .. 14

2.5 Problems and solutions .. 28

2.6 Conclusion .. 31

2.7 Discussion ... 32

3 Related solution research ... 34

3.1 Introduction .. 34

3.2 Awareness .. 34

3.3 Passive probe.. 34

3.4 Active probe ... 34

3.5 Passive mac .. 35

3.6 Active mac .. 36

3.7 Comparison .. 36

3.8 Conclusion .. 37

4 Goal .. 38

5 Approach .. 39

6 Identifying the problem .. 40

6.1 Frame types .. 40

6.2 Generic MAC frame .. 41

6.3 Sequences .. 45

7 Solution .. 56

7.1 Consideration ... 56

7.2 Protocol changes .. 60

8 Proving solution.. 66

8.1 What is Proverif .. 66

8.2 Implementation choices ... 67

8.3 Prove trackability .. 67

8.4 Altering implementation .. 68

9 Implementing solution ... 77

9.1 Place for changes .. 77

9.2 Implementation setup .. 78

9.3 Implementation .. 79

9.4 Problems .. 80

10 Limitations .. 83

10.1 Statistical analysis ... 83

10.2 Analogue information ... 83

11 Conclusion .. 84

12 Discussion ... 86

12.1 ACK control ... 86

12.2 Usage of PSK key .. 86

References ... 87

Appendix .. 88

Appendix 1: Small scale research ... 88

Appendix 2: Probe Proverif implementation .. 94

Appendix 3: Authentication & association Proverif encryption.. 96

Appendix 4: WPA key exchange Proverif implementation ... 98

Appendix 5: Multicast data transmission Proverif implementation ... 101

Appendix 6: Beacon Proverif implementation.. 103

Appendix 7: Power management Proverif implementation ... 104

1

Figures
Figure 1: Confidence level vs sample size for the university campus household list 7

Figure 2: Measurement equipment ... 9

Figure 3: Example of a timesheet day before and after initial processing .. 11

Figure 4: Signal strength distribution of the measured devices in 1 household 17

Figure 5: Detected presence of two visually matched devices against the user’s schedule 19

Figure 6: Dataset 1, comparison between network traces and user's schedule 21

Figure 7: Dataset 1, comparison between the user's schedule and measured absences 21

Figure 8: Dataset 2, comparison between network traces and the user's schedule 22

Figure 9: Dataset 3, comparison between network traces and the user's schedule 23

Figure 10: Dataset 3, comparison between the user's schedule and measured absences 23

Figure 11: Dataset 4, comparison between network traces and the user's schedule 24

Figure 12: Dataset 5, comparison between network traces and the user's schedule 24

Figure 13: Dataset 6, comparison between network traces and the user's schedule 25

Figure 14: Dataset 7, comparison between network traces and the user's schedule 25

Figure 15: Average false and correct vacancy prediction rate versus device count 26

Figure 16: Average false and correct vacancy prediction rate versus device count #1 27

Figure 17: Average false and correct vacancy prediction rate versus device count #2 27

Figure 18: Average false and correct vacancy prediction rate versus device count #3 27

Figure 19: Example timesheet .. 29

Figure 20: privacy preserving discovery (Lindqvist et al. 2009, figure 1) .. 35

Figure 21: Probability of tracking devices (Vanhoef et al. 2016, figure 6) .. 35

Figure 22: SlyFi Protocol (Greenstein et al. 2008, figure 1) .. 36

Figure 23: Generic MAC frame header ... 41

Figure 24: Frame control field .. 41

Figure 25: Ack only sequence of frames ... 45

Figure 26: Acknowledgement frame .. 45

Figure 27: Clear to self sequence of frames ... 45

Figure 28: Clear to Send frame ... 45

Figure 29: Request to send sequence of frames .. 46

Figure 30: Request to Send frame .. 46

Figure 31: Beacon sequence of frames .. 46

Figure 32: Beacon frame .. 47

Figure 33: Beacon frame body ... 47

Figure 34: Probe sequence of frames ... 47

Figure 35: Probe request frame ... 47

Figure 36: Probe request frame body... 47

Figure 37: Probe response frame ... 48

Figure 38: Probe response frame body .. 48

Figure 39: Open authentication sequence of frames ... 48

Figure 40: Shared key authentication sequence of frames .. 48

Figure 41: Authentication frame .. 49

Figure 42: Authentication frame body ... 49

Figure 43: Association sequence of frames .. 49

Figure 44: Association request frame ... 50

Figure 45: Association request frame body .. 50

Figure 46: Re-association request frame .. 50

Figure 47: Re-association request frame body ... 50

file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851027
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851028
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851029

2

Figure 48: Association response frame .. 51

Figure 49: Association response frame body.. 51

Figure 50: Disassociation frame ... 51

Figure 51: Disassociation frame body... 51

Figure 52: EAP key exchange sequence of frames.. 52

Figure 53: EAP frame .. 53

Figure 54: EAP frame header .. 53

Figure 55: EAP-Key frame ... 53

Figure 56: EAP-Key frame body .. 53

Figure 57: Key information field ... 54

Figure 58: Data transmission sequence of frames.. 54

Figure 59: CCMP frame format ... 55

Figure 60: CCMP header ... 55

Figure 61: PS-Poll sequence of frames ... 55

Figure 62: Power-save Poll frame ... 55

Figure 63: Comparison between key sizes (Ajay Kumar et al. 2013, table 4) 56

Figure 64: Performance comparison between RSA en ECDH (Levi and Savas 2003, figure A) 57

Figure 65: Used data structures ... 60

Figure 66: Adding MACs to the encrypted MAC list ... 60

Figure 67: Updating encrypted MAC list... 61

Figure 68: Location of changes ... 62

Figure 69: Beacon transmission handling ... 63

Figure 70: Beacon receive handling .. 63

Figure 71: Probe and authentication transmission handling .. 64

Figure 72:Probe and authentication receive handling.. 64

Figure 73: PS-Poll/Other transmission handling ... 65

Figure 74: Data/Other packet receive handling ... 65

Figure 75: Overview of execution path .. 77

Figure 76: Overview of the setup ... 78

Figure 77: Beacon data structure ... 79

Figure 78: Connection data structure ... 79

Figure 79: Kernel Wi-Fi stack .. 81

Figure 80: Wireshark trace of authentication... 81

Tables
Table 1: User presence results with their respective standard deviations ... 19

Table 2: Overview of comparison ... 37

Table 3: Overview with new solution ... 38

Table 4: Type colour coding ... 40

file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851071
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851073
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851076
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851078
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851079
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851080
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851081
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851082
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851083
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851084
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851085
file:///E:/TelefoonFotos/proverif/Report%20Remie%20Lowik%2018-7-8.docx%23_Toc518851086

3

Abbreviations
ACK Acknowledgement

AES Advanced encryption standard

AID Association id

ATIM Announcement traffic indication map windows

BSSID Basic service set identifier

CBC Cipher block chaining

CCMP Counter mode cipher block chaining message authentication code protocol

CFB Cipher feedback

CTR Counter mode

CTS Clear to send

CTS Clear to send

EAPOW Extensible authentication protocol over wireless

ECB Electronic codebook

ECDH Elliptic curve Diffie-Hellman

FCS Frame check sequence

KCK Key confirmation key

KEK Key encryption key

MAC Media access control

MIC Message integrity code

MiTM Man in the middle

NAV Network allocation vector

OFB Output feedback

PSK Pre shared key

PTK Pairwise transient key

RC4 Rivest cipher 4

RTS Request to send

SSID Service set identifier

TIM Traffic indication map

TK Temporal key

TKIP Temporal key integrity protocol

WDS Wireless distribution systems

WEP Wired equivalent privacy

4

1 Introduction
In a world where the digital world becomes ever more important, the devices we use to access that
world also changes. In 2007 less than a third of the users were mobile users (“Mobile marketing
statistics 2018,” 2018), but after 2014 this already grew to more than half of the users and still
continued to grow afterwards. What all these mobile devices have in common is the methods of how
they communicate, the most common methods are mobile connections like 3G and 4G and Wi-Fi.
Although users are more privacy-aware nowadays, little is known by those common users about how
much information is leaked by especially the latter of the communication methods.
Very low awareness in combination with high usage and very interesting information makes it a very
good target for less friendly usages. In the case of Wi-Fi, which is widely used in households, this
could be a very interesting area for example for burglars. As burglars should be very interested in
knowing when homes are empty as those moments are opportunities for them. Luckily there are no
known incidents of burglars using these possibilities to their advantage, but we think that with little
effort presence of people could be detected with very cheap hardware. Big companies are already
using these kinds of techniques to track costumers in department stores and on large festival areas
(Verbree et al., 2013). Therefore we (me and two other students) started this research, first we did
this for a course given on the University of Twente. This successfully proved that it could be done
with a high certainty. Though this was done using family members and friends as a target group.
Because of the results we were asked to extend this research further with a larger and more random
group of people. We then proposed to make this our shared research topic. To extend the research a
little further, a proposition was made that we would jointly research the problem and separately
research a solution. In the end a division was made to use one third of our time to research the
problem and two-thirds in researching a solution. The solution proposed by me will be to change the
802.11 protocol in such a way that no information is leaked about the user any more whilst keeping
the compatibility with other devices, more about this is discussed in chapter 4. But first the shared
research is discussed in chapter 2.

5

2 Shared research

2.1 Introduction
This chapter covers the research into trackability of household occupancy using the Wi-Fi network.

This research is a follow-up of an earlier small-scale research (see appendix 1) performed by the

same researchers among the households of relatives. The usability of that research was very limited

due to the scale and potential bias. This research tries to prove the potential of Wi-Fi eavesdropping

to track occupancy in households.

The execution of this research is a joint effort between Remie Löwik, Ruben Lubben and Tim Kers.

These researchers performed their own research into potential solutions against Wi-Fi tracking. This

chapter, assessing the potential risk of eavesdropping on Wi-Fi networks is a joint effort between

Remie and Tim and will be identical between their respective theses.

The research is divided into 2 parts. Due to practical reasons, the measurements are conducted in

the living quarters on the campus of the University of Twente. These living quarters feature a shared

Wi-Fi network called Eduroam. Instead of separating the devices per household by their used

network, as would be possible in normal households, this shared network throws all devices on one

pile. Or at least from the burglar’s perspective.

The first research step, would be to use other parameters to determine the critical devices for the

participating household. After this step, the situation is again similar to normal households where

only relevant devices are registered. At this point, the trackability of the network can be determined.

This chapter therefore knows two research questions:

 Is it possible to determine which Wi-Fi devices belong to a certain household in a shared

network with only passively detectable parameters?

 Is it possible to reliably track occupancy in a household with passive eavesdropping on its

Wi-Fi traffic?

6

2.2 Background
As stated in the introduction, this research was preceded by a small-scale experiment in 2016. In this

small-scale research, borrowed laptops were used as measurement devices which limited the group

of participants to relatives and friends. Unfortunately, the stability of the borrowed hardware and

the many configurations onto which the software had to work proved to be a problem. Combining

this with a very limited timeframe, limited the experiment to 12 households. This in turn limited the

statistical relevance of the research.

The results, however, did indicate a potential problem with household Wi-Fi networks. On average,

86.7% of predictions were correct. The 13.3% faulty predictions were made up of false occupied

(10.5%) and false vacant predictions (2.8%). For a burglar, false occupied predictions are potentially

missed opportunities. However, as long as other opportunities are available, this is not really a

problem. The false vacant predictions are problematic for a burglar. These are the times they would

think the house was vacant while it was not and would risk getting caught.

Most of these false vacant predictions occurred at night, partly due to households having limited

Wi-Fi coverage in the bedrooms causing residents to turn their Wi-Fi off at night. When the 00:00 to

07:00 timeslot was removed from the analysis, correct ratings increased to 89.3%, false occupied

declined to 10% and false vacant diminished to 0.7%.

Although less relevant to this research, a small social study was conducted as well. It showed that

participants felt slightly less safe in their neighbourhood, with safety grade lowering from 7.5 before

and 7.33 after the research, on a scale of 10. More people had the feeling of being unsafe in their

homes (50% before to 58.33% after) and the likeliness of a burglary happening to them in the next 12

months was graded 1.6% higher than the 25% before the research.

The social part of the previous research was not included in the new research. This was mainly due to

the amount of time and effort it involved to get all participants to fill in the forms. The forms also

required more work from participants, which was deemed as a potential deal breaker for them.

Additionally, this research focuses on the technical side of this potential problem. The social study is

not regarded as relevant for this part.

Unlike previous research, this one was intended to prove the potential of eavesdropping on

household networks in a statistical relevant matter. This required larger datasets and a non-biased

group of participants. The latter is tackled by randomly choosing households out of a list of living

quarters on the campus of the University of Twente. This is further explained in paragraph 2.3.1.1.

This yielded a list of 556 potential participating households. We estimate that a quarter of the

potential participants will be willing to participate. To retain a level of randomness in the selection of

the participants, we will use a maximum of 50% of this list. This leaves an upper limit of around 70

participants.

7

In statistical experiments the required number of samples can be determined by (Lisa Sullivan, PhD,

n.d.):

𝑛 = (
𝑍𝜎

𝐸
)2

Where, Z is dependent on the confidence level. In this case, 95% yields a Z of 1.96. 𝜎 Indicates the

standard deviation, which is fairly unknown at this point and therefore set to 50%. E is the margin of

error which is plotted against the sample size (n) in Figure 1 below

Figure 1: Confidence level vs sample size for the university campus household list

To reach sub-10% intervals, sample sizes of 100 and higher are required, which is not feasible with

our pool of participants. Therefore, a compromise was made to aim for a 15% or better confidence

interval and the accompanying requirement of 43 or more datasets. This was deemed feasible with

the available time and equipment and keeping in mind some problems on the way.

0

5

10

15

20

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

C
o

n
fi

d
en

ce
 in

te
rv

al
 (

%
)

Sample size

8

2.3 Method
This experiment is split into three parts. First, measurement equipment is placed in the homes of

participants to gather network traces to be used in the later parts. The residents receive a form on

which they are asked to keep their presence to be compared with the retrieved data afterwards.

After retrieval, the filled-in timesheet and trace data are pre-processed to prepare for the next parts.

In the second part, the pre-processed data is processed to remove any device not belonging to that

household.

The third part would then aim at extracting an occupancy schedule from the network trace and

compare this to the schedule filled in by the participant.

2.3.1 Part 1: gathering network traces from households
In the original experiment, datasets of multiple weeks were recorded to try and recognize recurring

patterns in people’s lives. In this research, the datasets are chosen to be only one week long, to try

and reach a higher number of datasets in the available time frame for this research. The focus

therefore lies on reliable occupancy detection instead of pattern recognition. When occupancy

detection can be performed reliably, pattern detection should not be a problem.

As the research potentially involved privacy sensitive data of the occupants, the research proposal

was reviewed by the Ethical board of the EEMCS faculty at the University of Twente. This gave some

restrictions on target groups and data storage that will be explained further down in this chapter.

2.3.1.1 Target group

A problem with the earlier experiment was the use of relatives as test subjects, this gave potentially

biased data and therefore should be avoided in the new experiment. For this new experiment,

subjects should be chosen at random from a large pool of potential candidates.

The ethical board gave an important restriction on the potential candidates. All occupants in a

participating household must be able to understand and consent to the potential privacy risk. This

prohibits measuring households with for example underage children or mentally challenged people.

Eventually the aim was set on student housing. This gives an easily containable set of candidates,

almost no underage people and very small chances of children living in and/or visiting the household.

This left two possible groups: Dormitories and individual living quarters. Dormitories posed a couple

of potential problems.

 When measuring a complete dormitory, all students living there must consent. With living

groups up to 16 people, it is not unlikely that at least one would refuse.

 Standard measurement equipment would probably lack the range to cover the complete

dormitory, thus requiring more equipment and opening the door for synchronisation issues

and/or potential blind spots.

Alternatively, measurements could focus on individual occupants in a dormitory. A measurement

device could then be placed in the room of the participating student. However, this gives a similar

range problem. When a student leaves his room to eat in the shared living room, he or she is likely to

be out of range. This system would consider this as “absent”. The student should therefore note his

presence in the actual room, which quickly becomes a hassle and error prone.

Ultimately, the choice fell on individual living quarters on the university campus. The housing agency

provided us with a list of 556 individual housing quarters found across campus. These are divided in

full apartments, studios and standard sized rooms with personal facilities. These areas are all

coverable with standard Wi-Fi products and are usually occupied by one or two people.

9

2.3.1.2 Privacy considerations

As this research involves privacy sensitive information about people and their household, some

precautions had to be taken:

 No user data is stored by the measurement device at all

 The device identifier (the MAC address) is only stored as a hash to stop anyone from finding

easily finding the original device. Although scanning the whole campus could still be easily

done, preventing such action is fairly hard whilst keeping usable data. Additionally, anyone

with such interest would be better suited with gathering newer data instead of trying to

crack the old.

 The retrieved timetable is linked to the measurement device its device number. However,

this number is never linked to a house address, phone number or email address. This means

that there is no way to link a dataset or timetable back to a household or individual.

 After retrieving the measurement device, all data is removed from the SD-card before

reusing it for another household. Although the stored data would be barely usable for any

adversary, this prevents other people from retrieving the data.

 All research data is to be permanently removed no later than 1 year after completing the

research, as stated in the original research proposal (see appendix 1). The data is only

accessible to the researchers and supervisors stated in the proposal and brochure.

2.3.1.3 Measurement equipment

For these measurements a device was required to capture network traffic. As student housing is

covered with the Eduroam Wi-Fi network, monitoring this network is sufficient in most cases. The

network is divided over the three Wi-Fi super channels (channel 1, 6 and 11) thus requiring 3

network interfaces. The choice fell on the Orange pi lite minicomputer. This creditcard sized

computer features an onboard Wi-Fi module (XR819) and two additional USB ports for two additional

USB Wi-Fi card (Ralink RT5370).

An important parameter was the support for monitoring mode on the Wi-Fi interface. This was a

problem with selecting a Raspberry pi. Its on-board module does not support monitoring mode

requiring us to add 3 external Wi-Fi modules. Furthermore, the cost of a raspberry pi is almost

double that of the Orange pi Lite.

For the OS (Ubuntu) and measurement data, a 16GB micro SD card is used. With data compression

used in our system, this would easily cover measurement data for multiple weeks.

Figure 2: Measurement equipment

10

2.3.1.4 Data gathering

When the device is started, it places all three Wi-Fi modules in monitoring mode. In this mode, the

module will listen to all traffic on that frequency regardless of destination or network. In this case the

modules will be set up to listen all three super channels. By using monitor mode, the module does

not have to be associated with any network to listen to the data that is transferred on that channel.

The traffic is monitored for each interface separately by creating a TCPdump instance for each of the

interfaces. TCPDump was configured to return only the data we required, in this case the following

information was stored to file for each packet:

 Source device

 Destination device

 Timestamp

 Signal strength

 Packet type

The output of TCPDump was then parsed by a java program and then processed further for storage.

Due to privacy concerns, instead of storing the MAC addresses of the source and destination device,

an anonymized hash is created and stored. Furthermore, user data in the packet is not stored. It

would not be relevant for the research and take a lot of storage space, but it is also a privacy

concern.

Each interface writes its data to a set files. Then after an hour, a new set of files is started and the old

files are flushed and closed to make sure that all packets are committed to storage. This technique

also helps in preventing data loss. If a device loses power suddenly, depending on the current activity

of the system, data could be lost. By storing the data in chunks, this data loss is limited to a maximum

of 1 hour.

Furthermore, the choice was made to split up the information into three different files: data-, mac-

and extra packets file. The first file is the data file. In this file the mac addresses, a timestamp, signal

strength and packet type is saved for each packet that is received on the interface and is directly

compressed with the GZIP compression algorithm to minimize the size of the data. Because mac

addresses are the biggest portion of the data, the choice was made not to rely on the compression

algorithm but instead to make a lookup table in which all the MAC addresses are given an ID. This ID

is then used in the data file instead of the longer MAC address.

The second file is the content of the lookup table: an ID with its assigned MAC address. But before

saving the mac addresses, the macs will first be hashed using the SHA256 hash function. In the end

this lookup table did not only save storage space but also minimized the chances of errors: Hashing

and storing the MAC addresses only once minimizes the change for errors. Furthermore, extra

processing is saved by only having to hash each MAC address once instead of having to hash the

macs for each received packet.

The last file is used to save unknown packet types, because there might be a chance that the output

of the TCPDump program is not correctly interpreted. Therefor if a packet is not correctly recognized

by the program it creates a new “packet type” assigns a new type id, adds some extra formatting

information and saves this to this file. If this packet type is encountered again it could use the

information saved with the previous packet to identify it as the same type.

11

2.3.1.5 Measurement procedure

From the original list of households, a random selection of 60 households at a time is chosen by a

Matlab script using the standard rand() function with a random seed of 42. These households receive

an introductory letter about the research to give them some time to consider participating. Then,

after approximately a week, the houses are visited and the residents asked if they would like to

participate in the research. If required, additional information can be given. If nobody is home at that

time or the participant wishes some extra time to consider participating, the household is tried again

at a later time. Obviously, a resident is free to decline participation without reasoning, after which

the house is removed from the list.

When a resident chooses to participate, one of the measurement devices is handed over and plugged

into a power socket inside the house. Additionally, the subjects get a form with a timetable on which

they are asked to keep their presence log during the measurements. This timetable is used as a

reference to validate the conclusions drawn from the measurement data. For extra information

about the research, the privacy concerns and proper actions, should they want to stop the

measurements, an informational brochure is handed over for them to keep. Finally, the participant is

asked for contact information such as a phone number or email address so that, after a week of

measuring, the participant can be contacted for retrieval of the device and timetable.

The introductory letter, blank timesheet and informational brochure are added in appendix I of this

report.

2.3.1.6 Initial data processing

After retrieval of the measurement device and timetable, their data has to be processed before it can

be used to identify occupancy.

Timesheet processing

All timesheets are scanned and digitally processed. Initially, the “marked” fields are made uniformly

black to prevent reading error by the automated processor. An example of this is shown in Figure 3.

Figure 3: Example of a timesheet day before and after initial processing

After this step, the images are loaded into an automated processor, created in Matlab. This program

lines up the filled in timesheet with a reference (empty) version and determines the light level of

each data field (white or black, indicating unmarked or marked). For this, predetermined coordinates

are used, derived from the reference timesheet.

Participants were allowed to choose if they preferred to mark for “absent” or “present” as long as

they indicated their choice on the timesheet. Additionally, participants sometimes mixed up days or

started marking at a different day than the first one on the form. All these factors were manually

entered into the processor, which (where applicable) inverted the derived schedule or rearranged

the days.

The result of each timetable is a text file with 7 lines (days) of 96 characters (quarters). For each

character, a ‘0’ symbolizes vacancy and a ‘1’ occupancy.

12

Trace data processing

As discussed in saving data part, the device saves three files per interface per hour. The choice was

made to do some pre-processing on this data to lower the amount of data that had to be processed

every time. To do this a program was written that would read and uncompress this data and

summarize the presence for each device. This was done by creating blocks of 5 minutes in which

packet type count, the minimum, maximum, average signal strength and to whom each client was

talking to was saved. This data was then exported to a csv file to allow further processing in Matlab.

2.3.2 Part 2: Automated filtering of relevant devices

2.3.2.1 Selecting devices within the household

In a normal household environment, a burglar can select a certain network and therefore household

to track. This allows him to only track devices using that network. Unfortunately, just as many

universities, the University of Twente uses the Eduroam network across the entire campus including

the living quarters. As a lot of students will be using this, the distinction between houses disappears.

This means that other steps have to be taken to extract devices belonging to the targeted household.

If this step succeeds, the remaining trace only contains legitimate devices for that household and the

situation is again similar to a normal household.

Two factors were used to determine devices belonging to that household. The measurement device

logged the signal-to-noise ratio of every received device throughout the week. With the device

placed within the household, the devices with the highest ratings will most likely belong to that

household.

As a second factor, the interaction between different devices is checked. The idea behind this is that

devices within the same household may often communicate with each other. For example, a laptop

checking the availability of a network printer, or a mobile phone streaming a video to a smart tv.

With this second step, a device tucked away in a corner or cupboard but belonging to that household

may still be recognized while its SNR values would imply it is a device from another household.

13

2.3.2.2 Selecting devices with usable characteristics

Nowadays, many different devices can be present in networks. A burglar will probably be best served

with smartphone availability, as this device is mostly carried around with the residents. Laptops,

tablets and other devices could give similar information.

But a stationary device like a network printer, being active all day long, would not be very interesting

to determine occupancy. Therefore, some extra filters are added to separate usable devices from the

trace.

 Discard devices with high active or inactive rates

 A device that is communicating continuously or barely does not give much insight in any

resident’s schedule. Therefore, any device that is active for more than 95% of the time or less

than 5% of the time is discarded. The likelihood of a resident having such a schedule is

almost zero.

 Session lengths

 Schedules differ between people, but some factors are fairly constant. Over the period of a

week, one can expect the residents to be home for some lengths. For example, because they

sleep at home. Therefore, a filter is created that looks at the occurrence of certain session

lengths. For example, if a device is never present for a couple of hours, it is very unlikely that

its trace will represent the residents schedule

 Session counts

 Similar to session lengths, session counts can be used as a parameter as well. A real person

would not come home and leave every 10 minutes (for example), nor would they stay at

home for 5 days and then disappear for the weekend. In the first situation, it is more likely

that it involves a device connecting periodically. In the latter, it looks more like a stationary

device, but it is turned off when the resident leaves for the weekend. Although exact

boundaries for “legitimate” devices are hard to draw, the extreme situations as stated above

can be removed relatively safe.

2.3.3 Part 3: Extract household occupancy from network trace data
In a normal household, the Wi-Fi network would be used by the people and devices belonging to it.

This makes tracking much easier as the trace would not be influenced by neighbouring devices. In the

chosen Eduroam environment, all households share the same network. But after extracting the

appropriate device traces from the dataset, the situation should again be comparable to a normal

household.

The next step is to generate occupancy schedules from the network trace and compare this to the

schedules filled in by the participants. A burglar will aim to minimize risk. As he will need only one

free moment, it is less relevant if other potential moments go unnoticed due to an overly safe

technique.

The safest options to start with is to regard every captured device as relevant. Only when all devices

become silent, the house is regarded empty. In addition to that, a burglar would not be interested in

free windows of a couple of minutes. Instead, only continuous vacancies of 15 minutes or more are

deemed relevant.

As with all of these predictions, the burglar would be looking for an absolute minimum false vacant

predictions. These are the moments he could be detected. As long as not all potential moments are

lost, no technique is “too safe”.

14

2.4 Results

2.4.1 Part 1: gathering network traces from households
Gathering the network traces from the households proved to be a very time-consuming process.

Apart from all the hours distributing introductory letters, asking for participation and retrieving

devices, a lot of time was consumed by software issues on the measurement devices and to process

the data.

2.4.1.1 Start-up phase:

Before being able to distribute any device, software had to be created for the measurement

equipment. In this step, multiple test rounds were conducted to test the software for functionality

and reliability. Some problems were found and resolved in this phase, like occasional failure to

initialize a network interface. In these cases, one of the interfaces became unusable for the data

logging software. As this problem was detectable and re-initialization of the module was sufficient,

this problem was effectively resolved.

2.4.1.2 First measurement round:

After multiple rounds of short and long tests, the system was deemed ready for deployment.

Unfortunately, after the first round of real-world tests, the resulting data from all 10 participating

households came back corrupted. The cause of this was found to lie within the LZMA compression

algorithm used to compress the recorded data.

The problem turned out to be a memory allocation issue and finding a solution within the

compression software proved difficult. Fortunately, storage space turned out to be plenty for a week

of data allowing a switch to the more commonly used but less efficient Gzip compression algorithm.

This solution was tested in multiple networks for multiple days and proved reliable.

2.4.1.3 Final measurement rounds:

After the problem in the first round of measurement was resolved, multiple successful measurement

rounds were performed before the holidays put a stop to this research step. In total, 45 households

participated in these rounds before the holidays brought a stop to them.

Of these 45, 8 were lost due to administrative mistakes. 6 of them were found to be checked off, but

never actually retrieved. Due to the long period between data gathering and processing, this

discrepancy went unnoticed. The participants were contacted when this problem was found. The

device was successfully retrieved from two residents. one admitted the device was never retrieved,

but lost it while moving to a new house. The other three never responded.

Two other devices remain unaccounted for. It could be that they are also still out there with

participants, but we were not able to find out whom. The strict separation between consent forms

(with personal information) and devices and their data may be good for privacy concerns, but did

prevent us from backtracking which consent forms were never met with data.

On top of the administrative error, one dataset became unusable as its accompanying timesheets

went missing. With that, only 36 datasets remained before processing even began.

15

Although the major issues were resolved, some measurements still developed problems. Some of the

found problems were:

 Measurement devices missing data from one of the network interfaces. This looks similar to

the earlier initialization error, except that the software never found an initialization error nor

were there any problems reported in the system’s logs. Normally, a problem with one of the

network interfaces should trigger a system reboot to try to re-initialize everything. However,

this did not happen and the system continued its operation with two interfaces. This problem

only occurred in one of the measurements making a not completely plugged in USB Wi-Fi

modules plausible.

 Measurement devices seized to record any data during the measurement period. Although

the device was placed for a minimum of 7 days, the trace would only cover a couple of hours

or days in some cases. Similar to the previous problem, no evidence of it was to be found in

the systems logs. A possible cause could be a loss of power. Maybe a resident moved the

device causing the power jack to become loose or unplugged an extension cord while

forgetting the device that was placed there. In total, 5 devices showed these kinds of

problems with their active time varying between 26 and 95 hours. One of these devices had

its data split with a reboot in between. As the device does not have a real time clock, there is

no data on the amount of downtime between these two sessions.

 Measurement devices developing corrupted files within the data. This could have been

caused by a power loss or other reboot event. This problem affected two devices, but only

influenced a couple of files. The software was created to store data in one-hour blocks to

prevent large data loss in such cases. Therefore, the datasets remained usable, although

missing an hour somewhere.

 Devices not logging any data. In total, three devices came back without any measurement. In

one of the cases, this was due to the SD card not being inserted properly. Although powered

all week, the device never measured or even booted. The second device did boot up and

created the initial logging files and system log entries, but the device probably stopped

working soon after that. No further logging files were created (which should have happened

every hour) and system logs did not show any more data. The last device had its power jack

not inserted properly due to the improvised (cardboard box) case used for 10 devices.

Eventually, the holidays limited the available time for measurements as a large amount of the

residents moved away for some time. In the end, after removing all faulty datasets, only 25 datasets

remained to be processed further. Unfortunately, this is far less than the aimed minimum of 43,

limiting the statistical relevance of the outcome of this research. The confidence interval was now

limited to 19.2%, assuming no further problems arose.

16

2.4.2 Part 2: Automated filtering of relevant devices
Due to the choice of an area with a single large Wi-Fi network, it was expected that neighbouring

devices would be picked up in the measurement. The first step would be to remove these from the

trace. The resulting dataset should ideally only include all devices belonging to the participating

household. This situation would be similar to a measurement in a normal household where devices

are separated by their used network.

2.4.2.1 Original approach

While processing the data, the number of unique devices recorded in the measurements proved to

be extremely high. As the experiment was conducted in the Eduroam environment, it was expected

that large amounts of devices would be found from neighbouring households. However, it was not

expected that most datasets would contain hundreds of recorded devices and some which even

went up to hundreds of thousands.

One cause for this huge number of devices is people passing by the house. This would result in a

registration of their device (if active on Wi-Fi) for a short amount of time. Additionally, the MAC

randomization scheme of some versions of IOS and Android would create a lot of “fake” devices as

long as the devices has its Wi-Fi capabilities enabled but is not connected to a network.

Multiple rounds of filtering were used to try and remove any unwanted device from the traces.

Initially, 5 datasets were picked as training set to adjust the filters. These filters would then be

applied to the other datasets.

Remove extremely short and long presences

People walking by or devices with MAC randomization create a lot of data that is not usable for

occupancy tracking. Therefore, all devices that were picked up for a total of less than 5% of the total

measurement duration, or approximately 8 hours out of the week, were removed from the trace.

This includes MAC randomizing devices, people walking by and someone visiting during the week.

Additionally, devices that were present for more than 95% of the time were also removed. These

devices include access points and stationary devices. These devices yield no information about the

resident’s presence and are therefore fairly useless for a burglar.

This filter removed a major part of “unusable” devices from the trace and reduced the datasets

mostly to sizes between 25 and 75 devices.

Group devices together by mutual communication

The idea behind this filter was that devices belonging to the same household are more likely to

communicate with each other. For example, video streaming from a laptop to a TV, or sending a

document to a network printer.

Unfortunately, devices proved to be much more talkative than that. Intercommunication happened

everywhere in the dataset making distinction between different device “groups” impossible.

Therefore, this filter was not used any more.

17

Remove devices with low signal strength

Devices within the household are in close proximity of the measurement device and should therefore

read high SNR values. Finding the exact threshold after which a device does not belong to that house

is going to be difficult due to all the different circumstances in and around the households. However,

it can be used to filter out “distant” devices and reduce the dataset by a significant amount.

Figure 4 shows the signal strength distributions in one of the datasets gathered in this experiment.

Most devices reside in the far left of the graph, making them most likely to be distant. However, it is

difficult to select proper thresholds to distinguish devices actually belonging to the household.

Manually comparing the dataset to the filled-in schedule revealed 1 perfectly matching device.

However, when looking at the average signal strengths, that device came second with the first device

showing no relation to the schedule. When looking at peak values, the matched device fell down to

16th place.

Figure 4: Signal strength distribution of the measured devices in 1 household

No similarity in the results was found across the datasets. The original training set of 4 datasets was

even doubled to 8, to try and find the best matching filter settings. However, the filter was not able

to remove all “unwanted” devices without losing genuine ones as well.

Another problem that arose, was the lack of “matching” devices in a lot of datasets. Although some

devices showed high signal strengths, they would not be comparable to the schedule that the

resident filled in. This problem is further worked out in 2.4.3: Alternative approach.

Session lengths

Analysis of the datasets showed some interesting characteristics in some devices. For example, some

devices would show enormous amounts of activity, but all in short bursts.

Although it is unclear what kind of devices these actually are, but it is not likely to reflect the

schedule of a resident. An actual resident would normally have periods of presence and absence. To

try and filter for those characteristics, session lengths were checked. It would be likely that a resident

would have multiple presences of a couple of hours during the week, for example to sleep, study or

relax.

This filter proved reasonably effective. Many devices with the behaviour talked about above were

filtered out. Specific filter settings proved to be only mildly influential. Any setting for a couple of

presences of a couple of hours was reasonably effective. The filter was only effective in removing

unusual devices, not in selecting devices for a specific household.

18

Session counts

This filter had a similar aim to the previous one. During a week, a resident would probably leave a

number of times. But to the rapid transitioning devices mentioned earlier showed extremely high

numbers. Other stationary devices that had 1 period of absence would pass through the <95% filter,

but would show very low session counts.

This filter was set out to filter out unrealistic low and high session count numbers. Although

reasonably effective, it did not have any influence over the session length filter. Therefore, this filter

was eventually dropped.

2.4.2.2 End result

In the end, a uniformly applicable filter was not achieved. The filters, when combined, gave a

reasonable decline in device count, but returned both genuine and neighbouring devices. Even within

the test group, with prior knowledge of the schedules, no acceptable result was achieved.

As mentioned earlier, many datasets appeared to be lacking “genuine” devices at all, when

comparing to the residents’ schedules. Of the original 4 datasets selected as a training set, only one

showed clearly matching devices and one other showed similar (but not perfectly matching) devices.

This raised the question if it was even possible to extract occupancy information from these datasets.

Therefore, the original filtering approach was halted, and the focus now came on verifying if there

was actually usable data in the datasets before continuing.

19

2.4.3 Alternative approach
As mentioned before, a lot of datasets appeared to be lacking any devices matching to the schedule.

This raised the question if occupancy tracking was even possible with the devices picked up by the

measurement devices.

Therefore, instead of using a training set, all datasets were manually compared to the schedules to

find any (seemingly) matching devices. Although time-consuming, the easiest method proved to be

to plot (a subset of) the devices together with the schedule and visually match them together.

Automated versions were tried, but they would occasionally miss devices or incorrectly match them.

Sorting the devices by their mean signal strength proved to be effective. The matching devices would

(as expected) usually occur in the top part of the selection. In the end, potentially matching devices

were identified in only 14 of the remaining 25 datasets. In most households one of the identified

devices would closely match a device. Any other would have a lot of resemblance, but also errors.

Figure 5 shows a comparison between two visually matched devices and the accompanying

schematic.

Figure 5: Detected presence of two visually matched devices against the user’s schedule

Both devices behave similar to the schedule. However, the bottom device often becomes

intermittent when the user is supposed to be away. This is likely to be the behaviour of a stationary

device periodically checking the return of known devices. The real “user” schedule appears to be the

middle graph.

To get an impression of reliability between the schedule and trace data, the visually best matching

device of each household was selected and scored. These devices are likely to be smartphones and

similar devices, closely representing the user’s presence. These results are presented in Table 1: User

presence results with their respective standard deviations

 below.

Correct occupied prediction Correct vacant predictions Total correct predictions

90,4 % ± 8,9% 87,6% ± 11,9% 87,8% ± 9,8%

Table 1: User presence results with their respective standard deviations

This result does indicate that occupancy could be determined from Wi-Fi data, if the correct devices

can be selected from the dataset. However, this result only covers 14 datasets out of 25.

20

2.4.4 Part 3: Extract household occupancy from network trace data
As explained in part 2, the automatic filtering of devices proved problematic. The proposed method

of only selecting relevant devices with filters and extract occupancy out of that is therefore difficult.

Instead, this part is split into 2 parts. First, all visually matched devices of the household are

combined and scored. These devices are the most likely to reside within the same household. This

combined dataset is compared against the user’s schedule to see if usable data has remained.

Additionally, some of the filters of part 2 are reused. Although the filters were not able to remove all

“wrong” devices, they may still be usable. If genuine devices are present in the dataset, combining

them with “wrong” devices only removes potential vacant moments. But it does not add false vacant

readings.

Unfortunately, this technique is only applicable to the datasets in which at least one device was

recognized. As the measuring equipment lacked any means of measuring date and time, there is no

way of lining up the measurements with the schedule without visual checks. A rough estimate can be

made, but the manually checked datasets showed various amount of offset remaining.

2.4.4.1 Combining visually matched devices

This technique was only applicable to 7 of 14 the households with visually matched devices. In the

other 7, only one device was matched to the schedule. The single device matches were already

covered in part 2. The remaining datasets had two (4 times), three (twice) or five (once) devices

matched to their schedules.

For each dataset, the traces of all devices are combined into one. Combining the devices effectively

performed an “OR” operation on the traces. If any of the devices is present at that moment, the

combined trace is too. From a burglar’s point of view, this is the safest option. Only when no device is

active, the house is regarded empty. The combined trace is added to the first figure presented for

each dataset, this to give an overview of the used data.

Afterwards, short absences are removed from the combined trace as a burglar would not be

interested in those. In the second graph, three versions of this filtered combined trace are then

presented with different minimum absence settings.

21

2.4.4.2 Dataset 1

In the first dataset, 2 devices were recognized. Figure 6 shows their behaviour compared to the

schedule. The 2 devices share a number of absences which in turn match roughly with the schedule.

However, there is a slight offset between the absences in the schedule and the devices at some

times. This could be down to small errors when filling in the schedule.

Figure 6: Dataset 1, comparison between network traces and user's schedule

As a burglar would not be looking for absences of mere minutes, some additional filtering was

required. Figure 7 shows the original schedule and the combined trace, filtered for absences of more

than 15, 30 and 60 minutes.

Figure 7: Dataset 1, comparison between the user's schedule and measured absences

22

At this point, it is a bit problematic to decide which offset between measurements and schedules can

be regarded as still valid. For example, the absence at 72 hours is measured slightly later than the

schedule states, but there is a reasonable overlap. Completely at the right of the graph, the

measured absence is shifted free of the schedule. They are reasonably similar in length and a

schedule error is not unlikely, but there is no definitive answer. At the other hand, the measured

absence at approximately 33 hours is shifted a lot more from the long-scheduled absence starting at

24h. Additionally, the duration is completely different as well.

These uncertainties make it impossible to capture the result in numbers, but they do give an

impression. In this dataset, the longest measured absence (just before the 48h mark) matches

perfectly with the schedule. Should the burglar’s measurements have returned this data, picking the

longest absence would have been “safe”.

2.4.4.3 Dataset 2

The second dataset yielded 5 potentially matching devices although none of them prove to be a

perfect match. The schedule did not give much room for comparison as it only showed two absences.

It is not unlikely that the resident forgot to register some (maybe shorter) absences.

However, Figure 8 shows that combining these devices still give useful information. The long absence

from the schedule largely returns in the combined trace. The smaller absence in the combined trace

also matches with the large vacant slot of the schedule, giving this prediction an almost perfect

score.

Figure 8: Dataset 2, comparison between network traces and the user's schedule

Filtering on absence length does not make a difference in this dataset. The small absence in the

combined trace is still an hour long. The 3 filtered traces (15, 30 and 60 minutes) therefore yield

exactly the same graph.

23

2.4.4.4 Dataset 3

Dataset 1 showed some “unstable” presence like a stationary device could create. In that dataset, it

did not prove to be a large problem. This dataset however, has a device that influences the combined

trace a lot.

Figure 9 shows the two devices recognized for this trace. One of which displays periodic activity

when de resident is away from home.

Figure 9: Dataset 3, comparison between network traces and the user's schedule

When filtering this combined trace for periods of 15, 30 and 60 minutes, only a couple of options

remain with a maximum length of just over an hour. Meanwhile, the schedule shows plenty of

opportunities.

Figure 10: Dataset 3, comparison between the user's schedule and measured absences

Fortunately, for a burglar, the stationary device is recognized easily. Additional filtering or manual

adjustments could still reveal the real absences which device 1 clearly shows.

24

2.4.4.5 Dataset 4

Also, with 3 recognized devices, dataset 4 also shows some “unstable” behaviour, especially in device

1. However, the influence is a lot smaller. Figure 11 shows that the large absences are still

recognized, although the largest absence is divided in multiple pieces.

Figure 11: Dataset 4, comparison between network traces and the user's schedule

Filtering with 15, 30 and 60 minute thresholds barely influences the combined trace apart from

removing some of the fast switching. However, a burglar would have already chosen the large

absence.

2.4.4.6 Dataset 5

In this dataset, two devices were found to be matching the schedule. However strangely, both traces

were virtually identical to each other and the schedule. The combined trace of Figure 12 therefore

needs no further filtering. The data already matches the schedule without any mistakes.

Figure 12: Dataset 5, comparison between network traces and the user's schedule

25

2.4.4.7 Dataset 6

Similar to dataset 5, both devices in this dataset are similar to the schedule. The combined trace

therefore matches very well. However, Figure 13 shows the potential risk of using this kind of

presence tracking. The schedule states that the resident was home at approximately the 130-hour

mark, but both devices were silent. This would be a risk, should the burglar decide to abuse that

“absence”.

Figure 13: Dataset 6, comparison between network traces and the user's schedule

2.4.4.8 Dataset 7

The last dataset had 3 matching devices as shown in Figure 14.

Figure 14: Dataset 7, comparison between network traces and the user's schedule

Device 2 introduces some “unstable” behaviour, but this time it prevents false vacant predictions at

approximately 12 and 40 hours. The remaining absences all match with the schedule, especially the

main absence of a couple of days.

26

2.4.4.9 Combining top SNR devices

The usability of the previous results is severely limited. It only shows that device data could be used

to determine occupancy. But to be able to do that, a burglar still has to extract the right devices from

the full dataset without the prior knowledge of the schedule. When operating in a normal house

network, the network itself will only be used by residents and maybe visitors removing this problem.

Unfortunately, reliably extracting the appropriate devices from the large Eduroam dataset has

proved impossible. This prevents us from proving that these techniques are reliable.

However, some use may still be present in the dataset. As stated earlier, a burglar is only interested

in one opportunity, as long as it is reliable. Maybe, the filters were not perfect, but still good enough.

To test this, the dataset is initially sorted by signal strength. Afterwards, the first device is taken and

compared to the schedule, then the first 2 devices are taken together and compared and so on. The

manually recognized devices mostly resided in the top part of the dataset when sorted by signal

strength.

All these combinations produce a certain relation between the correct and false vacancy predictions.

This relation, with the imperfections of “wrong” devices, may still be able to deliver usable data for a

burglar. Figure 15 shows these combinations and their average false vacant and correct vacant scores

as a part of the total vacancy displayed by the schedule.

Figure 15: Average false and correct vacancy prediction rate versus device count

The graph clearly shows that the false vacant occurrences decline as the number of devices increase,

but so do the correct vacant occurrences. Instead of getting a sweet spot where the false vacant

predictions become negligible and true vacant predictions still occur often, both factors follow

reasonably similar declines.

The relative sweet spot seems to lie at 6 devices, but only 10% of the actual vacancies is still

measured. And of those vacancies, 6% is false. Note that this graph shows an average across the 14

datasets with manually recognized devices. In a lot of household, the burglar will run a lot more risk

as the spread between these are very large. Figure 16, 18 and 19 show three widely different

examples of these datasets.

 It is rather obvious that a usable uniform tactic does not work here.

27

Figure 16: Average false and correct vacancy prediction rate versus device count #1

Figure 17: Average false and correct vacancy prediction rate versus device count #2

Figure 18: Average false and correct vacancy prediction rate versus device count #3

Unfortunately, the filters introduced in part 2 are not very helpful here either. The session count and

session length filters require significant difference between “good” and “bad” devices, but almost all

devices in the top segment of the list (with high signal strength) display a reasonable pattern for a

person.

With that option not working either, the possibilities are rather exhausted. Unfortunately, isolating

certain households from the near-public Eduroam network has not succeeded. As all households

used this network, no data remained to test the main hypothesis that household occupancy can be

determined by that house’s Wi-Fi data.

28

2.5 Problems and solutions
During the research, several issues arose with different consequences.

2.5.1 Limited effective time for data gathering
Initially, creating and testing the measurement equipment’s software took more time than expected.

Afterwards, the first measurement round unveiled some unknown issues making this measurement

round useless. Combined with the time limit of the upcoming summer holiday, at which most

residents would be away from home for prolonged periods of time, limited the amount of

measurements that could be performed. Due to limited available time for the research project and

all the other work that needed to be performed, continuation after the summer holiday was not a

viable option.

To achieve larger amounts of datasets, a larger timespan would have been needed. More equipment

would not have made such a difference in the current setting as on most occasions, not all

equipment would be distributed at the same time. The distributions of letters, visiting the residents

and collecting of the gathered data required large amounts of time. Improving this part, especially

the visits, would free a lot of time.

A potential option would be to increase the size of the household lists substantially. In the current

experiment, random selections of 60 households were made. After a substantial amount of these

were tried (and participated or declined), another 60 were added. These household would be

scattered all around the campus’ living quarters, which takes a lot of time to cover. Increasing this list

drastically or maybe even dropping the randomized part (although this may interfere with the

defendability of the research) increases the number of households in every building and therefore

saves a lot of “travel time” between them. This approach may require extra measurement

equipment for extra effectiveness as this large set of households will yield more participants in a

single round.

Putting the initiative for participation at the residents would also save a large amount of time.

Instead of visiting and asking for participation, the introductory letter could ask people to contact us

via, for example, an email, a web form, etc. This would save huge amounts of time, but it is expected

that people will be less inclined to participate if they have to put in effort. However, with more than

500 households on the campus, it may be a valuable addition to get an initial batch of participants.

Visits to ask for participants could still be performed afterwards to the households that did not

respond.

29

2.5.2 The shared Wi-Fi network (Eduroam)
All buildings on the University’s campus are fitted with wireless access points distributing the

Eduroam network. This induced the problem that devices are no longer linked to a specific household

as they would be in most normal households. This issue was known beforehand, but was expected to

be countered by using SNR readings and other factors to determine “in-house” equipment.

Unfortunately, this proved to be problematic. In the households where devices were recognized

manually with the resident’s schematic, the devices would rank very high in this classification. But in

a lot of households, the difference between them and some other devices was marginal. Other

devices would also frequently be classed higher than a device actually belonging to that household.

With these datasets, that meant that reliable filtering of “correct” devices was impossible without

the prior knowledge of the resident’s schematics.

Another issue was the apparent lack of matching devices in a large number of datasets. Although

exact reasons are unclear, part of it seems to be connected to the limited coverage of the Eduroam

network. Some participants stated that the Eduroam network in their living quarters was very weak

and unreliable. This resulted in residents disabling their Wi-Fi functionality on their devices and

reverting to the cellular network. Other residents created a personal Wi-Fi network in their homes.

As long as this network would reside on one of the three super channels, also used by the Eduroam

network, the measurement device would still be able to trace the network. But if another channel

was used, they would fall outside of our measured frequencies and remain invisible.

There is also a possibility of residents using the wired network for devices like their computer.

However, this is also an expectable factor in normal households.

2.5.3 Reliability of timesheets
The gathered network data was to be compared to the timesheet filled in by the occupant. However,

there is no real way to determine the reliability of the schedule. In the datasets where devices were

manually recognized, the timesheet was obviously comparable to the gathered data. But in the other

datasets, this is an unknown factor.

Some timesheets show a very unusual schedule. This does not definitively say, that the sheet was

filled-in incorrectly, but it does give that impression. Most notably is the timesheet of which one day

is shown in Figure 19 below:

Figure 19: Example timesheet

30

The rest of the timesheet shows similar absences of only 15 or 30 minutes, a couple of times a day.

Although there is no definitive way of determining if this timesheet is correct, the strange schedule

and the fact that no matching devices were present do give an impression that the schedule is not

correct.

Without the shared Wi-Fi network, a burglar would not have to find matching devices out of a list. If

the devices would represent this schedule, it would be quickly apparent that there are not really any

usable timeslots in which the house is vacant. It is most likely that the burglar would skip this

household in favour of an “easier” one.

2.5.4 Absence of RTC
As already mentioned earlier in the report, the chosen measurement devices lacked a way of keeping

time while unpowered. So, every time a device was placed, it would start measuring at the first of

January at 0:00. Although this does not influence the measurements themselves, it does remove any

synchronisation possibility with the schedule. A rough start time of the measurement may be known,

but there is a lot of possibility for offset to occur. This was also seen in the datasets with visually

matched devices. Data was shifted manually in relation to the given schedule, but the amount of

shifting varied a lot.

This unknown timestep between the data and schedule also prohibited the use of datasets without

obviously matching devices. Without knowing what offset to choose, the results would not be

defendable.

31

2.6 Conclusion
This research was intended as a follow-up on a similar experiment. Instead of a small-scale

experiment among (potentially biased) relatives, this research would be able to prove the risk of

presence detection by Wi-Fi eavesdropping with enough statistical relevance.

The main question for this was similar to that earlier experiment.

 Is it possible to reliably track occupancy in a household with passive eavesdropping on its

Wi-Fi traffic?

The experiment originally yielded 55 participating households where a minimum of 43 was set. Due

to soft- and hardware problems, an administrative error and incorrectly filled in or missing forms the

resulting number of datasets stuck at only 25.

Apart from the lower-than anticipated number of usable datasets, the research question proved

impossible to answer in this experiment. This was mainly due to the chosen circumstances. Because

of ethical considerations, households with underage or mentally challenged people were off limits.

Therefore, student housing was chosen which gave the added complexity of a shared Wi-Fi network

as compared to per-household networks.

This gave a second research question to be answered:

 Is it possible to determine which Wi-Fi devices belong to a certain household in a shared

network with only passively detectable parameters?

Unfortunately, this proved to be difficult. The filters created to separate the devices belonging to the

household from the rest were only partially effective at best. They reduced the number of devices,

but optimal settings varied between households and “external” devices often remained in the

dataset. Stricter settings resulted in correct devices being filtered out. Looking at communication

between devices in the same household did not help either. It turned out that intercommunication

happened everywhere in the network, regardless of the devices belong to the same household or

not.

Eventually, manual selection of devices matching the schedule was performed as a last resort to get

some usable data. Of the 25 remaining datasets, similarly behaving devices were only found in 14 of

the datasets. Retuning the filters with this knowledge still did not return any usable filter settings.

Matching devices usually showed high SNR figures as expected, but there often would be others too.

This made predictions without prior knowledge completely unreliable.

Comparing the matched devices to their accompanying schedule does show that Wi-Fi data can

represent actual occupancy. The predictions from the Wi-Fi data showed a match rate with the

schedule of 87,80 percent. Unfortunately, this was only possible with visually matched devices using

prior knowledge of the user’s schedule.

In the end, the chosen Eduroam environment proved to be very difficult to deal with. Although

devices did show remarkable similarities with the user’s actual schedule, separating those devices

from different households was not successful. This prevented a definitive answer to the main

question of this research.

32

2.7 Discussion
The main goal of this research was to prove that occupancy detection from a household’s Wi-Fi

traffic was possible. Unfortunately, this question proved impossible to tackle with the chosen

circumstances. This was mainly caused by the shared Eduroam network in the chosen student living

quarters. A normal household would have its own private network, making all devices on it relevant

for the burglar. In the chosen situation, it proved impossible to reliably separate devices from each

other based on their household. This prevented any proper research into the main goal.

Visually matching devices did show that network traces can show occupancy, but these results are

not really defendable as it only covered a small amount of household and required prior knowledge.

To allow for better results, a number of potential improvements have been thought of on the way.

The first and most straightforward one would be to stop using the shared network environment and

revert to normal households. The reason this was not done in this experiment was a limitation

posted by the ethical board preventing us to use houses with underage or mentally challenged

people. In normal neighbourhoods, this omits a large number of houses making the experiment a lot

more cumbersome.

However, the given limitation is, from our point of view, not really necessary. The main reason for

this restriction would be that these people would not be able to understand the privacy risk that they

are exposed of. However, again in our opinion, there is no realistic risk in this. The data stored is not

linked to any house or person. It also does not say anything about the timeframe in which the

experiment was conducted. Should someone obtain the data and somehow find out which house it

belonged to and who carries which device in that house, it would still be old data of unknown age. If

someone is going through so many lengths to obtain data, they are better of gathering it themselves.

When looking at the experiment as it was conducted, a couple of other improvements should be put

in place.

To improve the efficiency of deploying the devices, larger groups of people should be contacted at

the same time. In this case, a group of 60 households was chosen at a time. After a reasonable part

of that participated or declined, an extra 60 households were added. As these households were

randomly scattered around the campus, it took a large amount of time to visit them all. Instead,

adding more households to the “active” list makes the rounds more efficient. Some research has to

be done into the maximum possible list size while preventing a bias in the list.

Additionally, a passage could be added to the introductory letter to ask people to contact us when

they would like to participate. This would not replace going to all the housed, but could give an initial

list of participants to go to. The sooner a device is set out, the sooner it is back and can be set out

again. As the number of devices is limited, this addition could aid in a more efficient use of the

equipment.

As for the measurement device, a real-time clock system would be advisory. As each device starts at

the first of January 1970 (zero Unix time), there is no synchronisation with the schedule. This

required manual verification of the offset by comparing the schedule to visually matching devices.

Although an indication of the offset was often possible to give, the exact values would be a guess. A

real-time clock omits this issue as the data timestamps comply with the times on the schedule

sheets.

33

Another option would be to add a form of communication to the device. In this experiment, Wi-Fi

would be the most obvious. Initially, the devices had such functionality. When booted, they would

set up a management network to connect to. This allowed some checking of functionality.

Unfortunately, this system introduced more reliability problems after which it was disabled. This

system was also limited to the initial boot. A better system would be continuous or periodic

communication options. This would allow for periodic checks, preventing small errors to ruin

complete datasets. However, this functionality would require an extra network adapter or a periodic

downtime on one of the channels while the communication path is opened temporarily.

A potential way to be able to still use Eduroam for this kind of measurements would be to apply

triangulation. This would require more devices to be placed in the building simultaneously. With the

various snr readings, triangulation may be usable to determine the exact location of the measured

device. This would however require multiple devices for one household. A superior option would

then be to spread numerous devices across one building/street and measure all living quarters at

once. This would however, be a nightmare to arrange with all the residents.

34

3 Related solution research

3.1 Introduction
There are already many implementations, which reduce the trackability of Wi-Fi enabled devices. In

this chapter these implementations are divided into different categories. The implementations are

then shortly explained: how they work and their similarity with other solutions. After which a

comparison is made between the different categories. This comparison is then used to define the

goal of this research.

3.2 Awareness
The first category is not about solving the trackability problem but simply about improving the

awareness of the trackability/privacy problems.

The paper “PriFi beacons” (Könings et al., 2013) is not actually a solution to the trackability problem

but more a solution that improves the awareness of the problem. This is done by adding information

about privacy implementations onto beacons transmitted by the access point. They then

implemented an application, in android, which reads this information and shows it to the users. This

is not an actual solution to the problem but is still important because it tries to improve the

awareness of privacy problems with the current protocol.

3.3 Passive probe
The second category is called passive probe, this is because it involves probe requests/responses and

it does not actually change the protocol in any way (that is why it is passive in a sense). This is mostly

done by randomizing the sender mac address and removing SSIDs from the probe request.

The paper “How talkative is your mobile device?”(Freudiger, 2015) tries to quantify how many probe

requests an average smartphone shares with the world. It also researches how effective the

implementation of mac randomization is by testing the implementation of an Iphone with IOS 8,

which includes these features. Their results show that mobile phones send on average about 55

probe requests per hour. This part of the research shows mainly that the current implementation of

the Wi-Fi protocol makes tracking of phones very easy. Furthermore, the effectiveness of the

randomizing the mac addresses is shown to be very ineffective in its current implementation. The

first problem with its implementation is that it only works while the devices are asleep, it does not

randomize its mac while awake. The second problem is that it does not change other fields in the

header that could be used to link packets together.

3.4 Active probe
The third category is called active probe because changes are made to the protocol to the probe

requests and responses to decrease the trackability and improve privacy.

The paper “Security analysis and authentication improvement for IEEE 802.11i specification” (Xing et

al., 2008) tries to improve the authentication method of the 802.11i standard by using asymmetric

cryptography, which protects the frames from linker layer up.

35

The paper “Privacy-preserving 802.11

access-point discovery” (Lindqvist et al.,

2009) is about changes in the 802.11

protocol to preserve privacy in access point

discovery. The proposed changes are

minimally enough that interoperability with

the 802.11 protocol is kept. Currently a

client transmits a probe request to which an

access point can respond with a probe

response. After which authentication and

association requests are transmitted back

and forth to complete the connection. The

problem with these packets is that

identifiable data is sent in all these packets.

This paper solves this by removing the identifiable data from the probe packets and uses randomized

MAC address for the association and authentication packets (as shown in Figure 20).

3.5 Passive mac
The fourth category improves on the probe categories as it actually improves multiple parts of the

802.11 standard that leak information about the device. This again is done without changing the

protocol. In the paper “Enhancing location privacy in wireless LAN through disposable interface

identifiers” (Gruteser and Grunwald, 2005), they try to reduce trackability by using disposable MAC

addresses and renewing these addresses regularly.

In this implementation, they periodically generate a

new MAC address after which they reconnect to

their network if they were connected. This solution

does have some drawbacks, since a new connection

is made every time the address is changed; no

active connections are possible while changing

identifiers.

The paper “802.11 user fingerprinting” show that

mac randomization does not work alone as other

identifiers in the MAC header make it possible to

still track a device (like packet size)

As does the paper “Why MAC Address

Randomization is not Enough “(Vanhoef et al., 2016) show that using

random mac addresses are not enough to prevent the client from

being tracked, as shown in Figure 21 the probability of a device being tracked is above 50% with 16

devices connected. This is due to other information that is leaked by the client. Furthermore, they

show that they could get the real mac address using two methods that are described in the paper.

Figure 20: privacy preserving discovery (Lindqvist et al. 2009, figure 1)

Figure 21: Probability of tracking devices
(Vanhoef et al. 2016, figure 6)

36

3.6 Active mac
The last category does the same as the previous categories but changes the protocol to get the

result.

In the paper “Improving wireless privacy with an

identifier-free link layer protocol “ (Greenstein et al.,

2008) they solve the trackability of the client by

obfuscating all the data that could be used to identify

the client. This is done by encapsulating all the

packets with their own layer that encrypts these

packets. They created two mechanisms for this, one

for discovery and binding (probe and authentication

packets, Tryst in Figure 22) and another mechanism

to encapsulate the data packets (Shroud).

They split the mechanisms because there are

different requirements between these types of

packets. The first one is sent sparsely and there is no

connection between the access point and client. The

second mechanism is implemented to make sending

large amounts of packets possible, though this uses data shared in the authentication phase.

And in another paper called “Header Encryption of IEEE802.15.4”(Dalal et al., 2016) they use AES

encryption to encrypt the mac header. The goal is to prevent attacks against the network by

encrypting the header, but by doing so they also make tracking of devices harder.

3.7 Comparison
To make a good comparison of each category, criteria to which they are compared are defined:

1. How well does the solution solve the trackability problem?

2. How much does it change to protocol?

3. Could it be rolled out easily onto current devices?

4. How much impact it has on connectivity?

The first solution will be skipped in this comparison due to it not actually changing the trackability.

3.7.1 Trackability
The passive probe category does not actually impede the trackability much due to restrictions on

when the randomizing is used. In addition, it only changes the addresses and no other fields thus

those other fields could be used to make tracking possible. Furthermore, it is only used on probe

requests, when a client transmits data to the network they will still be trackable.

The active probe category does minimize trackability but only for probe and authentication part of

the protocol thus when the client is connected to a wireless access point it could still be tracked.

The passive mac category minimizes tracking of the clients but it might still be possible. It all depends

on how often changing of the identifiers is done.

The last category: active mac solves the tracking of clients.

Figure 22: SlyFi Protocol (Greenstein et al. 2008, figure 1)

37

3.7.2 Protocol change & roll out
Passive probe and passive mac category both do not change the protocol thus do not hamper roll

out.

The active probe category makes minor changes to the protocol; these changes are interoperable

with the normal protocol. This makes roll outs for this implementation very easy since a gradual roll

out of this technique will be possible.

The active mac category makes large changes to the protocol and there is no talk about

interoperable, but due to the changes made, it is expected it will not be interoperable with the older

protocols. This of course also means that roll out of this technique will be harder since no gradual roll

out is possible.

3.7.3 Impact on connectivity
Passive probe, active probe and active mac categories all have minimal impact on connectivity.

The passive mac category impact on connectivity is largely dependent on the frequency of changing

the identifiers. No connection is possible whilst changing the identifier thus no persistent

connections on the client are possible.

3.8 Conclusion
Table 2: Overview of comparison

 Trackability Protocol change Roll out Connectivity

Passive probe -- ++ ++ ++

Active probe - -/+ + ++

Passive mac + ++ ++ --

Active mac ++ -- -- ++

The summery of the results in the table above clearly shows that all categories have drawbacks and

only two of the four categories even propose a solution to the problem. However, both categories

also have big drawbacks: Passive mac, in the fact that connectivity is severely hampered by the

solutions and active mac, due to that it requires big changes to the protocol that will hamper

interoperability and roll out of the solution.

38

4 Goal
In the individual part of the research, a solution is researched to solve the problem described in the

previous chapters. Thus, a research question needed to be formulated:

 Is it possible to find a solution that prevents tracking of clients whilst keeping interoperability

with current implementations?

In other words, the goal would be to place the solution in between the passive and active mac

solutions that were described in the previous chapter. It will still have some downsides in the fact

that some pieces of the protocol have to be changed/adapted, but the goal would be to make no

changes to the actual packet layout but instead only encrypt the content of fields inside the packet.

This encryption would then prevent the attackers from reading the fields, though it would still allow

older devices to still read and understand the packets but it would then ignore these because it does

not understand the content of it (interoperability). Furthermore, some newer devices have parts of

the packet handling implemented in hardware, which limits the amount of changes possible to the

protocol. By not changing the packet layout, it is expected that new solution would also work on

these devices (also interoperability with current implementations). It also needs to give comparable

privacy protection as the passive and active mac solution but without the downside of losing active

connections.

Translating this into the table shown in the previous chapter that summed up already researched

solutions to this problem would alter the table to the following:

Table 3: Overview with new solution

 Trackability Protocol change Roll out Connectivity

Passive probe -- ++ ++ ++

Active probe - -/+ + ++

Passive mac + ++ ++ --

My solution ++ -/+ + ++

Active mac ++ -- -- ++

39

5 Approach
Too systematically work to a solution that prevents users from being tracked which still is

interoperable with older implementations an approach would have to be defined. But before doing

this, the goal has to be to be further refined. In this case the goal is to decrease the trackability of

devices whilst staying interoperable with older implementations. The idea is that this can be

achieved by encrypting the data that makes tracking possible in such a way that the original format

will not change and thus keep interoperability with older devices. To research this, the goal is divided

into multiple smaller parts:

First, the data that makes user trackable in the current 802.11 protocol implementation needed to

be researched and identified.

Secondly, the 802.11 protocol had to be implemented in Proverif. The data that was thought to leak

information would then be tagged as private data in the Proverif implementation. Proverif would

then be run to check that it could actually check if the data was actually leaked.

Thirdly, the protocol would then be changed in such way that it would still be interoperable with the

current implementation but would not leak any information any more. Proverif would then be used

to verify that it does not leak any of the tagged data any more.

Lastly, to verify that the new protocol would still be interoperable with the old 802.11

implementation it would have to be implemented on an access point and client. Interoperability

could then be tested using these devices and devices that have not been changed. Furthermore, the

protocol could then be analysed with normal Wi-Fi analytic tools (like Wireshark) to verify that the

solution was correctly implemented.

40

6 Identifying the problem
The 802.11 protocol defines a messaging format which is used to facilitate the communication

between wireless devices. Earlier research shows that parts of these messages could be used to track

clients. To determine which parts of the protocol gives an attacker the ability to track these clients a

method had to be devised. It was chosen to start with the premises that all fields in the protocol leak

information about the client and only mark them as unusable if proper argumentation could be given

why it couldn’t be used to track the client. A differentiation was to be made between following types:

 Unusable, the field could not be used to track the client.

 Wi-Fi usage tracking, this field would allow an attacker to determine whether a Wi-Fi

network was in use by any clients.

 Client tracking, this field would allow an attacker to track the clients on a Wi-Fi network

separately.

 Required, either of the above are true but changing this field would impact the working of

the protocol in such a manner that legacy clients would not be able to join the network any

more.

Many of the frames below have an overview of which fields are present in that frame. In this

overview the fields are colour coded to quickly show to which type it belongs, the colours and

associated types are shown in Table 4.

Table 4: Type colour coding

 To be determined

 Unusable

 Wi-Fi usage tracking

 Client tracking

 Required

6.1 Frame types
In the 802.11 standard, three different frame types are defined. The first is the data frame, the

reason to use this protocol, to transmit and receive data, which is done in this packet. The second are

control frames, these control access to wireless communication medium and thus help delivery of

data frames. And lastly the management frames. These provide services like identification of

networks, authentication, association with networks and other important features. As will be seen in

these next chapters, these frames will be transmitted in a certain sequence to get a working

communication protocol.

41

6.2 Generic MAC frame
First a generic frame will be discussed, which is shown in Figure 23, after which we will group the

frames together in their most common uses (later called a sequence of frames) which will give us an

insight into how these devices communicate wirelessly but also important to determine which types

of frames and their fields need to be altered to prevent wireless clients from being tracked by

adversaries. Then all fields not already discussed in the generic frame will be discussed on a frame

per frame base used in that particular sequence.

Bytes 2 2 6 6 6 2 6 0-# 4

Field Frame
Control

Duration
ID

Address
1

Address
2

Address
3

Seq
Cont

Address
4

Frame
body

FCS

Figure 23: Generic MAC frame header

The generic frame consists of the following fields:

 Frame control

 Duration/ID

 Address 1-4

 Sequence ID

 Frame body

 Frame check sequence

6.2.1 Frame control
The frame control field consists of multiple control bits, which are portrayed in Figure 24 and listed

below with further explanation:

Total 2 2 4 1 1 1 1 1 1 1 1

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Protocol Type Sub type To
DS

From
DS

More
Frag

Retry Pwr
Mgmt

More
Data

WEP
bit

Order

Figure 24: Frame control field

 Protocol version, is used to determine the version of the protocol but there is only one

version in used today, thus cannot be used to track a client.

 Type and subtype, determines the type of frame, this in itself cannot be used to differentiate

between clients. But it might be used to statistically determine what kind of clients are

available in the network which might be used to determine if a network/house still holds

active clients. But due to its importance in the protocol, it defines how the data is interpreted

by the client, it cannot be encrypted/hashed in a way that keeps it compatible with legacy

clients therefore this is tagged as a required field for the protocol.

 ToDS and FromDS, determines the destination of packet. There are 4 different options that

will determine the actual source and destination of the packet:

o Management and control frames that are not destined for clients, this for example

includes station to station communication.

o Traffic from an access point to a client

o Traffic from a client to an access point

o Packets that include all four mac addresses, which are usually used in wireless

distribution systems (WDS) like a wireless bridge or mesh network.

42

Option one and four do give information about the layout of the network, as the first could

show that the network consists of multiple stations and the fourth shows that a WDS is used.

Option two and three are used mainly by clients as that is the communication between

access point and clients, thus it should not leak any information about connected clients.

Combining this with the fact that these fields are used by clients to determine the format of

the frame that is received, the choice was made to tag this field as required.

More fragments bit, is set to one when the packet is fragmented into multiple packets. All clients are

able to transmit big packets which in term will mean many fragmented packets. Thus, this does not

provide much data to able to clients.

 Retry, used to determine if a packet is retransmitted. This does implicate a previous

transmission has not been received but it only links it to that packet. Therefore this bit does

not provide much data to be used in tracking client’s other than a link to the previous failed

packet.

 Power management bit, indicates if the sender will go into a power saving mode after the

frame exchange is finished. This allows clients with limited power supply to preserve energy

but still stay connected. This bit therefore might indicate if a client is a client which does not

get its power from the mains. This does not give the ability to track clients but might give an

indication about what kind of clients are currently connected to the network. Therefore, this

field is tagged as to aid Wi-Fi usage tracking.

 More data bit, this signals clients that more data is available from the access point. Clients

that preserve power will use this to determine if they need to stay awake any longer or that

it could go to a power preserving mode. Just like the previous bit, it does not give the ability

to track clients but might give an indication about the topology of the network therefore this

is also tagged as being used to track Wi-Fi usage.

 WEP/encryption bit, formerly known as the WEP bit because it indicated that WEP

encryption was used to protect and authenticate the data but now it is used to signal the use

of encryption. Now a day the use of encryption is widely enforced by the base station and

thus would be the same for the whole network. Furthermore, without encryption enabled

the attacker would be able to see the data that is transmitted by the client. Since this is

highly likely to contain data that could identify the client it is not useful to use the new

protocol without encrypting the data. Therefore, it is concluded that it cannot be used to

track clients since without it being set to true (as encryption enabled) the new system would

not have any impact on the trackability of the client.

 Order bit, determines if strict ordering is used to reorder the transmitted frames and

fragments. As with the more fragments bit this cannot be used to track clients.

43

6.2.2 Duration/ID
The duration field is a field, which depending on the frame type can hold two different values. The

first is the PS-Poll frame, in this frame the field is used to send the client associate ID to the base

station. This type of frame is used in the energy saving features, whenever a client comes out of

sleep it asks the access point for any messages which were buffered by the access point. The ID is

used by the access point to identify which packets need to be transmitted to the client. In all other

frame types the field is used for setting the Network Allocation Vector (NAV). This NAV is used to

determine if the communication medium is used by another client or that it is available to send data.

This allows the sender to reserve the communication medium for set amount of time, therefore the

field is set to the expected time the sender will use the communication medium. The duration field

cannot be used by an attacker to differentiate between clients in all other frame types, but the client

is able to track clients with the PS-Poll frame type because an ID associated to the client is sent.

Therefore encrypting this header for the first type is very important but not for the others, which is

important when looking at the compatibility. Because normal clients use the value as a way to

prevent more clients from using the same medium at the same time.

6.2.3 Address 1-4
A maximum of four MAC addresses are allowed in the protocol containing any of the five following

values:

 Source address, this is the mac address of the original sending client

 Receiver address, the address of the receiving client/access point, this does not have to be

the same as the destination address as the destination address might be out of range and

thus a relay might be used in such cases.

 Transmitter address, this is the client which transmits the data, as with the receiver address

this doesn’t have to be the same as the source address.

 Destination address, the MAC address to which the packet is addressed to.

 Basic service set identifier (BSSID), the unique identifier of the network to which the client is

associated, in most home cases this will be equal to the address of the access point.

Only 4 of the 5 addresses give the ability of an attacker to track a client but the fifth is also important

because that one can be used to determine the usage of a network. In the case of the problem we

researched this is very important because you only need the fifth to determine the activity of a

network and thus possibly the presence of a user. Therefore all addresses are useful in some way and

thus all need to be obscured to prevent tracking of said clients.

6.2.4 Sequence ID
The sequence ID field is divided in two parts; the first is the fragment number, which is used if

original packet is fragmented into multiple packets. The number is used on the receiving end to put

the original packet back together in the correct order. Identification of the client by the fragment

number can be debated, on the one hand it can be used to link the fragments together and therefore

the attacker will be able to track a client across the fragmented packet. On the other hand, the

fragmentation field length is only 4 bits long and thus can only hold 16 unique values which limits the

time the attacker can track the client to a maximum of 16 packets. The second part is the sequence

number, this is field is used to discard duplicate frames and for reordering/defragmentation of the

packets to make sure the client receives its packets in order if required. The content of the field is a

simple counter which is increased every time a new packet is sent, if a packet is fragmented the same

sequence number will be used but then the fragment number is used to reorder the packet into the

correct order. The impact of this field on the trackability of the client is fairly big, a study has shown

that even if all other fields are randomized this could still be used to track the client’s due to its

44

predictability. Furthermore, the field itself can hold is 12 bits long and therefore can hold 4096

different values, which means that even if there are many clients the probability of the clients having

the same sequence numbers is fairly small and thus could make tracking possible.

6.2.5 Frame body
Content depending on what kind of frame is transmitted, therefore this can only be discussed per

frame type which is done in the next chapters.

6.2.6 Frame check sequence
Before a frame is transmitted, the frame check sequence (FCS) is calculated, it is used to determine

the integrity of the data at the receiving end. Because the method of calculating is determined by the

protocol, and thus fixed, it cannot be used to identify clients.

45

6.3 Sequences

6.3.1 Ack only
The first sequence, depicted in Figure 25, encompasses the acknowledgement (ACK) frame. This

frame is used after a transmission of frame that needs to be acknowledged by the receiver. This is

used to signal the sender that it successfully received and checked the frame for errors by checking

the frame control sequence.

Sender Frame

Receiver ACK
Figure 25: Ack only sequence of frames

6.3.1.1 Acknowledgement

After each transmission the receiver signals to the sender that a packet has successfully been

received. This packet does not contain any additional fields as can be seen in Figure 26.

Bytes 2 2 6 4

Field Frame

Control

Duration

ID

Receiver

Address

FCS

Figure 26: Acknowledgement frame

6.3.2 Clear to self
The second sequence, depicted in Figure 27, is an extension to the previous. The client will first

transmit a clear to send (CTS) message to announce a bigger transmission is coming. This allow the

client to reserve transmission time so it can then transmit a bigger frame without worrying about

collisions.

Sender CTS Frame

Receiver ACK
Figure 27: Clear to self sequence of frames

6.3.2.1 Clear to Send

The clear to send frame reserves the transmission medium for the receiver of the packet. As with the

previous frame it does not contain any additional fields, as shown in Figure 28, other than the fields

already discussed in chapter 6.2. This packet is either transmitted after a client sends a request to

send (RTS) frame or if the client itself want to reserve the medium. The duration field is set either by

taking the duration field of the request to send packet and then subtracting the time already passed.

Or is calculated by adding the time to send this frame, the data frame and the acknowledgement

frame together in case of the client sending the clear to send frame.

Byte 2 2 6 4

Field Frame
Control

Duration
ID

Receiver
Address

FCS

Figure 28: Clear to Send frame

46

6.3.3 Request to send
The third sequence, depicted in Figure 29, is again an extension to the previous sequence. As shown

in Figure 29, the sender will ask for permission to send the frame, the receiver will then respond with

a clear to send message and thus reserving the transmission medium for the sender.

Sender RTS Frame

Receiver CTS ACK
Figure 29: Request to send sequence of frames

6.3.3.1 Request to Send

As shown in Figure 30, the request to send frame does not contain any additional fields relative to

the generic MAC frame. But there is a difference in meaning of the duration field: Instead of

containing the NAV time for only this frame it will instead contain the time of the complete

transmission, thus the expected time it takes to send the request, the station to grant permission to

send data, the client to send the data and an acknowledgement of the station.

Bytes 2 2 6 6 4

Field Frame
Control

Duration
ID

Receiver
Address

Transmitter
Address

FCS

Figure 30: Request to Send frame

6.3.4 Beacon
As depicted in Figure 31, an access point will repeatedly broadcast its beacons, the interval between

transmissions is set by the beacon interval.

Client

Access Point Beacon
Figure 31: Beacon sequence of frames

6.3.4.1 Beacon

The beacon frame is a regular transmitted frame that announces the existence of the network. It is

important to the network because it allows clients to quickly connect to the network and provides

the clients with essential data about the network. As seen in Figure 32 and Figure 33, this frame

contains four fields which are mandatory:

 Timestamp, used to synchronise the clocks on all the devices. Connected devices will use this

to synchronise their timers with that of the base station.

 Beacon interval, the interval in which beacons are broadcasted by the base station. Because

the beacon frame sends useful information the clients will need to receive this information

and thus need to be awake.

 Capability information, used to advertise the capabilities of the network. This is important

because all stations need to support the capabilities of the network otherwise they will not

be able to join the network.

 SSID, name of the network. Clients use this to identify with which network it wants to

connect.

And five optional fields:

 FH parameter set, this element is included when frequency hopping is enabled on the

network. This will give the client all the information to joining such network possible.

 DS parameter set, contains the channel the network is using.

47

 CF parameter set, contains information about the contention free period when contention

free access is used in the network.

 IBSS parameter set, contains the announcement traffic indication map windows (ATIM). This

indicates the time between ATIM frames.

 Traffic indication map (TIM), used by clients that have enabled power saving features. These

clients allow the base station to accumulate messages for them and thus allowing that client

to sleep for periods of time. This field is then used to signal to these clients that data is

available for them. This is therefore information that can be used by attackers to determine

which clients the base station thinks are connected to the network.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

DA SA BSS ID Seq
Cont

Frame
body

FCS

Figure 32: Beacon frame

Bytes 8 2 2 # 7 2 8 4 #

Field Timestamp Beacon
Interval

Capability
Info

SSID FH
Param
set

DS
Param
Set

CF
Param
Set

IBSS
Param
Set

TIM

Figure 33: Beacon frame body

Beacons are only transmitted by the access points and with exception to one field (TIM) only

transmits information about the network itself. Therefore is, except for the TIM field, tagged as not

useful for tracking.

6.3.5 Probe
The client will start with sending a probe request to the access point which in turn will respond with a

probe response (Figure 34).

Client Probe request ACK

Access Point Probe response
Figure 34: Probe sequence of frames

6.3.5.1 Probe Request

The probe request is used by clients to search for networks without waiting for the base stations to

send beacons. It only contains two extra fields (depicted in Figure 36):

 Service set identifier (SSID), network name the client tries to connect with. Therefore it leaks

information about to which network the client tries to connect. Thus allowing for the

tracking of how much each network is used and how many clients are connected.

 Supported rates, defines which data rates the client supports. Since this is different for many

types of devices it could be used for tracking of the client.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 35: Probe request frame

Bytes # #

Field SSID Supported rates
Figure 36: Probe request frame body

48

6.3.5.2 Probe Response

The probe response is the response of the base station when it receives a request with compatible

parameters. It contains, as shown in Figure 38, nearly all the fields the beacon frame contains except

for the TIM field as that is only useful for clients that are already connected. Although it did not say

much in a beacon frame. In this case it gives information about the usage of a network since this is a

response from a client that tries to discover a network. Therefore, instead of tagging the data as

unusable for attackers it is now tagged as being able to be used to track the usage of a network.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 37: Probe response frame

Bytes 8 2 2 # 7 2 8 4

Field Timestamp Beacon
Interval

Capability
Info

SSID FH
Param
set

DS
Param
Set

CF
Param
Set

IBSS
Param
Set

Figure 38: Probe response frame body

6.3.6 Authentication
A client will start the authentication process after it has detected a network that it wants to connect

to. The client will try to authenticate with the AP by either using open authentication (Figure 39),

which is used in an open network or with a network that uses WPA/WPA2 encryption.

Client

Authentication:
Algorithm = open system
Sequence no = 1

Access Point Authentication:
Algorithm = open system
Sequence no = 2
Status code

Figure 39: Open authentication sequence of frames

Or with shared key authentication in case of a network which uses WEP encryption (Figure 40).

Client

Authentication:
Algorithm = shared
Sequence no = 1

 Authentication:
Algorithm = shared
Sequence no = 3
Challenge text

Access
Point

 Authentication:
Algorithm = shared
Sequence no = 2
Status code = 0
Challenge text

 Authentication:
Algorithm = shared
Sequence no = 4
Status code

Figure 40: Shared key authentication sequence of frames

49

6.3.6.1 Authentication

The authentication frame is the only frame used in the authentication process and has 4 extra fields

in it:

 Authentication algorithm number, used to identify which type of authentication is used.

Currently only two types are defined: an open system and shared key authentication. The

second one is used in shared key authentication which is mainly used in a WEP encrypted

connection. WPA2 uses the open system authentication but then encapsulates the key

exchange in the 802.11 data packets. Because of this it will first authenticate and associate

openly and then upgrade the connection to a WPA2 encrypted variant.

 Authentication transaction sequence number, used to track progress of the authentication

process. This is due to the authentication process being a multistep process.

 Status code, indicates if the authentication has succeeded or not and if it did not it contains

the code with a reason why it did not.

 Challenge text, filled with data depending on which type of authentication algorithm is used.

As discussed above in the encryption bit section, only a limited amount of possibilities for these

variables are possible since a good encryption is required. Therefore, all these fields will be tagged as

unusable.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 41: Authentication frame

Bytes 2 2 2 #

Field Authentication
Algorithm
Number

Authentication
Transaction
Sequence no.

Status
code

Challenge
text

Figure 42: Authentication frame body

6.3.7 Association
After the client authenticated with the network it will then try to associate with the access points to

complete the joining of the network (Figure 43).

Client Association request

Access Point Association response:
Association ID

Figure 43: Association sequence of frames

50

6.3.7.1 Association Request

The first step in joining the network is for the client to send an association request. This request

consists of several fields, depicted in Figure 45, which are used in the process:

 Capability information, used to advertise the capabilities of the client. The client needs to

support the capabilities of the network to be able to join. These capabilities give an adversary

a lot of useful data which could be used to track when a client joins the network.

 Listen interval, used in case a device uses power saving measures. It indicates to the base

station how many beacon periods the device wants to stay asleep, the access point

broadcasts these beacon frames periodically thus this is a measure of how long the device

can stay asleep. This will determine in turn how much data an access point has to store

before it can signal to a client to retrieve the data. Therefore the access point has to take this

into account when accepting or rejecting a new client. The listen interval might also be used

by an attacker to track clients.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 44: Association request frame

Bytes 2 2 # #

Field Capability
Information

Listen
Interval

SSID Supported
Rates

Figure 45: Association request frame body

6.3.7.2 Re-association Request

The re-association request is nearly identical to the association request with one difference which

can be seen in Figure 47:

Current AP address, indicates the address of the base station which it was previously associated with.

When a client connects to a different base station in the same network this is used to transfer the

association and buffered frames to the new base station. Unfortunately, this makes tracking usage of

a network possible and it could also be used to track the direction a client is move in, in a bigger

network.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 46: Re-association request frame

Bytes 2 2 6 # #

Field Capability
Information

Listen
Interval

Current AP
address

SSID Supported
Rates

Figure 47: Re-association request frame body

51

6.3.7.3 Association Response and Re-association Response

After the client has requested to associate with the network by sending either an association request

or a re-association request the access point will respond with the association response. This response

contains multiple fields, as shown in Figure 49, but only one that has not been discussed before:

 Association ID, a unique ID given to the client after said client has been associated with

network. Especially used when clients use power management features of the network. As it

is unique to the client it can be used to track the client.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 48: Association response frame

Bytes 2 2 2 #

Field Capability
Information

Status
code

Association
ID

Supported
Rates

Figure 49: Association response frame body

6.3.7.4 Disassociation and De-authentication

These frames are used to disassociate and de-authenticate a client from the network, the frame

contains only one extra field:

 Reason code, code that explains why the client was disassociated or de-authenticated from

the network.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 50: Disassociation frame

Bytes 2

Field Reason code
Figure 51: Disassociation frame body

52

6.3.8 EAP key exchange
To connect to a network with WPA2 protection some extra steps need to be taken as depicted in

Figure 52. After association the access point will initiate the extensible authentication protocol over

wireless (EAPOW) key exchange. This is done in the following four steps:

 The access point will start by creating a nonce(aNonce) and transmit that to the client

 The client will then also nonce (sNonce) and use both these nonces to create the Pairwise

Transient Key (PTK). The client will then derive the various keys depending on which

encryption method is used. In the case of WPA2-CCMP(more about this in the chapter

6.3.9.2) the following keys are derived from the PTK:

o Key Encryption Key (KEK), used to encrypt EAPOW data.

o Key Confirmation Key (KCK), used to generate the MIC field.

o Temporal Key (TK), session key, used as a key to encrypt data.

The client then uses the KCK to generate the Message Integrity Code (MIC). The MIC together

with the sNonce will then be transmitted back the access point.

 The access point is now able to also generate the PTK from both nonces. It then uses the

derived KCK to check the validity of the message by calculating the MIC and comparing it to

the received MIC. After the message has been verified the client will then send another key

message. This message sends the Group Temporal Key (GTK), a key that is used to derive

keys to encrypt broadcast/unicast messages, encrypted by the KEK key. Furthermore,

another MIC is generated using the KCK to ensure integrity.

 The client will then start checking the integrity of the message by checking the MIC and if

correct will save the GTK for later use. It then generates the last message which is a

conformation message to the access point that the association has been successfully

concluded. This message will also include a MIC to ensure integrity.

 In the last step, the access point will check the MIC and if correct the client will then be

successfully associated to the network

Client

 EAP - Key M2:
sNonce, Unicast,
MIC

 EAP - Key M4:
Unicast, MIC

Access
Point

EAP - Key M1:
aNonce,
Unicast

 EAP - Key M3:
Install PTK,
Unicast, MIC, Enc
(GTK, IGTK)

Figure 52: EAP key exchange sequence of frames

53

6.3.8.1 EAP

EAPOW is used to provide WPA2 protection to the network. EAP itself has several frames but the

basic frame format is depicted in Figure 54 and adds some extra data fields but also has overlap with

the MAC generic frame (not shown in the figure):

 Ethernet type, as with the generic MAC type this indicates what kind of packet type it is. The

value for EAPOW is fixed and thus no data can be derived from this field.

 Version, only one version is standardized thus cannot be used.

 Packet type, there are various types of EAPOL packets. The same reason as with the packet

type defined in the generic MAC is used therefore it is required.

 Packet body length, describes the length of the frame body.

 Packet body, depends on the packet type.

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
header

FCS

Figure 53: EAP frame

Bytes 2 1 1 2 #

Field Ethernet
Type

Version Packet
type

Packet body
Length

Packet body

Figure 54: EAP frame header

6.3.8.2 EAP – key

The most important frame that is used in WPA2 sessions is the EAP key frame. This frame is used to

authenticate the client and to create session keys and transmit the global keys. The frame introduces

the following fields (also shown in Figure 56):

Bytes 2 2 6 6 6 2 0-# 4

Field Frame
Control

Duration
ID

Destination
Address

Source
Address

BSSID Seq
Cont

Frame
body

FCS

Figure 55: EAP-Key frame

Bytes 1 2 2 8 32 16 8 8 16 2 #

Field Desc.
type

Key
info

Key
length

Replay
counter

Key
nonce

Key
IV

Key
Sequence
Start

Key
identifier

Key
MIC

Key
data
length

Key
data

Figure 56: EAP-Key frame body

 Descriptor type, used to identify which type of WPA variant is used. This is network

dependent thus the argument can be made that this makes tracking of network usage

possible.

 Key information, a field that is subdivided into five subfields, shown in Figure 57, consisting

of the following:

o Control bits, are set depending on handshake stages, and thus could be used to track

the progress of the handshake.

o Key ID, a two-bit value that is used to determine which key group needs to be used.

o Key type, used to distinguish between different types of key messages. Can only be

used to determine what kind of key messages are transmitted.

o Key version, indicates which encryption schemes are used, since this might be

different per network thus it might indicate network activity.

54

Figure 57: Key information field

 Key length, determines the length of the resulting key that is used. This might be network

specific setting thus it could be used to determine the activity of a network.

 Replay counter, a value that is incremented with each message thus this might be used to

track clients.

 Key nonce, a nonce which is used to derive the temporal keys from, should be randomly

generated value and thus not usable.

 Key IV, also a random value, thus not usable,

 Key sequence start, a sequence number that is expected in the first frame after the keys are

installed. Used to prevent replay attacks but could be used by attackers to links the next

packet thus could be used to track clients.

 Key identifier, currently not in use but could be used when the client uses multiple keys to

determine which key needs to be used. Though not in use today, if it were used it could be

used to track clients.

 Key MIC, message integrity check value, calculated by taking multiple fields from this packet

thus not usable.

 Key data length, might again be determined by the network thus could be used to track

network activity.

 Key data, data that depending on the message type and handshake stage might contain

either encrypted data, thus not usable.

6.3.9 Data transmission
The next sequence encompasses transmission of data. This is the reason for many clients to connect

to a network: to send and receive data. The client has some possibilities to transmit data. Like

depicted in Figure 58, it can simply transmit data and the receiver could then acknowledge if the

message was received correctly or use clear to self or request to send to reserve the transmission

medium and then transmit the data.

Sender Data

Receiver ACK
Figure 58: Data transmission sequence of frames

6.3.9.1 Encryption

Depending on the settings of the network some form of encryption might be used to protect

eavesdropping of user data. The three most well-known protocols that provide this kind of

protection are: wired equivalent privacy (WEP), temporal key integrity protocol (TKIP) and counter

mode cipher block chaining message authentication code protocol (CCMP). WEP was the first but had

some flaws which made it possible for attackers to crack the keys and thus the communication. The

successor of WEP was TKIP, which essentially uses the same encryption algorithms to stay

compatible but would remove the flaws which made cracking WEP possible. Since it was still using a

weak encrypting algorithm another successor was developed: CCMP. This uses advanced encryption

standard (AES) encryption instead of the older and weaker rivest Cipher 4 (RC4) encryption. Although

all methods could be explained in depth only CCMP will be further looked into.

Total 4 6 2 1 3

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field Reserved Control bits Key ID Key type Key version

55

6.3.9.2 CCMP

CCMP encrypts the frame body of a frame. To achieve this some extra data is required and an extra

check is implemented to provide tamper proving. The extra data is pre- and appended to the frame

body, as shown in Figure 59.

Bytes 8 # 8

Field CCMP header Frame body MIC
Figure 59: CCMP frame format

The frame body and MIC are both encrypted and thus are not usable any more for an attacker.

The header consists of two subfields as shown in Figure 60:

Bits 8 8 5 1 2 8 8 8 8

Field PN0 PN1 Reserved Reserved Key ID PN2 PN3 PN4 PN5
Figure 60: CCMP header

 Packet number (PN0-5), is a unique identifier of the frame and is incremented every

transmission. This is to protect from injection and replay attacks. Since it is an incrementing

number it could be used to track clients.

 Key ID, is the index of the key that is used, as this might also change per client the might also

be used to track clients. Though the usage of this field is fairly limited due to the field only

being two bits in length thus only four different options will be available.

6.3.10 PS-Poll
And the last of the control frames is the PS-Poll frame. As shown in Figure 61 the client sends a PS-

Poll frame to the access point to signal it wants to receive data that the access point has buffered.

The access point will then respond with a data frame it has stored for the client.

Client PS-Poll ACK

Access Point DATA
Figure 61: PS-Poll sequence of frames

6.3.10.1 Power-Save Poll (PS-Poll)

The last of the control frames is the PS-poll frame which can be used to allow clients to use power

saving features. There is only one different field in this frame and that is the association ID (AID)

instead of the duration field (shown in Figure 62). This AID is assigned to a client after it is associated

with the base station. The client sends this ID to the station to request the frames the base station

has buffered for the client.

Bytes 2 2 6 6 4

Field Frame
Control

AID BSS ID Transmitter
Address

FCS

Figure 62: Power-save Poll frame

56

7 Solution
Now that the problems have been determined, a solution needs to be though out and tested. In this

case the solution needs to prevent the attackers from reading all the information that is tagged as

important in the previous chapter. The choice was made to encrypt these fields in such a way that

the attacker could not distil any information from the packet that has been transmitted. This would

also include information that is retransmitted, thus this should not look similar to the previous

transmission as this would still allow the attackers to possibly track clients. Before going into details

about the solution some consideration could already be made, which is done in the next chapter.

7.1 Consideration
The considerations talked about in this chapter could already be made because of some

requirements that are already known:

 Adversaries should not be able to read certain fields; therefore, an encryption method is

going to be used.

 To encrypt these fields, keys need to be known by both the base station and the client.

However, keys used by WPA2 are not available yet, as these keys are required before these

keys are generated. Therefore, a separate key exchange is required to provide these new

keys.

 The identifier (MAC addresses), that is used to determine the destination, is going to be

encrypted and should be nondeterministic for adversaries. Therefore, special care needs to

be taken to make sure clients will still be able to determine easily and without much impact

in speed and/or battery life that these packets are addressed to them.

7.1.1 Key exchange
The first hurdle in the solution is the fact that messages have to be encrypted before the client has

been authenticated, not allowing the use of the WPA2 session keys for encryption. To solve this, a

key has to be exchanged between the client and the base station. A key exchange method has to be

chosen which is most suitable for this situation. Two different methods were compared: Elliptic curve

Diffie-Hellman (ECDH) key exchange and RSA key exchange. First, some criteria are defined that are

important for this solution and then a comparison is made between the two using the following

criteria:

 Key size, the most important, as the amount of bytes that can be added to messages is

limited and has a direct impact on performance: longer keys means less bandwidth available

for other data.

 Speed, also important because the protocol also has to work on devices with less computing

power.

For the first criterion we look at “Elliptic Curve Cryptography (ECC) Certificates Performance Analysis”

(Ajay Kumar et al., 2013), as seen in Figure 63 the difference is that the RSA key is between 6 and 30

times bigger than the ECDH key.

Figure 63: Comparison between key sizes (Ajay Kumar et al. 2013, table 4)

57

For the performance we will also look at

“Performance Evaluation of Public-Key Cryptosystem

Operations in WTLS Protocol”(Levi and Savas, 2003)

which gives us the graph in Figure 64. This shows that

the speed depends mainly on two factors: key size

(bits) and which curve is used. What can be noted is

that the performance between RSA-1024 and two of

the three curves at 160 bit (160P en 163k) are

comparable but when the key size is increased RSA

becomes slower in comparison to the elliptic curves.

Therefore, the choice was made to use ECDH key

exchange with the 256P curve. This curve gives better

performance than its RSA counterpart (3072 bit RSA)

and is also less than a 10th of the size. The choice for 256 bits elliptic curve key was made because it is

equivalent in strength to a 128 bits symmetric key which is recommended by “Référentiel Général de

Sécurité” (Agence nationale de la sécurité and des systèmes d’information, 2014) and

others(example: OWAPS, NIST) for usage after 2020.

7.1.2 Encryption
An encryption standard needs to be chosen which is both safe to use and readily available on the

platforms that would want to use this system. The choice was made to make use of encryption

methods that are already available to these systems. To find which methods are available to these

systems we looked at what kind of encryption methods are currently used to encrypt the content of

the data packets. As discussed in the data transmission chapter only two methods of encryption are

currently defined in the 802.11 standard: RC4 and AES. And also described in this chapter RC4 should

not be used any more thus we are left with only one method: AES.

The next problem lies within how the encryption method is used to encrypt the data, the following

encryption modes were considered when making this choice:

 ECB, Electronic CodeBook mode, the data that needs to be encrypted is divided into in to

blocks of a certain size and then each block is encrypted separately with the key. In this case

this method has two disadvantages. The first is that it can only encrypt a block at a time. The

data needs to be made fit into that block size, which is hard because the data cannot be

padded in any way or a small enough block size needs to be chosen that would fit the

situation which might decrease the effectiveness of the encryption, due to making the block

size smaller. The other problem is the fact that the output is linked to the input. Meaning

that if a MAC address is encrypted for the second time it will output the identical output data

as the first time (deterministic encryption). Thus, an attacker would not know what the MAC

address of the client would be but it would still be able to track clients because the MAC

addresses would still not change over time.

 CBC, Cipher Block Chaining mode, again the data is divided into blocks of a certain size but

instead of encrypting each block separately a chain of encryptions is made. This is done by

mixing (XORing) the output of the first block with the input of the second block. To make the

output of the encryption unique an Initialization Vector (IV) is used for the first block, instead

Figure 64: Performance comparison between RSA en
ECDH (Levi and Savas 2003, figure A)

58

of the non-existent previous block output. This system solves the second the problem of ECB

mode; deterministic encryption, but does not solve the first; block mode operation.

 CFB, Cipher FeedBack mode, is the first of the streaming cipher modes, this means that the

data is encrypted as a stream of bits and thus does not have to be padded to a certain size.

This is achieved by encrypting the IV and the key, this creates a block of encrypted data. The

input is then combined (XORed) with the encrypted data to create the output. If the input is

smaller than a block of encrypted data, only part of the encrypted data will be used (the size

of the input) to combine it to make the output. If the input is longer than one block another

block will be created by using the encrypted data as IV and then create another block with

the new IV and the key. The only disadvantage to this is that when the encryption is used to

encrypt longer inputs the encrypted data that is generated is dependent on output of

previous blocks.

 OFB, Output FeedBack mode, nearly the same as the previous implementation but instead of

using the output as IV for the next block it uses the output of the encryption as the IV for the

new block. Thus, the IV is not dependent on the input data any more. However, it is still

dependent on the previous block. This might become inefficient when a part of the packet

needs to be decrypted that is not in the first block. Because then it would first have to

encrypt all previous blocks before it could start with decrypting the actual wanted data.

 CTR, Counter mode, also a variant of the previous two but now the input is completely

independent of previous encrypted blocks. This is done by combining the IV with a counter.

This counter is then increased for every successive encryption of the block. This then solves

the disadvantage of the previous mode because the counter could easily be calculated.

Therefore, AES in CTR mode was chosen as method of encrypting all the required data.

7.1.3 IV generation
AES in CTR mode requires an IV to make the output of encryption non-deterministic. To determine

how this IV needs to be generated the requirements of the IV were looked at. To determine these

requirements, the RFC for AES-CTR was looked at which provides the following information:

“AES-CTR requires the encryptor to generate a unique per-packet value, and communicate this value

to the decryptor. This specification calls this per-packet value an initialization vector (IV). The same

IV and key combination MUST NOT be used more than once. The encryptor can generate the IV in

any manner that ensures uniqueness.” (Housley, 2004)

As stated in the quote the IV absolutely needs to be a unique value, thus a random value is not good

enough as it might randomly repeat itself. Furthermore, it also states that the IV needs to be

communicated to the receiver. This is a problem for this system because data cannot simply be

added to many of the packets without breaking the protocol. However, if this is interpreted in

another way that is more in the spirit of the text, a work around could be found: the decryptor needs

to know the IV. This change allows the use of pre shared and locally computed IVs allowing other

methods of generating the IV. The devised method would start with a random IV generated by the

client, which would then be shared with the AP in a frame that allows this. Then the IV is stored on

both client and AP side, thus removing the necessity of communicating it every packet. To make the

IV unique the choice was made to hash the IV every time it is used and store it as the new IV.

59

7.1.4 Hashing
The next step is selecting a hashing function; luckily, in this case the requirements are a bit lower

than for a hashing algorithm than that is used for hashing passwords for example. This is because it

does not matter that an attacker can determine what the IV is since it was transmitted over in

plaintext anyway. There are however two other requirements: The first one is size of the resulting

hash. As it is used as an IV for encryption, the output of the hash has to be the same or larger than

the IV size. Since the choice was made to use AES, which has the following block sizes: 128, 192 and

256, the output of the hashing algorithm needs to be at least 128 bits long. Furthermore, the

selection was limited to hashing algorithms that are already used one way or another as a hashing

algorithm in the one of the 802.11 specification and thus are more likely to be supported by the

devices that will implement the new protocol. The following common algorithms meet these

requirements: MD5 (EAP-MD5), SHA-1 (WPA2 key management), SHA-256 (802.11w key

management). To select which algorithm to use, the uniqueness of the output is looked at. To

determine these two factors were looked at. The first is how many bits the output is long, more bits

of output means less chance of a non-unique output. The second is collision attack rates; this does

not give much information about accidental collisions but it could give an insight about possible

problems with the algorithm. For the first SHA-256 is the clear winner here as its output is 256 bits

long instead of the 160 bits for SHA1 and 128 bits for MD5. As for the second both MD5(“On

Collisions for MD5 - M.M.J. Stevens.pdf,” n.d.) and SHA1 (Computer Security Division, 2006) have

known collision attacks and thus SHA256 once more comes on top in this case.

Therefore the choice was made to use SHA256 as hashing algorithm.

7.1.5 Packet loss/energy consumption
The idea is to encrypt everything that can identify a client, which in turn will also encrypt the fields

that are required to determine the destination of a packet. Therefore, some special considerations

had to be made. This is due to many client being mobile devices with limited processing power and

battery capacity. A client that would decrypt every message to check if it were addressed to it would

use unnecessary encryption cycles that will take processing time and power. Furthermore, there is

also a problem with packet loss, whenever a packet is not received there might be a possibility that

the sender would hash the IV another time and thus desynchronising the client and the AP. Both

these problems were solved by pre-encrypting a certain amount of addresses ahead. This would

allow clients to more easily discard message because instead of encrypting messages it would only

have to check whether a MAC exists within a pre-made list. Furthermore, creating a list of encrypted

MACs would lower the possibility of desynchronization by packet loss because the client would listen

for X amount of encrypted MACs ahead and behind. However, the effectiveness of this list will

depend on the size of the list but this has to be determined at implementation, as it will also be

determined by the resources available on the device.

60

7.2 Protocol changes
In the following chapter, the changes that were made are shown in flowcharts and are further

explained. Because the choice was made to make changes universal for both the client and the

access station some colour coding was added. For example for actions taken mainly by a client the

colour for these actions were painted blue, others that are mainly actions done by the base station

the colour orange was chosen and actions that are used by both are painted grey.

First, the data structures that are used by the new functionality is explained. After which the location

where these changes will be added is discussed. Finally, the handling of various packets is explained.

7.2.1 Data structures
As described in the consideration, some data has to be stored for this new protocol to work properly.

In total five different structures will be used and how they are shown in the other figures can be seen

in Figure 65.

Network data list Connection dataClient data MAC listWiFi config

Figure 65: Used data structures

The following data is put into these data structures:

 WiFi config contains whether the new protocol has to be used or not and contains the GTK

keys which are required for sending multicast messages.

 Client data contains the current private key which is used for generating the secret keys.

 Network data list, this is a list where the public key of each base station is stored when it is

received in a beacon packet.

 Connection data stores the generated secret key,

the current random IV and a list of encrypted MAC

addresses generated with the secret key and the

device MAC.

 MAC list is a list with all the encrypted MAC

addresses and corresponding connection data, this

list will be searched to check if the packet is

addressed to this device.

The management of the encrypted mac list and the

associated connections is managed in the two functions

below. The first as depicted in Figure 66 is the function that

creates the initial list of encrypted MAC for the connection.

As can be seen in the figure the MAC is encrypted with the IV

and the secret key. The IV and eMAC are then stored in the

encrypted MAC list, the eMAC is also stored in the

connection for later use. Then a new IV is generated by

hashing the previous IV. This is done X amount of times (list

size).

Figure 66: Adding MACs to the encrypted MAC list

61

The other function is depicted in Figure 67. It shows how this list updated. The last received eMAC

sets the new center for the MAC list. Then the elements that fall outside the list are removed from

both the connection data MAC list and the global MAC list. Then the same method as the previous

function is used to add elements to the end of the list. Note here that elements can only be added to

the end of the list due to the use of one-way hash functions that calculate the IV. This should be

taken into consideration when determining the list size; because whenever a packet is received, the

list is pushed forward removing the possibility of frames laying outside of the list from being received

correctly.

Figure 67: Updating encrypted MAC list

62

7.2.2 Determine entry point
For the system to work properly the changes have

to be made in the correct location inside the chain

of processes that are executed. When a packet is

transmitted or received, it goes through a certain

chain of processing. Putting the new solution in

the correct place in this chain is very important as

some fields are populated only in certain locations

in the chain whilst fields are also verified in certain

positions. Starting with the transmission, as seen

in Figure 68, the user software determines that a

packet has to be transmitted. Then some

processing takes place (already in this software

layer) and continues to the next step: encryption.

The packets will be encrypted if required. The next

step will be the new solution as from this point

onwards the fields that need to be protected by

the new system are fixed and thus the new system

will then be able to encrypt these fields. The last

step in handling the packets will be the calculation

of the FCS. This cannot be done before the new

solution because the solution changes the content

of the packet and with that the FCS value.

On the receiving side, the packet is received by the

hardware. Directly after the packet has been

received the FCS is calculated over the received

packet and is checked against the value in the

packet. Then the new solution will decode all

necessary fields into readable fields. The old

implementation will then be able to further process

and if necessary decrypt the packet.

Figure 68: Location of changes

Hardware
Receives packet

Check FCS

Check destination

Decrypt

User software

User software

Encrypt

Calculate FCS

Hardware
Transmits packet

SolutionSolution

63

7.2.3 Beacon handling
The beacon packet is the starting point of whenever a

client tries to join a network. This is because with the

new protocol the client needs to know the public key of

network it wants to join. This is done by adding the

public key of the base station to the beacon packet as

can be seen in Figure 69. This is the first function of the

beacon but as described in chapter 6.3.4 there is

another function that needed changes: Traffic

indication map, this map indicates to clients that there

is data available. Because this could leak information,

the choice was made to encrypt this field as can be seen

in the latter part of the flowchart. Each bit is encrypted

using each client secret key and a hash of the current

time (included in the beacon) as the initialization vector

for encryption. The latter was chosen to minimize the

overhead of updating the expected MAC list as a unique

value was already available.

On the receiving side, Figure 70, the client

receives this beacon and checks whether the

packet contains a public key. If so, it knows

that this network uses the new solution and

thus needs to store the public key for later

use. Furthermore, it then checks if it is

already connected with this network by check

if connection data for this network is already

known. If so, it then reads the TIM field and

decrypts its bit in the field using the hashed

timestamp as IV and the secret key

corresponding to this connection. Lastly, it

updates the MAC using the new IV generated

by hashing the timestamp and the GTK. In

this case, the GTK is used because it needs to

update the MAC addresses for multicast

message and thus it needs to be used as

secret key shared by all clients that are

connected: the GTK.

Figure 70: Beacon receive handling

Return

Add to packet:
Public key

Transmit
Beacon packet

Client data Public key

Has client
encrypted

connection?
Connection data Connection

Yes

Get first client

Generete tIV by
hashing timestamp

Encrypt TIM client
bit with:

tIV, cconnection
secret key

Yes

Last client in
list?

No

No

Update MAC list
Using tIV, GTK and

MAC=broadcast

Figure 69: Beacon transmission handling

64

7.2.4 Probe and authentication handling
 The probe request and authentication packet are handled identically,

this is because either packet might be the first packet that is

transmitted to the base station by the client. In both cases the settings

are checked after which the network list is used to retrieve the

network public key. If this is not available, there are three options left:

either stop processing and let the packet be transmitted with the

client information out in the open or null out all identifying data

knowing that the receiving side will not be able to use any of the data

or prevent the transmission of the packet all together. The first option

leaks data while the second and the third one delays the making of the

connection. The first option is not an option as it will leak information.

The second option is less optimal as the third as it will transmit useless

information. The third also has a downside: the transmission has to be

stopped. The impact of stopping the transmission cannot easily be

determined, for example: what kind of signal is sent back to the

transmitting layer above? An error? How does the program handle

this? All these questions require a lot of research into the control

mechanisms above, therefore the second option was chosen. Next, a

new public and private key pair is generated, this has to be repeated every

probe request/authentication packet otherwise the client might still be

tracked using this public key. Then a secret key is created by combining

the public key of the network that was stored in the network data list and

the private key of the client. An IV was randomly generated by the client.

Now the packet can be encrypted using both the secret key and the

random IV. Both the public key and the IV are then added to the packet

to make sure the receiver is able to decrypt the message. The last step is

to create a connection and fill it with the secret key, IV and an empty list

of encrypted MAC address that is then filled using the function defined in

the chapter 7.2.1.

On the receiving side, the base station starts by checking whether the

new solution is enabled or not, if not it will bypass all new changes. Then

a check is done to verify that the client also uses the new solution by

checking if the client has included the IV and public key in the message, if

not it knows that the client does not support the new solution and thus it

shall also by pass the changes. The base station now knows its own

private key, the client public key and the initial IV used for encryptions.

The next step is to create the secret key using both its private key and

the client public key. It is now able to decrypt all the fields in message by

using the secret key and the IV included in the message. After decrypting

the message, a check can be done on whether the message was actually

intended for it by verifying the destination address. If so, it then saves

this data into a connection data object for later use and adds future

expected MAC addresses as described in the data structures chapter.

Figure 72:Probe and authentication receive
handling

Figure 71: Probe and authentication
transmission handling

65

7.2.5 PS-Poll handling and other packets
The last handler is also combined due to their similarity:

Power management handling has an addition compared

to the normal packet handler.

Whenever a packet is transmitted which is not any of

the previous discussed packets this handler, depicted in

Figure 73, will be used on both the base station and the

client. Whenever either the base station or client wants

to transmit data it checks in the connection data list if

the destination address is in it. In case of a base station,

this list will consist of all its clients that are connected

and the multicast addresses. For a client this list will

contain the MAC address of the base station it is

connected to and the multicast addresses. Whenever

the destination is in the list it will then use the

information contained in the list to encrypt the packet

fields with the secret key and the current IV in use. This

IV is then updated to the next IV by hashing the previous

IV. Lastly, the MAC list is updated using the function

previously discussed.

In case of it being a PS-Poll packet a single step is added

before the packet is encrypted (marked green in Figure

74): the PS-Poll packet type is converted to an ordinary

data packet and a tag is added to the (encrypted) data

field that signals that is a PS-Poll packet.

On the receiving side, the destination is checked

against the MAC list, if it is not in this list either the

client is desynchronised or it is not addressed to the

receiver. Therefore, it will skip further processing and

highly like be ignored by the steps that com after this

step. If it is in the list it will then retrieve the IV and

corresponding (unencrypted) MAC address from this

list. This MAC is then used to retrieve the secret key

from the connection data list. The IV and secret key

can then be used to decrypt the packet. The received

IV is then set as the new current IV, the MAC list is

then once more updated using the new current IV as

centre point of the list.

In case of it being a data packet a step is added after

updating the MAC list: it checks whether the tag that

was added in case of a PS-Poll packet is in the packet.

If so, it will then convert the data packet back into a

PS-Poll packet.

Figure 73: PS-Poll/Other transmission handling

Figure 74: Data/Other packet receive handling

66

8 Proving solution

8.1 What is Proverif
Proverif is a cryptographic protocol verifier, it is able to analyse the security of these protocols. It is

able to prove if the following properties are true for protocols:

 Secrecy

 Strong secrecy

 Authentication

 Equivalences between processes

It provides support for symmetric and asymmetric encryption, hashing and digital signatures. This

allows the users to analyse their protocols and provide proof that the properties mentioned above

hold for their protocol.

Proverif is not perfect as described in the user manual: “ProVerif is sound, but not complete.
ProVerif’s ability to reason with reachability, correspondences, and observational
equivalence is sound (sometimes called correct); that is, when ProVerif says that a property
is satisfied, then the model really does guarantee that property. However, ProVerif is not
complete; that is, ProVerif may not be capable of proving a property that holds. Sources of
incompleteness are detailed in Section 6.3.4.”(Blanchet et al., 2016)

However, as described in the quote above whenever it does prove certain property is true for a given

protocol it really guarantees that.

This guarantee is the most important reason to use Proverif and comes back to the overall research

topic: how do you verify that the new protocol actually improves the problems in the old protocol?

The problem in this case is the fact that the old protocol sends identifiable data over an open

communication medium. In chapter 6, the problem is identified. Then a solution is though out to

solve these problems and then the solution needs to be verified and later tested. In this case, we

simply have a protocol and a list of fields that require secrecy. Implementing this in Proverif gives us

a guarantee that if the secrecy properties hold up for all the fields that were discussed in chapter 6

then it will be a sound solution to the identified problem.

67

8.2 Implementation choices
As can be seen in the chapter about the solution it is general in certain areas. Thus, to verify whether

the solution is working, the choice was made to implement the key sequences described in chapter

6.3 and shortly described below:

 Probes, clients periodically transmit probes to look for networks in their vicinity.

 Authentication and association, in a network, clients have to authenticate and associate

before being able to use the network.

 WPA2 key exchange, in this sequence the keys that are used to encrypt the user data are

negotiated.

 Data transmission, when a client transmits data.

 Data transmission with multiple receivers (unicast/multicast), a special case of data

transmission is between two clients directly. As both do not know the session keys of either

one a special mechanism is used to allow this. Therefore a special mechanism needs to be

devised to allow this to work using the altered protocol.

 Beacons, beacons announce the presence of a network. A single field compromises the

clients. This will have to be addressed and verified.

 Power management, each frame has data bits associated with power management and this

leaks information about the topography of the network. This and the implications of this will

be addressed and verified here.

8.3 Prove trackability
To prove the trackability of clients in the current protocol implementation the sequences above were

implemented before they are changed. As an example, the probe sequence is used to show that the

current protocol does leak information.

Converting this into Proverif code gives us the following for the probe request send by the client.

1. (* probe req *)
2. new clientMac; (* Mac address *)
3. new probeRates; (* Rates which the client support, need to at least match network *)
4. (* CLI->AP : probe request : da, sa, seqctl, body(SSID, rates) *)
5. out (net, (clientMac, apMac, seqctl, (SSID, probeRates)));

To verify that it is indeed leaking information some variables have to be tagged as variables that have

to be kept secret. These variables(or fields in the protocol) were determined in the previous chapter.

For the probe requests the following variables were tagged: apMac, clientMac, seqctl, SSID and

probeRates. This equals to the following code for each variable:

1. query attacker : apMac.

As also seen in the code example all these variables are transmitted plaintext over the network and

thus attackers will be able to see the content of these variables and thus are able to track the client.

Running Proverif results in the following truncated output:

The attacker has the message apMac_44_1490.
A trace has been found.
RESULT not attacker:apMac_44[] is false.

As seen in the output the attacker found the variable apMac and thus is able to derive whom the

receiving end of the probe request is. The output shows that for each of the queries given, Proverif is

able to find ways to derive the content of the variable.

68

8.4 Altering implementation
In the previous chapter the 802.11 protocol was implemented in Proverif to prove that the current

protocol leaks important information. In the following chapter this implementation is then altered to

solve this issue.

8.4.1 Probes
The first sequence is one where there might not be any connection with any base station yet and the

client is looking for networks. In a normal situation as described in chapter 6.3.4, no beacon is

present in the probe communication sequence between the AP and the client. However, with the

new solution a public key from the network needs to be known before a client is able to transmit a

probe requests. This public key can be retrieved either from a beacon transmitted by the AP or from

earlier received beacons where it saved this data.

In this case, the assumption is made that no earlier beacons are known and thus a beacon had to be

transmitted. As seen in the simplified example code below, the AP will first generate its

public/private key pair (1, 2) and then add this to the beacon packet (4). In this case, the beacon is

not transmitted over a public channel but over a private channel. This is done because the AP is

leaking its own MAC addresses and other data here. As described in chapter 6.3.4, beacon fields,

except for the TIM field, cannot be used for attackers. However, whenever a client transmits the

MAC address (and other beacon data) of the access point it does leak information thus the data of

the AP has to be tagged as secret. Therefore if the beacon was not transmitted over a private

channel, Proverif would use the Beacon transmission to prove information was leaked.

Next, the client receives a beacon (1) as shown in the code below, in the protocol this information

would then be stored in a data structure for later use. In this case, this is not required as it is only a

simulation of small part of the protocol. Thus, directly after receiving the beacon a probe request is

transmitted (2 – 10). The first step in sending a probe requests is to generate its own public and

private keys (2, 3) and generate a shared key from its private key and the base station public key (4).

Then a random Initialisation Vector is generated (5), which is used with the shared key to encrypt all

necessary data fields in the probe request (7). It then adds its own public key (8) and initialization

vector (9) unencrypted to the message. The probe is then transmitted over the public network (10).

AP
1. APPrivKey = genPrivKey()
2. APPubKey = createPubKey(APPrivKey)
3. Beacon = new BeaconPacket(APMac, SSID, BeaconData)
4. Beacon.elements.add(APPubKey)
5. Send(private network, Beacon)

Client
1. Receive(Beacon)
2. ClientPrivKey = genPrivKey()
3. ClientPubKey = genPubKey()
4. SharedKey = genSharedKey(ClientPrivKey, Beacon.elements.APPubKey)
5. IV = random()
6. ProbeReq = new ProbeRequestPacket(ClientMac, APMac, SequenceCtl, SSID, ProbeRates)
7. eProbeReq = encrypt(ProbeReq, IV, SharedKey)
8. eProbeReq.elements.add(ClientPubKey)
9. eProbeReq.elements.add(IV)
10. Send(public network, eProbeReq)

69

The station then receives a probe request with a key inside (1), it then creates the shared key using

its own private key and the public key obtained from the probe request body (2). It will then decrypt

the whole message (3). It will then proceed to prepare a probe response transmission. The first step

for the response is to hash the previous IV to generate a unique new one (4). Then the previously

obtained shared key is used in combination with the new IV to encrypt the response message (6).

Lastly, the response is transmitted over the public network to the client. When comparing this flow

of actions to the suggested flow described in chapter 7 it can be noted that some actions are missing:

storing of data and some checks. Like storing all the public keys transmitted in the beacons and

checks on whether the client or AP actually is the receiver of the packet. These checks are not

explicitly tested in the actual Proverif program but are instead enforced by telling Proverif that they

need to be the same as previously defined. In this case the receiver MAC address is bound the AP

Mac address, thus whenever they are different the program fails.

The client now receives a probe response (1). To check if this message is destined for this client it first

needs to create a new IV from the previous IV (2). It then tries to decrypting the whole message (5),

as in the previous case, if the message is not address to the client the decryption will fail. Finally, to

signal to the access point that it correctly received the message it will then prepare an encrypted

acknowledgement packet (7, 8).

Client
1. Receive(eProbeResp)
2. IVResp = hash(IV)
3. ProbeResp = decrypt(eProbeResp, IVResp, SharedKey)
4. IVAck = hash(IVResp)
5. Ack = new AckPacket(APMac, SequenceCtl)
6. eAck = encrypt(Ack, IVAck, SharedKey)
7. Send(public network, eAck)

The last step is for the access point to receive an acknowledgement from the client (1) and decrypt

the message (2, 3). As before, the program would fail if it were not able to decrypt the message.

AP
1. Receive(eAck)
2. IVAck = hash(IVResp)
3. ProbeAck = decrypt(eAck, IVAck, SharedKey)

AP
1. Receive(eProbeReq)
2. SharedKey = genSharedKey(APPrivKey, eProbeReq.elements.ClientPubKey)
3. ProbeReq = decrypt(eProbeReq, eProbeReq.elements.IV, SharedKey)
4. IVResp = hash(IV)
5. ProbeResp = new ProbeResponsePacket(ClientMac, APMac, SequenceCtl, SSID,

beaconData)
6. eProbeResp = encrypt(ProbeResp, IVResp, SharedKey)
7. Send(public network, eProbeResp)

70

To check whether the changes had the desired effect, some elements were tagged as secret. The

elements were determined in the previous chapter but were simplified here. Instead, the choice was

made to group the variables together where possible to simplify the program as much as possible. In

the whole program, the following items were tagged: ClientMac, APMac, SequenceCtl, SSID,

BeaconData, ProbeRates. This list would result in the following code snippet:

1. query attacker : clientMac.
2. query attacker : apMac.
3. query attacker : seqctl.
4. query attacker : SSID.
5. query attacker : beaconData.
6. query attacker : probeRates.

At first the beacon was also transmitted over the public network therefore, as expected, Proverif was

able to get the APMac, SequenceCtl, SSID and BeaconData variables because these were included

plaintext in the beacon packet. After removing the beacon packet from the scope of the attacker by

sending it over a private network, it was able to continue and find the next problem:

The current key exchange was not enough to solve the problem: After 12 hours of running Proverif, it

still was not able to find a definitive answer to whether the implemented protocol was safe or not.

After some further analysis it was speculated that man in the middle attack might have been possible

within this communication sequence, although no definitive answer could be found because the

execution was stopped due to time constraints.

To test if this was the possible problem an extra step was introduced which would eliminate a

possible Man-In-The-Middle (MiTM) attack by introducing an extra encryption step: It was chosen to

encrypt the shared key with the Pre-Shared Key (PSK), which is usually used to connect to the

network. This solved the problem of the possible man in the middle attack because the program

would no complete within a reasonable amount of time and would give the following output:

RESULT not attacker:probeRates_55[!1 = v_1810] is true.
RESULT not attacker:beaconData_82[!1 = v_4717] is true.
RESULT not attacker:SSID_52[] is true.
RESULT not attacker:seqctl_84[!1 = v_13694] is true.
RESULT not attacker:apMac_83[!1 = v_18184] is true.
RESULT not attacker:clientMac_54[!1 = v_22674] is true.

This showed that the solution for the problem was found because the only item that was changed
was the key that was used to encrypt all the traffic. Adding the extra encryption step did restrict the
usage of this system, therefore the implications of adding this will be discussed in chapter 10.

71

8.4.2 Authentication & association
There is a lot of overlap with the previous sequence because the handling of probes is identical to the

handling of the authentication step. Because of these similarities with the previous implementation,

only the variables that are tagged will be discussed: ClientMac, APMac, SequenceCtl, SSID,

capRateData, ListenInterval and AssocId. When the client tries to associate with the network it starts

by transmitting its capability information, listen interval, SSID and supported rates. The capabilities

information and the supported rate fields were joined together, though the listen interval was kept

as a separate variable because this would only be transmitted once (from client to AP) whilst the

supported rates and capabilities would later be communicated back from the AP to client. In this last

exchange of data, the AP would also include the AssocId that is assigned to each client and thus

would need to be evaluated separately. Running Proverif gives the following truncated output:

RESULT not attacker:assocId_101[!1 = v_1700] is true.
RESULT not attacker:listenInterval_62[!1 = v_4376] is true.
RESULT not attacker:capRateData_61[!1 = v_8492] is true.
RESULT not attacker:SSID_52[] is true.
RESULT not attacker:seqctl_60[!1 = v_16721] is true.
RESULT not attacker:apMac_53[] is true.
RESULT not attacker:clientMac_54[] is true.

As with the probe sequence the output shows that the implemented system prevents attackers from
finding the contents of these variables and thus prevents attackers from following these clients.

72

8.4.3 WPA2 key exchange & Data transmission
The WPA2 key exchange and data transmission sequences are also grouped together due to its

similarity: both are data transmissions but the content of the key exchange is filled with another

packet, the key exchange packet.

The client should now be associated with the network and thus the assumption can be made that

they share a shared key to use for further communication. Furthermore, they will also have a shared

current IV that can be used to generate a new unique IV .This is important because the packets in

these two sequences both use data packets to transmit data. As these packets can have a variable

length of content it cannot be assumed that extra data can be added to the packet. This is due to the

maximum packet size that is defined in the 802.11 protocol. As described in the previous chapters

this is solved by hashing the IV and use this as a new IV, also described is that a list is kept to lower

the chance of desynchronisation due to packets. In the test program no packets are lost and

therefore there is no need for lists of IVs which simplifies the test program.

The client starts with hashing the IV previously used to create a new unique IV (1), it then creates a

packet with all the necessary information (2). The content of the packet in this example is abstracted

away because that is the differentiating factor between the WPA2 key exchange and a normal data

transmission. The content for these packets is as follows:

 Encrypted data packet, in this case the body of the packet will consist of three fields: a key

ID, a packet number and the encrypted data. The first two need to be encrypted as discussed

in the previous chapter and thus are tagged as secret in the program.

 WPA2 key exchange, four different packets are exchanged between the access point and the

client (key frame 1 to 4) and thus for each of these exchanges a variable is tagged as secret.

The packet is then encrypted with the key, which was generated in the key exchange, and the newly

generated IV (3).

Client

1. IVData = hash(IV)

2. DataPacket = new DataPacket(ClientMac, APMac, SequenceCtl, DataContent)

3. eDataPacket = encrypt(DataPacket, IVData, SharedKey)

4. Send(eDataPacket)

Next is the receiver of the packet, in this case the AP, also hashes the IV (2) and then decrypts the

packet (3). Note this is completely different from the actual solution as there is no list to check from

whether the packet is destined for the AP. It then sends an encrypted response back to the client

acknowledging that the packet was received (4-7).

AP

1. Receive(eDataPacket)

2. IVData = hash(IV)

3. DataPacket= decrypt(eDataPacket, IVData, SharedKey)

4. IVAck = hash(IVData)

5. Ack = new AckPacket(ClientMac, SequenceCtl)

6. eAck = encrypt(Ack, IVAck, SharedKey)

7. Send(eAck)

73

The last step is that the client receives an acknowledgement from the access point, it will then repeat

the process of generating a new IV (2) and decrypting the message (3).

Client

1. Receive(eAck)

2. IVAck = hash(IVData)

3. AckPacket= decrypt(eAck, IVAck, SharedKey)

Output of the WPA2 key exchange sequence:

RESULT not attacker:M4Data_74[!1 = v_1979] is true.
RESULT not attacker:M3Data_125[!1 = v_8843] is true.
RESULT not attacker:M2Data_73[!1 = v_17386] is true.
RESULT not attacker:M1Data_124[!1 = v_25929] is true.
RESULT not attacker:seqctl_126[!1 = v_34472] is true.
RESULT not attacker:apMac_65[] is true.

RESULT not attacker:clientMac_66[] is true.

Output of data sequence:

RESULT not attacker:packetNumber_80[!1 = v_1079] is true.
RESULT not attacker:keyId_79[!1 = v_1248] is true.
RESULT not attacker:seqctl_78[!1 = v_2219] is true.
RESULT not attacker:apMac_65[] is true.

RESULT not attacker:clientMac_66[] is true.

As seen in the output all variables are safe and thus these sequences are secured against tracking.

74

8.4.4 Data transmission with multiple receivers (unicast/multicast)
In this case, the shared keys that are used for all other sequences are not usable. This is due to these

keys only being known to each individual client and the connected AP. Luckily, WPA2 has had the

same problem and thus already a solution for this problem: a group temporal key (GTK). This key is

transmitted to each client by the AP in the WPA2 key exchange. To simplify the solution this same

key will also be used in the new solution. This leaves one problem: there is no shared IV and an IV

cannot be included in the packets due to reason described in chapter 6.3.9. Therefore another

variable that is known by each client is used: time. The AP periodically sends out beacons with

timestamps in them, the clients are expected to synchronise with this time and thus each client

should have an accurate network time available. To allow multiple transmissions within the same

timestamp, the same solution will be used as before: the timestamp is hashed after every use. This

will use the same mechanism as what is used to track the IVs and encrypted MAC address for normal

transmission but instead of updating this list after receiving a transmission it is also updated

whenever it receives a new beacon.

As described above this solution is nearly identical to the data transmission solution. The only

difference being that the shared key is the GTK and the initial IV is a timestamp received from a

beacon. Though two clients are implemented in this solution to verify that it is also save whenever

there are more than one receiver and transmitter.

The checks are the same as for the normal data packet but one extra mac address has been added,

the second client. Proverif was once more executed which gave the following (truncated) output:

RESULT not attacker:packetNumber_78[!1 = v_1149] is true.
RESULT not attacker:keyId_77[!1 = v_1513] is true.
RESULT not attacker:seqctl_124[!1 = v_2710] is true.
RESULT not attacker:apMac_65[] is true.
RESULT not attacker:client2Mac_67[] is true.
RESULT not attacker:client1Mac_66[] is true.

As seen above the attacker is not able to retrieve any of the tagged data thus, it is verified that this
solution also works.

75

8.4.5 Beacons
Ignored in the previous chapters was that beacons are leaking data due to one field in the packet: the

TIM field. This field is a list of bits that signals to clients that data is available to them by setting the

bit that corresponds to the client to one, this could be used to track the activity of said users. This is

solved by encrypted these fields. The AP starts with hashing the current timestamp to generate the

IV that will be used to encrypt the bit (2). Then to build the TIM field, it will loop through all

connected clients (4) and checks whether the client is a new client or a legacy client (5). It will

encrypt the bit using the key that is shared with each client and the generated IV if it uses the new

solution (6) or simply populate the field with the unencrypted data (8).

AP
1. Beacon = new BeaconPacket()
2. BeaconIV = hash(Beacon.timestamp)
3. Beacon.TIM = new Array()
4. For Client : Clients
5. IF Client.hasPrivacy then
6. Beacon.TIM[Client.id] = encrypt(hasData(Client), Client.sharedKey, beaconIV)
7. Else
8. Beacon.TIM[Client.id] = hasData(Client)
9. End

The client creates the IV by also hashing the timestamp (2). It then looks up its hasData bit in the TIM

bitmap and decrypts this bit using the shared key and the IV (3).

Client A
1. Receive(Beacon)
2. BeaconIV = hash(Beacon.timestamp)
3. HasData = decrypt(Beacon.TIM[clientId], sharedKey, BeaconIV)

The Proverif script also includes a legacy client, ClientB, to make sure this does not affect the new

client, ClientA.

RESULT not attacker:ClientBitB_86[!1 = v_594] is false.
RESULT not attacker:ClientBitA_85[!1 = v_913] is true.

As seen from the output it shows that the new client is safe and not affected by the older client, but

the older client is still vulnerable, as expected.

76

8.4.6 Power management
If a client uses the power saving features available in the protocol the following sequence will be

used by the client. In this sequence, a client receives a beacon in which the TIM bit was set for this

particular client. This signals to the client that data is available at the access point, the client then has

to request the data by sending a PS-Poll packet to the access point. Unfortunately, this leaks data

about the topology of the network as this says that there are devices that use the power saving

features of the network. The only solution for this problem is to stop using the PS-Poll type packets

thus removing the power saving feature. Instead of removing it completely another route was

chosen: the packet will be encapsulated in a normal data packet like the WPA2 authentication

sequence. Since this would essentially result in the same sequence of data transmission as with the

data and WPA2 authentication sequence no further implementation details are described here. The

following variables were tested: Moredata flag, Power management flag, TIM clientbit, Assoc ID,

SSID, BeaconData, SequenceCtl, APMac and ClientMac. Running Proverif gives the following output:

RESULT not attacker:moredata_80[!1 = v_1736] is true.
RESULT not attacker:pwrmgmt_79[!1 = v_4944] is true.
RESULT not attacker:clientBit_135[!1 = v_9536] is true.
RESULT not attacker:assocId_71[] is true.
RESULT not attacker:beaconData_130[!1 = v_18717] is true.
RESULT not attacker:SSID_64[] is true.
RESULT not attacker:seqctl_131[!1 = v_27898] is true.
RESULT not attacker:apMac_65[] is true.
RESULT not attacker:clientMac_66[] is true.

Proving that this solution solves the problem.

77

9 Implementing solution

9.1 Place for changes
Whenever a packet is received or transmitted a certain

path of execution is walked through. As described in the

chapter 7.2.2, the location where the solution is

implemented has some restrictions. Furthermore, adding

changes on multiple points on the execution path is also

less desirable. Therefore some research into the

execution path had to be done to select the correct

location. In this case the assumption is made that some

kind of *unix system is used due to availability of code

and ease of use. The full overview of the path can be

seen in Figure 75 and looking at this figure one thing

immediately stands out: there are two paths between the

software and the Wi-Fi hardware. Which path is taken

depends on hardware, as seen there are two types: the

first is the Soft-MAC side, on this side the MAC layer is

implemented in software that lives in the kernel. The Full-

MAC side implements many of the MAC features into the

hardware. Both versions have their advantages and

disadvantages. In this case, some changes needed to be

made the Mac software layer, which makes the Full-MAC

driver unusable. Now that the path between user and

hardware is known, a location for the solution could be

selected. The following three candidates remain: Full/Soft

MAC driver, mac80211 and cfg80211. The first candidate

is cfg80211, the highest level of the drivers, this one is

chosen because the higher level the entry point will be

the more devices will be supported. The cfg80211 layer is

essentially a configuration layer; this layer will hold user settings about certain networks. A look at

the entry points for this module show that this layer does not receive packets, it only receives

statistical messages and requests for network information. The next layer is the mac80211 layers, a

quick look gives positive results: there are functions that process both incoming and outgoing

packets and has functions to disable hardware encryption. Disabling hardware encryption is

important because processing of the packets needs to be done before they are decrypted.

Furthermore, it also has specific functions that allow drivers to call these functions within an

interrupt. This is especially important because it should mean that these functions would be called

directly by the hardware whenever a new message is received. The next step was to add some

rudimental hooks into key functions and check what kind of data packets were available in these

functions. After some testing, it showed that this layer processes both incoming and outgoing

packets and thus is useable for this solution. Lastly, the driver was looked at and some investigation

showed that the driver simply pushes all messages received from the mac layer above to the

hardware below and vice versa. Thus, the mac80211 was chosen as a place where the solution would

have to be implemented.

Figure 75: Overview of execution path

78

9.2 Implementation setup
The next problem lies with the fact that the module identified for modification has no unit tests or

any other method of testing the correct working of the original or modified module. Therefore, a

setup had to be created to test the new solution. The solutions would consist out of three different

systems:

 An access point

 A client

 A sniffer

All these systems would then be connected

using ethernet to keep easy access and the

ability to push module updates on the fly to the systems.

Both the AP & client would load the modified kernel

module after which the AP creates a WPA2 home network. The client would then connect to the

created network. Meanwhile, the sniffer would have its wireless adapter in monitoring mode to

listen to all traffic generated by the other systems. The sniffer is used to verify the changes to the

module are affecting the traffic that is generated.

Figure 76: Overview of the setup

79

9.3 Implementation
Before the solution could be implemented some structures need to be further defined, the solution

stays vague in certain aspects. One of these aspects is the actual data structure and the

implementations of the maps that have to be kept. For the latter, the maps, it was important that

fast searching in the list was possible. To provide this a hash map was chosen as the implementation

for the map because of its performance: on average O (1) for searching, removing and inserting into

the map. A hash map works by hashing the key, this hash is then used as index to which the value is

inserted. In this implementation, three different hash maps were used to hold the network data list,

connection data list and MAC list (depicted in Figure 65). The leaves the Wi-Fi config and client data,

the Wi-Fi config is already provided by the mac80211 layer itself and the client data only contains the

public and private key which are as such.

The first map is used to store data about each access point, as key the MAC

address of the base station was used and as value a BeaconData structure

was created (depicted in Figure 77). This structure would hold four variables:

the public key of base station, a Boolean which would tell whether the base

station even published its key, a timeout variable which would be used to

determine which data was stale (to manage the size of the data list) and the

time which is included in the beacon frame. The timeout variable is never

described in the solution but is required in this case because otherwise the

list of networks would grow over time. If for example some other map or list

implementation was chosen this would not be required, an example would be a

ring buffer: a list of fixed size where the last element would simply be

overwritten by the newest element if the list was full.

The second map would contain the connection data, as key the MAC address

of the client was used and as value a structure called ConnectionData was

generated (Figure 78). This structure contained five variables: the shared key

that was generated in the key exchange, all the encrypted MAC addresses

which would point to this client, all the IVs used to encrypt these MAC

addresses and the MAC address of the other client. Both these lists are

“windowsize” long as this is predefined to how many encrypted MAC

addresses the implementation wants to be behind/ahead. Again the window

is dependent on how much memory is available and thus dependent on

hardware.

The third list would contain the same connection data structure but in this map the key would be the

encrypted MAC addresses instead of the plaintext MAC addresses. This is useful to verify if a packet

was addressed to the client in an efficient and fast way. In this map the connection data structure is

actually only pointing to a connection data structure in the previous map, as the structure is already

in the other list so some memory could be saved by not copying it but by referencing it.

BeaconData

Has key

Public key

Time out

Time

ConnectionData

MAClist[windowsize]

IVlist[windowsize]

Shared key

MAC address

Figure 77: Beacon
data structure

Figure 78: Connection
data structure

80

9.4 Problems

9.4.1 Elliptic Curve Diffie-Hellman exchange
The kernel includes a module that implements all the algorithms used to make the elliptic curve

Diffie-Hellman key exchange work but there is almost no documentation available about any of these

functions. For example, when googling the function name that generates the shared key from a

public key and a private key only 18 results are returned of which many are either the source code

itself, indexers of the Linux kernel source and message boards discussing improvements to the code.

Thus, not much information could be found which resulted in the following problem:

9.4.1.1 Public key size

The public key size problem became apparent when the protocol was implemented and the keys

were exchanged. Both sides should then be able to generate a shared secret key using the others

public key and their private key. Unfortunately, the shared key, which should be the same on both

sides, would not match. Which in term meant that the new implementation would not work. As if

you symmetrically encrypt something the same key is required to decrypt it. After some more

research and analysis of the shared key generation function, it was found that the public key had to

be double in size of the private key. After fixing this, the key exchange was successful in generating a

shared secret. After more research into what the public and private key actually represent it became

clear. Unlike in for example RSA, the public key of an elliptic curve does not represent an integer but

instead a point(X, Y) on a curve (hence the name elliptic curve), the private key in elliptic curve

encryption is an integer and therefore halve the size of public key.

9.4.2 Encryption
Recently changes were made to the cryptography API that the Linux kernel provides. This meant that

a lot of the documentation and examples were still written for the old API. Furthermore, nearly all

documentation and examples use asynchronous encryption/decryption which could not be used in

this situation.

9.4.2.1 Initialization

Unrelated to the problems provided by the documentation another problem arose with one of the

clients used in the test system. The client would throw random kernel panics whenever the client

tried to connect to the access point. The kernel panics would usually include message about lock

violations. After debugging this problem, it showed that whenever the encryption, which was used to

encrypt the message, was initialized in certain execution paths a kernel panic would occur. As

described in chapter 7.2.2, there are multiple entry points to the module to which changes were

made. All these entry points could be called by either the user programs or the Wi-Fi driver. It turned

out that in some cases these calls would be surrounded by locks and other measures to protect

hardware from interfering whilst that call would execute. These locks/protections were in turn

conflicting with other locks/protections that were used to initialize the cryptographic engine used to

encrypt all messages. To solve this problem the initialization was moved outside these critical

functions and instead was only run whenever the module was initialized. This meant that module

would have to reuse the initialized engine repeatedly. For now, this was not giving any further errors

but special care has to be taken whenever doing this because some calls come from interrupts that

could interrupt a process using the same resource that could lead to undefined behaviour.

81

9.4.3 No ACK control
The final problem is that the acknowledgement packets transmission is not

controlled by any software in the kernel (in Figure 79 everything above the

hardware line), not in the driver or the mac80211 layer above it. This means

whenever an encrypted packet is received which needs an ACK that that ACK will

not be generated by the firmware or driver because the receiver address will not

match that of the current device. The next question was could there be a way to

circumvent this problem in any way. Two possible solutions were devised:

 Generate the ACK in software

 Change the MAC address to the encrypted MAC address that is expected

To check if the first solution would have any merit a closer look was required to

the current situation. For this Wireshark was used to look at what kind of

packets were transmitted by each client.

This resulted in the Wireshark output as shown in Figure 80. What can be seen here is that the client

(ChengHon_21:bc:22) retransmits the packet to the base station (ChengHon_21:bc:52) several times,

note here that the actual destination(5c:65:91:28:eb:12) is encrypted in these packets. The packet is

then transmitted in plaintext, which changes the destination address to ChengHon_21:bc:22, after

which the access point responds directly with a plaintext message finishing the authentication part.

Figure 80: Wireshark trace of authentication

Looking at the logs generated at the access points we get the following:
AP
[+1.235640] encrypted auth
[+0.000009] RX: Auth request: DA: 00:19:86:21:bd:52, SA: 00:19:86:21:bc:22, BSSID: 00:19:86:21:bd:52, mem: ffff8ebc79d55000
[+0.001147] TX: Auth request: DA: 00:19:86:21:bc:22, SA: 00:19:86:21:bd:52, BSSID: 00:19:86:21:bd:52, mem: ffff8ebc76226d00
…
[+0.000006] RX: Auth request: DA: 00:19:86:21:bd:52, SA: 00:19:86:21:bc:22, BSSID: 00:19:86:21:bd:52, mem: ffff8ebc79a42300

As seen in the first line the access point detects that a client tries to connect using the new

implementation, the line after that shows that the packets has been successfully decrypted to its

original packets. The access point then responds by sending an authentication request to the client.

The first two lines are then repeated several times but the access point does not respond any more.

Then another authentication request is received this time without any key inside, shown in Figure 80

surrounded with red and thus the access point responds like it would respond to a legacy client.

Figure 79: Kernel Wi-Fi stack

82

The following logs were generated by the client:

Client
[+0.002818] Auth: DA: 5c:65:91:28:eb:12, SA: 00:19:86:21:bc:22, BSSID: 00:19:86:21:bd:52, mem: ffff8a92983c6500
[+0.000003] TX: Auth request: DA: 5c:65:91:28:eb:12, SA: 00:19:86:21:bc:22, BSSID: 00:19:86:21:bd:52, mem: ffff8a92983c6500
[+0.002493] RX: Auth request: DA: 00:19:86:21:bc:22, SA: 00:19:86:21:bd:52, BSSID: 00:19:86:21:bd:52, mem: ffff8a92983d1500

These show that the retransmissions are not handled by the software because it only logs that it has

transmitted a single transmission and received an unencrypted reply. The software does not have

any influence on the retransmission of the packets. Luckily, analysis of the packets showed that these

packets are essentially the same as the previous packets but with another flag set. The flag, which is

set, has not been changed by the implementation and thus does not have any impact on the working

of this solution. What is a problem is the fact that after several retries an unencrypted packet is

transmitted which then leaks all the data that should have been hidden. This scenario does not

happen every time because sometimes the access point is fast enough in its encrypted response, the

client receives this response before it transmits the unencrypted packet and stops transmitting. But

the fact that it can happen means that this solution will not be a reliable solution. Furthermore, the

fact that an unencrypted retransmission is transmission without any interference from the software

means that this could happen for any packet that requires an acknowledgement.

After some more research and another look into the data a possibility for the problem of

unencrypted retransmission could be found: the firmware or hardware keeps a list of earlier

connected networks and then responds to beacons. In this case a beacon was received two frames

before the problematic behaviour.

The next solution was to change the MAC address to the next address that is expected. The first

problem with this solution is that the access point does not know what the first address is because it

needs to generate that when receiving the first message. Secondly, the access point will never be

able to communicate with more than one client because it would otherwise not know which client

transmits the next packet.

Therefore no solution could be found for this problem in the current implementation, as both

solutions will not be feasible. The only other solution for this problem would be to implement the

changes in a different location earlier in the receive path. This would mean that either the

implementation would have to be implemented in the firmware of the device or in the hardware, the

implications of this will be discussed in chapter 12.1.

83

10 Limitations
In this chapter the limitations of the new solution are discussed.

10.1 Statistical analysis
While the solution will not leak any information about the clients any more, data is still transmitted.

Since the amount of data that is transmitted and the timing of this transmission is not changed some

information about the client still might leak. For example, a static client like a printer might

periodically transmit small keep alive message packets to some server. This would result in a very

different pattern of packets than for example a client that is watching a video, this would result in big

packets for the duration of the video.

10.2 Analogue information
In this research only the digital side, the software, was considered. Unfortunately, the bits that are

transmitted are not merely one or zero but carry more information. For example, the strength of the

signal is an important parameter that has not been considered. The strength could be used to

determine the distance between the sender and receiver. An attacker could use multiple devices

place strategically to determine the location of a device. In case of the problem: determining the

occupancy of a house, this could then be used to determine the overall activity of the monitored

house. Strength of the signal is not the only information that might be retrieved from it, small timing

differences between transmitter implementations might also be considered to determine which

client is transmitting the data.

84

11 Conclusion
This research consisted of two parts: the shared research trying to prove that tracking of household

occupancy was possible by eavesdropping Wi-Fi traffic and the personal part trying to solve this by

altering the current Wi-Fi protocol whilst keeping interoperability with current systems.

The shared part was already researched before for a course but was not statistically relevant due to

used participants not being random. The new research would use students living on campus as

participants, this changed resulted in an extra research question. The two research questions were

defined as follows:

 Is it possible to determine which Wi-Fi devices belong to a certain household in a shared

network with only passively detectable parameters?

 Is it possible to reliably track occupancy in a household with passive eavesdropping on its

Wi-Fi traffic?

The first question showed that with the used filters we were not able to successfully separate the

devices from households. Altering the filters to make them stricter would often result in the removal

of devices which were considered correct. Furthermore, looking to communication between devices

did not work either as devices were also communicating a lot outside of their own household.

Due to failure to answer the first question it was impossible to give a definite answer to the second

question but looking at the previous experiment good results were expected. Manually going over

the data and manually filtering a lot of the devices showed that the data was there but was reliant on

selecting the correct devices. Thus, this definitely needs further research preferably using homes

without shared networks, as shown by the previous this could give very good results.

Next was the individual part of the research, each of researchers would research a solution into the

problem, this resulted in the following research question:

 Is it possible to find a solution that prevents tracking of clients whilst keeping interoperability

with current implementations?

To answer this question the research was split into multiple parts:

 Research and identify the data in the current Wi-Fi protocol that makes users trackable.

 Verify with Proverif that this information is indeed leaked by the current protocol.

 Alter the protocol in such a way that it would not leak information but keep interoperability

with the current protocol and implement and prove this solution in Proverif.

 Implement the new protocol on an access point and a client to prove that it works and is still

interoperable with older clients.

The identification of the problem and verifying this in Proverif proofed to not give any problems. The

third step, altering the protocol, had some problems at first but could eventually be finished. The

final step however did provide a problem which could not be overcome: there was no control over

acknowledgement frames which made implementing the new solution impossible. The solution did

show promise as the hard part, implementing the key exchange and the encryption of the packet,

was already implemented and tested. Thus, if it were also possible to alter the acknowledgement

frame then the final part of the research would also be successful.

85

Going back to the original research question some further remarks had to be made. The solution was

proven by Proverif but it did not account for other possible parameters as described in chapter 10.

Keeping this limitations in mind it can only be concluded that it is impossible to create a solution that

completely prevents tracking of clients. Though, if this solution could be implemented successfully in

for example the firmware of a wireless chip it will increase the difficulty for attackers a lot.

Furthermore, when looking at the compatibility of the new solution it is a definite improvement

upon all the other implementations. As proven in chapter 7, it is possible to encrypt the messages

whilst keeping the format the same and thus it can be used even in implementation that use a MAC

hardware implementation. Furthermore, the current implementation has been setup in such a way

that only a few extra function calls had to be added to the existing driver, albeit in the correct

location, to implement the new solution thus allowing easy adoption to the new solution.

86

12 Discussion

12.1 ACK control
The implementation of the solution failed due to not having control over the ACK messages. Resulting

in that either the implementation would have to be implemented in the firmware of the device or in

the hardware. The expectation is that if it was possible to change the firmware on the device then ACK

messages could be controlled and thus would make the solution feasible. Unfortunately, this cannot

be verified as only the manufactures of these devices know the proprietary code running on these

devices and know how these devices are implemented. But if this is possible it is expected that this is

an easy change because on many of the devices the firmware is transferred to the device when it is

initialized. This firmware (usually called binary blob) is included in the driver package, thus a driver

update would also allow a firmware update. Thus, it would lower the speed and ease of the roll-out of

the new solution. Instead of having an open source driver already implemented with the changes

manufactures will have to implement the changes in their firmware, though implementing the solution

should not be a big problem. As the solution was though out in such a way that only in a single location

in the execution path code has to be added.

12.2 Usage of PSK key
To solve the man in the middle attack that is possible in a Diffie Hellman key exchange an extra

encryption step had to be added to obtain the shared key. This extra encryption step uses the PSK

key that is originally used in the WPA2 key exchange to generate the WPA2 keys. This makes the new

solution dependent on an already known shared key. As the solution already requires a form

encryption, as unencrypted traffic would leak information about the client in the data packets, this is

not a big problem, but a more interesting question arises from this dependency: does the solution

really need to be resistant to a man in the middle attack? One could argue not, because in the scope

of the problem this would mean an attacker would start to transmit data to and from the client and

the access point. This could then easily be detected either by the client or by the access point.

Therefore in the scope of the problem, this would not be a real problem.

87

References
Agence nationale de la sécurité, des systèmes d’information, 2014. RGS_v-2-0_B1.pdf [WWW Document]. URL

https://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf (accessed 3.17.18).
Ajay Kumar, Antony Jerome, Gaurav Khanna, Hari Veladanda, Hoa Ly, Ning Chai, Rick Andrews, 2013. Elliptic

Curve Cryptography (ECC) Certificates Performance Analysis [WWW Document]. URL
https://www.websecurity.symantec.com/content/dam/websitesecurity/digitalassets/desktop/pdfs/w
hitepaper/Elliptic_Curve_Cryptography_ECC_WP_en_us.pdf (accessed 3.17.18).

Blanchet, B., Smyth, B., Cheval, V., 2016. ProVerif 1.94 pl1: Automatic Cryptographic Protocol Verifier, User
Manual and Tutorial.

Computer Security Division, I.T.L., 2006. NIST Comments on Cryptanalytic Attacks on SHA-1 [WWW Document].
URL https://csrc.nist.gov/news/2006/nist-comments-on-cryptanalytic-attacks-on-sha-1 (accessed
3.17.18).

Dalal, H.N., Soni, N.V., Razaque, A., 2016. Header encryption of IEEE802. 15.4, in: Long Island Systems,
Applications and Technology Conference (LISAT), 2016 IEEE. IEEE, pp. 1–6.

Freudiger, J., 2015. How talkative is your mobile device?: an experimental study of Wi-Fi probe requests, in:
Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM,
p. 8.

Greenstein, B., McCoy, D., Pang, J., Kohno, T., Seshan, S., Wetherall, D., 2008. Improving wireless privacy with
an identifier-free link layer protocol, in: Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services. ACM, pp. 40–53.

Gruteser, M., Grunwald, D., 2005. Enhancing location privacy in wireless LAN through disposable interface
identifiers: a quantitative analysis. Mob. Netw. Appl. 10, 315–325.

Housley, R., 2004. Using Advanced Encryption Standard (AES) Counter Mode With IPsec Encapsulating Security
Payload (ESP) [WWW Document]. URL https://tools.ietf.org/html/rfc3686 (accessed 3.18.18).

Könings, B., Schaub, F., Weber, M., 2013. PriFi beacons: piggybacking privacy implications on wifi beacons, in:
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication. ACM, pp. 83–86.

Levi, A., Savas, E., 2003. Performance evaluation of public-key cryptosystem operations in WTLS protocol, in:
Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003. Presented
at the Proceedings of the Eighth IEEE Symposium on Computers and Communications. ISCC 2003, pp.
1245–1250 vol.2. https://doi.org/10.1109/ISCC.2003.1214285

Lindqvist, J., Aura, T., Danezis, G., Koponen, T., Myllyniemi, A., Mäki, J., Roe, M., 2009. Privacy-preserving
802.11 access-point discovery, in: Proceedings of the Second ACM Conference on Wireless Network
Security. ACM, pp. 123–130.

Lisa Sullivan, PhD, n.d. Issues in Estimating Sample Size for Confidence Intervals Estimates [WWW Document].
Power Sample Size Determ. URL http://sphweb.bumc.bu.edu/otlt/MPH-
Modules/BS/BS704_Power/BS704_Power2.html (accessed 6.10.18).

Mobile marketing statistics 2018 [WWW Document], 2018. . Smart Insights. URL
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-
statistics/ (accessed 4.9.18).

On Collisions for MD5 - M.M.J. Stevens.pdf, n.d.
Vanhoef, M., Matte, C., Cunche, M., Cardoso, L.S., Piessens, F., 2016. Why MAC Address Randomization is not

Enough: An Analysis of Wi-Fi Network Discovery Mechanisms, in: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, pp. 413–424.

Verbree, E., Zlatanova, S., van Winden, K.B.A., van der Laan, E.B., Makri, A., Taizhou, L., Haojun, A., 2013. To
localise or to be localised with WiFi in the Hubei museum? ISPRS - Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. XL-4/W4, 31–35. https://doi.org/10.5194/isprsarchives-XL-4-W4-31-2013

Xing, X., Shakshuki, E., Benoit, D., Sheltami, T., 2008. Security analysis and authentication improvement for ieee
802.11 i specification, in: Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE.
IEEE, pp. 1–5.

88

Appendix

Appendix 1: Small scale research

89

90

91

92

93

94

Appendix 2: Probe Proverif implementation
(* Network *)
free net.
private free beaconNet.
(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.
(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.
(* Hashing algorithm *)
fun hash/1.
(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).
(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.
(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.
(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.
(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.
(* security property: the attacker does not learn the client-SSID *)
 query attacker : clientMac.
 query attacker : apMac.
 query attacker : seqctl.
 query attacker : SSID.
 query attacker : beaconData.
 query attacker : probeRates.
let Client =
 new clientMac; (* Mac address *)
 new probeRates; (* Rates which the client support, need to atleast match network *)
 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (beaconNet, (apMac, seqctl, (dhPubAP, =SSID, beaconData)));
 (* Randomly create a base Iv which we hash each time to get an unique IV everytime, furthermore create the enc key with DH exchange *)
 new baseIv;
 new dhPrivClient;
 let dhPubClient = g(dhPrivClient) in
 let dhKey = f(dhPrivClient, dhPubAP) in
 let hashedDhKey = hash(dhKey) in
 let encKey = sencrypt(hashedDhKey, PMK, baseIv) in
 (* probe req *)
 let eProbeMacReq = sencrypt(clientMac, encKey, baseIv) in
 let eApProbeMacReq = sencrypt(apMac, encKey, baseIv) in
 let eSeqctlReq = sencrypt(seqctl, encKey, baseIv) in
 let eSSID = sencrypt(SSID, encKey, baseIv) in
 let eProbeRates = sencrypt(probeRates, encKey, baseIv) in
 (* CLI->AP : probe request : da, sa, seqctl, body(SSID, rates) *)
 (* Include baseIV needed as IV for every transaction, furthermore share public DH client key *)
 out (net, (eProbeMacReq, eApProbeMacReq, eSeqctlReq, (baseIv, dhPubClient, eSSID, eProbeRates)));
 (* AP->CLI : probe response : da, sa, bssid, seqctl, body(ssid, beaconData(Timestamp, Beacon interval, Cap info, SSID, FH, DS, CF, IBSS)) *)
 in (net, (eProbeMacResp, eApProbeMacResp, eSqctlResp, (eSSIDResp, eBeaconDataResp)));
 let probeIvResp = hash(baseIv) in
 let =apMac = sdecrypt(eApProbeMacResp, encKey, probeIvResp) in
 let =clientMac = sdecrypt(eProbeMacResp, encKey, probeIvResp) in
 let =seqctl = sdecrypt(eSqctlResp, encKey, probeIvResp) in
 let =SSID = sdecrypt(eSSIDResp, encKey, probeIvResp) in
 let =beaconData = sdecrypt(eBeaconDataResp, encKey, probeIvResp) in
 (* CLI->AP : ack : da, seqctl *)
 let probeIvAck = hash(probeIvResp) in
 let eApProbeMacAck = sencrypt(apMac, encKey, probeIvAck) in
 let seqctlAck = sencrypt(seqctl, encKey, probeIvAck) in
 out (net, (eApProbeMacAck, seqctlAck));
 new end.

95

let AccessPoint =
 new gtk;
 new beaconData;
 new apMac;
 new seqctl;
 new dhPrivAP;
 let dhPubAP = g(dhPrivAP) in
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 out (beaconNet, (apMac, seqctl, (dhPubAP, SSID, beaconData)));
 (* CLI->AP : probe request : da, sa, seqctl, body(SSID, rates) *)
 in (net, (eProbeMacReq, eApProbeMacReq, eSeqctlReq, (baseIv, dhPubClient, eSSID, eProbeRates)));
 (* Construct key and check if this message is for us by decrypting apProbeMac & probeMac *)
 let dhKey = f(dhPrivAP, dhPubClient) in
 let hashedDhKey = hash(dhKey) in
 let encKey = sencrypt(hashedDhKey, PMK, baseIv) in
 let =apMac = sdecrypt(eApProbeMacReq, encKey, baseIv) in
 let clientMac = sdecrypt(eProbeMacReq, encKey, baseIv) in
 let =seqctl = sdecrypt(eSeqctlReq, encKey, baseIv) in
 let =SSID = sdecrypt(eSSID, encKey, baseIv) in
 let probeRates = sdecrypt(eProbeRates, encKey, baseIv) in
 (* AP->CLI : probe response : da, sa, bssid, seqctl, body(ssid, beaconData(Timestamp, Beacon interval, Cap info, SSID, FH, DS, CF, IBSS)) *)
 let probeIvResp = hash(baseIv) in
 let eProbeMacResp = sencrypt(clientMac, encKey, probeIvResp) in
 let eApProbeMacResp = sencrypt(apMac, encKey, probeIvResp) in
 let eSqctlResp = sencrypt(seqctl, encKey, probeIvResp) in
 let eSSIDResp = sencrypt(SSID, encKey, probeIvResp) in
 let eBeaconDataResp = sencrypt(beaconData, encKey, probeIvResp) in
 out (net, (eProbeMacResp, eApProbeMacResp, eSqctlResp, (eSSIDResp, eBeaconDataResp)));
 (* CLI->AP : ack : da, seqctl *)
 in (net, (eApProbeMacAck, eSeqctlAck));
 let probeIvAck = hash(probeIvResp) in
 let =apMac = sencrypt(eApProbeMacAck, encKey, probeIvAck) in
 let =seqctl = sdecrypt(eSeqctlAck, encKey, probeIvAck) in
 new end.
process
 new key;
 new SSID;
 let PMK = pmkGen(SSID, key) in
 (!Client | !AccessPoint)

96

Appendix 3: Authentication & association Proverif encryption
(* Network *)
free net.
private free beaconNet.
(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.
(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.
(* Hashing algorithm *)
fun hash/1.
(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).
(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.
(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.
(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.
(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.
(* security property: the attacker does not learn the client-SSID *)
 query attacker : clientMac.
 query attacker : apMac.
 query attacker : seqctl.
 query attacker : SSID.
 query attacker : capRateData.
 query attacker : listenInterval.
 query attacker : assocId.
let Client =
 new seqctl;
 new capRateData;
 new listenInterval;
 (* Auth *)
 let authReqIv = hash(baseIv) in
 let eAuthReqMac = sencrypt(clientMac, encKey, authReqIv) in
 let eAuthReqApMac = sencrypt(apMac, encKey, authReqIv) in
 let eAuthReqSeqctl = sencrypt(seqctl, encKey, authReqIv) in
 new authParams;
 (* CLI->AP : Auth : (da=bssid, sa, seqctl, body(params)) *)
 out (net, (eAuthReqApMac, eAuthReqMac, eAuthReqSeqctl, authParams));
 (* AP->CLI : Ack : (da, seqctl) *)
 in (net, (eAuthReqAckMac, eAuthReqAckSeqctl));
 let authReqAckIv = hash(authReqIv) in
 let =clientMac = sdecrypt(eAuthReqAckMac, encKey, authReqAckIv) in
 let =seqctl = sdecrypt(eAuthReqAckSeqctl, encKey, authReqAckIv) in
 (* AP->CLI : Auth : (da, sa=bssid, seqctl, body(params)) *)
 in (net, (eAuthRespMac, eAuthRespApMac, eAuthRespSeqctl, authApParams));
 let authRespIv = hash(authReqAckIv) in
 let =apMac = sdecrypt(eAuthRespApMac, encKey, authRespIv) in
 let =clientMac = sdecrypt(eAuthRespMac, encKey, authRespIv) in
 let =seqctl = sdecrypt(eAuthRespSeqctl, encKey, authRespIv) in
 let authRespAckIv = hash(authRespIv) in
 let eAuthRespAckApMac = sencrypt(apMac, encKey, authRespAckIv) in
 let eAuthRespAckSeqctl = sencrypt(seqctl, encKey, authRespAckIv) in
 (* CLI->AP : Ack : (da, seqctl) *)
 out (net, (eAuthRespAckApMac, eAuthRespAckSeqctl));
 (* assoc *)
 let assocReqIv = hash(authRespAckIv) in
 let eAssocReqMac = sencrypt(clientMac, encKey, assocReqIv) in
 let eAssocReqApMac = sencrypt(apMac, encKey, assocReqIv) in
 let eAssocReqSeqctl = sencrypt(seqctl, encKey, assocReqIv) in
 let eAssocReqCapRateData = sencrypt(capRateData, encKey, assocReqIv) in
 let eAssocReqListenInterval = sencrypt(listenInterval, encKey, assocReqIv) in
 let eAssocReqSSID = sencrypt(SSID, encKey, assocReqIv) in
 (* CLI->AP : Assoc request : (da=bssid, sa, seqctl, body(cap info, listen interval, ssid, rates)) *)
 out (net, (eAssocReqApMac, eAssocReqMac, eAssocReqSeqctl, (eAssocReqCapRateData, eAssocReqListenInterval, eAssocReqSSID)));
 (* AP->CLI : Ack : (da, seqctl) *)
 in (net, (eAssocReqAckMac, eAssocReqAckSeqctl));
 let assocReqAckIv = hash(assocReqIv) in
 let =clientMac = sdecrypt(eAssocReqAckMac, encKey, assocReqAckIv) in
 let =seqctl = sdecrypt(eAssocReqAckSeqctl, encKey, assocReqAckIv) in

97

 (* AP->CLI : Assoc response : (da, sa=bssid, seqctl, body(cap info, status code, assoc id, supported rates)) *)
 in (net, (eAssocRespMac, eAssocRespApMac, eAssocRespSeqctl, (eAssocRespCapRateData, eAssocRespAssocId, statusCode)));
 let assocRespIv = hash(assocReqAckIv) in
 let =apMac = sdecrypt(eAssocRespApMac, encKey, assocRespIv) in
 let =clientMac = sdecrypt(eAssocRespMac, encKey, assocRespIv) in
 let =seqctl = sdecrypt(eAssocRespSeqctl, encKey, assocRespIv) in
 let =capRateData = sdecrypt(eAssocRespCapRateData, encKey, assocRespIv) in
 let assocId = sdecrypt(eAssocRespAssocId, encKey, assocRespIv) in
 let assocRespAckIv = hash(assocRespIv) in
 let eAssocRespAckApMac = sencrypt(apMac, encKey, assocRespAckIv) in
 let eAssocRespAckSeqctl = sencrypt(seqctl, encKey, assocRespAckIv) in
 (* CLI->AP : Ack : (da, seqctl) *)
 out (net, (eAssocRespAckApMac, eAssocRespAckSeqctl));
 new end.
let AccessPoint =
 new assocId;
 new statusCode;
 (* CLI->AP : Auth : (da=bssid, sa, seqctl, body(params)) *)
 in (net, (eAuthReqApMac, eAuthReqMac, eSeqctlAuthReq, authParams));
 let authReqIv = hash(baseIv) in
 let =apMac = sdecrypt(eAuthReqApMac, encKey, authReqIv) in
 let =clientMac = sdecrypt(eAuthReqMac, encKey, authReqIv) in
 let seqctl = sdecrypt(eSeqctlAuthReq, encKey, authReqIv) in
 let authReqAckIv = hash(authReqIv) in
 let eAuthReqAckMac = sencrypt(clientMac, encKey, authReqAckIv) in
 let eSeqctlAuthReqAck = sencrypt(seqctl, encKey, authReqAckIv) in
 (* AP->CLI : Ack : (da, seqctl) *)
 out (net, (eAuthReqAckMac, eSeqctlAuthReqAck));
 new authApParams;
 let authRespIv = hash(authReqAckIv) in
 let eAuthRespMac = sencrypt(clientMac, encKey, authRespIv) in
 let eAuthRespApMac = sencrypt(apMac, encKey, authRespIv) in
 let eSeqctlAuthResp = sencrypt(seqctl, encKey, authRespIv) in
 (* AP->CLI : Auth : (da, sa=bssid, seqctl, body(params)) *)
 out (net, (eAuthRespMac, eAuthRespApMac, eSeqctlAuthResp, authApParams));
 (* CLI->AP : Ack : (da, seqctl) *)
 in (net, (eAuthRespAckApMac, eSeqctlAuthRespAck));
 let authRespAckIv = hash(authRespIv) in
 let =apMac = sdecrypt(eAuthRespAckApMac, encKey, authRespAckIv) in
 let =seqctl = sdecrypt(eSeqctlAuthRespAck, encKey, authRespAckIv) in
 (* assoc *)
 (* CLI->AP : Assoc request : (da=bssid, sa, seqctl, body(cap info, listen interval, ssid, rates)) *)
 in (net, (eAssocReqApMac, eAssocReqMac, eAssocReqSeqctl, (eAssocReqCapRateData, eAssocReqListenInterval, eAssocReqSSID)));
 let assocReqIv = hash(authRespAckIv) in
 let =apMac = sdecrypt(eAssocReqApMac, encKey, assocReqIv) in
 let =clientMac = sdecrypt(eAssocReqMac, encKey, assocReqIv) in
 let =seqctl = sdecrypt(eAssocReqSeqctl, encKey, assocReqIv) in
 let capRateData = sdecrypt(eAssocReqCapRateData, encKey, assocReqIv) in
 let listenInterval = sdecrypt(eAssocReqListenInterval, encKey, assocReqIv) in
 let =SSID = sdecrypt(eAssocReqSSID, encKey, assocReqIv) in
 let assocReqAckIv = hash(assocReqIv) in
 let eAssocReqAckMac = sencrypt(clientMac, encKey, assocReqAckIv) in
 let eAssocReqAckSeqctl = sencrypt(seqctl, encKey, assocReqAckIv) in
 (* AP->CLI : Ack : (da, seqctl) *)
 out (net, (eAssocReqAckMac, eAssocReqAckSeqctl));
 let assocRespIv = hash(assocReqAckIv) in
 let eAssocRespMac = sencrypt(clientMac, encKey, assocRespIv) in
 let eAssocRespApMac = sencrypt(apMac, encKey, assocRespIv) in
 let eAssocRespSeqctl = sencrypt(seqctl, encKey, assocRespIv) in
 let eAssocRespCapRateData = sencrypt(capRateData, encKey, assocRespIv) in
 let eAssocRespAssocId = sencrypt(assocId, encKey, assocRespIv) in
 (* AP->CLI : Assoc response : (da, sa=bssid, seqctl, body(cap info, status code, assoc id, supported rates)) *)
 out (net, (eAssocRespMac, eAssocRespApMac, eAssocRespSeqctl, (eAssocRespCapRateData, eAssocRespAssocId, statusCode)));
 (* CLI->AP : Ack : (da, seqctl) *)
 in (net, (eAssocRespAckApMac, eAssocRespAckSeqctl));
 let assocRespAckIv = hash(assocRespIv) in
 let =apMac = sdecrypt(eAssocRespAckApMac, encKey, assocRespAckIv) in
 let =seqctl = sdecrypt(eAssocRespAckSeqctl, encKey, assocRespAckIv) in
 new end.
process
 new key;
 new SSID;
 new apMac;
 new clientMac;
 new dhKey;
 new baseIv;
 let PMK = pmkGen(SSID, key) in
 let hashedDhKey = hash(dhKey) in
 let encKey = sencrypt(hashedDhKey, PMK, baseIv) in
 (!Client | !AccessPoint)

98

Appendix 4: WPA key exchange Proverif implementation
(* Network *)
free net.
private free beaconNet.
(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.
(* Symmetric key cryptography *)
fun senc/2.
reduc sdec(senc(x,y),y) = x.
(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.
(* Hashing algorithm *)
fun hash/1.
(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).
(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.
(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.
(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.
(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.
(* security property: the attacker does not learn the client-SSID *)
 query attacker : clientMac.
 query attacker : apMac.
 query attacker : seqctl.
 query attacker : M1Data.
 query attacker : M2Data.
 query attacker : M3Data.
 query attacker : M4Data.
(* In this example i have abstracted all fields in the key frame away into a KeyData variable, *)
(* this is done because if one variable could be send without problems more can be send using the same method of encryption. *)
(* all data that is required to calculate keys is send in seperate variables *)
let Client =
 new sNonce;
 new M2Data;
 new M4Data;
 (* key exchange *)
 (* AP->CLI : M1 : (da, sa=bssid, seqctl, body(data, anonce) *)
 in (net, (eM1ApMac, eM1Mac, eM1Sqctl, (eDataM1, aNonce)));
 let M1Iv = hash(baseIv) in
 let =apMac = sdecrypt(eM1ApMac, encKey, M1Iv) in
 let =clientMac = sdecrypt(eM1Mac, encKey, M1Iv) in
 let seqctl = sdecrypt(eM1Sqctl, encKey, M1Iv) in
 let M1Data = sdecrypt(eDataM1, encKey, M1Iv) in
 let M1AckIv = hash(M1Iv) in
 let eM1AckApMac = sencrypt(apMac, encKey, M1AckIv) in
 let eM1AckSeqctl = sencrypt(seqctl, encKey, M1AckIv) in
 (* CLI->AP : Ack : (da, seqctl) *)
 out (net, (eM1AckApMac, eM1AckSeqctl));
 (* Calculate all keys *)
 let PTK = ptkGen(PMK, aNonce, sNonce, clientMac, apMac) in
 let kck = kckGen(PTK) in
 let kek = kekGen(PTK) in
 let tk = tkGen(PTK) in
 let M2Iv = hash(M1AckIv) in
 let eM2ApMac = sencrypt(apMac, encKey, M2Iv) in
 let eM2Mac = sencrypt(clientMac, encKey, M2Iv) in
 let eM2Seqctl = sencrypt(seqctl, encKey, M2Iv) in
 let eM2Data = sencrypt(M2Data, encKey, M2Iv) in
 let mM2data = (eM2Data, sNonce) in
 let M2mic = sign(mM2data, kck) in
 (* CLI->AP : M2 : (da=bssid, sa, seqctl, body(data, snonce, mic)) *)
 out (net, (eM2ApMac, eM2Mac, eM2Seqctl, (mM2data, M2mic)));
 (* AP->CLI : Ack : (da, seqctl) *)
 in (net, (eM2AckMac, eM2AckSqctl));
 let M2AckIv = hash(M2Iv) in
 let =clientMac = sdecrypt(eM2AckMac, encKey, M2AckIv) in
 let =seqctl = sdecrypt(eM2AckSqctl, encKey, M2AckIv) in

99

 (* AP->CLI : M3 : (da, sa=bssid, seqctl, body(data, anonce, mic, gtk)) *)
 in (net, (eM3Mac, eM3ApMac, eM3Seqctl, (mM3data, M3Mic)));
 let M3Iv = hash(M2AckIv) in
 let =apMac = sdecrypt(eM3ApMac, encKey, M3Iv) in
 let =clientMac = sdecrypt(eM3Mac, encKey, M3Iv) in
 let =seqctl = sdecrypt(eM3Seqctl, encKey, M3Iv) in
 let =M3Mic = sign(mM3data, kck) in
 let (eM3Data, =aNonce, encGtk) = mM3data in
 let M3Data = sdecrypt(eM3Data, encKey, M3Iv) in
 let gtk = sdec(encGtk, kek) in
 let M3AckIv = hash(M3Iv) in
 let eM3AckApMac = sencrypt(apMac, encKey, M3AckIv) in
 let eM3AckSeqctl = sencrypt(seqctl, encKey, M3AckIv) in
 (* CLI->AP : Ack : (da, seqctl) *)
 out (net, (eM3AckApMac, eM3AckSeqctl));
 let M4Iv = hash(M3AckIv) in
 let eM4ApMac = sencrypt(apMac, encKey, M4Iv) in
 let eM4Mac = sencrypt(clientMac, encKey, M4Iv) in
 let eM4Seqctl = sencrypt(seqctl, encKey, M4Iv) in
 let eM4Data = sencrypt(M4Data, encKey, M4Iv) in
 let M4mic = sign(eM4Data, kck) in
 (* CLI->AP : M4 : (da=bssid, sa, seqctl, body(data, mic)) *)
 out (net, (eM4ApMac, eM4Mac, eM4Seqctl, (eM4Data, M4mic)));
 (* AP->CLI : Ack : (da, seqctl) *)
 in (net, (eM4AckMac, eM4AckSqctl));
 let M4AckIv = hash(M4Iv) in
 let =clientMac = sdecrypt(eM4AckMac, encKey, M4AckIv) in
 let =seqctl = sdecrypt(eM4AckSqctl, encKey, M4AckIv) in
 new end.
let AccessPoint =
 new gtk;
 new M1Data;
 new M3Data;
 new seqctl;
 new aNonce;
 (* key exchange *)
 let M1Iv = hash(baseIv) in
 let eM1ApMac = sencrypt(apMac, encKey, M1Iv) in
 let eM1Mac = sencrypt(clientMac, encKey, M1Iv) in
 let eM1Sqctl = sencrypt(seqctl, encKey, M1Iv) in
 let KeyDataM1 = sencrypt(M1Data, encKey, M1Iv) in
 (* AP->CLI : M1 : (da, sa=bssid, seqctl, body(data, anonce) *)
 out (net, (eM1ApMac, eM1Mac, eM1Sqctl, (KeyDataM1, aNonce)));
 (* CLI->AP : Ack : (da, seqctl) *)
 in (net, (eM1AckApMac, eM1AckSeqctl));
 let M1AckIv = hash(M1Iv) in
 let =apMac = sdecrypt(eM1AckApMac, encKey, M1AckIv) in
 let =seqctl = sdecrypt(eM1AckSeqctl, encKey, M1AckIv) in
 (* CLI->AP : M2 : (da=bssid, sa, seqctl, body(data, snonce, mic)) *)
 in (net, (eM2ApMac, eM2Mac, eM2Seqctl, (mM2data, M2mic)));
 let M2Iv = hash(M1AckIv) in
 let =apMac = sdecrypt(eM2ApMac, encKey, M2Iv) in
 let =clientMac = sdecrypt(eM2Mac, encKey, M2Iv) in
 let =seqctl = sdecrypt(eM2Seqctl, encKey, M2Iv) in
 let (eM2Data, sNonce) = mM2data in
 let M2Data = sdecrypt(eM2Data, encKey, M2Iv) in
 (* Calculate all keys *)
 let PTK = ptkGen(PMK, aNonce, sNonce, clientMac, apMac) in
 let kck = kckGen(PTK) in
 let kek = kekGen(PTK) in
 let tk = tkGen(PTK) in
 (* Check m2 mic *)
 let =M2mic = sign(mM2data, kck) in
 let M2AckIv = hash(M2Iv) in
 let eM2AckMac = sencrypt(clientMac, encKey, M2AckIv) in
 let eM2AckSqctl = sencrypt(seqctl, encKey, M2AckIv) in
 (* AP->CLI : Ack : (da, seqctl) *)
 out (net, (eM2AckMac, eM2AckSqctl));
 let M3Iv = hash(M2AckIv) in
 let eM3ApMac = sencrypt(apMac, encKey, M3Iv) in
 let eM3Mac = sencrypt(clientMac, encKey, M3Iv) in
 let eM3Seqctl = sencrypt(seqctl, encKey, M3Iv) in
 let eM3Data = sencrypt(M3Data, encKey, M3Iv) in
 let encGtk = senc(gtk , kek) in
 let mM3data = (eM3Data, aNonce, encGtk) in
 let M3Mic = sign(mM3data, kck) in
 (* AP->CLI : M3 : (da, sa=bssid, seqctl, body(data, anonce, mic, gtk)) *)
 out (net, (eM3Mac, eM3ApMac, eM3Seqctl, (mM3data, M3Mic)));
 (* CLI->AP : Ack : (da, seqctl) *)
 in (net, (eM3AckApMac, eM3AckSeqctl));
 let M3AckIv = hash(M3Iv) in
 let =apMac = sdecrypt(eM3AckApMac, encKey, M3AckIv) in

100

 let =seqctl = sdecrypt(eM3AckSeqctl, encKey, M3AckIv) in
 (* CLI->AP : M4 : (da=bssid, sa, seqctl, body(data, mic)) *)
 in (net, (eM4ApMac, eM4Mac, eM4Seqctl, (eM4Data, M4mic)));
 let M4Iv = hash(M3AckIv) in
 let =apMac = sdecrypt(eM4ApMac, encKey, M4Iv) in
 let =clientMac = sdecrypt(eM4Mac, encKey, M4Iv) in
 let =seqctl = sdecrypt(eM4Seqctl, encKey, M4Iv) in
 let M4Data = sdecrypt(eM4Data, encKey, M4Iv) in
 let =M4mic = sign(eM4Data, kck) in
 (* AP->CLI : Ack : (da, seqctl) *)
 let M4AckIv = hash(M4Iv) in
 let eM4AckMac = sencrypt(clientMac, encKey, M4AckIv) in
 let eM4AckSqctl = sencrypt(seqctl, encKey, M4AckIv) in
 out (net, (eM4AckMac, eM4AckSqctl));
 new end.
process
 new key;
 new SSID;
 new apMac;
 new clientMac;
 new dhKey;
 new baseIv;
 let PMK = pmkGen(SSID, key) in
 let hashedDhKey = hash(dhKey) in
 let encKey = sencrypt(hashedDhKey, PMK, baseIv) in
 (!Client | !AccessPoint)

101

Appendix 5: Multicast data transmission Proverif implementation
(* Network *)
free net.
private free beaconNet.

(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.

(* Symmetric key cryptography *)
fun senc/2.
reduc sdec(senc(x,y),y) = x.

(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.

(* Hashing algorithm *)
fun hash/1.

(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).

(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.

(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.

(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.

(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.

(* security property: the attacker does not learn the client-SSID *)
 query attacker : client1Mac.
 query attacker : client2Mac.
 query attacker : apMac.
 query attacker : seqctl.
 query attacker : keyId.
 query attacker : packetNumber.

let Client1 =
 (* Content of CCMP header *)
 new keyId;
 new packetNumber;

 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (beaconNet, (=apMac, seqctl, (timestamp, dhPubAP, =SSID, beaconData)));

 (* CLI->AP : Data
 (
 framecontrol, sa, bssid, seqControl,
 body(
 CCMPheader(KeyId, PacketNumber),
 encrypted((data, mic), TK)
)
) *)
 let dataIv = hash(timestamp) in
 let eData1Mac = sencrypt(client1Mac, gtk, dataIv) in
 let eData2Mac = sencrypt(client2Mac, gtk, dataIv) in
 let eDataSeqctl = sencrypt(seqctl, gtk, dataIv) in

 new framecontrol;
 new dataPacket;
 let nonce = (packetNumber, client1Mac) in
 let aad = (framecontrol, client2Mac, client1Mac, seqctl) in
 let mic = sign((tk, nonce, aad, dataPacket), kck) in
 let CCMPHeader = sencrypt((keyId, packetNumber), gtk, dataIv) in
 let body = (CCMPHeader, senc((dataPacket, mic), tk)) in
 out (net, (framecontrol, eData1Mac, eData2Mac, eDataSeqctl, body));

102

 in (net, (eClient1Mac, eDataAckSeqctl));
 let dataAckIv = hash(dataIv) in
 let =client1Mac = sdecrypt(eClient1Mac, gtk, dataAckIv) in
 let =seqctl = sdecrypt(eDataAckSeqctl, gtk, dataAckIv) in
 new end.
let Client2 =
 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (beaconNet, (=apMac, seqctl, (timestamp, dhPubAP, =SSID, beaconData)));
 in (net, (framecontrol, eData1Mac, eData2Mac, eDataSeqctl, body));
 let dataIv = hash(timestamp) in
 let =client1Mac = sdecrypt(eData1Mac, gtk, dataIv) in
 let =client2Mac = sdecrypt(eData2Mac, gtk, dataIv) in
 let =seqctl = sdecrypt(eDataSeqctl, gtk, dataIv) in
 let (CCMPHeader, rData) = body in
 let (keyId, packetNumber) = sdecrypt(CCMPHeader, gtk, dataIv) in
 let (dataPacket, mic) = sdec(rData, tk) in
 let nonce = (packetNumber, client1Mac) in
 let aad = (framecontrol, client2Mac, client1Mac, seqctl) in
 let micCheck = sign((tk, nonce, aad, dataPacket), kck) in
 if mic = micCheck then
 (* CLI->AP : Data (framecontrol, sa, bssid, seqControl, body(CCMPheader(KeyId, PacketNumber), encrypted((data, mic), TK))) *)
 let ackIv = hash(timestamp) in
 let eClient1Mac = sencrypt(eData1Mac, gtk, dataIv) in
 let eDataAckSeqctl = sencrypt(seqctl, gtk, dataIv) in
 out (net, (eClient1Mac, eDataAckSeqctl));
 new end.
let AccessPoint =
 new seqctl;
 new beaconData;
 new timestamp;
 new dhPrivAP;
 let dhPubAP = g(dhPrivAP) in
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 out (beaconNet, (apMac, seqctl, (timestamp, dhPubAP, SSID, beaconData)));
 new end.
process
 new key;
 new SSID;
 new apMac;
 new client1Mac;
 new client2Mac;
 new dhKey;
 new aNonce;
 new sNonce;
 new gtk;
 let PMK = pmkGen(SSID, key) in
 let PTK = ptkGen(PMK, aNonce, sNonce, client1Mac, apMac) in
 let kck = kckGen(PTK) in
 let kek = kekGen(PTK) in
 let tk = tkGen(PTK) in
 (!Client1 | !Client2 | !AccessPoint)

103

Appendix 6: Beacon Proverif implementation
(* Network *)
free net.
(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.
(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.
(* Hashing algorithm *)
fun hash/1.
(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).
(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.
(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.
(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.
(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.
(* security property: the attacker does not learn the client-SSID *)
 query attacker : ClientBitA.
 query attacker : ClientBitB.
let ClientA =
 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* Furthermore is the TIM partly encrypted with each clients key depending if they support it or not *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (net, (=apMac, seqctl, (timestamp, dhPubAP, =SSID, beaconData, TIM)));
 let (eClientBitA, ClientBitB) = TIM in
 let beaconIv = hash(timestamp) in
 let ClientBitA = sdecrypt(eClientBitA, encKeyA, beaconIv) in
 new end.
let ClientB =
 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* Furthermore is the TIM partly encrypted with each clients key depending if they support it or not *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (net, (=apMac, seqctl, (timestamp, dhPubAP, =SSID, beaconData, TIM)));
 let (eClientBitA, ClientBitB) = TIM in
 new end.
let AccessPoint =
 new gtk;
 new beaconData;
 new seqctl;
 new dhPrivAP;
 let dhPubAP = g(dhPrivAP) in
 new timestamp;
 (* Bits that indicate if a client has a message or not *)
 new ClientBitA;
 new ClientBitB;
 let beaconIv = hash(timestamp) in
 let eClientBitA = sencrypt(ClientBitA, encKeyA, beaconIv) in
 let TIM = (eClientBitA, ClientBitB) in
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 out (net, (apMac, seqctl, (timestamp, dhPubAP, SSID, beaconData, TIM)));
 new end.
process
 new key; new SSID; new apMac; new clientMac; new dhKeyA;
 new dhKeyB; new baseIv; new aNonce; new sNonce;
 let PMK = pmkGen(SSID, key) in
 let hashedDhKeyA = hash(dhKeyA) in
 let encKeyA = sencrypt(hashedDhKeyA, PMK, baseIv) in
 let hashedDhKeyB = hash(dhKeyB) in
 let encKeyB = sencrypt(hashedDhKeyB, PMK, baseIv) in
 let PTK = ptkGen(PMK, aNonce, sNonce, clientMac, apMac) in
 let kck = kckGen(PTK) in
 let kek = kekGen(PTK) in
 let tk = tkGen(PTK) in
 (!ClientA | !AccessPoint)

104

Appendix 7: Power management Proverif implementation
(* Network *)
free net.
private free beaconNet.
(* Symmetric key cryptography with IV *)
fun sencrypt/3.
reduc sdecrypt(sencrypt(x,y,z),y,z) = x.
(* Symmetric key cryptography *)
fun senc/2.
reduc sdec(senc(x,y),y) = x.
(* A-Symmetric key cryptography *)
fun pk/1.
fun aencrypt/2.
reduc adecrypt(aencrypt(x,pk(y)),y) = x.
(* Hashing algorithm *)
fun hash/1.
(* Diffie-Hellman *)
fun f/2.
fun g/1.
equation f(x,g(y)) = f(y,g(x)).
(* Signing *)
fun sign/2.
reduc checksign(sign(m, sk), pk(sk)) = m.
(* Generate PMK(256bits) from ssid & key *)
fun pmkGen/2.
(* Generate PTK from PMK, ANonce, SNonce, AAid(ap ssid), SPAid(client ssid) *)
fun ptkGen/5.
(* Derive the other keys from the 512bits PTK: 4x128bits: EAPOL-KCK, EAPOL-KEK, TKIP-TK, TKIP-MIC key *)
(* Derive the other keys from the 384bits PTK: 3x128bits: EAPOL-KCK, EAPOL-KEK, CCMP-TK *)
fun kckGen/1.
fun kekGen/1.
fun micGen/1.
fun tkGen/1.
(* security property: the attacker does not learn the client-SSID *)
 query attacker : clientMac.
 query attacker : apMac.
 query attacker : seqctl.
 query attacker : SSID.
 query attacker : beaconData.
 query attacker : assocId.
 query attacker : clientBit.
 query attacker : pwrmgmt.
 query attacker : moredata.
let Client =
 new pwrmgmt;
 new moredata;
 (* AP beacon, new element it included: the public key of the AP for the dh exchange *)
 (* Furthermore is the TIM partly encrypted with each clients key depending if they support it or not *)
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 in (beaconNet, (=apMac, seqctl, (timestamp, dhPubAP, =SSID, beaconData, TIM)));
 let (eClientBit) = TIM in
 let beaconIv = hash(timestamp) in
 let clientBit = sdecrypt(eClientBit, encKey, beaconIv) in
 (* Request buffered frame from ap with PS-Poll frame encapsulated in data frame *)
 (* CLI->AP : Data : body(AID) *)
 (* Content of CCMP header *)
 new keyId;
 new packetNumber;
 (* CLI->AP : Data (framecontrol, da, sa, bssid, seqControl, body(CCMPheader(KeyId, PacketNumber), encrypted((data, mic), TK))) *)
 let dataReqIv = hash(baseIv) in
 let eDataMac = sencrypt(clientMac, encKey, dataReqIv) in
 let eDataApMac = sencrypt(apMac, encKey, dataReqIv) in
 let eDataSeqctl = sencrypt(seqctl, encKey, dataReqIv) in
 new framecontrolData;
 let ePwrmgmt = sencrypt(pwrmgmt, encKey, dataReqIv) in
 let eMoredata = sencrypt(moredata, encKey, dataReqIv) in
 let framecontrol = (framecontrolData, ePwrmgmt, eMoredata) in
 let dataReqPacket = assocId in
 let nonce = (packetNumber, clientMac) in
 let aad = (framecontrol, apMac, clientMac, seqctl) in
 let mic = sign((tk, nonce, aad, dataReqPacket), kck) in
 let CCMPHeader = sencrypt((keyId, packetNumber), encKey, dataReqIv) in
 let body = (CCMPHeader, senc((dataReqPacket, mic), tk)) in
 out (net, (framecontrol, eDataApMac, eDataMac, eDataSeqctl, body));
 in (net, (framecontrolResp, eDataRespApMac, eDataRespMac, eDataRespSeqctl, bodyResp));
 let dataRespIv = hash(dataReqIv) in
 let =apMac = sdecrypt(eDataRespApMac, encKey, dataRespIv) in
 let =clientMac = sdecrypt(eDataRespMac, encKey, dataRespIv) in
 let =seqctl = sdecrypt(eDataRespSeqctl, encKey, dataRespIv) in
 let (=framecontrolData, ePwrmgmtResp, eMoredataResp) = framecontrol in
 let =pwrmgmt = sdecrypt(ePwrmgmtResp, encKey, dataRespIv) in

105

 let =moredata = sdecrypt(eMoredataResp, encKey, dataRespIv) in
 let (CCMPHeaderResp, rDataResp) = bodyResp in
 let (keyIdResp, packetNumberResp) = sdecrypt(CCMPHeader, encKey, dataRespIv) in
 let (dataRespPacket, micResp) = sdec(rDataResp, tk) in
 let nonceResp = (packetNumberResp, clientMac) in
 let aadResp = (framecontrolResp, apMac, clientMac, seqctl) in
 let micCheckResp = sign((tk, nonceResp, aadResp, dataRespPacket), kck) in
 if micResp = micCheckResp then
 let dataAckIv = hash(dataRespIv) in
 let dataAckMac = sencrypt(clientMac, encKey, dataRespIv) in
 let dataAckSeqctl = sencrypt(seqctl, encKey, dataRespIv) in
 (* AP->CLI : Ack : (da, seqctl) *)
 out (net, (dataAckMac, dataAckSeqctl));
 new end.
let AccessPoint =
 new gtk;
 new beaconData;
 new seqctl;
 new dhPrivAP;
 let dhPubAP = g(dhPrivAP) in
 new timestamp;
 (* Bits that indicate if a client has a message or not *)
 new clientBit;
 let beaconIv = hash(timestamp) in
 let eClientBit = sencrypt(clientBit, encKey, beaconIv) in
 let TIM = (eClientBit) in
 (* AP->CLI : beacon : sa=bssid, seqctl, body(ssid + beaconData(Timestamp, Beacon interval, cap info, SSID, FH, DS, CF, IBSS, TIM)) *)
 out (beaconNet, (apMac, seqctl, (timestamp, dhPubAP, SSID, beaconData, TIM)));
 in (net, (framecontrol, eDataApMac, eDataMac, eDataSeqctl, body));
 let dataReqIv = hash(baseIv) in
 let =apMac = sdecrypt(eDataApMac, encKey, dataReqIv) in
 let =clientMac = sdecrypt(eDataMac, encKey, dataReqIv) in
 let =seqctl = sdecrypt(eDataSeqctl, encKey, dataReqIv) in
 let (framecontrolData, ePwrmgmt, eMoredata) = framecontrol in
 let pwrmgmt = sdecrypt(ePwrmgmt, encKey, dataReqIv) in
 let moredata = sdecrypt(eMoredata, encKey, dataReqIv) in
 let (CCMPHeader, rData) = body in
 let (keyId, packetNumber) = sdecrypt(CCMPHeader, encKey, dataReqIv) in
 let (dataReqPacket, mic) = sdec(rData, tk) in
 let nonce = (packetNumber, clientMac) in
 let aad = (framecontrol, apMac, clientMac, seqctl) in
 let micCheck = sign((tk, nonce, aad, dataReqPacket), kck) in
 if mic = micCheck then
 if dataReqPacket = assocId then
 (* Content of CCMP header *)
 new keyIdResp;
 new packetNumberResp;
 (* CLI->AP : Data (framecontrol, da, sa, bssid, seqControl, body(CCMPheader(KeyId, PacketNumber), encrypted((data, mic), TK))) *)
 let dataRespIv = hash(dataReqIv) in
 let eDataRespMac = sencrypt(clientMac, encKey, dataRespIv) in
 let eDataRespApMac = sencrypt(apMac, encKey, dataRespIv) in
 let eDataRespSeqctl = sencrypt(seqctl, encKey, dataRespIv) in
 let ePwrmgmtResp = sencrypt(pwrmgmt, encKey, dataRespIv) in
 let eMoredataResp = sencrypt(moredata, encKey, dataRespIv) in
 let framecontrol = (framecontrolData, ePwrmgmtResp, eMoredataResp) in
 new dataPacketResp;
 let nonceResp = (packetNumberResp, clientMac) in
 let aadResp = (framecontrolResp, apMac, clientMac, seqctl) in
 let micResp = sign((tk, nonceResp, aadResp, dataPacketResp), kck) in
 let CCMPHeaderResp = sencrypt((keyId, packetNumberResp), encKey, dataRespIv) in
 let bodyResp = (CCMPHeader, senc((dataPacketResp, mic), tk)) in
 out (net, (framecontrolResp, eDataRespApMac, eDataRespMac, eDataRespSeqctl, bodyResp));
 (* CLI->AP : Ack : (da, seqctl) *)
 in (net, (eDataAckApMac, eDataAckSqlctl));
 let dataAckIv = hash(dataRespIv) in
 let =apMac = sdecrypt(eDataAckApMac, encKey, dataAckIv) in
 let =seqctl = sdecrypt(eDataAckSqlctl, encKey, dataAckIv) in
 new end.
process
 new key; new SSID; new apMac; new clientMac; new dhKey;
 new baseIv; new aNonce; new sNonce; new assocId;
 let PMK = pmkGen(SSID, key) in
 let hashedDhKey = hash(dhKey) in
 let encKey = sencrypt(hashedDhKey, PMK, baseIv) in
 let PTK = ptkGen(PMK, aNonce, sNonce, clientMac, apMac) in
 let kck = kckGen(PTK) in
 let kek = kekGen(PTK) in
 let tk = tkGen(PTK) in
 (!Client | !AccessPoint)

