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Abstract

The CoVadem initiative is about cooperative water depth measurement by and for inland skippers. It is a new
way in the determination and optimization of vessel routes for the inland shipping sector. A little number of
vessels (approximately 75 vessels) have currently joined the initiative and this brings along some obstacles.
The vessels do not sail at the exact same location at the exact same moment in time on the river. Therefore,
the data from all vessel tracks within a week are combined in grid cells over the domain of the navigation
channel of the river. Because of the timescale the morphological processes of a river must be considered.
These morphological processes have influence on the grid cell size and the water depth value of this grid cell.
In this research an optimal uniform grid size and grid bed level value is investigated by validating this with
Multibeam bed level data. Furthermore, a little study is done on the applicability of the validated grid cell size
and bed level value to river sections with less data. The hypothesis of an optimal uniform grid size is rejected in
this research, but a reliable method is found for the generation of a bed level value in a grid cell. The last
conclusion that can be drawn is that the sections with less data can also give reliable bed level values, despite
having some gaps in the grid.
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1. Introduction

1.1. Context

Because of sediment transport and water level changes, water depths in rivers change continuously. For
skippers this can be a problem, because they do not have knowledge of what part of the river is the shallowest
and how shallow it is. While loading, skippers must take the depth of the river into consideration, having a
deeper river, the skipper is able to take a bigger load with him, if the vessel allows this. Nowadays the
determination of the amount of load is done by the experience of the skipper and information from
Rijkswaterstaat and Elwis (the German version of Rijkswaterstaat). This determination is based on weather and
water level forecasts.

On most inland vessels the position and under-keel clearance are measured each second. The vessel does this
with equipment that is installed on board. With these data, the skipper has insight in the water depth
underneath the vessel. Most vessels do not store data and information is lost immediately after the
measurement. The goal of the CoVadem initiative is to collect and analyse all those data from the participating
vessels. The data are being filtered, analysed and
enriched with relevant additional information
sources. By doing so, CoVadem generates almost
real-time water depths information and forecast
for every route covered by the vessel network.
With this information skippers can optimize their
loads and travel more efficiently (CoVadem,
2018).
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time and forecasted 1D water depth is the mean
depth of all vessel tracks within a length of 1
kilometre.
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Figure 1-1: Mobile application

The next step in the development of the application is creating an operational 2D water depth map, which
displays a real-time and forecast water depth chart. A pilot version of a 2D water depth chart on the River
Rhine from Rotterdam to Maxau is currently up and running. For the generation of this 2D water depth chart
grid cells with a length of 500 meters in the longitudinal direction of the river and 8 cells across the width of
the navigation channel are being used (an example of a 2D water depth chart is shown in Figure 1-2). The goal
of this 2D water depth chart is to give an overview of deeper and shallower sections of the navigation channel
along and across the river. With this information skippers can determine the route along the river more easily.

ae

Figure 1-2: Example of a ZDwater depth chart in a river



As shown in Figure 1-1 the scope of the research is the River Rhine from Rotterdam to Maxau. In Figure 1-3 a

clearer image of the study area is shown. The total study area has a length of 600 km in the Netherlands and
Germany.
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Figure 1-3: Domain of the study area Maxau-Rotterdam



1.2. Problem Description
For the construction of the 2D water depth chart, mentioned in paragraph 1.1, some problems must be tackled.

The data that is used for the generation of the 2D water depth chart is gained from approximately 75 vessels
that have currently joined the CoVadem initiative. These vessels sail on and off the river on a different point in
time with different tracks along the river. Besides this, errors in vessel measurements can occur at any
moment at any vessel (Abdalla, 2018). These two problems cause for a limited dataset for the generation of a
real-time 2D water depth chart from vessel tracks. To tackle the problem of a limited set of data, vessel
measurements of one week are being used in the generation of the 2D water depth chart. With one week of
data a denser 2D water depth chart can be generated.

Because one week of data is used for the generation of the 2D water depth chart, the morphological processes
of the river bed must be considered. These morphological processes consist of the migration of river dunes
through the river. River dunes can migrate at a speed of meters a day and differ in shape and size because of

4 sediment transport in a river. An example of river

E dunes in the River Rhine branches is shown in

.§ 3 Figure 1-4. With the vessel tracks being at a

2 different point in time, the river dunes will be

T 2 located on a different place along the river for each
- 4

g 3 track, because of this migration. If there would be

150 100 50 0 sufficient data over the width of the river in a point

distance downstream (m) of time, it would be possible to map the river

dunes with grid cells that are relatively small

Figure 1-4: An example of river dunes in the River Waal in regarding to the river dunes. This is not the case

longitudinal direction (Best, 2005) and therefore the presence and migration of the

river dunes must be dealt with otherwise. If a grid cell is still smaller than a dune, it can occur that only data of
the crest or the trough of the dune is located in the cell (Figure 1-5). This will give significantly different
minimum water depths. Furthermore, a relative big grid cell (Figure 1-6) can miss the detail that is needed for
the skipper. In the pilot version of the CoVadem+ application grid cells of 500 meters in length and 8 over the
width of the river are being used. Using this length a few river dunes are located in a cell and therefore the
migration of these dunes is dealt with. The dimensions that are used for the grid cell in the application are a
rough estimation and it is not known if this estimation is optimal.
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|: Bed level (m+NAP}\\
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[ ] e [ cridcen

Figure 1-5: Schematic example of a grid cell that Figure 1-6: Schematic example of a grid cell that is too big
is too small

The migration of these river dunes brings along another problem that must be tackled. The skippers want a
representation of the minimum water depth. The minimum water depth is dependent on the morphological
processes in the river. River dunes that migrate through the river have a big influence on the minimum water
depth that is derived from the participating vessels (van der Mark, Vijverberg, & Ottevanger, 2015).

The last problem that occurs in the generation of the minimum water depth chart is the difference in amount
of data in the Netherlands and Germany. In the Netherlands there are enough data to give a good minimum
water depth. In Germany, a steel factory is located at Duisburg. Different vessels sail up to that steel factory,
but few vessels sail further upstream, therefore the minimum water depth chart that can be derived from the
vessels is less dense. Besides the few tracks in Germany, there are no Multibeam data to validate the CoVadem
data and there is not much known about how alluvial the river bed in Germany is.



For the skippers the water depth of a section of the river is important. Within the CoVadem project this water
depth is projected to the skippers in the application. The problem for this research is that water depths change
constantly, from different water depths in a certain period of time, no clear conclusions can be drawn.
Therefore, the water depths must be translated to a more constant variable. This problem can be addressed
using the water levels at NAP from the hydrological stations along the River Rhine. With this water level data
and the water depths a bed level at NAP of the River Rhine can be generated. This bed level is far more
constant and can be used for answering different sub-questions. Therefor only the bed level of the river will be
used for generating results in this research and not the water depth.

1.3. Research Objective

With the above-mentioned problems and requirements in paragraph 1.2, the following research objective can
be formulated:

What is the optimal uniform grid, so it is useful for the skipper, the morphological processes are considered,
there is sufficient data per grid cell and the grid is applicable both in the Netherlands and in Germany?

For answering this research objective, some sub-questions must be formulated.

1. What is the best way to generate the maximum bed level value that is assigned to a grid cell?
2. What is the optimal grid cell size (length x width) for the representation of the bed level?
3. How alluvial is the river bed in Germany and how dense are the data?

1.4. Theoretical Framework

This paragraph elaborates on the literature that can be used for addressing the sub-questions. Furthermore,
prior research in the validation of the CoVadem water depth is documented. This research will partly be the
input of this research. The CoVadem project is new in all kind of ways, so there are almost no concrete
methods that can be used for conducting the sub-questions.

Prior research

Prior research has been done for the validation of the water depth with CoVadem data (Abdalla, 2018), (van
der Mark, Vijverberg, & Ottevanger, 2015) & (van der Mark, 2017). In these researches the participating
vessels were validated on their performance of generating accurate data points (Abdalla, 2018). The data that
were used for these validations by Abdalla were CoVadem data from 1 September till 15™ September 2017
and 1 set of Multibeam data of the River Rhine in that period. The input data that are used for Abdallas
research is the same input data in this research. The goal of Abdallas research was validating the performances
of each vessels water depth measurements with a focus on the vessel performances at the fixed layers of St.
Andries and Nijmegen. These fixed layers consist of an immobile layer of large stones. There is hardly any
eroding and aggrading of the river bed over time. With a fixed bed level, the vessels can be validated better on
the offset then in case of a high alluvial bed level. This research showed that some vessels resulted in having a
really good performance during the entire period; some vessels showed partly good and less good results
during this period and others did not show good results at all. So measured data should be validated every day
for every vessel, because errors in the vessels measurements can occur at any point any day.

Vessels with good performances can be used for the generation of an accurate maximum bed level chart, also
on locations were no Multibeam data is available. The vessels that performed badly on the fixed layers are
shown in Table 1-1.

Table 1-1: Vessels with a bad water depth performance on the fixed layers of St. Andries and Nijmegen (Abdalla, 2018)

Week 1 (1-7 September) Week 2 (8-14 September)

Vessels 2,28,35,43,52,55 2,12,13,35,52,54,55




Translation to bed level for comparison to individual ship tracks

Water level (m+NAP) For the translation of water depth to a bed level
using the CoVadem data some steps are required.
The participating vessels measure the under-keel
clearance at time and date t. This under-keel
Horizontal reference plane (= NAP) clearance is translated into a water depth at each
Figure 1-7: Translation of water depth to bed level NAP measured point along the river by MARIN. The
Multibeam data measured the bed level at NAP
along the river. For the validation, the CoVadem data must be translated into bed levels at NAP as well. For
this translation the measured water levels at point in time t at NAP from hydrological stations at river
kilometre x along the river are used. These measured water levels at a point in time t and river kilometre x can
be interpolated in time and space. Using these data, the bed level at NAP can be generated for the CoVadem
data.

Bed level (m+NAP)
I Water depth (m)

Equation 1: Bed levelnar.x = Water levelnydrological_stations,tx — Water depthcovadem_data,tx (Figure 1-7)
Determination of maximum bed level, accounting for presence of river dunes

For the determination of the river dune height and therefore the maximum bed level of a grid cell, 2 methods
can be used:

The first method is to immediately calculate the nt™ percentile of all data points in a grid cell. These tested
percentiles are from 90% till 97.5%. These percentiles are chosen, because the n'" percentile must represent a
maximum bed level. 97.5% is chosen as the highest percentile, because big errors can occur at any time during
the vessels water depth measurement (Abdalla, 2018). With a higher percentile these errors will not be
filtered out. A lower percentile is also not useful, because this will not represent a bed level that is high enough.
This method is simple and easy to apply and some measured extreme errors are immediately being filtered out
without calibrating and validating the measured data first.

The second method is to determine the mean of all CoVadem bed level data points in a grid cell and add half of
three times the standard deviation (Figure 1-8). The mean of the CoVadem data points is the bed form-
averaged bed elevation (W) (‘bodemvorm-gemiddelde bodemligging’). By calculating the standard deviation (o)
of all the data points in a grid cell, the river dune height can be determined. The river dune height is
approximately three times the standard deviation (Nordin, 1966). With the knowledge of the height of a river
dune, half of the height can be summed up with the mean bed level and the maximum bed level is determined.

Equation 2:

Maximum bed level = u + 3*0*0.5

Figure 1-8: Determination of maximum bed level (Method 2)

1.5. Thesis outline
In this paragraph a little description of the thesis outline is given.

The second chapter elaborates on the research methodologies that are set up for addressing the sub-
questions. The first paragraph of chapters 3 and 4 consist of a little description of how each methodology is
implemented for the first two sub-questions regarding to the available data. Afterwards the results for each
sub-question are presented in these chapters. Chapter 5 consists of a little exploration of the river bed of the
River Rhine in Germany regarding to the literature and a comparison of the CoVadem data with the literature.
In the sixth chapter a conclusion is drawn regarding to the research main question. In chapter 7 the results are
being discussed and recommendations are done regarding to further research.

10



2. Research methodology

For the optimization of grid cells not much research is done. Therefore, this paragraph elaborates on the
research methodologies that are set up and will be used for addressing the sub-questions formulated in the
introduction. For addressing the sub-questions some data sets are used. The datasets that will be used for
conducting the sub-questions and the validation of the sub-questions are discussed. After this, the research
method per sub-question is discussed.

2.1. Sub-questions

In this paragraph the research method per sub-question is described.
(1) What is the best way to generate the maximum bed level value that is assigned to a grid cell?

The first step in the generation of a maximum bed level value per grid cell, is translating the CoVadem water
depth data to bed level data. After this translation, the CoVadem bed level data can be used in the generation
of a maximum bed level for a grid cell. For the generation of the water depth chart in the application, all
CoVadem data of 1 week is being used. Therefor CoVadem data of 1 week is also used for the generation of a
maximum bed level chart.

For the determination of the best way to generate the maximum bed level value that is assigned to a grid cell,
two methods are tested. The first method is to directly determine the nt" percentile of all the data points in a
grid cell. The second method is the determination 1.5 times the standard deviation of all Covadem data points
in a grid cell plus mean bed level.

Before the methods can be tested, the n'" percentile that generates the most accurate maximum bed level
compared to the actual maximum bed level must be established first. For this research it is assumed that
equation 2: Maximum bed level = u + 3*0*0.5 is correct and represents the actual maximum bed level in a grid
cell. For the determination of the maximum bed level only the Multibeam data is used. The Multibeam data is
the data that represents the best actual bed level, because it is highly detailed. The actual maximum bed level
generated with equation 2 is then compared to the maximum bed levels that are calculated by different
percentiles using also the Multibeam data.

The last part of this sub-question is validating the CoVadem maximum bed level charts with the maximum bed
level generated with the Multibeam data of Rijkswaterstaat. With this validation the pros and cons for
generating an accurate maximum bed level chart for each method are written down.

(2) What is the optimal grid cell size (length x width) for the representation of the bed level?

For the optimal grid cell size for the representation of the bed level a hypothesis is set up. This hypothesis is
that an optimum is expected between the intersection of two errors. The errors that are used for this
hypothesis are (1) the resemblance of the CoVadem to the Multibeam data in a grid cell and (2) the amount of
detail that is desired to present to the skippers.

1. The resemblance of the CoVadem to the Multibeam data in a grid cell is tested on the mean of all
data in a grid cell for the CoVadem and Multibeam data. Next, the error E is established as the
difference between both datasets. The result of this error will be the blue line in Figure 2-1.
Multibeam and CoVadem data are not obtained on the exact same day, so if less than one river dune
is located in a grid cell, a big error can occur if data from another day is used for generating a bed
level. With more dunes located in a grid cell, this error will average out and the error will decrease.

2. The amount of detail that is desired to be presented to the skippers is the second factor of
importance. For the determination of the amount of detail in a grid cell only the Multibeam data is
used. With the Multibeam data the ‘actual’ river bed will be compared to the generated river beds
with different grid sizes. A small grid size will sustain a lot of detail, so a little error will occur. The
bigger the cell, the more detail will get lost and a bigger error E will occur. The red line in Figure 2-1
represents this error.
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An optimal grid size for these two errors will occur at the point where the red and blue lines intersect.

Length grid cell

Figure 2-1: Schematic determination of optimal grid cell size

(3) How alluvial is the river bed in Germany and how accurate is the data?

For answering how alluvial the river bed is in Germany and how accurate the data is, first a little literature
study is done about the river bed of the River Rhine in Germany. After this the data is tested on its accuracy
regarding to the literature. The CoVadem data cannot be validated with Multi- or single beam data in Germany,
because this data was not available at the time of this research.

2.2. Data

Some datasets are used in this research. The first datasets are the CoVadem data of the actual water depth as
derived from measured under-keel clearances. These datasets consist of water depth data and X/Y coordinates
in a period of time. For sub-question 1 and 2 a dataset from 1% of September 2017 till 15" September 2017 on
the River Rhine from Rotterdam to Lobith is used. For sub-question 3 a dataset from 8" of May 2018 till 8t of

June 2018 is used.

2
- =t
|- AT |

L omel ‘& '/

S v R

Figure 2-2: Examble of Multibeam data on the River-
Waal (2001)

For the validation of sub-questions 1 and 2 a dataset
from Rijkswaterstaat with echo sound Multibeam data
is used. This Multibeam data is a 1 x 1-meter raster file
(van der Mark, Vijverberg, & Ottevanger, 2015) from
Lobith upstream to Werkendam downstream collected
in the period of 1% of September till 15™" September
2017. The Multibeam data displays the bed level
regarding to NAP (Amsterdam Ordnance Datum). In
Figure 2-2 the detail of such a dataset is shown.

The third and last data set that will be used for
computing sub-questions is water level data at NAP
from measuring stations along the river Rhine. The
water levels along the river are measured every ten
minutes (van der Mark, Vijverberg, & Ottevanger, 2015).
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3. Generation of maximum value per grid cell

In this chapter a result is given for the best way to generate a maximum bed level value for a grid cell. The first
paragraph will elaborate on the translation of the CoVadem data points to useable values for the generation of
a maximum bed level chart. In the second paragraph the best method for the generation of a maximum bed
level chart is calculated.

3.1. Translation from water depth to bed level CoVadem data

Highly detailed Multibeam data was delivered by Rijkswaterstaat. This Multibeam data, as described in chapter
2 Research Methodology, represents the bed level of the River Rhine. The data that is derived from the
participating vessels represents the water depth at each data point. For the validation and comparison of the
CoVadem data with the Multibeam data, the CoVadem data must be translated to a bed level as well. The
translation from water depth at date and time t to bed level is done with Equation 1: Bed levelnartx = Water
levelnydroiogical_stations,t,x — Water depthcovadem datatx. The full description of this translation can be found in
Appendix B.1.

3.2. Determination of best method for the maximum bed level

This paragraph elaborates on the determination of the best way to generate a maximum bed level with the
CoVadem data points. For this generation 2 methods can be used. Method 1: ‘The n' percentile of the
CoVadem data’ or method 2: ‘u + 3*0*0.5 of the CoVadem data’. First a percentile for method 1 must be
established. After establishing the percentile for method 1, the 2 methods are compared on different filtering
scenarios with the Multibeam data.

3.2.1. Determination of method 1
This paragraph elaborates on the determination of the percentile that represents the best bed level compared

to the actual bed level. For this comparison only the Multibeam data is used, because this data is highly
detailed.

A code for the determination of the percentile that represents the best maximum bed level is made in Matlab.
The Multibeam data is tested on the 90", 92.5t, 95t & 97.5'" percentile. The results of this code are the mean
error and the root mean square error of each tested percentile for grid sizes from 150 to 1000 meters in length
shown in Figure 3-1 and Figure 3-2. Furthermore, histograms of the difference between the percentiles and
actual maximum bed level for grid cells on a 500-meter grid are presented.

Mean error (percentile minus actual) for
Multibeam per grid cell size

0,1

E 005
3 e mean difference 90th
S 0
30:.' \90 » %QQ @Q %QQ Q;QQ /\QQ %QQ O)QQ\’QQQ = mean difference 92.5th
-g -0,05 \_V\’\ Mean difference 95th
©
g -0,1 \_\’\ == mean difference 97.5th

-0,15

grid size [m]

Figure 3-1: Mean error of difference between bed level calculated using the nth percentile and actual
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RMSE percentiles for Multibeam per grid cell
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Figure 3-2: Root mean square error of difference between bed level calculated using the nth percentile and actual
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Figure 3-3: Histogram of 90th percentile on a 500m grid
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Figure 3-4: Histogram of 92.5th percentile on a 500m grid
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Figure 3-6: Histogram of 97.5th percentile on a 500m grid
From the output graphs in Figure 3-1 to Figure 3-6 two conclusions can be drawn:

1. The output graphs and histograms show that a 95™ percentile gives the best mean error and RMSE
compared to the actual maximum bed level. The mean almost equals the actual maximum bed level
and therefor is the best fit for the total domain.

2. There can also be concluded that a 97.5™ percentile is a better option for generating the maximum
bed level. The histogram of the 97.5%" percentile in Figure 3-6 and the mean error in Figure 3-1 show
that most of the grid cells represent a higher maximum bed level. A higher modelled maximum bed
level than the actual bed level causes for a bigger under keel clearance. Therefor this option is safer,
because it generates less maximum bed levels that are lower than the actual bed level.

For the generation of a maximum bed level with the CoVadem data the 95 percentile is chosen. CoVadem
data has less data in a grid cell then the Multibeam data and with a 97.5%" percentile, the extreme values of the
CoVadem data that are caused by errors will not be filtered out.

3.2.2. Determination of best method

With the percentile of method 1 computed using the Multibeam data, the best method for generating the
maximum bed level of a grid cell with the CoVadem data can be determined. For the determination of the best
maximum bed level value, the two methods are tested on different scenarios for the total domain.

The scenarios that are set up for this research differ in the amount of filtering of the CoVadem data that is
done before generating a maximum bed level. For generating the minimum water depth for the application for
the skippers, only the water depths of -999 are filtered out, this is approximately half of all the data. It is not
yet decided how other extreme values will be filtered out, therefor only filtering out water depths of -999 is
scenario 1. Scenario 2 consists of filtering out the bad vessels that resulted from Abdallas research (Abdalla,
2018). Generations of the maximum bed level for scenario 2 showed some extreme maximum bed level values
outside Abdallas research scope. Vessel 21 & 38 caused these extreme values and are therefore also filtered
out for scenario 3. After this filter, only a quarter of the total data points remained. The scenarios in short:

1. All CoVadem data without -999 water depths

a. Week1
b. Week?2

2. Excluded bad vessels regarding to Abdallas research
a. Week1

3. Excluding bad vessels regarding to Abdallas research and vessels that show sporadically extreme bed
level values outside Abdallas research scope
a. Week1
b. Week?2

Each scenario is numerically tested on the RMSE and NSE for the two methods for the maximum bed level

generation. Each scenario is tested on multiple grid lengths, because the optimal grid size is not established yet.
Besides this it is interesting to observe how the CoVadem data performs on different grid lengths regardless to
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what the optimal grid size is regarding to the Multibeam data. The formulas of the RMSE and NSE are shown in
Equation 3 and 4. In these formulas ‘model’ is the CoVadem data and the ‘obs’ is the Multibeam data.

Equation 3: RMSE = \/EZ(modeli—obsi)z

i=1

n

z (Xobs,i - Xmodel )2

Equation 4: NSE =1— 1=

n

Z(Xobs,i - >zobs)2

i=1

3.3. Results

In this paragraph the results of the tested methods on the different scenarios are presented. Each method has
some pros and cons for different scenarios. These pros and cons are presented in this paragraph together with
some supporting figures for a visualisation of the bed level chart. Other graphs and figures that are used to
support these results are presented in Appendix A.1 and A.2. The graphs shown in this paragraph are the
graphs with the RMSE for different scenarios. The graphs of the NSE are shown in Appendix A.1. The figures in
this paragraph and in Appendix A.2 give a visualisation of how the grid would look like in the application on the
Midden-Waal and the bends between Nijmegen and Lobith. The grid that is used for this visualisation is a 500-
meter grid with 8 cells across the width of the navigation channel.
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Root mean square error per grid size
for scenario 1 week 1 and 2
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Figure 3-7: Maximum bed level of CoVadem data on the bends scenario 1
method 1 in week 1
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Figure 3-8: Maximum bed level of CoVadem data on the bends scenario 1
method 2 in week 1

From this graph it can be concluded that
method 1 (95 percentile) is the best
option for the generation of the
maximum bed level for scenario 1. In
week 2 this method gives a relative
good result even though all the bad
vessels, which are about half of the total
vessels, are considered with the
generation of the maximum bed level.

From Figure 3-7 and Figure 3-8 and can
be concluded that a bed level that is
generated using method 1 has less high
scale difference in the legend than
method 2. This is in line with the results
that are presented in the graph for the
RMSE of scenario 1. The bad vessels are
partly filtered out using method 1.
Method 2 results in a river bed chart
with extreme values that is not
representative for the actual bed level
as shown in Figure 3-8.

Using method 2 on the other hand,
causes for a clear difference between
cells with only good data points and
cells with bad data points in it. With
method 1 some cells with bad data in it
can cause for a plausible bed level, but
are in fact not. A skipper can than get
stranded on a sand bank.
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Root mean square error per grid
size scenario 2 week 1
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Figure 3-10: Maximum bed level of CoVadem data on the Midden-Waal
scenario 2 method 1
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Figure 3-9: Maximum bed level of CoVadem data on the Midden-Waal
scenario 2 method 2

This graph shows a good RMSE for
method 1. The linear blue line of
method 1 indicates that the bad data
points from the bad remaining bed
vessels are filtered out, without any
further pre-filtering. The red line of
method 2 indicates that there are still
bad data points in some grid cells,
because extreme data points cause a
bad RMSE.

In Figure 3-10 and Figure 3-9 the
maximum bed level generated with
method 1 and 2 for scenario 2 are
shown. Because of the pre-filtering of
the data, the maximum bed levels of the
two different methods are quite alike.
The only big difference is the red grid
cell in Figure 3-9. This grid cell contains
some bad data and because of method
2 this grid cell represents a maximum
bed level that is way of the actual bed
level.
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Root mean square error per grid
size scenario 3 week 1 and 2
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Figure 3-11: Maximum bed level of CoVadem data on the Midden-Waal
scenario 3 method 1
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Figure 3-12: Maximum bed level of CoVadem data on the Midden-Waal
scenario 3 method 2

From this graph can be concluded that
the RMSE of both methods is almost
equal. This indicates that with a proper
filter method before the generation of
the maximum bed level a representative
maximum bed level can be generated
using both methods.

Method 2 in week 2 shows a worse
RMSE, this can indicate on a vessel that
passed the filters. This vessel probably
does not measure extreme values, but
has a wrong offset. This wrong offset
causes for a wrong RMSE for the total
domain of the River.
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3.4. Conclusion

In this paragraph the conclusion for the best method to generate a real-time maximum bed level chart is
established. As shown in paragraph 3.3 there are multiple conclusions that can be drawn, each method has its
pros and cons at different amount of filtering and the calibration methods.

Currently, there is no calibration of the vessels measurements for the generation of a water depth chart in the
application. In the case of no calibration the best way to generate an actual maximum bed level is the
calculation of 3* 0*0.5 (method 2) the best method. This method gives a clear bed level chart for the grid cells
that have proper data in it and bad grid cells can be filtered out with ease by the skippers.

For the generation of the application with calibration of the vessels’” measurements and filtering bad vessels,
the best way of calculating a bed level chart is the 95™ percentile (method 1). From the research of Abdalla it is
concluded that errors in the vessels measurements can occur at any moment. A big error will be detected by
the filter or calibration, but a little error can pass the filter method (week 2 is an example of this). Using
method 1 this little error will have less influence on the bed level height than method 2. Besides this method 1
and 2 do not differ significantly from each other when the vessels measurements are filtered and calibrated.
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4. Optimization of grid cell size

This chapter elaborates on the generation of an optimal grid cell size (length x width). The current water depth
chart, which is used in the CoVadem application for the skippers, consists of a 500-meter grid in length along
the River Rhine and has 8 cells across the width of the navigation channel in the River Rhine. In the first
paragraph a representation of the bed level on the River Midden-Waal for different grid sizes is made using a
longitudinal profile (‘Langsprofiel’). The second paragraph elaborates on the hypothesis of an optimal grid size.

4.1. Representation of bed level

The optimal grid cell size is determined using the bed form-averaged bed elevation (‘bodemvorm-gemiddelde
bodemligging’) of the Multibeam and CoVadem data in the grid cells. The bed form-averaged bed elevation is
used instead of the maximum bed level, because the maximum bed level will cause bigger errors when
increasing the grid size then the bed form-averaged bed elevation (See Figure 1-6 for a visualisation). For the
scope of this research question the domains of the straight section of the River Midden-Waal and the bends at
Nijmegen are used. These domains are shown in Figure 4-1 and Figure 4-2.

For this research the number of cells across the width of the river are variated between 4 cells and 16 cells in
width. The length of the grid cells along the River Rhine is variated from 150 meters to 1000 meters. In Figure
4-1 an example of 8 grid cells in width on the domain of the Midden-Waal is shown.
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Figure 4-1: Domain River Midden-Waal with 8 longitudinal profiles
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Figure 4-2: Domain bends at Nijmegen on River Rhine
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The optimal grid size shows a detailed bed level for the skipper. As can be seen in Figure 4-3, the 5-meter grid
(blue line) has a lot of noise. This grid is detailed and represents the actual bed form-averaged bed elevation.
For a skipper this is not useful, because it contains too much detail. Besides this there is too little data available
for this level of detail. The green line of the 5000-meter grid on the other hand contains too less detail,
because it misses bed level elevations and a vessel can get stranded on the river bed.
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Figure 4-3: Longitudinal profile (‘Langsprofiel’) of the River Midden-Waal generated with Multibeam data

4.2. Optimizing grid cell size
This paragraph elaborates on the optimization of the grid cell size. This optimization focusses on the
intersection between the errors of the resemblance of the CoVadem data to the Multibeam data and the
amount of detail that a grid cell displays.

For the error of the amount of detail that a grid cell displays, the grid cells from the longitudinal profiles of the
different grid sizes (150 to 1000 meters) are subtracted from the actual bed level (5-meter grid). This means
that for example the actual bed level (blue line of a 5-meter grid cell in length in Figure 4-3) is subtracted from
the 500-meter grid (the red line in Figure 4-3). With this subtraction a scattered line around zero is generated,
as can be seen in Figure 4-4. For this scattered line a confidence interval of 95% is calculated for each grid cell
length. The thumb rule is that approximately 95% of the measurements falls within p +/- 26 (McClave, Benson,
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Figure 4-4: Example of difference in bed level for a 500-meter grid regarding to the actual 5m grid bed level
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For the error of the resemblance of the CoVadem data regarding to the Multibeam data, the data sets are
compared with each other. Before comparing the data sets, the data points from the bad vessels were filtered
out of the data set. In Figure 4-5 the longitudinal profiles of the CoVadem and Multibeam data are shown for a
500-meter grid. These lines are subtracted from each other and a confidence interval of 95% is calculated.
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Figure 4-5: Longitudinal profile 500-meter grid of the filtered CoVadem and Multibeam datasets

4.3. Results

In this paragraph the results for the optimal uniform grid cell size are presented. An optimal uniform grid cell is
detailed enough to represent uplifts caused by large river dunes, but does not filter out the slope of the river.
Besides this, the grid cell with CoVadem data still must represent the actual river bed.
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Figure 4-6: Optimum of a grid cell with ascending grid
lengths and 8 cells in width

Detail of Multibeam with ascending grid sizes in length and width Resemblance CoVadem to Multibeam with ascending grid sizes in length and wit
0.8 0.75
—#— 4 cells width
07 07 —# 6 cells width
8 cells width
—#— 10 cells width
0.6 0.65 ¢ —#— 12 cells width

14 cells width
—H— 16 cells width

—#— 4 cells width

—#— 6 cells width
0.2 8 cells width 0.45
—#— 10 cells width

—#— 12 cells width

01 14 cells width 0.4 *
—%— 16 cells width o
0 * 0.35
o 100 200 300 400 500 800 700 o 100 200 300 400 500 800 700
Grid length [m] Grid length [m]

Figure 4-7: Detail and Resemblance of the CoVadem and Multibeam data with ascending grid sizes in length and
width on the domain of the straight section of the Midden-Waal
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width on the domain of the bends at Nijmegen

Besides the intersection of the two errors at the straight domain of the River Midden-Waal, the intersection of
the two errors at the bends near Nijmegen also result in an optimum around grid cells with a length of 100 to
150 meters. Therefore, it can be concluded that the intersection of the two errors do not give useful results for
this research. Despite no useful conclusions can be drawn from the intersection of the two errors, some
observations can be done from the error of the detail and resemblance separately.

The error of detail shows a bad standard deviation for the ascending grid lengths with 8 grid cells over the
width of the navigation channel at both domains. In the application 8 cells in the width of the navigation
channel is used. From Figure 4-7 and Figure 4-8 can be concluded that this width is not optimal, the bed levels
of the ascending grid cells have a big variance to the 5-meter grid.

The error of resemblance on the other hand shows a good result for the grid with a length of 500 meter and 8
grid cells over the width of the navigation channel at the straight section of the Midden-Waal (Figure 4-7). This
indicates that the CoVadem data with these dimensions represents the most accurate bed level regarding to
the actual bed level, because it has the smallest error.

4.4. Conclusions
In this paragraph a conclusion is drawn from the results that are represented in paragraph 4.3.

From the calculation of an optimal uniform grid cell in length and width no conclusion can be drawn regarding
to the hypothesis. The errors intersect at a point that is not useful for the generation of a maximum bed level
chart. The migration of the river dunes and the total length of one river dune are not considered if the
optimum that is found will be used. Therefore, the hypothesis can be rejected.

On the other hand, conclusions can be drawn from the errors separately. The downside to these conclusions is
that the conclusions that will be drawn are subjective. The conclusions that can be drawn from these errors
are as follows:

The grid cell size that is used in the application has a bad standard deviation regarding to the detail of the river
bed that it represents. Regarding to this error, the optimal grid size is not the grid size that is currently used,
but a grid size with 4 cells in the width of the navigation channel.

Another conclusion that can be drawn is that the currently used grid size gives the best result regarding to the
similarity between the CoVadem data and the actual bed level.
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5. Evaluation of River Rhine in Germany

In this chapter the bed level of the River Rhine in Germany is evaluated. For the validation of the CoVadem
data on the River Rhine in Germany no data are available. Therefore, first the alluviality and bed level of the
River Rhine in Germany must be mapped using the available literature (CHR, 2009) & (Hillebrand & Frings,
2017) of the River Rhine in Germany. The second paragraph elaborates on the comparison of a constructed
bed level with CoVadem data to the literature. The third paragraph elaborates on how applicable the
generation of a bed level chart is in Germany using the method that is validated on the River Rhine in the
Netherlands.

5.1. Literature study on the river bed of the River Rhine in Germany

The River Rhine in Germany can be divided into 3 major parts:

From Basel downstream to Bingen its name is Upper Rhine and the next stretch to Cologne is named Mid-
Rhine. From Cologne to Lobith it is called Lower Rhine. For the scope of this research the River Rhine from
Maxau (360 km) till Emmerich (852 km) is of importance.

The riverbed is characterized by its geometry and geology. Over long reaches the Rhine is an alluvial river
flowing on its own mainly Pleistocene deposits. This holds for the Upper Rhine, the Northern Middle Rhine and
the Lower Rhine, whereas, due to the morph tectonic uplift of the Rhenish massif, a bedrock channel with
rocky islands and irregular cross sections has developed over a length of some tenth of kilometres between
Bingen and St. Goar (river km 527 & 554) at the Southern Middle Rhine.
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Figure 5-1: Longitudinal profile of the River Rhine and locations (CHR, 2009)
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Figure 5-2: Longitudinal profile Upper and Middle Rhine (Hillebrand & Frings, 2017)

Between Iffezheim and Mannheim (river km 325 & 423) bed sediments of the Upper Rhine consist mainly of
gravel whereas further downstream the portion of sand increases steadily as shown in Figure 5-3.
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Figure 5-3: Sediments along the River Rhine

Between Basel and Mainz, the Rhine flows through the vast tectonic valley of the Upper Rhine graben before
entering the Rhenish massif. The uplift of the Rhenish massif forced it to cut a deep and rather straight gorge
into the rising block. Especially crucial for navigation is the transition zone between the Upper Rhine graben
and the Rhenish massif. Here in the Mainz basin the river is very wide and the resulting small water depth at
low flow velocity is further restricted by the development of large dunes. This is partly suspended when
passing the “Binger Loch” at the entrance of the Rhine gorge. The rest is transported on a rocky and cobbly
river bottom through the narrow gorge.
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Figure 5-4: 'Binger Loch', a bedload trap at river kilometre 530 of the River Rhine

The ‘Binger Loch’ is a huge bedload trap. This human made trench is 160 m wide, 250 m in length and 1.4 m
deep into the river bed. The sudden widening of the cross section forces the bedload to settle in the trench.

The trench was made because of artificial bed load supply in the form of dredging and re-dumping bed
sediment. Because of the development of the Rhine into an efficient inland waterway during the last two
centuries, the flow and sediment transport was changed severely. The free-flowing section of the river was
characterised by a severe bed load deficit leading to bed degradation and falling water levels, whereas in the
impounded section further upstream deposition of fine grained sediments occurs. To stop bed degradation
and to improve navigation, a strategy has been developed using sediment management. The local dredging
and re-dumping provide the base for achieving a dynamic stabilization over the length of the Rhine on top of
the authentic bedload.
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Figure 5-5: Bedload distribution and bedload management measures at the Rhine between Iffezheim and the
German/Dutch border

A study showed that the migration rates of gravel supplied at Iffezheim vary between two and six kilometres
per year. This is due to the dumped material that does not move downstream as a compact sediment wave,
but is spread during transport over the whole distance (dispersion). Along with this dispersion a maximum
depth of 1.3 m below the surface of the supplied gravel was observed. It can be assumed that migrating bed
forms contribute to the mixing of the supplied gravel with the river bedload. In Figure 5-6 the bed elevation
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and gravel dunes on the River Rhine at Mainz are represented. It can be concluded that the river bed in the
Upper Rhine is highly alluvial, with river dunes rising up to 1 meter in difference from crest to through over a

length of 100 meters.
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Figure 5-6: Bed form development at high discharge at the upper Rhine
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5.2. Construction of the CoVadem bed level and comparison with the

literature

This paragraph elaborates on the construction of the maximum bed level using the CoVadem data of the 8 of
May till the 8t of June 2018 and a comparison of this constructed maximum bed level with the literature from
paragraph 4.1.

The generation of the maximum bed level in the German section of the River Rhine from Emmerich to Maxau
is done with the same method as the generation of the maximum bed level in the Dutch section of the River
Rhine in Chapter 1. Firstly, the bad data points are filtered out from the data set. Secondly, the water depth of
each CoVadem data point is translated to a bed level using Equation 1: Bed levelnartx = Water
levelnydrological stations,t.x — Water depthcovadem data,tx. Next, the 95 percentile of all data points within a grid cell is
used for the generation of a maximum bed level per grid cell.

For the German section of the Rhine no data is available for the validation of the CoVadem data and therefor
the CoVadem data is compared to the literature. This means: Do the figures that are made, look plausible
according to the literature.

The first comparison with the literature is the comparison of the longitudinal profile (Figure 5-1). For this
comparison the maximum bed level of 4 longitudinal profiles on NHN (mean sea level) are generated from
Maxau to Emmerich with an interval of 1 kilometre. The longitudinal profile from the first week of CoVadem
data is displayed in Figure 5-7, the longitudinal profiles from the other weeks are showed in Appendix A.3. This
figure shows that the CoVadem data from Karlsruhe downstream to Koln is almost similar to the literature, but
further downstream an error occurs.
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Figure 5-7: Comparison of the longitudinal profile generated with 1 week (8t to 14t May) of CoVadem data (red) with
the longitudinal profile from the literature (black)

The literature for the bed form development as shown in Figure 5-6 it compared with the bed form
development that is measured with the CoVadem data. Two sections of the river are used at which 2 or 3
vessels follow the same track. These sections are between Mainz and Bingen at which the flow velocity is at its
lowest and big river dunes are formed and near Kaub, were the River Rhine flows through the Rhenish Massif
on a rocky non-alluvial river bed. These bed form developments are shown in Figure 5-8 and Figure 5-9.
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Figure 5-8: River bed constructed on different days using CoVadem data on an alluvial river bed

From the above shown figures can be concluded that the bed form development on the alluvial part of the
river does not show the amount of alluviality that follows from the literature. The river dunes only rise up to a
difference of 20 centimetres between the crest and the through of the river dune. Besides this the migration of
these river dunes cannot be concluded these figures. Between the 8™ and 21° of May the river bed does not
show a high alluviality and migrating dunes. Between the 21 and 30™ of May it does show a difference in bed
level, but this migration cannot be linked to any high discharge rates that could have been the cause to this
bed level difference. Because the blue and red line are measurements from ship 39 and the green line from

ship 28, the differences in bed level measurements are probably caused because of measurements errors at
the ships.
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Figure 5-9: River bed constructed on different days using CoVadem data on a rock-based river bed

Besides the construction of the alluvial river bed, the rock-based river bed at the Rhenish Massif is constructed
with the CoVadem data. This river bed should show little variances in the river bed on different days. Figure
5-9 shows a river bed that has a high alluvial character, while it is not supposed to be.

The data that is shown in Figure 5-8 and Figure 5-9 are derived from different ships; ships can have errors in
the data and there is no good data to validate the results with. Therefor no clear conclusions can be drawn
from the above shown figures, because it is only speculation.

30



The alluviality of the river sections regarding to the literature could not be constructed with the migration of
river dunes on a river section of approximately 1 kilometre. For this reason, a construction of the river bed is
made using all the available useful data in the period from the 8t of May till the 4™ of June. The section of the
River Rhine with an alluvial river bed should show a big variance in bed level height along the river and the
Rhenish Massif with a rock-based river bed should give a little variance in bed level height along the river.
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Figure 5-10: Constructed bed level using all useful data points on the River Rhine from the 8th of May till the 4th of June

In Figure 5-10 the river bed in the longitudinal direction of the River Rhine is shown with all useful data points.
Some ships showed a big scattering of the data points, an example of such bad data is shown in Figure 5-11.
The data points of these vessels are not reliable and are therefore filtered out. Some scattering can be seen in
the constructed river bed, but those are the result of deeper river sections. These deeper river sections also
follow out of the literature visualised in Figure 5-2.

Low flow velocity

" Renish massive

Bed level on +NHN [m]
2
T

Mainzer
N becken "
— Upper Rhine —ri— —h— Middle Rhine ~ —

| | tidL
300 w0 500 w0 70 00 o0

River kilometre [km]

Figure 5-11: Example of a ship with bad data points (Ship 7)
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From the above shown figure a bigger variance can be seen in the Upper Rhine and Lower Rhine (river
kilometre 700 and rising) then the variance at the Rhenish Massif. This visualisation on the other hand is not
that reliable, because the differences are little. Therefore, the variance of the data on River Rhine in Germany
is also tested numerically as shown in Figure 5-12. For this variance two periods of time are used. The first
period is a week of data (blue dots) and the second period is a month of data (red dots). The variance is
calculated for all data points within 100 meters in the longitudinal direction of the river. A river section with a
high alluvial character should contain a bigger variance between the data points then a river section with a
rock-based river bed.
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Figure 5-12: Variance of a week of data and a month of data per hectometre on the River Rhine

From Figure 5-12 can be concluded that within a week the variance along the River Rhine shows a big variance
of the data points at the Rhenish Massif and a lower variance at the alluvial sections of the River Rhine. This
big variance is in line with the literature: ‘Due to the morph tectonic uplift of the Rhenish massif, a bedrock
channel with rocky islands and irregular cross sections has developed over a length of some tenth of
kilometres between Bingen and St. Goar (river km 527 & 554)’ (CHR, 2009).

The variance using a month of data shows the same variance of the data points at the Rhenish Massif, but a
bigger variance at the alluvial sections of the river. Therefore, it can be concluded that over time the Rhenish
Massif has a little variance and is not alluvial, while the other sections of the river show a bigger alluviality. The
big variance of the data at the Rhenish Massif with one week of data can be caused because of the big slope of
the river at that section. Overall the variance of the River Rhine in Germany shows a plausible result.
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5.3.Density of data in Germany
The last part of this chapter consists of a short evaluation on the generation of a bed level chart in Germany
compared to the Netherlands. It is known that less vessels sail upstream of the River Rhine in Germany and
therefore less data are available at this section, but it is not known how big this difference is compared to the
Netherlands. Furthermore, the validated bed level chart (grid size & maximum bed level value) in the
Netherlands is tested on the data in Germany.

Figure 5-13 shows an overview of the amount of data points per kilometre in the River Rhine with a week of
data. The differences between the Netherlands and Germany are relatively big. Especially between river
kilometre 350 and 700, very little data is available.
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Figure 5-13: Amount of data points per kilometre in Germany and the Netherlands with a week of data

Because of this little amount of data points, gaps occur in the generation of the bed level chart as shown in
Figure 5-14. Because this section of the river is highly alluvial, as shown in the previous paragraph, it is no
option to fill these gaps with extra data from other weeks, because the bed form development will not be
considered.

Figure 5-14: Gaps caused by data-poor grid cells
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Figure 5-16: Generation of bed level chart with CoVadem data at river km 400

Figure 5-16 shows that at the upstream section of the River Rhine, still a dense bed level chart can be
generated in the bends. In comparison to the bed level chart that is generated at the downstream section of
the River Rhine (Figure 5-15), it only has a few value-poor grid cells. Overall it shows a representative bed level,
with a deeper bed level on the outside of the bends and a shallower bed level on the inside of the bend. It can
be concluded that the validated bed level chart from the Netherlands is also applicable in Germany. More
visualisations of the maximum bed level in Germany are shown in Appendix A.4.

5.4. Conclusion
From the paragraphs 5.1, 5.2 and 5.3 can be concluded that the River Rhine in Germany partly has a high
alluvial character and the approach of the generation of a bed level chart should therefore be the same as the
generation of a bed level chart in the Netherlands. The problem that occurs is that the bed level chart becomes
less dense further upstream, because of less data. Despite of less data in the upstream section, the bed level
chart still looks plausible and therefor there can be concluded that the generation of a bed level chart in the
upstream section partly is still useful.
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6. Conclusion

In this chapter a conclusion is drawn for the research question that is set in paragraph 1.3 Research
Objective. The research question is as follows:

What is the optimal uniform grid, so it is useful for the skipper, the morphological processes are considered,
there is sufficient data per grid cell and the grid is applicable both in the Netherlands and in Germany?

For answering the research question, several sub-questions are set up and the conclusions are combined in
this paragraph for giving an answer to the research question.

For finding an optimal uniform grid cell size, a hypothesis was set up. This hypothesis implied that an optimum
should occur at the intersections of two errors. The optimum that was found was less than the length of one
river dune and therefore the morphological processes were not considered. The optimum that was found was
not the optimum that is useful for the generation of a bed level chart and therefore the hypothesis of an
optimal grid cell size found by the intersection of two errors is rejected.

Another part of the optimal uniform grid is the maximum bed level value that is assigned to a grid cell. Two
methods are tested and validated on their performances of the generation of a maximum bed level for a grid
cell. The results showed that both methods have their pros and cons, but the best fit, for the representation of
the actual maximum bed level, is the calculation of the 95™ percentile of all data points in a grid cell. It should
be noted that this method is the best fit when the vessels measurement performances are calibrated
constantly.

The last part of the optimal uniform grid is the applicability of the grid in the Netherlands and Germany. The
grid for the generation of a bed level chart shows reliable results in the Netherlands, but less good results in
Germany. The bed level chart that can be generated in Germany looks very plausible, so despite that some
sections on the river are missing data and therefore no dense bed level chart can be generated, the uniform
grid is also applicable in Germany.
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7. Discussion and recommendations

7.1.Discussion

In this paragraph the methods that are used and the results that are generated in this research are being
discussed. The methods and results are discussed per sub-question.

Generation of maximum bed level

For the determination of the percentile for method 1 for the generation of the maximum bed level in a grid
cell, Multibeam data of the River Rhine in the Netherlands are used. These Multibeam data are considered to
be the actual river bed. This is true for the period in time that the Multibeam data are derived, but because of
the alluvial character of the river, the river bed can have differences over time. For this reason, a second set of
Multibeam data should be used to verify the conclusion that the 95% percentile of all data points in a grid cell
represents the best actual maximum bed level.

The generation of the maximum bed level is tested and validated on 2 CoVadem datasets in two subsequent
weeks and 1 Multibeam data set from the same period. Because the datasets are from the same period, the
differences in the generation of the maximum bed level are not tested on differences between a high and low
discharge. These high or low discharges, cause differences in the migration speed of the river dunes and
therefore the morphological processes can have differences. Also for the verification of the method for the
generation of the maximum bed level, more sets of CoVadem data with corresponding Multibeam data should
be tested. For this research only one sample is used, more samples from periods with extremely high or low
discharge can give a different result.

The CoVadem data is not from the exact same moment in time as the Multibeam. The data sets differ at a
maximum of 1 week, during this week the river bed may change because of bed form migration, which affects
the comparison.

The maximum bed levels are partly tested on different grid cell lengths, because there was lack of a big data
set. With differing between the grid cell lengths more insight was created on the performances of the
CoVadem data. With more datasets, the CoVadem data can be tested better on the grid cell length that is
preferred in the application and less on other grid cell lengths, but because there was only 2 weeks of data this
was not possible.

Optimization of grid cell size

For the optimization of the grid cell size only two domains are used on the river with the same morphological
characteristics. The only difference between the two domains is that one domain is straight and the other has
some bends in it. On another domain with different morphological characteristics and different data sets, it is
possible to find another optimum. If another method is tested for trying to find an optimum of the grid cell’s
size, it is useful to use more differences in the data sets.

Evaluation of River Rhine in Germany

The data that are derived from the German section of the River Rhine are not validated properly on the vessels
measurement performances as the data that are derived in the Netherlands. The data in the Netherlands are
validated on their performances regarding to the fixed layers near St. Andries and Nijmegen (Abdalla, 2018).
The data that are derived in Germany are only visually validated on bad vessel measurements. Vessels with a
bad offset are not being filtered out, because these differences cannot be seen and it is not known what the
actual bed level is, because no Multi- or single beam data are available. Therefore, every conclusion that is
drawn from the evaluation of the River Rhine must be put into question.
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7.2. Recommendations
This paragraph elaborates on the recommendations that can be done regarding to the improvements that are
pointed out in the discussion and regarding to recommendations for future research on the generation of a
water depth chart for inland skippers.

From the discussion can be recommended that the generation of the maximum bed level assigned to a grid cell
must be investigated on a bigger domain with more data sets. Than a better conclusion can be drawn about
how well the bed level chart functions over the time on the different sections of the River Rhine.

Another recommendation that follows from the discussion is that the data in Germany should be validated on
a bigger scale. The data in Germany are only validated on the literature that was available about the global bed
level, but it is not tested on the actual bed level from Multi- or single beam data.

From the filtering methods that are used for the different scenarios for generating a maximum bed level chart
another recommendation can be given. The difference between scenario 2 and 3 showed that vessels can still
have sudden bad measurements outside the fixed layers were the vessels can be validated on their
performances. Therefore, it is important that the vessels are validated on their measurement performances as
frequently as possible. Bad ships with extreme water depths can be filtered out easily, because these data will
stand out regarding to the value of a grid cell. A little script which filters out extreme values can already be
very useful.

The data especially in the upstream sections of Germany show a big number of gaps in the data sets. Further
research needs to be done on the interpolation between the grid cells and extrapolation to the shore of the
river.

The pilot version of the 2D water depth chart is now running on the River Rhine from Maxau to Rotterdam.
The validations that are done now are only done for the River Rhine and the 2D chart seems to work properly.
A next step can be validating the method for the generation of an optimal uniform grid cell on other rivers like
the Meuse and the Ijssel or even rivers from different continents and countries.

The data in the upstream section of the River Rhine is scarce. Some sections on the other hand still give a
plausible bed level chart and these sections can be used for the application. Further research can be done on
what amount of data is needed to give a good estimation for a dense bed level chart.
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Appendix A Generation of maximum value per grid cell

A.l. Graphs of RMSE and NSE for determination best method

Nash coefficent per grid size for scenario 1
week 1 and 2

—— Method 1 week 1
—— Method 2 week 1

—— Method 1 week 2
-8 Method 2 week 2
Gridsize [m]

12 Nash coefficent per grid size scenario 2 week

1
1
0.8 /\/W
W 0,6
(%]
=
04 —— Method 1 week 1
—— Method 2 week 1
0,2
0

150 250 350 450 550 650 750 850 950
Gridsize [m]



Nash coefficent per grid size scenario 3 week
land?2

0,985
0,98
0,975
0,97

__ 0,965
0,96

0,955
0,95 —— Method 1 week 2

—— Method 1 week 1

NSE [-

—— Method 2 week 1

0,945 Method 2 week 2
0,94
0,935
RO R e R

Gridsize [m]

Difference root mean square error per grid
size scenario 2 & scenario 3 week 1

1,4
1,2
1
0,8
0,6 — Difference method 1
0,4
0,2
0
Q (O O O O O (O O O
WA AT S

RMSE [m]

Difference method 2

Gridsize [m]

40



A.2. Visualisations of the maximum bed level for different scenarios in a 500-meter grid
In this Appendix multiple figures are shown. This reader’s guide can be useful, for a quick interpretation of the results of the figures.

Reader’s guide

Figure A-1 to Figure A-4:

These figures display the generated maximum bed level chart at the Midden-Waal and the bends between Nijmegen and Lobith for the Multibeam data using method 1
and 2. These figures are used as reference to the scenarios 1 till 3. The legend consists of a green-to-red colour scale. The green colour displays the lowest bed level at NAP,
so the deepest part of the river. The red colour displays the highest bed level at NAP, so the shallowest part of the river.

Figure A-5 to Figure A-8, Figure A-13 to Figure A-16 and Figure A-21 to Figure A-24:

These figures display the generated maximum bed level chart at the Midden-Waal and the bends between Nijmegen and Lobith for the CoVadem data using method 1 and
2. The legend consists of a green-to-red colour scale. The green colour displays the lowest bed level at NAP, so the deepest part of the river. The red colour displays the
highest bed level at NAP, so the shallowest part of the river.

Figure A-9 to Figure A-12, Figure A-17 to Figure A-20 and Figure A-25 to Figure A-28:

These figures display the difference between the CoVadem data and Multibeam data for method 1 and 2. The legend consists of a red-to-green colour scale. The red colour
displays a CoVadem bed level that is lower than the Multibeam data at NAP. In the translation to the water depth it displays a deeper water depth. This is not preferable;
therefore the red colour is used. The colour green displays a CoVadem bed level that is higher than the Multibeam data at NAP. Not preferable as well, but less bad than a
bed level that is too deep.
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Figure A-16: Maximum bed level of CoVadem data on the bends scenario 2 method 2
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Figure A-18: Difference CoVadem minus Multibeam on the bends scenario 2 method 1
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Figure A-20: Difference CoVadem minus Multibeam on the bends scenario 2 method 2
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Figure A-21: Maximum bed level of CoVadem data on the Midden-Waal scenario 3
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Figure A-22: Maximum bed level of CoVadem data on the bends scenario 3 method 1
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Figure A-23: Maximum bed level of CoVadem data on the Midden-Waal scenario 3
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Figure A-24: Maximum bed level of CoVadem data on the bends scenario 3 method 2
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Figure A-26: Difference CoVadem minus Multibeam on the bends scenario 3 method 1
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Figure A-27: Difference CoVadem minus Multibeam on the Midden-Waal scenario 3

method 2
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Figure A-28: Difference CoVadem minus Multibeam on the bends scenario 3 method 2
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A.3. Longitudinal profiles of the German River Rhine
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Figure A-29: Comparison of the longitudinal profile of the German River Rhine for week 2
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Figure A-30: Comparison of the longitudinal profile of the German River Rhine for week 3
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Figure A-31: Comparison of the longitudinal profile of the German River Rhine for week 4



AA4. Visualisations of the maximum bed level for different sections of the River Rhine Germany
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Figure A-33: Maximum bed level Speyer week 3 (22" to 28th May)

Legend
Domain_Speyer_500m
Filtered_5
0,000000
I 0.000001 - 85 470000
I 86.470001 - 87.254000
T 57.254001 - 87,610000
I 7,610001 - 87.869000
87,859001 - 88,119000
88.119001 - 88.291000
188.291001 - 88,500000
88,500001 - 88,683000
88,683001 - 88,852000
I 35.852001 - 89.070000
I 59.070001 - 89.258000
I 59.256001 - 89,501000
I 25501001 - 89,787000
I 25.787001 - 50248000

Figure A-34: Maximum bed level Speyer week 4 (29th May — 4" June)

In Figure A-32, Figure A-33 and Figure A-34 generated maximum bed levels at
Speyer are shown. Speyer is an upstream section of the River Rhine at river
kilometre 400. Week 2 shows bad results, because the differences in the inner
and outer bend are too big, so this week does not give reliable results. The other
weeks on the other hand show better results. Especially the fourth week shows a
representative bed level with smooth transitions between the grid cells. From all
three figures can be concluded that value poor grid cells occur along the grid, so
there is little data in all weeks.

On the next page maximum bed levels at Koln (river kilometre 690) are shown. At
this further downstream section with more vessel tracks in a week, a denser bed
level chart can be generated than the bed level chart that is generated at Speyer.
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Figure A-35: Maximum bed level Koln week 1 (8t — 14th May)
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Figure A-36: Maximum bed level Koln week 2 (15t — 215t May)
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Figure A-37: Maximum bed level Koln week 3 (22"d - 28th May)
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Figure A-38: Maximum bed level Koln week 4 (29t May — 4th June)
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Appendix B Matlab code description

B.1. Description of translation water depth to bed level

The first step consists of filtering out negative values for the water depth. Approximately half of the CoVadem
data represents a negative water depth of -999 m. These are caused by an error in the translation from under
keel clearance to water depth and are therefore not useful for this research. These values are also being
filtered out in the generation of the real-time water depth chart in the application for the skippers.

For next steps another data set is used. This dataset consists of the water levels at 8 hydrological stations for
every 10 minutes. The locations of these hydrological stations along the River Rhine are shown in Figure B-1.
Besides the water levels, the locations of these stations in the Cartesian coordinate system and the place on
the River Rhine in kilometres are known as shown in Appendix B.2.

Dodewaard
Tiel 7’_5’-— Pamerdensche Kop

N /I iy
E R “ Epnech

Wemendsm Vuren Zakbommel am Hein

Figure B-1: Hydrological stations along the River Rhine

For the determination of the water level at NAP for each data point, the water levels at the hydrological
stations must be linear interpolated in time and space. For these interpolations a code is constructed in Matlab.

Interpolation in time

For the linear interpolation in time, each CoVadem data point is interpolated in time with the water level data
from hydrological stations. This resulted in a matrix with water levels on all hydrological stations at the time of
each data point.

Interpolation in space

The interpolation in space is the next part in the transformation from water depth to bed level for each data
point. This interpolation in space is done in two steps. The first step is to calculate the place on the river in
kilometres for each CoVadem data point. For this step, a delivered dataset is used. This dataset represents
points on the river-axis of the River Rhine each hectometre. These points have an X- and Y-coordinate the
same as each CoVadem data point. With this dataset the distance on the River Rhine for each CoVadem data
point can be calculated. A visualisation of this interpolation is shown in Figure B-2.



Data points on kilometre of the River Rhine
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Figure B-2: Data points on kilometre of the River Rhine

The second step is the calculation of the water level at NAP for each CoVadem data point and from there the
generation of the bed level at NAP. This is done with again a linear interpolation in space. The distance in river
kilometres of the CoVadem data point is known, as is the distance in river kilometres of each hydrological
station. With the generated water levels at the hydrological stations for each data point in the time, the water

level at each data point can be generated using interpolation in space.

After these steps equation 1 is used for the translation of the CoVadem data water depth data to bed level at

NAP so it can be validated with the Multibeam data.

Equation 1: Bed levelnar,tx = Water levelnar,.x — Water depthcovadem_data,tx

For the generation of a real-time water depth chart, CoVadem data of 1 week is being used. Therefor the last
step in the translation to a useful data set is splitting the CoVadem data to a scope of one week. CoVadem data
from 1 September 2017 till 15 September 2017 is available, so 2 weeks are generated from this data set as is

shown in Table B-1.

Table B-1: Dates weeks

Week Date
1 1 September — 7 September 2017
2 8 September — 14 September 2017
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B.2. Locations of hydrological stations and CoVadem data points on

Table B-2: Locations of hydrological stations on the River Rhine in the Netherlands

the River Rhine
Hydrological station River km
(km]
Lobith 862
Pannerdensche Kop 867
Nijmegen 884
Dodewaard 900
Tiel 915
Zaltbommel 933
Vuren 948
Werkendam 961

Table B-3: Locations of hydrological stations on the River Rhine in Germany

Hydrological station River km
(km]
Maxau 359,8
Philippsburg 385,5
Speyer 397,8
Mannheim 422,6
Worms 440,9
Nierstein 478,7
Mainz 496,8
Bingen 525
Kaub 544,5
Boppard 568,5
Braubach 578,3
Koblenz 589,2
Andernach 610
Oberwinter 635
Bonn 655
Koln 689,2
Dusseldorf 744,3
Ruhrort 780,7
Wesel 814,3
Rees 837
Emmerich 852
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