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Abstract—3D face recognition is becoming a viable alternative
to traditional 2D face recognition. It is more robust in terms of
changed lighting and rotation of the face. The RealSense SR300 is
a depth camera which makes use of structured light. It acquires
the depth data using an infrared projector and camera. This
paper presents a method to create a 3D point cloud of a face
using this camera.

Several settings in the software environment are treated to
obtain an image with the best quality. Measurements are done
on the depth resolution and the per-pixel depth deviation. A Face
verification algorithm is used to assess the quality of the generated
point cloud and determine a relation between False Accept Rate
and Verification Rate using two depth images of 22 subjects. The
effects of lighting conditions and the distance between a subject
and the camera are tested.

The depth resolution is very dependent on the distance
between subject and camera and is optimal at 25 cm. The per-
pixel depth deviation is deemed too small to have a large impact at
close distances. At larger distances averaging of multiple frames is
suggested. Using the verification algorithm, a VR of 0.991 is found
at FAR=0. At FAR=0.05 the VR = 1. The camera performs very
poorly in outside conditions but can achieve acceptable results
when increasing the projector brightness. Inside, the best results
are achieved with a lower projector brightness. The maximum
distance between the camera and the subject is 40 cm. Beyond this
length, the face model becomes unreliable in terms of verification.

This method enables the RealSense SR300 to be used as a re-
liable, cheap face recognition system for any indoor applications.
As this camera comes built into various laptops and tablets, it
can be used for various security applications. Several potential
recommendations for further research are given to increase the
performance of the camera.

I. INTRODUCTION

3D face recognition is gaining attention as a reliable way
of identification. It offers more robustness against factors like
varying lightning and head rotation than traditional 2D facial
recognition. Current methods to create the 3D facial scans
are expensive or require the camera to be moved around the
subject. This project aims to condition a relatively cheap depth
camera, the RealSense SR300 (Figure 1), to create images
of sufficient quality to use in a verification algorithm [1][2].
The RealSense SR300 uses structured light, projected by an
infrared projector and captured by an infrared camera to deter-
mine depth. This paper will give insight in the measurements
and experiments done to find optimal settings, conditions and
limitations of this system.

Fig. 1: RealSense SR300 camera [3]

II. THEORY AND RELATED RESEARCH

A. Structured Light

The depth system of the RealSense SR300 makes use of
structured light. This means it projects patterns on the subject
and calculates depth based on the deformation of these patterns
by the subject (Figure 2). Structured light has an advantage
compared to traditional stereo 3D, as it can detect depth on
surfaces with little to no texture. However, range cameras using
structured light interfere with each other when they use the
same projection wavelength, which means they don’t work
together very well. There are several methods of structured
light which have their advantages and disadvantages[4]. The
RealSense SR300 uses sequential projection binary encoding.
Multiple vertical line patterns are projected in sequence, as
shown in Figure 5. In these patterns, the lighter lines represent
a 1 and the dark space between the lines a 0. In this manner,
every horizontal position gets a binary value assigned to it by
the multiple frames. An example of this is shown in Figure
3. The camera captures this pattern, which is deformed by the
subject. The projected binary values are detected in the images
made by the camera. The angle of projection of each binary
value is known, and the angle of each binary value in the
images of the camera can also be determined. Figure 4 shows
how geometric triangulation can determine the intersection
between these two angles (θ1, θ2) to determine the depth of
point P.

B. Fixed Far Vote Fusion

The registration and identification algorithm used in this
paper, FFVF (Fixed Far Vote Fusion)[1][2], was created by
Luuk Spreeuwers. FFVF accepts 3D point clouds of faces as



Fig. 2: Face with an IR light pattern projected on it

Fig. 3: Binary pattern projected in lines [4]

inputs and calculates a matching score between them. FFVF
registers all face models to an intrinsic coordinate frame. A
2D range image is then created from the front perspective of
a registered face model. The image is divided into several
regions using masks, which each use PCA-LDA classifiers
to compare the section against the same section of another
face. A score between 0 and 60 is then determined by using
majority voting over all the regions. The system returns higher
scores for more similar faces. The algorithm has achieved
a verification rate of 99.3% on the Face Recognition Grand
Challenge (FRGC) v2 data at false accept rate = 0.1%, and an
identification rate of 99.4%. This level of precision means it
can be used as an accurate measurement of the quality of the
point clouds generated by the RealSense SR300.

III. CAMERA

A. Depth acquisition method

The RealSense SR300 uses 10 sequential binary line pat-
terns per frame to create its depth image. It makes use of Gray
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Fig. 4: Geometric representation of the depth acquisition
triangulation from a top perspective.

code, which means the binary code of a line only differs with
one bit from the adjacent lines[5]. This has an advantage over
the standard binary encoding; when a bit of a line is misread,
the value has a higher chance to be the same as that of a
nearby line. This means the error of this line will be lower
since it’s projected at a closer location. The used gray code is
shown in Figure 6. The range image has a resolution of 640
by 480 pixels and a frame rate of up to 60 frames per second,
although converting the depth data to a 3D point cloud at this
frame rate is computationally intensive. The official operating
range lies between 20 and 150cm.

Fig. 6: Binary pattern using with Grey code

B. Development and code

The RealSense SDK can be used in the languages C++
and C#. The latter is used since it handles a variety of things
like garbage collection and allows for an easy user interface,
while the development can be focused on determining the right
settings. The relevant parts of the code are explained below.

//Setup code, single run
sm = PXCMSenseManager.CreateInstance( );
sm.EnableStream(

PXCMCapture.StreamType.STREAM_TYPE_DEPTH,
640, 480, 60 );

device =
sm.QueryCaptureManager().QueryDevice();

projection = device.CreateProjection();

The code above is run once to start the data stream. It creates a
SenseManager object, which is an interface to access functions
of the RealSense SDK. A depth stream is enabled at the max
resolution of 640x480 at 60fps. Then the device is queried,
which gives, among others, the intrinsic parameters of camera.
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Fig. 5: IR photos of the projected patterns on a planar surface. The line frequency of the pattern changes, all images have the
same scale

These parameters can be used to make a projection, which
allows mapping depth values info to world coordinates, which
is the final goal.

//Code run on every frame
sample.depth.AcquireAccess(

PXCMImage.Access.ACCESS_READ,
PXCMImage.PixelFormat.PIXEL_FORMAT_RGB32,
out _depthImgData );

// Code run on user request
projection.QueryVertices(sample.depth,

vertices);
Thread thread = new Thread(() =>

WriteWRL(verticesCopy));

This code is run on every frame. It requests access to the
depth data in a RGB format to render to a window for the
user. (Figure 7)

On request of the user, the last two lines of code are
executed, in which the projection is used to convert the depth
image to real world coordinates. The vertices are then exported
to a .wrl file, a common file format for 3D models. This is done
in a new thread since it takes more than 1/60 of a second and
would delay the streaming process. A skinned and rendered
example of how the 3D model looks like is shown in Figure
8.

C. Settings

The RealSense SDK comes with various options to tweak
the system to perform optimally for various situations. Several
tests were done on multiple configurations, and the following
choices have been made:

1) Filter Option: The filter option determines the filter
applied to the image. The setting has eight options: ’skeleton’,
’raw’ and smoothing options, optimized for several distances
to the subject. Both ’skeleton’ and ’raw’ provide a very rough
model which delivers very poor results. Of the range options,
the ’Very close range’ setting is chosen. This provides very
low smoothing and low noise.

2) Projector Power: The projector power sets the strength
of the laser projector used to create the light patterns. This
setting has three options: On, Off and Auto. Setting the power
to ’On’ sets the power to the maximum value, which leads
to overexposure of the camera at close distances, resulting in
artifacts on the face in the form of vertical lines. Figure 8

Fig. 7: Depth image of a face. Lighter parts are closer to the
camera

shows a small-scale example of this artifact. The ’Auto’ setting
varies the power based on the distance to the subject, which
results in higher quality images In an indoor environment the
’Auto’ setting performs a lot better, as shown in Table I.
However, when outdoors or close to a large window, the ’Auto’
setting is not bright enough, and better results are achieved
with the ’On’ setting.

3) Motion Range: The motion range option determines the
exposure time of the camera. it accepts an input value between
0 and 100, with 0 being the shortest exposure time and 100
being the longest. By setting the projector power to ’Auto’ this
value is regulated automatically by the SDK. When setting the
projector power to ’On’, the Motion Range option should be
set to 0 to reduce the overexposure to the largest extent.

4) Confidence: The confidence sets the threshold for which
points are reliable enough to use. A value between 0-15
determines whether almost all points or only the most reliable
points are passed through. The default of 3 is used, as it accepts
the whole face of the subject and rejects most background
elements.



Fig. 8: Skinned and rendered model of a 3D point cloud

It’s important to note this is the current setup in version
’2016 R2’. This is subject to change in further versions of the
SDK.

IV. EXPERIMENTS AND RESULTS

Several measurements were done to determine under which
circumstances the camera performs the best. A measurement
for resolution was done to find the smallest step in depth the
camera can reliably measure. The per pixel depth deviation was
measured to find the consistency of each pixel. An experiment
on real faces was used to find a relation between threshold
scores, verification rate and false accept rate. Two additional
tests give an indication of the effect of external light and
distance between subject and camera. As different experiments
did not take place at the same location or time of day,
values obtained should not be compared between different
experiments.

A. Resolution

The performance of the system is heavily influenced by
its resolution. This is the smallest step in depth the system is
able to detect. The theoretical limit of the system’s resolution
is 0.125mm, due to the way the depth data is stored. An
experiment is set up to test the resolution of the system. A
range image is made of a vertical plane at several distances.
A formula for the plane is calculated using a ’least squares’
fitting method with all the vertices of the depth image. Then
the difference between the calculated plane and the position of
the corresponding points in the depth direction is taken. This
gives the depth error in every pixel. A horizontal differential is
taken of the depth error, which results in a matrix with relative
errors. If this relative error is greater than half the distance in
depth between two points, the distance becomes indiscernible.
This means that resolution R = 2∆r, where ∆r is the relative

error. The average of the absolute resolution of every pixel has
been plotted against distance in Figure 9. The resolution at 150
mm is significantly higher in value due to large peaks in depth
in the middle of the image, caused by the close distance.

Fig. 9: Average resolution plotted against the distance to a
subject

B. Pixel depth deviation

To assess whether each pixel in the depth image is con-
sistent enough to provide reliable data without being averaged
or filtered otherwise, measurements are done on the Average
Absolute Deviation (AAD) (see Equation 1) of each individual
pixel at several distances from a horizontal plane. Figure 10
shows a clear increase of deviation for larger distances between
the camera and the plane. This means the camera is more
reliable at close distances.

AAD =
1

n

∞∑
n=1

|xi −mean(X)| (1)

Where n is the amount of samples and xi is a sample of the
set X.

C. Effects of external light

A test was performed, where sets of 10 face images were
made of a single subject with the projector at ’On’ and ’Auto’
brightness, in an indoor and outdoor location. All images
were made at a distance of around 30 cm. Every set of 10
images was compared with itself in the FFVF algorithm, which
produced an average score, shown in Table I.

Auto power Full power
Inside 19.1 12.8

Outside 0.8 4.5

TABLE I: Average score of auto comparison of 10 images in
outside and inside conditions with the projector at full power
and auto power



Fig. 10: Average over all pixels of the Average Absolute
Deviation of each pixel

D. Distance of subject

An experiment was done with sets of 10 images of the
same subject at 20, 30, 40 and 50 cm from the camera. Each
set was auto compared in the FFVF algorithm. The averages
of the score of these images are shown in Table II. This clearly
shows the score to rise at closer distances.

Distance (cm) 20 30 40 50
Average Score 54.7 25.3 13.6 1.1

TABLE II: Average score of auto comparison of 10 images at
several distances to the subject

V. FACE COMPARISON

To test the 3D point cloud generated by the camera, range
images are made of 22 subjects. Each subject has 2 3D-scans
made with the face in different positions on screen with a
very slight change in head orientation, at approximately 30 cm
distance to the camera. The 44 generated point clouds are split
into two groups of 22, corresponding to the first and second
image made of every subject. Each point cloud of the first
group is compared to each one of the second group using the
FFVF algorithm. This produces a 22 by 22 matrix of scores, in
which the diagonal is the score of 2 point clouds of the same
subject. A 5 by 5 sample of this matrix is shown in Table III.
Now a fitting threshold score can be determined which gives a
combination of FAR (False Accept Rate) and VR (Verification
Rate), which is 1-False Reject Rate. Figure 11 shows the
FAR versus the Verification Rate. The relevant threshold scores
are labeled in the image. The comparison score between two
different subjects only gave a nonzero answer in 3 cases, giving
1, 1 and 2 instead. Except for 1 comparison, all comparisons
of two point clouds of the same user gave a score of 4 or
higher. The system, therefore, reaches a VR of 99,1% with an
FAR of 0%.

Subj1
Img1

Subj2
Img1

Subj3
Img1

Subj4
Img1

Subj5
Img1

Subj1 Img2 5 0 0 0 0
Subj2 Img2 0 56 0 0 0
Subj3 Img2 0 0 11 0 0
Subj4 Img2 0 0 0 15 0
Subj5 Img2 0 0 0 0 39

TABLE III: Sample of face comparison matrix

Fig. 11: False Accept Rate vs Verification Rate with Threshold
Score (TS) labeled at relevant points

VI. DISCUSSION

The goal of this project was to create 3D point clouds with
the RealSense which have sufficient quality to use for 3D face
recognition. The results of the experiments show that this is
possible. However, quite some requirements must be met to
have a consistently reliable result.

The degradation of the depth quality is very noticeable
when close to bright IR light sources, like a window. The
system has trouble detecting the binary values because the
contrast of its projection is reduced due to the external light
source. Setting the Projector Power setting to ’On’ instead of
’Auto’ improves the image in this case due to the increased
brightness of the projected pattern. The downside to this is the
increase in the aforementioned artifacts. While the range of
the RealSense camera is up to 2 meters, the subject should be
within 40 cm to get a reliable result. This means the camera
can only be used by a user who steps right in front of it.

The FFVF score for comparison between different faces
is 0 in the great majority of cases. This means the threshold
score can be set very low, without having a high FAR. The
average pixel depth deviation is shown to be quite low at the
distances at which the camera works well. At further distances
it might increase the performance to use averages of multiple
range images.

The experiments done with real subjects have their limi-
tations. The sample size is very small, which means the FAR



and VR have a large margin of error. The tests for distance
and external light impact would ideally have been done with
multiple test subjects, but time did not allow for this.

VII. CONCLUSION AND RECOMMENDATIONS

Based on the obtained results, this camera is able to func-
tion as a reliable verification system in an indoor environment.
In this, it would be one of the first cheap face recognition
systems for personal use. The RealSense SR300 is the current
flagship of the RealSense product line and comes built-in with
some of the newest laptops and tablets on the market, which
means it can be used as a security feature for applications.
However, many improvements can still be made increase the
performance of the system.

To increase the performance at farther distances, averaging
of multiple point clouds can be an outcome. The registration
algorithm of FFVF can be used to overlay the multiple faces
over each other, increasing the resolution. Since the frame rate
of the range data is much higher than is required, there is a
lot of headroom for averaging.

Furthermore, the RealSense has both a depth and a color
camera. The latter can be used for 2D face recognition to
increase the reliability of the system. The software package
contains functions to map the color image to the point cloud
of the depth system. Further research might enable the creation
of 3D point clouds with color information. To use this model
the FFVF algorithm would have to be altered.

The quality of the existing system can also be increased by
removing the vertical ridges of the face models, belonging to
the structured light of the projector. These lines are stronger
when using a higher projector brightness and when the subject
is closer to the camera. This suggests the lines are caused
by overexposure of the camera. Removing these lines is not
straightforward, since they have a different position depending
on the depth. However, the removal of these lines would
greatly increase the performance of the system.

REFERENCES

[1] Luuk Spreeuwers. “Fast and Accurate 3D Face Recogni-
tion”. In: International Journal of Computer Vision 93.3
(2011), pp. 389–414. ISSN: 1573-1405. URL: http://dx.
doi.org/10.1007/s11263-011-0426-2.

[2] Luuk Spreeuwers. “Breaking the 99% barrier: optimi-
sation of 3D face recognition”. In: IET biometrics 4.3
(2015), pp. 169–178. URL: http://doc.utwente.nl/95850/.

[3] Intel. “Introducing the Intel RealSense Camera SR300”.
In: (2016). URL: https://software.intel.com/en-us/articles/
introducing-the-intel-realsense-camera-sr300.

[4] Jason Geng. “Structured-light 3D surface imaging: a
tutorial”. In: Adv. Opt. Photon. 3.2 (2011), pp. 128–160.
DOI: 10.1364/AOP.3.000128. URL: http://aop.osa.org/
abstract.cfm?URI=aop-3-2-128.

[5] P. Zanuttigh et al. “Time-of-Flight and Structured Light
Depth Cameras”. In: (2016), pp. 43–78. DOI: 10.1007/
978-3-319-30973-6 2.


